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In the appendix of their paper Bound States in Quantum Field Theory, Murray
Gell-Mann and Sir Francis Low [1] proved a fundamental theorem that bridges the
ground states |E0〉 and |E〉 of Hamiltonians H0 and H = H0 + gV by means of
time propagators, and makes the transition of time-ordered correlators from the
Heisenberg to the interaction picture possible (reduction formula):

〈E|TO1(t1)...On(tn)|E〉 =
〈E0|TS O1(t1)...On(tn)|E0〉

〈E0|S|E0〉
(1)

The single operator S contains all the effects of the interaction. The theorem
borrows ideas from the scattering and the adiabatic theories and makes use of
the concept of adiabatic switching of the interaction through the time-dependent
operator

Hε(t) = H0 + g e−ε|t|V(2)

that interpolates between the operators of interest, H at t = 0 and H0 at |t| → ∞.
The adiabatic limit is obtained for ε→ 0+. With the operator H0 singled out, the
theorem requires the time propagator in the interaction picture,

Uε,I(t, s) = eit/~H0Uε(t, s) e
−i/~sH0(3)

where Uε(t, s) is the full propagator.

1. The Gell-Mann and Low theorem

Theorem 1.1 (Gell-Mann and Low, 1951). Let |E0〉 be an eigenstate of H0 then,
if the limit vectors exist

|Ψ±〉 = lim
ε→0+

Uε,I(0,±∞)|E0〉
〈E0|Uε,I(0,±∞)|E0〉

(4)

they are eigenvectors of H = H0 + gV .

The original proof, given also in the textbooks by Fetter and Walecka, or Gross
and Heinonen, employs the formal Dyson’s perturbative expansion of the interaction
picture propagator, with long and cumbersome calculations. In ref. [2] I presented
a different proof, based on Schrödinger’s equation for the propagators. It is much
simpler, and perhaps more intelligible. I begin with a simple identity:

Proposition 1.2. Let Uε(t, s) be the propagator for the Hamiltonian (2). Then,
for all ε > 0:

±ε g ∂
∂g
Uε(t, s) =

∂

∂t
Uε(t, s) +

∂

∂s
Uε(t, s)(5)
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where sign plus is for 0 ≥ t ≥ s and sign minus is for 0 ≤ t ≤ s.

Proof. In the following g = exp(εθ). Let us begin with the case 0 ≥ t ≥ s. The
propagator solves the equation

Uε(t, s) = 1 +
1

i~

∫ t

s

dt′(H0 + eε(t
′+θ)V )Uε(t

′, s)(6)

Consider the g-independent Hamiltonian H̃(t) = H0 + eεtV . Its propagator Ũ(t, s)

solves Ũ(t, s) = 1 + 1
i~
∫ t
s
dt′′(H0 + eεt

′′
V )Ũ(t′′, s). A shift by θ of times gives:

Ũ(t+ θ, s+ θ) = 1 +
1

i~

∫ t+θ

s+θ

dt′′(H0 + eεt
′′
V )Ũ(t′′, s+ θ);

with t′′ = t′ + θ it becomes:

Ũ(t+ θ, s+ θ) = 1 +
1

i~

∫ t

s

dt′(H0 + eε(t
′+θ)V )Ũ(t′ + θ, s+ θ).

Comparison with (6) and unicity of the solution give the identity Uε(t, s) = Ũ(t+
θ, s+ θ). Therefore:

ε g
∂

∂g
Uε(t, s) =

∂

∂θ
Ũ(t+ θ, s+ θ) =

[
∂

∂t
+

∂

∂s

]
Ũ(t+ θ, s+ θ)

and (5) is obtained. In the case s ≥ t ≥ 0, the auxiliary Hamiltonian is H̃(t) =
H0 + V e−εt. The result is the same up to a sign. �

Proposition 1.3. For 0 ≥ t ≥ s or s ≥ t ≥ 0 (upper and lower sign in the
equation), and ∀ε > 0:

±i~ε g ∂
∂g
Uε,I(t, s) = Hε,H0(t)Uε,I(t, s)− Uε,I(t, s)Hε,H0(s)(7)

where OH0
(t) = e

i
~ tH0O(t)e−

i
~ tH0 is the Heisenberg evolution of an operator O(t).

Proof. Il (3) is placed in eq.(5), a straightforward calculation gives an equation for
the propagator in interaction picture:

±ε g ∂
∂g
Uε,I(t, s) =

∂

∂t
Uε,I(t, s) +

∂

∂s
Uε,I(t, s)−

i

~
[H0, Uε,I(t, s)]

Schrödinger’s equation i~∂tUε,I(t, s) = ge−ε|t|VH0
(t)Uε,I(t, s), and the adjoint equa-

tion −i~∂sUε,I(t, s) = ge−ε|s|VH0(s)Uε,I(t, s) are used for time derivatives. �

In particular, for t = 0 and s = ∓∞:

±i~ε g ∂
∂g
Uε,I(0,∓∞) = HUε,I(0,∓∞)− Uε,I(0,∓∞)H0(8)

If |E0〉 is an eigenstate of H0 we obtain:

±i~ε g ∂
∂g
Uε,I(0,∓∞)|E0〉 = (H − E0)Uε,I(0,∓∞)|E0〉(9)

Clearly we cannot put ε = 0, as E0 would remain an eigenvalue of H. The left-
hand-side should provide a finite correction to the eigenvalue, i.e. there must be a
1/ε compensation. The inner product with |E0〉 gives:

±i~ε g ∂
∂g
〈E0|Uε,I(0,∓∞)|E0〉 = g〈E0|V Uε,I(0,∓∞)|E0〉(10)
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Let us consider the ratios:

|Ψ∓ε 〉 =
Uε,I(0,∓∞)|E0〉
〈E0|Uε,I(0,∓∞)|E0〉

(11)

Then, with the aid of (9) and (10), and noting that 〈E0|Ψ∓〉 = 1, we have:

±i~ε g ∂
∂g
|Ψ∓ε 〉 =(H − E0 − g〈E0|V |Ψ∓ε 〉)|Ψ∓ε 〉

=(H − 〈E0|H|Ψ∓ε 〉)|Ψ∓ε 〉

The limit ε→ 0+ can now be taken, and shows that H|Ψ∓〉 = E∓|Ψ∓〉, with

E∓ = 〈E0|H|Ψ∓〉(12)

The question arises about conditions for the eigenvalues to be equal. For this, we
need discussing time-reversal. The time-reversal operator is anti unitary1, with
action TUε(t, s)T

† = Uε(−t,−s) for any value ε ≥ 0. If H0 is invariant under
time-reversal it is also

TUε,I(t, s)T
† = Uε,I(−t,−s).(13)

Proposition 1.4. If both H0 and H commute with time-reversal, and if T |E0〉 =
|E0〉, then E+ = E−.

Proof. If T |E0〉 = |E0〉 then (13) with t = 0 and s = −∞ and (11) give:

T |Ψ−ε 〉 =
〈E0|Uε,I(0,+∞)|E0〉
〈E0|Uε,I(0,−∞)|E0〉∗

|Ψ+
ε 〉(14)

Therefore the vectors are the same up to a phase factor, for all ε. Next, if [H,T ] = 0
it is 0 = 〈Ψ+|TH−HT |Ψ−〉 = (E−−E+)〈Ψ+|T |Ψ−〉, and we obtain E− = E+. �

Suppose that |E0〉 is the non-degenerate ground state of H0. If we assume that
in the adiabatic switching on and off of the interaction the ground state remains
such and non-degenerate, then the normalised ground state of H is proportional to
the vectors |Ψ+〉 = eiδ|Ψ−〉. A ground state average may be written as follows:

〈E|O|E〉 =
〈Ψ+|O|Ψ−〉
〈Ψ+|Ψ−〉

= lim
ε→0+

〈E0|Uε,I(∞, 0)OUε,I(0,−∞)|E0〉
〈E0|Sε|E0〉

(15)

where Sε = Uε,I(∞,−∞) is the scattering operator.

2. The reduction formula

The reduction formula is an important consequence of the Gell-Mann and Low
theorem. It enables to evaluate the ground state average 〈E|TO1H(t1) · · ·OnH(tn)|E〉
where operators are evolved with H at different times, in interaction picture.
The action of time-ordering is to permute the operators, producing a sign factor
for fermions. We may thus assume that the operators are time-ordered (for conve-
nience we keep t1 > · · · > tn). Next, note that OH(t) = Uε,I(0, t)OH0

(t)Uε,I(t, 0).

1An operator is antiunitary if it is a bijection, antilinear (Tλu = λ∗Tu) and (Tu|Tu′) = (u′|u).
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Then the average of the time ordered product is:

〈E|O1H(t1) · · ·OnH(tn)|E〉

=
〈E0|Uε,I(∞, 0)O1H(t1) · · ·OnH(tn)Uε,I(0,−∞)|E〉

〈E0|Sε|E0〉

=
〈E0|Uε,I(∞, t1)O1H0

(t1)Uε,I(t1, t2)O2,H0
(t2) · · ·OnH0

(tn)Uε,I(tn,−∞)|E0〉
〈E0|Sε|E0〉

A T−ordering can be inserted, because the time sequences are time-ordered. After
this insertion, the operators Uε,I can be permuted and joined to yield the scattering
operator:

〈E|TO1H(t1) · · ·OnH(tn)|E〉 =
〈E0|TSεO1H0(t1)O2,H0(t2) · · ·OnH0(tn)|E0〉

〈E0|Sε|E0〉
The formula remains valid for arbitrary times, and is the reduction formula. This,
the Dyson expansion for S and Wick’s theorem give rise to the diagrammatic ex-
pansion of correlators.
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