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Time-dependent density-functional theory sTDDFTd is widely used in the study of linear response
properties of finite systems. However, there are difficulties in properly describing excited states,

which have double- and higher-excitation characters, which are particularly important in molecules

with an open-shell ground state. These states would be described if the exact TDDFT kernel were

used; however, within the adiabatic approximation to the exchange-correlation sxcd kernel, the
calculated excitation energies have a strict single-excitation character and are fewer than the real

ones. A frequency-dependent xc kernel could create extra poles in the response function, which

would describe states with a multiple-excitation character. We introduce a frequency-dependent xc

kernel, which can reproduce, within TDDFT, double excitations in finite systems. In order to

achieve this, we use the Bethe–Salpeter equation with a dynamically screened Coulomb interaction

Wsvd, which can describe these excitations, and from this we obtain the xc kernel. Using a

two-electron model system, we show that the frequency dependence of W does indeed introduce the

double excitations that are instead absent in any static approximation of the electron-hole

screening. © 2009 American Institute of Physics. fDOI: 10.1063/1.3065669g

I. INTRODUCTION

Excitation energies in finite systems have been exten-

sively studied within time-dependent density-functional

theory sTDDFTd.1 In this approach the excitation energies of
the system are obtained from those of the noninteracting

Kohn–Sham sKSd system through the following Dyson-type
equation:

xsx1,x2,vd = xssx1,x2,vd +E dx3dx4xssx1,x3,vd

3F 1

ux3 − x4u
+ fxcsx3,x4,vdGxsx4,x2,vd , s1d

where x and xs are the response functions of the interacting

and the KS systems, respectively. Here the set of variables

sx1d comprises position and spin coordinates: sx1d= sr1 ,s1d.
The poles of the true response function give the excitation

energies of the interacting system, where the excited states

can be a mixture of single, double, and higher-multiple ex-

citations, whereas the poles of the KS response function are

just at single KS excitation energies. Therefore xs has fewer

poles than x. The KS excitation energies are mapped to the
true excitation energies by the Coulomb potential and the

exchange-correlation sxcd kernel fxc. Hence, in principle, the
exact spectrum of the interacting system can be obtained.

However, in practice, both the ground-state xc potential and

the xc kernel have to be approximated. The most used ap-

proximation for fxc is the simple adiabatic local-density ap-

proximation sALDAd, which is local in time and in space.
Although this approximation is surprisingly successful, there

are some deficiencies. In particular, ALDA fails to create

new poles, which would describe excited states with a

multiple-excitation character. This deficiency is a problem

particularly for open-shell systems.
2
However, there are also

problems for closed-shell molecules: for example, the

lowest-lying singlet state of polyenes is not a simple highest

occupied molecular orbital–lowest unoccupied molecular or-

bital sHOMO-LUMOd one-electron excitation but has a
HOMO2-LUMO2 double-excitation character.

3,4

Several solutions have been proposed in literature in the

framework of TDDFT. Wang and Ziegler
5,6
used a noncol-

linear representation of the xc energy. This means that the xc

energy, instead of being a functional of the density alone or

of the spin-up and spin-down densities, is a functional of the

density and of the magnetization m=oici
†
sci, where s is

the vector of Pauli matrices. This allows one to describe spin

flip in the systems and, hence, to formally include doubly

excited states into a linear response theory. In practice, how-

ever, only if the appropriate excited state is used as reference

can double excitations from the ground state be described.

Another possible solution is to go beyond the adiabatic

approximation. The inclusion of a frequency dependence in

the xc kernel can indeed create extra poles. Casida
7
proposed

a nonadiabatic correction to the xc kernel by using the for-

malism of superoperators. As a central result, he obtained a

formal equation that gives the correction to the adiabaticad
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kernel used in TDDFT. The correction term comes from a

Bethe–Salpeter-type equation sBSEd, which contains one-
electron excitation contributions and higher-excitation con-

tributions. The general formula introduced includes as a spe-

cial case the “dressed TDDFT” derived by Maitra et al.8 for
closed-shell systems. These authors showed that near states

with a double-excitation character, the exact xc kernel has a

strong dependence on frequency. They derived the exact

frequency-dependent kernel for the case of a double excita-

tion mixed with a single excitation and well separated from

the other excitations, and calculated the first excited state of

butadiene and hexatriene, which is largely dominated by a

double excitation.
4
However, for the application of the

dressed treatment, the mixing single and double excitations

must be identified a priori, which is not straightforward
based on TDDFT results only. Recently Giesbertz et al.9 for-
mulated an adiabatic time-dependent density-matrix-

functional theory in which double excitations can be ac-

counted for. In this paper we wish to remain in the TDDFT

framework and go beyond the adiabatic approximation and

to have a general formulation in which the frequency-

dependent kernel can reproduce double excitations. In order

to obtain this, we exploit the BSE, where the kernel can be

approximated in a more systematic and transparent way. The

BSE approach has already been used to find better approxi-

mations to the xc kernel of TDDFT in the case of solids.
10–15

In all these previous studies, the BSE kernel has been taken

to be static. There are some works in which a dynamical

screening is employed.
16,17

Recently Marini and Del Sole
18

discussed the effects of a frequency-dependent BSE kernel

on the absorption spectra of copper, silver, and silicon. They

showed that dynamical effects are important for metals and

that a good description of the spectral intensity of their ab-

sorption spectra can be obtained if both dynamical excitonic

and self-energy effects are taken into account in the calcula-

tion of the response functions. In this article we are inter-

ested in the number and position of the poles of the response

function in finite systems. Therefore we will start by consid-

ering dynamical effects only in the kernel. Once the suitable

BSE kernel is found, we can obtain the xc kernel for

TDDFT.
19,20

The paper is organized as follows. In Sec. II first we give

a brief introduction to the main equations used in TDDFT for

the calculation of excitation energies in molecules, known

also as Casida’s equations, and we show the problems that

arise if ALDA is used. Then we introduce the BSE, where

the kernel is approximated by the frequency-dependent

screened Coulomb interaction Wsvd. We show that this BSE
kernel can describe double excitations by calculating excita-

tion energies of a two-electron model system. However, this

kernel, in the current formulation based on the random phase

approximation sRPAd, produces also unphysical poles, which
we attribute to the self-screening problem that the descrip-

tion of the screening suffers from. From this BSE kernel, we

derive the frequency-dependent xc kernel. Finally in Sec. IV

we draw our conclusions.

II. THEORY

A. TDDFT within Casida’s formulation

Excitation energies are obtained in TDDFT as a solution

of the following eigenvalue equation:
21

S A B

− Bp − Ap
DSX

Y
D = vSX

Y
D , s2d

with

Aias,jbt = dstdabdijseas − eitd + Kias,jbt, s3d

Bias,jbt = Kias,bjt, s4d

Kias,jbt =E E cis
p srdcassrdF 1

ur − r8u

+ fxc
stsr,r8,vdGcbt

p sr8dc jtsr8ddrdr8. s5d

Here a ,b , . . . are indices for virtual orbitals, i , j , . . . are indi-
ces for occupied orbitals, s and t are indices for the spin, e
and c are the KS energies and orbitals, and fxc

stsr ,r8 ,vd is
the xc kernel. Although the matrix above spans only the

single KS excitations, in principle the eigenvalue equation

yields all the excitation energies of the interacting system.

However, for the number of eigenvalues to be larger than the

size of the matrix si.e., the number of single KS excitationsd,
the kernel K must be frequency dependent. Hence, within the

adiabatic approximation, TDDFT can only account for singly

excited configurations. This means that excited states with a

double-excitation character are, in general, not described

with the correct energy or are even completely absent. In

particular, the problem is evident in open-shell systems if

using the three-orbital model of Ref. 2, with one orbital dou-

bly occupied, another one singly occupied, and the third one

empty. If fĤ , Ŝzg= fĤ , Ŝ2g=0, then the Hamiltonian Ĥ and the

spin operators Ŝz and Ŝ2 of the system have common eigen-

states. Single Slater determinants of KS orbitals, with the

same spatial behavior for different spins srestricted formula-
tiond, are always eigenfunctions of Ŝz but not, in general, of
Ŝ2. In this case one can produce spin-adapted wave functions
by a linear combination of Slater determinants using

Clebsch–Gordan coefficients. In Ref. 2 it is shown that exci-

tations in which the singly occupied molecular orbital is a

spectator are problematic. In this case, indeed, among the

possible eigenstates of Ŝ2, there are a quartet and a doublet

state, which can be described only if double excitations are

included. Hence these two excited states will not be de-

scribed using a frequency-independent xc kernel. In place of

these two states, ALDA yields instead only one state, a com-

bination of two singly excited determinants, which is un-

physical.

Our aim is hence to go beyond the adiabatic approxima-

tion and include in the xc kernel a frequency dependence

which can produce double-excitation energies. We will de-

rive this kernel from the kernel of the BSE. Passing through

many-body perturbation theory sMBPTd has the advantage

that excitations of the system enter the formulation explicitly.
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Therefore approximations with a clear physical meaning can

be more easily designed than in the context of DFs and in-

troduced into TDDFT in a second step.

B. Reduced space

In general, an sm3md eigenvalue problem can be re-

duced to a lower-dimensional one by writing it as

S S C1
C2 D

DSe1
e2
D = vSe1

e2
D , s6d

where S is an n3n matrix, D is a t3 t matrix, and m=n+ t.
In fact, solving for e2= sv1−Dd−1C2e1 and substituting into

the equation for e1, one gets

fS + C1sv1 − Dd−1C2ge1 = ve1, s7d

provided that sv1−Dd is invertible. The latter is an sn3nd
eigenvalue problem for a frequency-dependent matrix. In

particular, the eigenvalues obtained from Eq. s7d are the

same as those of Eq. s6d.
This conversion of spatial degrees of freedom into fre-

quency dependence is very general.
20

For example, when

solving the BSE in the space of single excitations, the

frequency-dependent kernel has folded in it all the many-

excitation effects. We are interested, in particular, in double

excitations. In this case, the matrix S spans the space of

single excitations, and it has the same structure reported in

Eq. s2d within a static approximation to the kernel; the matrix
D spans the space of double excitations, and the matrices C1

and C2 represent the interaction between single and double

excitations. Equation s7d shows that an eigenvalue problem

formulated in the basis of single and double excitations can

be solved in the space of single excitations only by adding to

a general static matrix an v-dependent matrix, which takes

into account double excitations. It is this frequency depen-

dence representing additional excitations that we are inter-

ested in.

It should be noticed that the kernel acquires an addi-

tional v-dependence when one transforms the four-point

BSE to the two-point TDDFT equation. In this case the

v-dependence represents simply the reduction in space.

C. Bethe–Salpeter equation

We consider the BSE for the two-particle propagator L,22

Ls1,2,18,28d = L0s1,2,18,28d +E d3d4d5d6L0s1,4,18,3d

3Js3,5,4,6dLs6,2,5,28d , s8d

where L0 is given in terms of one-particle Green’s functions
as L0s1,2 ,18 ,28d=−iGs1,28dGs2,18d and the four-point ker-
nel Js3,5 ,4 ,6d is given by

Js3,5,4,6d = i
dfvHs3dds3,4d + dSs3,4dg

dGs6,5d
, s9d

with vHs1d=−ied3vs1,3dGs3,3+d as the Hartree potential.

Here the set of variables s1d comprises position, spin, and
time coordinates: s1d= sx1 , t1d= sr1 ,s1 , t1d. For simplicity, in
the following the spatial and spin dependence will not be

specified, if not necessary. We will use the so-called GW
approximation to the self-energy, Ss1,2d= iGs1,2dWs1+ ,2d,
and hence the BSE kernel reduces to Js3,5 ,4 ,6d
=ds3,4dds5,6dvs3,6d−ds3,6dds4,5dWs3,4d. Here we ne-

glected the term idW /dG in the functional derivative of the

self-energy.
23–25

In Ref. 26 it is shown that L naturally de-

pends on the symmetric combinations of time variables

ft= st1+ t18d /2− st2+ t28d /2;t1= t1− t18 ;t2= t2− t28g. Usually

the screened Coulomb interaction W is taken to be instanta-

neous, i.e., Ws3,4d=Wsx3 ,x4ddst3− t4d. In this case one can

contract the time variables t18→ t1 and t28→ t2 in Eq. s8d, and
thus the propagator L depends only on the time difference

t= t1− t2.
27–32

Instead, if one takes into account the time de-

pendence of the screening, Wst3− t4d, the contraction

t18→ t1 is not possible anymore. In Appendix A we show that

the Fourier transform of Lst ,t1 ,t2d with respect to t, t1, and
t2 is given by

Lsv,v8,v9d

= L0sv,v8,v9d − iGsv8 + v/2dGsv8 − v/2dv

3E dṽ

2p
Lsv,ṽ,v9d + iGsv8 + v/2dGsv8 − v/2d

3E dṽ

2p
Wsv8 − ṽdLsv,ṽ,v9d , s10d

with L0sv ,v8 ,v9d=−2pidsv8−v9dGsv8+v /2dGsv9−v /2d.
In the following we approximate the one-particle Green’s

function as

Gsx1,x2,vd = o
n

fnsx1dfn
psx2d

v − en + ih sgnsen − md
, s11d

where fnsxd are a complete set of sorthonormald single-

particle wave functions, en are the quasiparticle energies, and
m is the chemical potential. Note that we neglect the fre-

quency dependence of the self-energy in the Green’s func-

tion, and we concentrate on the frequency dependence of the

screening W only. It has been shown that the two kinds of

dynamical effects tend to cancel each other with an improve-

ment of the spectral intensity and of the f-sum rule in

solids.
15,33

In this paper, however, we are interested in the

effects of a dynamical screening.

1. Static screening W„v=0…

It is immediate to see that if we consider a static screen-

ing Wsv=0d, as it is done in most of current

calculations,
29,31,32

Eq. s10d reduces to

L̃svd = L̃0svd + L̃0svdKL̃svd , s12d

where K= sv−Wd, L̃svd=esdv8dv9 / s2pd2dLsv ,v8 ,v9d and

analogously for L̃0svd. Note that L̃svd is the quantity that is
usually calculated in nowadays applications.

29,31,32
In this

work we are interested in the particle-hole portion of the
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propagator L si.e., the part corresponding to the time order-
ings which describe the propagation of an electron and a

holed; therefore in the following our discussion will refer
only to this contribution. Using the change of basis

L̃sn18n1dsn2n28d
=E dx1dx2dx18dx28L̃sx1,x2,x18,x28,vd

3fn1

p sx1dfn18
sx18dfn28

sx28dfn2

p sx2d , s13d

the BSE s12d can be mapped into an effective two particle
equation,

10,28,34

L̃sn18n1dsn2n28d
= fH2p − Ivgsn18n1dsn2n28d

−1 sfn2 − fn28d , s14d

with the two-particle Hamiltonian H2p defined as

Hsn18n1dsn2n28d
2p = sen1 − en18

ddn1,n28
dn18,n2

+ sfn18 − fn1dKsn18n1dsn28n2d. s15d

Note that due to the orthonormality of the basis set wave

functions, L̃0sn18n1dsn2n28d
=dn18n2

dn1n28
sfn18− fn1dfv− sen1−en18d

+ ih sgnsen1−en18dg
−1 is diagonal. Here fk are Fermi occupan-

cies sfk=1 if ek,m and fk=0 if ek.m, with m as the chemi-

cal potentiald. The presence of sfn28− fn2d selects only a part

of the Hamiltonian H2p, which is referred to as excitonic

Hamiltonian H2p,exc,

H2p,exc = S Hsvcdsv8c8d
2p,reso

Ksvcdsc8v8d
coupling

− fKsvcdsc8v8d
coupling gp − fHsvcdsv8c8d

2p,reso gp
D , s16d

with v, v8 and c, c8 as occupied and unoccupied quasiparticle
states, respectively. The matrix H2p,reso only involves positive

energy transitions, and it is given by

Hsvcdsv8c8d
2p,reso

= sec − e
v
dd

v,v8
dc,c8 + vsvcdsv8c8d −Wsvcdsv8c8d,

s17d

with

vsvcdsv8c8d =E dxdx8fc
psxdf

v
sxd

1

ux − x8u
fc8sx8dfv8

p sx8d ,

s18d

Wsvcdsv8c8d =E dxdx8fc
psxdfc8sxdWsx,x8df

v
sx8df

v8

p sx8d .

s19d

The lower-right block −fHsvcdsv8c8d
2p,reso gp is the antiresonant part

of the excitonic Hamiltonian, which only involves negative

energy solutions, while the off-diagonal terms couple the ei-

genvalue equations of the resonant and antiresonant Hamil-

tonians. The particle-hole propagator L̃ can be obtained as

L̃sx1,x2,x18,x28,vd

= o
ll8

F o
n1n18

A
l

sn18n1d
fn1

sx1dfn18

p sx18d

vl − v + ih sgnsen18 − en1d

3Sll8

−1 o
n2n28

A
l8

psn2n28dfn2
sx2dfn28

p sx28dsfn28 − fn2dG , s20d

where A
l
sn18n1d

and vl are the eigenvectors and eigenvalues of

the excitonic Hamiltonian,

Hsn18n1dsn2n28d
2p,exc A

l

sn2n28d = vlAl

sn18n1d
, s21d

and Sll8
=on1n18

A
l
psn18n1dA

l8

sn18n1d
is the overlap matrix. From

the particle-hole propagator, we can obtain the two-point po-

larizability xsx1 ,x2 ,vd= L̃sx1 ,x2 ,x1 ,x2 ,vd. fNote that all the
quantities we have defined so far are time ordered. Analytic

continuation to retarded quantities can eventually be per-

formed by replacing −ih with ih in the denominator of Eq.

s20d when en18,en1.g The excitonic Hamiltonian fEq. s21dg
has the same structure as the TDDFT eigenvalue equation

fEq. s2dg; hence also here a kernel that is frequency depen-

dent is needed in order to describe double excitations.

2. Eigenvalue equation with a frequency-dependent
screening W

The mapping of the BSE with a frequency-dependent

screened Coulomb interaction Wsvd into an effective two

particle equation is not as straightforward as for the static

case. However, following Ref. 22, we can obtain an eigen-

value equation analogous to Eq. s21d,

Hsn18n1dsn2n28d
2p,exc svldA

l

sn2n28dsvld = vlAl

sn18n1dsvld , s22d

where now

Hsn18n1dsn2n28d
2p,exc svld = sen1 − en18

ddn18n2
dn1n28

+ sfn18 − fn1d

3fvsn18n1dsn2n28d
− W̃sn18n1dsn2n28d

svldg ,

s23d

with

W̃sn18n1dsn2n28d
svld = iE dv

2p
Wsn18n1dsn2n28d

svd

3F 1

vl − v − sen28 − en18
d + ih

+
1

vl + v − sen1 − en2d + ihG . s24d
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Note that Eq. s22d has been derived assuming spectra with
poles vl well isolated from each other. In the present study,

in which we deal with molecules, this hypothesis is not se-

vere. Furthermore it is assumed that the poles of L0 are dif-
ferent from vl.

We now approximate the screened electron-hole interac-

tion Wsn18n1dsn2n28d
svd in Eq. s23d. In principle the screening

should self-consistently contain multiple excitations. How-

ever, as a starting point we can approximate it using only

single excitations, such as in RPA or using some static ap-

proximation. We, therefore, first solve Eq. s15d with a static
screening and use the corresponding eigenvalues and eigen-

vectors in Eq. s20d to obtain the two-point response function
xsx1 ,x2 ,vd= L̃sx1 ,x2 ,x1 ,x2 ,vd. The poles of the response
function give the excitation energies of the system and,

within a static approximation to the screening, are as many

as the number of single e-h excitations sv ,cd and sc ,vd.
From the equation W=v+vxv, we then obtain

Wsx1,x2,vd = vsx1,x2d +o
l
E dx18dx28vsx1,x18dHo

vc,v8c8Al
svcd,staticf

v

psx18dfcsx18dfv8
sx28dfc8

p sx28dAl
psv8c8d,static

v − vl
static + ih

−
ocv,c8v8

Al
scvd,staticfc

psx18dfv
sx18dfc8sx28dfv8

p sx28dAl
psc8v8d,static

v + vl
static − ih

Jvsx28,x2d , s25d

from where it immediately follows that

Wsn18n1dsn2n28d
svd = vsn28n1dsn2n18d

+ o
l

o
ṽc̃,ṽ8c̃8

vsn28n1dsṽc̃d
Al

sṽc̃d,staticAl
psṽ8c̃8d,static

v − vl
static + ih

vsṽ8c̃8dsn2n18d

− o
l

o
c̃ṽ,c̃8ṽ8

vsn28n1dsc̃ṽd
Al

sc̃ṽd,staticAl
psc̃8ṽ8d,static

v + vl
static − ih

vsc̃8ṽ8dsn2n18d
. s26d

Note that we used the notation vl for the positive energies and −vl for the negative energies. Furthermore we neglected the

coupling between positive and negative energy equations sTamm–Dancoff approximationd. In this case, since the excitonic

Hamiltonian is Hermitian, the eigenstates Al are mutually orthogonal, and hence the overlap matrix Sll8
in Eq. s20d equals the

identity matrix.

Inserting Eq. s26d into Eq. s24d, we can solve analytically the frequency integration. We arrive at

W̃sn18n1dsn2n28d
svld = vsn28n1dsn2n18d

+ o
l8

o
ṽc̃,ṽ8c̃8

vsn28n1dsṽc̃d

Al8

sṽc̃d,staticAl8

psṽ8c̃8d,static

vl − vl8

static
− sen28 − en18

d + ih
vsṽ8c̃8dsn2n18d

+ o
l8

o
ṽc̃,ṽ8c̃8

vsn28n1dsc̃ṽd

Al8

sc̃ṽd,staticAl8

psc̃8ṽ8d,static

vl − vl8

static
− sen1 − en2d + ih

vsc̃8ṽ8dsn2n18d
. s27d

Note that the frequency-dependent term on the right-hand

side of Eq. s27d has the same form as the term C1sv1
−Dd−1C2 in Eq. s7d, in which D plays the role of vstatic+De.
In Sec. III we will show, using a simple model system, that

this frequency-dependent kernel produces double excitations,

although with some deficiencies that we will explain later. In

the space of single excitations the TDDFT equation and the

BSE have the same four-point structure. In particular the xc

kernel and the BSE kernel play the same role sbesides the
quasiparticle shiftd. Therefore we can compare the kernel in

Eq. s27d with the xc kernel obtained by Maitra et al. in Ref.
8: within the single pole approximation and considering only

the resonant part of Eq. s27d, we obtain the same structure as
Eq. s15d of Ref. 8, with svstatic− sec−e

v
dd playing the role of

sHDD−H00d.

D. From BSE to TDDFT

In transition space both the TDDFT equation and the

BSE are four-point equations. In this case, solving the TD-
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DFT equation costs as much as solving the BSE. In real

space, instead, the TDDFT equation is a two-point equation,

unlike the BSE, which remains four point. Therefore it is

worthwhile to try to derive an xc kernel from BSE. An ap-

proximate expression for the xc kernel in real space has been

obtained from the BSE kernel in several ways, all yielding

the same result.
11,13–15,19,20,35,36

However, all these previous

derivations assume a static screening. Here, instead, we will

use a dynamical screening in order to obtain an xc kernel,

which can describe double excitations. We will follow Refs.

19 and 20. We are interested in positive frequencies. In this

case there is no difference between time-ordered and causal

response functions. We also assume that both in TDDFT and

BSE the starting point is L0, which already includes quasi-
particle corrections. Starting from Eq. s9d of Ref. 20, we then
arrive at

fxcsx1,x2,vd = −E dx3dx4dx5dx6x0
−1sx1,x3,vdFE dv8dv9

s2pd2
L0sx3,x6,x3,x5,v,v8,v9d

3E dv-dṽ

s2pd2
Wsx5,x6,v8 − ṽdL0sx5,x4,x6,x4,v,ṽ,v-dGx0

−1sx4,x2,vd , s28d

with x0s1,2d=L0s1,2 ,1 ,2d. As a dynamical screening Wsv8− ṽd we insert the expression given in Eq. s25d, and we obtain

fxcsx1,x2,vd = o
kk8,ss8

E dx3dx4dx5dx6x0
−1sx1,x3,vd

fksx3dfk
psx5dfk8sx6dfk8

p sx3d

v − sek − ek8d + ih sgnsek − ek8d

3Hvsx5,x6d +E dv8

2p
F 1

v8 + v/2 − ek + ih sgnsek − md
−

1

v8 − v/2 − ek8 + ih sgnsek8 − mdG
3o

l
E dx18dx28vsx5,x18dE dṽ

2p
Fo

ṽc̃,ṽ8c̃8Al
sṽc̃d,staticf

ṽ

psx18dfc̃sx18dfṽ8
sx28dfc̃8

p sx28dAl
psṽ8c̃8d,static

v8 − ṽ − vl
static + ih

−
oc̃ṽ,c̃8ṽ8

Al
sc̃ṽd,staticfc̃

psx18dfṽ
sx18dfc̃8sx28dfṽ8

p sx28dAl
psc̃8ṽ8d,static

v8 − ṽ + vl
static − ih

Gvsx28,x6d

3F 1

ṽ + v/2 − es + ih sgnses − md
−

1

ṽ − v/2 − es8 + ih sgnses8 − mdGJ
3

fssx5dfs
psx4dfs8sx4dfs8

p sx6d

v − ses − es8d + ih sgnses − es8d
x0
−1sx4,x2,vd . s29d

Since we consider only positive energy solution, we select only the terms with ek, es.m and ek8, es8,m, and after integration
in ṽ and v8, we arrive at

fxcsx1,x2,vd = − o
vc,v8c8

E dx3dx4dx5dx6x0
−1sx1,x3,vdL̃0

vcsx3,x6,x3,x5,vdW̃
v8c8

vc sx5,x6,vdL̃0
v8c8sx5,x4,x6,x4,vdx0

−1sx4,x2,vd ,

s30d

where we defined

W̃
v8c8

vc sx5,x6,vd = vsx5,x6d + o
l
E dx18dx28vsx5,x18dFo

ṽc̃,ṽ8c̃8Al
sṽc̃d,staticf

ṽ

psx18dfc̃sx18dfṽ8
sx28dfc̃8

p sx28dAl
psṽ8c̃8d,static

v − vl
static − sec8 − e

v
d + ih

+
oc̃ṽ,c̃8ṽ8

Al
sc̃ṽd,staticfc̃

psx18dfṽ
sx18dfc̃8sx28dfṽ8

p sx28dAl
psc̃8ṽ8d,static

v − vl
static − sec − e

v8
d + ih

Gvsx28,x6d , s31d
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which can be obtained from Eq. s27d, and L̃0
vc such that L̃0

=o
vcL̃0

vc. Equation s30d is the central result of this article.
Unlike previous derivations based on the BSE, here we used

a BSE kernel which is frequency dependent.

It has been shown that a static approximation to the fac-

tor x0
−1L0 can reproduce good spectra for solids in the case

when a static screening is used.
37
The same is observed for

the spectrum of silicon calculated using only two k points in
the Brillouin zone.

13
The latter discrete case can be consid-

ered as a simulation of a calculation in a molecule. There-

fore, if we suppose the factor x0
−1L0

vc to be static, the xc

kernel in Eq. s30d will have the same poles of the screened
electron-hole interaction W̃, and hence it will have also the

same advantages and the same deficiencies, which will be

pointed out in the next section.

1. Exact constraints

Several exact properties of the xc kernel are known, and

it is desirable to satisfy as many of them as possible when

constructing an approximate kernel.
38,39

In Ref. 40 van Leeu-

wen and Dahlen showed that, starting from the time-

dependent Sham–Schlüter equation,

E d2Gss1,2dGs2,1dvxcs2d =E d2d3Gss1,2dSs2,3dGs3,1d ,

s32d

its functional derivative with respect to the density yields an

xc kernel of TDDFT that satisfies important exact con-

straints. This is true also if the linearized form of Eq. s32d is
employed, where all Green’s functions, including those con-

tained in the expression for S, are replaced by KS Green’s

functions.
40,41

In this case, when the GW approximation to

the self-energy is used, the xc kernel is given by the diagram-

matic expression in Fig. 2 of Ref. 41. The class of xc kernels

used in the present paper differs from the conserving kernel

of Ref. 41 in three aspects:

• the derivative of W with respect to the total potential V
is neglected; i.e., W is treated as an externally given

interaction;

• the quasiparticle correction is included in the energies

of the independent polarizability x0, and it is not linear-

ized as part of the kernel;

• consequently all Green’s functions are built with quasi-

particle eigenvalues instead of KS eigenvalues.

The term dW /dV, which gives rise to the two last dia-

grams of the conserving kernel, is usually neglected in the

BSE without deteriorating the results, which is our motiva-

tion to adopt this approximation. The linearization of the

quasiparticle correction term would give the first four dia-

grams of the conserving kernel
42
instead of dressed Green’s

functions throughout. However, the linearized quasiparticle

correction term is numerically unstable and gives rise to scat-

tered spectra;
42
therefore it is preferable to use the nonlinear-

ized version. Finally, the use of KS Green’s functions instead

of quasiparticle Green’s functions in Eq. s28d is consistent

with that choice; this point is, moreover, not fundamental for

the discussion of this paper. Equation s28d gives the fifth

diagram of the conserving kernel when KS Green’s functions

are used.

The kernel in Eq. s28d is, therefore, closely related to

conserving approximations to the xc kernel. In fact, if a static

screening is used, then the linearized form of Eq. s28d is

conserving.
41
This is not sufficient to ensure that the kernel

s28d obeys the known exact constraints. However, although

the violation of these constraints can cause some

instabilities,
43,44

the observance of them does not guarantee

that good results will be obtained.
45,46

Indeed, the class of

kernels s28d has been derived from a pragmatic point of view

by imposing TDDFT to reproduce the two-point polarizabil-

ity of BSE in a limited frequency range: this is our con-

straint. The static version of Eq. s28d has been successfully

used in solids.
11–13

In this work we release the static approxi-

mation, and we investigate the effect of a dynamical screen-

ing. As already stressed, other dynamical effects, which

might be important for the spectrum, are not taken into ac-

count since the goal of the present work is to elucidate the

contributions arising from the excitations contained in the

dynamically screened electron-hole interaction.

III. APPLICATIONS

We will now study a model system with two energy

levels, e
v
and ec, and two paired electrons.

A. Solution of the excitonic Hamiltonian

We calculate the eigenvalues of the Hamiltonian s22d,
within the Tamm–Dancoff approximation. These eigenvalues

give the poles of the four-point polarizability L and hence the

excitation energies of the system.

First we need to specify the spin structure of the exci-

tonic Hamiltonian.
32
Since we neglect spin-orbit interaction

as well as spin flip, the basis set consists of the particle-hole

pairs with spin-up sv↑c↑d and of those with spin-down

sv↓c↓d. Furthermore, we will consider a spin-restricted

ground state, i.e., fi↑=fi↓. We then have to solve the follow-

ing eigenvalue problem:

sDe + V − W̃ − vd2 − V2 = 0, s33d

where De= secs−e
vsd, V=vsvcsdsvcs8d, and W̃=W̃svcsdsvcsd,

with s= ↑ ,↓. Using a static screening, we obtain two solu-

tions for this model: the singlet solution v1
static=De+2V

−Wstatic with eigenvector A1
static=1 /Î2s11dT and the triplet so-

lution v2
static=De−Wstatic with eigenvector A2

static=1 /Î2s1
−1dT. Using these solutions in Eq. s27d, one constructs the
frequency-dependent screening W̃=A+B / sv−v1

static−Ded,
with A=vsccdsvvd and B=2Rfvsccdsvcdvsvcdsvvdg. From the struc-

ture of W̃, one can already anticipate that the eigenvalue of

Eq. s33d has four solutions, although one expects only three
for this system, i.e., a singlet single excitation, a triplet single

excitation, and a singlet double excitation. One of the four is

an unphysical state. We argue that the occurrence of this

extra pole is related to the self-screening interaction that the

GW approximation to the self-energy suffers from:
47 W is the
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test charge–test charge screening, whereas the charges to be

screened are fermions, not classical charges.
19
This could be

cured by a vertex correction to the self-energy. Indeed, if one

considers only one electron in this model system, then Eq.

s22d produces two poles, one corresponding to a single exci-
tation and the other one, unphysical, corresponding to a

double excitation. In this case, there are no dynamical self-

energy effects involved, and the extra pole arises, indeed,

from the fact that the electron screens itself. We can recog-

nize the spurious solution by solving Eq. s33d independently
of the dynamical structure of W̃. We then obtain two groups

of solutions: one for singlet states, v=De+2V−W̃, and one

for triplet states, v=De−W̃. Since the excited state involving

a double excitation is a singlet, the correct double-excitation

energy is that coming from the singlet-group solutions. The

four solutions sv1,2, the singlet solutions, and v3,4, the triplet

solutionsd are

v1,2 =
2De + v1

static + 2V − A 6 Îsv1
static − 2V + Ad2 − 4B

2
,

s34d

v3,4 =
2De + v1

static − A 6 Îsv1
static + Ad2 − 4B

2
.

In order to analyze this result, we can assume that the system

has localized wave functions. In this case the overlap be-

tween valence and conduction orbitals can be small, and

therefore the term B=2Rfvsccdsvcdvsvcdsvvdg is such that

sv1
static+A−2Vd2@4B. The solutions become

v1 = De + 2V − A ,

v2 = De + v1
static = 2De + 2V −Wstatic,

v3 = De − A ,

v4 = De + v1
static = 2De + 2V −Wstatic.

The solutions v1 and v3 are the energies of the singlet and

triplet single excitations, respectively, already described us-

ing a static screening, v2 is identified as the energy of a

singlet double excitation, and v4 is the spurious energy.

To give a numerical example, we consider the He atom,

where we select only the HOMO, which is a 1s orbital, and
the LUMO, which is a 2s orbital. Equation s34d links the

singlet and triplet excitation energies sv1 and v3, respec-

tivelyd to the parameters A and B. Therefore we use the ex-
perimental values for De, v1, and v3 from Refs. 48 and 49 to

evaluate A and B. Furthermore we approximate 2V=v1−v3,

which follows from Eq. s33d with a static screening, and we
use v1

static=v1
RPA=De+2V. All these values are then used in

Eq. s34d to calculate the double-excitation energy v2. In

Table I we reported the results. In particular, the double-

excitation energy is calculated to be v2=49.81 eV. This en-

ergy falls in the continuum; therefore we cannot compare our

result with experimental data. However, we can show that we

obtain a reasonable result by comparing it with the solution

of the exact Hamiltonian, which is described in the follow-

ing.

B. Solution of the exact Hamiltonian

We can compare our result with the eigenstates and ei-

genvalues of the exact Hamiltonian

Ĥ = o
i

ĥsxid +
1

2
o
iÞj

vsxi,x jd , s35d

where the terms on the right-hand side are the noninteracting

Hamiltonian and the two-electron interaction, respectively. In

Appendix B we show that in second quantization the eigen-

values and eigenvectors of our model can be obtained by

diagonalizing the following matrix:

Hexact =1
uv↑v↓l uv↑c↓l uv↓c↑l uc↑c↓l

uv↑v↓l 2e
v
+ V

vvvv
V

vvvc − V
vvvc V

vvcc

uv↑c↓l V
vvvc e

v
+ ec + Vcvvc − V

vvcc Vcvcc

uv↓c↑l − V
vvvc − V

vvcc e
v
+ ec + Vcvvc − Vcvcc

uc↑c↓l V
vvcc Vcvcc − Vcvcc 2ec + Vcccc

2 , s36d

TABLE I. Excitation energies v1, v2, and v3 calculated for He atom using the excitonic Hamiltonian and the exact Hamiltonian. All the quantities are given

in eV.

H2p,exc DesIP-EAda v1
static V A B v1

a v2 v3
a

24.507 25.304 0.398 4.689 ,0 20.615 49.811 19.818

Hexact e
v

ec V
vvvv

V
vvvc V

vvcc Vcvvc Vcvcc Vcccc v1 v2 v3

254.40 213.60 34.01 4.86 1.19 11.42 0.47 8.18 23.77 58.02 19.22

a
Experimental values taken from Refs. 48 and 49.
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where ei=edxfi
psxdhsxdfisxd, Vijkl=edxdx8fi

psxdf j
psx8d

3vsx ,x8dfksx8dflsxd, and fi are the eigenstates of the non-

interacting Hamiltonian. Note that here the terms such as

uv↑c↓l indicate Slater determinants and not electron-hole ex-
citations sv↑c↓d. To keep contact with the notation used in
the rest of the paper, we notice that Vijkl=vslidsjkd. In our

model the valence orbital v and the conduction orbital c are
the hydrogenic wave functions 1s, i.e., fn=1l=0m=0srd
= sZ3/2

/p1/2dexps−Zrd, and 2s, i.e., fn=2l=0m=0srd
= fZ3/2

/ s32pd1/2gs2−Zrdexps−Zr /2d, respectively. Note that

since the orbitals are real, then Vijkl=Vklij and, in particular,

Vcvvc=Vvvcc. The one-electron energies are computed from

the Bohr model, i.e., En=−13.6Z
2
/n2 eV, with Z as the

atomic number and n as the principal quantum number. The

two-electron repulsion integrals Vijkl are evaluated analyti-

cally. Direct and exchange terms are checked against analyti-

cal ones reported in Refs. 50 and 51. Diagonalization of ma-

trix s36d produces four eigenvalues: one at 276.99 eV

corresponding mainly to the singlet state u1s↑1s↓l, one at

257.77 eV corresponding mainly to the triplet combination

su1s↑2s↓l+ u1s↓2s↑ld snote that the symmetric combination
of the two determinants implies an antisymmetric combina-

tion of the spatial orbitals and a symmetric combination of

the spin functions and vice versa for the antisymmetric com-

bination of the two determinantsd, one at 253.23 eV corre-

sponding mainly to the singlet combination su1s↑2s↓l
− u1s↓2s↑ld,27 and the last one at 218.98 eV corresponding

mainly to the singlet state u2s↑2s↓l. The excitation energies
for the transitions from the ground state u1s↑1s↓l to the

other sexcitedd states are reported in Table I. In particular the
double-excitation energy is v3=58.02 eV, which, although

larger than the value calculated with the excitonic Hamil-

tonian, has the same order of magnitude. We also observe

that the singlet-triplet splitting and the singlet single excita-

tion are larger than the experimental values. Therefore we

can consider the two double-excitation energies calculated

with the two methods to be consistent.

IV. CONCLUSIONS

In this article we derive a frequency-dependent xc ker-

nel, which can reproduce, within TDDFT, double excitations

in finite systems. In order to achieve this, we get insight from

MBPT, where the excitations of the system enter the formu-

lation explicitly and approximations with a clear physical

meaning can be more easily designed. We use the BSE, and

we approximate the kernel with the dynamically screened

Coulomb interaction Wsvd. From this BSE kernel, we can

derive a frequency-dependent xc kernel. The frequency de-

pendence of this xc kernel has a double origin: it stems from

the frequency dependence of the BSE kernel, which has

folded in it the effect of double excitations, and from the

folding of the four-point BSE to the two-point TDDFT equa-

tion. If the latter v-dependence is neglected, the xc kernel

exhibits the same frequency dependence as the BSE kernel.

This frequency dependence indeed introduces excitations be-

yond the singles. In particular, we show that in a two-

electron model system, the dynamical screening can repro-

duce double excitations. We obtain also an unphysical

excitation energy. We analyze the origin of this spurious ex-

citation, and we relate it to the self-screening problem that

the GW approximation to the self-energy suffers from. Ver-

tex corrections are needed in order to overcome the problems

of the test charge–test charge approximation to the kernel.

APPENDIX A: BETHE–SALPETER IN FREQUENCY
SPACE

Let us consider a four-point function as depicted in Fig.

1sad. At each time variable is associated a frequency. For the
energy-conservation principle, we must have v1−v18

=v28

−v2, which can be satisfied by the following choices:

v1 =
v

2
+ v8, v18 = −

v

2
+ v8,

sA1d

v28 =
v

2
+ v9, v2 = −

v

2
+ v9,

i.e., only three frequencies are needed to be specified fFig.
1sbdg. Therefore the function Cst1 , t2 , t18 , t28d can be written

as

Cst1,t2,t18,t28d =E dvdv8dv9

s2pd3
Csv,v8,v9de−ifsv/2+v8dt1+s−v/2+v9dt2−s−v/2+v8dt18−sv/2+v9dt28g

=E dvdv8dv9

s2pd3
Csv,v8,v9de−ivte−iv8t1e−iv9t2, sA2d

FIG. 1. sad A generic four-point function Cs1,2 ,18 ,28d in Fourier sfre-
quencyd space. sbd Due to energy conservation, only three frequencies need
to be specified fsee Eqs. sA1d and sA2dg.
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with t= fst1+ t18d /2− st2+ t28d /2g, t1= t1− t18, and t2= t2− t28.
Note that choice sA1d is done in order to obtain the time

combinations of Eq. sA2d. If we have two four-point func-

tions fC1C2gst ,t1 ,t2d, as in Fig. 2, the corresponding func-

tion fC1C2gsv ,v8 ,v9d in frequency space is

fC1C2gsv,v8,v9d =E dv-

2p
C1sv,v8,v-dC2sv,v-,v9d .

sA3d

Something similar can be obtained for three four-point func-

tions and so on. In particular, if we consider the BSE with

the frequencies as in Fig. 1sbd, then we have

Lsv,v8,v9d = L0sv,v8,v9d +E dv-dviv

s2pd2
L0sv,v8,v-d

3Jsv,v-,vivdLsv,viv,v9d . sA4d

Using for the single-particle Green’s functions the inverse

Fourier transform,

Gs1,2d = Gsx1,x2,t1 − t2d =E dv

2p
Gsx1,x2,vde−ivst1−t2d,

sA5d

one can show that

L0sv,v8,v9d = − 2pidsv8 − v9dGsv8 + v/2dGsv9 − v/2d .

sA6d

It then follows that

Lsv,v8,v9d = − 2pidsv8 − v9dGsv8 + v/2dGsv9 − v/2d

− iGsv8 + v/2dGsv8 − v/2d

3E dṽ

2p
Jsv,v8,ṽdLsv,ṽ,v9d . sA7d

If we choose Js3,5 ,4 ,6d=ds3,4dds5,6dvs3,6d

−ds3,6dds4,5dWs3,4d, then it is easy to see in Fig. 3 that in
order for the energy to be conserved, the exchange v should

bring the frequency v, while the Coulomb term W should

bring the frequency v8− ṽ. Within this approximation to the

kernel, the BSE is given by Eq. s10d.

APPENDIX B: EXACT SOLUTION

One can compute the ground and excited states and rela-

tive energies for the two-level–two-electron model system by

starting from the exact Hamiltonian

Ĥ = o
i

ĥsxid +
1

2
o
iÞj

vsxi,x jd , sB1d

where the first term on the right-hand side is the noninteract-

ing Hamiltonian

Ĥ0 = o
i
S− 1

2
¹i
2 + vsxidD , sB2d

with

Ĥ0fi = eifi, sB3d

and the second term is the two-electron interaction. Hamil-

tonian sB1d can be written in second quantization as

Ĥ = o
ij

hijâi
†â j +

1

2
o
ijkl

Vijklâi
†â j

†âkâl, sB4d

with

hij =E dxfi
psxdhsxdf jsxd = e jdij ,

sB5d

Vijkl =E dxdx8fi
psxdf j

psx8dvsx,x8dfksx8dflsxd ,

and Vijkl=Vklij
p . Note that as a complete set of orthonormal

one-particle orbitals in which the creation and annihilation

operators are expressed, we used the eigenstates fi’s of the

noninteracting Hamiltonian. We can construct any state of

the noninteracting Hamiltonian Ĥ0 by acting with the cre-

ation operators on the vacuum: âi
†â j

†u0l, with iÞ j. The ener-
gies of the interacting Hamiltonan sB1d can be found by

evaluating matrix elements of the form

kârâsuĤuâs8
† âr8

† l = o
i

eikârâsâi
†âiâs8

† âr8
† l

+
1

2
o
ijkl

Vijklkârâsâi
†â j

†âkâlâs8
† âr8

† l . sB6d

We can now use Wick’s theorem and rewrite the strings of

annihilation and creation operators as an expansion of

normal-ordered strings. However, the only terms that need to

be retained in this expansion are those that are fully con-

tracted. For the first string on the right-hand side, we get

FIG. 2. Frequency convolution of two four-point functions, such as those

entering the BSE with a frequency-dependent kernel fsee Eqs. sA3d and

sA4dg.

FIG. 3. The Bethe–Salpeter kernel Js3,5 ,4 ,6d=ds3,4dds5,6dvs3,6d
−ds3,6dds4,5dWs3,4d, explicitly showing frequency arguments in its ex-

change and Coulomb terms fsee Eqs. s10d and sA7dg.
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ârâsâi
†âiâs8

† âr8
†
= dridss8dir8 − dridsr8dis8 + drr8dsidis8

− drs8dsidir8, sB7d

while for the second one we have

ârâsâi
†â j

†âkâlâs8
† âr8

†
= dridsjdks8dlr8 − dridsjdkr8dls8

− drjdsidks8dlr8 + drjdsidkr8dls8. sB8d

The Hamiltonian Ĥ0 is diagonal on the basis of its eigen-

states; i.e., the nonzero matrix elements are those with r
=r8 and s=s8 as

o
i

eikârâsâi
†âiâs8

† âr8
† l = ser + esddrr8dss8. sB9d

For the electron-electron interaction, we have

1

2
o
ijkl

Vijklkârâsâi
†â j

†âkâlâs8
† âr8

† l = Vrss8r8 − Vrsr8s8, sB10d

where we considered Vsrr8s8=Vrss8r8 and Vsrs8r8=Vrsr8s8. Since

the model system we are considering has only two electrons

and two energy levels, which will be called v svalenced and c
sconductiond, we will have the energy matrix of Eq. s36d.

Note that since we are not considering spin flip, we have

not considered the Slater determinants uv↑c↑l and uv↓c↓l in
the evaluation of the matrix elements sB6d. Notice that here
the notation uv↑c↑l is a Slater determinant, and it indicates a
state with an electron in the valence orbital with spin up and

the other electron in the conduction electron with spin up.

This is different from the notation sv↑c↑d used so far in the
paper, which means that an electron with spin up is promoted

from the valence orbital to the conduction orbital, thus lead-

ing to a state uv↓c↑l.
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