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1 The magnetic moment of the electron

The spin ~S of an electron carries a magnetic moment ~µs = −g e
2mc

~S, with
Landé factor g = 2 resulting from Dirac’s equation. In the representation
~S = (~/2)~σ it is ~µs = −µB~σ, with Bohr’s magneton:

µB =
e~

2mc
= 0.5788 × 10−8eV/gauss (1)

or µB = 0.9274 × 10−20 erg/gauss. The potential energy of a single spin in

a (local) field is −~µ · ~B = µB~σ · ~B. The Boltzmann factor e−βE (E is the
energy of the electron) is enhanced if the magnetic moment is aligned with
the magnetic induction field (paramagnetism), i.e. the spin is antiparallel.
For an assembly of electrons, one defines the magnetization density operators:

~m(~x) =
∑

i

~µs(~Si)δ3(~x− ~Xi) = −µB

∑
mm′

ψ†
m(~x)~σmm′ψm′(~x) (2)

Exercise: prove that [mi(~x), mj(~x
′)] = i~δ3(~x− ~x′)

∑
k ǫijkmk(~x).

2 Spin paramagnetism

We study the gran canonical Hamiltonian K ′ = K −
∫
d3x ~m(~x) · ~H(~x, t).

According to linear response theory, if the equilibrium magnetization is null,
for a weak field it is:

mi(x) = −
1

~

∫
d4x′Dret

ij (x, x′)Hj(x
′) (3)
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with the response function iDR
ij(x.x

′) = θ(t− t′)〈[mi(x) , mj(x
′)]〉. Since the

system at equilibrium is invariant under time-translations, we may shift to
ω space:

mi(~x, ω) = −
1

~

∫
d3x′Dret

ij (~x, ~x′, ω)Hj(~x
′, ω)

Going back to time:

mi(~x, t) = −
1

~

∫
dω

2π
d3x′DR

ij(~x, ~x
′, ω)Hj(~x

′, ω)e−iωt

The retarded correlator can be evaluated via the Lehmann representation
from the τ - ordered correlator

−DT
ij(~xτ, ~x

′τ ′) = 〈T δmi(~xτ)δmj(~x
′τ ′)〉,

where δmi(~xτ) = mi(~xτ)−〈mi(~x)〉. Its expansion in Matsubara frequencies,
with even frequencies, yields coefficients DT

ij(~x, ~x
′, iωk). The retarded corre-

lator is obtained from it by the replacement iωk with ω + iη.
In detail:

−DT
ij(x, x

′) = µ2
Bσ

i
mm′σ

j
nn′〈T ψ

†
m(x)ψm′(x)ψ†

n(x′)ψn′(x′)〉 − 〈mi(~x)〉〈mj(~x
′)〉

= −~µ2
Bσ

i
mm′σ

j
nn′Πmm′,nn′(x, x′) (4)

where the full polarization of the system at equilibrium appears.

2.1 The polarization

For independent particles the evaluation of the polarization is simple:

Πmm′,nn′(~x, ~x′, iωk) = −2
∑
ab

〈m′~x|a〉〈a|m~x′〉〈n′~x|b〉〈b|n~x′〉
na − nb

i~ωk − (ǫa − ǫb)

For interacting electrons, the polarization is the sum of diagrams with two
electron lines joining in x, (one leaving with spin m and one arriving with
spin m′) and two lines joining in x′ with spin n (outgoing) and n′ (ingoing).
Since an electron line leaving from x must either return to it or join x′, if the
system with ~H = 0 has Green functions and interactions diagonal in spin, it
is:

Πmm′,nn′(x, x′) = δmn′δm′nΠ1(x, x
′) + δmm′δnn′Π2(x, x

′)

where in Π1 the points x and x′ are joined by two lines, and Π2 has diagrams
where a line closes on x and another closes on x′. All Π1 diagrams are in
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Π∗, but there are also diagrams in Π2 that belong to Π∗ (also for Π∗ one can
write a decomposition as above). Then:

σi
mm′σ

j
nn′Πmm′,nn′ = tr(σiσj)Π1 + trσitrσj Π2 = 2δijΠ1

where we used the useful relation σiσj = δijI+ iǫijkσk and the fact that Pauli
matrices are traceless. In this situation: DR

ij(~x, ~x
′, ω) = 2~µ2

BδijΠ1(~x, ~x
′, ω +

iη).

2.2 Homogeneous systems

If the system at equilibrium is invariant for space translations, the response
function is local in 4D Fourier space: mi(k) = −1

~
Dret

ij (k)Hi(k). The coeffi-
cient is the magnetic susceptibility:

χij(k) = −
1

~
Dret

ij (k) (5)

and the magnetization density in space time is:

mi(x) =

∫
d3kdω

(2π)4
ei~k·~x−iωtχij(~k, ω)Hj(~k, ω) (6)

Moreover, if the field is homogeneous and constant, Hj(~k) = Hj (2π)4δ4(k),
the resulting magnetization is homogeneous and constant: mi = χijHj , with

χij = −µ2
Bσ

i
mnσ

j
m′n′Πmn,m′n′(~k → 0) (7)

2.3 Ideal electron gas

For the free electron gas, it is

Πmn,m′n′ = (−1/~)(−1)δmn′δm′nG
0(x, x′)G0(x′, x) =

1

2
δmn′δm′nΠ(0)(x, x′)

where Π(0) is the polarization bubble diagram. In Fourier space:

Π(0)(~k, iωn) = −2

∫
d3q

(2π)3

n~k+~q
− n~q

i~ωn − (ǫ~k+~q
− ǫ~q)

(8)

We replace iωn with ω+ iη and let ω = 0 without any harm. Then take k to
0:

χij = −µ2
Bδij lim

k→0
Π(0)(k, 0) = −2µ2

Bδij

∫
d3q

(2π)3
lim
k→0

n~k+~q
− n~q

ǫ~k+~q
− ǫ~q

= −2µ2
Bδij

∫
d3q

(2π)3

∂n

∂ǫ
(~q) = −2µ2

Bδij

∫
dǫρ(ǫ)

∂n

∂ǫ
(9)

3



Therefore χ = −µ2
B

∫
dǫρ(ǫ)∂n

∂ǫ
with limit behaviours: χ = µ2

Bρ(ǫF ) for T = 0

(Pauli paramagnetism) and, for large T, χ =
µ2

B
n

kBT
(Curie’s law) where n =∫

dǫρ(ǫ)nǫ is the electronic density. The same result could be obtained in few
lines by other means.
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