
THE CONDUCTIVITY TENSOR

NOTES BY L.G.MOLINARI

1. Vector potential and Currents

The Hamiltonian of N identical particles with charge q minimally coupled to an
assigned vector potential A(x, t) is:

ĤA(t) =

N∑
i=1

1

2m
(p̂i −

q

c
A(x̂i, t))

2 + V̂ (x̂i) + Ûint(x̂1, ..., x̂n),(1)

= Ĥ − q

c

∫
dx ĵ(x)·A(x, t) +

q2

2mc2

∫
dx n̂(x) A2(x, t)

n̂(x) =
∑N
i=1 δ(x− x̂i) =

∑
µ ψ̂
†
µ(x)ψ̂µ(x) is the number density (in first and second

quantization) and ĵ is the current density of the particle number:

ĵ(x) =
1

2m

N∑
i=1

[p̂iδ(x− x̂i) + δ(x− x̂i)p̂i](2)

=
i~
2m

∑
µ

[
∂ψ†µ
∂x`

ψµ − ψ†µ
∂ψµ
∂x`

]
(3)

=
i~
2m

(
∂

∂x`
− ∂

∂y`

)∑
µ

ψ̂†µ(x)ψ̂µ(y)
∣∣∣
y=x

1.1. Continuity equation in absence of A. The meaning of j as a current for
the density is defined by the operator identity

[n̂(x), Ĥ] = −i~div ĵ(x)(4)

where Ĥ is the Hamiltonian in absence of vector potential. It implies a continuity
equation for the density, with the Heisenberg evolving operators:

∂

∂t
n̂H(x, t) = −div ĵH(x, t)(5)

The evaluation of the commutator [n̂(x), Ĥ] is the procedure to obtain the current.

The commutator only involves the kinetic part of Ĥ and operators of a single
particle: [δ(y − x̂), p̂2] = [δ(y − x̂), p̂] · p̂ + p̂ · [δ(y − x̂), p̂]. In the position
representation [δ(y − x̂), p̂] = i~∇xδ(y − x) = −i~∇yδ(y − x). Then, for each
particle: [δ(y − x̂), p̂2] = −i~∇y[δ(y − x̂)p̂ + p̂δ(y − x̂)]. The sum on all particles
gives the expression for j.
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1.2. Continuity equation in presence of A. Eq.(5) is a continuity equation for

the number density with the Hamiltonian Ĥ. With a vector potential the continuity
equation defines a new current.

Since ĤA may depend on time, the Heisenberg time-evolution of the charge den-
sity ρ̂(x) = q n̂(x) is ρ̂(x, t) = Û(t, 0)†ρ̂(x)Û(t, 0). With i~∂tÛ(t, 0) = ĤAÛ(t, 0),
the equation of motion is:

i~
∂

∂t
ρ̂(y, t) = Û(t, 0)†[ρ̂(y), ĤA(t)] Û(t, 0)

In the space of a single particle, v̂ = 1
m (p̂− q

cA) are the velocity operators.

[δ(y − x̂), v̂2] = 1
m [δ(y − x̂), p̂] · v̂ + 1

m v̂ · [δ(y − x̂), p̂]. With the results of the

previous evaluation we get: [δ(y − x̂), v̂2] = − i~m∇y[δ(y − x̂)v̂ + v̂δ(y − x̂)]

[ρ̂(y), ĤA(t)] = −i~divĴ(x, t)(6)

with a charged current1

Ĵ(x, t) =
q

2

N∑
j=1

δ(y − x̂j)v̂j + v̂jδ(y − x̂j)

=q ĵ(x)− q2

mc
n̂(x)A(x, t)(7)

With the Heisenberg time-evolution of operators being ruled by ĤA, we obtain the
continuity equation:

∂

∂t
ρ̂H(x, t) = −div ĴH(x, t)(8)

Exercise 1.1. Show that [vi, vj ] is gauge-invariant. For a uniform and static mag-
netic field along the z−axis, show that the spectrum of the kinetic Hamiltonian
H = m

2 (v2
x + v2

y) is discrete (Landau levels).

1.3. Gauge symmetry. Consider the unitary operator (written in first and second
quantization) with a function Λ:

ÛΛ = exp[
iq

~c

N∑
j=1

Λ(x̂j , t)] = exp[
iq

~c

∫
n̂(x)Λ(x, t)dx]

The action on the Hamiltonian is:

Ĥ ′A =Û†ΛĤAÛΛ = ĤA−∇Λ

It is also Û†Λ ĵUΛ = ĵ + q
mc∇Λ and Û†Λ ĴUΛ = Ĵ + q2

mc∇Λ.
The action of the unitary operator is compensated by the gauge transformation
A′ = A +∇Λ of the vector field. Then: Ĥ ′A′ = ĤA and Ĵ′A′ = ĴA.

1The two terms in the current are named ‘paramagnetic’ and ‘diamagnetic’.
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2. Linear response

Hereafter we set q = −e (electrons). According to the theory of linear response,
once the vector field is turned on at time t = 0, a current starts to flow (at equilib-
rium there is no current, 〈j〉eq = 0):

〈J`(x, t)〉 =〈J`(x, t)〉eq +
e

i~c

∫
dx′dt′θ(t− t′)〈[−ej`(x, t), jm(x′, t′)]〉eqAm(x′, t′)

=− e2

mc
n(x)eqA`(x)− e2

~c

∫
dx′Dret

`m (x, x′)Am(x′)

with retarded correlator iDret
`m (x, x′) = θ(t − t′) 〈[j`(x), jm(x′)]〉 (repeated space

indices are summed). In frequency space:

J`(x, ω) = − e2

mc
n(x)eqA`(x, ω)− e2

~c

∫
dx′Dret

`m (x,x′;ω)Am(x′, ω)

Let A describe an electric field: E = − 1
c
∂A
∂t . Then E(x, ω) = iω

c A(x, ω) and

J`(x, ω) =

∫
dx′σ`m(x,x′;ω)Em(x′, ω)(9)

with conductivity tensor

σ`m(x,x′;ω) = − e2

imω
n(x)δ(x− x′)δ`m −

e2

i~ω
Dret
`m (x,x′, ω)

For a homogeneous system the linear relation is

J`(k, ω) = σ`m(k, ω)Em(k, ω)(10)

σ`m(k;ω) = − e2

imω
nδ`m −

e2

i~ω
Dret
`m (k, ω)

A cancellation of imaginary terms must occur, to give the conductivity tensor that
appears in Ohm’s law. Then

σ`m(k;ω) = −Im
e2

~ω
Dret
`m (k;ω)(11)

For a uniform and constant electric field the limits k → 0 and ω → 0 are taken.
The singularity in ω = 0 must be compensated by the numerator.

3. The current-current correlator

An interesting model for a microscopic deduction of the conductivity tensor
consists of free electrons that scatter on fixed random impurities, with short range
potential.
The conductivity tensor results from the analytic continuation of the imaginary
time-ordered correlator

−D`m(x, τ ; x′, τ ′) = 〈T δj`(x, τ)δjm(x′, τ ′)〉eq(12)

=

(
i~
2m

)2∑
µν

[
∂

∂x`
− ∂

∂y`

] [
∂

∂x′m
− ∂

∂y′m

] 〈
T ψ†µ(x)ψµ(y)ψ†ν(x′)ψν(y′)

〉
where, in the end, y = x and y′ = x′, and only the connected parts are taken.

For electrons that only interact with the impurities, Wick’s theorem applies,
and the correlator factors into pairs of propagators. After the derivatives, and
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setting x = y and x′ = y′, one pair gives two disconnected bubble diagrams and is
discarded. The other pair gives a single diagram, whose expression depends on the
positions of the scatterers.
To avoid such unmanageable dependence, one considers the problem at a scale much
larger than the average distance of the scatterers, where it is meaningful to average
the correlator in the random positions of the scatterers. In doing so, it is not true
that the average of the correlator is the product of two averaged Green functions.
There are correlations among the two particles, as they may interact with the same
impurities. These correlations appear as vertex corrections2. If we neglect such
correlations, we are in a Hartree Fock approximation:〈

T ψ†µ(x)ψµ(y)ψ†ν(x′)ψν(y′)
〉
≈ −Gµν(y, x′)Gνµ(y′, x)

where the Green functions are averaged. The average makes them translation-
invariant. We assume that Gµν = δµνG :

D`m(x, x′) = 2

(
i~
2m

)2(
∂

∂x`
− ∂

∂y`

)(
∂

∂x′m
− ∂

∂y′m

)
G (y, x′)G (y′, x)

∣∣∣
x=y,x′=y′

= 2i2
(
i~
2m

)2 ∫
dkdq

(2π)6
(k` + q`)(qm + km)G (k, τ − τ ′)G (q, τ ′ − τ)ei(k−q)·(x−x′)

D`m(k, iν) = 2

(
~

2m

)2
1

~β
∑
iω

∫
dq

(2π)3
(k` + 2q`)(km + 2qm)G (k + q, iω + iν)G (q, iω)

Let us insert the spectral representation of the averaged propagator:

G (k, iω) =

∫
dω′

A(k, ω′)

iω − ω′

The Matsubara sum is done and gives:

D`m(k, iν) = − ~2

2m2

∫
dq

(2π)3
dω′dω′′(k` + 2q`)(km + 2qm)A(k + q, ω′)A(q, ω′′)

n(ω′)− n(ω′′)

iν − (ω′ − ω′′)
This expression has the form of a Lehmann representation of the correlator. The
retarded function is obtained by the replacement iν → ν + iη.

Dret
`m (k, ν) =− ~2

2m2

∫
dq

(2π)3
(k` + 2q`)(km + 2qm)∫

dω′dω′′A(k + q, ω′)A(q, ω′′)
n(ω′)− n(ω′′)

ν − (ω′ − ω′′) + iη

The imaginary part is obtained via the Plemelj-Sokhotski formula. The delta func-
tion is used to perform the integral in ω′:

ImDret
`m (k, ν) =

π~2

2m2

∫
dq

(2π)3
(k` + 2q`)(km + 2qm)∫

dωA(k + q, ω + ν)A(q, ω)[n(ω + ν)− n(ω)]

The ‘static’ and uniform limit of conductivity exists:

σ`m(0) = −e
2

~
lim
ν→0

1

ν
ImDret

`m (0, ν) = −e
2

~
4π~2

2m2

∫
dq

(2π)3
q`qm

∫
dωA2(q, ω)

dn(ω)

dω

2see Ch.8 in Mahan, Many particle physics, 3rd Edition, Kluwer Academics, 2000.
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If the system is isotropic, the integral is proportional to δ`m, then:

σ(0) =
4πe2

3~m

∫
dq

(2π)3

~2q2

2m

∫ +∞

−∞
dωA2(q, ω)

(
−dn(ω)

dω

)
(13)

This is eq. 8.49 in Mahan’s book (3rd ed.).
For T → 0 it is n(ω) = θ(µ~ − ω), then

σ(0) =
4πe2

3m~

∫
dq

(2π)3
εq A

2(q,
µ

~
) =

4πe2

3m~

∫ ∞
0

dερ(ε) εA2(q,
µ

~
)(14)

Let us use the following form of spectral function, which is explained by the theory
of electrons in the random environment

A(q, ω) =
1

2πτ

1

(ω − εq
~ )2 + 1

(2τ)2

(15)

The integral can be extended to −∞ as the function is evaluated at ~ω = µ and is
peaked around this value. The density, having slow variation near ε = µ, is factored
out. The integral becomes:

1

4π2τ2

∫ +∞

−∞
dε

ε

[(µ−ε~ )2 + 1
(2τ)2 ]2

=
µ~τ
π

With µρ(µ) = 3
4n, a Drude-like formula for the d.c. (direct current) conductivity

is obtained:

σd.c.(0) =
e2n

m
τ(16)

Here τ is the life-time provided by the 1-particle Green function, and it is evaluated
in the next section. However, in linear response the conductivity is a two-particle
average, and the omitted vertex corrections provide a different relaxation life-time
τS .

4. A model with random scatterers

A box of volume V contains NI impurities randomly distributed, with uniform
probability, at positions Rj . The potential energy felt by a particle is the sum of
the impurity potentials:

V (x) =

NI∑
j=1

v(x−Rj) =
1

V

∑
k

ṽ(k)eik·x
NI∑
j=1

e−ik·Rj

The range of the potential v is assumed to be much shorter than the mean separation

of the scatterers n
−1/3
I , where nI = NI/V .

The one-particle thermal Green function is expanded in Born series

g(1, 2) = g0(1, 2) +
1

~
g0(1, 3)V (3)g0(3, 2) +

1

~2
g0(1, 3)V (3)g0(1, 4)V (4)g0(4, 2) + . . .

On a scale much larger than the separation of the scatterers, the particle loses
memory of the positions of the scatterers, and one may replace g with an average
on the scatterers’ random positions. This requires the evaluation of averages

V (x1)...V (xk) =

∫
dR1...dRNI

V NI
V (x1)...V (xk)
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In the limit of large V with finite density nI :

V (x) = nI ṽ(0);

V (x1)V (x2) =
nI
V

∑
k

ṽ(k)ṽ(−k)eik·(x1−x2) + [nI ṽ(0)]2

V (x1)V (x2)V (x3) =
nI
V 2

∑
k1k2

ṽ(k1)ṽ(k2)ṽ(−k1 − k2)eik1·(x1−x3)+ik2·(x2−x3)

+
(
V (x1)V (x2) + V (x2)V (x3) + V (x1)V (x3)

)
[nI ṽ(0)] + [nI ṽ(0)]3

The factors nI ṽ(0) are removed by a Hartree resummation

gH(k, iω) =
1

iω − 1
~ (εk − µ+ nI ṽ(0))

The averaged Born series becomes:

G (1, 2) = gH(1, 2) + gH(1, 3)[
1

~2
V (3)gH(1, 4)V (4)]gH(4, 2) + . . .

The next term contains a cubic average that splits into a connected cubic one +
quadratic ones, etc.

1) A non-trivial partial resummation, valid for low density nI of scatterers, is done

with the self-energy Σ(1, 2) = 1
~2V (1)gH(1, 2)V (2). In momentum space:

Σ(k, iω) =
nI
~2

∫
dq

(2π)3
ṽ(q)gH(k + q, iω)ṽ(−q)

=
nI
~2

∫
dq

(2π)3

|ṽ(q− k)|2

iω − 1
~ (εq − µ)

At low T (i.e. small ω) it becomes:

Σ(k, iω) =
nI
~

∫
dq

(2π)3
|ṽ(q− k)|2

[
− P

εq − µ
− iπ signω δ(εq − µ)

]
In this approximation, the Green function has the form

G (k, iω) =
1

iω − 1
~ (ε̃k − µ) + i signω

2τk

(17)

with dispersion law ε̃(k) = ε0(k) + nI ṽ(0) + ~Σ(k, ε̃(k)/~) and

1

2τk
=
nI
~
π

∫
dq

(2π)3
|ṽ(q− k)|2δ(εq − µ).

The retarded function gives the spectral function:

A(k, ω) = − 1

π
Im G ret(k, ω) =

1

2πτk

1

[ω − ε̃k−µ
~ ]2 + 1

4τ2
k

Warning: here the energies are shifted by µ because the Hamiltonian is Ĥ − µN̂ .
In the evaluation of σ the µ term is removed.
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2) With the following self-energy, all connected averages are summed:

Σ?(1, 2) =
nI
~
ṽ(0)δ(1, 2) +

1

~2
V (1)gH(1, 2)V (2) +

1

~3
V (1)gH(1, 3)V (3)gH(3, 2)V (2)

+
1

~4
V (1)gH(1, 3)V (3)gH(3, 4)V (4)gH(4, 2)V (2) + . . .

In momentum space it is:

Σ?(k, iω) =
nI
~
ṽ(0) +

nI
~2

∑
q

ṽ(q)gH(k + q, iω)ṽ(−q)

+
nI
~3

∑
q1q2

ṽ(q1)gH(k + q1, iω)ṽ(q2)gH(k + q1+q2, iω)ṽ(−q1 − q2) + . . .

The sum can be done by introducing an auxiliary function where momentum con-
servation is violated:

Γ(k,k′, iω) =
1

~
ṽ(k′ − k) +

1

~2

∑
q

ṽ(q)gH(k + q, iω)ṽ(k′ − k− q)

+
nI
~3

∑
q1q2

ṽ(q1)gH(k + q1, iω)ṽ(q2)gH(k + q1+q2, iω)ṽ(k′ − k− q1 − q2) + . . .

It is Σ?(k, iω) = nIΓ(k,k, iω).
The function Γ solves a Dyson equation:

Γ(k,k′, iω) =
1

~
ṽ(k′ − k) +

1

~

∫
dq

(2π)3
Γ(k,q, iω)gH(q, iω)ṽ(k′ − q)

that compares with the equation for the T -matrix: T̂ (E) = v̂ + T̂ (E)ĝ0R(E)v̂. By
taking matrix elements it is

〈k|T (E)|k′〉 = 〈k|v̂|k′〉+

∫
dq〈k|T (E)|q〉〈q|g0R(E)|q〉〈q|v̂|k′〉

with iω = E/~ one identifies Γret with the T matrix: ~Γ(k,k′, 1
~E) = (2π)3〈k|T̂ (E)|k′〉.

Then

Im Σret(k, E~ ) =
nI
~

(2π)3Im〈k|T̂ (E)|k〉

=
nI
~

(2π)3 −~2k

16π3m
σ(E)

=− 1
2nIv(k)σ(k)(18)

(this is eq. 4.114 in Mahan). v(E) = ~k/m is the velocity, σ(k) is the total cross
section for scattering on a single impurity at momentum k. It follows that the
life-time is the mean time between two scattering events:

1

τ(k)
= nIv(k)σ(k) = 2πnI

∫
dk′

(2π)3
δ(εk − εk′)|Tk,k′ |2(19)

The inclusion of vertex corrections (the fact that two particle may interact with the
same impurity) modifies the characteristic time by an angular term in the integral
that accounts for the fact that scattering at small angles affects transport less than
scattering at large angles, eq.(23)
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5. The Boltzmann equation (1872)

Let f(x,p, t)dxdp be the number of particles at time t in the volume dxdp of
phase space, centred in (x,p). The number and the current densities are∫

dp f(x,p, t),

∫
dp f(x,p, t)

p

m

A kinetic equation describes the time evolution of the phase-space density of par-
ticles: there is a time variation due to the Hamiltonian flow, and a variation, on a
short time scale, due to collisions:

∂f

∂t
+
∂f

∂x
· p

m
+
∂f

∂p
F =

(
∂f

∂t

)
coll

(20)

F is the local external force acting on particles, the collision term involves joint two-
particle distributions before and after a two-body collision, and a scattering prob-
ability. In the Boltzmann equation f2(x1,p1; x2,p2; t) = f(x1,p1; t)f(x2,p2; t)
(hypothesis of molecular chaos). As such, it is a truncation of the BBGKY (Bogoli-
ubov, Born, Green, Kirkwood and Yvonne, around 1940) hierarchy of equations for
the distribution functions of many particles.(

∂f

∂t

)
coll

=

∫
dqπ(p,q→ p′,q′)[f(x,p′, t)f(x,q′, t)− f(x,p, t)f(x,q, t)]

At (x, t) an elastic collision takes place, with p,q ↔ p′,q′. Then p + q = p′ + q′

and p2 + q2 = p′2 + q′2.

5.1. The H theorem. For a gas of particles, Boltzmann showed that f tends
to the Maxwell-Boltzmann thermal distribution, and proved the H-theorem. The
theorem states that H(t) =

∫
dxdpf(x,p, t) log f(x,p, t) decreases in time.

dH

dt
=

∫
dxdp

∂f

∂t
[1 + log f ] =

∫
dxdp

(
∂f

∂t

)
coll

[1 + log f ]

=

∫
dxdpdqπ(p,q→ p′,q′)[f(x,p′, t)f(x,q′, t)− f(x,p, t)f(x,q, t)][1 + log f(x,p, t)]

The Hamiltonian flow contains gradients, which give boundary terms that vanish.
Now interchange particles with momenta p and q and sum:

dH

dt
=

∫
dxdpdq π(p,q→ p′,q′)[f(x,p′, t)f(x,q′, t)− f(x,p, t)f(x,q, t)]

[1 + 1
2 log f(x,p, t)f(x,q, t)]

Finally add the expression with initial and final states exchanged, and use dpdq =
dp′dq′. The rate π is unchanged:

dH

dt
=

1

4

∫
dxdpdq π(p,q→ p′,q′)[f(x,p′, t)f(x,q′, t)− f(x,p, t)f(x,q, t)]

log
f(x,p, t)f(x,q, t)

f(x,p′, t)f(x,q′, t)

By the inequality (y − x)(log x− log y) ≤ 0 we conclude that:

dH(t)

dt
≤ 0(21)



THE CONDUCTIVITY TENSOR 9

The entropy is defined as S = −kBH. The function H decreases and becomes
stationary at equilibrium if, everywhere: log f(p′) + log f(q′) = log f(p) + log f(q).
For a homogeneous system, since momentum and kinetic energy are conserved, it
must be:

log f(p) = a+ b · p + cp2

This gives the Maxwell-Boltzmann distribution.
Chapman and Enskog (1917), by exploiting the symmetries of the scattering

term, gave a microscopic derivation of the hydrodynamical description of matter.

5.2. Conductivity. For the problem of transport, in presence of a uniform and
static electric field, we seek a stationary and homogeneous solution, in the relaxation-
time approximation:

1

~
∂f(k)

∂k
(−eE) = −f(k)− f0(k)

τt(k)
(22)

where we replaced p with ~k and it is f0(k) = 2[eβ(εk−µ) + 1]−1 (the factor 2 is due
to spin). The index t is because τt is a relaxation time related to transport.
To linear order:

f(k) = f0(k) +
eτt(k)

~
∂f0

∂ε

~2k

m
·E

With v = ~k/m, the charged current density is

J = −e
∫

dk

(2π)3
f(k)v = −e2

∫
dk

(2π)3
τt(k)

∂f0

∂εk
v(v ·E)

If the system is isotropic, we replace vivj with 1
3v

2δij and v2 = 2
mε. We read

J = σE with

σ = −2e2

3m

∫
dk

(2π)3

∂f0

∂εk
εkτt(k) = −2e2

3m

∫
dερ(ε)

∂f0

∂ε
ετt(ε)

In the limit of low T , f0 = 2θ(εF − ε). The formula by Drude is obtained (with
ρ(εF )εF = 3

4n):

σ =
4e2

3m
ρ(εF )εF τt(εF ) =

e2nτt(εF )

m

Note: the relaxation time τt is for electrons at the Fermi surface, but the density
is that of all conduction electrons (not only those near the Fermi surface). The
relaxation time is not the same as the time interval among scattering events (as
obtained from the self-energy).
The transport relaxation time is evaluated (Mahan, eq.8.25) by writing the collision
term explicitly. In the collision with an impurity, momentum is changed from k to
k′ and back, of same modulus. The number of scatterings k → k′ per unit time
and unit volume is

2πnI

∫
dk′

(2π)3
δ(εk − εk′)|Tkk′ |2f(k)[1− f(k′)]
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the opposite process has rate 2πnI
∫

dk′

(2π)3 δ(εk − εk′)|Tk′k|2f(k′)[1 − f(k)]. The

difference gives the collisional variation (T-matrix is Hermitian):(
df

dt

)
coll

=2πnI

∫
dk′

(2π)3
δ(εk − εk′)|Tk′k|2[f(k′)− f(k)]

=2πnI
e~τt(k)

m2

∂f0

∂ε

∫
dk′

(2π)3
δ(εk − εk′)|Tk′k|2(k′ − k) ·E

The T matrix depends on the angle θ′ between the vectors k and k′. In polar coordi-
nates, with k along z-axis and E in the xzplane, it is: k′ = k(sin θ′ cosϕ′, sin θ′ sinϕ′, cos θ′)
and E = E(sin θ, 0, cos θ). Therefore:

(k′ − k) ·E = kE(sin θ′ cosϕ′ sin θ + cos θ′ cos θ − cos θ)

The angular integral in ϕ′ cancels the first term, then:(
df

dt

)
coll

=− 2πnI
e~τt(k)

m2

∂f0

∂ε

∫
dk′

(2π)3
δ(εk − εk′)|Tk′k|2(1− cos θ′)k ·E

=− 2πnI [f(k)− f0(k)]

∫
dk′

(2π)3
δ(εk − εk′)|Tk′k|2(1− cos θ′)

A cencellation occurs with the left-hand side and what remains is:

1

τt(k)
= 2πnI

∫
dk′

(2π)3
δ(εk − εk′)|〈k|T̂ (ε)|k′〉|2(1− k·k′

k2 )(23)

The relaxation time with the self-energy is the same integral, without the angular
factor. The latter takes into account the geometry of scattering.
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