A DERIVATION OF HEDIN'S EQUATIONS

LUCA GUIDO MOLINARI

ABSTRACT. In these pedagogical notes, I present a derivation of Hedin's equations for the evaluation of the propagator, the proper self-energy, the effective potential, the proper polarization and the vertex in a many-body theory with two-body interaction. I then discuss the Ward identities for the vertex. The solution of Hedin's equations in d = 0 allows to enumerate Feynman diagrams in various resummation schemes.

1. INTRODUCTION

We consider the many-body problem for interacting fermions with Hamiltonian $H = H_0 + U$, $H_0 = \sum_i h(\mathbf{x}_i, \mathbf{p}_i)$, $U = \sum_{i < j} v(\mathbf{x}_i, \mathbf{x}_j)$. *h* is a one-particle Hamilton-ian and *v* is the two-body interaction. For simplicity we assume spin independence of the Hamiltonian (its inclusion is straightforward but makes notation heavy).

In 1965 Lars Hedin [1] derived the following formally closed set of equations for the propagator G, the proper self-energy Σ^{\star} , the effective potential W, the proper polarization Π^* and the dressed vertex Γ . Four of them are integral equations¹:

(1)
$$G(1,2) = g(1,2) + \int d1'2' \ g(1,1') \Sigma^{\star}(1',2') G(2',2)$$

(2)
$$W(1,2) = v(1,2) + \int d1'2' \ v(1,1')\Pi^{\star}(1',2')W(2',2)$$

(3)
$$\Sigma^{\star}(1,2) = \frac{i}{\hbar} \int d34 \, \Gamma(4;1,3) G(3,2) W(4,2)$$

(4)
$$\Pi^{\star}(1,2) = -2\frac{i}{\hbar}\int d34 \ \Gamma(1;3,4)G(2,3)G(4,2)$$

where $v(1,2) = v(\mathbf{x}_1,\mathbf{x}_2)\delta(t_1-t_2)$ and g(1,2) is the time-ordered Green function of the interacting system in the Hartree approximation, with the *exact* particle density (Hartree-type insertions -tadpoles- are then already accounted for). The fifth equation contains a functional derivative:

(5)
$$\Gamma(1;2,3) = \delta(1,2)\delta(1,3) + \int d4567 \,\Gamma(1;4,5)G(6,4)G(5,7) \frac{\delta\Sigma^{\star}(2,3)}{\delta G(6,7)}$$

Eqs. (1) and (2) are the Dyson's equations that define the self-energy and the polarization as 1-particle irreducible insertions for the propagator and the effective potential². The next two give the skeleton structure of the irreducible self-energy

Date: 18 oct 2017.

¹Here, $1 = (\mathbf{x}_1, t_1)$, $1^+ = (\mathbf{x}_1, t_1 + \epsilon)$, and $\int d1 = \int_{-\infty}^{+\infty} dt_1 \int d\mathbf{x}_1$. ²The diagrams for G and W have the structure $G(1, 2) = g(1, 2) + g(1, 1')\Sigma(1', 2')g(2', 2)$ and $W(1,2) = v(1,2) + v(1,1')\Pi(1',2')v(2',2)$, where Σ and Π are the self-energy and polarisation insertions, i.e. diagrams with two fermion or two "photon" slots.

The self-energy or polarisation diagrams that may not be disconnected by removal, respectively,

L. G. MOLINARI

and polarization. These four equations can be understood and derived by considering Feynman's rules and the diagrams' topology [2, 3]. They only involve integrals. The vertex equation (5) contains a functional derivative, which constitutes the main difficulty of the many-body problem [4, 5, 6]. It can be put also in the form [15],

(6)
$$\Gamma(1;2,3) = \delta(1,2)\delta(1,3) + \int d45 \ g(4,1)g(1,5)\frac{\delta\Sigma^{\star}(2,3)}{\delta g(4,5)}$$

which is less suitable for non-perturbative calculations, but it offers a transparent diagrammatic interpretation: vertex diagrams are self-energy diagrams with one Hartree propagator g(4,5) removed and replaced by the product g(4,1)g(1,5) that introduces a new *bare* vertex at 1. Therefore, each self-energy diagram of order n produces 2n - 1 vertex diagrams of the same perturbative order by pinching a bare vertex in any of its 2n - 1 propagator lines.

If all corrections to the bare vertex, $\Gamma^{(0)}(1;2,3) = \delta(1,2)\delta(1,3)$, are ignored, the four eqs.(1-4) become a closed set of integral equations, which is numerically tractable [7, 8, 9]. This is the GW approximation (GWA):

$$\Sigma^{\star}(1,2) \approx \frac{i}{\hbar} G(1,2) W(1,2), \qquad \Pi^{\star}(1,2) \approx -2 \frac{i}{\hbar} G(1,2) G(2,1).$$

2. Preliminaries

To derive Hedin's equations we add a source term to the Hamiltonian \hat{H} , that couples the particle density operator $\hat{n}(\mathbf{x}) = \sum_{\mu} \psi_{\mu}^{\dagger}(\mathbf{x}) \psi_{\mu}(\mathbf{x})$ to a classical space-time field:

(7)
$$\hat{H}(t) = \hat{H} + \int dx \,\varphi(\mathbf{x}, t) \,\hat{n}(\mathbf{x})$$

The field will allow us to compute functional derivatives. At the end, we shall put $\varphi(\mathbf{x}, t) = 0$. A different functional approach was formulated by Kleinert et al. [11, 12].

Because of the time-dependence in H(t), time-ordered correlators in presence of the source are defined in the interaction picture. The time-ordered propagator and the full polarization are:

(8)
$$i\delta_{\mu\nu} G(1,2) = \frac{\langle E|\mathsf{T}\hat{S}\hat{\psi}_{\mu}(1)\hat{\psi}^{\dagger}_{\nu}(2)|E\rangle}{\langle E|\hat{S}|E\rangle}$$

(9)
$$i\hbar \Pi(1,2) = \frac{\langle E|\mathsf{T}\hat{S}\hat{\delta}\hat{n}(1)\delta\hat{n}(2)|E\rangle}{\langle E|\hat{S}|E\rangle}$$

where $\delta \hat{n}(1) = \hat{n}(1) - n(1)$ is the density fluctuation operator, with the average density $n(1) = \langle E|T\hat{S}\hat{n}(1)|E\rangle/\langle E|\hat{S}|E\rangle = -2iG(1,1^+)$. The averages are taken in

of one line g or one line v are named 1-particle *irreducible* self-energy or polarization diagrams. Their sum is Σ^* or Π^* . Reducible diagrams can be obtained by connecting irreducible ones with g or v lines. Then: $\Sigma(1,2) = \Sigma^*(1,2) + \Sigma^*(1,1')g(1',2')\Sigma^*(2',2) + \Sigma^*g\Sigma^*g\Sigma^* + \dots$ A partial resummation gives Dyson's equation $\Sigma(1,2) = \Sigma^*(1,2) + \Sigma^*(1,1')g(1',2')\Sigma(2',2)$. In the same way: $\Pi(1,2) = \Pi^*(1,2) + \Pi^*(1,1')v(1',2')\Pi(2',2)$.

the ground state $|E\rangle$ of \hat{H} , the time-evolution of operators is driven by \hat{H} , and the source term is relegated to the scattering operator

(10)
$$\hat{S} = \mathsf{T} \exp \frac{1}{i\hbar} \int d^4x \,\varphi(x) \hat{n}(x)$$

The Hartree propagator solves the equation of motion with the source and the exact Hartree potential $V_H(1) = \int d2v(1,2)n(2)$:

(11)
$$(i\hbar\partial_{t_1} - h(\mathbf{x}_1) - \varphi(1) - V_H(1))g(1,2) = \hbar\delta(1,2)$$

When, in the end, $\varphi = 0$, $\hat{S} = 1$, the correlators for H or H_0 are recovered. In particular, the average density and the Hartree potential are time-independent.

Proposition 2.1. Let $\hat{\Omega}$ be a product of field operators evolved at different times with \hat{H} , that do not contain the source φ . Then:

(12)
$$\frac{\delta}{\delta\varphi(1)} \frac{\langle E|\mathsf{T}\hat{S}\hat{\Omega}|E\rangle}{\langle E|\hat{S}|E\rangle} = \frac{1}{i\hbar} \frac{\langle E|\mathsf{T}\hat{S}\hat{\Omega}\delta\hat{n}(1)|E\rangle}{\langle E|\hat{S}|E\rangle}$$

Proof. Consider the Dyson expansion for the time-ordered product $\mathsf{T}[\hat{S}\hat{\Omega}]$. The functional derivative of a product has the Leibnitz property: $\delta[\varphi(1')...\varphi(k')]/\delta\varphi(1) = \sum_{\ell'} \varphi(1')...\delta(\ell'-1)...\varphi(k')$. Since primed variables are integrated, the k terms at order k are equal:

$$\frac{\delta \mathsf{T}[\hat{S}\hat{\Omega}]}{\delta\varphi(1)} = \sum_{k=1}^{\infty} \frac{k}{(i\hbar)^k k!} \int d1' \dots k' \mathsf{T}\hat{n}(1') \dots \hat{n}(k') \delta(1-1')\varphi(2') \dots \varphi(k') = \frac{1}{i\hbar} T[\hat{S}\hat{\Omega}\hat{n}(1)]$$

Note that under time-ordering the operator $\hat{n}(1)$ commutes with any operator.

$$\frac{\delta}{\delta\varphi(1)}\frac{\langle E|\mathsf{T}\hat{S}\hat{\Omega}|E\rangle}{\langle E|\hat{S}|E\rangle} = \frac{1}{i\hbar}\frac{\langle E|\mathsf{T}[\hat{S}\hat{\Omega}\hat{n}(1)]|E\rangle}{\langle E|\hat{S}|E\rangle} - \frac{1}{i\hbar}\frac{\langle E|\mathsf{T}\hat{S}\hat{n}(1)|E\rangle\langle E|\mathsf{T}\hat{S}\hat{\Omega}|E\rangle}{\langle E|\hat{S}|E\rangle^2}$$

and the resul follows.

3. Polarization and effective potential

With the choice $\Omega = \hat{n}$ we get:

$$\frac{\delta}{\delta\varphi(2)}\frac{\langle E|\mathsf{T}\hat{S}\hat{n}(1)|E\rangle}{\langle E|\hat{S}|E\rangle} = \frac{1}{i\hbar}\frac{\langle E|\mathsf{T}\hat{S}\hat{n}(1)\delta\hat{n}(2)|E\rangle}{\langle E|\hat{S}|E\rangle} = \frac{1}{i\hbar}\frac{\langle E|\mathsf{T}\hat{S}\delta\hat{n}(1)\delta\hat{n}(2)|E\rangle}{\langle E|\hat{S}|E\rangle}$$

The right-hand side is the full polarization $\Pi(1,2)$ in presence of the source, eq.(9). Note the symmetry $\Pi(1,2) = \Pi(2,1)$. We obtained:

(13)
$$\Pi(1,2) = -2i\frac{\delta G(1,1^+)}{\delta\varphi(2)}$$

Setting $\varphi = 0$ (then $\hat{S} = 1$) we recover the familiar formula $i\hbar\Pi(1,2) = \langle E|\mathsf{T}\delta\hat{n}(1)\delta\hat{n}(2)|E\rangle$ (the time-ordered counterpart of the density-density response function). Let us introduce the local potential

(14)
$$V(1) = \varphi(1) + V_H(1) = \varphi(1) - 2i \int d2 \, v(1,2) G(2,2^+)$$

where V_H is the Hartree or mean field potential. A functional derivative gives:

(15)
$$\frac{\delta V(1)}{\delta \varphi(2)} = \delta(1,2) - 2i \int d3 \, v(1,3) \frac{\delta G(3,3^+)}{\delta \varphi(2)} = \delta(1,2) + \int d3 v(1,3) \Pi(3,2)$$

Integration of (15) with v(2,3) gives the two-body effective potential

(16)
$$W(1,3) \equiv \int d2 \frac{\delta V(1)}{\delta \varphi(2)} v(2,3) = v(1,3) + \int d24 \, v(1,4) \Pi(4,2) v(2,3)$$

It is the bare interaction v(1,3) dressed by all polarisation insertions. Symmetry of Π and v in exchange of variables implies W(1,3) = W(3,1).

Exercise 3.1. Obtain the following identities:

(17)
$$\frac{\delta}{\delta\varphi(1)} = \frac{\delta}{\delta V(1)} + \int d23 \, v(2,3) \Pi(3,1) \frac{\delta}{\delta V(2)}$$

(18)
$$\int d1v(4,1)\frac{\delta}{\delta\varphi(1)} = \int d1W(4,1)\frac{\delta}{\delta V(1)}$$

4. The irreducible polarisation

Use of the chain rule (17) in (13) gives:

$$\Pi(1,2) = -2i\frac{\delta G(1,1^+)}{\delta V(2)} - 2i\int d34 \ \frac{\delta G(1,1^+)}{\delta V(3)}v(3,4)\Pi(4,2)$$

We recognize Dyson's equation for the polarization in terms of the irreducible, or **proper polarization**:

(19)
$$\Pi(1,2) = \Pi^{\star}(1,2) + \int d34 \,\Pi^{\star}(1,3)v(3,4)\Pi(4,2)$$

(20)
$$\Pi^{\star}(1,2) = -2i\frac{\delta G(1,1^+)}{\delta V(2)}$$

The symmetries of Π and v imply $\Pi^{\star}(1,2) = \Pi^{\star}(2,1)$. Eq. (18) implies:

(21)
$$\int d4 \ v(5,4)\Pi(4,2) = \int d4 \ W(5,4)\Pi^{\star}(4,2)$$

and equation (16) becomes the Dyson equation (2) in Hedin's set:

(22)
$$W(1,3) = v(1,3) + \int d24 \, v(1,4) \Pi^{\star}(4,2) W(2,3)$$

Exercise 4.1.

(23)
$$\frac{\delta}{\delta V(1)} = \frac{\delta}{\delta \varphi(1)} - \int d23 \, v(2,3) \Pi^{\star}(3,1) \frac{\delta}{\delta \varphi(2)}$$

(24)
$$\int d1\Pi^{\star}(4,1)\frac{\delta}{\delta\varphi(1)} = \int d1\Pi(4,1)\frac{\delta}{\delta V(1)}$$

Let us introduce the functional inverse of the propagator:

$$\int d3 \, G^{-1}(5,3) G(3,2) = \hbar \delta(5,2)$$

A functional derivative gives:

$$0 = \int d3 \frac{\delta G^{-1}(5,3)}{\delta V(4)} G(3,2) + \int d3 \, G^{-1}(5,3) \frac{\delta G(3,2)}{\delta V(4)}$$

Contraction with $\int d5 G(1,5)$ gives:

(25)
$$0 = \int d35 G(1,5) \frac{\delta G^{-1}(5,3)}{\delta V(4)} G(3,2) + \hbar \frac{\delta G(1,2)}{\delta V(4)}$$

If $2 = 1^+$ it becomes $\hbar \Pi^*(1,4) = 2i \int d23 G(1,3) \frac{\delta G^{-1}(3,2)}{\delta V(4)} G(2,1)$. This provides the skeleton structure of the 1P-irriducible polarisation

(26)
$$\Pi^{*}(1,2) = -2\frac{i}{\hbar} \int d34 \, \Gamma(2;3,4) G(1,3) G(4,1)$$

with the identification of the **vertex** function:

(27)
$$\Gamma(1;2,3) = -\frac{\delta G^{-1}(2,3)}{\delta V(1)}$$

Remark 4.2. Comparison of the expressions (20) and (26) for Π^* suggests that a functional derivative in V introduces a dressed vertex. This can be seen by using (25) and considering that G is determined by V in a one-to-one correspondence (Hohenberg-Kohn):

$$\frac{\delta}{\delta V(5)} = \int d12 \ \frac{\delta G(1,2)}{\delta V(5)} \frac{\delta}{\delta G(1,2)} = -\frac{1}{\hbar} \int d1234 \ G(1,4) \frac{\delta G^{-1}(4,3)}{\delta V(5)} G(3,2) \frac{\delta}{\delta G(1,2)}$$

(28)
$$\frac{\delta}{\delta V(5)} = \frac{1}{\hbar} \int d1234 \, G(1,4) \Gamma(5;4,3) G(3,2) \frac{\delta}{\delta G(1,2)}$$

5. The vertex equation

The vertex function (27) is the sum of **vertex** diagrams, characterised by one photon line in 1 a fermion entering in 3 and leaving from 2. We now obtain an equation for it by replacing $G^{-1}(2,3) = g^{-1}(2,3) - \hbar \Sigma^*(2,3)$.

The functional inverse of the Hartree propagator in presence of the source is

$$g^{-1}(1,2) = \delta(1,2)[i\hbar\partial_{t_2} - h(\mathbf{x}_2) - V(2)]$$

so that $\delta g^{-1}(1,2)/\delta V(3) = -\delta(1,2)\delta(2,3)$. Eq.(27) becomes

(29)
$$\Gamma(1;2,3) = \delta(1,2)\delta(1,3) + \hbar \frac{\delta \Sigma^{\star}(2,3)}{\delta V(1)}$$

The insertion of a vertex in the self-energy is made explicit by using eq.(28) in the second term. One obtains the final form of Hedin's vertex equation:

(30)
$$\Gamma(5;6,7) = \delta(5,6)\delta(6,7) + \int d1234 G(1,4)\Gamma(5;4,3)G(3,2)\frac{\delta\Sigma^{\star}(6,7)}{\delta G(1,2)}$$

Exercise 5.1. Since V determines g, prove that

(31)
$$\frac{\delta}{\delta V(5)} = \int d12 \ \frac{\delta g(1,2)}{\delta V(5)} \frac{\delta}{\delta g(1,2)} = \frac{1}{\hbar} \int d12 \ g(1,5)g(5,2) \frac{\delta}{\delta g(1,2)}$$

(32)
$$\Gamma(1;2,3) = \delta(1,2)\delta(1,3) + \int d45 \,g(4,1)g(1,5)\frac{\delta \Sigma^{\star}(2,3)}{\delta g(4,5)}$$

FIGURE 1. The dressed self-energy and polarization diagrams, with exact vertex Γ , propagator G and effective potential W.

6. The self-energy

The equation of motion for the propagator

$$[i\hbar\partial_{t_1} - h(\mathbf{x}_1) - V(1)]G(1,2) = \hbar\delta(1,2) + \frac{i}{2}\sum_{\mu}\int d3\,v(1,3)\frac{\langle E|T\hat{S}\hat{\psi}_{\mu}(1)\hat{\psi}_{\mu}^{\dagger}(2)\delta\hat{n}(3)|E\rangle}{\langle E|\hat{S}|E\rangle}$$

contains a four point function that may be expressed as a functional derivative

$$\frac{\delta G(1,2)}{\delta \varphi(3)} = -\frac{1}{2\hbar} \sum_{\mu} \frac{\langle E|T\hat{S}\hat{\psi}_{\mu}(1)\hat{\psi}^{\dagger}_{\mu}(2)\delta\hat{n}(3)|E\rangle}{\langle E|\hat{S}|E\rangle}$$

The equation of motion becomes

(33)
$$[i\hbar\partial_{t_1} - h(\mathbf{x}_1) - V(1)]G(1,2) = \hbar\delta(1,2) + i\hbar \int d3v(1,3)\frac{\delta G(1,2)}{\delta\varphi(3)}$$

The equation has its own interest, as it leads to approximations that were investigated by Reining et al. [13]. If we insert Dyson's relation $G = g + g\Sigma^*G$ into it, we obtain:

$$\int d3 \ \Sigma^{\star}(1,3)G(3,2) = i \int d3 \ v(1,3) \frac{\delta G(1,2)}{\delta \varphi(3)} = i \int d3 \ W(1,3) \frac{\delta G(1,2)}{\delta V(3)}$$

For the last equality we used the property (18). To isolate Σ^{\star} we use the functional inverse of G

$$\begin{split} \hbar \Sigma^{\star}(1,2) &= i \int d34 \ W(1,3) \frac{\delta G(1,4)}{\delta V(3)} G^{-1}(4,2) \\ &= -i \int d34 \ W(1,3) G(1,4) \frac{\delta G^{-1}(4,2)}{\delta V(3)} \end{split}$$

The last derivative is the full vertex. Then, Hedin's equation (3) is obtained:

(34)
$$\Sigma^{\star}(1,2) = \frac{i}{\hbar} \int d34 \ W(1,3)\Gamma(3;4,2)G(1,4)$$

It gives the skeleton graph of the self-energy.

7. Identities

Hedin's equations imply identities. This one may also be checked at the level of skeleton diagrams:

(35)
$$\int d12 \,\Pi^{\star}(1,2)W(1,2) = -2 \int d12 \,\Sigma^{\star}(1,2)G(2,1)$$

Other simple identities are $\int d1 \Pi(1,2) = 0$, $\int d1 \Pi^{\star}(1,2) = 0$. The vertex equation implies Ward's identities, as in electrodynamics.

Lemma 7.1. Let g(1,2) be a propagator for independent particles (Hartree propagators are of this sort), with time-independent Hamiltonian. Then:

(36)
$$\int d3 g(1,3)g(3,2) = -i(t_1 - t_2) g(1,2)$$

Proof. If $h|a\rangle = e_a|a\rangle$, the time-ordered Green function is: $ig(\mathbf{x}t, \mathbf{x}'t') = \sum_a \langle \mathbf{x}|a\rangle \langle a|\mathbf{x}'\rangle e^{-\frac{i}{\hbar}e_a(t-t')}[\theta(t-t')\theta(e_a-e_F) - \theta(t'-t)\theta(e_F-e_a)].$ After the integration in \mathbf{x}_3 one remains with: $-\sum_a \langle \mathbf{x}_1|a\rangle \langle a|\mathbf{x}_2\rangle e^{-\frac{i}{\hbar}e_a(t_1-t_2)} \times \int dt_3[\theta(t_1-t_3)\theta(t_3-t_2)\theta(e_a-e_F) + \theta(t_2-t_1)\theta(t_2-t_3)\theta(e_F-e_a)].$ The time integral is $(t_1-t_2)[\theta(t_1-t_2)\theta(e_a-e_F) - \theta(t_2-t_1)\theta(e_F-e_a)].$ The result follows. \Box

The lemma holds true with the replacement

$$g(1,2) \to g_k(1,2) = e^{ik \cdot (1-2)}g(1,2)$$

where $k \cdot 1 = \mathbf{k} \cdot \mathbf{x}_1 - i\omega t_1$. In a loop the phases cancel, while in an open string it is $g_k(1,2)g_k(2,3)\ldots g_k(n-1,n) = e^{ik \cdot (1-n)}g(1,2)\ldots g(n-1,n)$. Therefore, upon replacement $g \to g_k$, W and Π^* remain unchanged, while $\Sigma^*(2,3)$, G(2,3) and $\Gamma(1;2,3) - \delta(1,2)\delta(1,3)$ gain a factor $e^{ik(2-3)}$.

Proposition 7.2 (Ward's identity).

(37)
$$\int d1 \, \Gamma(1;2,3) \, = \, \delta(2,3) - i(t_2 - t_3) \, \Sigma^*(2,3)$$

Proof. Let us consider Hedin's equations with $g \to g_k$.

$$\int d5 \,\Gamma_k(5;3,4) - \delta(3,4) = -i \int d12 \,(t_1 - t_2) g_k(1,2) \frac{\delta \Sigma_k^{\star}(3,4)}{\delta g_k(1,2)} \\ = \int d12 \,\frac{\partial g_k(1,2)}{\partial \omega} \,\frac{\delta \Sigma_k^{\star}(3,4)}{\delta g_k(1,2)} = \frac{\partial}{\partial \omega} \,\Sigma_k^{\star}(3,4) = -i(t_3 - t_4) \,\Sigma_k^{\star}(3,4)$$

by the chain rule. The auxiliary parameter k is now set to zero, and we gain a version of Ward's identity (it is eq. (7.22) in Strinati's report [5]). \Box

If we expand the vertex in frequency space:

$$\Gamma(1;2,3) = \int \frac{d\omega' d\omega''}{4\pi^2} \Gamma(\mathbf{x}_1;\mathbf{x}_2,\mathbf{x}_3;\omega',\omega'') e^{-i\omega'(t_2-t_1)-i\omega''(t_1-t_3)}$$

the integral in dt_1 gives a factor $2\pi\delta(\omega'-\omega'')$:

$$\int d1 \,\Gamma(1;2,3) = \int dx_1 \frac{d\omega}{2\pi} \Gamma(\mathbf{x}_1;\mathbf{x}_2,\mathbf{x}_3;\omega,\omega) e^{-i\omega(t_2-t_3)}$$

Ward's identity becomes

(38)
$$\int d\mathbf{x} \, \Gamma(\mathbf{x}; \mathbf{x}_2, \mathbf{x}_3, \omega, \omega) = \delta(\mathbf{x}_2 - \mathbf{x}_3) - \frac{\partial}{\partial \omega} \Sigma^*(\mathbf{x}_1, \mathbf{x}_2; \omega)$$

If the theory is also invariant for space translations:

(39)
$$\Gamma(q=0,\mathbf{p},\omega,\omega) = 1 - \frac{\partial}{\partial\omega} \Sigma^{\star}(\mathbf{p},\omega)$$

8. Counting Feynman diagrams

In zero dimension of space-time, Hedin's equations allow for an easy enumeration of Feynman diagrams [15, 16, 17]. The four Hedin's equations (1-4) become algebraic, with parameters g and v, and the functional derivative in the vertex equation (6) becomes an ordinary one. After removing imaginary factors, $\hbar = 1$ and replacing the factor (-2) with a loop-counting parameter ℓ , Hedin's equations are:

$$G = g + g\Sigma^{\star}G \quad W = v + v\Pi^{\star}W \quad \Sigma^{\star} = GW\Gamma \quad \Pi^{\star} = \ell G^{2}\Gamma \quad \Gamma = 1 + g^{2}\frac{\partial\Sigma^{\star}}{\partial g}$$

By searching solutions as series expansions in $x = g^2 v$ and ℓ , one obtains coefficients that count the Feynman graphs that contribute to a perturbative order with a given number of loops. For example:

$$\begin{split} \Sigma^{\star} / vg &= 1 + (2 + \ell)x + (10 + 9\ell + \ell^2)x^2 + (74 + 91\ell + 23\ell^2 + \ell^3)x^3 \\ &+ (706 + 1063\ell + 416\ell^2 + 46\ell^3 + \ell^4)x^4 \\ &+ (8162 + 14193\ell + 7344\ell^2 + 1350\ell^3 + 80\ell^4 + \ell^5)x^5 + \dots \\ &= 1 + 3x + 20x^2 + 189x^3 + 2232x^4 + 31130x^5 + \dots \end{split}$$

The last line corresponds to $\ell = 1$. At order v^3 there are 20 self-energy diagrams: 10 with no loops, 9 with a single loop and 1 with two loops. The expansions for the vertex and the polarization are

$$\begin{split} \Gamma &= 1 + x + 3(2 + \ell)x^2 + 5(10 + 9\ell + \ell^2)x^3 + 7(74 + 91\ell + 23\ell^2 + \ell^3)x^4 \\ &\quad + 9(706 + 1063\ell + 416\ell^2 + 46\ell^3 + \ell^4)x^5 + \dots \\ &= 1 + x + 9x^2 + 100x^3 + 1323x^4 + 20088x^5 + \dots \\ \Pi^*/g^2\ell &= 1 + 3x + (15 + 5\ell)x^2 + (105 + 77\ell + 7\ell^2)x^3 + (945 + 1044\ell + 234\ell^2 + 9\ell^3)x^4 \\ &\quad + (10395 + 14784\ell + 5390\ell^2 + 550\ell^3 + 11\ell^4)x^5 + \dots \\ &= 1 + 3x + 20x^2 + 189x^3 + 2232x^4 + 31130x^5 + \dots \end{split}$$

The counting numbers $\ell = 1$ of the expansions of the self-energy and the polarisation are the same. This occurs also in Q.E.D., though with smaller numbers because of cancellations of diagrams with odd number of propagators in a fermionic loop (Furry's theorem).

While the numbers of Feynman diagrams grow factorially, it turns out that in the GW approximation (i.e. $\Gamma = 1$) they grow algebraically [15]. The enumeration of skeleton diagrams can be easily carried out from Hedin's equations, by proper choice of the expansion parameter [16].

References

- L. Hedin: New method for calculating the one-particle Green's function with application to the electron-gas problem, Phys. Rev. 139 (1965) A796.
- [2] J. D. Bjorken and S. D. Drell, Relativistic Quantum Fields, McGraw Hill (1965).
- [3] A. L. Fetter and J. D. Walecka, Quantum Theory of Many Particle Systems, (MacGraw Hill, New York, 1971).
- [4] A. Schindlmayr and R. Godby, Systematic vertex corrections through iterative solution of Hedin's equations beyond the GW approximation, Phys. Rev. Lett. 80 (1998) 1702.
- [5] G. Strinati, Application of the Green's functions method to the study of optical properties of semiconductors, Rivista del Nuovo Cimento 11, (1988).
- [6] G. Onida, L. Reining and A. Rubio, Electronic excitations: density-functional versus manybody Green's-function approaches, Rev. Mod. Phys. 74, 601 (2002).
- [7] W. G. Aulbur, L. Jönsson and J. W. Wilkins Solid State Physics vol.54 (Academic, New York, 2000).
- [8] F. Aryasetiawan and O. Gunnarsson, The GW method, Rep. Progr. Phys. 61 (1998) 237.
- [9] G. Fratesi, G. P. Brivio and L. G. Molinari, Many-body method for infinite non-periodic systems, Phys. Rev. B 69, 245113 (2004).
- [10] F. Bechstedt, Many-body approach to electronic excitations, concepts and applications, Springer Series in Solid-State Sciences 181, (Springer 2015).
- [11] A. Pelster, H. Kleinert and M. Bachmann, Functional closure of Schwinger-Dyson equations in QED, Ann. Phys. 297, 363 (2002).
- [12] A. Pelster and K. Glaum, Many-body vacuum diagrams and their graphical construction, Phys. Status Solidi B 237, 72 (2003).
- [13] G. Lani, P. Romaniello and L. Reining, Approximations for many-body Green's functions: insights from the fundamental equations, New Journal of Physics 14 (2012) 013056.
- [14] J. A. Berger, P. Romaniello, F. Tandetzky, B. S. Mendoza, C. Brouder and L. Reining, Solution to the many-body problem in one point, New Journal of Physics — bf 16 (2014) 113025
- [15] L. G. Molinari, Hedin's equations and enumeration of Feynman diagrams, Phys. Rev. B 71, 113102 (2005).
- [16] L. G. Molinari and N. Manini, Enumeration of many-body skeleton diagrams, Eur. Phys. J. B 51 (2006) 331.
- [17] Y. Pavlyukh and W. Hübner, Analytic solution of Hedins equations in zero dimensions, J. Math. Phys. 48 (2007) 052109