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1. Introduction

Since the early years of quantum mechanics the variational principle was ex-
ploited, as in the Thomas-Fermi and the Hartree-Fock approximations.
In 1964, Pierre Hohenberg and Walter Kohn established the foundations of Density
Fuctional Theory (DFT) [3, 12]. Its practicable version has the wonder of repro-
ducing properties of a many-particle system by means of a one-particle equation
with a suitable potential; in the words of Kohn, DFT is the “exactification” of the
Hartree approximation [6]. Since then, DFT enabled a huge progress in condensed
matter physics and chemistry and nuclear physics. Since “exactification” is only in
principle, an approximate DFT is often the starting point for many-body pertur-
bation theory, that confronts with present-day experimental precision [10, 11].

Consider the family of Hamiltonians of N interacting electrons Ĥ = Ĥ0 + V̂ ,
where Ĥ0 is fixed and contains the inter-particle interaction, and V̂ varies among
1-particle potentials such that the spectrum of Ĥ0 + V̂ is bounded below. In first
and second quantization:

V̂ = v(x1) + . . .+ v(xN ) =

∫
dx v(x)n̂(x)(1)

For example, Ĥ0 may describe the kinetic and Coulomb energies of the electrons,
while the potentials v(x) describe diverse assignments of charge distribution.
Once v is specified, Schrödinger’s equation for N particles is solved for the ground
state (g.s.) Ψv, and the total energy E, the chemical potential µ, the g.s. expec-
tation values such as the density n(x) = 〈Ψv|n̂(x)|Ψv〉, can be evaluated and are
functionals of v.

For Coulomb Hamiltonians where V̂ is the interaction of the electrons with as-
signed point ion-charges, Kato proved that the ground state density n(x) has cusps
at the positions Ri of the ions, with ionic charges given by [9]:

Zi = − lim
‖x−Ri‖→0

a0

2

|gradn(x)|
n(x)

(2)

Therefore, the knowledge of the electronic density n(x) provides the ionic charges
Zie and their positions Ri, i.e. the potential v.
The question arises: can one trade v(x) for n(x)?. A general answer is provided
by the following fundamental theorem:
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Theorem 1.1 (Hohenberg and Kohn, 1964, [3]). Given Ĥ0, if for all 1-particle

external potentials v the ground state Ψv of Ĥ0 + V̂ is non-degenerate, then there
is a one to one correspondence between potential, ground state and density:

(3) v ⇐⇒ Ψ⇐⇒ n

provided that potentials differing by a constant, or states differing by a global phase
factor, are treated as equivalent.

Proof. The implications v =⇒ Ψ =⇒ n are obvious. Let us prove:
v ⇐= Ψ. Suppose that two potentials v` (` = 1, 2) produce the same ground state
Ψ. In the position representation:[

H0 +
∑

k=1..N

v`(xk)

]
Ψ(x1 . . .xN ) = E`Ψ(x1, . . . ,xN ), ` = 1, 2

Subtraction gives:
∑

k[v1(xk)−v2(xk)]Ψ(x1 . . .xN ) = (E1−E2)Ψ(x1 . . .xN ). Then,
for any choice x1, . . . ,xN such that Ψ(x1 . . .xN ) 6= 0, it is

[v1(x1)− v2(x1)] + . . .+ [v1(xN )− v2(xN )] = E1 − E2

This is only possible if v1(x)− v2(x) is a constant.
v ⇐= n. Suppose that two potentials v1(x) and v2(x) that do not differ by a
constant produce the same density function n. The ground states Ψ1 and Ψ2 are
different by the previous statement. Since the ground states are non-degenerate,
by the Riesz principle we have the strict inequality

E1 < 〈Ψ2|H1Ψ2〉 = E2 +

∫
dx [v1(x)− v2(x)]n(x).

An analogous relation holds if 1 and 2 are exchanged. Summation term by term
gives E1 + E2 < E2 + E1 which is absurd. �

As a consequence, the ground state properties of the system are all determined
by the density of particles n in the ground state.

Lieb proved that given a density n with integral N , there exists a Slater deter-
minant of N orthonormal functions in L2(R3) such that n(x) =

∑
k |φk(x)|2. The

functions are reported in [2].

2. Density functionals

To a density n (with integral N) there correspond a potential v and a ground
state energy E, computed with v. Since the energy is a minimum and n is given,
it is:

(4) E = min
Ψ→n
〈Ψ|H0|Ψ〉+

∫
dx v(x)n(x)

where the minimum is constrained to states that produce the density n. The
equation defines the Levy-Lieb functional of the density [8]:

(5) FLL[n] =: min
Ψ→n
〈Ψ|H0|Ψ〉

By means of it, the functional for the ground state energy is:

(6) E[n, µ] = FLL[n] +

∫
dx v(x)n(x)− µ

[∫
dxn(x) − N

]
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The ground state density is obtained by minimizing E[n, µ] with respect to n and
µ (the latter fixes the total number N):

(7) 0 =
δFLL[n]

δn(x)
+ v(x)− µ

The solution n depends on µ, which is fixed by imposing normalization to N .
The resulting density nN is used to evaluate the ground state energy E(N) =
FLL[nN ] +

∫
dx v(x)nN (x).

Proposition 2.1. µ is the chemical potential.

Proof.
dE(N)

dN
=

∫
dx

[
δFLL[nN ]

δnN (x)
+ v(x)

]
dnN (x)

dN
= µ

where (7) and the property
∫
dx dnN (x)/dN = 1 were used. �

The unsolved problem remains of the explicit expression of FLL[n]. A step forward
is provided by the Kohn and Sham theory.

3. The Kohn-Sham equation

For a system of N non-interacting particles (H0 = T , kinetic energy), the theo-
rem by Hohenberg and Kohn states that given a density n there exists a potential
vKS such that H = T +

∫
dxn(x)vKS(x) has ground state density n. This ground

state is the Slater determinant of the N lowest energy eigenfunctions of

− ~2

2m
(∇2φk)(x) + vKS(x)φk(x) = εk φk(x)(8)

and the density is
∑N

k=1 |φk(x)|2 = n(x). vKS is the Kohn-Sham potential, and
equation (8) is the Kohn-Sham equation [5].
The same energy and ground-state density can be obtained as the minimum of

E[n, µ] = T [n] +

∫
dx vKS(x)n(x)− µ

[∫
dxn(x)−N

]
with Levy-Lieb functional T [n] = minΨ→n〈Ψ|T |Ψ〉. The minimum solves

(9) 0 =
δT [n]

δn(x)
+ vKS(x)− µ.

The idea is to use the simple problem (8) to obtain the density of an interacting
many-body problem by an appropriate choice of the Kohn-Sham potential.

Let us write the unknown Levy-Lieb functional FLL[n] of the interacting problem
as a sum of meaningful terms: the kinetic functional of independent particles T [n],
the classical two-particle interaction energy with potential v(x, y), and an unknown
exchange-correlation functional:

(10) FLL[n] = T [n] + 1
2

∫
dxdy n(x)n(y)v(x,y) + Exc[n]

Then, eq.(7) for the density becomes:

0 =
δT [n]

δn(x)
+

∫
dy v(x,y)n(y) + vxc(x) + v(x)− µ,(11)

vxc(x) =:
δExc[n]

δn(x)
(12)
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dy v(x,y)n(y) is the Hartree (i.e. mean field) potential and vxc is named exchange-

correlation potential. In order that eq.(9) gives the same density of the interacting
model, we put

(13) vKS(x) = v(x) +

∫
dy v(x,y)n(y) + vxc(x)

The total energy (6) of the many-body system is then evaluated:

E(N) =T [n] + 1
2

∫
dxdy n(x)v(x,y)n(y) + Exc[n] +

∫
dx v(x)n(x)

=E0(N)− 1
2

∫
dxdy n(x)v(x,y)n(y) + Exc[n]−

∫
dx vxc(x)n(x)(14)

where E0 is the energy of the independent particles with Kohn-Sham potential (the
sum of the lowest N eigenvalues).

3.1. LDA. To overcome the ignorance of Exc[n] the simple Local Density Approx-
imation is often used. Introduce the exchange-correlation energy density:

Exc[n] =

∫
dx εxc(x, n)n(x)

In LDA the density is approximated by the expression valid for the homogeneous
electron gas (HEG) where the constant density is replaced by its value at x:
εLDA
xc (x, n) = εHEG

xc (n(x)). Explicit expressions of the latter are available, as func-
tions that interpolate the numerical data of the HEG ground state energy on some
range of density [11].
For example, the exchange term for HEG is Ex(n) = −V 3

4e
2(3/π)1/3n4/3. With

V =
∫
dx, and replacing n with n(x) inside the integral, an exchange functional is

obtained:

ELDA
x [n] =

∫
dxn(x) εLDA

x (n(x)) = −3e2

4

(
3

π

) 1
3
∫
dxn(x)4/3(15)

The functional derivative gives the exchange potential: vLDA
x (x) = 4

3ε
LDA
x (n(x)).

A computation starts with an approximate density n0(x) and some functional
expression for εxc. The Kohn-Sham potential is evaluated and the Kohn-Sham
equation is solved for the N lowest energy eigenstates. A new density is evaluated,
n′(x) =

∑
k |φk(x)|2, and the Kohn-Sham potential is updated. The process con-

tinues until the density stabilises.
The density is, in principle, the density of the interacting particles. The total en-
ergy of the interacting system is evaluated by (14), the chemical potential µ is the
highest Kohn-Sham eigenvalue.
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