
THE WEYL'S CORRESPONDENCE - Part ILu
a MolinariDipartimento Fisi
a di Milano, Via Celoria 16, 20133 MilanoAbstra
t. Weyl's 
orresponden
e is a rule for quantizing phase spa
e fun
tions; anequivalent and more dire
t rule was later given by Grossmann. Both rules provide operatorexpansions on 
ontinuous basis of operators. The latter allows a straightforward de�nitionof the Wigner fun
tion for phase-spa
e averaging in quantum me
hani
s.The 
orresponden
e establishes an isomorphism between the Hilbert{S
hmidt operatoralgebra and the spa
e of square integrable fun
tions on phase spa
e equipped with theMoyal produ
t. These properties are reviewed in a pedagogi
al way and explained simplyin the frame of von Neumann's theorem.It is well known that, due to the non{
ommutativity of fundamental operators, thereare several ways to 
onstru
t self{adjoint operators from real fun
tions de�ned on the
lassi
al phase spa
e, in the pro
ess of quantization. To remove this ambiguity, a rule ofquantization must be added to the standard axioms of quantum me
hani
s. A su

essfullpro
edure is given by Hermann Weyl's 
orresponden
e, explained in his book Gruppenthe-orie und Quantenme
hani
k (1932), whi
h I am here going to des
ribe. In short, it statesthat operators have the same Fourier expansions as the 
orresponding 
lassi
al fun
tions,the exponential basis being repla
ed by Weyl operators, or shift operators in phase spa
e.Among its many advantages are the preservation in a remarkable way of many formal prop-erties of the 
lassi
al des
ription, and its staightforward relation with Wigner's fun
tion,introdu
ed in an independent way and allowing the formulation of quantum me
hani
s in
lassi
al phase spa
e.The quantization pro
edure has been later improved by A. Grossmann (1976), who ex-ploited the role of the parity operator, whi
h in Weyl's quantization 
orresponds to a deltafun
tion in the origin of phase spa
e. Grossmann's expansion of an operator re
e
ts theexpansion of 
lassi
al fun
tions in the basis of delta fun
tions in phase spa
e.The purpose of this exposition is mainly pedagogi
al. A perhaps original 
ontribution is thede�nition of two 
ommuting representations of Heisenberg's 
ommutation relations on thespa
e of operators, whi
h has a parallel on the spa
e of 
lassi
al fun
tions. This establishesan interesting isomorphism and gives a natural interpretation of Weyl's 
orresponden
e.For simpli
ity, only the one{dimensional 
ase is analyzed, the extension to three or moredimensions being almost straightforward.x1 Weyl's Commutation Relation.The abstra
t Hilbert spa
eH for a point spinless parti
le in 1d is de�ned by the requirementthat it 
arries an irredu
ible representation of Weyl's 
ommutation relations:Û(t)V̂ (s) = V̂ (s)Û(t) exp(i�hts) (1:1)1



where Û(t) and V̂ (s) are two strongly 
ontinuous unitary groups, and t, s are real pa-rameters. A fundamental theorem by von Neumann, from whi
h we shall derive many
onsequen
es, states that all irredu
ible representations of Weyl's 
ommutation relationare unitarily equivalent [ReSi℄.Let P̂ , the "momentum" operator, and Q̂, the "position" operator, be the generators ofthe two groups: Û(t) = exp(itP̂ ) ; V̂ (s) = exp(isQ̂) (1:2)then there exists a 
ommon domain D, dense in H and invariant under the a
tion of thegroups, su
h that the familiar Heisenberg's 
ommutation relation holds in it:1i�h [P̂ ; Q̂℄ = �1 (1:3)A 
onsequen
e of the 
ommutation relation (1.3) is that P̂ and Q̂ 
annot be both boundedoperators [Gudd℄.If we perform a parity transformation: P̂ 0 = �P̂ and Q̂0 = �Q̂ we get a new representationof Heisenberg's relation (1.3). A

ording to von Neumann's theorem there exists a unitaryoperator M̂ , 
alled Parity, su
h that:M̂yP̂ M̂ = �P̂ ; M̂yQ̂M̂ = �Q̂ (1:4)This operator will play an essential role in the following. Sin
e its square is unity, it maybe 
hosen to be selfadjoint.x2 Weyl Operators.The fundamental building blo
ks for the pro
ess of quantization by Weyl, are the WeylOperators. They are a family of unitary operators, parametrized by two real numbers:Ŵ (t; s) = Û(t)V̂ (s) exp(� i2�hts) (2:1)They 
onstitute a "ray group", or a group up to a phase fa
tor. A ray is an equivalen
e
lass of ve
tors in Hilbert spa
e, all having the same modulus. The produ
t property is:Ŵ (t; s)Ŵ (t0; s0) = Ŵ (t+ t0; s+ s0) exp � i2�h(ts0 � t0s)� (2:2)This formula implies that, for �xed t and s, the operators Ŵ (�t; �s) form a group in theparameter �, with generator tP̂ +sQ̂. Another 
onsequen
e is the following useful relationŴ (t; s)Ŵ (t0; s0) = Ŵ (t0; s0)Ŵ (t; s) exp i�h(ts0 � t0s) (2:3)The matrix elements of a Weyl operator in the 
ontinuous basis of the position operatorare: hq0jŴ (t; s)jqi = 1�hÆ(t� q � q0�h )eis(q0+q)=2 (2:4)2



The inverse of a Weyl operator (whi
h being unitary 
oin
ides with the adjoint) isŴ (t; s)y = Ŵ (�t;�s) and it 
oin
ides also with M̂Ŵ (t; s)M̂ .x3 Coherent States.By introdu
ing a 
omplex phase-spa
e 
oordinatez = 1p2�h (q + ip) (3:1)and its 
omplex 
onjugate, we may a

ordingly de�ne the operatorsâ = 1p2�h (Q̂+ iP̂ ) ; ây = 1p2�h (Q̂� iP̂ ) ; N̂ = â�â (3:2)respe
tively 
alled annihilation, 
reation and number operators. The latter has a spe
trumgiven by integers n = 0; 1; 2 : : : with eigenve
tors jni. The basi
 formulae are:[â; ây℄ = 1 ; âyjni = pn+ 1jn+ 1i ; âjni = pnjn� 1i (3:3)A spe
ial 
lass of ve
tors in H is given by Coherent States, whi
h are in one-to-one 
or-responden
e with the points of the 
omplex z-plane. They are de�ned as the solutions ofthe eigenvalue equation for the annihilation operator:âjzi = zjzi (3:4)The meaning of the parameter z is that of mean position in the 
omplex plane, sin
ehzjQ̂jzi = q and hzjP̂ jzi = p. An important feature of 
oherent states is that of beingminimal un
ertainty ve
tors: �Q = �P =p�h=2. Their expansion in the basis jni is:jzi = exp(�jzj2 2) 1Xn=0 znpn! jni (3:5)In parti
ular, the ground state j0i of the Number operator is a 
oherent state, 
enteredin the origin of phase spa
e. All 
oherent states may be generated from it by means ofunitary operators, whi
h is a Weyl Operators:jzi = exp(zây � z�â)j0i = Ŵ (�q=�h; p=�h)j0i (3:6)Coherent states are never orthogonal to ea
h other:hzjwi = exp��jzj22 � jwj22 + z�w� (3:7)although the overlap is signi�
ant for distan
es less than p�h. They form an over
ompleteset of ve
tors in H Z d2z� jzihzj = Î (3:8)3



where the measure is d2z = dpdq=2�h. Not surprisingly, the subset labelled by points of alatti
e in phase spa
e with 
ell area not grater than �h is also over
omplete [Barg℄. The useof 
oherent states as a basis represents ve
tors of the Hilbert spa
e as fun
tions of 
omplexvariable  (z) = hzj i, that live in a Bargmann spa
e (see Part II).x4 Weyl's 
orresponden
e.Weyl's 
orresponden
e is a pro
edure to de�ne in a unique way the operators 
orrespondingto fun
tions on the 
lassi
al phase spa
e in the pro
ess of quantization. A

ording to it,the quantum operator F̂ whi
h 
orresponds to a phase fun
tion f(p; q) is built throughthe general pres
ription whi
h goes through the Fourier transform of ff(p; q) = 12� Z dxdy ~f(x; y) exp i(xp+ yq)F̂ = 12� Z dxdy ~f(x; y)Ŵ (x; y) (4:1)where Ŵ is a Weyl operator. In both 
ases, one has a 
ontinuos expansion in two funda-mental basis, exponential fun
tions and Weyl operators, with the same weight fun
tion ~f .Shortly speaking, Weyl's rule statesexp i(xp+ yq) ! exp i(xP̂ + yQ̂) (4:2)The operator 
orresponding to monomials pmqn is the sum of all possible produ
ts of moperators P̂ and n operators Q̂, divided by the total number of terms [Agarw1℄.It has then been shown by Grossmann in 1976 [Gros℄ that the 
orresponden
e may berephrased without the need of a Fourier transform, but dire
tly relating the operator tothe fun
tion as follows: F̂ = 1��h Z dpdqf(p; q)Ŵ (�2q�h ; 2p�h )M̂ (4:3)The operator M̂ is the parity operator. Again, we may summarize Weyl's quantizationrule in the equivalent way:Æ(x� p)Æ(y � q) ! 1��hŴ (�2q�h ; 2p�h )M̂ (4:4)The equivalen
e of (4.1) and (4.3) may be 
he
ked by inserting the expression of ~f in termsof f into the expansion (4.1) for the operator F̂ :F̂ = 1��h Z dpdqf(p; q) � �h4� Z dxdyŴ (x; y) exp�i(xp+ yq)�One then shows that the operator in square bra
kets has the same matrix elements betweentwo position eigenstates as the operator in the right side of (4.4).4



x5 Grossmann Operators and Moyal produ
t.The spe
ial role of the produ
t of a Weyl Operator with Parity justi�es the de�nition ofGrossmann Operators: Ĝ(p; q) = Ŵ ��2q�h ; 2p�h � M̂ (5:1)They share the same properties of the parity operators: they are unitary, self{adjoint, andso their square is unity: Ĝ(p; q) = Ĝ(p; q)� ; Ĝ(p; q)2 = 1 (5:2)The produ
t of an even number of Grossmann operators is a Weyl operator, and theprodu
t of a Weyl with a Grossmann operator is of Grossmann type. An importantformula, whi
h is easily evaluated by taking the tra
e in the position basis, is the following:� 1��h�2Tr(Ĝ(p1; q1)Ĝ(p2; q2)) = 12��hÆ(p1 � p2)Æ(q1 � q2) (5:3)It implies that Tr(Â�B̂) = 12��h Z dpdqa�(p; q)b(p; q) (5:4)in other words, provided that we de�ne the Hilbert{S
hmidt inner produ
t between twooperators with a prefa
tor equal to Plan
k's 
onstant, whi
h has the same dimensions asthe measure in phase spa
e dpdq(Â; B̂)HS = 2��hTr(Â�B̂) (5:5)Weyl's Corresponden
e is a unitary isomorphism between the Hilbert spa
e of Hilbert{S
hmidt Operators and the Hilbert spa
e L2(R2) of phase spa
e fun
tions.The isomorphism 
an be pushed further, at the algebrai
 level, on
e we de�ne a *-produ
t in the spa
e of fun
tions [Pool℄ as follows. Let us 
ompute the fun
tion of phasespa
e that 
orresponds to the produ
t of two operators. Sin
e only the produ
t of an oddnumber of Grossmann operators is a Grossmann operators, it is 
onvenient to multiply theGrossmann expansions of F̂ ĜÎ, where Î is the identity operator. One �ndsF̂ Ĝ = 1��h Z dpdq(f � g)(p; q)Ĝ(p; q) (5:6)where:(f � g)(p; q) = � 1��h�2 Z dp1dq1dp2dq2f(p1+ p; q1+ q)g(p2+ p; q2+ q)e 2i�h (q1p2�p1q2) (5:7)de�nes a non
ommutative produ
t on phase spa
e fun
tions. The spa
e L2(R) is 
losedfor this produ
t. Let us rewrite the formula in the following way:(f � g)(p; q) = � 1��h�2 Z dp1dq1dp2dq2 exp �2i�h (q1p2 � p1q2)�exp ��p1 ��p0 + q1 ��q0�+ �p2 ��p00 + q2 ��q00�� f(p0; q0)g(p00; q00)5



where at the end of the 
omputations: q0 = q00 = q and p0 = p00 = p. The integrals 
an bedone formally and we end with:(f � g)(p; q) = exp �i�h2 � ��q0 ��p00 � ��p0 ��q00�� f(p0; q0)g(p00; q00) (5:8)The 
ommutator ff; ggM = (��h)�1(f � g � g � f), that 
orresponds to (i�h)�1[F̂ ; Ĝ℄, isknown as the Moyal bra
ket between f and g [Moya℄. In the limit �h! 0 it identi�es withthe Poisson bra
ket ff; ggP .We have the following expansions for the Weyl 
orresponden
e for 
ommutators and anti-
ommutators:1i�h [F̂ ; Ĝ℄! ff; ggP � �h224 ��3f�p3 �3g�q3 � 3 �3f�p2�q �3g�q2�p � 3 �3f�p�q2 �3g�p2�q + �3f�q3 �3g�p3 �+ : : :(5:9)12(F̂ Ĝ+ ĜF̂ )! fg � �h28 ��2f�p2 �2g�q2 � 2 �2f�p�q �2g�p�q + �2f�q2 �2g�p2 �+ : : : (5:10)x6 Heisenberg's rules in HS(H)The isomorphism de�ned through Weyl's Corresponden
e and the nature of Weyl's andGrossmann's expansions of operators are best explained by giving in the spa
e of operatorsa representation of Heisenberg's rules suited for a phase spa
e des
ription.The spa
e HS(H) of Hilbert-S
hmidt operators on H 
onsists of 
ompa
t operators su
hthat Tr(ÂyÂ) < 1. It is a Hilbert spa
e with the inner produ
t (5.5). It is also a C�{Algebra, with *-
onjugation given by the adjoint operation and the ordinary operatorprodu
t.An important dense subspa
e is that of "Tra
e Class operators"; they are the dual spa
eof the Bana
h spa
e B(H) of bounded operators.Let us re
all some basi
 de�nitions, that will be very useful in the following.a) The produ
t of two self{adjoint operators is generally not self{adjoint, one thereforede�nes a simmetrized operator produ
t, 
alled Jordan produ
t,Â� B̂ = 12(ÂB̂ + B̂Â) (6:1)with the properties of being 
ommutative, but not asso
iative. Other properties are:Â� (B̂ � Ĉ)� (Â� B̂)� Ĉ = 14 [[Â; Ĉ℄; B̂℄(Â� B̂)y = Ây � B̂yb) An important 
on
ept is that of Derivation: if Ĝ = Ĝy is a bounded operator, it ispossible to de�ne a derivation super-operator of HS(H) into itselfDG : F̂ ! [Ĝ; F̂ ℄ (6:2)The term derivation is due to the fa
t that formal properties of derivation are satis�ed,like linearity and the Leibnitz rule. 6



DG(Â� B̂) = DG(Â)� B̂ + Â�DG(B̂)Two distin
t derivations DG1 and DG2 
ommute if [Ĝ1; Ĝ2℄ is proportional to theIdentity.The derivation is self-adjoint in the inner produ
t of Hilbert{S
hmidt.
) If Û is a unitary operator on H, the left or right multipli
ations by Û de�ne a super-operator on HS(H) whi
h is unitary in the norm de�ned by the inner produ
t ofHilbert-S
hmidt.Given a unitary representation of Weyl's rule on H, it is easy to de�ne a 
ouple of 
om-muting representations of Weyl's relation with unitary super-operators on HS(H). Theira
tion on a generi
 operator Â is the following:Ut(Â) = V̂ y(t)ÂV̂ (t) ; Vs(Â) = Ûy(s=2)ÂÛ(s=2) (6:3)These two super-operators satisfy UtVs = VsUtei�hts (6:4)The other pair, whi
h 
ommutes with the above one, is~Ut(Â) = Û(t)ÂÛy(t) ; ~Vs(Â) = V̂ (s=2)ÂV̂ (s=2) (6:5)and satis�es ~Ut ~Vs = ~Vs ~Utei�hts (6:6)The generators of the two pairs of unitary groups of super-operator are self-adjoint su-peroperators (in the Hilbert S
hmidt inner produ
t), sharing a domain dense in HS(H).They are respe
tively:Derivation and multipli
ation by Q̂Pq(Â) = [P̂ ; Â℄ ; Qq(Â) = Q̂� Â (6:7)Derivation and multipli
ation by P̂Pp(Â) = [Â; Q̂℄ ; Qp(Â) = P̂ � Â (6:8)The superoperators satisfy a representation of Heisenberg's relation \on phase spa
e"[Pq;Qq℄ = �i�h [Pp;Qp℄ = �i�h [Pq;Pp℄ = 0 [Qq;Qp℄ = 0 (6:9)By the Theorem of von Neumann, there exists an isomor�sm� : HS(H)! L2(R2) (6:10)su
h that to any operator F̂ there 
orresponds a fun
tion f(p; q) with the following prop-erties: 1i�h [P̂ ; F̂ ℄! fp; fgP = �f�q ; Q̂� F̂ ! qf (6:11a)7



1i�h [F̂ ; Q̂℄! ff; qgP = �f�p ; P̂ � F̂ ! pf (6:11b)The isomorphism is pre
isely Weyl's 
orresponden
e, whi
h maps the algebra of 
lassi
alphase spa
e fun
tions L2(R) on the spa
e of Hilbert S
hmidt quantum operators. Themap 
an be given expli
itly through the 
orresponden
e between elements of 
ompletesets of proper or generalized ve
tors of both spa
es, like in relations (4.2) and (4.4). This
orresponden
e is dis
ussed in the next se
tion.x7 Weyl's Corresponden
e revisitedLike in quantum me
hani
s, with formulae (6.11a and b) we have introdu
ed in the spa
eL2(R) of phase{spa
e fun
tions f(p; q) the operators of multipli
ation by p and q, aswell as derivations by p and q. The generalized eigenfun
tions 
ommon to derivations ormultipli
ations are respe
tively exponential fun
tions and delta fun
tions:�i ��q ei(xp+yq) = yei(xp+yq) ; �i ��pei(xp+yq) = xei(xp+yq) (7:1)qÆ(q � a)Æ(p� b) = aÆ(q � a)Æ(p� b) ; pÆ(q � a)Æ(p� b) = bÆ(q � a)Æ(p� b) (7:2)In the same way, Weyl and Grossmann Operators may be viewed as `eigen-operators' of thesuper-operators given in x6 that provide two 
ommuting representations of Heisenberg'srelations. More pre
isely, the Weyl Operators are a basis of operators 
ommon to the twoderivations and 
orrespond, through the isomorphism, to exponentials, the basis 
ommonto derivations on 
lassi
al phase spa
e fun
tions:Pq(Ŵ (x; y)) = [P̂ ; Ŵ (x; y)℄ = �hxŴ (x; y) (7:3a)Pp(Ŵ (x; y)) = [Ŵ (x; y); Q̂℄ = �hyŴ (x; y) (7:3b)The Grossmann operators, or Weyl operators multiplied by parity, play a role analogousto that of delta fun
tions 
entered on points of 
lassi
al phase spa
e:Qq(Ĝ(p; q)) = Q̂� Ĝ(p; q) = qĜ(p; q) (7:4a)Qp(Ĝ(p; q)) = P̂ � Ĝ(p; q) = pĜ(p; q) (7:4b)These two relations show that the operators Ĝ(p; q) are a basis of operators 
ommon tothe position super-operators.The equation (5.3) shows that the 
orre
t normalization in the Hilbert{S
hmidt norm forGrossmann operators to form a 
ontinuous basis of operators is the prefa
tor (i�h)�1. Wethen may write symboli
ally Æ2(P̂ � p; Q̂� q) = 1��hĜ(p; q) (7:5)and obtain the 
ontinuous expansion for an operator in the form given by Grossmann:F̂ = Z dpdqf(p; q)Æ2(P̂ � p; Q̂� q) (7:6)8



where f(p; q) = 1��h �Ĝ(p; q); F̂�HS = 2Tr hĜ(p; q)F̂i (7:7)Weyl's 
orresponden
e states that f is pre
isely the 
lassi
al fun
tion (if �h-independent)that would quantize into the operator F̂ .x8 Wigner's fun
tion.The de�nition of Wigner's fun
tion is stri
tly related to Weyl's 
orresponden
e, althoughhystori
ally it has been introdu
ed in an independent way [Wign℄. It is a distribution inphase spa
e asso
iated to a density matrix that allows to perform quantum me
hani
al
omputations in phase spa
e. Contrary to a 
lassi
al distribution, it may take negativevalues. In the frame of Weyl's transform its de�nition is straightforward and follows fromthe formula by Grossmann. If �̂ is a statisti
al operator and F̂ is the quantum operator
orresponding to the 
lassi
al observable f(p; q), the average value is given byhF i = Tr[�̂F̂ ℄ = 1��h Z dpdqf(p; q)Tr[�̂Ĝ(p; q)℄ = Z dpdqf(p; q)�(p; q) (8:1)The fun
tion �(p; q) = 1��hTr[�̂Ĝ(p; q)℄ (8:2)is Wigner's fun
tion. Note that it does not 
oin
ide with the 
lassi
al fun
tion that would
orrespond a

ording to Weyl to the operator �̂. In the 
ase of a pure state �̂ = j ih j ittakes a parti
ularly simple form:� (p; q) = 1��h h jĜ(p; q)j i (8:3)The following properties, whi
h are to be expe
ted from any phase{spa
e density asso
iatedto a pure state, are easily veri�ed:Z � (p; q)dp = j (q)j2 ; Z � (p; q)dq = j ~ (p)j2 (8:4)In the position representation of  Wigner's fun
tion takes the familiar expression� (p; q) = 1��h Z 1�1 dxe2ipx=�h (x+ q)� (q � x) (8:5)For a 
oherent state jzi 
entered in (p0; q0), the expression is parti
ularly simple:�z(p; q) = 1��he� i�h [(q�q0)2+(p�p0)2℄ (8:6)When �h goes to zero, the fun
tion �z 
onverges to Æ(q � q0)Æ(p � p0). The average valueof an observable taken on a 
oherent stateh�jF̂ j�i = 1��h Z dpdqf(p; q)e� i�h [(q�q0)2+(p�p0)2℄9
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