Devil’s staircase phase diagram of the FOQHE
in the thin torus limit
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SUMMARY

- We map the Quantum Hall Hamiltonian restricted to the
subspace of the lowest Landau level (in the thin torus limit:
Lx << magn. length << Ly) to a | D long-range lattice model
(exactly solved by Hubbard)

- Going back, we qualitatively reproduce the experimental
diagram of transverse resistance vs B of FQHE

FQHE - EXPERIMENT
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Magnetic field (T) magnetic field [arbitrary units]



Hall effect

ny — ny / I
= B/ne
l I Vxy
2D electron gas 1 Vxx

T~ 100 mK or less
B ~ tens of Tesla

Ry =[h/€]1/f
f = filling fraction = N/deg of LL
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- more than 60 plateaux in LLL

- particle-hole asymmetry of plateaux (see 2/3 and 1/3)
- absence of even denominators (few exceptions as 5/2)
- average linearity

- Rxx small where Rxy is flat (energy gap) Robert Laughlin “

Stanford




|QHE (edge or bulk currents?)

Increase B

= increase degeneracy of LL

= Fermi Energy moves down (fixed
density) and crosses localized states
(plateaux) and LL cores (jump of R)

FQHE

(Haldane, Jain, Moore, Halperin, Laughlin,Wen, ...)



Electrons in the lowest Landau level
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(Jacobi theta functions in torus geometry)

H= E.(B)N + V(ee,B)
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(Tao and Thouless, torus geometry)

It is function of s(3) - s(1) and s(3) - s(2) mod Ns>>1
V can be diagonalized if s(3)-s(2)=0
(exact in the thin torus limit, Bergholtz-Karlhede, 2008)



THIN TORUS LIMIT Lx << ell << Ly

The right-hand-side is a lattice Hamiltonian with
long-range interaction, chemical potential mu(B)
k=1, ..., Ns >> 1 (degeneracy of LLL)

The exact g.s. was obtained by Hubbard.
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Generalized Wigner lattices in one dimension and some applications to
- tetracyanoquinodimethane (TCNQ) salts

J. Hubbard

IBM Research Laboratory, San Jose, California 95193
(Received 7 September 1977)

Estimates show that both the on-site and the near-neighbor electrostatic interactions in
tetracyanoquinodimethane chains may be much greater than the bandwidth. A method of determining the
exact ground state when the interactions are dominant is described; the electrons are found to have a
periodic arrangement which may be regarded as a generalization of the classical Wigner lattice. It is shown
how the optical spectra may be interpreted in terms of such a configuration; also that such arrangements
may give rise to lattice distortions manifested as satellites in the x-ray diffraction pattern.
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Find the GS occupation numbers n =0,1
(minimum of E with given density)

A universal answer if

1) V(m) > 0 and decreases to zero

2) V(m+1) + V(m-1) > 2 V(m)



Ground state of period g with p particles
(filling ratio p/q)

- particles wish to stay as far as possible
but the lattice constrains their positions;
- g-fold degeneracy of gr. state for 1-site shift;
- particle-hole symmetry (exchange n with 1-n).

q=> q=7

p=110000 10000....  p=11000000 1000000 ....
p=21010010100....  p=2 1001000 1001000 ....
p=31101011010.... p=31010100 1010100 ....

Spacings are n, n-1, n+1, with n = [g/p].
The sequence is obtained from the continued
fraction expansion of g/p (Hubbard)



A hierarchy of ground states
by continued fraction expansion of p/q

TABLE II. Generalized-Wigner-lattice configurations.

Density Period - Configuration
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. 111011101110. ..
11016101101010...
1010101010. ..

110011001100. ..
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One-Dimensional Ising Model and the Complete Devil’s Staircase

Per Bak
Institute for Theovetlical Physics, University of California, Santa Barbava, California 93106, and
H. C. @rsted Institute, DK -2100 Copenhagen @, Denmark?®)

and

R. Bruinsma
Bvrookhaven National Labovatory, Upton, New York 11973
(Received 18 March 1982)

It is shown rigorously that the one-dimensional Ising model with long-range antiferro-
magnetic interactions exhibits a complete devil’s staircase.

PACS numbers: 05.50.+q, 75.10.Hk

Ap=2¢> 2 k[V(kq+1)+ V(kq—1) — 2V (kq)]

3 4 5 6 -H

FIG. 2. The devil’s staircase. The ratio of up spins
over down spins g is plotted vs the applied field H for
an interaction J(i) = i 2. Inset: The area in the
square magnified 10 times.




Devil's Staircase
V(ir)=1/r




The g.s. configuration [n(1),n(2),...]

for p/q is independent of the potential.

The widths of the plateaux depend on the potential.
Same period g gives same widths.

Surprisingly, nobody ever translated the plot

to a plot inverse density - B for
the thin torus FQHE
While rescaling mu ~ 1/B, plateaux with same g
become narrower for higher p as experimentally
observed.



QHE - experiment
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Magnetic field (T) magnetic field [arbitrary units]

- Rescaling in B gives particle-hole asymmetry of plateaux (see 2/3 and 1/3)
- absence of even denominators (few exceptions, as 5/2)
- average linearity



Absence of even denominators
symmetries & Fermi statistics

week ending

PRL 105. 026802 (2010) PHYSICAL REVIEW LETTERS 9 JULY 2010

S-Duality Constraints on 1D Patterns Associated with Fractional Quantum Hall States

Alexander Seidel’
'Department of Physics and Center for Materials Innovation, Washington University, St. Louis, Missouri 63136, USA
(Received 23 February 2010; published 6 July 2010)

Using the modular invariance of the torus, constraints on the 1D pattemns are derived that are associated
with various fractional quantum Hall ground states, e.g., through the thin torus limit. In the simplest case,
these constraints enforce the well-known odd-denominator rule, which is seen to be a necessary property
of all 1D patterns associated to quantum Hall states with minimum torus degeneracy. However, the same
constraints also have implications for the non-Abelian states possible within this framework. In simple
cases, including the » = 1 Moore-Read state and the » = 3/2 level 3 Read-Rezayi state, the filling factor
and the torus degeneracy uniquely specify the possible patterns, and thus all physical properties that are
encoded in them. It is also shown that some states, such as the “strong p-wave pairing state,” cannot in
principle be described through 1D patterns.




Symmetries of Hamiltonian on the torus

Let aZ,_. ar, k = 1...L be canonical Fermi or Boson operators that create/destroy DISC rete F ou r.l er

a particle at a site k of a ring. The dual canonical basis of operators is

" transform (L=Ns)

it corresponds to a
unitary operator

Magnetic Translations
i =k 1 A=kt .
Ta, T' = "% ay, v commute with U and H(r)




Let H be a Hamiltonian that commutes with T, S, N, and £ be the eigenspace of ground states of H with NV particles,
with projector P. If v = p/q and £ has exactly dimension ¢, then:

].) PTqP = P/\T. PSqP = P/\S, I/\TI = /\Sl S 12

2) If PUP # 0 then [ A\r = \s |

3) If [H,U?] =0 then Ay = £1 and Ag = *1

M—1 gq
m

2

T
8

PTP|n) = exp ["q N, 2 2t A-m] n) = (1) D)

. 3 2 , -y \ , .
PSPIn) =a]’ .. .aggq co.ayt. ..a;“q 0) = (=1)" M-D|n) (fermions)

true for all M if g=odd (p and q are coprime)



What is the analogous of the Thin Torus limit
in the symmetric gauge ?
QHE as a 2D Wigner crystal?

) = H(z@ — 2" exp(—ﬁ Z 22

1< k
Laughlin’s ansatz for GS for filling 1/m is surprisingly
good. What is its expansion on a basis of Slater states?



