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CONDUCTIVITY TENSOR

1. currents

In first quantisation, the Hamiltonian operator for N identical particles with
charge q, in an e.m. field with vector potential A(x, t) is

H =

N∑
i=1

m

2
v̂2
i (t) + U(x̂1, ..., x̂n), v̂i =

1

m
p̂i −

q

mc
A(x̂i, t)(1)

where v is the velocity operator. The charge density of particles is ρ(x) = q n(x),

where n(x) =
∑N
i=1 δ(x − x̂i) is the (number) density. It evolves in time as

ρH(x, t) = U(t, 0)†ρ(x)U(t, 0), where the propagator solves i~∂tU(t, 0) = H(t)U(t, 0).
Then

i~
∂

∂t
ρ(y, t) = q U(t, 0)†[n(y), H(t)]U(t, 0)

The commutator only involves the kinetic part, and operators of the same particle.
In the space of a single particle: [δ(y− x̂), v̂2] = [δ(y− x̂), v̂] · v̂+ v̂ · [δ(y− x̂), v̂] and
[δ(y − x̂), v̂] = 1

m [δ(y − x̂), p̂] = i~
mgradxδ(y − x) = − i~mgradyδ(y − x̂). Therefore:

i~
∂

∂t
ρ(x, t) =− i~q

2
grady · U(t, 0)

∑
i=1...N

δ(y − x̂i)v̂i + v̂iδ(y − x̂i)U(t, 0)

We obtain the continuity equation in operator form:

∂

∂t
ρH(x, t) = −div JH(x, t)

J(x, t) =
q

2

∑
i=1...N

δ(y − x̂i)v̂i + v̂iδ(y − x̂i)

We see that the charged current involved in charge conservation is the sum of two
terms (the paramagnetic and diamagnetic currents)

J(x, t) = q j(x)− q2

mc
n(x)A(x, t)

with current for number density j(x) = 1
2m

∑N
i=1[p̂iδ(x − x̂i) + δ(x − x̂i)p̂i]. In

second quantization:

j`(x) =
i~
2m

∑
µ

(
∂ψ†µ
∂x`

ψµ − ψ†µ
∂ψµ
∂x`

)
=

i~
2m

(
∂

∂x`
− ∂

∂y`

)∑
µ

ψ†µ(x)ψµ(y)(2)

and, in the end, y = x. Note the operator identity [n(x), H0] = −i~div j(x).
The Hamiltonian can be re-written in the form:

H(t) = H0 −
q

c

∫
dx j(x) ·A(x, t) +

q2

2mc2

∫
dxn(x)A2(x, t)(3)

where H0 is the Hamiltonian with A = 0.
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2 CONDUCTIVITY TENSOR

2. Linear response

Hereafter we set q = −e (electrons). According to the theory of linear response,
as the vector field is turned on at time t = 0, a current starts to flow (at equilibrium
there is no current, 〈j〉eq = 0 ):

〈J`(x, t)〉 =〈J`(x, t)〉eq +
e

i~c

∫
dx′dt′θ(t− t′)〈[−ej`(x, t), jm(x′, t′)]〉eqAm(x′, t′)

=− e2

mc
n(x)eqA`(x)− e2

~c

∫
dx′Dret

`m(x, x′)Am(x′)

In frequency space:

J`(x, ω) = − e2

mc
n(x)eqA`(x, ω)− e2

~c

∫
dx′Dret

`m(x,x′;ω)Am(x′, ω)

Let A describe an electric field, E = − 1
c
∂A
∂t . Then E(x, ω) = iω

c A(x, ω) and:

J`(x, ω) =

∫
dx′σ`m(x,x′;ω)Em(x′, ω)(4)

with conductivity tensor

σ`m(x,x′;ω) = − e2

imω
n(x)δ(x− x′)δ`m −

e2

i~ω
Dret
`m(x,x′, ω)

For a homogeneous system the linear relation is

J`(k, ω) = σ`m(k, ω)Em(k, ω)(5)

σ`m(k;ω) = − e2

imω
nδ`m −

e2

i~ω
Dret
`m(k, ω)(6)

For Ohm’s law, the real part of conductivity is:

σ`m(k;ω) = −Im
e2

~ω
Dret
`m(k;ω)(7)

For a uniform and constant electric field the limits k → 0 and ω → 0 are taken.

2.1. The current-current correlator. A microscopic evaluation requires the cor-
relator

−D`m(x, τ ;x′, τ ′) = 〈T δj`(x, τ)δjm(x′, τ ′)〉eq(8)

Insertion of the current densities gives:

−D`m(x, x′) =

(
i~
2m

)2∑
µν

[
∂

∂x`
− ∂

∂y`

] [
∂

∂x′m
− ∂

∂y′m

] 〈
T ψ†µ(x)ψµ(y)ψ†ν(x′)ψν(y′)

〉
where, in the end, y = x and y′ = x′. In the Hartree Fock approximation, we only
keep the connected bubble:

〈
T ψ†µ(x)ψµ(y)ψ†ν(x′)ψν(y′)

〉
≈ −Gµν(y, x′)Gνµ(y′, x).

In a translation-invariant system, and for Gµν = δµνG :

D`m(x, x′) = 2

(
i~
2m

)2(
∂

∂x`
− ∂

∂y`

)(
∂

∂x′m
− ∂

∂y′m

)
G (y, x′)G (y′, x)

∣∣∣
x=y,x′=y′

= 2i2
(
i~
2m

)2 ∫
dkdq

(2π)6
(k` + q`)(qm + km)G (k, τ − τ ′)G (q, τ ′ − τ)ei(k−q)·(x−x

′)
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D`m(k, iν) = 2

(
~

2m

)2
1

~β
∑
iω

∫
dq

(2π)3
(k` + 2q`)(km + 2qm)G (k + q, iω + iν)G (q, iω)

Let us insert a spectral representation of the propagator:

G (k, iω) =

∫
dω′

A(k, ω′)

iω − ω′
The Matsubara sum is done and gives:

D`m(k, iν) = − ~2

2m2

∫
dq

(2π)3
dω′dω′′(k` + 2q`)(km + 2qm)A(k + q, ω′)A(q, ω′′)

n(ω′)− n(ω′′)

iν − (ω′ − ω′′)
The retarded function is obtained by the replacemet iν → ν + iη. Let k = 0:

Dret
`m (0, ν) = − ~2

2m2

∫
dq

(2π)3
4q`qm

∫
dω′dω′′A(q, ω′)A(q, ω′′)

n(ω′)− n(ω′′)

ν − (ω′ − ω′′) + iη

The imaginary part is obtained via the Plemelj-Sokhotski formula. The delta func-
tion is used to perform one integration:

ImDret
`m (0, ν) =

4π~2

2m2

∫
dq

(2π)3
q`qm

∫
dωA(q, ω + ν)A(q, ω)[n(ω + ν)− n(ω)]

The ‘static’ limit of conductivity exists:

σ`m(0) = −e
2

~
lim
ν→0

1

ν
ImDret

`m (0, ν) = −e
2

~
4π~2

2m2

∫
dq

(2π)3
q`qm

∫
dωA2(q, ω)

dn(ω)

dω

If the system is isotropic, the integral is proportional to δ`m, then:

σ(0) =
4πe2

3~m

∫
dq

(2π)3
~2q2

2m

∫ +∞

−∞
dωA2(q, ω)

(
−dn(ω)

dω

)
(9)

This is eq. 8.49 in Mahan’s book (3rd ed.).
For T → 0 it is n(ω) = θ(µ~ − ω), then

σ(0) =
4πe2

3m~

∫
dq

(2π)3
εq A

2(q,
µ

~
) ≈ 4πe2

3m~

∫ ∞
0

dερ(ε) εA2(q,
µ

~
)(10)

Let us use the following form of spectral function.

A(q, ω) =
1

2πτ
[(ω − εq

~ )2 + 1
(2τ)2 ]−1(11)

The integral can be extended to −∞ as the function is evaluated in ~ω = µ Since
the density has slow variation near ε = µ It is:

1

4π2τ2

∫ +∞

−∞
dε

ε

[(µ−ε~ )2 + 1
(2τ)2 ]2

=
µ~τ
π

Note that µρ(µ) = 3
4n. A Drude-like formula for direct current (d.c.) conductivity

is obtained:

σd.c.(0) =
e2n

m
τ(12)

Here τ is the life-time (at Fermi energy) provided by the 1-particle Green function.
This is a consequence of the Hartree approximation. However, in linear response
the conductivity is a two-particle average.


