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1. The resolvent and the propagator

Given a Hamiltonian Ĥ, the resolvent and time-propagator are the operators:

ĝ(z) = (z − Ĥ)−1 z /∈ σ(H)(1)

Û(t) = exp(− i
~ tĤ) t ∈ R(2)

The matrix element g(x,x′; z) = 〈x|ĝ(z)|x′〉 is a Green function. For a local Hamil-
tonian it solves:

(z −Hx)g(x,x′; z) = δ(x− x′)(3)

and has spectral representation

g(x,x′; z) =
∑
a

〈x|a〉〈a|x′〉
z − Ea

+

∫
σc

dE′
A(x,x′;E′)

z − E′

For real z the poles and cuts are avoided by adding them infinitesimal imaginary
parts. This can be done in different ways that define different Green functions.
Their difference is a solution of the homogeneous equation (z−Hx)∆g(x,x′; z) = 0.

In the retarded resolvent ĝR(E) = ĝ(E + iη) all singularities are shifted to the
lower half-plane. The retarded Green function is analytic in the upper half plane.
It is the Fourier transform of an amplitude for the propagation forward in time:∫

R

dE

2πi
gR(x,x′;E)e−

i
~Et = −θ(t)〈x|Û(t)|x′〉(4)

The advanced resolvent is ĝA(E) = ĝ(E− iη) = ĝR(E)†. The advanced Green func-
tion gA(x,x′;E) is analytic in the lower half-plane, and it is the Fourier transform
of the amplitude for the propagation backward in time.

For Ĥ0 = p̂2/2m, the retarded Green function is

gR0 (x,x′;E) =

∫
dk

(2π)3
eik(x−x

′)

E − E(k) + iη
= − m

2π~2
exp(ikE |x− x′|)
|x− x′|

(5)

where kE =
√

2mE/~.
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2. The T matrix

Consider the Hamiltonian Ĥ = Ĥ0 + V̂ , and the resolvent operators ĝ(z) and

ĝ0(z). From 1 = (z − Ĥ0 − V̂ )ĝ(z) the following identity is obtained:

ĝ(z) = ĝ0(z) + ĝ0(z)V̂ ĝ(z)(6)

It is also ĝ(z) = ĝ0(z) + ĝ(z)V̂ ĝ0(z). The formal solution by iteration (Born expan-

sion), being convergent or not, introduces the operator T̂ (z) (a total self-energy):

ĝ(z) =ĝ0 + ĝ0(V̂ + V̂ ĝ0V̂ + V̂ ĝ0V̂ ĝ0V̂ + ...)ĝ0

=ĝ0 + ĝ0T̂ (z)ĝ0

T̂ (z) =V̂ + V̂ ĝ0(z)V̂ + V̂ ĝ0(z)V̂ ĝ0(z)V̂ + ...

Then: T̂ (z)ĝ0(z) = V̂ ĝ(z) and T̂ (z) = V̂ + V̂ ĝ0(z)T̂ (z) = V̂ + T̂ (z)ĝ0V̂ .

The T-matrix is T̂ (E+iη), which we write as T̂ (E). This operator is important
in scattering theory. It is

T̂ (E) = V̂ + V̂ ĝR0 (E)V̂ + V̂ ĝR0 (E)V̂ ĝR0 (E)V̂ + ...(7)

We derive an important identity:

Proposition 1.

T̂ (E)− T̂ (E)† = −2πi T̂ (E)† δ(E − Ĥ0)T̂ (E)(8)

Proof. The equations for T̂ (E) and the adjoint are:

T̂ (E) = V̂ + V̂ ĝR0 (E)T̂ (E)

T̂ (E)† = V̂ + T̂ (E)†ĝA0 (E)V̂

Right-multiply the second one by ĝR0 (E)T̂ (E) and left-multiply the first one by

T̂ (E)†ĝA0 (E), and subtract:

T̂ †(ĝR0 − ĝA0 )T̂ = V̂ ĝR0 T̂ − T̂ †ĝA0 V̂

It is V̂ ĝR0 T̂ = T̂ − V̂ and T̂ †ĝA0 V̂ = T̂ † − V̂ . Then: T̂ †(ĝR0 − ĝA0 )T̂ = T̂ − T̂ †. The

difference of the retarded and advanced resolvents is −2πi δ(E − Ĥ0). �

If Ĥ0 = p̂2/2m, the matrix element with momentum eigenstates p̂|k〉 = ~k|k〉 is:

〈k|T̂ (E)− T̂ (E)†|k′〉 =− 2πi

∫
dq〈k|T̂ (E)†|q〉 δ(E − E(q))〈q|T̂ (E)|k′〉

=− 2πi
mqE
~2

∫
dΩ 〈k|T̂ (E)†|qEn〉 〈qEn|T̂ (E)|k′〉(9)

where dq = q2dq dΩ and qE = 1
~
√

2mE. This is a generalized version of the optical
theorem, due to W. Heisenberg. In particular, for k = k′:

Im 〈k|T̂ (E)|k〉 = −π mqE
~2

∫
dΩ |〈qEn|T̂ (E)|k〉|2(10)
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3. The scattering problem

We study the scattering problem for a Hamiltonian Ĥ = Ĥ0 + V̂ where Ĥ0 =
p̂2/2m and V̂ is a short range radial potential. The scattering event is described

by a solution Û(t)|ψ+〉 of Schrödinger’s equation with the following asymptotic
features:
- in the far past it is an in-coming wave packet (far enough to be off the potential

range) evolving in time with Ĥ0,
- in the far future it is the superposition of an undisturbed packet and a scattered
wave-function, both far enough to evolve with Ĥ0,

Û(t)|ψ+〉 =

{
Û0(t)|ψin〉 t→ −∞
Û0(t)|ψout〉 t→ +∞

(11)

with |ψout〉 = |ψin〉+ |ψscatt〉. The statements are made precise through the intro-
duction of the isometries (Möller operators):

Ω̂± = lim
t→±∞

Û(t)†Û0(t) = ÛI(±∞, 0)†(12)

where Û(t, 0) = Û0(t, 0)ÛI(t, 0) defines the interaction propagator.

Then |ψ+〉 = Ω̂−|ψin〉 and |ψ+〉 = Ω̂+|ψout〉. The Möller operators are isometries
as they map the full Hilbert space of in/out states of free particles (the asymptotic

states) to the continuous subspace of Ĥ, which may also have a subspace spanned
by bound states.
The in/out free particle states are connected by the scattering matrix:

|ψout〉 = Ŝ|ψin〉

Ŝ = Ω̂†+Ω̂− = ÛI(∞,−∞)

Let me only mention here the beautiful RAGE theorem (Ruelle, Amrein, Enns,

Georgescu), which characterizes the continuum subspace of Ĥ as the states ψ for
which the time average of the probability of being inside a ball of radius R vanishes:

lim
T→∞

1

T

∫ T

0

dt‖P̂Rψ(t)‖2 = 0

P̂R is the projection of the state in the ball of radius R. It means that the position
probability escapes to infinity.

To this description in time it corresponds a description in energy. The solu-
tion Û(t)|ψ+〉 is a superposition of stationary states belonging to the continuum

spectrum E > 0 of Ĥ:

Û(t)|ψ+〉 =

∫
dk ck exp(− i

~Ekt)|ψ
+
k 〉(13)

(Ek − Ĥ0)|ψ+
k 〉 = V̂ |ψ+

k 〉(14)

with coefficients ck = 〈k|ψin〉 and energy values Ek = ~2k2/2m.
The eigenvalue equation is formally inverted with the free resolvent, with a contri-
bution of the homogeneous equation (Ek − Ĥ0)|k〉 = 0:

|ψ+
k 〉 = |k〉+ ĝR0 (Ek)V̂ |ψ+

k 〉(15)
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In the coordinate representation it is an integral (Lippmann-Schwinger) equation:

ψ+
k (x) = 〈x|k〉+

∫
dx′gR0 (x,x′;Ek)V (x′)ψ+

k (x′)

The choice of the retarded resolvent is intentional: it implies the boundary condi-
tion. By eq.(15), the time evolution (13) has two terms:

Û(t)|ψ+〉 = Û0(t)|ψin〉+

∫
dk ck exp(− i

~Ekt)ĝ
R
0 (Ek)V̂ |ψ+

k 〉

The second term is the time evolution of a scattered wave-packet that vanishes in
the past (see Weinberg, page 205).

We are interested in the far future. For large r = |x| we expand the Green
function gR for r � |x′|, as the potential bounds the integral in x′ in a finite
region. With k′ = kEn, n = x/r, we obtain:

ψ+
k (x) ≈ 〈x|k〉 − m

2π~2
eikr

r

∫
dx′e−ik

′·x′
V (x′)ψ+

k (x′)

= 〈x|k〉 − m
√

2π

~2
eikr

r

∫
dx′〈k′|x′〉〈x′|V̂ |ψ+

k 〉

=
1

(2π)3/2

[
eik·x − 4π2m

~2
eikr

r
〈k′|V̂ |ψ+

k 〉
]

=
1

(2π)3/2

[
eik·x − 4π2m

~2
eikr

r
〈k′|T̂ (Ek)|k〉

]
(16)

The last line descends from (15): V̂ |ψ+
k 〉 = V̂ |k〉 + V̂ ĝR0 (Ek)V̂ |ψ+

k 〉; the equation

has formal solution V̂ |ψ+
k 〉 = (V̂ + V̂ ĝR0 (Ek)V̂ + . . .)|k〉 = T̂ (Ek)|k〉.

In scattering theory the state ψ+
k (x) is written as a superposition of a plane

wave and a spherical wave weighted by a scattering amplitude that depends on
the scattering angle ϑ between the vector k of the incoming wave and k′ (k · k′ =
k2E cosϑ):

ψ+
k (x) ≈ 1

(2π)3/2

[
eik·x +

eikr

r
fk(ϑ)

]
,(17)

The comparison with (16) gives

fk(ϑ) = −4π2m

~2
〈k′|T̂ (Ek)|k〉(18)

The quantity |fk(ϑ)|2dΩ has the dimension of an area. It is the fraction of the
flux of incoming particles that is scattered in dΩ at angle ϑ. This also offers the
interpretation of the T -matrix.
A more physical picture of the scattering process requires the analysis in terms of
wave-packets (see for example Weinberg).
The integral

σ(Ek) = 2π

∫ π

0

dϑ sinϑ|fk(ϑ)|2

is the cross section: it is the fraction of incoming flux that is scattered in any
direction per unit time.
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The identity (10) for the T-matrix becomes the optical theorem

Im 〈k|T̂ (Ek)|k〉 = − ~2k
16π3m

σ(Ek)(19)

In presence of many scatterers, randomly distributed with density nS low enough
that each scattering event is not affected by the potential of the other scatterers,
the mean free path is `k = 1

σ(Ek)nS
.

Consider a cylinder with axis parallel to the particle’s velocity, cross area A and
length `. It contains nsA` scatterers. The probability that the particle scatters is
(nsA`)σ/A. When the probability is 1, then ` is the mean free path.
The (inverse) scattering time is:

1

τ(k)
=

~k
m
σ(Ek)nS(20)

Some useful links and references:
• J. R. Taylor, Scattering theory, the quantum theory of nonrelativistic collisions,
Dover reprint.
• Rubin Landau, Quantum Mechanics II, John Wiley 1990.
• S. Weinberg, Lectures on Quantum Mechanics, Cambridge Univ. Press (2013).
• Amrein, Jauch, Sinha, Scattering theory in quantum mechanics, Benjamin 1977.
• Lectures on advanced quantum mechanics, M. Zirnbauer.
http://www.thp.uni-koeln.de/zirn/011 Website Martin Zirnbauer/3 Teaching/LectureNotes/
04AdvQM WS10.pdf
• B. Zwiebach, Ch.7. Scattering (Quantum Physics III, MIT open courseware)
https://ocw.mit.edu/courses/physics/8-06-quantum-physics-iii-spring-2018/lecture-notes/
MIT8 06S18ch7.pdf
• Maximilian Kreuzer, Ch.8 - Scattering theory, Vienna Tech. Univ.
http://hep.itp.tuwien.ac.at/∼kreuzer/qt08.pdf

http://www.thp.uni-koeln.de/zirn/011_Website_Martin_Zirnbauer/3_Teaching/LectureNotes/04AdvQM_WS10.pdf
http://www.thp.uni-koeln.de/zirn/011_Website_Martin_Zirnbauer/3_Teaching/LectureNotes/04AdvQM_WS10.pdf
https://ocw.mit.edu/courses/physics/8-06-quantum-physics-iii-spring-2018/lecture-notes/MIT8_06S18ch7.pdf
https://ocw.mit.edu/courses/physics/8-06-quantum-physics-iii-spring-2018/lecture-notes/MIT8_06S18ch7.pdf
http://hep.itp.tuwien.ac.at/~kreuzer/qt08.pdf
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