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NOTES ON IDEAL QUANTUM GASES7

Luca G Molinari

I. GRAN CANONICAL POTENTIAL

Many-body theory is based on second-quantisation, a
formalism where the basic operators create or destroy
particles, acting on a Fock-space. Thermal equilibrium
is then suitably described by the grand-canonical formal-
ism. The system is in contact with a thermal reservoir
at temperature T , and exchanges particles with it. The
total energy and the particle numbers are not fixed a pri-
ori, but their average values depend on the temperature
T and the chemical potentials µi of the various species.
The thermal state is:

ρ̂gc =
1

Zgc
e−β(Ĥ−

∑
µiN̂i) (1)

β = 1/(kBT ). The normalization constant

Zgc = tr exp[−β(Ĥ −
∑

µiN̂i)]

is the partition function. It is a function of T , µi and of the
parameters in the Hamiltonian (such as the volume V ,
external fields). If the different species do not interact,
the Hamiltonian is the sum of commuting Hamiltonians
of the single species, and the partition function factors.

The thermal average of an operator is:

O = 〈Ô〉 = tr (ρ̂gc Ô)

Certain averages define important thermodynamic vari-
ables: Ni = 〈N̂i〉 (number of particles of type i), E = 〈Ĥ〉
(internal energy). They may be obtained8 as:

Ni =
1

β

∂

∂µi
logZgc

E −
∑

µiNi = − ∂

∂β
logZgc

The connection between the microscopic description and
thermodynamics is established via the gran canonical po-
tential:

Ω =: −kBT logZgc (2)

Ni = − ∂Ω

∂µi
, E −

∑
i

µiNi =
∂ (βΩ)

∂β
= Ω− T ∂Ω

∂T
(3)

The Von Neumann entropy of a state ρ̂ is

S = −kBtr(ρ̂ log ρ̂)

The entropy of a thermal state is S = kBβ(E−
∑
µiNi−

Ω). This is rewritten as

Ω = E − TS −
∑

µiNi (4)

Eq.(3) shows that

S = −∂Ω

∂T
(5)

The first principle of thermodynamics states that the
variation of the internal energy in a reversible transfor-
mation is

dE = TdS − dW +
∑

µidNi

where TdS is the input of heat, dW is the mechanical
work done by the system, µidNi is the variation of energy
due to the variation of the number of particles. Then:

dΩ = −SdT − dW −
∑

Nidµi

Exercise I.1 Show that

1) 〈N2
i 〉 − 〈Ni〉2 = −kBT

∂2Ω

∂µ2
i

(6)

2) 〈K2〉 − 〈K〉2 = − ∂2

∂β2
(βΩ) (7)

where K = H −
∑
µiNi.

Exercise I.2 Show that the specific heat with dW = 0
may be evaluated from the entropy:

C =:
∂E

∂T

∣∣∣
N

= T
∂S

∂T

∣∣∣
N

When work produces a variation of the volume, dΩ =
−SdT − pdV −

∑
Nidµi. The bulk pressure is

p = − ∂Ω

∂V

Since in this case only Ω(T, V, µ) and V are extensive, a
scaling gives: Ω(T, λV, µi) = λΩ(T, V, µi). Derivative in
λ = 1 gives:

Ω(T, V, µi) = −pV (8)

This is the equation of state after replacing µi with
µi(T, V,N), obtained by inversion of Ni = −∂Ω/∂µi.

The relation Ω = −pV and the expression for dΩ imply
the Gibbs-Duhem relation:

−SdT + V dp−
∑

Nidµi = 0 (9)

Therefore for isothermal or isobaric transformations:

∂p

∂µi

∣∣∣
T

=
Ni
V
,

∂µi
∂T

∣∣∣
p

= − S

Ni
(10)

Besides E and Ω, two other thermodynamic potentials
are the Helmholtz free energy and the Gibbs potential:

dF = −SdT − pdV +
∑

µidNi (11)

dG = −SdT + V dp+
∑

µidNi (12)

As G depends on the extensive variables Ni, it is
G(T, p, λNi) = λG(T, p,Ni), which implies (9) and G =∑
µiNi.
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Exercise I.3 Write the scaling of the free energy and get
F = Ω +

∑
µiNi.

In presence of a surface: dW = pdV − γdA, where
γ is the surface tension (the work done per unit area
to change the area without changing the volume). The
pressure normal to the surface does not coincide with p:

pn = − ∂Ω

∂V
+ γ

dA

dV
= p+ γ

(
1

r1
+

1

r2

)
r1 and r2 are the principal radii of curvature of the
surface (Laplace).

The following identity, for a one-species system, shows
that the relative fluctuation of the particle number van-
ishes in the thermodynamic limit:

〈N2〉 − 〈N〉2

〈N〉2
=
kBT

V
BT , BT = − 1

V

∂V

∂p

∣∣∣
T

(13)

BT > 0 is the isothermal bulk modulus9.

Ornstein-Zernike relation. The density-density ther-
mal correlator is

ρ(x,x′) = 〈
∑

i 6=j
δ3(x− xi)δ

3(x′ − xj)〉 (14)

Integration gives:
∫
d3x d3x′ ρ(x,x′) = 〈N2〉 −N . If the

system is homogeneous and isotropic, the density is n and
ρ(x,x′) =: n2g(|x− x′|), where g is the pair distribution
function. Then

〈N2〉 −N2 = N + n2V

∫
V

d3x[g(x)− 1]

The Ornstein-Zernike relation (1914) is obtained:

kBTBT =
1

n
+

∫
V

d3x[g(x)− 1]

For uncorrelated particles g(x) = 1 one derives pV =
NkBT . For a gas pf hard spheres g(x) = θ(x− x0), and
one obtains the van der Waals law3.

II. INDEPENDENT PARTICLES4,5

We consider a single species of non-interacting identical
particles with Ĥ−µN̂ =

∑
r(εr−µ)ĉ†r ĉr. The evaluation

of the partition function in the occupation number basis
gives the thermodynamic potential:

Ω =± kBT
∑
r

log
[
1∓ e−β(εr−µ)

]
(15)

The mean occupation number of a state is

nr = 〈ĉ†r ĉr〉 =
∂Ω

∂εk
=

1

eβ(εr−µ) ∓ 1
(16)

For bosons, µ ≤ ε0 to have nr ≥ 0. Hereafter, the chemi-
cal potential is chosen such that the ground-state energy
is zero, ε0 = 0.
All thermal averages may be expressed in terms of nr
(Wick’s theorem):

N =
∑

r
nr, E =

∑
r
εr nr, (17)

Ω = ∓kBT
∑

r
log (1± nr) (18)

Sums on states may be converted to integrals with the
counting function of states N(ε) =

∑
r θ(ε− εr) and the

density ρ(ε) = N ′(ε). Eqs.(18) and (15) (after an inte-
gration by parts) become:

N =

∫ ∞
0

dερ(ε)n(ε) (19)

E =

∫ ∞
0

dερ(ε)n(ε)ε (20)

Ω = −
∫ ∞
0

dεN(ε)n(ε) (21)

Exercise II.1 Evaluate the entropy (Landau):

S = kB
∑

r
(nr ± 1) log(1± nr)− nr log nr

Exercise II.2 〈ĉ†r ĉr ĉ†sĉs〉 − nrns = δrs nr(1± nr).

Exercise II.3 Show that in d = 3 the counting functions
of states with energy below ε for the free particle, the
relativistic particle, the massless particle with dispersion
law ελ(k) = cλk (λ = 1, 2, 3 are polarization states) are:

N(ε) = V
2s+ 1

6π2

[
2mε

~2

]3/2
(22)

N(ε) = V
2s+ 1

6π2

[
ε2 −m2c4

~2c2

]3/2
(23)

N(ε) = V
1

6π2

ε3

~3

[
1

c21
+

1

c22
+

1

c23

]3/2
(24)

The examples show that it is of interest to study the
case N(ε) = Cεα, where C and α are constants10. Here-
after, we restrict to this situation. First of all:

Ω =− 1

α
E (25)

With βµ = log z, eqs.(19) and (20) are:

N =
Cα

βα

∫ ∞
0

dx
xα−1

1
z e
x ∓ 1

(26)

E =kBT
Cα

βα

∫ ∞
0

dx
xα

1
z e
x ∓ 1

(27)

Upper sign refers to bosons, and lower sign to fermions.

Exercise II.4 (massless ideal boson gas). Show that
p = 1

3 (E/V ), E/V ∼ T 4 and the specific heat per par-

ticle cV ∼ T 3. For phonons, the Debye cutoff strongly
modifies the results.
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III. IDEAL FERMI GAS

We consider free electrons. The starting equations are:

N = 2V

∫
dk

(2π)3
1

eβ(εk−µ) + 1
(28)

E = 2V

∫
dk

(2π)3
εk

eβ(εk−µ) + 1
(29)

Set z = eβµ (fugacity), x = βεk and introduce the func-
tions:

fα(z) =
1

Γ(α)

∫ ∞
0

dx
xα−1

1
z e
x + 1

, α > 0 (30)

The thermodynamic equations are parametric in z:

1

2s+ 1

N

V
λ3 = f3/2(z), (31)

E

N
=

3

2
kBT

f5/2(z)

f3/2(z)
(32)

pV = NkBT
f5/2(z)

f3/2(z)
(33)

They contain a basic parameter: the thermal length

λ(T ) =

(
2π~2

mkBT

)1/2

It is the de Broglie length for a particle with energy ≈
kBT . The ratio (N/V )1/3 ≈ kF measures the inverse of
the typical distance among particles.
z � 1 corresponds to kFλ� 1 (classical regime)
z & 1 corresponds to kFλ & 1 (quantum regime).

We need the expansions for small and large z;

fα(z) =

∞∑
k=1

(−1)k+1 z
k

kα
= z − z2

2α
+
z3

3α
− . . . (34)

fα(z) =
(log z)α

Γ(α+ 1)

[
1 + 2

α(α− 1)

(log z)2
f2(1) (35)

+ 2
α(α− 1)(α− 2)(α− 3)

(log z)4
f4(1) + . . .

]
fα(1) = ζ(α)(1− 21−α). The large z expansion is due to
Sommerfeld and is shown in the appendix.

Inversion of N(z) respectively gives (s = 1/2):

z =
1

2

N

V
λ3
[
1 +

1

4
√

2

N

V
λ3 + . . .

]
(36)

log z = βEF

[
1− π2

12

1

(βEF )2
+ . . .

]
(37)

In the classical regime the chemical potential
µ = kBT log z is negative. In the quantum regime
it is positive with maximum value EF .

In the classical (small z) regime, the equation of state
of a perfect gas is obtained, with the first quantum cor-
rection:

pV = NkBT

[
1 +

1

8
√

2

N

V
λ3 + . . .

]
. (38)

The correction increases the pressure as a signature of the
Pauli principle, which forbids particles with same spin to
occupy the same position.

In the quantum regime (large z):

E

N
=

3

5
EF

[
1 +

5π2

12

1

(βEF )2
+ . . .

]
(39)

The low T linear behaviour of the specific heat per parti-
cle, and the pressure of the degenerate gas are obtained:

c =
π2

2

1

EF
k2BT + . . . , p =

2

5

N

V
EF + . . .

Exercise III.1 Evaluate the ratio T/TF for free elec-
trons at µ = 0 (answer: ≈ 0.5).

Exercise III.2 Study the 2D ideal electron gas.

IV. THE IDEAL BOSE GAS

For non interacting bosons, the equations (26) and (27)
require the following functions:

gα(z) =
1

Γ(α)

∫ ∞
0

dx
xα−1

1
z e
x − 1

(40)

The small z expansion is

gα(z) =

∞∑
k=1

zk

kα
= z +

z2

2α
+
z3

3α
+ . . . (41)

Note that zg′α(z) = gα−1(z) and the special value gα(1) =
ζ(α). The z → 1 behaviour is given by the Taylor expan-
sion gα(z) = ζ(α) + (z − 1)ζ(α− 1) + . . ..
For 1 < α < 2 another expansion is needed (see ap-
pendix).

For non-interacting bosons µ ≤ 0 (the energy scale is
fixed such that ε0 = 0). When µ→ 0−, the B-E statistics
allows the possibility for the occupation number of the
ground state to be macroscopically large.

n0 =
1

e−βµ − 1
=

z

1− z
(42)

(βµ = log z, 0 < z ≤ 1). The occupation n0 is of order
N if z ≈ 1− cost/N . When this occurs, the ground state
must be singled out in the basic equations.
Free bosons in d = 3 undergo Bose-Einstein condensation
at finite T . The equations for the ideal gas are (s = 0):

N − n0
V

λ3 = g3/2(z), (43)

E =
3

2
kBT

V

λ3
g5/2(z) (44)



4

Exercise IV.1 Show that the pressure of the ideal Bose
gas is always smaller than the pressure of the ideal gas
at same density and temperature: p < (N/V )kBT .

A. The Bose condensate

The Bose condensate is a phase with n0/N 6= 0 in the
thermodynamic limit. Necessarily z → 1− (µ → 0) as
N → ∞. The equation for N − n0 is expanded near
z = 1 with (61), and z is expressed in terms of n0 by
(42):

1− n0
N

=
V ζ(3/2)

Nλ3

[
1− 2

√
π

ζ(3/2)

1
√
n0

+ . . .

]
(45)

In the thermodynamic limit, n0 is of order N and the
correction vanishes. Then (45) becomes:

n0
N

= 1−
(
T

Tc

)3/2

T < Tc (46)

where the critical temperature is defined by the identity

1 =
V ζ(3/2)

Nλ3
i.e. TC =

2π~2

mkB

[
1

ζ(3/2)

N

V

] 2
3

(47)

It says that the thermal length is of the order of the
average separation of particles.

The total energy, specific heat, pressure (z = 1) are:

E =
3

2
kBT

V

λ3
ζ(5/2) =

3

2
NkB

T 5/2

T
3/2
c

ζ(5/2)

ζ(3/2)
(48)

c =
1

N

∂E

∂T

∣∣∣
V,N

= kB
15

4

ζ(5/2)

ζ(3/2)

(
T

Tc

)3/2

(49)

p = −Ω

V
=

2

3

E

V
= kBT

ζ(5/2)

λ3(T )
(50)

In pT diagram, isothermals are lines of constant pres-
sure. The pressure vanishes at T = 0, with all particle
condensed in k = 0.
At T = Tc the pressure reaches the value

pc =
2π~2

m

ζ(5/2)

ζ(3/2)5/3

(
N

V

) 5
3

B. Near the transition

For T just above Tc, the ratio n0/N is zero in the
thermodynamic limit.

λ(T ) ≈ λ(Tc)

[
1− 1

2

T − Tc
Tc

+ ...

]

FIG. 1: The specific heat per particle in units kB as a function
of T/Tc. For T/Tc � 1 it is 3/2 (Mathematica).

Eq.(45) gives

n0 ≈
16π

9ζ(3/2)2

(
T − Tc
Tc

)−2
+ . . . (51)

z = 1 − 1/n0 follows from it. The energy per particle is
Taylor-expanded in z = 1:

E

N
=

3

2
kBT

V

Nλ3
[ζ(5/2) + (z − 1)ζ(3/2) + . . .]

=
3

2
kBTc

[
1 +

5

2
x+

15

8
x2 + ...

] [
ζ( 5

2 )

ζ( 3
2 )
−

9ζ( 3
2 )2

16π
x2 + ...

]
with x = T−Tc

Tc
. The leading term is the energy per

particle in the condensed phase. The correction is valid
for T ≈ T+

c . The specific heat per particle is:

cV =
15

4
kB

ζ(5/2)

ζ(3/2)

{
1− 3

2
Tc−T
Tc

if T . Tc,

1− 3
2 (γ − 1) T−Tc

Tc
if Tc & T

where γ = 3
10π ζ( 3

2 )3/ζ( 5
2 ). The specific heat is continu-

ous across the transition, but discontinuous in its deriva-
tive.

FIG. 2: Isothermal in (V, p) diagram (T decreases from
above). In the BEC phase isothermals are constant pres-
sure. The dashed line is the classical isothermal for the higher
shown value of T . The light line is pc(V ) (Mathematica).
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For 4He the critical temperature is 2.18K, and the spe-
cific heat is discontinuous. For a free boson with the
Helium mass Tc = 3.13K.

C. Classical regime

Inversion of N(z) in the small z regime gives:

z =
N

V
λ3
[
1− 1

2
√

2

N

V
λ3 + . . .

]
(52)

The equation of state of the Bose gas is:

pV = NkBT

[
1− 1

4
√

2

N

V
λ3 + . . .

]
(53)

The quantum correction lowers the pressure (this term
is opposite of the Fermi correction, up to the spin factor
2s+ 1).

Exercise IV.2 Evaluate the chemical potential near Tc

Exercise IV.3 Show that for the 2D ideal Bose gas there
is no B.E. transition at a finite T .

Exercise IV.4 Many bosons are trapped in a isotropic
3D harmonic well. Show that N − n0 = ζ(3)(β~ω)−3.
The ”critical temperature” is kBTc = ~ω(N/ζ(3))1/3.
What length does the thermal length compare with?

V. PEIERL’S TRICK

For independent particles, the gran-canonical potential
can be evaluated from the simpler canonical partition
function. Write them as integrals in the density of states:

Zc(β) =

∫ ∞
0

dε ρ(ε)e−βε

Ω = ± 1

β

∫ ∞
0

dερ(ε) log(1∓ e−β(ε−µ))

Integrate by parts, with ρ = dN
dε . Boundary terms vanish:

Zc(β) = β

∫ ∞
0

dεN(ε)e−βε (54)

Ω = −
∫ ∞
0

dεN(ε)n(ε) (55)

where n(ε) is the BE or FD occupation number. Note
that Zc is a Laplace integral, which can be inverted.
For fermions at T = 0 a further integration by parts is
useful. Set N(ε) = dζ(ε)/dε. Then:

Zc(β) = β2

∫ ∞
0

dε ζ(ε)e−βε (56)

Ω =

∫ ∞
0

dεζ(ε)n′(ε) (57)

The inversion formula of the Laplace integral gives

ζ(ε) =

∫ c+i∞

c−i∞

dβ

2πi

Z(β)

β2
eβε (58)

At T = 0: n(ε) = θ(εF − ε). Then Ω(T = 0) = −ζ(εF ).

Example. Boltzmann’s partition function for the
ideal electron gas is

Zc(β) = 2
∑

k
e−β

~2k2

2m = 2V

(
m

2π~2β

)3/2

The auxiliary function is evaluated:

ζ(E) = 2V
( m

2π~2
)3/2 ∫ c+i∞

c−i∞

dβ

2πi
eβEβ−7/2

The integral on Re β = c coincides with the integral on
the path σ around the cut, shown in Fig. (3). The latter
is Hankel’s representation of the Gamma function:

1

Γ(z)
=

∫
σ

ds

2πi
ess−z (59)

The potential Ω at T = 0 is:

Ω0 = −V 16

15
√
π

( m

2π~2
)3/2

ε
5/2
F (60)

FIG. 3: The path σ around the cut.

A beautiful application of Peierl’s trick is the evalua-
tion of the diamagnetic response and the de Haas - van
Alphen oscillations of the electron gas in a weak mag-
netic field6 (respectively cut and poles contributions to
the complex integral ζ(ε)).

VI. APPENDIX

Values of Riemann’s Zeta function:
ζ(2) = π2

6 , ζ(4) = π4

90 , ζ( 3
2 ) = 2.612, ζ( 5

2 ) = 1.342.

Fermi integrals: small z∫ ∞
0

dx
xα−1

1
z e
x ∓ 1

=

∫ ∞
0

dxxα−1
ze−x

1∓ ze−x

=

∞∑
k=0

(±1)kzk+1

∫ ∞
0

dxxα−1e−(k+1)x

= Γ(α)

∞∑
k=1

(±1)k+1 z
k

kα
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Large-z (Sommerfeld) (ν = log z):∫ ∞
0

dx
xα−1

ex−ν + 1
=

∫ ∞
−ν

dx
(ν + x)α−1

ex + 1

=

∫ ∞
ν

dx
(ν + x)α−1

ex + 1

+

∫ ν

0

dx
(ν + x)α−1

ex + 1
+

∫ ν

0

dx
(ν − x)α−1

e−x + 1

The first of the three integrals is of order e−ν and is
neglected for large ν. Write (e−x+1)−1 = 1−(ex+1)−1:

=
να

α
+

∫ ν

0

dx
(ν + x)α−1 − (ν − x)α−1

ex + 1

=
να

α
+ να−1

∫ ν

0

dx
(1 + x/ν)α−1 − (1− x/ν)α−1

ex + 1

Expand the binomials for small x/ν and replace the in-
tegration interval [0, ν] with [0,∞], with exponentially
small error:

=
να

α
+ 2(α− 1)να−1

∫ ∞
0

dx

ex + 1

[
x

ν
+

(α− 2)(α− 3)

3!

x3

ν3
+ . . .

]
=
να

α

[
1 + 2α(α− 1)

f2(1)

ν2
+ 2α(α− 1)(α− 2)(α− 3)

f4(1)

ν4
+ . . .

]
=
να

α

[
1 +

π2

6

α(α− 1)

ν2
+

7π4

360

α(α− 1)(α− 2)(α− 3)

ν4
+ . . .

]

Bose integrals.
The following holds (see NIST eq. 25.12.12), where
gα(z) = Liα(z) (polylogarithm):

gα(z) = Γ(1− α)(− log z)s−1 +

∞∑
k=0

ζ(α− k)

k!
(log z)k

For α = 3/2 and z = 1− η it is:

g3/2(1− η)− ζ( 3
2 ) =Γ(− 1

2 )
√
η − ζ( 1

2 )η +O(η2)

=− 2
√
πη − ζ( 1

2 )η +O(η2) (61)
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through the Lie-Trotter formula, which is needed when O
and dO/dλ do not commute:

d

dλ
eÔ(λ) =

∫ 1

0

dtetÔ(λ) d

dλ
Ô(λ)e(1−t)Ô(λ)

If the trace is taken, by the cyclic property:

d

dλ
tr[eÔ(λ)] = tr [eÔ(λ) d

dλ
Ô(λ)]

9 For fixed T , V , the equation pV = −Ω(T, V, µ) gives a
function p(µ). Then:

−∂
2Ω

∂µ2
=
∂N

∂µ

∣∣∣
T,V

=
∂N

∂p

∂p

∂µ
=

[
− ∂

∂µ

Ω

V

]
∂N

∂p
=
N

V

∂N

∂p
At fixed density, dN = N

V
dV then: ∂N

∂p
= N

V
∂V
∂p

= −NBT .
10 for free particles α = d/2


