DENSITY FUNCTIONAL THEORY
(VERY PRELIMINARY NOTES)

L.G.MOLINARI

1. INTRODUCTION

Since the early years of quantum mechanics the variational principle was ex-
ploited, as in the Thomas-Fermi and the Hartree-Fock approximations.
In 1964, Pierre Hohenberg and Walter Kohn established the foundations of Density
Fuctional Theory (DFT) [3, 12]. Its practicable version has the wonder of repro-
ducing properties of a many-particle system by means of a one-particle equation
with a suitable potential; in the words of Kohn, DFT is the “exactification” of the
Hartree approximation [6]. Since then, DFT enabled a huge progress in condensed
matter physics and chemistry and nuclear physics. Since “exactification” is only in
principle, an approximate DFT is often the starting point for many-body pertur-
bation theory, that confronts with present-day experimental precision [10, 11].

Consider the family of Hamiltonians of IV interacting electrons H=~H,+V,
where Hj is fixed and contains the inter- partlcle interaction, and V varies among
1-particle potentials such that the spectrum of Hy + V is bounded below. In first
and second quantization:

(1) V=0(x1)+...+v(xy)= /dxv(x)ﬁ(x)

For example, H, may describe the kinetic and Coulomb energies of the electrons,
while the potentials v(x) describe diverse assignments of charge distribution.
Once v is specified, Schrodinger’s equation for N particles is solved for the ground
state (g.s.) U, and the total energy FE, the chemical potential y, the g.s. expec-
tation values such as the density n(x) = (¥,|7(x)|¥,), can be evaluated and are
functionals of v.

For Coulomb Hamiltonians where V is the interaction of the electrons with as-
signed point ion-charges, Kato proved that the ground state density n(x) has cusps
at the positions R; of the ions, with ionic charges given by [9]:

ap |grad n(x)|

(2) Zi=— lx—R;||—0 2 n(x)

Therefore, the knowledge of the electronic density n(x) provides the ionic charges
Z;e and their positions R;, i.e. the potential v.

The question arises: can one trade v(x) for n(x)?. A general answer is provided
by the following fundamental theorem:
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Theorem 1.1 (Hohenberg and Kohn, 1964, [3]). Given Hy, if for all 1-particle
external potentials v the ground state VU, of Hy + V is non-degenerate, then there
is a one to one correspondence between potential, ground state and density:

(3) v<= Ue=n

provided that potentials differing by a constant, or states differing by a global phase
factor, are treated as equivalent.

Proof. The implications v = ¥ = n are obvious. Let us prove:
v <= WU. Suppose that two potentials vy (¢ = 1,2) produce the same ground state
V. In the position representation:

Hy + Z ve(Xk)| U(x1...xXN) = E¢¥(X1,...,XN), =12

k=1.N
Subtraction gives: Y, [v1(x)—v2(xx)]¥ (X1 ... XN) = (E1—FE2)¥(x; ...xx). Then,
for any choice x1,...,xy such that U(x;...xy) #0, it is

[’Ul(Xl) - U2(X1)] + ...+ [Ul(XN) — ’UQ(XN)] = E1 - E2

This is only possible if v1(x) — v2(x) is a constant.
v <= n. Suppose that two potentials v1(x) and vz(x) that do not differ by a
constant produce the same density function n. The ground states ¥; and ¥y are
different by the previous statement. Since the ground states are non-degenerate,
by the Riesz principle we have the strict inequality

Fi < <\I/2|H1\I/2> = Fy, + /dX [’Ul(X) — ’I)Q(X)] n(x)
An analogous relation holds if 1 and 2 are exchanged. Summation term by term
gives F1 + Fo < Fy + E; which is absurd. O

As a consequence, the ground state properties of the system are all determined
by the density of particles n in the ground state.

Lieb proved that given a density n with integral N, there exists a Slater deter-
minant of N orthonormal functions in L?(R?) such that n(x) = Y, |¢x(x)|>. The
functions are reported in [2].

2. DENSITY FUNCTIONALS

To a density n (with integral N) there correspond a potential v and a ground
state energy E, computed with v. Since the energy is a minimum and n is given,
it is:

(4) E= g1_1)r711<\I/|H0|\I/> + /dxv(x)n(x)

where the minimum is constrained to states that produce the density n. The
equation defines the Levy-Lieb functional of the density [8]:

(5) Fro[n] =: min (U|Ho[¥)

By means of it, the functional for the ground state energy is:

(©) Bl = Fualnl + [ dxotnge) | [ axato - ]
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The ground state density is obtained by minimizing E|[n, u] with respect to n and
u (the latter fixes the total number N):
E;FLL [TL]
(7) =
on(x)
The solution n depends on pu, which is fixed by imposing normalization to N.
The resulting density ny is used to evaluate the ground state energy E(N) =
FLL[TLN] + deU(X) TLN(X).

Proposition 2.1. u is the chemical potential.

+o(x) —p

Proof.
dE(N) - 6FLL[”N} an(X) -
dN —/dx{ ony(x) +u(x) dN
where (7) and the property [ dx dny(x)/dN =1 were used. O

The unsolved problem remains of the explicit expression of Fpr[n]. A step forward
is provided by the Kohn and Sham theory.

3. THE KOHN-SHAM EQUATION

For a system of N non-interacting particles (Hy = T, kinetic energy), the theo-
rem by Hohenberg and Kohn states that given a density n there exists a potential
vk s such that H = T + [ dxn(x)vgs(x) has ground state density n. This ground
state is the Slater determinant of the N lowest energy eigenfunctions of

2

17}
(8) —5 = (V20r) (%) + vics (%) 6k (x) = €x B1(x)
and the density is ngvzl |6k (x)|? = n(x). vks is the Kohn-Sham potential, and
equation (8) is the Kohn-Sham equation [5].
The same energy and ground-state density can be obtained as the minimum of

Bl =T + [ axoncs(oynt) — | [ a0 - ]

with Levy-Lieb functional T'[n] = ming_,,(¥|T|¥). The minimum solves

9) 0= ;;Z;([Z% +vgs(x) — p.

The idea is to use the simple problem (8) to obtain the density of an interacting
many-body problem by an appropriate choice of the Kohn-Sham potential.

Let us write the unknown Levy-Lieb functional F 1, [n] of the interacting problem
as a sum of meaningful terms: the kinetic functional of independent particles T'[n],
the classical two-particle interaction energy with potential v(z,y), and an unknown
exchange-correlation functional:

(10) Fualn) = Tln) + § [ dxdyn(xn(y)v(x.y) + Evcl
Then, eq.(7) for the density becomes:

(1) 0= St [ dy ol yn) + s + o) ~ .
(12) Vge(x) =: M

on(x)
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J dy v(x,y)n(y) is the Hartree (i.e. mean field) potential and v, is named exchange-

correlation potential. In order that eq.(9) gives the same density of the interacting
model, we put

(13) wd)v®+/WWWMM+%®

The total energy (6) of the many-body system is then evaluated:
E(N) = /dxdyn ,Y)n(y) + Excln /dxv
(14) :%W%%/MWMWmew+&MF/w%@M®

where Ej is the energy of the independent particles with Kohn-Sham potential (the
sum of the lowest N eigenvalues).

3.1. LDA. To overcome the ignorance of E,.[n] the simple Local Density Approx-
imation is often used. Introduce the exchange-correlation energy density:

] = [ dxean(xom) ()

In LDA the density is approximated by the expression valid for the homogeneous
electron gas (HEG) where the constant density is replaced by its value at x:
ebPA(x n) = fl PG (n(x)). Explicit expressions of the latter are available, as func-
tions that mterpolate the numerical data of the HEG ground state energy on some
range of density [11].
For example, the exchange term for HEG is E,(n) = —V3e?(3/m)/3n%/3. With
V= f dx, and replacing n with n(x) inside the integral, an exchange functional is
obtained:

(15)  EXP4m] :/dxn(x)egm(n(x)):_?f <3>;’/dxn(x)4/3

™

The functional derivative gives the exchange potential: vEPA(x) = 2eLPA(n(x)).

A computation starts with an approximate density ng(x) and some functional
expression for €,.. The Kohn-Sham potential is evaluated and the Kohn-Sham
equation is solved for the N lowest energy eigenstates. A new density is evaluated,
n/(z) = Y, |¢r(z)|?, and the Kohn-Sham potential is updated. The process con-
tinues until the density stabilises.

The density is, in principle, the density of the interacting particles. The total en-
ergy of the interacting system is evaluated by (14), the chemical potential y is the
highest Kohn-Sham eigenvalue.
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