
THE WEYL'S CORRESPONDENCE - Part ILua MolinariDipartimento Fisia di Milano, Via Celoria 16, 20133 MilanoAbstrat. Weyl's orrespondene is a rule for quantizing phase spae funtions; anequivalent and more diret rule was later given by Grossmann. Both rules provide operatorexpansions on ontinuous basis of operators. The latter allows a straightforward de�nitionof the Wigner funtion for phase-spae averaging in quantum mehanis.The orrespondene establishes an isomorphism between the Hilbert{Shmidt operatoralgebra and the spae of square integrable funtions on phase spae equipped with theMoyal produt. These properties are reviewed in a pedagogial way and explained simplyin the frame of von Neumann's theorem.It is well known that, due to the non{ommutativity of fundamental operators, thereare several ways to onstrut self{adjoint operators from real funtions de�ned on thelassial phase spae, in the proess of quantization. To remove this ambiguity, a rule ofquantization must be added to the standard axioms of quantum mehanis. A suessfullproedure is given by Hermann Weyl's orrespondene, explained in his book Gruppenthe-orie und Quantenmehanik (1932), whih I am here going to desribe. In short, it statesthat operators have the same Fourier expansions as the orresponding lassial funtions,the exponential basis being replaed by Weyl operators, or shift operators in phase spae.Among its many advantages are the preservation in a remarkable way of many formal prop-erties of the lassial desription, and its staightforward relation with Wigner's funtion,introdued in an independent way and allowing the formulation of quantum mehanis inlassial phase spae.The quantization proedure has been later improved by A. Grossmann (1976), who ex-ploited the role of the parity operator, whih in Weyl's quantization orresponds to a deltafuntion in the origin of phase spae. Grossmann's expansion of an operator reets theexpansion of lassial funtions in the basis of delta funtions in phase spae.The purpose of this exposition is mainly pedagogial. A perhaps original ontribution is thede�nition of two ommuting representations of Heisenberg's ommutation relations on thespae of operators, whih has a parallel on the spae of lassial funtions. This establishesan interesting isomorphism and gives a natural interpretation of Weyl's orrespondene.For simpliity, only the one{dimensional ase is analyzed, the extension to three or moredimensions being almost straightforward.x1 Weyl's Commutation Relation.The abstrat Hilbert spaeH for a point spinless partile in 1d is de�ned by the requirementthat it arries an irreduible representation of Weyl's ommutation relations:Û(t)V̂ (s) = V̂ (s)Û(t) exp(i�hts) (1:1)1



where Û(t) and V̂ (s) are two strongly ontinuous unitary groups, and t, s are real pa-rameters. A fundamental theorem by von Neumann, from whih we shall derive manyonsequenes, states that all irreduible representations of Weyl's ommutation relationare unitarily equivalent [ReSi℄.Let P̂ , the "momentum" operator, and Q̂, the "position" operator, be the generators ofthe two groups: Û(t) = exp(itP̂ ) ; V̂ (s) = exp(isQ̂) (1:2)then there exists a ommon domain D, dense in H and invariant under the ation of thegroups, suh that the familiar Heisenberg's ommutation relation holds in it:1i�h [P̂ ; Q̂℄ = �1 (1:3)A onsequene of the ommutation relation (1.3) is that P̂ and Q̂ annot be both boundedoperators [Gudd℄.If we perform a parity transformation: P̂ 0 = �P̂ and Q̂0 = �Q̂ we get a new representationof Heisenberg's relation (1.3). Aording to von Neumann's theorem there exists a unitaryoperator M̂ , alled Parity, suh that:M̂yP̂ M̂ = �P̂ ; M̂yQ̂M̂ = �Q̂ (1:4)This operator will play an essential role in the following. Sine its square is unity, it maybe hosen to be selfadjoint.x2 Weyl Operators.The fundamental building bloks for the proess of quantization by Weyl, are the WeylOperators. They are a family of unitary operators, parametrized by two real numbers:Ŵ (t; s) = Û(t)V̂ (s) exp(� i2�hts) (2:1)They onstitute a "ray group", or a group up to a phase fator. A ray is an equivalenelass of vetors in Hilbert spae, all having the same modulus. The produt property is:Ŵ (t; s)Ŵ (t0; s0) = Ŵ (t+ t0; s+ s0) exp � i2�h(ts0 � t0s)� (2:2)This formula implies that, for �xed t and s, the operators Ŵ (�t; �s) form a group in theparameter �, with generator tP̂ +sQ̂. Another onsequene is the following useful relationŴ (t; s)Ŵ (t0; s0) = Ŵ (t0; s0)Ŵ (t; s) exp i�h(ts0 � t0s) (2:3)The matrix elements of a Weyl operator in the ontinuous basis of the position operatorare: hq0jŴ (t; s)jqi = 1�hÆ(t� q � q0�h )eis(q0+q)=2 (2:4)2



The inverse of a Weyl operator (whih being unitary oinides with the adjoint) isŴ (t; s)y = Ŵ (�t;�s) and it oinides also with M̂Ŵ (t; s)M̂ .x3 Coherent States.By introduing a omplex phase-spae oordinatez = 1p2�h (q + ip) (3:1)and its omplex onjugate, we may aordingly de�ne the operatorsâ = 1p2�h (Q̂+ iP̂ ) ; ây = 1p2�h (Q̂� iP̂ ) ; N̂ = â�â (3:2)respetively alled annihilation, reation and number operators. The latter has a spetrumgiven by integers n = 0; 1; 2 : : : with eigenvetors jni. The basi formulae are:[â; ây℄ = 1 ; âyjni = pn+ 1jn+ 1i ; âjni = pnjn� 1i (3:3)A speial lass of vetors in H is given by Coherent States, whih are in one-to-one or-respondene with the points of the omplex z-plane. They are de�ned as the solutions ofthe eigenvalue equation for the annihilation operator:âjzi = zjzi (3:4)The meaning of the parameter z is that of mean position in the omplex plane, sinehzjQ̂jzi = q and hzjP̂ jzi = p. An important feature of oherent states is that of beingminimal unertainty vetors: �Q = �P =p�h=2. Their expansion in the basis jni is:jzi = exp(�jzj2 2) 1Xn=0 znpn! jni (3:5)In partiular, the ground state j0i of the Number operator is a oherent state, enteredin the origin of phase spae. All oherent states may be generated from it by means ofunitary operators, whih is a Weyl Operators:jzi = exp(zây � z�â)j0i = Ŵ (�q=�h; p=�h)j0i (3:6)Coherent states are never orthogonal to eah other:hzjwi = exp��jzj22 � jwj22 + z�w� (3:7)although the overlap is signi�ant for distanes less than p�h. They form an overompleteset of vetors in H Z d2z� jzihzj = Î (3:8)3



where the measure is d2z = dpdq=2�h. Not surprisingly, the subset labelled by points of alattie in phase spae with ell area not grater than �h is also overomplete [Barg℄. The useof oherent states as a basis represents vetors of the Hilbert spae as funtions of omplexvariable  (z) = hzj i, that live in a Bargmann spae (see Part II).x4 Weyl's orrespondene.Weyl's orrespondene is a proedure to de�ne in a unique way the operators orrespondingto funtions on the lassial phase spae in the proess of quantization. Aording to it,the quantum operator F̂ whih orresponds to a phase funtion f(p; q) is built throughthe general presription whih goes through the Fourier transform of ff(p; q) = 12� Z dxdy ~f(x; y) exp i(xp+ yq)F̂ = 12� Z dxdy ~f(x; y)Ŵ (x; y) (4:1)where Ŵ is a Weyl operator. In both ases, one has a ontinuos expansion in two funda-mental basis, exponential funtions and Weyl operators, with the same weight funtion ~f .Shortly speaking, Weyl's rule statesexp i(xp+ yq) ! exp i(xP̂ + yQ̂) (4:2)The operator orresponding to monomials pmqn is the sum of all possible produts of moperators P̂ and n operators Q̂, divided by the total number of terms [Agarw1℄.It has then been shown by Grossmann in 1976 [Gros℄ that the orrespondene may berephrased without the need of a Fourier transform, but diretly relating the operator tothe funtion as follows: F̂ = 1��h Z dpdqf(p; q)Ŵ (�2q�h ; 2p�h )M̂ (4:3)The operator M̂ is the parity operator. Again, we may summarize Weyl's quantizationrule in the equivalent way:Æ(x� p)Æ(y � q) ! 1��hŴ (�2q�h ; 2p�h )M̂ (4:4)The equivalene of (4.1) and (4.3) may be heked by inserting the expression of ~f in termsof f into the expansion (4.1) for the operator F̂ :F̂ = 1��h Z dpdqf(p; q) � �h4� Z dxdyŴ (x; y) exp�i(xp+ yq)�One then shows that the operator in square brakets has the same matrix elements betweentwo position eigenstates as the operator in the right side of (4.4).4



x5 Grossmann Operators and Moyal produt.The speial role of the produt of a Weyl Operator with Parity justi�es the de�nition ofGrossmann Operators: Ĝ(p; q) = Ŵ ��2q�h ; 2p�h � M̂ (5:1)They share the same properties of the parity operators: they are unitary, self{adjoint, andso their square is unity: Ĝ(p; q) = Ĝ(p; q)� ; Ĝ(p; q)2 = 1 (5:2)The produt of an even number of Grossmann operators is a Weyl operator, and theprodut of a Weyl with a Grossmann operator is of Grossmann type. An importantformula, whih is easily evaluated by taking the trae in the position basis, is the following:� 1��h�2Tr(Ĝ(p1; q1)Ĝ(p2; q2)) = 12��hÆ(p1 � p2)Æ(q1 � q2) (5:3)It implies that Tr(Â�B̂) = 12��h Z dpdqa�(p; q)b(p; q) (5:4)in other words, provided that we de�ne the Hilbert{Shmidt inner produt between twooperators with a prefator equal to Plank's onstant, whih has the same dimensions asthe measure in phase spae dpdq(Â; B̂)HS = 2��hTr(Â�B̂) (5:5)Weyl's Correspondene is a unitary isomorphism between the Hilbert spae of Hilbert{Shmidt Operators and the Hilbert spae L2(R2) of phase spae funtions.The isomorphism an be pushed further, at the algebrai level, one we de�ne a *-produt in the spae of funtions [Pool℄ as follows. Let us ompute the funtion of phasespae that orresponds to the produt of two operators. Sine only the produt of an oddnumber of Grossmann operators is a Grossmann operators, it is onvenient to multiply theGrossmann expansions of F̂ ĜÎ, where Î is the identity operator. One �ndsF̂ Ĝ = 1��h Z dpdq(f � g)(p; q)Ĝ(p; q) (5:6)where:(f � g)(p; q) = � 1��h�2 Z dp1dq1dp2dq2f(p1+ p; q1+ q)g(p2+ p; q2+ q)e 2i�h (q1p2�p1q2) (5:7)de�nes a nonommutative produt on phase spae funtions. The spae L2(R) is losedfor this produt. Let us rewrite the formula in the following way:(f � g)(p; q) = � 1��h�2 Z dp1dq1dp2dq2 exp �2i�h (q1p2 � p1q2)�exp ��p1 ��p0 + q1 ��q0�+ �p2 ��p00 + q2 ��q00�� f(p0; q0)g(p00; q00)5



where at the end of the omputations: q0 = q00 = q and p0 = p00 = p. The integrals an bedone formally and we end with:(f � g)(p; q) = exp �i�h2 � ��q0 ��p00 � ��p0 ��q00�� f(p0; q0)g(p00; q00) (5:8)The ommutator ff; ggM = (��h)�1(f � g � g � f), that orresponds to (i�h)�1[F̂ ; Ĝ℄, isknown as the Moyal braket between f and g [Moya℄. In the limit �h! 0 it identi�es withthe Poisson braket ff; ggP .We have the following expansions for the Weyl orrespondene for ommutators and anti-ommutators:1i�h [F̂ ; Ĝ℄! ff; ggP � �h224 ��3f�p3 �3g�q3 � 3 �3f�p2�q �3g�q2�p � 3 �3f�p�q2 �3g�p2�q + �3f�q3 �3g�p3 �+ : : :(5:9)12(F̂ Ĝ+ ĜF̂ )! fg � �h28 ��2f�p2 �2g�q2 � 2 �2f�p�q �2g�p�q + �2f�q2 �2g�p2 �+ : : : (5:10)x6 Heisenberg's rules in HS(H)The isomorphism de�ned through Weyl's Correspondene and the nature of Weyl's andGrossmann's expansions of operators are best explained by giving in the spae of operatorsa representation of Heisenberg's rules suited for a phase spae desription.The spae HS(H) of Hilbert-Shmidt operators on H onsists of ompat operators suhthat Tr(ÂyÂ) < 1. It is a Hilbert spae with the inner produt (5.5). It is also a C�{Algebra, with *-onjugation given by the adjoint operation and the ordinary operatorprodut.An important dense subspae is that of "Trae Class operators"; they are the dual spaeof the Banah spae B(H) of bounded operators.Let us reall some basi de�nitions, that will be very useful in the following.a) The produt of two self{adjoint operators is generally not self{adjoint, one thereforede�nes a simmetrized operator produt, alled Jordan produt,Â� B̂ = 12(ÂB̂ + B̂Â) (6:1)with the properties of being ommutative, but not assoiative. Other properties are:Â� (B̂ � Ĉ)� (Â� B̂)� Ĉ = 14 [[Â; Ĉ℄; B̂℄(Â� B̂)y = Ây � B̂yb) An important onept is that of Derivation: if Ĝ = Ĝy is a bounded operator, it ispossible to de�ne a derivation super-operator of HS(H) into itselfDG : F̂ ! [Ĝ; F̂ ℄ (6:2)The term derivation is due to the fat that formal properties of derivation are satis�ed,like linearity and the Leibnitz rule. 6



DG(Â� B̂) = DG(Â)� B̂ + Â�DG(B̂)Two distint derivations DG1 and DG2 ommute if [Ĝ1; Ĝ2℄ is proportional to theIdentity.The derivation is self-adjoint in the inner produt of Hilbert{Shmidt.) If Û is a unitary operator on H, the left or right multipliations by Û de�ne a super-operator on HS(H) whih is unitary in the norm de�ned by the inner produt ofHilbert-Shmidt.Given a unitary representation of Weyl's rule on H, it is easy to de�ne a ouple of om-muting representations of Weyl's relation with unitary super-operators on HS(H). Theiration on a generi operator Â is the following:Ut(Â) = V̂ y(t)ÂV̂ (t) ; Vs(Â) = Ûy(s=2)ÂÛ(s=2) (6:3)These two super-operators satisfy UtVs = VsUtei�hts (6:4)The other pair, whih ommutes with the above one, is~Ut(Â) = Û(t)ÂÛy(t) ; ~Vs(Â) = V̂ (s=2)ÂV̂ (s=2) (6:5)and satis�es ~Ut ~Vs = ~Vs ~Utei�hts (6:6)The generators of the two pairs of unitary groups of super-operator are self-adjoint su-peroperators (in the Hilbert Shmidt inner produt), sharing a domain dense in HS(H).They are respetively:Derivation and multipliation by Q̂Pq(Â) = [P̂ ; Â℄ ; Qq(Â) = Q̂� Â (6:7)Derivation and multipliation by P̂Pp(Â) = [Â; Q̂℄ ; Qp(Â) = P̂ � Â (6:8)The superoperators satisfy a representation of Heisenberg's relation \on phase spae"[Pq;Qq℄ = �i�h [Pp;Qp℄ = �i�h [Pq;Pp℄ = 0 [Qq;Qp℄ = 0 (6:9)By the Theorem of von Neumann, there exists an isomor�sm� : HS(H)! L2(R2) (6:10)suh that to any operator F̂ there orresponds a funtion f(p; q) with the following prop-erties: 1i�h [P̂ ; F̂ ℄! fp; fgP = �f�q ; Q̂� F̂ ! qf (6:11a)7



1i�h [F̂ ; Q̂℄! ff; qgP = �f�p ; P̂ � F̂ ! pf (6:11b)The isomorphism is preisely Weyl's orrespondene, whih maps the algebra of lassialphase spae funtions L2(R) on the spae of Hilbert Shmidt quantum operators. Themap an be given expliitly through the orrespondene between elements of ompletesets of proper or generalized vetors of both spaes, like in relations (4.2) and (4.4). Thisorrespondene is disussed in the next setion.x7 Weyl's Correspondene revisitedLike in quantum mehanis, with formulae (6.11a and b) we have introdued in the spaeL2(R) of phase{spae funtions f(p; q) the operators of multipliation by p and q, aswell as derivations by p and q. The generalized eigenfuntions ommon to derivations ormultipliations are respetively exponential funtions and delta funtions:�i ��q ei(xp+yq) = yei(xp+yq) ; �i ��pei(xp+yq) = xei(xp+yq) (7:1)qÆ(q � a)Æ(p� b) = aÆ(q � a)Æ(p� b) ; pÆ(q � a)Æ(p� b) = bÆ(q � a)Æ(p� b) (7:2)In the same way, Weyl and Grossmann Operators may be viewed as `eigen-operators' of thesuper-operators given in x6 that provide two ommuting representations of Heisenberg'srelations. More preisely, the Weyl Operators are a basis of operators ommon to the twoderivations and orrespond, through the isomorphism, to exponentials, the basis ommonto derivations on lassial phase spae funtions:Pq(Ŵ (x; y)) = [P̂ ; Ŵ (x; y)℄ = �hxŴ (x; y) (7:3a)Pp(Ŵ (x; y)) = [Ŵ (x; y); Q̂℄ = �hyŴ (x; y) (7:3b)The Grossmann operators, or Weyl operators multiplied by parity, play a role analogousto that of delta funtions entered on points of lassial phase spae:Qq(Ĝ(p; q)) = Q̂� Ĝ(p; q) = qĜ(p; q) (7:4a)Qp(Ĝ(p; q)) = P̂ � Ĝ(p; q) = pĜ(p; q) (7:4b)These two relations show that the operators Ĝ(p; q) are a basis of operators ommon tothe position super-operators.The equation (5.3) shows that the orret normalization in the Hilbert{Shmidt norm forGrossmann operators to form a ontinuous basis of operators is the prefator (i�h)�1. Wethen may write symbolially Æ2(P̂ � p; Q̂� q) = 1��hĜ(p; q) (7:5)and obtain the ontinuous expansion for an operator in the form given by Grossmann:F̂ = Z dpdqf(p; q)Æ2(P̂ � p; Q̂� q) (7:6)8



where f(p; q) = 1��h �Ĝ(p; q); F̂�HS = 2Tr hĜ(p; q)F̂i (7:7)Weyl's orrespondene states that f is preisely the lassial funtion (if �h-independent)that would quantize into the operator F̂ .x8 Wigner's funtion.The de�nition of Wigner's funtion is stritly related to Weyl's orrespondene, althoughhystorially it has been introdued in an independent way [Wign℄. It is a distribution inphase spae assoiated to a density matrix that allows to perform quantum mehanialomputations in phase spae. Contrary to a lassial distribution, it may take negativevalues. In the frame of Weyl's transform its de�nition is straightforward and follows fromthe formula by Grossmann. If �̂ is a statistial operator and F̂ is the quantum operatororresponding to the lassial observable f(p; q), the average value is given byhF i = Tr[�̂F̂ ℄ = 1��h Z dpdqf(p; q)Tr[�̂Ĝ(p; q)℄ = Z dpdqf(p; q)�(p; q) (8:1)The funtion �(p; q) = 1��hTr[�̂Ĝ(p; q)℄ (8:2)is Wigner's funtion. Note that it does not oinide with the lassial funtion that wouldorrespond aording to Weyl to the operator �̂. In the ase of a pure state �̂ = j ih j ittakes a partiularly simple form:� (p; q) = 1��h h jĜ(p; q)j i (8:3)The following properties, whih are to be expeted from any phase{spae density assoiatedto a pure state, are easily veri�ed:Z � (p; q)dp = j (q)j2 ; Z � (p; q)dq = j ~ (p)j2 (8:4)In the position representation of  Wigner's funtion takes the familiar expression� (p; q) = 1��h Z 1�1 dxe2ipx=�h (x+ q)� (q � x) (8:5)For a oherent state jzi entered in (p0; q0), the expression is partiularly simple:�z(p; q) = 1��he� i�h [(q�q0)2+(p�p0)2℄ (8:6)When �h goes to zero, the funtion �z onverges to Æ(q � q0)Æ(p � p0). The average valueof an observable taken on a oherent stateh�jF̂ j�i = 1��h Z dpdqf(p; q)e� i�h [(q�q0)2+(p�p0)2℄9



has a nie interpretation as a di�usion proess over a time t = �h=4.Referenes[Agarw℄ G.S.Agarwal and E.Wolf, Calulus for funtions of non ommuting operators and gen-eral phase spae methods in Quantum Mehanis: I Mapping theorems and orderingof funtions of non ommuting operators, II Quantum Mehanis in Phase Spae,Phys. Rev. D 2 (1970) 2161 and 2187.[Barg℄ V.Bargmann, P.Butera, L.Girardello and J.R.Klauder: On the ompleteness of theoherent states, Rep. Math. Phys. 2 (1971) 221.[Glau℄ R.J.Glauber, Coherent and Inoherent states of the Radiation Field, Phys. Rev. 131(1963) 2766-2788.[Gros℄ A.Grossmann, Parity Operator and Quantization Of Delta Funtion, Comm. Math.Phys. 48 (1976) 191.[Gudd℄ S.Gudder, Stohasti Methods in Quantum Mehanis, North Holland, 1979.[Moya℄ J.E.Moyal, Quantum Mehanis as a Statistial Theory, Pro. Cambridge Phyl. So.45 (1949).[Pool℄ J.C.T.Pool, Mathematial Aspets of the Weyl Correspondene, J. Math. Phys. 7(1966) 66.[ReSi℄ M.Reed, B.Simon, Funtional Analysis, Aademi Press, 1972.[Weyl℄ H.Weyl, The Theory of Groups and Quantum Mehanis, Dover.[Wign℄ E.Wigner, On the Quantum Corretion for Thermodynami Equilibrium, Phys. Rev.40 (1932) 749.

10


