VORTICES

PRELIMINARY NOTES BY L. G. MOLINARI

Let us summarise the main formulas of the theory by Ginzburg and Landau for superconductivity. The free energy and the current density are

(1)
$$F = \int d\mathbf{x} \frac{\hbar^2}{2m^*} |(-i\mathbf{grad} + \frac{e^*}{\hbar c}\mathbf{A})\psi|^2 + a|\psi|^2 + \frac{b}{2}|\psi|^4 + \frac{\mathbf{B}^2}{8\pi} + F_n^0$$

(2)
$$\mathbf{J} = -\frac{e^{*2}}{m^*c} |\psi|^2 (\frac{\phi_0}{2\pi} \mathbf{grad} \,\omega + \mathbf{A})$$

where $\psi = |\psi|e^{i\omega}$, $a = a'(T - T_c)$, b > 0 and $\phi_0 = hc/e^*$ is the unit of magnetic flux. The single-valuedness of ψ implies this integral identity on a closed circuit:

(3)
$$\frac{m^*c}{e^{*2}} \oint_C \frac{\mathbf{J} \cdot d\ell}{|\psi|^2} + \int_S da \, \mathbf{n} \cdot \mathbf{B} = m\phi_0, \quad m \text{ integer}$$

where S is encircled by the line C. The (squared) coherence and London lengths, the GL ratio, the bulk value of the order parameter are:

$$(4) \qquad \xi^{2} = \frac{\hbar^{2}}{2m^{*}|a|}, \quad \lambda^{2} = \frac{m^{*}c^{2}b}{4\pi e^{*2}|a|}, \quad \kappa = \frac{\lambda}{\xi} = \frac{m^{*}c}{e^{*}\hbar}\sqrt{\frac{b}{2\pi}}, \quad \psi_{\infty}^{2} = \frac{|a|}{b}$$

(5)
$$\frac{H_c(T)^2}{8\pi} = \frac{a^2}{2b}, \qquad H_{c2}(T) = \kappa \sqrt{2} H_c(T)$$

The following relations are useful:

(6)
$$\phi_0 = 2\pi \xi^2 H_{c2}, \quad \xi \lambda H_c = \frac{\phi_0}{2\pi\sqrt{2}}$$

1. London vortices

The study of the G.L. equations is simpler in the regime $\kappa \gg 1$, where f=1, i.e. $\psi=\psi_{\infty}e^{i\omega}$ in bulk regions, and drops to zero in contact with normal regions. The free energy and the current density (2) are approximated by

$$F = \int_{V} d\mathbf{x} \frac{e^{*2}}{2m^{*}c^{2}} \psi_{\infty}^{2} |\frac{\phi_{0}}{2\pi} \mathbf{grad} \omega + \mathbf{A}|^{2} + a\psi_{\infty}^{2} + \frac{b}{2} \psi_{\infty}^{4} + \frac{\mathbf{B}^{2}}{8\pi} + F_{n}^{0}$$

(7)
$$\mathbf{J} = -\frac{e^{*2}}{m^*c} \psi_{\infty}^2(\frac{\phi_0}{2\pi} \mathbf{grad}\,\omega + \mathbf{A})$$

where the volume excludes regions where f differs from 1.

With the II GL equation (Maxwell's equation), $\mathbf{J} = \frac{c}{4\pi} \text{rot} \mathbf{B}$, the free energy becomes:

(8)
$$F = \frac{1}{8\pi} \int_{V} d\mathbf{x} \left(\mathbf{B}^{2} + \lambda^{2} |\operatorname{rot} \mathbf{B}|^{2} \right) - \frac{H_{c}^{2}}{8\pi} + F_{n,0}$$

Date: 8 dec 2021.

Remark 1.1. The same expression results in London's theory for a superfluid with uniform mass density m^*n_s , velocity \mathbf{v}_s , supercurrent $\mathbf{J}_s = -e^*n_s\mathbf{v}_s$. Maxwell's equation gives the kinetic energy

$$\frac{1}{2}m^*n_s v_s^2 = \frac{1}{2}m^*n_s \frac{c^2}{16\pi^2} \frac{|\text{rot}B|^2}{e^{\star 2}n_s^2} = \frac{\lambda^2}{8\pi}|\text{rot}B|^2$$

The rotation of (7) and Maxwell's equation give: rot rot $\mathbf{B} = -\frac{4\pi e^{*2}}{m^*c^2}\psi_{\infty}^2\mathbf{B}$, i.e.

(9)
$$\mathbf{B} - \lambda^2 \nabla^2 \mathbf{B} = 0$$

In the following we consider vortex solutions $\mathbf{B} = B(\mathbf{x})\mathbf{k}$. Then: $|\operatorname{rot} \mathbf{B}|^2 = (\partial_x B)^2 + (\partial_y B)^2 = -B\nabla^2 B + \frac{1}{2}\nabla^2 B^2$. The free energy per unit length is

$$\epsilon = \frac{F}{L} = \frac{1}{8\pi} \int_{S} da \, B(B - \lambda^{2} \nabla^{2} B) + \frac{\lambda^{2}}{16\pi} \int_{S} da \, \nabla^{2} B^{2}$$

where the surface S excludes the vortex cores. The first integral is zero for a solution of (9). Since ∇^2 = div grad we obtain an integration along the boundary:

(10)
$$\epsilon = \frac{\lambda^2}{16\pi} \sum_{k} \oint d\ell \, \mathbf{n} \cdot \mathbf{grad} B^2$$

The sum is on all vortex cores, and the integrals are on circles of radius ξ centered in each core, with normal vector \mathbf{n} pointing to the center of the core. In a core the field is almost constant (supercurrents vanish). The contribution to the total energy of the cores is small.

1.1. **1-vortex solution.** For a single vortex, B(r) solves (9) outside the core. In polar coordinates it is Bessel's equation

(11)
$$B'' + \frac{1}{r}B' - \frac{1}{\lambda^2}B = 0 \qquad r > \xi$$

The solution is Hankel's function $K_0(r/\lambda)$, up to a multiplicative constant c. The function is always positive and decreasing, with limit behaviours:

(12)
$$K_0(x) = \begin{cases} \sqrt{\frac{\pi}{2x}} \exp(-x) & x \gg 1\\ -\log x + \log 2 - \gamma & x \to 0 \end{cases}$$

 $\log 2 - \gamma \approx 0.12$ (γ is Euler's constant). $K_0(1) = 0.421$, $K_0(2) = 0.114$. The derivative is $K_0'(x) = -K_1(x)$.

Since $x = r/\lambda$, the limit $x \to 0$ is achieved for $\xi/\lambda \ll 1$ i.e. a type II superconductor.

To obtain the constant c let us evaluate the flux through a ring $\xi < r < R$, where R is arbitrary:

$$\Phi(R) = 2\pi \int_{\xi}^{R} r dr B(r) = 2\pi c \lambda^{2} \int_{\xi/\lambda}^{R/\lambda} x dx \frac{1}{x} \frac{d}{dx} (-xK_{1})$$
$$= 2\pi c \lambda [\xi K_{1}(\xi/\lambda) - RK_{1}(R/\lambda)]$$

For $\xi \ll \lambda$ we approximate $K_1(x) \simeq 1/x$; the total flux is collected within a distance of few screening London lengths λ . Then $R \gg \lambda$:

$$\Phi(R) \approx 2\pi\lambda^2 c - c(\pi\lambda)^{3/2} \sqrt{2R} e^{-R/\lambda}$$

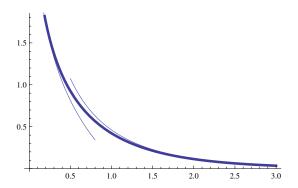


FIGURE 1. The function $K_0(x)$. The thin lines describe the limit functions in eq.(12)

We thus determine c, and put in the solution B:

(13)
$$B(r) = \frac{\Phi}{2\pi\lambda^2} K_0\left(\frac{r}{\lambda}\right)$$

The field at the core for a unit quantum flux, is

$$B(\xi) = \frac{2\pi \xi^2 H_{c2}}{2\pi \lambda^2} \log \kappa = H_c \sqrt{2} \frac{\log \kappa}{\kappa}$$

The actual field H_{c1} at which the flux first penetrates when leaving the pure diamagnetic phase is about half of it (the term 0.12 is omitted)

$$(14) H_{c1} = H_c \frac{\log \kappa}{\kappa \sqrt{2}}$$

It is the value at which difference of the Gibbs potentials $G_s - G_n$ becomes negative. In a type II superconductor, nothing happens as $H = H_c$ (the thermodynamic critical field).

The free energy per unit length of a vortex is evaluated on the circle $r = \xi$:

$$\epsilon_1 = -\frac{\lambda^2}{16\pi} \oint d\ell \, \frac{d}{dr} B^2(r) = -\frac{\lambda^2}{16\pi} \frac{d}{dr} B^2(r) \Big|_{r=\xi} 2\pi\xi$$
$$= \left(\frac{\Phi}{4\pi\lambda}\right)^2 K_0\left(\frac{\xi}{\lambda}\right) K_1\left(\frac{\xi}{\lambda}\right) \frac{\xi}{\lambda}$$

In the limit $\kappa = \lambda/\xi \gg 1$, it is:

(15)
$$\epsilon_1 = \left(\frac{\Phi}{4\pi\lambda}\right)^2 (\log \kappa + 0.12)$$

The constant value 0.12 will be neglected. The current density circulates around the core and fades within few London lengths:

(16)
$$\mathbf{J}(r) = \frac{c}{4\pi} \operatorname{rot} \mathbf{B} = \frac{c}{4\pi} [\mathbf{i}\partial_y B - \mathbf{j}\partial_x B] = -\frac{c}{4\pi} \frac{dB}{dr} \boldsymbol{\theta} = \frac{c\Phi}{8\pi^2 \lambda^3} K_1 \left(\frac{r}{\lambda}\right) \boldsymbol{\theta}$$

Example 1.2. The superconducting alloy Nb₃Sn has $T_c = 18.3K$, $\kappa \approx 40$, $\xi_0 = 3.3$ nm, $\lambda = 135$ nm, $H_{c1} = 0.038$ T. It can attain $H_{c2} = 30$ T [6]. Evaluate the free energy per unit length of a vortex.

$$\xi^2 = \frac{\phi_0}{2\pi H_{c2}} = \frac{2.07\times 10^{-7} \mathrm{Oe}\cdot \mathrm{cm}^2}{2\pi\cdot 30\times 10^{-4}\mathrm{T}} = 10.9\times 10^{-14}\mathrm{cm}^2, \quad \xi\approx 3.3\,\mathrm{nm}$$

With $mc^2 = 0.51$ MeV, $a_0 = \hbar^2/(me^2) = 5.29 \times 10^{-2}$ nm, the energy per unit length of a vortex with 1 elementary flux $\phi_0 = hc/2e$ is:

$$\epsilon = \left(\frac{hc}{8e\pi\lambda}\right)^2 (\log \kappa + 0.12) = \frac{mc^2}{16} \frac{a_0}{\lambda^2} (\log \kappa + 0.12) \approx 3.5 \frac{\text{MeV}}{\text{cm}} = 5.6 \times 10^{-6} \frac{\text{erg}}{\text{cm}}$$

Example 1.3. Show that the ratio $\epsilon_1/\epsilon_{core} = 4 \log \kappa$, where $\epsilon_{core} = \frac{1}{8} \xi^2 H_c^2$ is an estimate of the energy per unit length stored in the normal core of the vortex.

1.2. **The 2-vortex solution.** Since the equation is linear, a 2-vortex solution is the superposition a two 1-vortex solutions with a flux Φ in the origin and another in \mathbf{R} :

(17)
$$B(\mathbf{x}) = \frac{\Phi}{2\pi\lambda^2} \left[K_0 \left(\frac{|\mathbf{x}|}{\lambda} \right) + K_0 \left(\frac{|\mathbf{x} - \mathbf{R}|}{\lambda} \right) \right]$$

with $R \gg \xi$. The free energy per unit length is

$$\begin{split} \epsilon_2 &= \frac{\lambda^2}{16\pi} \sum_{j=1,2} \oint_{C_j} d\ell \, \mathbf{n} \cdot \mathbf{grad}(B_1 + B_2)^2 \\ &\approx \frac{\lambda^2}{16\pi} \sum_{j=1,2} \oint_{C_j} d\ell \, \mathbf{n} \cdot \mathbf{grad}B_j^2 + 2\frac{\lambda^2}{16\pi} \sum_{j=1,2} \oint_{C_j} d\ell \, \mathbf{n} \cdot \mathbf{grad}(B_1 B_2) \\ &= 2\epsilon_1 + \frac{4\lambda^2}{16\pi} \left(\frac{\Phi}{2\pi\lambda^2}\right)^2 \oint_{|\mathbf{x}|=\xi} d\ell (-\frac{d}{dr}) K_0 \left(\frac{|\mathbf{x}|}{\lambda}\right) K_0 \left(\frac{|\mathbf{x}-\mathbf{R}|}{\lambda}\right) \\ &\approx 2\epsilon_1 + \frac{\lambda^2}{4\pi} \left(\frac{\Phi}{2\pi\lambda^2}\right)^2 \frac{1}{\lambda} K_1 \left(\frac{\xi}{\lambda}\right) K_0 \left(\frac{R}{\lambda}\right) 2\pi\xi \end{split}$$

We neglected the contribution of B_1^2 to the hole 2 and of B_2^2 to hole 1 (i.e. $\lambda/\xi = \kappa \gg 1$), and a term arising from the derivative (it is order $1/\kappa^2$ of the first one). The interaction energy per unit length among the two parallel and equal vortices at distance R is $\epsilon_{\rm int} = \epsilon_2 - 2\epsilon_1$,

(18)
$$\epsilon_{int}(R) = \frac{\Phi^2}{8\pi^2 \lambda^2} K_0\left(\frac{R}{\lambda}\right)$$

Since K_0 is monotonically decreasing, the force per unit length between vortices is repulsive: $f_{12}(R) = -\epsilon'_{int}(R) > 0$.

A more accurate expression, valid for $R \gg \xi$, is [5]

(19)
$$\epsilon_{int}(R) = c^2 K_0 \left(\frac{R}{\lambda}\right) - \frac{d^2}{\kappa^2} K_0 \left(\sqrt{2}\frac{R}{\xi}\right)$$

with parameters c, d. It is attractive for type I superconductors, and always attractive for vortex antivortex pairs. It is zero for $\kappa = 1/\sqrt{2}$.

Exercise 1.4. Show that the free energy per unit length of a single vortex with flux 2Φ is greater than the free energy of two vortices each carrying a flux Φ .

Exercise 1.5. (from [7]). Find the attractive force exerted on a vortex by the surface of a flat superconductor if the vortex is parallel to the surface at a distance $\ell = 50 \, \mathrm{nm}$ and $\lambda = 300 \, \mathrm{nm}$.

References

- [1] P. G. de Gennes, Superconductivity of metals and alloys, Benjamin, 1966.
- [2] This is a useful source about special functions: http://dlmf.nist.gov A nice book is N. N. Lebedev, Special functions and their applications, Dover.
- [3] M. Tinkham, Introduction to Superconductivity, second ed. 1996, reprinted by Dover.
- [4] A. Chaves, F. M. Peeters, G. A. Farias and M. V. Milošević, Vortex-vortex interaction in bulk superconductors: Ginzburg-Landau theory, Phys. Rev. B 83 054516 (2011), (14 pages).
- [5] L. Kramer, Thermodynamic Behavior of Type-II Superconductors with Small κ near the Lower Critical Field, Phys. Rev. B 3 (1) (1971) 3821–3825.
- [6] A. Godeke, Nb₃Sn for radio frequency cavities, (2006) Technical Report 62140 (LBNL), https://escholarship.org/uc/item/6d3753q7
- [7] V. V. Schmidt, The Physics of Superconductors, Springer, 1997.