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Preface

It is not completely obvious what a course named “Mathematical Methods for
Physics” should include. Of course, an introduction to complex analysis, Fourier
integral, series expansions ... the list continues but time is limited, and the rest
is inevitably a matter of choice.
In preparing these notes I felt the need to present the selected topics with enough
rigour and amplitude to offer methodological examples, interesting applications.
I also grew in awareness of the beauty of the topics, true gems of intellectual
achievement, and the giants who made them. Here and there I provide some
historical notes.
The notes are still a “work in progress”, as learning never ends. They cannot
replace the vision and depth of books; the good student explores the library
(and internet) and makes his own discoveries.

I mention some authors of textbooks that I found particularly useful and in-
spiring (others are specified in the footnotes). Complex analysis: L. V. Ahlfors,
J. Bak and D. J. Newman, R. P. Boas, P. Henrici, E. Hille, A. I. Marku-
shevich, R. Remmert. Functional analysis: Ph. Blanchard and E. Brüning,
A. Kolmogorov and S. Fomine, M. Reed and B. Simon, K. Schmüdgen, A text-
book with similarities with these notes is: W. Appel, Mathematics for physics
and physicists, Princeton (2007).

I thank my colleague Mario Raciti for many useful comments.
The last line is devoted to my students: it is because of their participation and
interest that these notes improved in the years, and are now collected in this
volume.
Milano, 1 january 2014.

Luca Guido Molinari
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Chapter 1

COMPLEX NUMBERS

1.1 Cubic equation and imaginary numbers.

Imaginary numbers appeared in algebra during the Reinassance, with the so-
lution of the cubic equation12. The problem of solving the quadratic equation
x2 + 1 = 0 was considered meaningless, while a real cubic equation always has
a real solution. However, the available method eventually provided the solution
as a sum of terms with imaginary numbers.

The priority for the algebraic solution of the cubic equation is uncertain: it
was probably known to Scipione del Ferro, a professor in Bologna, and Nicolò
Fontana (Tartaglia). The general solution3 was published in the book Ars
Magna (1545) by Gerolamo Cardano (Pavia 1501, Rome 1576). It is based
on the algebraic identity

(t− u)3 + 3tu(t− u) = t3 − u3

which he obtained by geometric construction4. After setting x = t − u, the
identity becomes the reduced cubic equation

x3 + 3px+ q = 0 (1.1)

with tu = p and t3 − u3 = −q. Therefore, the solution x = t − u of (1.1) is
obtained by solving the quadratic equations for t3 and u3, in terms of p and q.
Raffaello Bombelli (Bologna 1526, Rome? 1573) in his treatise Algebra was the

1Before the modern era, the solution was obtained by geometric means; the Persian poet
and scientist Omar Khayyam (IX cent.) discussed it as the intersection of a parabola and a
hyperbola, by methods that foreran Cartesian geometry.

2Refs: Jacques Sesiano, An Introduction to the History of Algebra, Mathematical World
27, AMS; Morris Kline, Mathematical Thought from Ancient to Modern Times, 3 voll, Oxford
University Press 1972; Carl B. Boyer, A History of Mathematics, Princeton University Press
1985. A source of historical news and pictures is the Mathematics Genealogy Project (https:
//www.genealogy.ams.org).

3The use of letters to denote parameters of equations was introduced by Francois Viete
few years later; Cardano solved examples of cubic equations, with all possible signs.

4Consider a cube with edge length t. If three concurring edges are partitioned in segments
of lengths u and t − u, the cube is cut into two cubes and four parallelepipeds. The volume
is t3 = u3 + (t − u)3 + 2tu(t − u) + u2(t − u) + u(t − u)2; simple algebra gives the identity
(W. Dunham, Journey through Genius, the Great Theorems of Mathematics, Wiley Science
Ed. 1990).

3

https://www.genealogy.ams.org
https://www.genealogy.ams.org


CHAPTER 1. COMPLEX NUMBERS 4

first to regard imaginary numbers as a necessary detour to produce real solutions
from real cubic equations. He studied the equation x3 − 15x − 4 = 0, with
real solution x = 4. Cardano’s method works as follows: from tu = −5 and
t3 − u3 = 4 obtain t6 − 4t3 + 125 = 0 with solutions t3 = 2±

√
−121. Bombelli

showed that 2±
√
−121 = (2±

√
−1)3 so that t± = 2±

√
−1. With any choice of

sign, a root is x1 = t±+5/t± = 4. The other two are then found x2,3 = −2±
√

3.

Exercise 1.1.1. Show that any cubic equation can be brought to the form z3 ±
3z + q = 0 by a linear transformation. For q real, find the roots through the
substitution w = s∓ (1/s).

1.2 The quartic equation.

The Ars Magna also contains the solution of the quartic equation, by Cardano’s
disciple Ludovico Ferrari (1522, 1565). In modern language, a linear change of
the variable puts the equation in the form x4 = ax2 + bx+ c. The great idea is
the introduction of an auxiliary parameter y in the equation:

(x2 + y)2 = (a+ 2y)x2 + bx+ (y2 + c).

The parameter is then chosen to make the right hand side (r.h.s.) of the equation
the square of a binomial in x, so that square roots of both sides can be taken.
The condition is the cubic equation for y, 0 = b2 − 4(a + 2y)(y2 + c), which
may be solved by Cardano’s formula. The value of y is entered in the quartic
equation, (x2 + y)2 = (a+ 2y)[x+ b/2(a+ 2y)]2, and a square root brings it to
a couple of quadratic equations in x.

Example 1.2.1. To solve the quartic equation x4 − 3x2 − 2x + 5 = 0, rewrite
it as (x2 + y)2 = (3 + 2y)x2 + 2x− 5 + y2. Choose y such that r.h.s. is a perfect
square in x, i.e. 2y3 + 3y2 − 10y − 16 = 0 with a solution y = −2. Then the
equation is (x2 − 2)2 = −(x − 1)2, i.e. x2 − 2 = ±i(x − 1). The two quadratic
equations give the four solutions of the quartic.

The achievement started a great effort to solve higher order equations. Van-
dermonde and especially Giuseppe Lagrange (Torino 1736, Paris 1813) empha-
sized the role of the permutation group and of symmetric functions. In 1770
Lagrange obtained a new method of solution of the quartic equation,

z4 + a1z
3 + a2z

2 + a3z + a4 = 0.

Since it is instructive, we give a brief description of it. The coefficients of the
equation are symmetric functions of the roots,

a1 = −
∑
i

zi, a2 =
∑
i<j

zizj , a3 = −
∑
i<j<k

zizjzk, a4 = z1z2z3z4.

Any other symmetric function of the roots is expressible in terms of them. The
combination s1 = z1z2 + z3z4 is not symmetric under all 4! permutations. By
doing all permutations only two new combinations appear: s2 = z1z3 +z2z4 and
s3 = z1z4 + z2z3.
The three quantities A1 = s1 +s2 +s3, A2 = s1s2 +s1s3 +s2s3 and A3 = s1s2s3

are symmetric in s1, s2 and s3, and are invariant under permutations of the roots
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zi. As such, they may be expressed in terms of the coefficients ai: A1 = a2,
A2 = a1a3− 4a4, and A3 = a2

3 + a2
1a4− 4a2a4. The si are the roots of the cubic

equation s3 − A1s
2 + A2s − A3 = 0, and are evaluated by Cardano’s method.

Next, the roots zi are found.

1.3 Beyond the quartic.

For the fifth-order equation Lagrange eagerly tried to guess a polynomial com-
bination of the roots that, under the 5! permutations, could produce at most 4
combinations s1, ..., s4 that would solve a quartic equation. His disciple Ruffini
(Modena 1765, 1822) showed that such a polynomial should be invariant under
5!/4 permutations of the roots zi, and does not exist.

The Norwegian mathematician Niels Henrik Abel (1802, 1829) put the last
word in the memoir On the algebraic resolution of equations published in 1824.
He proved that no rational solution involving radicals and algebraic expressions
of the coefficients exists for general equations of order higher than four. The
identification of the special equations that can be solved by radicals was done
by Evariste Galois, by methods of group theory to which he much contributed.
An interesting result is: an equation is solvable by radicals if and only if, given
two roots, the others depend rationally on them (1830)5.

In 1786 E. S. Bring, by exploiting an earlier method by Tschirnhausen (1683),
showed that any equation of fifth degree can be brought to the amazingly simple
form z5 + q4z + q5 = 0, and then to z5 + 5z + a = 0 if q4 6= 0 (in general, an
equation xn+a1x

n−1 + · · ·+an = 0 can be reduced to yn+q4y
n−4 + · · ·+qn = 0

by means of the variable change y = p0 +p1x+ · · ·+p4x
4 and solving equations

of degree 2 and 3).
Charles Hermite succeeded in obtaining a solution of the quintic equation, in
terms of elliptic functions (1858)6. Soon after Leopold Kronecker and Francesco
Brioschi7 gave alternative derivations8.
In 1888 the solution of the general sixth order equation was obtained by Brioschi
and Maschke, in terms of hyperelliptic functions.
Of course no one would solve even a quartic by the methods described, as
efficient numerical methods yield the roots with the desired accuracy.

5for a presentation of Galois theory, see V. V. Prasolov, Polynomials, Springer (2004)
6for example, the equation y3−3y+1 = 0 can be solved with the aid of trigonometric tables:

put y = 2 cosx and obtain 0 = 2 cos(3x) + 1; then 3x = 2
3
π and 3x = 4

3
π i.e. y1 = 2 cos( 2

9
π)

and y2 = 2 cos( 4
9
π); the other solution is y3 = −y1 − y2.

7F. Brioschi (1824, 1897) taught mechanics in Pavia. He then founded Milan’s Politec-
nico (1863), where he taught hydraulics. He participated in Milan’s insurrection, and became
member of the Parliament. Among his students (in Pavia): Giuseppe Colombo (he inaugu-
rated in 1883 in Milan the first thermo-electric generator in continental Europe, by lighting
the lamps of the Scala theatre. The cables were manufactured by the newly born Pirelli.
Colombo succeeded to Brioschi in the direction of the Politecnico), Eugenio Beltrami (non
Euclidean geometry, singular values of a matrix, Laplace Beltrami operator in curved space)
and Luigi Cremona (painter).

8A discussion of the quintic eq. is in J.V.Armitage and W.F.Eberlein, Elliptic functions,
Lon. Math. Soc. Student Text 67 (2006). See also http://wapedia.mobi/en/Bring_radical,
or V. Barsan, Physical applications of a new method of solving the quintic equation,
arXiv:0910.2957v2; G. Zappa, Storia della risoluzione delle equazioni di V e VI grado ...,
Rend. Sem. Mat. Fis. Milano (1995).

http://wapedia.mobi/en/Bring_radical
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1.4 The complex field

Complex numbers were used in the early XVIII century by Leibnitz. Jean Ber-
noulli, Abraham De Moivre and by the genius Leonhard Euler (1707, 1783)
who discovered several relations involving trigonometric, exponential and lo-
garithmic functions with imaginary argument.
The great improvement in the perception of complex numbers as well defined en-
tities was their visualisation as vectors or points, by the Norwegian cartographer
Caspar Wessel (1797) and the mathematician Jean Robert Argand (1806). It
were Gauss’ authority and investigations since 1799, that gave complex numbers
a status in analysis.

In 1833 the Irish mathematician William R. Hamilton (1805, 1865) presented
before the Irish Academy an axiomatic setting of the complex field C as a formal
algebra on pairs of real numbers. In 1867 Hankel proved that the algebra of
complex numbers is the most general one that fulfils all fundamental laws of
arithmetic (Boyer).
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Figure 1.1: Leonhard Euler (1707, 1783) belongs to an impressive geneal-
ogy of mathematicians, rooted in Leibnitz and the Bernoullis. Euler spent many
years in St. Petersburgh, at the dawn of the Russian mathematical school. He
discovered several important formulae for complex functions, and established
much of the modern notation. His student Joseph Lagrange was the advisor of
Fourier and Poisson. Poisson’s students Dirichlet and Liouville mentored illus-
trious mathematicians that contributed to the advancement of complex analysis
in Paris (on the side of Dirichlet: Darboux, and then Borel, Cartan, Goursat,
Picard, and then Hadamard, Julia, Painlevé ...; on the side of Liouville: Catalan
and then Hermite, Poincaré, Padé, Stieltjes ...).

Figure 1.2: Carl Friedrich Gauss (1777, 1855) became a celebrity after
computing the orbit of the first asteroid Ceres, discovered and lost of sight by
padre Piazzi in Palermo (1801). To interpolate the best orbit from observed
points, Gauss devised the Least Squares method. The orbital elements placed
Ceres in the region were astronomers were searching for the fifth planet, that
fitted in Titius and Bode’s law. Gauss proved the “fundamental theorem of
algebra”: a polynomial of degree n has n zeros in the complex plane. He
anticipated several results of complex analysis, which he did not publish. His
genealogy contains venerable scientists as the astronomers Bessel and Encke, and
mathematicians: Dedekind, Sophie Germain, Gudermann, and Georg Riemann.
Among Gauss’ “nephews” are Ernst Kummer and Karl Weierstrass.



Chapter 2

THE FIELD OF
COMPLEX NUMBERS

2.1 The field C
Definition 2.1.1. The field of complex numbers C is the set of pairs of real
numbers z = (x, y) with the binary operations of sum and multiplication:

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2), (2.1)

(x1, y1)(x2, y2) = (x1x2 − y1y2, x1y2 + y1x2) (2.2)

The sum is commutative, associative, with neutral element (called zero) (0, 0)
and opposite (−x,−y) of (x, y). The multiplication is commutative, associa-
tive, with unity (1, 0), inverse element of any nonzero number, and with the
distributive property (z1 + z2)z3 = z1z3 + z2z3.

Exercise 2.1.2. Evaluate the inverse of a non-zero complex number (x, y).

The subset of elements (x, 0) is closed under both operations and identifies
with the field of real numbers R. Thus the field C is an extension of the field R.
If an element (x, 0) is identified with x, a pair can be written as

(x, y) = (1, 0)(x, 0) + (0, 1)(y, 0) = 1x+ iy = x+ iy,

where i is Euler’s symbol for the imaginary unit (0, 1). This is the usual rep-
resentation of complex numbers. Additions and multiplications are done by
regarding i as a unit with the property i2 = (−1, 0) = −1.

Proposition 2.1.3. C is not an ordered field.

Proof. Suppose that for any pair of different complex numbers it is either z < w
or z > w; we show that the rules a < b → a + c < b + c and a < b, c > 0 →
ac < bc are violated. Fix i > 0 then i2 > 0 i.e. −1 > 0. Add 1 to get 0 > 1,
multiply by i2 > 0 and obtain 0 > −1, which contradicts −1 > 0.

8
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2.2 Complex conjugation

The complex conjugate (c.c.) of z = x+ iy is z = x− iy.
Properties: z = z (c.c. is an involution), z1 + z2 = z1 + z2 and z1z2 = z1z2.
The real numbers x and y are respectively the real and imaginary parts of z:

x = Re z =
z + z

2
, y = Im z =

z − z
2i

.

2.3 Modulus

The modulus of a complex number is |z| =
√
x2 + y2. It is |z|2 = zz and

|z| = |z|, Re z ≤ |z| and Im z ≤ |z|. The following properties qualify the
modulus as a norm and C as a normed space:

|z| ≥ 0, |z| = 0 iff z = 0, (2.3)

|z1z2| = |z1||z2|, (2.4)

|z1 + z2| ≤ |z1|+ |z2| (triangle inequality) (2.5)

Proof. The first property is obvious. The second one: use |z1z2|2 = z1z2z1z2.
Triangle inequality: |z1 + z2|2 = (z1 + z2)(z1 + z2) = |z1|2 + |z2|2 + z1z2 + z1z2;
the last two terms are 2 Re(z1z2) ≤ 2|z1z2| = 2|z1||z2|. Then |z1 + z2|2 ≤
|z1|2 + |z2|2 + 2|z1||z2| = (|z1|+ |z2|)2.

If 1/z is the inverse of z it is |z(1/z)| = 1 i.e. |1/z| = 1/|z|.
The modulus simplifies the evaluation of the inverse of a complex number:

1

z
=

z

|z|2
i.e.

1

x+ iy
=

x

x2 + y2
− i y

x2 + y2

Remark 2.3.1. Property (2.4) has two interesting consequences:
1) The unit circle |z| = 1 is closed for complex multiplication.
2) For any four integers a, b, c, d there are integers p = ad+ bc and q = |ac− bd|
such that (a2+b2)(c2+d2) = q2+p2. For example: (12+52)(12+72) = 122+342.

Exercise 2.3.2. Prove that |z1 + z2|2 + |z1 − z2|2 = 2|z1|2 + 2|z2|2 (in a paral-
lelogram, the sum of the squares of the diagonals equals the sum of the squares
of the sides).

Exercise 2.3.3. Prove the very useful inequalities:

1√
2
(|x|+ |y|) ≤ |x+ iy| ≤ |x|+ |y| (2.6)∣∣∣ |z| − |w| ∣∣∣ ≤ |z − w| (2.7)

Hint: x2+y2 ≥ 2|xy|, then add x2+x2; |z−w|2 = (|z|−|w|)2+2|z||w|−2Re(zw).

2.4 Argument

A nonzero complex number z = x + iy may be represented as z = |z|(cos θ +
i sin θ) (polar representation), where cos θ = x/|z| and sin θ = y/|z|. The number
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cos θ + i sin θ belongs to the unit circle, where multiplication acts additively on
phases:

(cos θ1 + i sin θ1)(cos θ2 + i sin θ2) = cos(θ1 + θ2) + i sin(θ1 + θ2).

De Moivre’s formula follows: (cos θ + i sin θ)n = cos(nθ) + i sin(nθ).
At this stage, Euler’s representation cos θ + i sin θ = eiθ is introduced as a

definition. It is consistent with the rule eiθeiϕ = ei(θ+ϕ). Then we write:

z = |z|(cos θ + i sin θ) = |z|eiθ (2.8)

The phase θ is the argument of z (θ = arg z) and is defined up to integer
multiples of 2π. Note the property arg (z1z2) = arg z1 + arg z2 (mod. 2π).
The principal argument Arg z is the single determination such that

−π < Arg z ≤ π.

With the choice −π2 < Arctan s ≤ π
2 , the geometric construction in fig.2.1 shows

that

Arg z = 2 Arctan
y

|z|+ x
(2.9)

The sign of Arg z is the same as y = Im z. The real negative semi-axis is a line
of discontinuity (branch cut). By definition its points have Arg z = π.
It is not in general true that Arg(ab) = Arg(a) + Arg(b).

Z

ΘΘ�2

Figure 2.1: Given z = x + iy, the angle θ = Argz is twice the angle at the
circumference. The latter is always in the interval (−π2 ,

π
2 ], and y = (|z| +

x) tan(θ/2) with the correct sign.

Exercise 2.4.1. Show that:

Arg(ab) = Arg a+ Arg b+


−2π if π < Arg a+ Arg b

0 if −π < Arg a+ Arg b ≤ π
2π if Arg a+ Arg b ≤ −π

(2.10)

Other single determinations of the argument are possible, always having a
line of discontinuity from the origin to infinity.
For example, if the line is chosen as the imaginary half line z = ix (x ≥ 0), the
range of values of this arg is (− 3

2π,
1
2π]. The points on the cut, by definition,

have argument 1
2π; other values are: arg(−1 + i) = − 5π

4 , arg (−1) = −π, arg
1 = 0.
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Exercise 2.4.2. Write the numbers 1± i in polar form.

Exercise 2.4.3. Show that eia + eib = 2 cos a−b2 e
i
2 (a+b), a, b ∈ R

Exercise 2.4.4. Show that the numbers

z =
1 + is

1− is
, s ∈ R

belong to the unit circle. Is the map s→ Arg z invertible? If H is a Hermitian
matrix, show that U = (1 + iH)(1− iH)−1 is a unitary matrix.

Now an unexpected nice result:

Theorem 2.4.5 (Three Gap Theorem). If θ
2π is irrational, then N points einθ,

n = 0, 1, . . . , N − 1, have at most 3 different gaps on the circle.
(Vera T. Sós, 1957; see arXiv:2208.01680).

Note that for N → ∞ the points einθ are uniformly distributed in the unit
circle (Equidistribution theorem, H. Weyl).

Figure 2.2: Left: the N = 24 points exp(in
√

2), n = 0, ..., 23 are separated by
three gaps. For N = 26 (right), the new points exp(i24

√
2), exp(i25

√
2) modify

the gaps with neighbors, but still there are three gap-sizes (now the same as
N = 24).

2.5 Exponential

The exponential of a complex number z = x+ iy is defined by the product

ez = exeiy = ex(cos y + i sin y) (2.11)

It exists for all z, with the fundamental property

ezeζ = ez+ζ (2.12)

The exponential function is periodic, with period 2πi: ez+2πi = ez for all z.
The trigonometric functions

cos z = 1
2 (eiz + e−iz), sin z = 1

2i (e
iz − e−iz)
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are periodic with period 2π, and cos2 z + sin2 z = 1. Note that they are
unbounded on the imaginary axis. One also defines tan z = sin z/ cos z and
cot z = 1/ tan z. The hyperbolic functions

cosh z = 1
2 (ez + e−z), sinh z = 1

2 (ez − e−z)

are periodic with period 2πi, and cosh2 z − sinh2 z = 1. They are unbounded
on the real axis. One defines tanh z = sinh z/ cosh z and coth z = 1/ tanh z.

Exercise 2.5.1.
1) Show that |ez| = ex, ez = ez.
2) Find the zeros of sinh(az + b), a, b ∈ R.
3) Show that | cosh(x+ iy)| ≤ coshx.

Exercise 2.5.2 (Chebyshev polynomials).
Show that cos(nθ) is a polynomial of degree n in t = cos θ. It is the Chebyshev
polynomial of the first kind Tn(t). Evaluate the first few polynomials.
Show that they have the following properties of recursion and orthogonality:

Tn+1(t)− 2t Tn(t) + Tn−1(t) = 0 (2.13)∫ 1

−1

dt√
1− t2

Tm(t)Tn(t) =


0 n 6= m

π n = m = 0

π/2 n = m 6= 0

(2.14)

Prove similar properties for the Chebyshev polynomials of the second kind:

Un(t) =
sin[(n+ 1)θ]

sin θ
(t = cos θ).

Hint: 2 cos(nθ) = (cos θ + i sin θ)n + c.c.

2.6 Logarithm

The logarithm of a complex number z is the exponent that solves the equality
elog z = z. Note that log z is not defined in z = 0. Because of the periodicity
of the exponential function, there are an infinite number of solutions: if log z is
a solution, also log z + i2kπ is a solution for any integer k. All such solutions
are denoted as log z. The product rule of exponentials implies log(z1z2) =
log z1 + log z2. In particular, with z = |z|eiθ one obtains

log z = log |z|+ i arg z + i 2kπ, k ∈ Z (2.15)

While the real part of log z is well determined as the log of a positive real
number, the imaginary part reflects the same indeterminacy of the argument of
a complex number.
It is natural to define the principal logarithm of a number as

Log z = log |z|+ iArg z (2.16)

The Log has a cut of discontinuity on the real negative axis: for vanishing ε > 0
and x < 0: Log (x + iε) = log |x| + iπ (the formula holds also for ε = 0, Log
(−1) = iπ) and Log (x− iε) = log |x| − iπ.
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Remark 2.6.1. By ex.2.4.1, it is Log(ab) = Log a + Log b when a and b are
in sight (i.e. the segment [a, b̄] does not cross the negative real axis). It is
Log(a/b) = Log a− Log b when a and b are in sight.

In full analogy with the argument, different single-valued determinations of
the log are possible and always have a line of discontinuity (branch cut) from 0
(branch point) to ∞. For example, log(−i) is −iπ2 if the Log is used; it is i 3π

2 if
the log is chosen with cut on the real positive half-line. It is −iπ2 if the cut is
on the positive imaginary axis.

Exercise 2.6.2. Evaluate Log 1+i
1−i , Log(ieiθ).

Exercise 2.6.3. What are Log(−z), Log z, Log(1/z), and Log(1/z) in terms
of Log z?

Exercise 2.6.4. Prove that, for 0 < θ < π
2 : Log (1 − eiθ) = log[2 sin( 1

2θ)] +
i 1

2 (θ − π).

2.7 Power of a complex number

The power of a complex number is defined as

za+ib = e(a+ib) log z (2.17)

In general it is multi-valued (such is the log).
If the exponent is real: za = |z|a exp (i a argz + i 2πak), k = 0,±1,±2, . . .

• a ∈ Z: the power z±n is single-valued.

• a ∈ Q (a = ±p/q, with p and q coprime): the sequence of powers is
periodic, and only q are distinct.
Example: (1 + i)2/3 = (

√
2eiπ/4)2/3 = 21/3 exp(iπ6 + i 4

3kπ), the values
k = 0, 1, 2 give three distinct powers.

• a is irrational: the set of powers is infinite.
Example: (1+i)π = (

√
2eiπ/4)π = 2π/2 exp(iπ2/4+i2π2k), k = 0,±1,±2, . . ..

If the exponent is complex: za+ib = |z|ae−b(argz+2πk)ei[b log |z|+a(argz+2πk)].
Examples: 1i = ei log 1 = {ei(0+2πik)}k∈Z = {1, e±2π, e±4π, . . . };
(1 + i)1−i = {e(1−i)(log

√
2+iπ4 +2πik)}k∈Z = {

√
2eπ( 1

4 +2k)ei(
π
4 +2πk−log

√
2)}k∈Z

Exercise 2.7.1. Evaluate: 81/3, (−1)1/5, i1/4, (1− i)1/6.

Exercise 2.7.2. Show that the square roots of z = a+ ib are:

±

√√a2 + b2 + a

2
+ i

b

2

√
2√

a2 + b2 + a


Exercise 2.7.3. Show the properties: |za| = |z|a, zazb = za+b, (zζ)a = zaζa

(for multivalued powers, the sets in the two sides must coincide).
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2.8 The fundamental theorem of algebra.

The theorem states that in C any polynomial of degree n with complex coeffi-
cients has precisely n zeros1. Then, a polynomial p(z) = a0z

n + · · · + an has
the unique factorization

p(z) = a0(z − z1)(z − z2) · · · (z − zn), (2.18)

where z1, . . . , zn are the zeros (roots). A proof was found by Carl Friedrich
Gauss, in his doctorate dissertation Demonstratio nova theorematis omnem
functionem algebraicam rationalem integram unius variabilis in factores reales
primi vel secundi gradus resolvi posse (1799). He showed that for any polyno-
mial p(x+ iy) = u(x, y) + iv(x, y) (with real coefficients) the curves u(x, y) = 0
and v(x, y) = 0 necessarily intersect in the plane. Before him, Girard (1629),
d’Alembert (1748) and Euler (1749), proved the weaker statement that any
polynomial with real coefficients factors into real linear and quadratic terms.

A simple proof will be given with Liouville’s theorem for entire functions.

2.9 The cyclotomic equation

The roots of the equation zn = 1 are the corners of a regular n-polygon inscribed
in the unit circle:

ζk = cos( 2kπ
n ) + i sin( 2kπ

n ), k = 0, . . . , n− 1.

The equation zn − 1 = 0 implies the sums ζp0 + · · ·+ ζpn−1 = 0, p = 1, . . . , n− 1.
Since zn − 1 = (z − 1)(zn−1 + · · · + z + 1), the roots ζ1, . . . , ζn−1 solve the

cyclotomic equation zn−1 + · · ·+ z + 1 = 0.
In 1796 Gauss, then a young student, two millennia after Euclid, announced

the possibility to construct by ruler and compass the regular polygon with
n = 17 sides. Five years later he gave a sufficient condition2 for a polygon
to be constructible by ruler and compass: n = 2k pm1

1 pm2
2 · · · , where the factor

2k accounts for repeated duplications of the number of sides of a more basic
polygon. The factors p are either 1 or a Fermat number (i.e. p = 22q + 1) that
is also a prime number3. The polygons n = 3, 4, 5 (i.e. p = 1, 3, 5) and dupli-
cations (n = 6, 8, 10, 12, . . . ) were known since Euclid’s time. The next Fermat

prime number is p = 222

+ 1 = 17. Gauss was so proud of his discovery, that
he asked for a 17-polygon to be carved on his gravestone (but the stonemason
declined to do it)4.

1This intuitive explanation is from T. Gowers, The Princeton companion to Mathematics,
Princeton Univ. Press (2009). Let p(z) = zn + a1zn−1 + · · · + an, with an 6= 0. For very
large R the set p(Reiθ) ≈ Rneinθ, θ ∈ [0, 2π), approximates a circle of radius Rn run n times,
that contains the origin. For very small R, the set p(Reiθ) ≈ an−1Reiθ + an is a circle does
not contain the origin. By continuity, there must be a value R such that the set contains the
origin i.e. an angle θ such that p(Reiθ) = 0.

2Wantzel (1836) showed that it is also necessary.
3Euler showed that the Fermat number 232+1 (q = 5) is not a prime number. L. Anderson,

J. S. Chahal, Jaap Top, The last chapter of the Disquisitiones of Gauss, https://doi.org/
10.48550/arXiv.2110.01355.

4The tale of the (28 + 1)−gon is narrated in the nice book Dr. Euler’s fabulous formula
by Paul Nahin, Princeton Univ. Press (2006).

https://doi.org/10.48550/arXiv.2110.01355
https://doi.org/10.48550/arXiv.2110.01355
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Example 2.9.1. Solve the equation z5 = 1 and obtain cos 2π
5 = 1

4 (
√

5− 1).

A: the sum of the zeros ζk = ei2πk/5, k = 0, .., 4 is zero (the term z4 is missing in
the equation). Then the real part of the sum is zero: 1 + 2 cos 2π

5 + 2 cos 4π
5 = 0.

Next use 2 cos2 2π
5 = 1 + cos 4π

5 and the result is found.

Exercise 2.9.2. Let {ζk}n−1
k=0 be the roots of zn = 1. Show that:

an − bn = (a− b)(a− ζ1b) · · · (a− ζn−1b) (2.19)

Exercise 2.9.3. Consider the polygon with corners at the n roots of unity
1, ζ, . . . , ζn−1 and draw the diagonals connecting 1 to the other corners. Show
that the product of their lengths is precisely n: |1− ζ| · · · |1− ζn−1| = n5.

Exercise 2.9.4 (Discrete Fourier transform6). Show that the following N ×N
matrix

Frs =
1√
N

exp(i
2π

N
rs) r, s = 1...N

is unitary. Evaluate F 2 and show that F 4 = 1. What are the eigenvalues of F?
(Hint: you need the sum of powers of the N roots of unity).

Exercise 2.9.5 (Madhava Math. competition, 2013). Let ζ0, . . . , ζN−1 be the

N roots of unity. Show that the sum of squared distances
∑N−1
k=0 |z − ζk|2 is the

same for all z on the unit circle.

Example 2.9.6. Evaluate the characteristic polynomial of the n× n matrix

Hn =


0 1 0

1
. . .

. . .

. . .
. . . 1

0 1 0

 .
A.: If Dk(z) = det[zIk − Hk] then Dk+1(z) = zDk(z) − Dk−1(z) with the initial
conditions D1(z) = z and D0(z) = 1. The Laplace expansion can be written as a first
order one, with a “transfer matrix” T :[

Dk+1(z)
Dk(z)

]
= T

[
Dk(z)
Dk−1(z)

]
, T =

[
z −1
1 0

]
Iteration gives the solution for any matrix size[

Dk+1(z)
Dk(z)

]
= T k

[
z
1

]
= T k+1

[
1
0

]
Then Dk(z) = [T k+1]21. The matrix T k+1 is evaluated with the Cayley-Hamilton
theorem, that states that a square matrix solves its characteristic polynomial. In this
case the polynomial is det(λI2−T ) = λ2−λz+1, and T 2−Tz+ I2 = 0. This implies
T k+1 = ak+1T + bk+1I2, with numbers ak+1, bk+1 to be found. Since the eigenvalues
of T are λ± = 1

2
[z ±

√
z2 − 4], it is λk+1

± = ak+1λ± + bk+1. The result for k = n is

det(zIn −Hn) = [Tn+1]21 = an+1 =
λn+1

+ − λn+1
−

λ+ − λ−
5An amusing generalization to the ellipse is discussed in https://doi.org/10.48550/

arXiv.1810.00492
6M.L.Mehta, Eigenvalues and eigenvectors of the finite Fourier transform, J. Math. Phys.

28 (1987) 781.

https://doi.org/10.48550/arXiv.1810.00492
https://doi.org/10.48550/arXiv.1810.00492
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In particular, if z = 2 cos θ one finds λ± = e±iθ:

det(2 cos θIn −Hn) =
sin(n+ 1)θ

sin θ
= Un(cos θ)

where Un is a Chebyshev polynomial of the second kind.

The eigenvalues of Hn are easily found: εk = 2 cos( π
n+1

k), k = 1, ..., n.

Exercise 2.9.7. Consider the following n× n matrix:

S =


0 1

. . .
. . .

. . . 1
1 0

 (2.20)

Its action on a vector u ∈ Cn is a cyclic shift of the components: (Su)k = uk+1

and (Su)n = u1.
1) Show that Sn−1 = ST (T means transposition).
2) Find the eigenvalues and the eigenvectors of S.
3) Find the spectrum of the periodic “Laplacian matrix” ∆ = S + ST − 2In

∆ =


−2 1 1

1
. . .

. . .

. . .
. . . 1

1 1 −2


4) Find the characteristic polynomial det(zIn −∆).
5) Write the circulant matrix a0 + a1S + · · ·+ an−1S

n−1, ai ∈ C, and evaluate
its eigenvalues and eigenvectors.

Exercise 2.9.8. A matrix A = a0In + a1Sn + . . . an−1S
n−1
n , where Sn is the

shift matrix (2.20) is named “circulant”. Find the eigenvalues.
In this example n = 4:

A =


a0 a1 a2 a3

a3 a0 a1 a2

a2 a3 a0 a1

a1 a2 a3 a0


the eigenvalues are: λ0 = a0 + a1 + a2 + a3, λ1 = a0 + ia1 − a2 − ia3, λ2 =
a0 − a1 + a2 − a3, λ3 = a0 − ia1 − a2 + ia3.
Hint: the matrix A commutes with S, whose eigenvectors and eigenvalues are
known.



Chapter 3

THE COMPLEX PLANE

The modulus of complex numbers defines an Euclidean distance between points
z = (x, y) and z′ = (x′, y′) in the complex plane:

d(z, z′) = |z − z′| =
√

(x− x′)2 + (y − y′)2 (3.1)

Results of Cartesian geometry of R2 can be transposed to C. Disks, circles and
lines are important in complex analysis; let’s review them in complex notation.

3.1 Straight lines and circles

Given two points a and b in C, the oriented straight line ab has parametric
equation z(t) = (1− t)a+ tb, t ∈ R. The restriction 0 ≤ t ≤ 1 traces the closed
oriented segment [a, b] from a to b.

Exercise 3.1.1.
1) Find the corners of the squares and of the equilateral triangles having one
side on the segment [a, b].
2) Describe the sets: Arg(z − i) = π

3 , |Arg(z − i)| < π
3 .

3) Give the conditions for a point z to be inside the triangle with vertices a, b, c.
Answer: z = αa+ βb+ γc, where α+ β + γ = 1 and 0 ≤ α, β, γ ≤ 1.

A circle C(a, r) with center a and radius r has equation |z − a| = r.
The parametrization

z(θ) = a+ reiθ, 0 ≤ θ < 2π (3.2)

endows the circle with the standard anticlockwise orientation.

Exercise 3.1.2.
1) Show that the locus |z − a|2 + |z − b|2 = |a − b|2 is a circle with diameter
[a, b]. Find the parametric equation of the circle.
2) Show that the locus |z−a| = λ|z− b|, λ > 0 is a circle (Apollonius of Perga).

The circle has radius r = λ
|1−λ2| |a− b| and center c = a−λ2b

1−λ2 .

The value λ = 1 corresponds to the limit case of a line (the axis of the segment
[a, b]).

17
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3) Show that the circle through z1, z2, z3 has equation

det


|z|2 z z̄ 1
|z1|2 z1 z̄1 1
|z2|2 z2 z̄2 1
|z3|2 z3 z̄3 1

 = 0

Exercise 3.1.3.
1) Find the equation of the ellipse with foci z1 and z2, major semiaxis length a.
2) Study the family of Cassini ovals1 |z2− 1| = r2 as r changes. Show that it is
a single closed line for r ≥ 1.

3.2 Simple maps

In this section we study simple maps w = F (z), where F : C→ C. The subject
is of considerable interest and will be fully appreciated after the discussion of
analytic functions.
It is useful to introduce the extended complex plane C = C ∪ ∞ with the
rules z+∞ =∞+ z =∞ and z∞ =∞z =∞ (z 6= 0). Moreover, one puts the
conventions z/∞ = 0 (z 6=∞), and z/0 =∞ (z 6= 0).

3.2.1 The linear map

The linear map w = az + b has one fixed point2 z? = b/(1 − a). By writing
w − z? = a(z − z?) one obtains

|w − z?| = |a||z − z?|, arg (w − z?) = arg a+ arg (z − z?)

Therefore the map is a dilation by a factor |a| of all segments originating from
z? and a rotation of the plane by arg a around the fixed point.
Equivalently, the map can be viewed as a rotation by arg a around the origin
and a dilation centred in the origin (z′ = az), followed by a shift (w = z′ + b).

Exercise 3.2.1. Show that a linear map takes circles to circles and straight
lines to straight lines.

3.2.2 The inversion map

The map w = 1/z transforms a circle |z| = r centred in the origin into the circle
|w| = 1/r. The interior of the unit circle is exchanged with the exterior.
By regarding straight lines as circles with a point at infinity, the inversion takes
circles to circles (prove it). Then, a straight line that does not contain the origin
is mapped to a circle through the origin; only straight lines through the origin
(containing both 0 and ∞) are mapped to straight lines through the origin.
Conversely, circles through the origin are mapped to straight lines, and circles

1A Cassini oval is the planar locus of points whose distances from two points have constant
product: |z − a| · |z − b| = C2.

2A fixed point of a map is one that is mapped in itself, z? = F (z?).
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x

y

−6

4
v=−1/4

u=−1/6
u=1/3

v=1/2

Figure 3.1: Inversion map. The circles through the origin of the z plane with
centers on the real or the imaginary axis are pre-images of lines of constant u
or v in the w plane. As the lines form an orthogonal grid, also the circles cross
at right angles.

not through the origin are mapped to circles.
Set w = u+ iv, the image of x+ iy has Cartesian coordinates

u =
x

x2 + y2
, v = − y

x2 + y2

A line u(x, y) = U in w−plane is the image of a circle through the origin z = 0
with center ( 1

2U , 0). A line v(x, y) = V is the image of a circle again through the
origin with center (0,− 1

2V ). All these circles, that are mapped to the orthogonal
grid of u − v lines, are orthogonal to each other (we’ll give a general proof of
this fact).

Exercise 3.2.2. For the inversion map:
1) Find the image of the circle |z − i| = 1.
2) Show that the circle with center z0 and radius |z0| is mapped to the axis of
the segment [0, 1/z0].
3) Obtain the image of the line |z − a| = |z − b|, where a, b ∈ C.

3.2.3 Möbius maps

A Möbius map w = M(z) is a linear fractional transformation

M(z) =
az + b

cz + d
, ad− bc 6= 0 (3.3)

The map is unchanged if the complex parameters a, b, c, d are multiplied by the
same nonzero value. It has at most two fixed points z? = M(z?). If c 6= 0
M(−d/c) =∞, and M(∞) = a/c.
This is easily checked:

Proposition 3.2.3. Möbius maps form a group.
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To the Möbius map (3.3) there corresponds an invertible matrix

L =

[
a b
c d

]
, detL 6= 0. (3.4)

Such matrices form the linear group GL(2,C) of invertible complex 2 × 2 ma-
trices. If ML(z) is the Möbius map with parameters specified by the matrix L,
the composition of two Möbius maps is ML′(ML(z)) = ML′L(z).
The linear map and the inversion map are Möbius maps with matrices[

a b
0 1

] [
0 1
1 0

]
(3.5)

If c 6= 0 the factorization[
a b
c d

]
=

[
−ad−bcc

a
c

0 1

] [
0 1
1 0

] [
c d
0 1

]
. (3.6)

shows that a Möbius map is a composition of two linear maps with an inversion
between (the case c = 0 is a linear map). As a consequence:
1) circles are mapped to circles (where a straight line is a circle with point at
∞). More precisely, M takes every line and circle passing through −d/c to a
line, and every other line or circle into a circle.
2) Möbius maps are bijections from C to C (actually, they are the most general
bijections of the extended complex plane).

Example 3.2.4. The Möbius maps of the upper half-plane H = {z : Imz > 0}
to the unit disk D = {w : |w| < 1}, are

w = eiϑ
z − z0

z − z0
(3.7)

where z0 is the point with Im z0 > 0 that is mapped to w = 0, and the prefactor
is a rotation of the disk.

Proof. Let w(z) have the form (3.3), with c = 1. Since a boundary is mapped to
a boundary, the image of the real axis must be the unit circle. Then |ax+ b| =
|x+ d| for all real x. The limit cases x→∞ and x = 0 imply |a| = 1, |b| = |d|
i.e. a = eiϑ, b = −eiϑz0, |d| = |z0|. Then |x − z0| = |x − d| for all x i.e.:
x2 + |z0|2−2xRe z0 = x2 + |z0|2−2xRe d. The equation is solved by d = z0.

Exercise 3.2.5. Show that the Möbius maps of the upper-half plane H on itself
are represented by real matrices GL(2,R) with positive determinant.

A Möbius map can be specified by requiring that three points (z1, z2, z3) are
mapped (in the order) to prescribed points (w1, w2, w3). The choice (0, 1,∞)
for the image points gives the Möbius map

M(z) =
z − z1

z − z3

z2 − z3

z2 − z1
. (3.8)

It maps the circle through z1, z2 and z3 to the real axis (the circle that contains
0,1 and ∞).
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Figure 3.2: The Möbius map of example 3.2.7. The x and y axes are mapped
to the thick circle and the v axis of the w−plane; 0 and i are fixed points. The
circles with center on v axis are images of horizontal lines, while the other are
images of vertical lines. The upper half plane is mapped to the interior of the
thick circle.

Exercise 3.2.6. Show that for any Möbius map, if z′ = M(z), then the cross-
ratio with 4 points is invariant:

z′1 − z′3
z′1 − z′4

z′2 − z′4
z′2 − z′3

=
z1 − z3

z1 − z4

z2 − z4

z2 − z3

Example 3.2.7. The Möbius map w(z) = 2iz
z+i has fixed points 0 and i. The

point −i is mapped to infinity: any circle or line through it is mapped to a line.
We know a priori that the parallel lines Im z = Y (z = x+ iY ) are mapped to
circles parameterized by x. Elimination of x brings to the familiar expression:

w =
−2Y + 2ix

x+ i(1 + Y )
⇒
∣∣∣w − i2Y + 1

Y + 1

∣∣∣ =
1

|Y + 1|

The real axis Y = 0 is mapped to the circle |w − 1| = 1. The line Y = −1
(z = x − iy) through the special point −i is mapped to the line w = (2/x) + 2i
(not shown in fig.3.2). The lines with Y > 0 are mapped as circles in the disk
|w − 1| < 1. The lines with Y < 0 are outside the disk. In any case the circles
are tangent at 2i. The lines Re z = X are mapped to circles through w = 2i,
orthogonal to the previous circles (see fig.3.2).

Exercise 3.2.8.
1) Find the images of |z − 1| = 1 and |z − 1| = 2 for the map 2 + (1/z).
2) Evaluate the Möbius map that takes (z1, z2, z3) to (w1, w2, w3).
3) Let 0 and 1 be the fixed points of a Möbius map M(z). Write the general
equation of circles through the two points, and evaluate their images under M(z).
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3.3 The stereographic projection

The stereographic projection is a bijection among the points of the extended
complex plane and the points of the Riemann sphere S2.
In a Cartesian frame XY Z consider the spherical surface X2+Y 2+(Z− 1

2 )2 = 1
4 ;

it is tangent to the plane Z = 0 in its south pole3. Identify the plane Z = 0
with the complex plane z. A segment driven from the north pole (0, 0, 1) to a
point z in the complex plane intersects the spherical surface at the point

X =
1

2

z + z

|z|2 + 1
, Y =

1

2i

z − z
|z|2 + 1

, Z =
|z|2

|z|2 + 1
(3.9)

The north pole corresponds to the point ∞ of the extended plane.

Exercise 3.3.1. Find the coordinates (X ′, Y ′, Z ′) of the point antipodal to
(X,Y, Z) on the Riemann’s sphere. How are their images in C related?
(Answer: z′ = −1/z)

The Euclidean distance ‖P −P ′‖ in R3 between two points of S2 defines the
chordal distance between the two corresponding points in C:

dc(z, z
′) =

|z − z′|√
1 + |z|2

√
1 + |z′|2

(3.10)

The chordal distance differs from the distance established by the modulus. Its
limit value 1 is achieved for the images of antipodal points: (z, 1/z̄) and (0,∞).

Proposition 3.3.2. The stereographic projection maps circles in S2 to circles
in C. The circles through the north pole are mapped to straight lines.

Proof. The locus of points of S2 with Euclidean distance R from a point C ∈ S2

is a circle. Its image in C is the locus dc(z, zC) = R, or |z − zC |2 = R2(1 +
|z|2)(1 + |zC |2): the equation of a circle. If the circle in S2 goes through the
north pole, the image contains z =∞ and thus it must be R2(1 + |zC |2) = 1 to
balance infinities, i.e. the equation is linear in z (a straight line).

Proposition 3.3.3. The stereographic projection is conformal (angle-preserving).

Proof. A triangle in C has vertices z, z + ε and z + η. The angle in z is given
by Carnot’s formula:

cosα =
εη + εη

2|ε||η|
The corresponding points on the Riemann’s sphere form a triangle with side-
lengths given by the chordal distances. The angle corresponding to α is

cosα′ =
dc(z, z + ε)2 + dc(z, z + η)2 − dc(z + ε, z + η)2

2dc(z, z + ε)dc(z, z + η)

=
|ε|2(1 + |z + η|2) + |η|2(1 + |z + ε|2)− |ε− η|2(1 + |z|2)

2|ε||η|
√

(1 + |z + ε|2)(1 + |z + η|2)

In the limit |ε|, |η| → 0, α′ identifies with the spherical angle and α′ → α.
3The Riemann’s sphere is often fixed to have unit radius and center in the origin; other

choices are possible.
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Figure 3.3: The stereographic projection maps a point Q ∈ C of coordinate z
to a point P = (X,Y, Z) of the Riemann sphere. The correspondence among
coordinates is obtained through the similitudes: 1 : Z = |z| : (|z| −

√
X2 + Y 2)

(ON : HP = OQ : HQ); Re z : X = OQ : OH, Im z : Y = OQ : OH.

Example 3.3.4 (Rigid motions of the Riemann sphere). The Möbius maps that
preserve the chordal distance, dc(M(z),M(z′)) = dc(z, z

′) for all z, z′ ∈ C, have
coefficients

|a|2 + |b|2 = |c|2 + |d|2 = |ad− bc|, ac+ bd = 0.

Via the stereographic map, such Möbius maps induce rigid transformations of
the sphere S2 into itself (rotations and reflections).
By choosing |ad − bc| = 1 (this is possible because coefficients can be rescaled
by a common factor), they are represented by matrices where the conditions
correspond to unitarity:[

a b
c d

] [
ā c̄
b̄ d̄

]
=

[
1 0
0 1

]
The matrices form the group U(2) of unitary matrices on C2. The (special)
subgroup SU(2) corresponds to ad − bc = 1 and induces pure rotations. The
matrices U and −U correspond to the same Möbius map and hence to the same
rotation (see sect. 22.3.1).



Chapter 4

SEQUENCES AND
SERIES

4.1 Topology

The modulus endows C with the structure of normed space1 and defines a dis-
tance between points, d(z, z′) = |z− z′|. Therefore (C, d) is also a metric space.
Furthermore, at every point z0 one may introduce a basis of neighbourhoods,
which makes C a topological space. The elements of the basis are the disks
centred in z0 with radii r > 0:

D(z0, r) = {z : |z − z0| < r}.

The following definitions and statements are important and used thoroughly:

• A set S in C is open if for every point z ∈ S there is a disk D(z, r) wholly in
S. The union of any collection of open sets is an open set; the intersection
of two open sets is open.

• A point z ∈ C is an accumulation point of a set S if every disk D(z, r)
contains a point in S different from z.

• A boundary point of S is a point z such that every disk D(z, r) contains
points in S and points not in S. The boundary of S is the set ∂S of
boundary points of S.

• A set is closed if it contains all its boundary points. The closure of a set
S is the set S = S ∪ ∂S.

• A set S is disconnected if there are two disjoint open sets A and B such
that S ⊆ A ∪B but S is not a subset of A or B alone. A set is connected
if it is not disconnected.

Proposition 4.1.1. A set S is closed if and only if C/S is open.

1Normed, metric and topological spaces are general structures that will be defined later.

24



CHAPTER 4. SEQUENCES AND SERIES 25

Proof. Suppose that S is closed, then for any z /∈ S there is a disk that does
not contain points in S (otherwise z ∈ ∂S ⊂ S), i.e. C/S is open. On the other
hand, if C/S is open, every point in C/S cannot be in ∂S, i.e. S contains its
frontier (S is closed).

Definition 4.1.2. A domain is a set both open and connected.

Proposition 4.1.3. Any two points in a domain can be joined by a continuous
polygonal line in the domain (see Bak & Newman, Complex Analysis, Springer).

4.2 Sequences

Complex sequences are maps N → C, and are basic objects in mathematics.
They arise in analysis, approximation theory, iteration of maps. Infinite series
and infinite products are limits of sequences of partial sums and partial products.
General statements about sequences are now presented.

Definition 4.2.1. A sequence zn converges to z (zn → z) if |zn − z| → 0 i.e.

∀ε ∃Nε such that |zn − z| < ε, ∀n > Nε. (4.1)

Exercise 4.2.2. Show that:
1) if zn → z and wn → w then: i) zn + wn → z + w, ii) znwn → zw, iii)
zn/wn → z/w if wn, w 6= 0, iv) zn → z.
2) zn is convergent in C if and only if Re zn and Im zn are convergent in R.
3) if zn → z, then |zn| → |z|. Hint: use inequality (2.7).

Definition 4.2.3. A sequence zn is a Cauchy sequence if

∀ε > 0 ∃Nε such that : |zn − zm| < ε, ∀m,n > Nε. (4.2)

A convergent sequence is always a Cauchy sequence, but the converse may not
be true. When every Cauchy sequence is convergent to an element in the space,
the space is complete. The Cauchy criterion is then an extremely useful tool to
predict convergence, without the need to identify the limit.

Proposition 4.2.4. C is complete

Proof. The inequalities (2.6) imply that {xn + iyn} is a Cauchy sequence if and
only if both {xn} and {yn} are Cauchy sequences. Since R is complete, they
both converge. Let x and y be their limits, then |(xn + iyn) − (x + iy)| =
|(xn − x) + i(yn − y)| ≤ |xn − x|+ |yn − y| → 0.

4.2.1 Quadratic maps, Julia and Mandelbrot sets

The iteration of a map z′ = F (z), with a function F : C → C and initial value
z0, generates a sequence: z0, z1 = F (z), z2 = F (F (z)), ... The sequence depends
on the initial value, and this dependence may be surprisingly interesting. The
problem was studied by Pierre Fatou and Gaston Julia in the early 1900. The
simplest non-trivial function to consider is

F (z) = z2 + c, c ∈ C.
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Figure 4.1: The Mandelbrot set is the locus of c-values such that the sequence
zn+1 = z2

n + c starting from z0 = 0 remains bounded. The Filled Julia sets for
some values of the parameter c are shown. An initial point z0 picked in a filled
Julia set generates a bounded sequence.

The quadratic map has two fixed points: z? = z?2 + c. Near a fixed point it is
F (z) ≈ z?+2z?(z−z?). The number 2|z?| depends on c and can be greater, less
or equal to one. The linearized map is accordingly locally expanding, contracting
or indifferent, i.e. the distance of images |F (z)− z?| is greater, less or equal to
the distance |z − z?|.

The sequences that escape to ∞ define a set of initial points Ac(∞) called
the attraction basin of ∞. Of course, if z ∈ Ac(∞) also F (z) and the whole
sequence belongs to it. It was proven that it is an open and connected set.
The complementary set Kc is the filled Julia set. It contains the initial points
of bounded sequences and it is a closed and bounded (i.e. compact) set. The
boundary is the Julia set Jc.
The sets Ac(∞), Kc and Jc are left invariant by the action of the map.2 Fatou
and Julia proved the theorem: If the sequence 0, c, F (c), F (F (c)), ... diverges to
∞, i.e. 0 ∈ Ac(∞), then Jc is totally disconnected, whereas if 0 ∈ Kc, then Jc
is connected.
While at IBM, in 1980, Benoit Mandelbrot (1924-2010) studied with the aid of
a computer the properties of invariant Julia sets of the quadratic map and more
complex ones, and disclosed the beauty of their fractal structures (see the book

2For c = 0 the sets are easily identified. Clearly A0(∞) is the set |z| > 1, K0 is the set
|z| ≤ 1 (the filled Julia set) and J0 (the Julia set) is the unit circle |z| = 1. The action of
z → z2 on the points ei2πθ ∈ J0 (θ ∈ [0, 1]), is the map θn+1 = 2θn (mod 1). A point θ0
after k iterations of the map is again θ0 if (2k − 1)θ0 is an integer. Then the initial point θ0
generates a periodic sequence (periodic orbit of the map) of period k. Only rational angles give
rise to periodic orbits. The irrational ones spread on the unit circle and the map is chaotic.
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by Falconer for further reading, and Wikipedia for wonderful pictures). The
Mandelbrot set (1980) is the set of parameters c ∈ C such that Jc is connected.
Again, it is a wonderful fractal3.

Exercise 4.2.5. Consider the linear map zn+1 = azn + b. Write the general
expression of zn in terms of z0. When is the sequence bounded?

Exercise 4.2.6. Study the fixed points z? of the exponential map z′ = ez.
Show that they come in pairs x± iy with x > 0, |y| > 1 (then the linearized map
z′ = z? + z?(z − z?) is locally expanding)4.

4.3 Series

Infinite sums were studied long before sequences. The oldest known ones were
obtained by Madhava (1350, 1425), the founder of the Kerala school of astron-
omy and mathematics. He developed series for trigonometric functions, includ-
ing an error term. The one for arctan enabled him to evaluate π up to 11 digits.
His work may have influenced European mathematics through transmission by
the Jesuits. The same series were rediscovered by Gregory two centuries later.

Oresme in XIV century, Jakob & Johann Bernoulli (Tractatus de seriebus
infinitis, 1689), and Pietro Mengoli (1625, 1686), discovered and rediscovered
the divergence of the Harmonic series 1 + 1

2 + 1
3 + . . . In the Tractatus, the

convergence of
∑
k 1/k2 was also proven, but the sum (the Basel problem) was

evaluated later (1734) by Johann’s prodigious student Leonhard Euler. Euler
also proved that the sum of the reciprocals of prime numbers is divergent5.
Christian Huygens asked his student Leibnitz to evaluate the sum of reciprocals
of triangular numbers6. The result (the sum is 2) was obtained after noting
that 2

k(k+1) = 2
k −

2
k+1 (the sum is a telescopic series).

Series gained rigour after Cauchy, who defined convergence in terms of the
sequence of partial sums.

Given a sequence of complex numbers ak one constructs the partial sums
An =

∑n
k=0 ak. If the sequence An converges to a finite limit A, the limit is the

sum of the series

A =

∞∑
k=0

ak.

If
∑∞
k ak = A and

∑∞
k bk = B, where A and B are finite, the series

∑∞
k (ak±bk)

is convergent and the sum is A±B.

Proposition 4.3.1. A necessary and sufficient condition for a series to con-

3The boundary is the “Mandelbrot lemniscate”. It is the limit of a sequence of level curves
(lemniscates) Mn = {z ∈ C : |pn(z)| = 2}, where pn(z) is the sequence of polynomials:
p1(z) = z, pn+1(z) = pn(z)2 + z.

4The map is chaotic, and is studied in https://doi.org/10.48550/arXiv.1408.1129.
5For nice accounts see P. Pollack, Euler and the partial sums of the prime harmonic series,

http://pollack.uga.edu/eulerprime.pdf; M.Villarino, Mertens Proof of Mertens Theorem,
arXiv:math/0504289.

6The triangular numbers are n1 = 1, nk+1 = 1 + 2 + · · ·+ k =
(k+1)k

2
.

https://doi.org/10.48550/arXiv.1408.1129
http://pollack.uga.edu/eulerprime.pdf
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verge is that the sequence of partial sums is a Cauchy sequence:

∀ε > 0 ∃Nε such that ∀m > Nε and ∀n > 0 :

∣∣∣∣∣
m+n∑
k=m+1

ak

∣∣∣∣∣ < ε. (4.3)

In particular for n = 1 it is |am+1| < ε. Therefore a necessary condition for
convergence is |ak| → 0.

4.3.1 Absolute convergence

The inequality |
∑m+n
m+1 ak| ≤

∑m+n
m+1 |ak| implies that if

∑∞
k=1 |ak| converges,

then also
∑∞
k=1 ak does.

Definition 4.3.2. A series
∑
k ak is absolutely convergent if

∑
k |ak| is conver-

gent.

Absolute convergence is a sufficient criterion for convergence; moreover it deals
with series in R. We state but not prove the important property

Proposition 4.3.3. The sum of an absolutely convergent series does not change
if the terms of the series are permuted7:

∑
k ak =

∑
k aπ(k).

Proof. The partial sums Sm =
∑m
k=1 |ak| are an increasing convergent sequence,

with limit A. Let Tn = aπ(1) + ...+aπ(n); if N = maxk≤n π(k) it is Tn ≤ SN i.e.
Tn ≤ A for all n. Since Tn is an increasing bounded sequence, it is convergent
to a limit T ≤ A.
The sequence ak is a rearrangement of aπ(k), then A = limn

∑n
k |ak| ≤ T ,

i.e. A = T . (from https://users.math.msu.edu/users/shapiro/Teaching/

classes/320/Handouts/Series_Rearr.pdf)

Definition 4.3.4. Given an infinite set A ⊂ R bounded above, lim supA (or
limA) is the largest real number a such that ∀ε the set {a ∈ A : a > a + ε} is
finite and {a ∈ A : a > a− ε} is infinite.

The following are sufficient conditions for absolute convergence of the series∑
k ak. They must hold for k greater than some N :

• Comparison (Gauss):

|ak| < bk, where
∑
k

bk <∞

• Ratio (d’Alembert): for ak 6= 0

lim sup
k

|ak+1|
|ak|

< 1

7A convergent series that is not absolutely convergent is conditionally convergent. The
series

∑∞
k=1 i

k/k is convergent as it is the sum of two convergent series
∑
k≥1(−1)k/(2k) +

i
∑
k≥0(−1)k/(2k+ 1), and is conditionally convergent. Riemann proved the surprising result

that by rearranging terms of a conditionally convergent real series one can obtain any limit
sum in R.

https://users.math.msu.edu/users/shapiro/Teaching/classes/320/Handouts/Series_Rearr.pdf
https://users.math.msu.edu/users/shapiro/Teaching/classes/320/Handouts/Series_Rearr.pdf


CHAPTER 4. SEQUENCES AND SERIES 29

• Root (Cauchy-Hadamard):

lim sup
k

k
√
|ak| < 1

Proposition 4.3.5 (Cesaro). If the sequences |ak|1/k and |ak+1|
|ak| converge to

finite limits, the limits are equal. The limit coincides with lim sup.

4.3.2 Cauchy product of series

The Cauchy product of two series is the series of finite sums:[ ∞∑
k=0

ak

][ ∞∑
r=0

br

]
=

∞∑
k=0

(
k∑
r=0

arbk−r

)
(4.4)

The definition is natural for power series, and extends the product of polyno-

mials as a polynomial:
[∑∞

k=0 akx
k
]

[
∑∞
r=0 brx

r] =
∑∞
k=0 x

k
(∑k

r=0 arbk−r

)
Proposition 4.3.6 (Franz Mertens, 18748). If a series is absolutely convergent
to A and another is convergent to B, their Cauchy product is convergent to AB.

Proposition 4.3.7. If a series is absolutely convergent to A and another is
absolutely convergent to B, their Cauchy product is absolutely convergent to
AB.

Proof.

n∑
k=0

|ck| =
n∑
k=0

∣∣∣∣∣
k∑
r=0

arbk−r

∣∣∣∣∣ ≤
n∑
k=0

k∑
r=0

|ar||bk−r|

=

n∑
r=0

|ar|
n∑
k=r

|bk−r| =
n∑
r=0

|ar|
n−r∑
k=0

|bk| ≤
∞∑
k=0

|ak|
∞∑
l=0

|bl|

Since the sequence
∑n
k=0 |ck| is non decreasing and bounded above, it is conver-

gent. Then Cn =
∑n
k=0 ck is absolutely convergent to a limit C. The limit does

not depend on rearrangements of terms and is the sum of all possible products
arbs. It is C = limk(AkBk) = (limk Ak)(limk Bk) = AB.

4.3.3 The geometric series

The partial sum Sn = 1 + z + . . . + zn is evaluated with the identities Sn+1 =
Sn + zn+1 and Sn+1 = 1 + zSn:

n∑
k=0

zk =
1− zn+1

1− z
, z 6= 1 (4.5)

8see Boas, http://www.math.tamu.edu/~boas/courses/617-2006c/sept14.pdf

http://www.math.tamu.edu/~boas/courses/617-2006c/sept14.pdf
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If |z| < 1, it is limn→∞ zn = 0 and Sn(z) converges to the simple but funda-
mental geometric series

∞∑
n=0

zn =
1

1− z
, |z| < 1 (4.6)

The geometric series is useful for assessing convergence of series by the compar-
ison test.

Exercise 4.3.8. Evaluate the sums: 1 + 2 cosx + · · · + 2 cosnx and sinx +
sin 2x+ · · ·+ sinnx.

Exercise 4.3.9. For a > 0, b real, obtain the sums:

∞∑
k=0

e−ka cos kb =
1

2
+

sinh a

2 cosh a− 2 cos b
,

∞∑
k=0

e−ka sin kb =
sin b

2 cosh a− 2 cos b

(Hint: evaluate the partial sums
∑
k e
−k(a+ib) and separate Im and Re parts).

Exercise 4.3.10. Write (1− z2)−1 as a geometric series in z2, as the product
of two geometric series, as a linear combination of two geometric series.

4.3.4 The exponential series

The sequence of partial sums en(z) = 1 + z+ · · ·+ 1
n!z

n is absolutely convergent
for any z, because en(|z|) converges. The limit is the complex exponential
function:

ez =

∞∑
n=0

zn

n!
, z ∈ C (4.7)

Exercise 4.3.11. Prove that the Cauchy product of two exponential series is
the exponential series ez+z

′
= ezez

′
. Then show that ex+iy = ex(cos y+ i sin y),

in accordance with (4.7).

It is curious to observe that although ez has no zeros, its polynomial trun-
cations en(z) have n of complex zeros9.

Exercise 4.3.12 (Madhava math. competition 2013). Show that en(z) has no
real roots if n is even, and exactly one if n is odd10.

4.3.5 Riemann’s Zeta function

The following series is of greatest importance in number theory11, and is often
encountered in physics:

ζ(z) =

∞∑
n=0

1

(n+ 1)z
, Re z > 1 (4.8)

9They fly to infinity. Szegö (1924) proved that for n→∞ the zeros of en(z) divided by n
distribute on the curve |ze1−z | = 1 with |z| ≤ 1.
(see https://www.uvm.edu/~tdupuy/notes/partialsums.pdf)

10see http://www.madhavacompetition.com, for texts and solutions. The contest is ad-
dressed to undergraduate students

11H. M. Edwards, Riemann’s Zeta Function, Dover.

https://www.uvm.edu/~tdupuy/notes/partialsums.pdf
http://www.madhavacompetition.com
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Since |nz| = |ez logn| = nRez, the series converges absolutely for Re z > 1. The
values of the Riemann series are known at even integers (Euler). They result,
for example, from the evaluation of certain Fourier series (see example 20.2.5).
Two useful values are

ζ(2) =

∞∑
k=1

1

k2
=
π2

6
, ζ(4) =

∞∑
k=1

1

k4
=
π4

90

Exercise 4.3.13. Prove in the order:

∞∑
n=0

1

(2n+ 1)z
= (1− 2−z)ζ(z),

∞∑
n=0

(−1)n

(n+ 1)z
= (1− 21−z)ζ(z) (4.9)

(since Riemann’s series is absolutely convergent, the sum on even and odd n
may be evaluated separately).
By collecting in the first series the terms 2n+ 1 that are multiples of 3, obtain
the sum on integers that are not divided by 2 and 3:∑

n 6=2k,3k

1

nz
=

(
1− 1

2z

)(
1− 1

3z

)
ζ(z)

The process outlined is iterated and gives the famous representation of Riemann’s
Zeta function as an infinite product on prime numbers p > 1:

1

ζ(z)
=
∏
p

(
1− 1

pz

)
(4.10)

Exercise 4.3.14. Show that 12∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz
1

1− xyz
= ζ(3) (≈ 1.202057)

(Hint: expand the fraction in geometric series)

12This type of integral representation was used to prove irrationality of ζ(2) and ζ(3) in a
way simpler than Apery’s proof of 1977 (see https://doi.org/10.48550/arXiv.1308.2720).

https://doi.org/10.48550/arXiv.1308.2720


Chapter 5

COMPLEX FUNCTIONS

5.1 Differentiability and Cauchy-Riemann con-
ditions

A complex function is a map from some set to C. We shall focus on complex
functions of a complex variable, f : D ⊆ C → C where the domain D, if not
specified differently, will be an open connected set in C.
To stress that the function only depends on the input variable z = x+ iy, and
not also on z (i.e. not freely on x and y), we often denote it as f(z).
The real and imaginary parts of f are not themselves functions of the combina-
tion x + iy. For example: z2 = (x2 − y2) + i2xy, ez = ex cos y + iex sin y. We
then write:

f(z) = u(x, y) + i v(x, y)

Definition 5.1.1. A complex function f(z) is continuous in z0 if:

∀ε > 0 ∃ δ > 0 such that |f(z)− f(z0)| < ε if |z − z0| < δ. (5.1)

Proposition 5.1.2. f(z) is continuous in z0 = x0 + iy0 iff u(x, y) and v(x, y)
are both continuous in (x0, y0).

Proof. The inequality |f(z) − f0| ≥ |u(x, y) − u0| (and similar for v) implies
continuity of u (and v) from continuity of f . The other way is proven by means
of |f(z)− f0| ≤ |u(x, y)− u0|+ |v(x, y)− v0|. (u0 is short for u(x0, y0) etc.)

Definition 5.1.3. f(z) is differentiable in z0 ∈ D if the following limit exists

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0
(5.2)

i.e. there is a number f ′(z0) such that: ∀ε > 0 there is a δε such that∣∣∣f(z)− f(z0)

z − z0
− f ′(z0)

∣∣∣ < ε ∀z : |z − z0| < δε.

Then, in a neighbourhood of z0 it is f(z) = f(z0)+f ′(z0)(z−z0)+r(z, z0)(z−z0),
where r(z, z0) vanishes as z → z0.
It is clear that differentiability of f at z0 implies continuity at z0.

32
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Exercise 5.1.4. Show that the limit z → z0 of the incremental ratio for the
function |z|2 does not exist.

The existence of the limit (5.2) is more demanding than in real analysis
of one variable, as z may approach z0 from all directions. It implies a strong
constraint on the real and imaginary parts of f .

Proposition 5.1.5 (Cauchy-Riemann conditions). If f(z) = u(x, y) +
iv(x, y) is differentiable in z0, then the partial derivatives of u and v exist in
(x0, y0) and the Cauchy-Riemann conditions hold in (x0, y0):

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
(5.3)

Proof. The incremental ratio is evaluated with z = z0 + h and z = z0 + ih
respectively (h real). By hypothesis the limits h→ 0 exist and coincide:

u(x0 + h, y0)− u(x0, y0)

h
+ i

v(x0 + h, y0)− v(x0, y0)

h
→ f ′(z0)

u(x0, y0 + h)− u(x0, y0)

ih
+ i

v(x0, y0 + h)− v(x0, y0)

ih
→ f ′(z0)

Therefore, the real and imaginary parts exist separately as partial derivatives,
and yield identities useful for the evaluation of f ′:

Ref ′(z0) =
∂u

∂x

∣∣∣
(x0,y0)

=
∂v

∂y

∣∣∣
(x0,y0)

Imf ′(z0) = −∂u
∂y

∣∣∣
(x0,y0)

=
∂v

∂x

∣∣∣
(x0,y0)

Bedides the Cauchy-Riemann conditions, we obtain the rule f ′ = ∂x(u+iv).

The converse can be proven, but with further conditions on u and v:

Theorem 5.1.6. If u and v have continuous partial derivatives in x and y in a
disk centred in z0, and if the Cauchy-Riemann conditions hold in z0, then f(z)
is differentiable in z0.

Proof. By means of Taylor’s expansion, and Cauchy-Riemann conditions at z0:

f(z0 + h)− f(z0) =u(x0 + hx, y0 + hy)− u(x0, y0) + iv(x0 + hx, y0 + hy)− iv(x0, y0)

=(∂xu+ i∂xv)0 hx + o(hx) + (∂yu+ i∂yv)0 hy + o(hy)

=(∂xu+ i∂xv)0 (hx + ihy) + o(hx) + o(hy)

Divide by h. The limit h→ 0 exists and is f ′(z0) = (∂xu+ i∂xv)(z0).

The standard rules of derivation for functions of a real variable continue to
hold for differentiable functions of a complex variable:

(λ f + g)′ = λ f ′ + g′ (linearity)

(fg)′ = f ′g + f g′ (Leibnitz property)

(1/f)′ = −f ′ / f2 (f 6= 0)

f( g(z) )′ = f ′(g(z)) g′(z) (composite function)
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Definition 5.1.7. A function f(z) which is differentiable at all points of a
domain D is holomorphic on D. A function holomorphic on C is entire.

Example 5.1.8. The function z → zn, n ∈ Z, is differentiable and

d

dz
zn = nzn−1.

For n ≥ 0 it is entire, while for n < 0 it is holomorphic on C/{0}.

Example 5.1.9. The exponential function ez = ex cos y+ iex sin y has real and
imaginary parts that are differentiable in x and y and solve the Cauchy-Riemann
conditions. Then it is differentiable in z:

d

dz
ez =

∂

∂x
ex+iy = ez

Since this holds at all points in C, the exponential function is entire. Then,
also sin z, cos z, sinh z and cosh z are entire functions and d

dz sin z = cos z,
d
dz cos z = − sin z, d

dz sinh z = cosh z etc.
A direct check is f(z) = sin z = sinx cosh y + i cosx sinh y. The functions
u(x, y) = sinx cosh y and v(x, y) = cosx sinh y solve the C.R. equations, and
f ′(z) = ∂xu+ i∂yv = cos z.

Example 5.1.10. f(z) = Log z with domain C/(−∞, 0]. The real part is
u(x, y) = 1

2 log(x2 + y2) and, with the single-valued −π2 ≤ Arctan ≤ π
2 , the

imaginary part is:

v(x, y) = 2 Arctan
y√

x2 + y2 + x

The functions u and v are differentiable and solve the C.R. equations. Then

d

dz
Log z =

∂u

∂x
− i∂u

∂y
=

x

x2 + y2
− i y

x2 + y2
=

1

z
.

Exercise 5.1.11. Prove that if f is holomorphic on D and f ′(z) = 0 everywhere
on D, then f is constant on D,

Remark 5.1.12. A function f(x, y) can be viewed as a function of the inde-
pendent variables z = x+ iy and z = x− iy, with partial derivatives

∂

∂z
=
∂x

∂z

∂

∂x
+
∂y

∂z

∂

∂y
=

1

2

(
∂

∂x
− i ∂

∂y

)
(5.4)

∂

∂z
=
∂x

∂z

∂

∂x
+
∂y

∂z

∂

∂y
=

1

2

(
∂

∂x
+ i

∂

∂y

)
(5.5)

4
∂2

∂z∂z
=

∂2

∂x2
+

∂2

∂y2
(5.6)

The condition that a function does not depend on z yields the C.R. conditions:

0 =
∂f

∂z
= 1

2 (∂x + i∂y)(u+ iv) = 1
2 (∂xu− ∂yv) + i

2 (∂yu+ ∂xv).
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Figure 5.1: Augustin Luis Cauchy (Paris 1789, Sceaux 1857) is the man
who most contributed to the foundation of complex analysis. He introduced
mathematical rigour and discovered the fundamental integral representation of
holomorphic functions (the Cauchy integral formula): the values of a holomor-
phic function inside a region are fully determined by its values on the boundary.
The whole theory descends from this powerful formula.

Figure 5.2: Karl Weiertrass (Ostenfelde 1815, Berlin 1897) was profes-
sor in Berlin. His fame as a lecturer attracted several students: Cantor,
Frobenius, Fuchs, Grassmann, Killing, Mertens, Kovalewskaya, Runge, Schur,
H. A. Schwarz. He studied analytic functions as power series. The possibility
of constructing overlapping disks where series converge, extends the function
to broader domains (analytic continuation). He did not bother much about
priorities, and published many results late in his career.

Figure 5.3: Bernhard Riemann (Breselenz (Hannover) 1826, Verbania 1866).
The young Riemann was oriented to become a pastor, and to study theology
at Göttingen. Gauss encouraged him to study mathematics. In 1854 he com-
pleted his thesis Über die Hypothesen welche der Geometrie zu Grunde liegen
(On the hypothesis which underlie geometry) which contains his ideas on Rie-
mannian geometry, that generalize Gauss’ results about surfaces. He succeeded
to Dirichlet in the direction of the department, but died young of tuberculosis
during a journey to lake Maggiore. He studied holomorphic functions as maps,
and developed the theory of multi-sheet manifolds (Riemann surfaces) in order
to investigate multivalued functions and to extend the theorems of single valued
ones.
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5.2 Conformal maps

What makes holomorphic functions very special is that they depend on a single
variable z that spans a two-dimensional space.
To visualize f = u + iv one may plot the real functions u = u(x, y) and v =
v(x, y) in R3. However, it is far more interesting to view f as a map w = f(z)
from points (x, y) of a domain D to points (u, v) of the w = u + iv plane (we
already studied the linear map, the inversion and the Möbius map).
In this picture, the derivative f ′ of a function gains a simple geometric meaning.
The following theorem shows that a holomorphic map locally performs a dilation
by a factor |f ′(z)| and an anticlockwise rotation of angle arg f ′(z) (these facts
were known to Gauss already in 1825).

Theorem 5.2.1. A holomorphic map with f ′ 6= 0 preserves angles (it is a
conformal map)

Proof. Consider a differentiable function γ : t ∈ [a, b] → C, where [a, b] is
an interval of the real line. The range {γ(t), t ∈ [a, b]} is a curve in the
complex plane. The cartesian components of the tangent vector are the real
and imaginary parts of γ̇(t), we thus identify γ̇(t) as the tangent vector. We
require γ̇(t) 6= 0 for all t. Let z0 = γ(t0), with tangent vector γ̇(t0).
A holomorphic map w = f(z) takes γ to the curve f(γ), with tangent vector
f ′(z0)γ̇(t0) at w0 = f(z0). The direction θ = arg γ̇(t0) of the tangent vector at
z0 is rotated to the direction θ′ = θ + arg f ′(z0) at w0, and the length of the
tangent vector is scaled by the factor |f ′(z0)|.
If two curves intersect at z0 with tangents forming a certain angle α, since the
images of the tangent vectors in w0 are rotated by the same angle arg f ′(z0),
the images of the curves continue to intersect at w0 with the angle α.

In the study of holomorphic maps it is often useful to evaluate how a grid
of orthogonal lines (e.g. lines of constant x or y, u or v, r or θ) in some domain
is mapped to, or back from, another grid of orthogonal lines.
The lines u = U and v = V in w−plane are orthogonal and are the images of
the curves u(x, y) = U and v(x, y) = V in the z plane. The vectors gradu =
(∂xu, ∂yu) and gradv = (∂xv, ∂yv) are respectively orthogonal to the level lines
u = U and v = V and point towards increasing values of u and v. At a point of
intersection of the curves in z plane, the vectors are orthogonal by the Cauchy-
Riemann conditions:

gradu · grad v = ∂xu ∂xv + ∂yu ∂yv = 0 (5.7)

The same is true for the tangent vectors: the two vectors tangent to the curves
at a point are orthogonal1.

The map w = f(z) of a domain where f is holomorphic, univalent, with
f ′(z) 6= 0, represents a local change of variables from (x, y) to (u, v). One

1The tangent and the normal vectors at a point of a curve are orthogonal. The vector
~t = (tx, ty) tangent to a curve f(x, y) = c points in a direction of null variation of f(x, y).
This means that the directional derivative vanishes: 0 = ~t · gradf . If vectors are represented
as complex numbers, the orthogonality means that tx + ity = ±i(∂xf + i∂yf).
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evaluates:

∂2
u + ∂2

v =
1

|f ′(z)|2
(∂2
x + ∂2

y) (5.8)

du2 + dv2 = |f ′(z)|2(dx2 + dy2) (5.9)

du ∧ dv = |f ′(z)|2dx dy (5.10)

Let us analyse some examples of maps. By restricting the domain, a map
can be made one-to-one (univalent).

Example 5.2.2 (The quadratic map w = z2).

u(x, y) = x2 − y2 v(x, y) = 2xy

Since argw = 2 arg z, the set −π2 < Argz ≤ π
2 (the half plane Re z > 0 with the

negative imaginary axis included) is mapped onto the whole w−plane. The whole
z−plane covers the w−plane twice, a point w being the image of two points ±z.

The derivative of the map is 2z. An infinitesimal square of area dx dy centred
in z is mapped to an infinitesimal “square” centred in w = z2 with area dudv =
4|z|2dx dy, rotated by the angle arg (2z).
The lines u = U and v = V in w-plane are the images of a grid of hyperbolas

x2 − y2 = U, xy =
V

2

that intersect orthogonally. The lines x = X or y = Y are confocal parabolas in
w−plane with focus in w = 0, which intersect orthogonally:

u = − 1

4X2
v2 +X2, u =

1

4Y 2
v2 − Y 2.

Note that in the origin the angles are not conserved (actually they are doubled
by the map): this is possible since the derivative is zero in z = 0.
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Figure 5.4: The quadratic map w = z2. Left: The confocal parabolas in w-
plane are the images of the coordinate square grid x− y in z-plane. Right: The
hyperbolas in z-plane are the pre-images of the coordinate square grid u− v in
w-plane (only a quadrant is shown).
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Example 5.2.3 (The exponential map w = ez).

u(x, y) = ex cos y v(x, y) = ex sin y

A point w that is image of z is also image of z + 2πik. A choice of domain for
univalency is the strip −π < Imz ≤ π. Now exp is one-to-one from the strip
to the w-plane C with w = 0 removed. The circles u2 + v2 = r2 are images of
x = log r and the radial lines Arg w = θ emanating from w = 0 are images of
horizontal lines y = θ.

Example 5.2.4 (The Joukowsky map2 w = 1
2
(z + 1

z
)).

z = ±1 are fixed points, and z = ±i are mapped to w = 0. The map is not
one-to-one z and 1/z have the same image. The pre-images of a point w solve
the equation z2− 2wz+ 1 = 0 and their product is one. Therefore the Jukowsky
map is invertible on a domain that does not contain both z and 1/z.

If z = eξ+iθ it is: u = cosh ξ cos θ v = sinh ξ sin θ

The circles |z| = eξ and the radial lines Arg z = θ are mapped respectively to
confocal ellipses and hyperbolas with foci in ±1

u2

cosh2 ξ
+

v2

sinh2 ξ
= 1,

u2

cos2 θ
− v2

sin2 θ
= 1 (5.11)

that cross at right angles. The angular directions of the asymptotes of the hy-
perbola are ±θ.

-2 -1 1 2
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1

2

Figure 5.5: The Joukowsky map w = 1
2 (z+ 1/z) maps the unit circle to [−1, 1]

(degenerate ellipse), |z| > 1 to C, circles to ellipses, radial lines to hyperbolas.
The lines are confocal and intersect at right angles.

• |z| > 1 is mapped to C/[−1, 1]
• The wedge π/2 − θ < Argz < π/2 + θ is mapped to the region between the
branches of the hyperbola with parameter θ.
• Im z > 0 is mapped to C/(−∞,−1] ∪ [1,∞).

2The Russian mathematician, airplane designer, professor of mechanics Niko-
lay Y. Joukowsky (1847, 1921) used complex maps to study aerodynamics and flows. In
1918 he founded The Central Aero-Hydrodynamical Institute, which played a major role in
the development of the aero-cosmic industry of the Soviet Union.
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The boundary Im z = 0 is mapped to the cuts in w-plane as follows:
(0, 1] and [1,∞) are both mapped to the cut [1,∞), (−∞,−1] and [−1, 0) are
both mapped to (−∞,−1] (they contain x and 1/x).

Conformal maps have important applications in physics and engineering (see
chapter on electrostatics). They are a powerful tool to solve differential equa-
tions in two real variables in domains with complicated boundaries, by mapping
them to domains with simpler boundaries. The cornerstone is the following
theorem, of remarkable generality:

Theorem 5.2.5 (Riemann mapping theorem). Every simply connected do-
main in C (but not C) can be mapped bi-olomorphically onto the unit disk (or
the half plane).

A useful class of conformal transformations are the Schwarz-Christoffel maps,
from polygons to the half-plane (for the rectangle it is an elliptic function,
prop.15.3.4)3.

5.2.1 Harmonic functions

We shall prove that, unlike real functions, the existence of the derivative f ′(z)
on a domain D (holomorphism) implies that f(z) is differentiable infinitely many
times on D and admits convergent Taylor series expansion in any disk contained
in D (analyticity). Because of this, the words “holomorphic” and “analytic” are
equivalent.
Analyticity implies that the real and imaginary parts u and v are functions
C∞(D). The second partial derivatives and the Cauchy-Riemann property show
that the real and imaginary parts of a holomorphic function are har-
monic functions on the (open) domain: ∂2

xu = ∂x(∂yv) = ∂y(∂xv) = −∂2
yu

and ∂2
xv = −∂x(∂yu) = −∂y(∂xu) = −∂2

yv. Then:

∇2u = 0, ∇2v = 0 (∇2 = ∂2
x + ∂2

y) (5.12)

Given a real harmonic function u(x, y) on a domain D, the Cauchy-Riemann
equations may be solved to obtain v(x, y) on D (the conjugate harmonic func-
tion) up to a constant. The function f = u+ iv is holomorphic on D.

Example 5.2.6. To find the conjugate of the harmonic function u(x, y) =
x3y − xy3 use C.R. equations: ∂yv = ∂xu = 3x2y − y3. An integral in y
gives v = 3

2x
2y2 − 1

4y
4 + λ(x) (λ is an unknown integrating function). The

second C.R. equation is: ∂xv = −∂yu i.e. 3xy2 + λ′(x) = −x3 + 3xy2. Then
λ(x) = − 1

4x
4 + λ0 and v(x, y) = 3

2x
2y2− 1

4 (y4 + x4) (up to λ0). The associated

holomorphic function is u+ iv = x3y − xy3 − i
4 (x4 − 6x2y2 + y4) = − i

4z
4

A different approach gives f : f ′(z) = ux − iuy = 3x2y − y3 − ix3 + i3xy2 =
3xy(x+iy)−i(x3−iy3) = 3xyz−i[(x+iy)3−3ix2y+3xy2] = iz3 (necessarily we
end up with only z). An integral gives f(z), and the imaginary part is v(x, y).

Proposition 5.2.7. If ϕ(u, v) is harmonic on Dw (a domain in the plane w =
u + iv) and if f : Df → Dw is a holomorphic map, then ϕ(u(x, y), v(x, y)) is
harmonic on Df .

3References: P. Henrici, Applied and computational complex analysis, vol. 3, Wiley (1976);
T. Driscoll and L. Trefethen, Schwarz-Christoffel mapping, Cambridge Univ. Press. (2002);
Z. Nehari, Conformal Mapping, reprinted by Dover
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Proof. Direct evaluation of partial derivatives checks the statement. In alter-
native, ϕ is the real part of a holomorphic function g(w). Then g(f(z)) is
holomorphic in the variable z, and Re g(f(z)) is harmonic.

Example 5.2.8. The function ex
2−y2 cos(xy) is harmonic because it is the real

part of the holomorphic function ez
2

.
The function 1/z is holomorphic on C/{0}, then its real part x/(x2 + y2) is
harmonic on C/{0}.

5.3 Inverse functions

Let f be a holomorphic function on a domain D; we discuss conditions for the
existence of a holomorphic inverse function f−1.

Definition 5.3.1. A function g is a branch of f−1 with domain U ⊆ f(D) if:
1) g is continuous on U ,
2) f(g(w)) = w for all w ∈ U .

Remark 5.3.2. The branch function g is univalent (injective) on U if:

g(w1) = g(w2) ⇒ f(g(w1)) = f(g(w2)) and w1 = w2

As a special case of the implicit function theorem in two real variables, we state
the important result

Theorem 5.3.3 (Inverse function theorem). Suppose that f(z) is holomorphic
on a domain D, and g(w) is a branch of f−1(w) with domain U . Let f(z0) =
w0 ∈ U ; if f ′(z0) 6= 0 then g is differentiable at w0 and g′(w0) = 1/f ′(z0).
Consequently, if f ′(z) 6= 0 in g(U), then g is holomorphic on U and

g′(w) =
1

f ′(g(w))
(5.13)

We now discuss the analytic structure of some relevant inverse functions. In
these examples, the branch is chosen in order to reproduce the inverse function
of real analysis, when restricted to real variable (principal branch).

5.3.1 The square root

The function f(z) = z2 maps C to a double cover of the w−plane. It is useful to
view the image as a two-sheet Riemann surface, i.e. two copies of the w−plane.
In real analysis, the square root u =

√
x is defined on the half-line x ≥ 0, and

maps the half-line monotonically to u ≥ 0. Therefore, a convenient choice is to
identify the first sheet as the image of the half-plane

−π
2
< Arg z <

π

2

which includes the positive real axis. The first sheet has a cut: the negative real
axis Arg w = π, which is the image of the imaginary axis in z plane.
The second sheet is the image of the half-plane π > |Argz| > π

2 . The two sheets
share an edge: the line Arg w = π.
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By walking anticlockwise on a circle around the origin z = 0 starting at Arg
z = −π/2, the image point walks in the first sheet starting at Arg w = π.
At Arg z = π/2 a full circle is run in the first sheet, and the walker enters the
second sheet being at the other edge of the cut Arg w = π.
Another circle is completed as Arg z = 3π/2. At this point we are again at Arg
z = −π/2, i.e. the image point is on the side of the cut where the walk in the
first sheet started.

The principal branch of the square root has domain in the first sheet,

√
: ρeiθ → √

ρeiθ/2, |θ| < π (5.14)

The half line (−∞, 0] = {w s.t. Argw = π} is a branch cut, where the square
root is discontinuous. Near the cut:√

−|x|+ iε = i
√
|x|,

√
−|x| − iε = −i

√
|x|

On the domain C/(−∞, 0] the principal branch is holomorphic and

d

dw

√
w =

1

2
√
w

(5.15)

5.3.2 The logarithm

The function f(z) = ez is defined for all z but, being periodic, it is not invert-
ible. On a strip y0 − π < Im z < y0 + π the map is one-to-one with the w-plane
with a cut given by the half-line arg w = y0 + π removed. The whole z-plane is
mapped to a helix (the Riemann surface of the log). It is a stack of an infinite
number of sheets (copies of w-plane with cut); each sheet is a domain of a branch
of the log: logw = log |w| + i argw (y0 + (2k − 1)π < argw < y0 + (2k + 1)π);
it has discontinuity 2πi across the cut if one remains on the same sheet. The
Riemann surface allows one to enter new sheets by crossing the cut: a 2π ascent
round the helix axis moves from one sheet to another, where the new branch of
logw differs by 2πi from the previous one.
A walk parallel to the imaginary axis in z-plane in the positive direction corre-
sponds to a helicoidal path in the Riemann surface.
A value y0 (modulo 2π) fixes the cuts; each sheet defines a branch of the log
which is analytic with derivative

d

dw
logw =

1

elogw
=

1

w
(5.16)

The principal log (Log) is the branch on the first sheet with the choice y0 = 0.
Its domain is C/(−∞, 0], where Log z = log |z|+ iArgz, (|Argz| < π).



Chapter 6

ELECTROSTATICS

Several two-dimensional problems (or three-dimensional ones, with a direction of
translation invariance) in electrostatics, magnetostatics, fluid-dynamics, elastic-
ity, may be elegantly solved in the complex plane, with proper conformal maps
that take care of the geometry. In this chapter we consider electrostatics1.

6.1 The fundamental solution

The fundamental solution or Green function2 of 2D electrostatics is the solution
of Poisson’s equation for a unit point charge localized at z′ = x′ + iy′:

∂2ϕ

∂x2
+
∂2ϕ

∂y2
= − 1

ε0
δ(x− x′)δ(y − y′) (6.1)

The solution is easily obtained if the point charge is viewed as the section of a
wire orthogonal to the plane, with unit linear charge. The 3D electric field is
radial. Gauss theorem applied to a cylinder coaxial with the wire gives E = En
with

E(x, y) =
1

2πε0

1√
(x− x′)2 + (y − y′)2

The electrostatic potential in 2D of a point unit charge is E(x, y) = −∇ϕ i.e.:

ϕ (x, y) = − 1

2πε0
log
√

(x− x′)2 + (y − y′)2. (6.2)

1A specialized text in this topic is: E. Durand, Électrostatique, 3 voll, Masson, Paris 1964.
2George Green (Nottingham 1793, 1841) was a miller. For more than forty years he worked

hard in his father’s windmill, while self-teaching mathematics and physics. In 1828 he pub-
lished at his own expense his most important and astonishing paper: Essay on the application
of mathematical analysis to the theories of electricity and magnetism, that contains the first
exposition of the theory of potential. After his father’s death, he applied to Cambridge’s uni-
versity, and graduated in mathematics in 1838 (the same year as Sylvester). After his death
his achievements were rescued from obscurity by Lord Kelvin, and are nowadays an important
tool in every area of physics, including quantum field theory (see J. Schwinger, The Greening of
quantum Field Theory: George and I. https://doi.org/10.48550/arXiv.hep-ph/9310283).
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By the superposition principle (linearity of Poisson’s equation), the electrostatic
potential generated by a charge distribution is:

ϕ (x, y) = − 1

2πε0

∫
dx′ dy′ log

√
(x− x′)2 + (y − y′)2 ρ(x′, y′)

It solves Poisson’s equation and it is harmonic in empty space. For this reason,
it is very useful to regard it as the real part of a complex potential which, in
empty space, is holomorphic and depends on z = x+ iy:

Φ(z) = ϕ(x, y) + iψ(x, y)

The conjugated field ψ(x, y) is harmonic. It can be obtained from ϕ by solving
the Cauchy-Riemann equations and is defined up to a constant; sometimes it is
found by good guess. For the point charge it is

Φ(z) = − 1

2πε0
log(z − z′) = − 1

2πε0
[log |z − z′|+ i arg (z − z′)]

and the fields ϕ and ψ are harmonic in C/{z′}. The cut of Φ can be chosen
freely, to avoid the points of interest.

Being a function of z only, the complex potential is more manageable than
the potential. For a charge distribution, Φ(z) may be obtained by superposition.

The physical meaning of the field ψ is now given. The function Φ maps the
z plane to the plane w = ϕ+ iψ; the orthogonal straight lines ϕ = U and ψ = V
correspond in the (x, y) plane to orthogonal curves that describe respectively
equipotential lines and lines of force.
For the point charge, the equipotential lines are circles centred in the point
source z′, and the field lines are half-lines originating from z′.

The electric field E = −∇ϕ is best evaluated as a complex field: E =
Ex − iEy = −∂xϕ + i∂yϕ; by the Cauchy-Riemann equations ∂yϕ = −∂xψ.
Then:

E = − d

dz
Φ(z) (6.3)

The vector field E is orthogonal (by definition) to equipotential lines, and is
tangent to the lines of force.

Example 6.1.1 (The uniformly charged segment). The electrostatic potential
of a uniformly charged segment [a, b] of the real axis with charge density σ,

ϕ(x, y) = − σ
4πε0

∫ b
a
ds log[(x− s)2 + y2], is the real part of

Φ(z) = − σ

2πε0

∫ b

a

ds log(z − s)

To evaluate the electric field (6.3) assume that − d
dz commutes with integration

and use − d
dz log(z − s) = d

ds log(z − s):

Ex − iEy = − σ

2πε0
log

z − b
z − a

= − σ

2πε0

[
log

∣∣∣∣ z − bz − a

∣∣∣∣− i arg
z − b
z − a

]
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At z = x± iε, a < x < b, it is Log z−b
z−a = log b−x

x−a ± iπ. Then Ey = ±σ/2ε0; Ex
is non-zero because the uniformly charged segment is not equipotential. At each
point of [a, b] (and only there) there are two determinations (Ex ± iEy)(x) that
correspond to vectors pointing to opposite sides; it is singular at the end-points.
Elsewhere, the vector field is unique.

Example 6.1.2. Electrostatic potential of n charges q/n, equally spaced on a
circle of radius R.
Let ζ1 . . . ζn be the roots of unity, then Φ(z) = − q

n
1

2πε0

∑
k log(z − Rζk) =

− q
n

1
2πε0

log(zn − Rn). The potential is ϕ(x, y) = − q
n

1
2πε0

log |zn − Rn|. In the
continuum limit n→∞ (uniformly charged ring - or cylindrical surface in 3D):

ϕ(x, y) = − q

2πε0

{
logR r < R

log r r > R
(6.4)
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Figure 6.1: The equipotential lines of 3 unit charges.

Example 6.1.3 (The dipole). The complex potential of two point charges ±Q
in ±iδ/2 is

Φ(z) = −Q 1

2πε0
[log(z − iδ/2)− log(z + iδ/2)]

For |z| � δ one approximates log(z ± iδ/2) ≈ log z ± iδ/(2z). If δ → 0 and Q
is rescaled such that d = Qδ is finite, we obtain the potential at a point z of a
dipole placed in the origin and oriented as the imaginary axis:

Φ(z) = i
d

2πε0z
=

d

2πε0

y + ix

x2 + y2
.

The equipotential lines are circles tangent to the real axis at the origin, the
flux lines are circles through the origin and tangent to the imaginary axis. The
electric field of the dipole is

E(z) = i
d

2πε0z2
=

d

2πε0

[
2xy

(x2 + y2)2
+ i

x2 − y2

(x2 + y2)2

]
= Ex − iEy.

The intensity of the field is |E(z)| = d/[2πε0(x2 + y2)].
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Figure 6.2: Equipotential lines and field lines for the dipole (left) and two
coplanar thin metal plates (right).

A solution of an electrostatic problem (the complex potential Φ(w) in an
empty region Ωw with prescribed boundary conditions b.c.) can be used to
solve more complex problems where the point charges are displaced, and the
conducting surfaces are deformed, by some conformal map f : Ωz → Ωw. The
function Φ(f(z)) is holomorphic in Ωz, and its real part is the harmonic poten-
tial in Ωz.
In the following examples, a solution is found for simple geometries in the
w−plane, and related more complex problems are then solved by conformal
mapping.

6.2 Thin metal plate

Consider in 3D a thin infinite metallic plate, with charge density σ, and at
electrostatic potential ϕ0. The translation-invariant problem is studied in 2D.
If the section of the plate is the real axis of the w = u+ iv plane, the potential
solves Laplace’s equation with ϕ(u, 0) = ϕ0 and −(∂vϕ)(u, 0) = σ/ε0. The
solution ϕ(u, v) = − 1

ε0
σ v + ϕ0 is the real part of the holomorphic potential

Φ(w) = ϕ0 +
i

ε0
σ w + ic

where c is real and arbitrary.
This simple solution is useful for solving more difficult problems: if f(z) is the
conformal map of some empty domain to the half-plane Im w > 0, then

Φ(z) = ϕ0 +
i

ε0
σ f(z) + ic

is the complex potential in the new domain. Its real part is harmonic and takes
the value ϕ0 one the boundary of the domain, which f maps to the real axis
v = 0. We consider two examples.

6.2.1 Field in a right-angle dihedral, with conducting walls

f(z) = z2 maps the quadrant {z : x > 0, y > 0} to Im w > 0. Then the complex
potential Φ(z) = ϕ0 + i

ε0
σ z2 + ic solves the electrostatic problem in the empty
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quadrant with potential ϕ0 at the boundary.
The electrostatic potential is the real part: ϕ(x, y) = −(2σ/ε0)xy + ϕ0, with
hyperbola as equipotential lines. The lines of force of the electric field are also
hyperbola. The electric field is Ē = −i 2σ

ε0
z, or ~E(x, y) = 2σ

ε0
(y~i+ x~j).

The linear charge at the boundary of the quadrant is not uniform: σ(x) = 2σ x
(x ≥ 0) and σ(y) = 2σ y (y ≥ 0). Charge is depleted from the corner because
of the electrostatic repulsion exerted by the other side. The total charge in
0 < x < L is σL2, and equals the total charge in the image segment 0 < u < L2.

6.2.2 Field in a obtuse dihedral, with conducting walls

f(z) = z2/3 maps the sector 0 < arg z < 3
2π to Im w > 0. The complex potential

in the sector is Φ(z) = ϕ0 + i(σ/ε0) z2/3 + ic. The electrostatic potential is
ϕ(x, y) = ϕ0 − (σ/ε0) ρ2/3 sin( 2

3θ). The linear charge on the boundary line
θ = 0 is:

σ(x) = ε0Ey(x, 0) = ε0Im
dΦ

dz

∣∣∣
y=0

= 2
3σx

−1/3.

The charge accumulates near the edge x = 0. The charge in the segment 0 <
x < L is σL2/3 and equals the charge in the image segment 0 < u < L2/3.

6.3 Two adjacent thin metal plates

In 3D consider two adjacent thin metal plates at potentials 0 and V separated
by an insulating line. The problem is 2D (w = u+iv plane), with the two plates
being the positive and negative parts of the real axis. The Laplace equation for
the electrostatic potential with b.c. ϕ(u, 0) = 0 if u < 0 and ϕ(u, 0) = V if
u > 0, is found in polar coordinates:

∇2ϕ(r, θ) = 0, ϕ(r, 0) = V, ϕ(r, π) = 0 r > 0

The solution is ϕ(r, θ) = 1
πV (π − θ) (indipendent of r) i.e. ϕ(w) = 1

πV (π −
Argw). It is the real part of the complex potential, holomorphic in v 6= 0:

Φ(w) = V +
iV

π
Logw + ic

Again, this solution can be used to solve more difficult problems.

6.3.1 Semi-infinite plates at right angles, at potentials 0
and V

The complex potential is Φ(z) = V + iV
π Log(z2). The real part is the elec-

trostatic potential of the new geometry: ϕ(x, y) = V − 2Vπ arctg(y/x), with
boundary values ϕ(0, y) = 0 and ϕ(x, 0) = V . The electric field is

E = −2iV

πz
→ Ex = −2V

π

y

x2 + y2
, Ey =

2V

π

x

x2 + y2

The charge on the metallic boundary y = 0, x > 0 is σ(x) = 1
4πEy(x, 0) = V

2π2x .

On the boundary x = 0, y > 0 it is σ(y) = 1
4πEx(0, y) = − V

2π2y .
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6.3.2 Two coplanar semi-infinite metallic plates, with gap

The thin plates have potentials 0 and V and are now separated by a gap of
width 2. In the plane z = x + iy, the plates are the semi-infinite lines x ≤ −1
and x ≥ 1 of the real axis. The electrostatic potential solves Laplace’s equation
with boundary conditions ϕ(x, 0) = 0 if x ≤ −1 and ϕ(x, 0) = V if x ≥ 1. The
b.c. are implemented by a conformal map.
The domain where ϕ is harmonic (z-plane with two cuts in the real axis) is the
image of the half-plane H = {w : Imw > 0} for the Jukowski’s map

z =
1

2

(
w +

1

w

)
In components Jukowski’s map is (w = reiθ, 0 ≤ θ ≤ π):

x =
1

2

(
r +

1

r

)
cos θ, y =

1

2

(
r − 1

r

)
sin θ

The half-line θ = 0 is mapped to the cut x ≥ 1, y = 0, while the half-line θ = π is
mapped to the other cut x ≤ −1, y = 0. The complex potential of the problem
with the gap is Φ(z) = V + iV

π Logw(z), so that ϕ(x, y) = 1
πV [π−θ(x, y)]. With

some algebra: cos θ = ± 1
2 [
√

(x+ 1)2 + y2 −
√

(x− 1)2 + y2].
The equipotential lines are lines of constant θ(x, y), i.e. the images in z plane
of radii in w plane: they are hyperbola with foci ±1. The lines of force are the
images of circles (constant r), i.e. ellipses with foci ±1 (orthogonal to hyperbola
and to the two cuts).

6.4 Point charge and semi-infinite conductor

Consider of a grounded semi-infinite conductor and a parallel wire at distance
y′, with linear charge density Q. The charged wire induces a surface charge that
contributes to the electrostatic potential. In 2D the problem is that of a point
charge Q in z′ = x′ + iy′ (y′ > 0) in presence of the half plane Im z ≤ 0 at
potential zero. For y → 0, the lines of force are perpendicular to the real axis.

The evaluation of the field is done by replacing the semi-infinite conductor
with an image charge −Q in z′. By symmetry, the real axis has constant (zero)
potential. The complex field is:

Φ(z) = − Q

2πε0
log(z − z′) +

Q

2πε0
log(z − z′) + c (6.5)

The real part is the electrostatic potential of the pair ±Q, which is equivalent
to the system “real charge and grounded conductor”:

ϕ(x, y) = − Q

4πε0
log

(x− x′)2 + (y − y′)2

(x− x′)2 + (y + y′)2
+ Re c

It is constant for y = 0, and equal to zero for Re c = 0. The complex electric
field at the surface is

(Ex − iEy)(x+ i0) =
Q

2πε0

[
1

x− z′
− 1

x− z′

]
= i

Q

πε0

y′

(x− x′)2 + y′2
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Figure 6.3: Left: Equipotential lines for a point charge in a right angle with
conducting walls; right: equipotential lines of a point charge in (0,2) in presence
of a conducting disk of unit radius.

Only Ey is non zero at the surface (as it has to be: field lines are orthogonal
to equipotential lines). The surface charge density σ(x) = ε0Ey(x) is negative,
and the total induced charge neutralizes the point charge:

Qind =

∫ +∞

−∞
dxσ(x) = −Qy

′

π

∫ +∞

−∞

dx

(x− x′)2 + y′2
= −Q.

The simple solution (6.5) is used to solve other problems, where a point
charge is in presence of a different conducting boundary line. The trick is to
map the different physical region Ω to the punctured upper half-plane H/{z′}.
The boundary of Ω is mapped to the half line. If the conformal map Ωw → H
is z = z(w), the solution of the new electrostatic problem is

Φ(w) = Φref (z(w))

where Φref is (6.5). The new potential, being a composition of holomorphic
functions, is holomorphic, and its real and imaginary parts are harmonic in Ω.
The real part is the electrostatic potential ϕ(u, v) of the new problem.

6.4.1 Point charge in an angle

Consider a point charge Q in w0, in the first quadrant of the w-plane. The
quadrant is bounded by conducting half-lines at potential ϕ = 0. The electro-
static problem is solved by mapping it to the solved problem in half-space.
The quadrant is flattened to the half-plane H by the map z = w2. Therefore, the
complex potential for the quadrant is Φ(w) = Φref (w2), where Φref (z) is (6.5).
The electrostatic potential is the harmonic function ϕ(u, v) = ϕref (u2−v2, 2uv):

ϕ(u, v) = − Q

4πε0
log

(u2 − v2 − u2
0 + v2

0)2 + 4(uv − u0v0)2

(u2 − v2 − u2
0 + v2

0)2 + 4(uv + u0v0)2
(6.6)

It is ϕ(u, 0) = 0 and ϕ(0, v) = 0. The equipotential lines are shown in fig.6.3.
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6.4.2 Point charge and conducting half-line

In the z plane there are a point charge Q in z′ and a conducting half-line (the
real positive axis) at potential zero. Find the electrostatic potential and the
induced charge density.

The map z →
√
z is a map from this region to the upper half-plane, where the

reference model has been solved. The function
√
z is holomorphic on C/[0,∞).

The solution of the problem is Φ(z) = Φref (
√
z), where Φref is eq.(6.5):

Φ(z) = − Q

2πε0
log

√
z −
√
z′

√
z −
√
z′

(6.7)

Being a composition of holomorphic functions, its real part (the electrostatic
potential) is harmonic (save at z′) and vanishes on the real line. The electric
field is

E(z) =
Q

4πε0
√
z

[
1

√
z −
√
z′
− 1
√
z −
√
z′

]
The charge density is σ(x) = ε0[Ey(x + iε) + Ey(x − iε)] (x > 0); note that√
x± iε = ±

√
x. Then

σ(x) =i
Q

4π
√
x

[
1

√
x−
√
z′
− 1
√
x−
√
z′

+
1

√
x+
√
z′
− 1
√
x+
√
z′

]

=− Q
1

π

y′

(x− x′)2 + y′2

The total induced charge is −Q.

6.4.3 Point charge and conducting disk

A point charge Q is at distance d from the center of a grounded disk of radius
R (d > R). The setting corresponds to a wire parallel to a conducting grounded
cylinder. The problem of determining the complex field is solved by the confor-
mal map that takes the solved reference problem in w-plane (point charge and
half plane) to the present one in z-plane. Then, the solution is

Φ(z) = Φref(w(z)) = − Q

2πε0
log

w(z)− w′

w(z)− w′

Let id, d > 0 be the position of the point charge of the reference model. The
map from the exterior of the disk |z| > R to the upper half-plane Im w > 0,
mapping z = id to w = id, is the Möbius map:

w(z) = id
d+R

d−R
z − iR
z + iR

The complex potential generated by the disk and a point of charge Q in id is:

Φ(z) = − Q

2πε0
[log(z − id)− log(z − iR2/d) + log(R/d)] (6.8)
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Figure 6.4: The semi-infinite planar capacitor.

It coincides with the potential of two point charges, (the actual charge Q at
z = id and an image charge −Q at iR2/d, inside the disk). The potential is

ϕ(x, y) = − Q

4πε0
[log(x2 + (y − d)2)− log(x2 + (y −R/d)2) + 2 log(R/d)

At the surface of the disk, |z| = R, the electrostatic potential ϕ is zero. The
electric field is:

E(z) =− Φ′(z) =
Q

2πε0

[
x− i(y − d)

x2 + (y − d)2
− x− i(y −R2/d)

x2 + (y −R2/d)2

]
At the surface of the disk the electric field is radial, and proportional to a
negative induced charge density.

6.5 The planar capacitor

Consider in 3D an infinite planar capacitor; its section in the complex w = u+iv
plane is the infinite strip between two conducting lines v = ±d/2 at potentials
±V/2. In the strip the electrostatic potential is linear, ϕ(u, v) = v (V/d), and
it is the real part of the complex potential

Φ(w) = −i V
d
w (6.9)

The complex electric field is uniform E = iV/d, i.e. Ey = −V/d. The internal
charge densities are 4πσ = −V/d on the lower plate and 4πσ = V/d on the
upper one. This solution (infinite planar capacitor) can be used to study more
complex geometries.

6.5.1 The semi-infinite planar capacitor

Consider the conformal map

z(w) = 2π(w/d) + e2π(w/d)
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It maps conjugate points w,w to conjugate points z, z, then the x axis is a
symmetry axis and we study the upper half. In components the map is

x = 2π
u

d
+ e2π(u/d) cos

(
2π
v

d

)
, y = 2π

v

d
+ e2π(u/d) sin

(
2π
v

d

)
.

The lines (u,±d/2) are mapped to x = 2π
d u − e

2πu/d, y = ±π. Since x′(u) =

(2π/d)(1 − e2πu/d) = 0 in u = 0, the range of x(u) is (−∞,−1]. Therefore the
map takes the lines v = ±d/2 to the half-lines x < −1, y = ±π.
The map takes the interior of an infinite capacitor (the strip −d/2 < v < d/2)
to the interior and the exterior of a semi-infinite capacitor. If the plates have
potentials ±V/2, the complex potential of the semi-infinite capacitor is:

Φ(z) = −i V
d
w(z)

The solution is interesting for the study of the field near the aperture of a finite
capacitor, and was obtained by Maxwell himself, by this conformal map.

The real axis v = 0 is mapped to x = 2π
d u+ e2πu/d, y = 0, i.e. the real axis

of the z plane. The lines parallel to the u−axis, v = (d/2π)c, 0 < c < π, are
mapped to lines that run inside the capacitor and, near the end of the capacitor,
bend upward. If c > π/2 the lines fold back to the top of the condenser. The
equation of such equipotential lines can be obtained by elimination of u in
x = 2π ud + e2π(u/d) cos c, y = c+ e2π(u/d) sin c:

x = log
y − c
sin c

+ (y − c) cot c (6.10)

Field lines are orthogonal to them and are the images of segments of constant u,
|v| < d/2 inside the infinite capacitor: 2πu/d = c; they are given parametrically
(in s ∈ [−π, π]) by eqs. x− c = ec cos s and y − s = ec sin s (see note3).

The electric field is

E(z) = i
V

d

(
dz

dw

)−1

= i
V

2π

1

1 + e2πw(z)/d

Deep in the condenser the field is uniform: Ex ≈ 0 and Ey ≈ −V/2π. It diverges
at w = ±id/2, i.e. at the ends of the conducting boundaries of the capacitor
z = −1± iπ. To avoid the occurrence of divergent fields near the tips of planar
capacitors, one may deform the shape of the plates to trace equipotential lines
v = ±(d/2π)c, i.e. (6.10) (Rogowski’s capacitor).

3Deep in the capacitor (c� −1) it is x = c, −π < y < π. For c� 1 the lines are circular
arcs that end on the exterior of the capacitor’s plates, (x− c)2 + y2 = e2c (s finite); for small
s the lines x− c ≈ ec − (1/2)y2e−c are approximately straight segments inside the capacitor,
near the aperture.
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COMPLEX INTEGRAL

7.1 Paths and Curves

A path is a continuous map of a real interval to the complex plane,

γ : [a, b]→ C, (a < b)

The range of the map is a curve γ, and the path γ(t) is its parametrization.
The increasing value of the parameter assigns an orientation to the curve. Since
intervals are compact sets in R and a path is a continuous function, the curve
γ is a compact set1 in C.

We list some definitions that apply to paths, and imply geometric properties
of the curves (that would be difficult to phrase otherwise):

• A path is closed if γ(a) = γ(b) (we then say that the curve is closed).

• A path is simple if γ(t1) = γ(t2) ⇔ t1 = t2, t1,2 6= a, b. The curve does
not self-intersect, except possibly at the endpoints.

• A Jordan curve J is a simple closed curve. A theorem of topology (Jordan,
Veblen) states that C/J is the union of two disjoint sets: one is bounded
and the other is unbounded. They are the interior and the exterior of J .

The complex integral on a curve in C, will be defined for “smooth curves” i.e.
curves that are parametrised by smooth functions γ(t):

γ(t) is differentiable on [a, b],
γ̇(t) is continuous on [a, b] and γ̇(t) 6= 0 on [a, b].

The complex number γ̇(t) = ẋ(t) + iẏ(t) gives the components of the vector
tangent to the curve at γ(t) (we shall often identify a complex number with a
vector). The tangent vector never vanishes. The rotated vector iγ̇(t) is normal
to the curve. If a curve is not simple, the geometric point where the curve
self-intersects has two or more tangent vectors.

A path is piecewise smooth if it is continuous (it is a path) and is smooth on
each subinterval of some finite partition of [a, b].

1According to the Heine Borel theorem, a set in C is compact iff it is closed and bounded.

52
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A curve can be given different parametrizations. For example the complex
segment [z1, z2] can be parameterized by γ1(t) = z1 + t(z2 − z1) or by γ2(t) =
z1 + t2(z2−z1), t ∈ [0, 1]; both paths trace the same segment, but with different
“time laws”.
In general, let γ1 : [a1, b1]→ C be a smooth path, and let τ(s) be a real map of
[a2, b2] to [a1, b1] with dτ/ds > 0, τ(a2) = a1 and τ(b2) = b1. The smooth path
γ2(s) = γ1(τ(s)) with s ∈ [a2, b2] is a reparametrization of the same curve γ.

Two parametrizations γ1(τ) and γ2(s) of a curve, at a geometric point of
the curve with coordinates τ or s (τ(s) = τ), produce tangent vectors γ̇1(τ) and
γ̇2(s) with the same direction (if dτ/ds is positive):

γ̇2(s) = γ̇1(τ)
dτ

ds
, τ(s) = τ.

7.2 Complex integral

Given a continuous complex function on a smooth oriented curve,
f : γ → C, the integral of f on γ is defined as:∫

γ

f(z) dz =

∫ b

a

dt γ̇(t)f(γ(t)) (7.1)

where γ(t) is a parametrization of the curve2.
The value of the integral does not depend on the parametrization of the curve.
If γ2(s) = γ1(τ(s)) it is∫ b2

a2

ds γ̇2(s)f(γ2(s)) =

∫ b2

a2

ds γ̇1(τ)τ̇(s)f(γ1(τ(s))) =

∫ b1

a1

dτ γ̇1(τ)f(γ1(τ)).

Therefore, the integral of a function on an oriented curve is a geometric object.
This is apparent in the equivalent construction of the integral sketched below.

Given an oriented curve γ from point z′ to point z′′, and a function f con-
tinuous on it, consider the sum

n−1∑
k=0

(zk+1 − zk)
1

2
[f(zk+1) + f(zk)]

where zk are n+ 1 finitely spaced points of the curve, with z0 = z′ and zn = z′′.
Omitting technicalities, in the limits n → ∞, |zk+1 − zk| → 0, the sum gives a
parametrization-independent definition of an integral.
If a parametrization of the curve is used: zk+1 − zk = γ(tk+1) − γ(tk) ≈
γ̇(tk)(tk+1 − tk), and the sum yields the above defined integral.

If the curve γ is an interval of the real line [a, b], a parameterisation is
γ(x) = x, and the complex integral coincides with the Riemann integral of a
continuous function f : [a, b]→ C.

Note that the complex integral differs from the line integral:∫
γ

f(z)|dz| =
∫ b

a

dt
√
ẋ2 + ẏ2 f(x(t) + iy(t))

2By expanding the product γ̇(t) f(γ(t)) = (ẋ+ iẏ)[u(x, y) + i v(x, y)] one obtains four real
Riemann integrals that are well defined, since all functions are continuous on closed intervals.
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Example 7.2.1. Let’s evaluate
∫
γ
z2dz on the following curves:

i) γ is the real segment [a, b]. A parametrization is γ(x) = x with a ≤ x ≤ b.
Then γ̇(x) = 1 and ∫

[a,b]

z2dz =

∫ b

a

dxx2 = 1
3 (b3 − a3)

ii) γ is the semicircle with diameter [a, b] (from a to b counterclockwise). A
parametrization is γ(θ) = 1

2 (a + b) + 1
2 (b − a)eiθ, π ≤ θ ≤ 2π. It is γ(π) = a,

γ(2π) = b, and γ̇ = i
2 (b− a)eiθ∫

γ

z2dz = i
2 (b− a)

∫ 2π

π

dθeiθ
[

1
2 (a+ b) + 1

2 (b− a)eiθ
]2

= 1
3 (b3 − a3)

We use the integrals Ik =
∫ 2π

π
dθeikθ =

∫ 2π

π
dθ[cos(kθ) + i sin(kθ)]. It is I0 = π,

Ik = 0 if k is even, Ik = − 2i
k if k is odd.

Note that the two integrals give the same result, which only depends on the
extrema of the curve.

If a curve γ is parametrized by γ(t), t ∈ [a, b], the curve with opposite orientation
−γ is parametrized by the path γ(a+b−t) (on [a, b]). The integrals have opposite
signs: ∫

−γ
dzf(z) = −

∫ b

a

dt γ̇(a+ b− t)f(γ(a+ b− t))

=

∫ a

b

ds γ̇(s)f(γ(s)) = −
∫
γ

dzf(z) (7.2)

7.2.1 Two useful inequalities

Proposition 7.2.2. If the complex function f is integrable on a real interval
I = [a, b], then: ∣∣∣∣∣

∫ b

a

dtf(t)

∣∣∣∣∣ ≤
∫ b

a

dt|f(t)| (7.3)

Proof. Let
∫
I
f = eiθ|

∫
I
f |, then∣∣∣∣∫

I

f(t)dt

∣∣∣∣ =

∫
I

e−iθfdt =

∫
I

Re(e−iθf) dt ≤
∫
I

|f |dt.

We used Re
∫
fdt = Re

∫
(u+ iv)dt =

∫
u dt =

∫
Refdt.

If a complex curve is parametrized as γ(t), the real function |f(γ(t))| is
continuous on [a, b] and has a maximum. The previous inequality gives:

Proposition 7.2.3 (Darboux’s inequality). If f is a complex continuous
function on a smooth path γ, then:∣∣∣∣∫

γ

dzf(z)

∣∣∣∣ ≤ L(γ) sup
z∈γ
|f(z)| (7.4)
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where L(γ) =
∫ b
a
dt|γ̇(t)| is the length of the path (it is a finite number as γ is

required to have continuous derivative on [a, b]. Then γ̇1 and γ̇2 are bounded).

Example 7.2.4. Consider the integral I =
∫

[0,2+iπ]
dz ez. Darboux’s inequality

gives |I| <
√

4 + π2 supt∈[0,1] |et(2+iπ)| = e2
√

4 + π2. The exact value of the

integral is obtained through the primitive (as explained below): I = e2+iπ−e0 =
−e2 − 1, then |I| = e2 + 1.

7.3 Primitive

The evaluation of an integral is straightforward if the function has a primitive.

Definition 7.3.1. If f(z) is continuous on a domain D, a primitive of f is a
function F (z) that is holomorphic on D such that

F ′(z) = f(z), ∀z ∈ D

Proposition 7.3.2. If f is continuous on D and has a primitive on it, and γ
is a path in D, the integral of f on γ only depends on the endpoints of the path:∫

γ

f(z)dz =

∫ b

a

dt γ̇(t) f(γ(t)) =

∫ b

a

dt γ̇(t)F ′(γ(t))

=

∫ b

a

dt
d

dt
F (γ(t)) = F (γ(b))− F (γ(a)). (7.5)

If the path is closed, γ(b) = γ(a), then the integral is zero.

Example 7.3.3. The function ez is the primitive of ez on C; therefore
∫
γ
dzez =

eb − ea on any path from a to b.

The existence of a primitive as a holomorphic function is a delicate issue, as
it is related to global properties of the domain:

Theorem 7.3.4. Let f(z) be a continuous function on an open connected set
D. The following statements are equivalent:
1) for any two points a and b in D the integral of f along a (piecewise) smooth
path with endpoints a and b does not depend on the path;
2) the integral of f along any closed (piecewise) smooth path in D is zero;
3) there is a function F (z) holomorphic at all points of D such that F ′(z) = f(z)
at all points of D.

Proof. To prove that 1 → 2, 2 → 1 and 3 → 1 is trivial. The only non-trivial
statement to prove is 1 implies 3. Define F (z) as the integral of f from an
arbirtary point a ∈ D to z along a path; by hypothesis 1 the function depends
on z (and a) but not on the path.
To prove holomorphy of F consider a disk with center z contained in D (D is
open), choose z + h in the disk (we’ll take the limit h → 0) and consider the
path from a to z+h obtained by prolonging the path from a to z by the segment
σ = [z, z + h]. Parameterize σ as ζ(t) = z + ht (dζ = hdt). Then:

F (z + h)− F (z)

h
=

1

h

∫
σ

dζf(ζ) =

∫ 1

0

dtf(z+ht) = f(z)+

∫ 1

0

dt [f(z+ht)−f(z)].
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Since f is continuous: ∀ε > 0 ∃δ such that |f(z + ht) − f(z)| < ε if t|h| < δ,
then: ∣∣∣∣F (z + h)− F (z)

h
− f(z)

∣∣∣∣ ≤ ∫ 1

0

dt|f(z + ht)− f(z)| ≤ ε

if |h| ≤ δ, i.e. F ′(z) = f(z).

7.4 The Cauchy transform

Let γ be a (piecewise) smooth path open or closed and f a continuous function
on γ. The following integral,

G1(z) =

∫
γ

dζ

2πi

f(ζ)

ζ − z
, z /∈ γ, (7.6)

is the Cauchy transform of f . It will play an important role in Cauchy’s theory
of holomorphic function, together with the integrals3

Gn(z) =

∫
γ

dζ

2πi

f(ζ)

(ζ − z)n
, z /∈ γ, n = 2, 3, ... (7.7)

Since the functions f(ζ)/(ζ − z)n are continuous on γ, the integrals exist.

Theorem 7.4.1. The functions Gn(z), n = 1, 2, . . . are holomorphic in C/γ
and G′n(z) = nGn+1(z).

Proof. The proof is first given for n = 1. Let z ∈ C/γ. Being C/γ an open set,
there is an open disk centred in z of radius δz that is not crossed by γ. Let z+h
belong to such disk and evaluate:

G1(z + h)−G1(z) =

∫
γ

dζ

2πi
f(ζ)

[
1

ζ − z − h
− 1

ζ − z

]
= h

∫
γ

dζ

2πi

f(ζ)

(ζ − z − h)(ζ − z)

Divide by h and subtract G2(z):

G1(z + h)−G1(z)

h
−G2(z) =

∫
γ

dζ

2πi

[
f(ζ)

(ζ − z − h)(ζ − z)
− f(ζ)

(ζ − z)2

]
= h

∫
γ

dζ

2πi

f(ζ)

(ζ − z − h)(ζ − z)2

By the Darboux inequality with M = supz∈γ |f(z)|:∣∣∣h∫
γ

dζ

2πi

f(ζ)

(ζ − z − h)(ζ − z)2

∣∣∣ ≤ |h|L(γ)M

2π
sup
ζ∈γ

1

|ζ − z − h||ζ − z|

For all ζ ∈ γ it is: |ζ−z| > δz and |ζ−z−h| ≥
∣∣|ζ−z|−|h|∣∣ = |ζ−z|−|h| ≥ δz−|h|.

Then: ∣∣∣h∫
γ

dζ

2πi

f(ζ)

(ζ − z − h)(ζ − z)2

∣∣∣ ≤ L(γ)M

2π

|h|
δz(δz − |h|)

→ 0

3see Lars Ahlfors, Complex Analysis, 3rd ed. McGraw-Hill, p.121.
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as |h| → 0. Then G1(z) is holomorphic and G′1 = G2.
For n > 1 the proof runs similarly, and can be led to the result:

Gn(z + h)−Gn(z) =

∫
γ

dζ

2πi
f(ζ)

[
1

(ζ − z − h)n
− 1

(ζ − z)n

]
=

∫
γ

dζ

2πi
f(ζ)

(ζ − z)n − (ζ − z − h)n

(ζ − z − h)n(ζ − z)n

= nh

∫
γ

dζ

2πi

f(ζ)

(ζ − z − h)n(ζ − z)
+O(h2),

Now divide by h and subtract nGn+1(z). It remains to show that

n

∫
γ

dζ

2πi

f(ζ)

ζ − z

[
1

(ζ − z − h)n
− 1

(ζ − z)n

]
vanishes for h→ 0, as in the case n = 1.

7.5 Index of a closed curve

7.5.1 An instructive integral

Let C be the (anticlockwise) circle with center 0 and radius r. The following
integral is computed in polar coordinates for any integer n, and is independent
of the radius: ∮

C

dz

zn
= 2πi δn,1 (7.8)

What is special about 1/z to give a non-zero result?
The functions 1/z, 1/z2, 1/z3, ... are holomorphic in the punctured plane
C0 = C/{0}, but with a difference: a primitive in C0 (where the circle runs)
exists for all of them, but not for n = 1.
log z is a local primitive of 1/z, but it has branch cut that joins the origin to
infinity, and C always crosses the cut.
If a ray from 0 (included) to ∞ is cut away from C, then the log with branch
cut along the ray is a primitive of 1/z in the new domain C/ray.
Consider the open curve Ca obtained by removing the intersection (call it a) of
the ray with C. The integral on Ca is the difference of primitives at the sides
of the cut: ∫

Ca

dz

z
= log a+ − log a− = 2πi

2πi is the discontinuity of log z across the cut. The result does not depend on
the curve joining the two points: the curve Ca may be deformed to γa (with
fixed a). Since only a point has been removed, where 1/z is continuous, the
integrals on C, Ca and γ coincide. Therefore:∮

γ

dz

z
= 2πi

for any simple closed curve γ enclosing the origin. The contribution 2πi solely
arises from the single crossing of the branch cut.
The result is invariant under a translation, and introduces the interesting topic
of the following section.
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7.5.2 The index of a closed curve

Definition 7.5.1. Let γ be a (piecewise) smooth closed oriented curve and
z /∈ γ. The Index (or winding number) of γ with respect to z is

Ind(γ, z) =

∮
γ

dζ

2πi

1

ζ − z
(7.9)

The index is the Cauchy transform of f(z) = 1 on a closed curve. Therefore
it is a holomorphic function on any open set not traversed by the curve. Indeed
it is constant in each set:

d

dz
Ind(γ, z) =

∮
γ

dζ

2πi

1

(ζ − z)2
= 0

As |z| → ∞, the index function vanishes and, since it is constant, it is zero
everywhere in Ext(γ).

It can be easily understood that the constant is an integer that enumerates
the number of windings of γ around the point z.
From the point z draw a half-line σ, with any direction that avoids self-inter-
sections of the curve. The half-line crosses the curve in a number of points.
Now, consider the domain C/σ; in this domain the primitive 1

2πi log(ζ − z) (as
a function of ζ) is holomorphic. The integral for the index is now evaluated for
the curve with points removed along the chosen cut: it is the difference of the
primitive at points at the two ends of each piece of the curve. Each difference
is ±1 (because of the discontinuity ±2πi of the log), with +1 when the crossing
is anticlockwise, and −1 for a clockwise crossing:

Ind(γ, z) =

∮
γ

dζ

2πi

1

ζ − z
= N+ −N− (7.10)

where N+ and N− are the numbers of anticlockwise and clockwise turns of γ
around z.

0 1

−1

0

1

−1

0

Figure 7.1: Indices of an oriented curve. To evaluate them, fix a point in a
patch, draw a half-line left from it, and count the crossings from above (N+)
and from below (N−).
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7.5.3 2D Gauss theorem and Index function

The integral on a curve γ from a to b of the function E(z) = Ex−iEy associated
to the 2D electrostatic field E = Exi + Eyj is:∫

γ

E(z)dz =

∫
dt(ẋ+ iẏ)(Ex − iEy)

=

∫
dt(Exẋ+ Ey ẏ) + i(Exẏ − Eyẋ)

=

∫
γ

E(x)·d`+ i

∫
γ

E(x)·n d` (7.11)

The real part is the work done by the electric field, the imaginary part is the
flux of E through the curve, n is the vector normal to the curve.

Suppose that γ is contained in a domain where the complex potential Φ is
holomorphic. Since E = −dΦ/dz, the top integral is −Φ(b) + Φ(a). If the curve
is closed, both the work and the flux are zero (no net charge is encircled).

Now a different situation: the closed curve encircles point-charges Qi at zi.
The complex potential

Φ(z) = − 1

2πε0

∑
i

Qi log(z − zi),

is holomorphic except for cuts joining zi to ∞. Such discontinuities affect the
imaginary part of the integral, while the real part of the integral (7.11) remains
zero, i.e. the work done by the field on a closed line is zero. The evaluation of
the integral gives an imaginary result (the flux):∮

γ

dz E(z) = −
∮
γ

dz
dΦ

dz
=

1

2πε0

∑
j

Qj

∮
γ

dz

z − zj
=

i

ε0

∑
j

Qj Ind(γ, zj)

Therefore ∫
γ

E(x)·n d` =
1

ε0

∑
j

Qj Ind(γ, zj)

This is Gauss’ theorem (the flux of the electric field through a closed curve is
proportional to the total charge encircled).
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CAUCHY’S THEOREMS
FOR RECTANGULAR
DOMAINS

The fundamental theorem for the integral on closed curves of holomorphic func-
tions was proven by Cauchy with the requirement that f ′ is continuous. The
condition was relaxed by Goursat (1900), who proved Cauchy’s theorem for a
triangle. A simpler proof was then found for a rectangle, and is given below.
The theorem will allow for the construction of a primitive and extend the the-
orem to arbitrary closed paths in a rectangular domain where the function is
holomorphic. The Cauchy integral formula will then follow. For entire functions
the theorems hold everywhere in C.

Theorem 8.0.1. If f is holomorphic on a domain, and R is a rectangle in the
domain, with boundary ∂R: ∮

∂R

dzf(z) = 0 (8.1)

Proof. Let L be the length of the diagonal of R, and choose an orientation of
the boundary. Halve the sides of R and obtain four rectangles R1k (the index
1 stands for generation, k = 1...4); let I(R1k) be the values of the integrals on

the oriented boundaries of the rectangles. It is I(R) =
∑4
k=1 I(R1k) because

integrals on shared sides (they have opposite orientations) cancel. Denote I1
the integral with largest modulus among the four, and R1 the corresponding
rectangle. Then |I(R)| ≤

∑
k |I(R1k)| ≤ 4|I1|.

Now repeat with R1: a partition of R1 into four rectangles R2k gives I1 =∑4
k=1 I(R2k). Select the rectangle R2k with largest value |I(R2k)|, and let I2

be the value of such integral, and R2 the rectangle. It is |I(R)| ≤ 42|I2|.
By iterating the process, a sequence of rectangles R1 ⊃ R2 ⊃ · · · ⊃ Rn ⊃ · · · is
selected. At generation n:

|I(R)| ≤ 4n|In|

The middle points of the rectangles form a Cauchy sequence whose limit point
a belongs to the intersection of all the rectangles in the sequence.

60
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Figure 8.1: The integral on a rectangular path is the sum of four integrals on
smaller rectangles; the contributions of oppositely oriented sides cancel.

Since f(z) is holomorphic, it is true that given ε > 0, there exists δ such that

f(z)− f(a)

z − a
= f ′(a) + r(z, a)

with remainder |r(z, a)| < ε for all z such that |z − a| < δ. In Rn two points
have separation at most L/2n, therefore a rephrasing is: ∀ε ∃n (generation)
such that f(z) = f(a) + f ′(a)(z − a) + r(z, a)(z − a) where |r(z, a)| < ε for all
z ∈ Rn. This gives the estimate:

|In| =
∣∣∣∣∮
∂Rn

dz[f(a) + f ′(a)(z − a) + r(z, a)(z − a)]

∣∣∣∣
=

∣∣∣∣∮
∂Rn

dz r(z, a)(z − a)

∣∣∣∣ ≤ ε × perimeter of Rn × sup
z∈∂Rn

|z − a|

< ε
4L

2n
L

2n

Note that
∫
∂R
dz[f(a) + f ′(a)(z − a)] = 0 as a primitive exists. Since |I(R)| ≤

4ε L2 for arbitrary ε, it is I(R) = 0.

The hypothesis of the theorem can be weakened to allow for a function that
is holomorphic up to a point (or a finite collection of points) in the domain,
where the function remains continuous. This will be useful to prove the Cauchy
integral formula.

Proposition 8.0.2. Let f(z) be a function that is continuous on a domain D
and holomorphic on D/{a}. Then

∮
∂R
dzf(z) = 0 for any rectangle R in the

domain.

Proof. If a /∈ R Theorem 8.0.1 holds. If a ∈ R decompose R as Ra∪R1∪ ...∪Rk
where Ra is a square with side ε that contains a (an interior or a boundary point
of R), and R1 . . . Rk are rectangles that complete the partition. The contour
integral is I(R) = I(Ra) +

∑
i I(Ri). The integrals I(Ri) are zero by Theorem



CHAPTER 8. RECTANGULAR DOMAINS 62

8.0.1. Since |f(z)| < M on R (because f is continuous on the compact set R),
Darboux’s inequality gives |I(R)| = |I(Ra)| ≤ (4ε)M .

Example 8.0.3 (Fourier transform of the Gaussian function).∫ ∞
−∞

dx√
2π
e−x

2−ikx =
1√
2
e−

1
4k

2

, k ∈ R (8.2)

Proof: consider the integral
∮
∂R
dze−z

2

on the rectangle with corners −a, b,
b+ i(k/2) and −a+ i(k/2) (a, b > 0). The integral is zero because the function
is entire. The same integral is the sum of four integrals evaluated on the sides:

0 =

∫ b

−a
dx e−x

2

+ i

∫ k
2

0

dy e−(b+iy)2 −
∫ b

−a
dx e−(x+ 1

2 ik)2 − i
∫ k

2

0

dy e−(−a+iy)2

For a, b→∞, the integrals in y vanish, and the value of the first integral is
√
π.

Exercise 8.0.4. Evaluate the moments of the Gaussian distribution:

〈x2n〉 =
1√
π

∫ ∞
−∞

dx x2ne−x
2

=
(2n)!

4nn!
(8.3)

(Hint: expand in power series of k both sides of (8.2) and equate coefficients of equal

powers). Prove the useful integral:

1√
π

∫ ∞
−∞

dx e−x
2−xz = e

1
4 z

2

, z ∈ C. (8.4)

8.1 Cauchy’s theorem in rectangular domains

As a consequence of Cauchy’s theorem for rectangles, within a rectangular do-
main R where a function f is holomorphic (up to a finite number of points where
it remains continuous), a primitive F can be explicitly constructed.

The primitive in z ∈ R is built as the integral of f along a curve joining
a fixed reference point in R to z. The curve is made of two segments at right
angles, parallel to the sides of the rectangle. Without loss of generality, we may
assume that the rectangle has sides parallel to the axes and contains the origin.
If z = x+ iy the path is [0, x] ∪ [x, x+ iy] and

F (z) =

∫ x

0

dx′f(x′) + i

∫ y

0

dy′f(x+ iy′)

Proposition 8.1.1. F (z) is holomorphic and F ′(z) = f(z) for all z ∈ R.

Proof. Fix z and let h = hx + ihy; because of theorem 8.0.1, it is

F (z + h) =

∫ x+hx

0

dx′f(x′) + i

∫ y+hy

0

dy′f(x+ hx + iy′)

= F (z) +

∫ x+hx

x

dx′f(x′ + iy) + i

∫ y+hy

y

dy′f(x+ hx + iy′)

= F (z) +

∫
γ

dζf(ζ)
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where the path γ is made of two segments at right angles: [z, z + hx] ∪ [z +
hx, z+h]. Divide by h and subtract f(z) from both sides. Note that

∫
γ
dζ = h.

Then:
F (z + h)− F (z)

h
− f(z) =

1

h

∫
γ

dζ [ f(ζ)− f(z) ]

By Darboux’s inequality:∣∣∣∣F (z + h)− F (z)

h
− f(z)

∣∣∣∣ ≤ sup
z∈γ
|f(z)− f(ζ)| |hx|+ |hy|

|h|
≤ 2 sup

z∈γ
|f(z)− f(ζ)|

Since f is continuous in z, the limit h→ 0 of the r.h.s. is zero. Then F ′ exists
(i.e. F is holomorphic) in R and F ′ = f .

With a primitive available at every point, we conclude that the integral of f
on any closed (piecewise) smooth path in R is zero1:

Theorem 8.1.2 (Cauchy’s theorem in rectangular domains).∮
γ

dzf(z) = 0 (8.5)

Exercise 8.1.3 (Fresnel integrals). Obtain the integrals:∫ ∞
0

dx cos(x2) =

∫ ∞
0

dx sin(x2) =

√
2π

4

Hint: consider the null integral
∮
C
dz eiz

2

on the closed path with sides [0, R], [0, Reiπ/4]

and the circular arc {Reiθ, 0 ≤ θ ≤ π/4}. The integral on the arc is zero for R→∞
(use the inequality sin θ ≥ 2θ/π valid for 0 ≤ θ ≤ π/2).

Exercise 8.1.4. Let F (z) be the primitive of an entire function. Show that for
any two points in C: ∣∣∣∣F (b)− F (a)

b− a

∣∣∣∣ ≤ sup
z∈[a,b]

|F ′(z)|

8.2 Cauchy’s integral formula

Theorem 8.2.1 (Cauchy’s integral formula). If f is a holomorphic function
on a rectangle R, γ is a (piecewise) smooth closed curve in R and a ∈ R/γ, then∮

γ

dζ

2πi

f(ζ)

ζ − a
= f(a) Ind(γ, a), a /∈ γ (8.6)

where Ind (γ, a) is the index of the curve at the point a.

1This property was known to Gauss, who announced it in a letter to Bessel in 1811 [Boyer].
Gauss refrained from publishing several results he obtained, if not fully developed. His motto
was pauca sed matura.
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Proof. Consider the function

g(ζ) =


f(ζ)− f(a)

ζ − a
ζ 6= a,

f ′(a) ζ = a.

g is continuous on C and holomorphic in C/{a}. Cauchy’s theorem on rectan-
gles holds (a may belong to the boundary), and enables the introduction of a
primitive in C/{a}. Therefore the integral of g on a closed path is zero:

0 =

∮
γ

dζ g(ζ) =

∮
γ

dζ

2πi

f(ζ)

ζ − a
− f(a) Ind(γ, a)

The Cauchy’s integral formula is remarkable: it shows that the values of a
function holomorphic on a bounded region are determined by the values at the
boundary of this region!
It also shows that the Cauchy transform on a closed path of a holomorphic
function coincides with the function itself, times the Index function. Since
we proved in general that the Cauchy transform of a continuous function is
holomorphic on C/γ, the following important theorem follows:

Theorem 8.2.2. The derivative f ′ of a function f holomorphic on a rectangle
R, is holomorphic on the same rectangle. In the same way, all derivatives f (n)

exist on R and

1

n!
Ind(γ, z) f (n)(z) =

∮
γ

dz′

2πi

f(z′)

(z′ − z)n+1
, z ∈ R/γ (8.7)

The following theorem is the converse of Cauchy’s theorem 10.2, and is here
rephrased for rectangles:

Theorem 8.2.3 (Morera2). If the Cauchy integral of a continuous function f
vanishes for all rectangular paths in R, then f is holomorphic on R.

Proof. The property of vanishing integral on all rectangular paths implies that
a primitive exists, i.e. a function F holomorphic on R such that F ′(z) = f(z)
for all z ∈ R. Being F holomorphic, also F ′ i.e. f are holomorphic.

Proposition 8.2.4 (Mean value theorem). f(z) is the mean value of f on
any circle in R centred in z:

f(z) =

∫ 2π

0

dθ

2π
f(z + reiθ) (8.8)

Proof. Apply Cauchy’s formula to a circle with center z and radius r.

Example 8.2.5. Let γ be the ellipse |z − 1|+ |z + 1| = 4, consider the integral∮
γ

dz
eπz

2z − 3i

The point 3
2 i is in the ellipse, therefore the integral is 2πi

2 eπ(3i/2) = π.
2Giacinto Morera (1856, 1907).
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Exercise 8.2.6. Let γ be the circle |z| = 3. Show that∮
γ

dz
sin z

z2 − 3z + 2
= 2πi(sin 2− sin 1)
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ENTIRE FUNCTIONS

Entire functions are holomorphic on the whole complex plane. Polynomials, the
exponential and its linear combinations are entire functions. An entire function
admits primitives (which differ by constants) which are again entire functions.
The mean value theorem (8.8) implies the inequality

|f(z)| ≤ sup
θ∈[0,2π]

|f(z + reiθ)|

for any circle of radius r centred on z. This means that |f(z)| has no peaks.
Indeed, the following remarkable theorem holds:

9.1 Liouville theorem

Theorem 9.1.1 (Liouville’s theorem). If f(z) is an entire function and
|f(z)| ≤M for all z ∈ C, then f(z) is constant.

Proof. Given a point z and a circle C with center 0 and radius R > |z|, the
Cauchy integral formula gives:

f(z)− f(0) =

∮
C

dζ

2πi
f(ζ)

[
1

ζ − z
− 1

ζ

]
=

∮
C

dζ

2πi

zf(ζ)

(ζ − z)ζ
= z

∫ 2π

0

dθ

2π

f(Reiθ)

Reiθ − z
In the inequality

|f(z)− f(0)| ≤ |z|
∫ 2π

0

dθ

2π

∣∣∣∣ f(Reiθ)

Reiθ − z

∣∣∣∣ ≤ |z|M max
θ

1

|Reiθ − z|
= M

|z|
R− |z|

.

R can be arbitrarily large, then f(z)−f(0) = 0 for all z, i.e. f(z) is constant.

In the proof, the boundedness of f is needed only on the path C. This leads
to several generalizations, like this one:

Corollary 9.1.2. If f(z) is entire and limz→∞ |f(z)| = 0, then f(z) = 0.

Proof. By hypothesis: ∀ε > 0 ∃Rε such that |f(z)| < ε if |z| > Rε. Then for R >
Rε the Darboux inequality in the Cauchy formula gives |f(z)| ≤ R/(R−|z|)ε.

Suppose that f is entire and f(z) − (az + b) → 0 for |z| → ∞. Then
f(z) = az + b everywhere. More generally, if f(z) − zn → 0 at infinity, then
f(z) is a polynomial of degree n.

66
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9.2 Picard’s Little Theorem

The function f(z) = z is entire and takes all complex values; the exponential
function is entire and takes all complex values but one, the value zero. Is there
a non-constant entire function that avoids two values? The answer is no:

Theorem 9.2.1 (Picard’s little theorem1). Let f be an entire function and a
and b two distinct complex values such that, for all z, f(z) 6= a and f(z) 6= b.
Then f(z) is constant.

A sharpened version (Picard’s great theorem) states that every transcenden-
tal2 entire function f assumes every complex number infinitely many times with
at most one exception3.

9.3 Polynomials

Theorem 9.3.1 (The fundamental theorem of algebra). A polynomial of
order greater than zero has a zero.

Proof. Suppose that a polynomial p(z) of order greater than zero has no zeros.
Then 1/p(z) is entire and vanishes for z →∞. By Cor.9.1.2 one gets the absurd
result 1/p(z) = 0 everywhere.

The theorem implies that a polynomial of degree n with complex coefficients
has exactly n zeros z1, . . . ,zn in C. Theorems for the location of zeros will be
given in Sect.(14.4).
Let the coefficient of the leading power be a0 = 1 (monic polynomial):

p(z) = zn + a1z
n−1 + . . .+ an

= (z − z1)(z − z2) · · · (z − zn).

The two representations give useful relations among roots and coefficients:

σ1 = z1 + z2 + . . .+ zn = −a1

σ2 = z1z2 + z1z3 + . . .+ zn−1zn = a2

. . .

σn = z1z2 · · · zn = (−1)nan.

The quantities σk are the elementary symmetric polynomials of z1, . . . , zn. They
are related to the sums sp = zp1 + . . . + zpn by Newton’s identities (s1 = σ1,
s2 = σ2

1 − 2σ2, etc.)

Exercise 9.3.2. Prove the following identity for polynomials with simple roots

1

p(z)
=

n∑
k=1

1

p′(zk)

1

z − zk
(9.1)

1Charles E. Picard (1856, 1941).
2A function is transcendental if it’s not algebraic. A function ω(z) is algebraic if it solves

an equation P (z, ω) = 0 where P is a polynomial both in z and ω.
3R. Remmert, Classical topics in complex analysis, GTM 172, Springer 1998.
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Exercise 9.3.3. If the roots are simple, show that:

p′′(zk)

p′(zk)
=
∑
j 6=k

2

zk − zj
,

∏
k

p′(zk) = (−)
1
2n(n−1)

∏
i>j

(zi − zj)2. (9.2)

Exercise 9.3.4. Let pk(z) be monic polynomials of degree k = 1, . . . , n − 1.
Show that:

det


1 p1(z1) · · · pn−1(z1)
1 p1(z2) · · · pn−1(z2)
...

...
...

1 p1(zn) · · · pn−1(zn)

 = det


1 z1 · · · zn−1

1

1 z2 · · · zn−1
2

...
...

...
1 zn · · · zn−1

n

 =
∏
i>j

(zi − zj)

The second matrix is the Vandermonde matrix, which is an important tool in
linear algebra, matrix theory, and polynomial interpolation.

Exercise 9.3.5. By expanding (9.1) in powers of 1/z and equating coefficients,
obtain the identities for the roots:

0 =

n∑
k=1

z`k
p′(zk)

(` = 0, . . . , n− 2), 1 =

n∑
k=1

zn−1
k

p′(zk)
, −a1 =

n∑
k=0

znk
p′(zk)

, . . .

Exercise 9.3.6. Prove the relations, valid for general polynomials:

p′(z)

p(z)
=

n∑
k=1

1

z − zk
,

p′(z)2 − p′′(z)p(z)
p(z)2

=

n∑
k=1

1

(z − zk)2

Exercise 9.3.7. If f(z) is an entire funtion and γ is a simple closed path
enclosing the points z = 0, 1, . . . , n show that:∮

γ

dz

2πi

f(z)

z(z − 1) · · · (z − n)
=

(−1)n

n!

n∑
k=0

(−1)k
(
n

k

)
f(k)

Exercise 9.3.8. Let the simple closed path γ contain the unit disk and let f(z)
be an entire function; show that:∮

γ

dz

2πi

f(z)

zn − 1
=

1

n

n∑
k=1

ωkf(ωk), ω = exp(i 2π
n )

Given a monic polynomial of order n with distinct zeros, the set {z : |pn(z)| =
c} is a lemniscate. For c = 0 it consists of n points (the roots), by increasing c
it evolves into n distinct ovals encircling the roots. As c is increased the ovals
start to merge into fewer closed lines.
The length of the lemniscate |pn(z)| = 1 is not greater than Kn, where K ≤ 8πe
(Borwein, 1995). The result was improved to K ≤ 9.173 (Eremenko and Hay-
man, 1999).

Cartan’s Lemma: the inequality |pn(z)| > (R/e)n holds outside at most n
circular disks, the sum of the radii being at most 2R.
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CAUCHY’S THEORY
FOR HOLOMORPHIC
FUNCTIONS

The extension of Cauchy’s theory from rectangular domains to general domains
requires care. If f is holomorphic on D and has singularities in C/D, a closed
curve in D may encircle them. In 1971 Dixon gave a proof of Cauchy’s theorem
and integral formula on general domains that solves the topological problem
with the index function. The proof is elegant as it only requires Liouville’s
theorem for entire functions1.

Theorem 10.0.1 (Dixon). Let γ be a piecewise smooth closed path in a domain
D such that Ind (γ, z) = 0 ∀z /∈ D. If f is holomorphic on D, z ∈ D/γ:

Ind(γ, z) f(z) =

∮
γ

dζ

2πi

f(ζ)

ζ − z
(Cauchy’s formula) (10.1)

0 =

∮
γ

dζ f(ζ) (Cauchy’s theorem) (10.2)

Proof. Consider the function g : D ×D → C

g(ζ, z) =
f(ζ)− f(z)

ζ − z
for ζ 6= z, g(z, z) = f ′(z)

Since g is continuous in each variable, the following function exists ∀z ∈ C:

h(z) =

∮
γ

dζ

2πi
g(ζ, z) if z ∈ D (10.3)

=

∮
γ

dζ

2πi

f(ζ)

ζ − z
if z /∈ D (10.4)

1John D. Dixon, A brief proof of Cauchy’s integral theorem, Proc. Am. Math. Soc. 29
n.3 (1971) 625-26 (https://www-users.cse.umn.edu/~brubaker/docs/8701-F13/dixon.pdf).
Peter A. Loeb, A note on Dixon’s proof of Cauchy’s Integral Theorem, Am. Math. Month.
98 n.3 (1991) 242-244. See the textbook by Lang for a presentation of Dixon’s proof.
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If z ∈ D/γ the first expression is

h(z) =

∮
γ

dζ

2πi

f(ζ)

ζ − z
− f(z)Ind(γ, z)

Where the index is zero, it coincides with the second expression of h(z), which
is the Cauchy transform of f . Therefore h(z) is holomorphic wherever the index
is zero, and h(z)→ 0 as |z| → ∞.
The key point (not proven here) is that h is entire. Then, by Liouville’s theorem
(Cor. 9.1.2), it is h(z) = 0 on C, and (10.1) is proven.

To obtain (10.2), choose a ∈ D/γ and apply (10.1) to the function (z−a)f(z):

Ind(γ, z) (z − a)f(z) =

∮
γ

dζ

2πi

ζ − a
ζ − z

f(ζ).

Now let z = a and Cauchy’s theorem follows.

Corollary 10.0.2. A holomorphic function can be differentiated indefinitely on
its domain.

Exercise 10.0.3. Use Cauchy’s formula to evaluate the integral (Hint: z = eiθ):∫ 2π

0

dθ
1

1− 2x cos θ + x2
=

2π

1− x2
, 0 ≤ x < 1. (10.5)



Chapter 11

POWER SERIES

11.1 Uniform and normal convergence

We consider sequences of functions fn on some abstract set E to C. At each
point P ∈ E there is a complex sequence fn(P ), whose convergence is assessed
by Cauchy’s criterion.

• Point-wise convergence on E. Suppose that ∀P ∈ E the sequence
fn(P ) converges to a finite complex number. The set of limit values defines a
function f : E → C, and we say that fn → f point-wise on E.
Since C is complete, we only need Cauchy’s criterion for convergence:

∀P ∈ E ∀ε > 0 ∃Nε,P such that |fn(P )− fm(P )| < ε ∀m,n > Nε,P

•Uniform convergence on E. Suppose that the stronger condition occurs:
∀P ∈ E the sequence fn(P ) is Cauchy with Nε independent of P . Then fn
converges on E, and the distance |fn(P )−fm(P )| is bounded on E by the same
ε for all P ∈ E, n,m > Nε. We say that fn → f uniformly on E:

∀ε > 0 ∃Nε such that |fn(P )− fm(P )| < ε ∀m,n > Nε, ∀P ∈ E.

Definition 11.1.1. A series of functions
∑
k fk is uniformly convergent on E

if the sequence of partial sums is uniformly convergent on E:

∀ε > 0 ∃Nε :

∣∣∣∣∣
m+n∑
k=m+1

fk(P )

∣∣∣∣∣ < ε ∀m > Nε, ∀n > 0, ∀P ∈ E. (11.1)

Theorem 11.1.2 (Weierstrass M-criterion). If there are positive constants
Mk such that |fk(P )| < Mk for all P ∈ E and

∑
kMk is finite, then the series∑

k fk is uniformly convergent on E.

Proof. Let Sm(P ) be the sequence of partial sums. For all P ∈ E:

|Sm+n(P )− Sm(P )| ≤
m+n∑
k=m+1

|fk(P )| ≤
m+n∑
k=m+1

Mk < ε

for m large enough and all n, because the M−series converges.
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Proposition 11.1.3. The geometric series
∑
k z

k is uniformly convergent on
the closed disk |z| ≤ 1− η, η > 0.

Proof. Use the M−criterion with Mk = (1− η)k.

From now on, E is a set in C. Uniform convergence of a series guarantees
that integration can be made term by term:

Theorem 11.1.4 (Integral of series). Given a piecewise smooth curve γ in a
domain D, a sequence fk of functions continuous on γ, suppose that

∑
k fk is

uniformly convergent on γ, then:∫
γ

dz

∞∑
k=0

fk(z) =

∞∑
k=0

∫
γ

dz fn(z) (11.2)

Proof. The partial sums Sm(z) are continuous functions on γ which is a compact
set, then uniform convergence implies that the limit series S(z) =

∑∞
k=0 fn(z)

is continuous on γ, and the integral exists. Uniform convergence on γ means
that |Sm(z) − S(z)| < ε for all m > N and for all z ∈ γ. Darboux’s inequality
shows that summation and integration commute:∣∣∣∑m

k=0

∫
γ
dzfk(z)−

∫
γ
dz
∑∞
k=0 fk(z)

∣∣∣ ≤ ∫γ |dz| |Sm(z)− S(z)| < εL(γ).

Since derivatives of holomorphic functions can be evaluated as Cauchy integrals,
the theorem adds another important property:

Theorem 11.1.5 (Derivative of series). Let fn be a sequence of holomorphic
functions on a domain D. If S =

∑
n fn is uniformly convergent on D then S

is holomorphic on D and S′ =
∑
k f
′
k.

Proof. The function S, being a uniform limit of continuous partial sums Sn, is
continuous on D. Then the integral of S on a curve in D exists. Since for any
closed curve in D the integrals of Sn vanish, by the previous theorem, also the
integral of S is zero. Therefore S is holomorphic by Morera’s theorem.
The derivative of Sn in z is given by Cauchy’s formula on a loop encircling z:

S′(z) =

∮
γ

dz′

2πi

S(z′)

(z′ − z)2
= lim
N→∞

N∑
k=1

∮
γ

dz′

2πi

fk(z′)

(z′ − z)2
=

∞∑
k=1

f ′k(z)

The same holds for higher order derivatives.

11.1.1 Normal convergence

In some cases the requirement of uniform convergence on a domain is too re-
strictive. Theorem 11.1.4 and derivation term by term, can be proven under the
weaker hypothesis of local uniform convergence (normal convergence).

Definition 11.1.6. A sequence of functions fn converges normally to f on a
domain D if it converges point-wise to f on D and, for any z ∈ D, there is a
closed disk centred in z where convergence is uniform.
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Theorem 11.1.7 (Integral of series). Given a piecewise smooth curve γ and a
sequence of continuous functions fk on D, suppose that the series

∑
k fk(z) is

normally convergent on γ. Then∫
γ

dz

∞∑
k=0

fk(z) =

∞∑
k=0

∫
γ

dzfk(z) (11.3)

Theorem 11.1.8. If a sequence fk is normally convergent to f on a domain D
and all functions fk are holomorphic, then f is holomorphic and the sequence

of n-th derivatives f
(n)
k converges to f (n) normally.

Theorem 11.1.9 (Derivative of series). If the series
∑
k fk is normally con-

vergent on a domain D, and every term fk is holomorphic on D, then the series
is holomorphic on D. Moreover, the series can be differentiated term by term
any number of times:

dn

dzn

∞∑
k=0

fk(z) =

∞∑
k=0

dnfk
dzn

(z), n = 1, 2, . . . (11.4)

for all z ∈ D, and each differentiated series is normally convergent.

11.2 Power series

A fundamental class of series of complex functions are power series:

f(z) =

∞∑
n=0

cn(z − a)n (11.5)

a ∈ C is the center of the power series, the coefficients cn are complex numbers.
Two notable examples are the geometric and exponential series. They converge
absolutely, the first one in the open disk |z| < 1, the second one everywhere.
This is a fundamental theorem:

Theorem 11.2.1 (Abel, Weierstrass). If the power series
∑
k ck(z − a)k is

convergent at a point z0, then the series converges:
1) absolutely for all z in the open disk |z − a| < |z0 − a|,
2) uniformly in the closed disk |z − a| ≤ (1− η)|z0 − a|, η > 0.

Proof. 1) We use the comparison criterion. Convergence of the series in z0

implies that |ck(z0−a)k| → 0; then, there is a finite N such that |ck(z0−a)k| < 1
for all k > N . This means that |ck(z − a)k| is majorized by |(z − a)/(z0 − a)|k.
The sum of the latter terms converges (absolutely) for all z in the open disk
|z − a| < |z0 − a|.
2) If |z−a| ≤ |z0−a|(1−η) it follows that, for k > N , it is |ck(z−a)k| ≤ (1−η)k.
Then the convergence is uniform by the Weierstrass’ M-criterion.

The theorem shows that one out of three possibilities occurs:

• z = a is the only point where the series converges.

• There are points z 6= a where the series converges, but the series diverges
at other points.
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• The series converges everywhere in C.

The Abel - Weierstrass theorem shows that convergence in z implies convergence
in any open disk centred in a of radius r < |z − a|. Case two implies the exis-
tence of a radius R such that for |z−a| < R the series converges absolutely (and
uniformly in any closed disk strictly contained in it) and diverges in |z−a| > R.
The value R is the radius of convergence of the series. If R = ∞ the series
converges absolutely everywhere, and uniformly on any closed bounded set.
In general nothing can be said about the series on the circle |z − a| = R 1.

We give an important formula for the radius R, which results from the
sufficient criteria for absolute convergence of series.

Theorem 11.2.2 (Cauchy - Hadamard).

1

R
= lim supk

k
√
|ck| (11.6)

If limk→∞
k
√
|ck| exists, it is equal to 1/R.

Example 11.2.3. In
∑∞
k=1(2z)2k odd powers are missing and the sequence

n
√
cn = 2, 0, 2, 0, . . . is not convergent, but its lim sup is 2. Then the series

converges in the disk |z| < 1
2 (as a geometric series, it converges for |4z2| < 1).

Exercise 11.2.4. Evaluate the radius of convergence of the series:

∞∑
k=1

zk

k
,

∞∑
k=0

z2k

(2k)!
,

∞∑
k=1

(−1)kz3k,

∞∑
k=0

zk
2

,

∞∑
k=0

k2zk

Theorem 11.2.5. The power series

S(z) =

∞∑
k=0

ck (z − a)k and S′(z) =

∞∑
k=1

k ck (z − a)k−1

have the same radius of convergence.

Proof. In the proof we put a = 0. Suppose that S and S′ have radii R and R′

respectively. Since |ckzk| < |z| |kckzk−1| for all z, by the comparison test, the
series S converges absolutely if S′ does, i.e. |z| < R′ is a sufficient condition for
S to absolutely converge. Then R ≥ R′.
For z such that |z| < R it is k|z|k−1 < Rk

R−|z| . Then it is |kckzk−1| < 1
R−|z| |ckR

k|
and the series S′ converges absolutely if S does, i.e. R ≤ R′.
We used the inequality 1

1−r > 1 + r + . . . rn−1 > nrn−1, 0 ≤ r < 1.

Corollary 11.2.6. A power series
∑
n cn(z − a)n is a holomorphic function

on the open disk of convergence (where it is also infinitely many times differen-
tiable).

Exercise 11.2.7. Evaluate
∑∞
n=1 n

2zn (Note that z
d

dz
zn = nzn).

1However, if the series converges in a point z0 with |z0−a| = R, a theorem by Abel proves
that on the radius ζ(t) = a+ (z0 − a)t (t ∈ [0, 1]) the series f(t) =

∑
ck(z0 − a)ktk converges

uniformly with respect to t and limt→1 f(t) = f(1).
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Theorem 11.2.8 (Power series for holomorphic functions). Let f be
holomorphic in a domain, and let D be an open disk centred in a of radius r in
the domain, with (positively oriented) boundary C. Then, for any z in the disk,
f has the power series expansion

f(z) =

∞∑
k=0

ck(z − a)k, ck =

∮
C

dζ

2πi

f(ζ)

(ζ − a)k+1
=

1

k!
f (k)(a) (11.7)

Proof. For any z in the disk D(a, r), f(z) is given by the Cauchy integral

f(z) =

∮
C

dζ

2πi

f(ζ)

ζ − z
.

Since r = |ζ − a| > |z − a|, the kernel admits an expansion in geometric series

1

ζ − z
=

1

ζ − a− (z − a)
=

∞∑
k=0

(z − a)k

(ζ − a)k+1
(11.8)

The sum can be taken out of the integral because the series converges uniformly
in the interior of the disk.

Corollary 11.2.9. A holomorphic function can be differentiated indefinitely
and

f (k)(a) = k!

∮
C(a,r)

dζ

2πi

f(ζ)

(ζ − a)k+1
(11.9)

Darboux’s inequality gives Cauchy’s Inequality

|f (k)(a)| ≤ k!

rk
sup

θ∈[0,2π]

|f(a+ reiθ)| (11.10)

Remark 11.2.10. The radius of convergence of the power series centred in a
of an analytic function is the largest admissible radius of a disk centred in a in
the domain of analyticity: R = |ξ − a| where ξ is the singular point or branch
cut point nearest to a.

Example 11.2.11. The function f(z) = [(z−2i)(z−3)]−1 is singular at z = 2i
and z = 3. A power expansion in the origin has radius 2. An expansion with
center a = 1 has radius 2 because the singular point 3 has distance |3 − 1| = 2
smaller than the distance |2i− 1| =

√
5 of the singular point 2i.

Exercise 11.2.12. Integrate term by term the geometric series to obtain:

Log(1− z) = −
∞∑
k=1

zk

k
|z| < 1 (11.11)

Exercise 11.2.13. From the expansion (11.11) obtain:

∞∑
k=1

ρk

k
cos(kθ) = −1

2
log(1− 2ρ cos θ + ρ2), ρ < 1.
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Example 11.2.14. The function Log z has the branch cut (−∞, 0]. A power
series of Log z with center a is initially constructed in a disk D(a, r) that avoids
the cut, where Log z is holomorphic. If Re a > 0 the radius is r = |a| (the least
distance of a from the cut), if Re a < 0 this least distance is r = |Im a|. Inside
the disk D(a, r):

Log z = Log a+ Log
(z
a

)
= Log a+ Log

(
1 +

z − a
a

)
with no additional terms ±2πi (to check this requires some simple work). The
expansion (11.11) gives:

Log z = Log a−
∞∑
k=1

(−1)k

kak
(z − a)k

The right hand side is meaningful in a disk of convergence D(a, |a|) and does
not distinguish the cases r = Im a or r = |a|. However, if z is taken such that
|z| < |a| and the line of sight [a, z] is crossed by the cut, the left hand side differs
from the right hand side by ±2πi. We are thus evaluating log z on a different
sheet.

Example 11.2.15. Evaluate the coefficients of the power series

etz

1− z
=

∞∑
n=0

cn(t)zn

It is convenient to compare the series etz = (1−z)
∑
n cnz

n =
∑
n z

n(cn−cn−1),
with c0 = 1, c−1 = 0. This gives the recursive rule cn − cn−1 = tn/n! i.e.

cn(t) = 1 + t+
t2

2!
+ . . .+

tn

n!
.

Example 11.2.16. Evaluate the coefficients of the power series

1

z2 + z − 1
=

∞∑
n=0

cnz
n

The radius of convergence of the series is dictated by the size of the smallest
root of the binomial: R = 1

2 (
√

5 − 1). The quick way to obtain the coefficients
is to write the l.h.s. as a combination of two geometric series. However, the
following procedure is interesting.
Multiply the series by the denominator to get 1 =

∑
n z

n(cn−2 + cn−1 − cn)
i.e. cn = cn−1 + cn−2 and c0 = 1 (c−1 = 0). The recursion generates the
Fibonacci numbers 1, 1, 2, 3, 5, 8, 13, . . . . The general solution can be found: cn =
axn1 + bxn2 , where x1,2 solve the quadratic equation x2 − x− 1 = 0 and a, b are
specified by the initial conditions.
If x1 is the root with largest modulus, Hadamard’s criterion for the radius of the
power series gives 1/R = |x1|, i.e. R = |x2| (note that x1x2 = 1).
The recursion can be written (cn/cn−1) = 1 + (cn−2/cn−1). In the large n limit
cn/cn−1 → φ and φ = 1 + 1/φ (then, by the ratio criterion, R = 1/φ). The
number φ = 1

2 (
√

5+1) is the golden mean, and is the limit of ratios of Fibonacci
numbers. Its continued fraction expansion is peculiar, φ = 1+1/(1+/(1+/(1+
. . . ), and makes this number the “most irrational” one (Hurwitz developed a
theory for rational approximation of irrationals).
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Example 11.2.17 (Euler numbers). They are the coefficients E2n in the power
series

1

cos z
=

∞∑
n=0

(−1)nE2n
z2n

(2n)!

The radius of convergence of the series is π/2 (the pole closest to the origin).
This gives us the estimate |E2n| ≈ (2n)!(2/π)2n (up to factors that grow less
than powers of n)2. Multiplication by cos z gives a Cauchy product of series:

1 =

∞∑
k=0

z2k (−1)k

(2k)!

k∑
`=0

(
2k

2`

)
E2`

Comparison of powers in z gives, for the power k = 0: E0 = 1. Higher powers
are absent in the l.h.s. therefore:

k∑
`=0

(
2k

2`

)
E2` = 0, k ≥ 1.

Example 11.2.18 (Bernoulli numbers). They are defined by the power series

z

ez − 1
=

∞∑
n=0

Bn
zn

n!

The radius of convergence of the series is 2π. If we subtract the series evaluated
at −z, we get −z = 2

∑
oddBn z

n/n!. Therefore B1 = − 1
2 and Bodd>1 = 0.

Then the series can be rewritten as:

z

2
coth

z

2
=

∞∑
n=0

B2n
z2n

(2n)!
(11.12)

Multiplication by cosh(z/2) gives a Cauchy product of series, and recursive re-
lations for the Bernoulli numbers3.

Exercise 11.2.19 (Harmonic numbers). Obtain the coefficients in

∞∑
n=1

Hnz
n = − log(1− z)

1− z
. (11.13)

11.2.1 The binomial series

The function (1 − z)a has a pole in z = 1 if a is a negative integer. If a /∈ Z
the function has a branch cut from infinity to z = 1. In any case the function
is analytic in the unit disk, where it admits the power expansion:

(1− z)a = 1− az + 1
2!a(a− 1) z2 − 1

3!a(a− 1)(a− 2) z3 + . . .

2the actual behaviour is: |E2n| ≈ 22n+2(2n)!π−2n−1 (NIST Handbook of Mathematical
Functions, Cambridge 2010).

3The Bernoulli numbers were discovered almost at the same time in Japan by Seki Kowa
(1640, 1708), the most eminent Wasan (Japanese calculator)
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The useful Pochhammer’s symbol ak is introduced:

a0 = 1, a1 = a, ak = a(a+ 1) . . . (a+ k − 1) =
Γ(a+ k)

Γ(a)

The Gamma function Γ(z) generalizes the factorial, and has the property zΓ(z) =
Γ(z + 1); in particular, Γ(n+ 1) = n! (see sect.12.3). We then obtain:

(1− z)a =

∞∑
k=0

(−a)k
zk

k!
(11.14)

The sum truncates if a is a positive integer. The binomial symbol may be
introduced, to recover the familiar Newton’s expression:(

a

k

)
=

(−1)k

k!
(−a)k =

a(a− 1) · · · (a− k + 1)

k!

Exercise 11.2.20. Show that

1

(1− z)n
=

∞∑
k=0

(
n+ k

k

)
zk, |z| < 1, n = 1, 2, . . . (11.15)

11.2.2 Polilogarithms

Polilogarithms generalize the power series of the logarithm. They occur for
example in the study of ideal quantum gases, or in quantum field theory.

Lis(z) =

∞∑
k=1

zk

ks
|z| < 1 (11.16)

For Res > 1 it is Lis(1) = ζ(s). Being uniformly convergent in the disk, deriva-
tion and integration of the series term by term give

z
d

dz
Lis(z) = Lis−1(z), Lis+1(z) =

∫ z

0

dz′

z′
Lis(z

′)

With Li1(z) = − log(1− z), the dilogarithm is4

Li2(z) = −
∫ z

0

dz′

z′
log(1− z′) = −

∫ 1

0

dt

t
log(1− zt)

The integral is well defined for C/[1,∞), and is an analytic continuation of the
power series.

Exercise 11.2.21. Prove (using the series) the reflection rule:
Lis(−z) = −Lis(z) + 21−sLis(z

2).
With the integral expression, for real x, prove:

Li2(x) = π2

6 − log x log(1− x)− Li2(1− x), (Euler).
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-10 -5 5 10

-1.5´10
16

-1.0´10
16

-5.0´10
15

5.0´10
15

1.0´10
16

1.5´10
16

Figure 11.1: The Hermite polynomial H25(x) multiplied by exp(−x2/2). Note
the 25 real zeros and the wild oscillations in value.

11.3 Generating functions and polynomials

11.3.1 Hermite polynomials

The function H(z, x) = e−z
2+2xz is entire for any value x ∈ R, and can be

expanded in power series of z with center z = 0:

e−z
2+2xz =

∞∑
k=0

Hk(x)
zk

k!
(11.17)

The coefficients are functions of x. It is instructive to evaluate them by the
methods introduced so far, as contour integrals around the origin:

Hk(x) = k!

∮
dζ

2πi

H(ζ, x)

ζk+1
= k!

∞∑
`=0

(2x)`

`!

∮
dζ

2πi
e−ζ

2

ζ`−k−1

Since terms with ` ≥ k + 1 vanish because of Cauchy’s theorem for entire
functions, Hk(x) turns out to be a polynomial of degree k (Hermite polynomial).
The evaluation can proceed further.

= k!

k∑
`=0

(2x)`

`!

∮
dζ

2πi
e−ζ

2

ζ`−k−1 = k!

k∑
`=0

(2x)k−`

(k − `)!

∮
dζ

2πi
e−ζ

2

ζ−`−1

= k!

[k/2]∑
`=0

(2x)k−2`

(k − 2`)!

∮
dζ

2πi
e−ζ

2

ζ−2`−1

where [k/2] is the integer part of k/2. The Cauchy integral is the coefficient of

the term z2` of the power expansion of e−z
2

. The explicit expression of Hermite

4http://maths.dur.ac.uk/~dma0hg/dilog.pdf

http://maths.dur.ac.uk/~dma0hg/dilog.pdf
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polynomials is obtained:

Hk(x) = k!

[k/2]∑
`=0

(2x)k−2` (−1)`

`!(k − 2`)!
(11.18)

H(z, x) is the generating function of Hermite polynomials and encodes their
analytic properties. We learn a lot from it with little effort:
1) the change z to −z in (11.17) is compensated by x to −x, then Hermite
polynomials have definite parity: Hk(−x) = (−1)kHk(x).
2) the identities ∂xH(z, x) = 2zH(z, x) and ∂zH(z, x) = 2(−z+x)H(z, x), when
translated to the power series expansion5, give the recurrence relations

H ′k(x) = 2kHk−1(x), Hk+1(x) = 2xHk(x)− 2kHk−1(x) (11.19)

with initial conditions H0(x) = 1 and H1(x) = 2x that can be obtained by
direct expansion of H(z, x).
3) the identity (2z∂z − 2x∂x + ∂2

x)H(z, x) = 0 corresponds to the second order
equation (which has another non-polynomial independent solution)

H ′′k − 2xH ′k + 2kHk = 0 (11.20)

4) Hermite polynomials can be evaluated by Rodrigues’ formula6:

Hk(x) =

[
∂k

∂tk
H(t, x)

]
t=0

=

[
ex

2 ∂k

∂tk
e−(t−x)2

]
t=0

=(−1)kex
2 dk

dxk
e−x

2

(11.21)

5) The integral
∫∞
−∞ dx e−x

2

Hk(x)Hj(x) is symmetric in k and j. We evaluate
it for k ≥ j by using Rodriguez’s formula for Hk(x), and doing k integration by
parts: ∫ ∞

−∞
dx e−x

2

Hk(x)Hj(x) = (−1)k
∫ ∞
−∞

dxHj(x)
dk

dxk
e−x

2

=

∫ ∞
−∞

dx e−x
2 dk

dxk
Hj(x) = 2kk!

√
π δjk (11.22)

because Hk(x) = 2kxk + . . . (use eq.11.19). This is the orthogonality property
of Hermite polynomials.
The Cauchy product H(z, x)H(z, y) = H(z

√
2, x+y√

2
) gives an interesting sum-

mation formula (by equating the coefficients of equal powers of z):

k∑
`=0

(
k

`

)
H`(x)Hk−`(y) = 2k/2Hk

(
x+ y√

2

)
Exercise 11.3.1. Evaluate the Cauchy product of the exponential series for
e−z

2

and e2tz and obtain the absolutely convergent power series of the generating
function (11.17).

5Derivation of the series term by term is possible because it is uniformly convergent both
in z and x, in any compact set.

6Olinde Rodrigues (1795, 1851)
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There are several other generating functions whose power series expansion
yield special functions that are important in mathematical physics7. Some ex-
amples are briefly presented below, some will be considered in the study of
orthogonal polynomials (Chapter on Hilbert spaces).

11.3.2 Laguerre polynomials

The polynomials arise in the study of the radial Schrödinger equation for the
Hydrogen atom. The generating function is:

L(z, x) ≡ 1

1− z
exp(− xz

1− z
) =

∞∑
k=0

Lk(x)zk. (11.23)

It is holomorphic in |z| < 1. If C is a circle in the unit disk around the origin:

Lk(z) =

∮
C

dz

2πi

L(z, x)

zk+1
=

∞∑
n=0

(−x)n

n!

∮
C

dz

2πi

zn−k−1

(1− z)n+1

The integral is zero if n − k − 1 ≥ 0 i.e. Lk is a polynomial of degree k. Use
(11.15) to evaluate the integral.

11.3.3 Chebyshev polynomials (of the first kind)

The power series expansion in z = 0 of [(1 − zeiθ)(1 − ze−iθ)]−1 is easily done
by means of the geometric series. It gives:

1− z cos θ

1− 2z cos θ + z2
=

∞∑
k=0

zk cos(kθ), |z| < 1 (11.24)

With cos θ = x, the same identity becomes:

1− xz
1− 2xz + z2

=

∞∑
k=0

zk Tk(x), |z| < 1 (11.25)

with functions Tk(x). The identity (1−xz) = (1−2xz+z2)
∑∞
k=0 Tk(x)zk gives

T0(z) = 1, T1(x) = x and the recurrence relation

0 = Tk(x)− 2xTk−1(x) + Tk−2(x).

It appears that Tk(x) is a polynomial of order k in x, and is the polynomial
expansion of cos(kθ) in x = cos θ. The k roots of Tk(x) are real and known, and
belong to the interval [−1, 1]. On this interval |Tk(x)| ≤ 1.
Chebyshev polynomials share the unique and important property: among all
monic polynomials of degree k, the one that deviates the least from zero on
[−1, 1] is the polynomial 2−k+1Tk(x).

Exercise 11.3.2. Study the Chebyshev polynomials of the second kind:

1

1− 2xz + z2
=

∞∑
k=0

Uk(x)zk, |z| < 1

7A beautiful little book on special functions is: N. N. Lebedev, Special functions and their
applications, Dover Ed. A modern reference book is the NIST Handbook of Mathematical
Functions, Cambridge Univ. Press, online at https://dlmf.nist.gov

https://dlmf.nist.gov
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11.3.4 Legendre polynomials

In his Recherches sur l’attraction des spheroides homogènes (1783), Adrien Marie
Legendre introduced the important expansion in multipoles:

1

|r−R|
=

1√
R2 − 2Rr cos θ + r2

=
1

R

∞∑
`=0

P`(cos θ)
( r
R

)`
(11.26)

θ is the angle between the vectors, R > r, Pk(cos θ) is a Legendre polynomial
of order k in cos θ. The generating function

P (z, cos θ) = (1− 2z cos θ + z2)−1/2 = (1− zeiθ)−1/2(1− ze−iθ)−1/2

is analytic in the disk |z| < 1, where the two factors can be expanded in binomial
series. The coefficients of the Cauchy product are the Legendre functions:

1√
1− 2z cos θ + z2

=
∑
n,m

(−1/2)m
m!

(−1/2)n
n!

ei(m−n)θzm+n

=

∞∑
k=0

zkPk(cos θ)

Pk(cos θ) =

k∑
m=0

(−1/2)m
m!

(−1/2)k−m
(k −m)!

cos(2m− k)θ

As Pk is an expression of cos(nθ) with n = 0, . . . , k, it may be rewritten as a
polynomial of order k in the variable cos θ. In the variable x, |x| ≤ 1, it is:

1√
1− 2xz + z2

=

∞∑
k=0

zkPk(x) (11.27)

From the identities (1 − 2xz + z2)∂zP (z, x) = (−z + x)P (z, x) and (1 − 2xz +
z2)∂xP (z, x) = zP (z, x) one derives recurrence relations for the polynomials.
Several more properties may be obtained by the above illustrated methods.

11.3.5 The Hypergeometric series

Several functions of mathematical physics correspond to special choices of the
real parameters a, b and c 6= 0,−1,−2, . . . of the hypergeometric function, which
has a simple definition as a power series:

F (a, b; c; z) =

∞∑
n=0

anbn
cn

zn

n!
= 1 +

ab

c
z +

1

2!

a(a+ 1)b(b+ 1)

c(c+ 1)
z2 + . . . (11.28)

Note that F (a, b; c; z) = F (b, a; c; z). The series F (−k, b; c, z) terminates, and
is a polynomial of degree k in z. The hypergeometric series is convergent for
|z| < 1 (ratio test).
The hypergeometric function F (a, b; c; z) is a solution of the differential equation

z(z − 1)F ′′(z) + [c− (a+ b− 1)z]F ′(z)− abF (z) = 0

Exercise 11.3.3. Show that: ∂zF (a, b; c, z) = ab
c F (a+ 1, b+ 1; c+ 1; z).
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11.4 Differential Equations

Power series are an effective representation of solutions of linear differential
equations. The subject is vast, and we only illustrate it with a useful statement
and an example.

Theorem 11.4.1. In the linear second order differential equation,

f ′′(z) + p(z)f ′(z) + q(z)f(z) = 0

if p(z) and q(z) are analytic on a disk |z| < R, then any solution of the equation
is analytic on the same disk.

11.4.1 Airy’s equation

Airy’s equation occurs in the study of a quantum particle in a uniform electric
field8, WKB theory, radio waves. Although the equation has a real variable,
and one looks for real solutions, as a general rule it is useful to study it in the
complex plane:

f ′′(z)− zf(z) = 0 (11.29)

The previous theorem assures that the solutions are entire functions and admit
an absolutely convergent power series representation f(z) =

∑
k ckz

k. Airy’s
equation

0 =
∑
k≥0

ck[k(k − 1)zk−2 − zk+1]

implies a recursion for the coefficients: k(k − 1)ck = 0 for k = 0, 1, 2 and
k(k − 1)ck = ck−3, k ≥ 3. Therefore c0 and c1 are undetermined, while c2 = 0.
Starting from c0 6= 0 and c1 = 0 one obtains c3 = c0/(2 · 3), c6 = c3/(5 · 6),
c9 = c6/(8 · 9) ... A good guess helps to obtain the expression for the general
coefficient:

c3k
c0

=
1

3k(3k − 1) · · · 9 · 8 · 6 · 5 · 3 · 2
=

(3k − 2) · · · 10 · 7 · 4 · 1
(3k)!

=
3k

(3k)!

(
k − 1 + 1

3

)
· · ·
(
2 + 1

3

) (
1 + 1

3

)
1
3 =

3k

Γ(3k + 1)

Γ
(
k + 1

3

)
Γ
(

1
3

)
With the aid of the triplication formula9 for Γ(3k + 1):

c3k = c0
2π

Γ
(

1
3

) 1

32k+1/2k! Γ
(
k + 2

3

)
8The Hamiltonian for an electron in a uniform electric field E along the x axis is H =

~p2/2m+ eEx. The eigenvalue equation is separable and for the x component is:

−
~2

2m
u′′(x) + eExu(x) = λu(x)

The linear potential eEx equals the energy λ at x0 = λ/eE, therefore the classical motion is
confined in x ≤ x0. The problem has a natural length ` = ~2/3(meE)−1/3 and the rescaling
x − x0 = ` s brings the eigenvalue equation to Airy’s form. For a field E = 1 keV/cm it is
` ≈ 9 nm.

9Γ(3z) = 33z−1/2

2π
Γ(z)Γ

(
z + 1

3

)
Γ
(
z + 2

3

)
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By an appropriate choice of c0 a solution is obtained:

f0(z) =

∞∑
k=0

z3k

9k k! Γ(k + 2
3 )

=
1

Γ( 2
3 )

[
1 +

z3

6
+

z6

180
+ . . .

]
Another independent solution is obtained with the choice c0 = 0 and c1 6= 0.
Then c4 = c1/(4 · 3), c7 = c4/(7 · 6) ...

f1(z) =

∞∑
k=0

z3k+1

9k k! Γ(k + 4
3 )

=
1

Γ( 4
3 )

[
z +

z4

12
+

z7

504
+ . . .

]
The two series have infinite radius and are entire functions. The standard
solutions are the Airy functions of the first and second kind:

Ai(z) = 3−2/3f0(z)− 3−4/3f1(z), Bi(z) = 3−1/6f0(z) + 3−5/6f1(z)

For z = x (real) both functions are oscillatory for x � 0; for x � 0 the
function Ai (x) decays to zero exponentially while Bi (x) grows exponentially
(see: Carl M. Bender and Steven A. Orszag, Advanced Mathematical Methods
for Scientists and Engineers, Springer; O. Vallée and M. Soares, Airy functions
and applications to physics, World Scientific 2004.)

Figure 11.2: The Airy functions Ai(x) and Bi(x).



Chapter 12

ANALYTIC
CONTINUATION

The power series representation of an analytic function implies that its zeros
are isolated. This has important and unexpected consequences, as the powerful
concept of analytic continuation. Some relevant theorems about analytic maps
are then presented.

12.1 Zeros of analytic functions

Theorem 12.1.1. Let f(z) be analytic on a domain D.
If f(a) = 0 at a point a ∈ D and f is not a constant in a neighborhood of a,
then there is a punctured disk centred in a where f(z) 6= 0.

Proof. If f is not a constant in a disk centred in a, the function has a power
series centred in a, with some finite radius of convergence. If the zero is of order
k, the coefficient ck is nonzero and

f(z) = ck(z − a)k
[
1 +

ck+1

ck
(z − a) + . . .

]
= ck(z − a)kϕ(z)

where ϕ(z) is analytic in the disk, and ϕ(a) = 1. Since ϕ(z) is continuous in a,
∀ε ∃δ such that |ϕ(z)− 1| < ε, i.e. there is no zero of ϕ in D(a, δ), and there is
no zero of f on the same disk with point a removed.

Corollary 12.1.2. An analytic function on D that vanishes on a disk in D, or
a line in D, or a set of points with an accumulation point in D, is zero on the
whole set D. Two functions analytic on a domain D that take the same values
on a line, or a sequence of points with an accumulation point in D, coincide.

Example 12.1.3. The function sin(2z)− 2 sin z cos z is entire and vanishes on
the real axis, therefore sin(2z)− 2 sin z cos z = 0 ∀z ∈ C.

12.2 Analytic continuation

Suppose that f is an analytic function on a set D that contains at least a
convergent sequence of points and its limit point. If f̃ is a function analytic on

85
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D̃ such that D ⊂ D̃ and f̃ = f on D, then f̃ is the analytic continuation of
f to D̃.

Theorem 12.2.1. The analytic continuation of f to D̃ is unique.

Proof. Suppose that f1 and f2 are two extensions. Then f1 − f2 is zero on D.
This implies that f1 − f2 = 0 on the whole set D̃.

Suppose that f1 and f2 are analytic on D1 and D2, and f1 = f2 on D1 ∩ D2.
If the intersection contains at least a convergent sequence of points, then the
function f = f1 on D1 and f = f2 on D2 is analytic on D1 ∪D2.

Consider a series f(z) =
∑
n an(z−a)n that converges in the disk |z−a| < R.

If in the disk we fix a point b and expand f with center b, we may find a radius
R′ > R − |b − a| (the new disk leaks out of the first one). The two expansions
coincide on the intersection, and together describe a single analytic function
f on the union of the two disks. In the larger domain, one may build a new
expansion and proceed, disk by disk, in building an analytic continuation of f
by power series.

The following power series converges in the disk |z| < 1, but diverges at all
points of the boundary |z| = 1. Then it cannot be continued analytically:

g(z) =
∑∞

n=0
z2n = z + z2 + z4 + z8 + z16 + . . .

With coefficients 0 and 1, the Cauchy-Hadamard’s criterion gives radius R = 1.
The series clearly diverges at z = ±1. Note that g(z2) = g(z)− z, therefore the
series is divergent also at z = ±i. Again: g(z4) = g(z) − z − z2 and the series
g(z) diverges at the roots of z4 = 1. In this way one proves divergence at all
points z2n = 1 (n = 1, 2, . . . ); such points are dense in the unit circle, which is
a singular line for g(z).

12.3 Gamma function

The function was devised by Euler (1729) to extend the factorial of positive
integers to real and complex numbers:

Γ(z) =

∫ ∞
0

ds e−s sz−1 Re z > 0 (12.1)

The meaning of sz is ez log s. Note that:

|Γ(z)| ≤
∫ ∞

0

ds e−s|sz−1| = Γ(Rez)

To show that the Gamma function is holomorphic, let γ be an arbitrary closed
path in the domain Re z > 0. The double integrals can be exchanged:∮

γ

dz Γ(z) =

∫ ∞
0

ds e−s
∮
γ

dz e(z−1) log s

The last integral is zero by Cauchy’s formula. Then Morera’s theorem assures
that Γ(z) is holomorphic. The derivative Γ′(z) is holomorphic on the same
domain, and is related to the Digamma function (see sect.12.3.2).
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Figure 12.1: The Gamma function for real x. Note the poles at 0,−1,−2, ....
For large x it diverges factorially (see Stirling formula).

For z = x > 0, integration by parts of (12.1) gives the typical property of
the factorial: Γ(x + 1) = xΓ(x). Since Γ(1) = 1, it is Γ(n + 1) = n!. The
property remains valid in the complex domain: the function Γ(z+ 1)− zΓ(z) is
analytic and vanishes on the real positive axis, then it must vanish everywhere
in its domain:

Γ(z + 1) = zΓ(z) (12.2)

Exercise 12.3.1. Show that Γ( 1
2 ) =

√
π and Γ(n+ 1

2 ) =
√
π (2n)!

4nn! (Hint: make
the change s = t2 in Euler’s integral).

Exercise 12.3.2. Evaluate the volume V and the area A of the sphere of radius
r in Rn. (Hint: compare the integrals

∫
dnx exp(−

∑
x2
k) in Cartesian and

spherical coordinates).

V =
πn/2

Γ(1 + n
2 )
rn, A =

n

r
V. (12.3)

Exercise 12.3.3. Euler’s Beta function. Evaluate the double Euler integral
for Γ(x)Γ(y), x > 0 and y > 0, by changing to squared variables and then to
polar coordinates, and prove the useful formula1

B(x, y) ≡
∫ 1

0

dt tx−1(1− t)y−1 =
Γ(x)Γ(y)

Γ(x+ y)
(12.4)

Euler’s integral in (12.1) for the Gamma function is well defined for Rez > 0.
However, by splitting the range of integration into [0, 1]∪ [1,∞), and integrating
on [0, 1] by series expansion, one obtains

Γ(z) =

∫ ∞
1

ds e−s sz−1 +

∞∑
k=0

(−1)k

k!

1

z + k
(12.5)

This expression provides the analytic continuation of Γ to Re z ≤ 0. It shows
that Γ(z) is the sum of an entire and a meromorphic function with simple poles

1Atle Selberg, winner of a Fields medal (with Laurent Schwartz, 1950) for his studies
on prime numbers, obtained an important multi-dimensional extension of the Beta function
(Selberg’s integral).
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at −k with residue (−1)k/k!, k ∈ N. An alternative definition on the punctured
complex plane was obtained by Gauss (1811):

Γ(z) = lim
n→∞

nz n!

z(z + 1)(z + 2) · · · (z + n)
z 6= 0,−1,−2, . . . (12.6)

Exercise 12.3.4. Evaluate the following integral that, for large n, links the two
definitions of the Gamma function:∫ n

0

ds sz−1
(

1− s

n

)n
=

nzn!

z(z + 1) · · · (z + n)
(12.7)

Hint: use integration by parts.

From Gauss’ formula one easily obtains the useful duplication formula (as
well as the triplication, or multiplication by n)

Γ(2z) =
22z−1

√
π

Γ(z)Γ
(
z + 1

2

)
(12.8)

In 1854 Weierstrass gave a representation for the reciprocal of the Gamma func-
tion, which is an entire function:

1

Γ(z)
= z eCz

∞∏
m=1

[(
1 +

z

m

)
e−z/m

]
(12.9)

with Euler’s constant

C = lim
n→∞

[
1 + 1

2 + . . .+ 1
n − log n

]
= 0.5772156... (12.10)

Another useful representation, by Hankel, is eq.(28.3.1). Several important
formulae may be proven by the appropriate representation.

Exercise 12.3.5. Prove the interesting formulae:∫ ∞
0

dt
tz−1

et − 1
= Γ(z)ζ(z), Re z > 1, (12.11)∫ ∞

0

dt
tz−1

et + 1
= (1− 21−z)Γ(z)ζ(z), Re z > 0. (12.12)

(Hint: multiply and divide by e−t and expand in geometric series).
The integrals appear in the theory of free bosons and free fermions. The second
one is an analytic extension of Riemann’s ζ(z) from Re z > 1 to Re z > 0.

Exercise 12.3.6. Show that limz→0 z ζ(1− z) = −1.

12.3.1 Stirling’s formula

The well known formula for the growth of the factorial is a particular case of
Stirling’s expansion for Γ(x+ 1), when x is real and large:

Γ(x+ 1) =
√

2πx ex(log x−1)

[
1 +

1

12x
+

1

288x2
+O

(
1

x3

)]
(12.13)
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Proof. Put s = xt in the integral:

Γ(x+ 1) =

∫ ∞
0

ds e−s+x log s = x ex log x

∫ ∞
0

dt e−x(t−log t)

For x� 1, the neighborhood of the minimum of the exponent contributes most.
The minimum is at t = 1, with expansion t− log t = 1+ 1

2 (t−1)2− 1
3 (t−1)3 + . . .

Therefore:

Γ(x+ 1) = x ex log x−x
∫ ∞
−1

dt exp
[
−x
(

1
2 t

2 − 1
3 t

3 + 1
4 t

4 − . . .
)]

=
√
x ex log x−x

∫ ∞
−
√
x

dt exp
(
− 1

2 t
2 + 1

3
√
x
t3 − 1

4x t
4 + . . .

)
=
√
x ex log x−x

∫ ∞
−
√
x

dt e−
1
2 t

2
[
1 + t3

3
√
x

+ 1
x

(
t6

18 −
t4

4

)
+ . . .

]
The integrals of odd powers are neglected since they are the sum

∫√x
−
√
x
dt... +∫∞√

x
dt where the first integral is zero and the second one is exponentially small

in x. For even powers the segment (−
√
x,
√
x) is where the function contributes

for large x. The lower limit can be taken to −∞ with an exponentially small
error. Then:

Γ(x+ 1) =
√
x ex log x−x

∫ ∞
−∞

dt e−
1
2 t

2
[
1 + 1

x

(
t6

18 −
t4

4

)
+ . . .

]
The result follows with the aid of

∫ +∞
−∞ e−t

2

t2ndt = Γ(n+ 1
2 ).

12.3.2 Digamma function

The logarithmic derivative of the Gamma function defines the Digamma func-
tion:

ψ(z) =
1

Γ(z)

dΓ(z)

dz
=

1

Γ(z)

∫ ∞
0

ds e−ssz−1 log s (12.14)

with the main property:

ψ(z + 1) =
1

z
+ ψ(z).

For integer values it gives ψ(n+ 1) = 1
n + · · ·+ 1

2 + 1 + ψ(1). The behaviour of
the harmonic series (12.10) implies that, for large n: ψ(n)− ψ(1) ≈ log n + C.
Stirling’s formula gives the behaviour for large real x:

ψ(x+ 1) ≈ log x+
1

2x
− 1

12x2
+ . . .

then, ψ(1) = −C. Euler’s constant (12.10) is deeply related to the properties of
Riemann’s zeta function2.

2a nice book is: J. Havil, Gamma, exploring Euler’s constant, Princeton Univ Press, 2003.
See also the paper by Z. Silagadze: Basel problem, a physicist’s solution, arXiv:1908.0751.
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12.4 Analytic maps

Theorem 12.4.1 (Open mapping theorem). If f is non-constant and an-
alytic on a domain D, the image of an open subset in D is open (the converse
is obviously true because f is continuous.)

Proof. Consider an open subset O in D and a point a ∈ O. The function
g(z) = f(z) − f(a) vanishes in a; then there is a disk centred on a of radius δ
and contained in O where g(z) 6= 0 i.e. |f(z)− f(a)| > 0. This means that the
point f(a) has a an open neighborhood of points contained in f(O).

Theorem 12.4.2 (Maximum principle theorem). If f is non-constant and
analytic on a domain D, the maximum of |f(z)| is attained at the boundary ∂D.

Proof. Suppose that |f | attains its maximum at an interior point z0 ∈ D, with
image w0 = f(z0). Then there is an open disk D(z0, r) centred in z0 and con-
tained in D. Since the image of the disk is open (Open mapping theorem 12.4.1)
and contains w0, there is a disk |w − w0| < r′ contained in f(D). Therefore
there is a point w with |w| > |w0|, and this contradicts the hypothesis.

If f(z) 6= 0 on D, the same theorem applies to the holomorphic function
1/f to give the minimum principle: the minimum of |f(z)| is attained at the
boundary of D.

Exercise 12.4.3. Find the maxima of | cosh z| in the square of vertices 0, π, π+
iπ, iπ.

Proposition 12.4.4 (Schwarz’s Lemma). Suppose that f is holomorphic and
maps the open unit disk D into itself, f(D) ⊆ D, with f(0) = 0. Then

|f(z)| ≤ |z|, ∀z ∈ D.

Proof. The function f(z)/z has a removable singularity in z = 0, and is holo-
morphic in the disk with the value f ′(0) at z = 0. Since it gains the maximum
modulus at the boundary, it is: |f(z)|/|z| ≤ 1. In particular |f ′(0)| ≤ 1.

If the map is a bijection of the unit disk and f ′(z) 6= 0 (f is a conformal
map), Schwarz’s lemma applies to the inverse map f−1 as well. Then |f ′(0)| = 1,
and |f(z)| = 1 if |z| = 1. For such functions, the power expansion is: f(z) =
z + a2z

2 + a3z
3 + . . . . Bieberbach’s conjecture (1916) states that |an| < n for

all n. He only proved |a2| < 2. Loewner proved |a3| < 3 by means of Loewner’s
differential equation. The conjecture was proven by de Branges in 1984.
A limit case with real coefficients is the power expansion of Koebe’s function:

z + 2z2 + 3z3 + 4z4 + . . . = z
d

dz
(1 + z + z2 + . . .) =

z

(1− z)2

It maps univalently the unit disk to the w-plane with cut Re w < −1/4,
Imw = 0. The cut is the image of the unit circle3.

Here are some pearls from the theory of analytic functions:

3A magnificent reference is: R. Roy, Sources in the development of mathematics, Cam-
bridge, 2011.
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Theorem 12.4.5 (Bohr, 1914). If f(z) =
∑∞
k=0 ckz

k is analytic on the unit
disk, where |f(z)| < 1, then

∑∞
k=0 |ckzk| < 1 on the disk |z| < 1/3. This radius

is the best possible.

Theorem 12.4.6 (Bloch, 1924). If f is analytic on the unit disk D with f(0) = 0
and f ′(0) = 1 then there is a number B (Bohr’s constant) independent of f such
that there is a subset Ω ⊂ D where f is one-to-one, and such that f(Ω) contains
a disk of radius B. (B = 0.4469, arXiv:1702.01080)

Theorem 12.4.7 (MacDonald 1898, Whittaker 1935). The number of zeros of
a non-constant function f analytic in a region bounded by a contour |f(z)| = c
exceeds by unity the number of zeros of f ′ in the same region. (arXiv:1702.03458)

Theorem 12.4.8 (Earle-Hamilton fixed point theorem). Let f be a holomorphic
function on a bounded domain D, such that the distance between f(D) and C/D
is greater than a positive constant. Then f has a unique fixed point.



Chapter 13

LAURENT SERIES

13.1 Laurent’s series of holomorphic functions

A Laurent series with center a is the bilateral sum
∞∑

n=−∞
cn(z − a)n =

∞∑
n=0

cn(z − a)n +

∞∑
n=1

c−n
1

(z − a)n
(13.1)

It exists if both one-sided series converge. The two series are respectively called
the analytic and the principal parts of the series. The analytic part converges
absolutely on a disk centred in a with radius R,

lim sup n
√
|cn(z − a)n| < 1, → |z − a| < R,

1

R
= lim sup n

√
|cn|

The principal part (negative powers) converges absolutely for

lim sup n
√
|c−n(z − a)−n| < 1, → |z − a| > r = lim sup n

√
|c−n|

Therefore, the Laurent series is well defined in the annulus

A(a, r,R) = {z : r < |z − a| < R}.

If the inner radius is zero and the point a is avoided, the annulus is the punctured
disk D′(a,R) = D(a,R)/{a}.
Exercise 13.1.1. Discuss the convergence of the Laurent series:

∞∑
k=−∞

3−|k|zk,

∞∑
k=−∞

zk

cosh(3k)
.

Remark 13.1.2. Because both the principal and the analytic parts are power
series (in z−a and its reciprocal) that are convergent in the annulus, convergence
is absolute, and it is uniform in the closed annulus r(1+η) ≤ |z−a| ≤ R(1−η′)
where η, η′ > 0 are finite. Thus a Laurent series can be integrated term by term
on a path in the annulus. In particular, for a closed path encircling the point
a with index 1, the integral of the analytic part is zero, and the integral of the
principal part is 2πi c−1:∮

γ

dz

∞∑
n=−∞

cn(z − a)n = 2πi c−1 (13.2)
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P

 −C_<

C_>

Q

.z

Figure 13.1: The integral on the closed path denoted by arrows equals the
integral on the two circles, because the integrals on PQ and QP cancel.

The following fundamental theorem was proven by Pierre Laurent1:

Theorem 13.1.3 (Laurent). If f(z) is analytic in the (open) annulus A(a, r,R),
then it has a unique Laurent expansion in it, with center a:

f(z) =

∞∑
k=−∞

ck(z − a)k, ck =

∮
γ

dζ

2πi

f(ζ)

(ζ − a)k+1
(13.3)

γ is any closed positive path in the annulus that encircles the center once.

Proof. Let z be a point in the annulus and draw in the annulus two circles with
center a and positive orientation: C> with radius r> and C< with radius r<,
and r< < |z − a| < r>. Choose a point P ∈ C< and a point Q ∈ C>. Consider
the closed positively oriented path

Γ = [PQ] ∪ C> ∪ [QP ] ∪ (−C<)

where −C< is the inner circle with reversed orientation. Since the segment
joining P and Q is covered twice in opposite directions, it is:∮

Γ

dζ

2πi

f(ζ)

ζ − z
=

∮
C>

dζ

2πi

f(ζ)

ζ − z
−
∮
C<

dζ

2πi

f(ζ)

ζ − z

The path Γ encircles the point z; by Cauchy’s integral formula, the first integral
is f(z). Therefore:

f(z) =

∮
C>

dζ

2πi

f(ζ)

ζ − z
−
∮
C<

dζ

2πi

f(ζ)

ζ − z

Write ζ − z = (ζ − a) − (z − a) in the Cauchy kernels of the two integrals
and expand in Geometric series (where respectively it is |ζ − a| > |z − a| and

1He was an engineer in the army, and communicated the theorem to Cauchy in 1843, in
a private letter. The proof was published after his death. Weierstrass arrived to the same
theorem independently and, as he often did, he published the proof years later [Remmert]
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|z − a| < |ζ − a|). Uniform convergence allows to take the sums out of the
integrals

=

∮
C>

dζ

2πi
f(ζ)

∞∑
k=0

(z − a)k

(ζ − a)k+1
+

∮
C<

dζ

2πi
f(ζ)

∞∑
k=0

(ζ − a)k

(z − a)k+1

=

∞∑
k=0

(z − a)k
∮
C>

dζ

2πi

f(ζ)

(ζ − a)k+1
+

∞∑
k=0

1

(z − a)k+1

∮
C<

dζ

2πi
f(ζ)(ζ − a)k.

The two circles can be deformed into an arbitrary simple closed path γ in the
annulus, without changing the values of the integrals (the coefficients ck and
c−k).
Suppose that f admits another (uniformly convergent) Laurent expansion in
the annulus: f(z) =

∑
k∈Z c̃k(z − a)k. The coefficient cn in (13.3) is evaluated:

cn =

∮
γ

dz

2πi

∑
k∈Z

c̃k(z − a)k−n−1 =
∑
n∈Z

c̃k

∮
γ

dz

2πi
(z − a)k−n−1 = c̃n

because the integrals vanish if k − n− 1 6= −1.

Remark 13.1.4. The Laurent expansion of a function that is analytic on the
whole disk with center a has no principal part, and the analytic part coincides
with the power expansion in the disk.

Remark 13.1.5. In signal and image processing a useful tool is the Z-transform
of a bilateral {xn}∞−∞ or unilateral sequence {xn}∞0 of numbers. It is a function
of the complex variable z defined by the Laurent series (note the sign of the
exponent): Z[{xn}] =

∑∞
n=−∞ xnz

−n. A sequence determines a domain of
convergence. Operations on sequences determine operations on series.

13.2 Bessel functions (integer order)

The function J(z, x) = exp[1
2x(z − 1/z)] is analytic in the punctured complex

plane C/{0}, where it has the Laurent expansion

exp

[
x

2

(
z − 1

z

)]
=

∞∑
k=−∞

zkJk(x) (13.4)

It is the generating function of Bessel’s functions of integer order, which arise
in the study of Laplace’s operator in cylindrical coordinates2.

A change of sign of z is compensated by a change of sign of x, J(−z, x) =
J(z,−x), then Jk(−x) = (−1)kJk(x). The exchange of z with 1/z amounts
again to a change of sign of x, then

J−k(x) = Jk(−x) = (−1)kJk(x)

2Friedrich Wilhelm Bessel (1784, 1846) was the director of Königsberg’s astronomical obser-
vatory (Prussia) and measured the first stellar distance by parallax, after correctly interpreting
the apparent motion of 61 Cygni (discovered by Piazzi in Palermo) as due to Earth’s annual
motion. The same instrument (built by Fraunhofer) enabled him to discover the oscillations
of Sirius, due to an invisible companion star (a white dwarf) to be observed a century later.
He developed an accurate theory for solar eclipses, and introduced Bessel’s function to solve
Kepler’s equation for planetary motion (see sect.20.3.2).
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Figure 13.2: Bessel functions of the first kind J0 (red), J1 (blue), J2 (fuchsia).

With z = eiθ the expansion is eix sin θ =
∑∞
k=−∞ eikθJk(x). An integral

expression for Bessel functions is readily obtained:

Jk(x) =

∫ 2π

0

dθ

2π
ei(x sin θ−kθ) (13.5)

The generating function allows for a simple derivation of several properties.
From ∂xJ(z, x) = 1

2 (z − 1/z)J(z, x) and z∂zJ(z, x) = x
2 (z + 1/z)J(z, x) one

obtains

2J ′k(x) = Jk−1(x)− Jk+1(x),
2k

x
Jk(x) = Jk−1(x) + Jk+1(x) (13.6)

The two equations for J(z, x) also yield an equation where z and ∂z only appear
in the combination z∂z: (z∂z)

2J(z, x) = (x2∂2
x + x∂x + 1)J(z, x). The equation

gives Bessel’s equation for integer order:[
d2

dx2
+

1

x

d

dx
+ 1− k2

x2

]
Jk(x) = 0 (13.7)

Eq.(13.7) is written for another index, say m. Multiplicating the first by xJm(x)
and the other by xJk(x) one obtains:

(1 + x
d

dx
)(J ′kJm − J ′mJk)− k2 −m2

x
JkJm = 0

Now integrate x on the positive reals. The first two terms cancel by integration
by parts (all Jk(x) decay as 1/

√
x). The orthogonality property is:∫ ∞

0

dx

x
Jk(x)Jm(x) = 0 k 6= m (13.8)

Exercise 13.2.1. By multiplication of generating functions prove

Jn(x+ y) =

∞∑
k=−∞

Jk(x)Jn−k(y) (13.9)
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Exercise 13.2.2. By expanding the integral representation (13.5) show that
Jk(x) behaves as xk for small x (k ≥ 0).

Exercise 13.2.3. Write Helmholtz’s equation (∇2 + λ2)u = 0 in polar coor-
dinates r, θ and separate it with functions u(r, θ) = R(r)Y (θ). Show how the
radial equation becomes Bessel’s equation.

13.3 Fourier series

Suppose that f is analytic in an annulus centred in the origin, that contains
the unit circle. In the annulus f has a Laurent expansion with coefficients fk
evaluated as integrals on the unit circle. In particular, on the unit circle the
expansion of f is:

f(eiθ) =

∞∑
k=−∞

fk e
ikθ, fk =

∫ 2π

0

dθ

2π
f(eiθ)e−ikθ

This Laurent’s expansion is the Fourier expansion of the 2π-periodic function
f(eiθ). It may be written in the form (with small change of notation):

f(θ) =

∞∑
k=−∞

f̂k uk(θ), f̂k =

∫ 2π

0

dθ uk(θ) f(θ) (13.10)

where {uk}k∈Z is the Fourier basis of orthonormal 2π-periodic functions

uk(θ) =
eikθ√

2π
,

∫ 2π

0

dθ um(θ)un(θ) = δmn (13.11)

The numbers f̂k are the Fourier coefficients of the periodic function f(θ).
In this discussion f is the restriction of a holomorphic function to the unit circle,
where it is continuous and differentiable. The problem of the minimal require-
ments for a periodic function to admit a Fourier expansion will be considered
in section 20.1.



Chapter 14

THE RESIDUE
THEOREM

14.1 Singularities.

Definition 14.1.1. When a function f(z) fails to be analytic at a point a, but
is analytic in a punctured disk D′(a, r) = D(a, r)/{a} (a is removed from the
disk), the point a is an isolated singularity of f .

Example 14.1.2. The reciprocal 1/f of a holomorphic function has isolated
singularities at the isolated zeros of f .

The Laurent expansion of the function in the punctured disk D′(a, r),

f(z) = . . .+
c−k

(z − a)k
+ · · ·+ c−1

z − a
+ c0 + c1(z − a) + . . . ,

defines the principal and the analytic parts of f at its isolated singularity a.
Since a punctured disk has inner radius equal to zero, the principal series exists
at all points different from a, and converges uniformly on any compact set (for
example, on any bounded curve) that does not contain the singular point.

According to the principal part being null, terminating, or containing an
infinite number of terms, the singularity a is described by one of three types:

• The point a is a removable singularity if c−k = 0 for all k > 0.
Example: f(z) = sin(z − a)/(z − a).

• The point a is a pole of order k if there is k > 0 such that c−k 6= 0 and
c−k−n = 0 for all n > 0. It follows that limz→a(z − a)kf(z) = c−k.
Example: f(z) = 1/(z − a)3 has a pole of order 3.

• The point a is an essential singularity if for any N there is k > N such
that c−k 6= 0.
Example: f(z) = exp[(z − a)−1]

Remark 14.1.3. There is a substantial difference between a pole and an es-
sential singularity. If a is a pole for f , then limz→a f(z) = ∞. However, if a
is an essential singularity, then limz→a f(z) is undefined. Indeed, a theorem by
Picard states that if a is an essential singularity of f , the image f(D′) of the
punctured disk contains all complex points with at most one exception.

97
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Exercise 14.1.4. Study the behaviour of |1/z| and |e1/z| for z → 0.

Definition 14.1.5. A function is meromorphic on a domain D if it is analytic
in D up to a set of isolated poles in D.

Theorem 14.1.6 (Picard’s little theorem for meromorphic function). Every
function meromorphic on C that omits three distinct complex values a, b and c
is constant1.

14.2 Residues and their evaluation

Definition 14.2.1. The residue of a function f at the isolated singularity a is
the coefficient c−1 of the Laurent expansion in the punctured disk,

Res[f, a] = c−1 =

∮
γ

dz

2πi
f(z) (14.1)

where γ is any (piecewise) smooth simple path encircling the singularity a an-
ticlockwise inside the punctured disk of analyticity.

In view of their importance, we give rules to calculate residues that avoid
the evaluation of the contour integral.

• If f(z) has a simple pole in a (a pole of order 1), its Laurent expansion is
f(z) = c−1(z − a)−1 + analytic part. Therefore the residue is

c−1 = lim
z→a

(z − a)f(z) (14.2)

• If f(z) has a pole of order k in a, it is (z − a)kf(z) = c−k + c−k+1(z −
a) + · · ·+ c−1(z− a)k−1 + . . . . Then (k− 1) derivatives give (k− 1)!c−1+
terms that vanish in z = a. The residue of f in a is

c−1 =
1

(k − 1)!
lim
z→a

dk−1

dzk−1

[
(z − a)kf(z)

]
(14.3)

• If a is an essential singularity, the residue is computed with (14.1).

Example 14.2.2. In simple cases one may evaluate the residue by known ex-
pansions. From e1/z = 1+1/z+ · · ·+1/(4!z4)+ . . . , it is Res [z3e1/z, 0] = 1/4!.
Res [tan z/z5, 0] = 0 because the function is even, and its Laurent expansion in
z = 0 only contains even powers.

Theorem 14.2.3 ( The Residue Theorem ). Let f be an analytic function on
D/S, where S = {z1, . . . , zn} is the set of its isolated singularities in the domain
D. If γ is a closed piecewise smooth path in D/S such that Ind (γ, z) = 0 for
all z /∈ D, then: ∮

γ

dz f(z) = 2πi

n∑
k=1

Ind(γ, zk) Res[f, zk]. (14.4)

1see: R. Remmert, Classical topics in complex function theory, GTM 172, Springer 1998.
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Proof. Each singularity zk is the center of a punctured disk in D where f is
analytic and can be expanded in Laurent’s series: f(z) = Pk(z) +Ak(z). While
the analytic part Ak converges in the full disk, the principal part Pk converges
in C/zk.
The function g(z) = f(z)−

∑
k Pk(z) is analytic on D. By Cauchy’s theorem:

0 =

∮
γ

dz g(z) =

∮
γ

dz f(z)−
∑
k

∮
γ

dz Pk(z)

The principal series can be integrated term by term because it converges uni-
formly on γ. The integrals

∮
γ
dz(z − zk)−` are zero for ` 6= 1; the integral ` = 1

is by definition 2πi Ind (γ, zk). Then
∮
γ
dz Pk(z) = 2πiRes[f, zk] Ind(γ, zk).

14.3 Evaluation of integrals

The Residue Theorem is a fundamental tool for evaluating integrals. In all
applications, one has to arrange the integral as an integral on a closed path
in the complex plane, either by a change of variable, or by closing the set of
integration with extra curves. Usually, the method is successful if the integral on
such additional curves is known (zero), or is proportional to the initial integral.
The choice of the correct closed path is a matter of wisdom. However, some
cases are typical and are here illustrated by examples.

14.3.1 Trigonometric integrals

Integrals in x ∈ [0, 2π] that only involve trigonometric functions may be attacked
by writing the functions in terms of e±ix or powers, and putting z = eix. The
new variable runs the unit circle C, and the Residue Theorem may apply.

Example 14.3.1.∫ 2π

0

dx
1

2 + cosx
=

∮
C

dz

iz

2

4 + z + 1/z
=

∮
C

dz
−2i

z2 + 4z + 1

The roots z± = −2±
√

3 are simple poles, and |z+| < 1. Then:

= 2πi lim
z→z+

(z − z+)
−2i

(z − z+)(z − z−)
=

2π√
3

Example 14.3.2.∫ 2π

0

dx
cos(4x)

3 + sin2 x
= Re

∫ 2π

0

dx
ei4x

3 + sin2 x
= Re

∮
C

dz

iz

4z4

12− (z − 1/z)2

= −4Re

∮
C

dz

i

z5

(z2 − a)(z2 − 1/a)
(a = 7− 4

√
3 > 0)

= −4Re2πi[Res(
√
a) + Res(−

√
a)] =

π√
3

(7− 4
√

3)2

By taking the real part, one avoids the evaluation of two integrals. The poles
are all simple, and only ±

√
a are in the unit disk.
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Exercise 14.3.3.∫ 2π

0

dθ

2π

cos(kθ)

cosh ξ − cos θ
=

e−kξ

sinh ξ
, ξ > 0, k = 0, 1, . . . (14.5)∫ 2π

0

dx
cos(2x)

1 + sin2 x
= π(3

√
2− 4) (14.6)∫ 1

−1

dx√
1− x2

1

y − x
= π

sign(y)√
y2 − 1

, |y| > 1 (14.7)

14.3.2 Integrals on the real line

Several integrals on the whole real line are attacked by closing the interval
[−R,R] with a semicircle in the upper or lower half-plane and promoting the
real variable x to a complex variable z = x+ iy (then dz = dx on the real axis).
If the Residue Theorem applies to the closed path γ, it provides the value of
the integral if if the contribution of the semicircle vanishes in the limit R→∞.

Example 14.3.4.∫
R
dx

x2

x4 + 1
= lim
R→∞

∫ R

−R
dx

x2

x4 + 1
= lim
R→∞

∮
γ

dz
z2

z4 + 1

γ is the closed path [−R,R]∪σ, where σ is the semicrcle {Reiθ, 0 ≤ θ ≤ π}. Since
the function decays as R−2 in every direction, for R→∞ the contribution of the
semicircle vanishes (Darboux’s inequality) (a semicircle in the lower half plane
would be equally admissible). The path γ encircles the simple poles z1 = eiπ/4

and z2 = e3iπ/4. Then the integral is

= 2πi lim
z→z1

(z − z1)z2

(z4 + 1)
+ 2πi lim

z→z2

(z − z2)z2

(z4 + 1)
=

π√
2

Remark 14.3.5. The asymptotic behaviour |f(Reiθ)|R → 0 as R → ∞ is a
sufficient condition for the integral

∫
σ
dzf(z) on the semicircle σ to vanish.

There is an important class of integrals where the choice of half-plane is not
free, and the following result is useful:

Lemma 14.3.6 (Jordan). Let f be a complex function, continuous on the semi-
circle σ = {Reiθ, θ ∈ [0, π]}, and let M(R) = maxθ∈[0,π] |f(Reiθ)|. Then:∣∣∣∣∫

σ

dzf(z)eiaz
∣∣∣∣ ≤ π

a
M(R), a > 0 (14.8)

Proof.∣∣∣∣∫
σ

dzf(z)eiaz
∣∣∣∣ =

∣∣∣∣iR ∫ π

0

eiθdθ f(Reiθ) eiaRe
iθ

∣∣∣∣
≤ 2RM(R)

∫ π
2

0

dθe−Ra sin θ ≤ 2RM(R)

∫ π
2

0

dθe−2Raθ/π ≤ π

a
M(R)

The inequality sin θ ≥ 2θ/π is used, for 0 ≤ θ ≤ π/2.
If a < 0 the semicircle σ for convergence is in the lower half plane. In any case
a 6= 0.
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If the maximum M(R) of |f | on σ vanishes for R→∞, no matter how fast,
then the semicircle contribution is zero. Here’s an important example:∫ ∞

−∞
dx

e−ikx

x2 + a2
=

π

a
e−a|k|, a > 0, k ∈ R (14.9)

In this example, for k = 0 one is free to close in the upper or lower half plane.
If k 6= 0, since e−ik(x+iy) must not blow up, one is compelled to close with a
semicircle in the lower half plane if k > 0 or in the upper half plane if k < 0.

Example 14.3.7. Evaluate:∫ ∞
0

dx
cos(kx)

(x2 + 1)2
=
π

4
(|k|+ 1)e−|k| (14.10)

The function is even, then the integral is 1/2 the integral on the real axis;
cos(kx) = cos(|k|x) = Re exp(i|k|x). The path is closed in the upper half plane,
where it encircles the double pole z = i

=
1

2
Re 2πi lim

z→i

d

dz

[
(z − i)2 ei|k|z

(z2 + 1)2

]
= Re πi lim

z→i

d

dz

ei|k|z

(z + i)2
= . . .

Exercise 14.3.8. ∫ ∞
0

dx
x sin(πx)

(x2 + 1)2
=
π2

4
e−π (14.11)

Remark 14.3.9. Ordinary integrals on the real line are tacitly defined with
limits to infinity being taken independently:∫

R
f(x)dx = lim

u,v→∞

∫ v

−u
f(x)dx

The examples presented above use a weaker definition (Cauchy’s principal value):

P

∫
R
f(x)dx = lim

R→∞

∫ R

−R
f(x)dx

where the limits are taken simultaneously. If the ordinary integral exists, it
coincides with the principal value integral.

For the important class of Fourier integrals the following statement holds:

Theorem 14.3.10 (Jordan). Let f(z) be analytic, save for isolated singulari-
ties. If a > 0 and if f(z)→ 0 as z →∞ in the upper half plane then:∫ ∞

−∞
dx f(x) eiax = 2πi

n∑
k=1

Res[f(z)eiaz, pk] (14.12)

where p1, . . . , pn are the singularities in the upper half plane.
If a < 0 and f(z) → 0 as z → ∞ in the lower half plane, the sum involves the
poles in the lower half plane, with a change of sign.



CHAPTER 14. THE RESIDUE THEOREM 102

Proof. Consider the rectangular path with corners (−u, 0), (v, 0), (v, iw) and
(−u, iw), u, v > 0, w = u + v. The rectangle is large enough to accomodate
all singularities in the upper half plane. The integral of f(z)eiaz on this closed
path is 2πi times the sum of residues. Let us show that integration on all sides
but the interval [−u, v] give zero for u, v →∞: the integral on the segment from
v to v + iw is∣∣∣∣∫ w

0

idyf(v + iy)eiav−ay
∣∣∣∣ ≤ sup

y
|f(v + iy)|

∫ w

0

e−ay ≤ 1

a
sup
y
|f(v + iy)|,

the sup factor vanishes for v →∞ (and u is left free). The opposite side behaves
similarly for u→∞ and all v. The integral on the side from −u+ iw to v+ iw
is ∣∣∣∣∫ v

−u
dxf(x+ iw)eiax−aw

∣∣∣∣ ≤ e−aw(v + u) sup
x
|f(x+ iw)|,

and vanishes in the independent limits u and v →∞.
The integral on the whole real axis is obtained by two independent limits

lim
u→∞

∫ 0

−u
dx f(x)eiax + lim

v→∞

∫ v

0

dxf(x)eiax

and equals the integral on the closed rectangle.

14.3.3 Principal value integrals

When a real function has one or more simple poles on the real axis, we may still
give meaning to the integral as a principal value integral (Cauchy), not to be
confused with the principal value integral on [−R,R], R→∞.
This is an example: the integral

∫ c
a

(x − b)−1 is singular, for a < b < c. How-
ever, one may isolate the singularity by removing an infinitesimal interval, and
evaluate: ∫ b−ε

a

dx

x− b
+

∫ c

b+η

dx

x− b
= log

ε

b− a
+ log

c− b
η

The independent limits ε, η → 0 do not give a well defined result. However, a
finite result is obtained with the “principal value” prescription: ε = η, i.e. a
symmetric interval, and ε→ 0. The result is:

−
∫ c

a

dx

x− b
≡ lim
ε→0

[∫ b−ε

a

dx

x− b
+

∫ c

b+ε

dx

x− b

]
= log

c− b
b− a

(14.13)

In this section we evaluate principal value integrals on the whole real line as
follows:
1) for each singularity ai of the real line remove a real interval [ai − εi, ai + εi];
2) close the interval [−R,R] (R big enough to include all gaps) with a semicircle
in the appropriate half-plane (we assume that for infinite radius the contribu-
tion of the semicircle is zero);
3) close each gap centred in the singularity ai by a semicircle of radius εi in the
same half plane as the big semicircle;
4) the principal part integral (real axis with gaps) is the sum of two contribu-
tions: the integral on the closed path (evaluated by residues) with R→∞, and
the integrals on the semicircles with opposite orientation (in order to cancel the
contributions that were added to close the contour) in the limits εi → 0.
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-1

Figure 14.1: The contour for the principal part evaluation of
∫∞
−∞ dx(1+x3)−1.

The large semicircle of radius R is added to use the Residue theorem, the small
semicircle isolates the singularity in x = −1.

Example 14.3.11.

−
∫
R
dx

1

1 + x3
= lim
ε→∞

lim
R→0

[∫ −1−ε

−R
+

∫ R

−1+ε

dx
1

1 + x3

]
The singularity in x = −1 is a simple pole. The integral does not exist as an
ordinary one, but as a principal part integral.
The contour is closed in the upper half plane and encircles the simple pole eiπ/3.
The small semicircle centred in x = −1 is parameterized by z = −1 + εeiθ.
The integral is evaluated as the integral on the closed contour (residue theorem)
minus the clock-wise integral on the small semicircle:

= 2πi lim
z→eiπ/3

z − eiπ/3

1 + z3
+ lim
ε→0

∫ π

0

dθ
iεeiθ

1 + (−1 + εeiθ)3

=
2πi

(eiπ/3 + 1)(eiπ/3 − e−iπ/3)
+ i lim

ε→0+

∫ π

0

dθ
εeiθ

3εeiθ + . . .

=
π

2

e−iπ/6

cos(π/6) sin(π/3)
+ i

π

3
=

π√
3
.

Exercise 14.3.12.

−
∫
R

dx

(x− a)(x− b)(x2 + 1)
= π

ab− 1

(a2 + 1)(b2 + 1)
(14.14)

−
∫
R

dx

(2 + x)(x2 + 4)
=
π

8
(14.15)

−
∫
R
dx

eix

(x− a)(x− b)
= iπ

eia − eib

a− b
. (14.16)

−
∫
R
dx

eikx

x− y
= iπeikysign k (14.17)

Example 14.3.13. Evaluation of the integral:∫ ∞
−∞

dx
sinx

x
= π (14.18)

Consider the Cauchy integral
∮
γ
dz e

iz

z on the closed path made of segments

[−R,−ε], [ε, R] and two semicircles of radii R (anticlockwise) and ε (clockwise)
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in the upper half plane, centred in z = 0. The path avoids the pole z = 0, and
the integral is zero:

0 =

[∫ −ε
−R

+

∫ R

ε

]
eix

x
− i
∫ π

0

dθeiεe
iθ

+

∫
σ(R)

dz
eiz

z
→ −
∫
R
dx
eix

x
− iπ

The integral on the large half-circle vanishes for large R (Jordan’s Lemma).

Exercise 14.3.14.∫ ∞
−∞

dx
sin2 x

x2
=

1

2
Re−
∫ ∞
−∞

dx
1− ei2x

x2
= π (14.19)

,

Figure 14.2: Left: Contour path with radii R and ε. The branch cut of the
log is chosen as the negative imaginary axis. Right: the “keyhole” path, with
branch cut in the positive real axis.

14.3.4 Integrals with branch cut

Certain integrals with log or non-integer powers can be evaluated by residues.
We illustrate this by examples:

Example 14.3.15. ∫ ∞
0

dxxa−1 log x

x2 + 1
, 0 < a < 2 (14.20)

Use the contour γ shown in Fig.14.2; the log function is chosen with the cut on
the imaginary half-line. The integral is evaluated with the residue at the simple
pole z = i:∮

γ

dz e(a−1) log z log z

z2 + 1
= 2πi lim

z→i
(z − i)e(a−1) log z log z

z2 + 1
=
π2

2
eiaπ/2

The same integral is the sum of two integrals on the real half-lines and the
integrals on the semicircles, which are zero for R→∞ and ε→ 0. Then

=

∫ 0

−∞
dx e(a−1)(log |x|+iπ) log |x|+ iπ

x2 + 1
+

∫ ∞
0

dxxa−1 log x

x2 + 1

= (1− eiaπ)

∫ ∞
0

dxxa−1 log x

x2 + 1
− iπeiaπ

∫ ∞
0

dx
xa−1

x2 + 1
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Separation of real and imaginary parts gives two integrals:∫ ∞
0

dx
xa−1

x2 + 1
=

π

2 sin(aπ/2)
,

∫ ∞
0

dx
xa−1

x2 + 1
log x = −π

2

4

cos(πa/2)

sin2(πa/2)
(14.21)

Example 14.3.16. ∫ ∞
0

dxxa−1 log x

x+ 1
, 0 < a < 1 (14.22)

The path of the previous example does not help. The appropriate path is the
keyhole path (see Fig.14.2), with the log branch cut chosen as the real positive
half-line. The integral is evaluated with the residue at the simple pole z = −1:∮

γ

dze(a−1) log z log z

z + 1
= 2πi lim

z→−1
(z + 1)e(a−1) log z log z

z + 1
= 2π2eiaπ

The same integral is the sum of two integrals on two half-lines: the first one is
just above the branch cut (z = x + iε, arg z = 0), the second one is just below
the branch cut and with opposite orientation (z = x − iε, arg z = i2π). The
large and small circles do not contribute. Then:

=

∫ ∞
0

dxxa−1 log x

x+ 1
−
∫ ∞

0

dx e(a−1)(log |x|+i2π) log |x|+ i2π

x+ 1

= (1− ei2aπ)

∫ ∞
0

dxxa−1 log x

x+ 1
− i2πei2aπ

∫ ∞
0

dx
xa−1

x+ 1

By separating real and imaginary parts we obtain two integrals:∫ ∞
0

dx
xa−1

x+ 1
=

π

sin(aπ)
,

∫ ∞
0

dx
xa−1

x+ 1
log x = −π2 cos(πa)

sin2(πa)
(14.23)

Note that the integral with the log (and higher powers of the log) may be obtained
by a derivative in the parameter a of the first integral.

Exercise 14.3.17.

1)

∫ ∞
0

dx

√
x

x3 + 1
=
π

3
,

∫ ∞
0

dx
x−1/3

x2 + a2
=

π√
3
a−4/3 (a > 0) (14.24)

2)

∫ ∞
0

dx
x−1/3

x2 + a2
cos(kx) =

π√
3
a−4/3 cosh(ka), k ∈ R (14.25)

3)

∫ ∞
0

dx
x−1/3

x2 + a2
sin(kx) = πa−4/3 sinh(ka), k ∈ R (14.26)

4)

∫ ∞
0

dx
x−1/3

x+ 1
=

2π√
3
,

∫ ∞
0

dx
x3/4

(x+ 1)3
=

3
√

2

32
π (14.27)

5)

∫ ∞
0

dx
x1/4

(x+ 1)2
=

π

2
√

2
,

∫ ∞
0

dx
x−1/n

(x+ 1)2
=

π/n

sin(π/n)
(14.28)

6)

∫ ∞
0

dx

√
x

x3 + x2 + x+ 1
=
π

2
(
√

2− 1) (14.29)

7)

∫ ∞
0

dx
xµ

x2 − 2x cos θ + 1
= π

sinµ(π − θ)
sin θ sin(µπ)

, |µ| < 1. (14.30)

Integrals 2,3: first evaluate the integral with exp(ikx), then separate even/odd
powers of k.
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14.3.5 Integrals of hyperbolic functions

The exponential and the hyperbolic functions are periodic on the imaginary
axis, so the trick of closing [−R,R] with a semicircle at infinity does not work
(the extra integral does not vanish). One rather exploits periodicity to close the
path by a rectangle, such that the function on the new side [−R+ ih,R+ ih] has
a simple relation with the function on the real interval. The trick was used for
the Fourier transform of the Gaussian function, (8.2). Here is another example:

Example 14.3.18. ∫
R
dx

cos(xy)

coshx
= π cosh(

π

2
y) (14.31)

The integral on [−R,R] is closed by the rectangle with vertices (±R, 0), (±R, iπ),
where cosh(x + iπ) = − coshx and the integrals on the short sides vanish for
R→∞. The rectangle encloses the simple pole iπ/2. The residue gives:

2πi lim
z→iπ2

(
z − iπ

2

) cos(zy)

cosh z
= 2π cosh(πy)

the same integral evaluated on the boundary is:

=

∫
R
dx

cosxy

coshx
−
∫
R
dx

cos y(x+ iπ)

cosh(x+ iπ)

= [1 + cosh(πy)]

∫
R
dx

cosxy

coshx
− i sinh(πy)

∫
R
dx

sinxy

coshx

The last integral is zero (odd function and symmetric domain).

Exercise 14.3.19.∫ +∞

−∞
dx

x2

coshx
=
π3

4
,

∫ ∞
0

dx
cos(xy)

cosh2 x
=

πy/2

sinh(πy/2)
(14.32)

Example 14.3.20.∫ ∞
−∞

dk
sinh(ky)

sinh k
eikx =

π sin(πy)

cosh(πx) + cos(πy)
(0 < y < 1). (14.33)

The integral, with a change k → −k, becomes:∫ ∞
−∞

dk

2

[
ek(y+ix)

sinh k
+
ek(y−ix)

sinh k

]
= Re−

∫ ∞
−∞

dk
ek(y+ix)

sinh k
.

Since sinh(z + iπ) = − sinh z, one considers a rectangle with corners −u, v,
v + iπ, −u+ iπ, where u, v →∞. Two sides are deformed by small half-circles
of radius ε to exclude the singular points k = 0, iπ from the interior of the
rectangle. By Cauchy’s formula the loop-integral is zero, and the integrals on
the sides parallel to the imaginary axis vanish in the limit. Then:

0 =
[
1 + eiπ(y+ix)

]
−
∫ ∞
−∞

dk
ek(y+ix)

sinh k
−
∫ π

0

iεeiθdθ
eεe

iθ(y+ix)

sinh(εeiθ)

−
∫ 2π

π

iεeiθdθ
e(iπ+εeiθ)(y+ix)

sinh(iπ + εeiθ)
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Therefore:

−
∫ ∞
−∞

dk
ek(y+ix)

sinh k
= iπ

eπx − eiπy

eπx + eiπy
(14.34)

The real part gives the integral.

14.3.6 Other examples

Example 14.3.21.∫ ∞
0

dx
1

x5 + 1
=

π/5

sin(π/5)
,

∫ ∞
0

dx
log x

x5 + 1
= −

(π
5

)2 cos(π/5)

sin2(π/5)
(14.35)

The denominator remains unchanged if x is replaced by xei2π/5. This suggests
to close the real positive line with an arc of amplitude 2π/5 and the radial line
z = xei2π/5 (the second integral requires the first one).

Example 14.3.22. ∫ ∞
0

dx
log x

x2 − 1
=
π2

4
(14.36)

The cut is chosen away from the real positive axis, and the point x = 1 is a
removable singularity. If x is replaced by ix the integral is simple to evaluate.
Theferore, integrate on the closed path formed by [0, R], the circle Reiθ 0 < θ <
π
2 and the segment [iR, 0], R→∞.

Example 14.3.23. ∫ ∞
0

dx
log(x2 + 1)

x2 + 1
= π log 2 (14.37)

Evaluate
∮
γ
dz log(z+i)/(z2+1) where γ is the real axis closed by a semicircle in

the upper half plane. The cut of log(z+ i) is any line connecting −i to infinity,
for example the line [−i,−i∞).

Example 14.3.24.∫ ∞
0

dx
log x

(x+ a)(x+ b)
=

1

2

(log b)2 − (log a)2

b− a
(14.38)

If the keyhole path is considered, the integral is cancelled by the integral on
the other side of the cut. The trick here is to evaluate the keyhole integral of
the function (log z)2/(z + a)(z + b) (see P. Nahin, Inside interesting integrals,
Springer 2015).

The Mathematics Stack Exchange is a website devoted to questions and
answers at any level. In particular the following pages contain hundreds of
questions on contour integrals http://math.stackexchange.com/questions/

tagged/contour-integration.

http://math.stackexchange.com/questions/tagged/contour-integration
http://math.stackexchange.com/questions/tagged/contour-integration
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14.4 Enumeration of zeros and poles

Theorem 14.4.1. Let f(z) be meromorphic in D and γ a Jordan curve in D.
If z1, . . . , zn are the zeros (of order k1, . . . , kn) and p1, . . . pm are the poles (of
order q1, . . . , qm) of f encircled by γ, then:∮

γ

dz

2πi

f ′(z)

f(z)
=
∑
i

ki −
∑
j

qj . (14.39)

Proof. A zero or a pole of f is a pole for f ′/f . In a neighbourhood of a zero zi,
f(z) = Ai(z − zi)kiϕi(z) with ϕi analytic. Then

f ′(z)

f(z)
=

ki
(z − zi)

+
ϕ′i(z)

ϕi(z)

with residue ki. In a neighbourhood of a pole, f(z) = (z − pj)−qjφj(z) with φj
analytic. Then

f ′(z)

f(z)
=

−qj
(z − pj)

+
φ′j(z)

φj(z)

and the residue is −qj . The integral is the sum of the residues of all zeros and
singular points encircled by γ.

Exercise 14.4.2. Show that:
∫
|z|=kπ

dz
2πi tan z = −2k.

This beautiful theorem is useful for studying the location of zeros of analytic
functions:

Theorem 14.4.3 (Rouché). Lef f and g be holomorphic functions on and inside
a simple closed curve γ. If |g(z)| < |f(z)| for all z ∈ γ, then f and f + g have
the same number of zeros inside γ.

Proof. Since |f | > |g| on γ it is |f | 6= 0 on γ and the variable w = [f(z) +
g(z)]/f(z) is well defined on γ. By the inequality |w(z) − 1| < 1, z ∈ γ, the
image of the curve γ does not encircle the origin. By eq.(14.39)

#(zeros of f + g)−#(zeros of f) =

∮
γ

dz

2πi

w′(z)

w(z)
=

∆ arg w

2π
= 0

(the zeros and poles of w are respectively the zeros of f + g and of f).

Example 14.4.4. How many solutions of ez − 3z4 + 5z = 0 are in the disk
|z| < 2? Choose f(z) = −3z4 + 5z and g(z) = ez. On the boundary |g(z)| =
e2 cos θ, |f(z)| = |48e4iθ − 10eiθ| > 38. Since |f | > |g|, the number of solutions
equals that of 3z4 − 5z = 0 in |z| < 2, which is 4.

14.5 Evaluation of sums

The theorem of residues can be used to evaluate infinite sums by reducing them
to sums on a finite number of residues.
The functions π cot(πz) and πcosec(πz) are meromorphic with simple poles on
the real axis at zn = n ∈ Z, and residues respectively equal to 1 and (−1)n. If
f(z) is analytic in the neighbourhood of the integer n, then:

Res[f(z)π cot(πz), n] = f(n), Res[f(z)πcosec(πz), n] = (−1)nf(n).
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Proposition 14.5.1. Let f(z) be meromorphic with a finite set of poles P =
{p1, . . . , pm} and suppose that there is K > 0 such that |z2f(z)| < K for all z
with |z| larger than some constant R. Then

0 =
∑

n∈Z/P

f(n) +

n∑
k=1

Res [f(z)π cot(πz), pk] (14.40)

0 =
∑

n∈Z/P

(−1)nf(n) +

m∑
k=1

Res [f(z)πcosec(πz), pk] (14.41)

Proof. To apply the theorem of residues, consider a square path � with corners
±[n+ 1

2 ± i(n+ 1
2 ] big enough to include all poles pk. Then:∮

�

dζ

2πi
f(ζ)g(ζ) =

∑
a

Res[f(z)g(z), a]

where a ∈ {0,±1, . . . ,±n}∪{p1, . . . pm}, and g(z) is either π cot(πz) or πcosec(πz).
On the sides of the squares it is | cot(πz)| ≤ 1 and |cosec(πz)| < 1. Then Dar-
boux’s inequality and the bound on f ensure that the contour integral vanishes
for n→∞: ∣∣∣∣∮

�

dζ

2πi
f(ζ)g(ζ)

∣∣∣∣ ≤ 4(2n+ 1)

2π

K

(n+ 1/2)2

Corollary 14.5.2. If f is meromorphic with poles in p1, . . . , pk /∈ Z, then

∞∑
n=−∞

f(n) = −
m∑
k=1

Res [f(z)π cot(πz), pk] (14.42)

∞∑
n=−∞

(−1)nf(n) = −
m∑
k=1

Res [f(z)πcosec(πz), pk] (14.43)

Example 14.5.3. The function f(ζ) = 1/(ζ2 + z2) has simple poles ±iz. Then

∞∑
n=−∞

1

n2 + z2
=
∑
p=±iz

Res

[
π cot(πζ)

ζ2 + z2
, p

]
=
π

z
coth(πz)

The result gives a representation for coth(πz):

coth(πz) =
1

πz
+ 2

z

π

∞∑
n=1

1

z2 + n2
(14.44)

For |z| < 1 one may expand in geometric series: 1
n2+z2 =

∑
`(−1)` z2`

n2+2` . The
exchange of sums is allowed because the series are absolutely convergent:

coth(πz) =
1

πz
+

2

π

∞∑
`=0

(−1)`z2`+1ζ(2 + 2`) (14.45)
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Comparison with eq.(11.12) reveals the relationship of Riemann’s Zeta at even
integers with Bernoulli numbers:

ζ(2`) =
1

2

(2π)2`

(2`)!
|B2`| (14.46)

The replacement z → iz gives:

cot(πz) =
1

πz
+ 2

z

π

∞∑
n=1

1

z2 − n2
. (14.47)

As cot(πz) = 1
π
d
dz log sin(πz) and 2z

z2−n2 = d
dz log(z2 − n2), the famous product

formula for the sine function results (Euler, 1734):

sin(πz) = πz

∞∏
n=1

(
1− z2

n2

)
(14.48)

Example 14.5.4. Consider f(z) = z−2, with a double pole at the origin.∑
n 6=0 n

−2 = −Res[π cot(πz)
z2 , 0]. The residue is evaluated with the rule for poles

of order 3:

2ζ(2) = − 1

2!
lim
z→0

d2

dz2

πz cos(πz)

sin(πz)

A different way to evaluate the residue is to produce the Laurent series directly,

from known series, and read c−1: π cos(πz)
z2 sin(πz) = π[1−(πz)2/2!+... ]

z3π[1−(πz)2/3!+...] = 1
z3 −

π2

3z + . . . .

Then c−1 = −π2/3 and

ζ(2) =

∞∑
n=1

1

n2
=
π2

6



Chapter 15

ELLIPTIC FUNCTIONS

The theory of elliptic functions, shaped by the masters Abel, Jacobi and Weier-
strass, is a threasurehouse of results whose variety, aesthetic appeal, and capac-
ity of arousing our astonishment, has not since been equaled by research in any
other area. But the circumstance that this theory can be applied to solve prob-
lems arising in many departments of science and engineering graces the topic
with an additional aura ...1.
This is a short list: the motion of the pendulum, of a rigid body, geodesics in
Schwarzschild metric2, Korteweg de Vries equation3, the area of the ellipsoid4,
the potential of a homogeneous ellipsoid, motion on ellipsoid5, the equation for
λϕ4 in 1d6, conformal mapping of quadrangles and related problems of electro-
statics, hydraulics; solitary waves7.

Before entering this realm of complex analysis, let us linger on some functions
of real variable. As circular functions were first studied on the unit circle,
extended to the real line, and then to the complex plane, let us define the
elliptic sine and cosine, as Cayley named them. Later, they will be extended to
the complex plane.

15.1 The elliptic sine and cosine

The equation of the ellipse with b ≤ a

x2

a2
+
y2

b2
= 1

has parametric representation x = a cos θ and y = b sin θ. The eccentricity
k =

√
1− (b/a)2, is hereafter named the modulus. The distance from the origin

1from the preface of Derek F. Lawden, Elliptic Functions and Applications, Springer-Verlag
1989. Other nice books: F. Bowman, Introduction to Elliptic Functions with applications,
Dover 1961; J. V. Armitage and W. F. Eberlein, Elliptic Functions, London Math. Soc.
Student text 67, Cambridge 2006; A. L. Markushevich, Theory of functions, Chelsea 1985.

2G. Scharf, https://doi.org/10.4236/jmp.2011.24036
3B. G. Dimitrov, https://arxiv.org/abs/2301.00643
4NIST Handbook of Mathematical Functions, https://dlmf.nist.gov/19.33
5P. Erdös, https://aapt.scitation.org/doi/10.1119/1.1285882
6M. Frasca, https://doi.org/10.1140/epjc/s10052-014-2929-9
7S. Liu et al., https://doi.org/10.1016/S0375-9601(01)00580-1
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is r =
√
x2 + y2 = a

√
1− k2 sin2 θ.

This periodic function of the angle is now introduced (it is an elliptic integral):

u =

∫ θ

0

dθ′√
1− k2 sin2 θ′

(15.1)

Let K = u(π2 ) (a complete elliptic integral):

K =

∫ π
2

0

dθ′√
1− k2 sin2 θ′

=

∫ 1

0

dx√
1− x2

√
1− k2x2

(15.2)

Both K and u depend on the modulus k. It is simple to show that

u(θ +
π

2
) = K + u(θ)

Modulo periods 4K and 2π, there is a one-to-one correspondence between u,
θ and points (x, y) of the ellipse. Special triples are: [0, 0, (a, 0)], [K, π2 , (0, b)],
[2K,π, (−a, 0)].
The elliptic cosine and sine are introduced as a new parametrization of the
ellipse with eccentricity k:

x = a cn(u|k), y = b sn(u|k) (15.3)

Of course, cn(u|k) = cos θ and sn(u|k) = sin θ when u is u(θ) in (15.1), and

cn2(u|k) + sn2(u|k) = 1 (15.4)

A useful function, with no circular analogue, is

dn(u|k) =
√

1− k2sn2(u|k) (15.5)

Some values are simple to obtain. For example: cn(0|k) = cos 0 = 1, cn(K|k) =
cos π2 = 0, cn(2K|k) = cosπ = −1, and dn(0|k) = 1, dn(K|k) = 1 − k2,
dn(2K|k) = 1.

The periodicity of u(θ) reflects in the relation

cn(u+K|k) = cos(θ +
π

2
) = − sin θ = −sn(u|k)

and similarly: sn(u+K|k) = cn(u|k), dn(u+ 2K|k) = dn(u|k). Other relations
follow. In particular, cn and sn have period 4K and dn has period 2K.

15.1.1 Derivatives

Derivatives are easily obtained from sn(u(θ)|k) = sin θ etc.

d

du
sn(u|k) =

dθ

du
cos θ =

√
1− k2 sin2 θ cos θ = dn(u|k)cn(u|k) (15.6)

d

du
cn(u|k) = −dn(u|k)sn(u|k) (15.7)

d

du
dn(u|k) = −k2sn(u|k)cn(u|k) (15.8)
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Figure 15.1: The Jacobi elliptic functions sn (4Kx | k) (red), cn(4Kx | k) (fuch-
sia), dn(4Kx | k) (black) with k = 0.9, and the function sin(2πx) (dashed). Note
the different aspect of sn and sin. As k increases, the maxima and minima of
sn become more rounded.

They imply the interesting second-order differential equations:

d2

du2
sn(u|k) =− (1 + k2) sn(u|k) + 2k2sn3(u|k) (15.9)

d2

du2
cn(u|k) =− (1− 2k2) cn(u|k)− 2k2cn3(u|k) (15.10)

d2

du2
dn(u|k) = (2− k2) dn(u|k)− 2 dn3(u|k) (15.11)

Other equations are obtained by squaring the first derivatives; for example:[
d

du
sn(u|k)

]2

= 1− (1 + k2)sn2(u|k) + k2sn4(u|k) (15.12)

15.1.2 Summation formulae

The elliptic functions have summation rules, more involved that their circular
cousins (k = 0). The modulo k is omitted for brevity.

sn(x1 ± x2) =
sn(x1)cn(x2)dn(x2)± sn(x2)cn(x1)dn(x1)

1− k2sn2(x1)sn2(x2)
(15.13)

cn(x1 ± x2) =
cn(x1)cn(x2)∓ sn(x1)sn(x2)dn(x1)dn(x2)

1− k2sn2(x1)sn2(x2)
(15.14)

dn(x1 ± x2) =
dn(x1)dn(x2)∓ k2sn(x1)sn(x2)cn(x1)cn(x2)

1− k2sn2(x1)sn2(x2)
(15.15)

For k = 0 the familiar summation formula of the sine function is recovered.

Proof. Let s1(x) = sn(x + x1|k), s2(x) = sn(x + x2|k), etc. A prime denotes a
derivative in x. Multiply (15.9) for s1 by s2, and subtract from it the equation
with labels exchanged:

(s2s
′
1 − s1s

′
2)′ = 2k2s1s2(s2

1 − s2
2)
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Multiply (15.12) for s1 by s2
2 and subtract from it the equation with labels

exchanged:

s2
2(s′1)2 − s2

1(s′2)2 = −(s2
1 − s2

2)(1− k2s2
1s

2
2)

Divide the two equations and obtain:

(s2s
′
1 − s1s

′
2)′

s2s′1 − s1s′2
= −2k2 s1s2(s2s

′
1 + s1s

′
2)

1− k2s2
1s

2
2

=
(1− k2s2

1s
2
2)′

1− k2s2
1s

2
2

An integration gives s2s
′
1 − s1s

′
2 = C(1 − k2s2

1s
2
2), where C is independent of

x. With s′i = cidi we obtain the algebraic relation valid for any x: s2c1d1 −
s1c2d2 = C(1 − k2s2

1s
2
2). For x = −x2, it is s2 = 0 and the identity gives C =

− sn(x1−x2|k). The first identity follows, the others are similarly obtained.

Exercise 15.1.1. Evaluate the special values (hint: put x1 = x2 = K/2):

sn

(
K

2

∣∣∣k) =
1√

1 + k′
, cn

(
K

2

∣∣∣k) =

√
k′√

1 + k′
, dn

(
K

2

∣∣∣k) =
√
k′. (15.16)

where k′ =
√

1− k2 is the complementary modulus.

Let us show the connection with certain integrals that occur in physics and
geometry.

15.2 Elliptic integrals

The following three classes of canonical integrals were studied by Legendre.
• The elliptic integrals of the first kind arise in the study of the pendulum.
Let ϕ be the angular coordinate of a pendulum of length L, and ϕ0 the maximal
deviation of its motion from the vertical. Energy conservation gives: 1

2L
2ϕ̇2 =

gL(cosϕ− cosϕ0) = 2gL(sin2(ϕ0/2)− sin2(ϕ/2)). The time to swing from 0 to
ϕ is:

t(ϕ) =
1

2

√
L

g

∫ ϕ

0

dϕ′√
sin2(ϕ0/2)− sin2(ϕ′/2)

,

The period of the pendulum is T = 4t(ϕ0). For small oscillations (sinϕ ≈ ϕ)

t(ϕ) =
√

L
g

∫ ϕ/ϕ0

0
dx√
1−x2

=
√

L
g arcsin( ϕϕ0

). The period is T0 = 2π
√

L
g and

inversion of t(ϕ) gives ϕ(t) = ϕ0 sin( 2πt
T ).

In general, the change of variable sin(ϕ/2) = k sin θ with k = sin(ϕ0/2), gives

t =

√
L

g

∫ θ

0

dθ′√
1− k2 sin2 θ′

, T = T0
2

π

∫ π/2

0

dθ′√
1− k2 sin2 θ′

The two integrals (forget the prefactors) are the incomplete and the complete
elliptic integrals of the first kind.

F (θ, k) =

∫ θ

0

dθ′√
1− k2 sin2 θ′

, K(k) =

∫ π/2

0

dθ′√
1− k2 sin2 θ′

(15.17)
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The incomplete integral is the function u(θ) introduced in (15.1). The period
of the pendulum is T = 2

πT0K(k), k = sin φ0

2 . The motion of the pendulum is

sin
ϕ

2
= k sin θ = k sn(u|k) = k sn(

2πt

T0
|k)

• The elliptic integrals of the second kind arise in the evaluation of the
arc-length of the ellipse. If x = a cos θ, y = b sin θ, then ds2 = dx2 + dy2 =
a2(1− k2 cos2 θ)dθ. The integral for the arc-length is

L(θ) = a

∫ θ

0

dθ′
√

1− k2 cos2 θ′ = a

∫ π
2

π
2−θ

dθ′
√

1− k2 sin2 θ′

The incomplete and complete elliptic integrals of the second kind are:

E(θ, k) =

∫ θ

0

dθ′
√

1− k2 sin2 θ′, E(k) =

∫ π/2

0

dθ′
√

1− k2 sin2 θ′ (15.18)

Then L(θ) = aE(π2 , k)− aE(π2 − θ, k). The perimeter is 4L(π2 ) = 4aE(k).

• The elliptic integral of the third kind is:

Π(θ, α, k) =

∫ θ

0

dθ′
1

(1 + α2 sin2 θ′)
√

1− k2 sin2 θ′
(15.19)

The complete elliptic integrals K, E, K ′ ≡ K(k′) and E′ ≡ E(k′) are linked by
Legendre’s relation:

KE′ +K ′E −KK ′ =
π

2
(15.20)

The change of variable x = sin θ′ transforms the integrals F , E and Π into:

F (u|k) =

∫ u

0

dx√
(1− x2)(1− k2x2)

(15.21)

E(u|k) =

∫ u

0

dx

√
1− k2x2

1− x2
, (15.22)

Π(u|α, k) =

∫ u

0

dx

(1 + α2x2)
√

(1− x2)(1− k2x2)
(15.23)

Elliptic integrals have the form
∫
dxR

(
x,
√
p3,4(x)

)
where R is a rational func-

tion of the real variable x and of the square root of a cubic or quartic polynomial
with real coefficients (a higher degree defines hyperelliptic integrals). Legendre
showed that any elliptic integral may be expressed as a combination of the three
canonical elliptic integrals8.

8A specialized book is P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for
Engineers and Scientists, 2nd ed. 1971, Springer-Verlag.
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A different treatment is based on the following symmetric integrals of the I,
II, and III kind9

RF (x, y, z) = 1
2

∫ ∞
0

dt√
(t+ x)(t+ y)(t+ z)

(15.24)

RJ(x, y, z, p) = 3
2

∫ ∞
0

dt

(t+ p)
√

(t+ x)(t+ y)(t+ z)
(15.25)

RG(x, y, z) =
1

4π

∫ 2π

0

dϕ

∫ π

0

sin θ dθ
√
xn2

x + y n2
y + z n2

z (15.26)

where n = (sin θ cosϕ, sin θ sinϕ, cos θ) is a unit vector in spherical angles. The
integrals are symmetric functions of x, y, z ∈ C/{−∞, 0]. They are complete
whenever one of the variables x, y, z is zero.

15.3 Jacobi Elliptic functions

In this section we extend the functions sn, cn and dn from real to complex
variable. Their properties illustrate the general theory of elliptic functions.

The purely imaginary argument is introduced as follows. In the integral u,
eq.(15.1), put k2 = 1− k′2 (k′ is the complementary modulus):

u =

∫ θ

0

dθ′√
cos2 θ′ + k′2 sin2 θ′

=

∫ θ

0

dθ′

| cos θ′|
1√

1 + k′2 tan2 θ′

Now make the change sinhx′ = tan θ′, and obtain another integral for u:

u =

∫ x

0

dx′√
1 + k′2 sinh2 x′

, sinhx = tan θ =
sn(x|k)

cn(x|k)
(15.27)

This identity defines the Jacobi elliptic function with imaginary argument:

sn(ix|k′) = i
sn(x|k)

cn(x|k)
(15.28)

Accordingly, the other functions with imaginary argument are:

cn(ix|k′) = coshx =
1

cn(x|k)
, (15.29)

dn(ix|k′) =

√
1− k′2sn2(ix|k′) =

dn(x|k)

cn(x|k)
(15.30)

The Jacobi functions with modulus k′ change sign for a shift x→ x+2K ′, where
K ′ = K(k′), and have period 4K ′. The ratio of two of them is periodic with
period 2K ′. Therefore, the functions with imaginary argument (and modulus
k) are periodic: sn(ix+ i2K ′|k) = sn(ix|k) etc.
One may check, they obey the same differential equations and addition rules as
the functions with real argument.

9https://dlmf.nist.gov/19

https://dlmf.nist.gov/19
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The Jacobi elliptic functions with complex argument z = x+ iy are defined
through the summation formulae:

sn(z|k) =
sn(x|k)cn(iy|k)dn(iy|k) + cn(x|k)dn(x|k)sn(iy|k)

1− k2sn2(x|k)sn2(iy|k)

=
sn(x|k)dn(y|k′) + i cn(x|k)dn(x|k)sn(y|k′)cn(y|k′)

1− dn2(x|k)sn2(y|k′)
(15.31)

cn(z|k) =
cn(x|k)cn(y|k′)− i sn(x|k)dn(x|k)sn(y|k′)dn(y|k′)

1− dn2(x|k)sn2(y|k′)
(15.32)

dn(z|k) =
dn(x|k)cn(y|k′)dn(y|k′)− ik2 sn(x|k)cn(x|k)sn(y|k′)

1− dn2(x|k)sn2(y|k′)
(15.33)

The summation formulae (15.13), (15.14), (15.15), the expressions for deriva-
tives and the differential equations remain valid, with z replacing x.
Some useful properties are listed:

sn(z|k) = sn(z|k), cn(z|k) = cn(z|k), dn(z|k) = dn(z|k) (15.34)

.

sn(z +K|k) =
cn(z|k)

dn(z|k)
, sn(z + iK ′|k) =

1

k sn(z|k)
(15.35)

cn(z +K|k) = −k′ sn(z|k)

dn(z|k)
, cn(z + iK ′|k) = −i dn(z|k)

k sn(z|k)
(15.36)

dn(z +K|k) =
k′

dn(z|k)
, dn(z + iK ′|k) = −icn(z|k)

sn(z|k)
(15.37)

sn(z + 2K|k) = −sn(z|k), sn(z + i2K ′|k) = sn(z|k) (15.38)

cn(z + 2K|k) = −cn(z|k), cn(z + i2K ′|k) = −cn(z|k) (15.39)

dn(z + 2K|k) = dn(z|k), dn(z + i2K ′|k) = −dn(z|k) (15.40)

Proposition 15.3.1. The Jacobi elliptic functions are doubly periodic:

sn(z + n1 4K + n2 2iK ′|k) = sn(z|k), (15.41)

cn(z + n1 4K + n2 (2K + i2K ′)|k) = cn(z|k), (15.42)

dn(z + n1 2K + n2 4iK ′|k) = dn(z|k). (15.43)

Proposition 15.3.2 (zeros and poles).
1) In the rectangle 0 ≤ Rez < 4K, 0 ≤ Imz < 2K ′, the function sn(z|k) has two
simple zeros at z = 0, z = 2K, and two simple poles at z = iK ′, z = 2K + iK ′

with residues 1/k, −1/k.
2) In the parallelogram with vertices 0, 4K, 6K + i2K ′, 2K + i2K ′ the function
cn(z|k) has two simple zeros at z = K, z = 3K, and two simple poles at
z = K + iK ′, z = 3K + iK ′ with residues 1/k, −1/k.
3) In the rectangle 0 ≤ Rez < 2K, 0 ≤ Imz < 4K ′ the function dn(z|k) has two
simple zeros at z = K + iK ′, z = K + i3K ′, and two simple poles at z = iK ′,
z = 2K + iK ′ with residues −i, i.
Remark 15.3.3. For the three elliptic functions:
1) the sum of residues is zero,
2) the numbers of zeros equals the number of poles,
3) the sum of the zeros equals the sum of the poles modulo a lattice vector.
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15.3.1 Conformal map for the rectangle

Jacobi Elliptic functions define useful conformal transformations, the basic one
being the map of the rectangle onto the upper half plane.

Proposition 15.3.4. The analytic function w → z = sn(w|k) maps the rectan-
gle R = {w : 0 < Rew < K, 0 < Imw < K ′} conformally on the first quadrant
of the z plane (note that R is half of a fundamental parallelogram).

Proof. Let w = u+ iv and z = x+ iy. In components the map is:

x =
sn(u|k)dn(v|k′)

1− dn2(u|k)sn2(v|k′)
, y =

cn(u|k)dn(u|k)sn(v|k′)cn(v|k′)
1− dn2(u|k)sn2(v|k′)

If w ∈ R then: x ≥ 0, y ≥ 0, and sn′(w|k) = cn(w|k) dn(w|k) 6= 0; therefore R is
mapped in the first quadrant, and the map is injective. It is sufficient to obtain
the image of the boundary of the rectangle (the image of R is the interior of it).
1) the segment 0 < u < K, v = 0 is mapped to 0 < x < 1, y = 0 (x = sn(u|k));
2) the segment u = K, 0 < v < K ′ is mapped to the segment 1 < x < 1/k,
y = 0 (x = 1/dn(v|k′));
3) the segment K > u > 0, v = K ′ is mapped to 1/k < x < ∞ and y = 0
(x = 1/[k sn(u|k)]); as the point z =∞ is reached, the image of the rectangle’s
boundary descends to the origin along the imaginary axis:
4) the segment u = 0, K ′ > v > 0 is mapped to x = 0 and ∞ > y > 0
(y = sn(v|k′)/cn(v|k′)).

Remark 15.3.5. The corners 0, K, K + iK ′ and iK ′ are mapped to 0, 1, 1/k
and ∞.
A segment (a, a+ iK ′) in R is mapped to a line with both ends on the real axis:
z1 = sn(a|k) < 1 and z2 = 1/[k sn(a|k)] > 1/k. The line is parameterized as
follows, by t = sn(v|k′) ∈ (0, 1),

x(t) =
sn(a|k)

√
1− k′2t2

1− t2dn2(a|k)
, y(t) =

cn(a|k)dn(a|k)t
√

1− t2

1− t2dn2(a|k)

A segment (ib,K+ ib) is mapped to a line with ends z1 = i sn(b|k′)/cn(b|k′) and
1 < z2 = dn(b|k′) < 1/k. The line is parameterized by u, and is orthogonal to
the lines of constant u.
At the corner w = 0 the map is analytic with nonzero derivative; therefore the
right angle of the rectangle is mapped to the right angle at z = 0.

Corollary 15.3.6. The map w → z = sn2(w|k) takes conformally the rectangle
0 < u < K, 0 < v < K ′ to H (the half plane Imz > 0).
The images of 0, K, K + iK ′ and iK ′ are, in the order, 0, 1, 1/k2, ∞.

15.4 Doubly periodic functions

A complex function f is periodic if there is a complex number ω (the period) such
that f(z+ω) = f(z) for all z. The exponential and the hyperbolic functions are
periodic with ω = 2πi, the trigonometric functions are periodic with ω = 2π.
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A function is doubly periodic if there are two periods ω and ω′, not proportional
by a real number, such that10:

f(z + ω) = f(z) and f(z + ω′) = f(z), ∀z ∈ C

Although Gauss was aware of doubly periodic functions, the subject was dis-
closed in 1827 by Niels H. Abel, and developed further by Jacobi and Weier-
strass.

The cell with corners 0, ω, ω+ω′, ω′ is a fundamental parallelogram �, with
oriented boundary ∂. The values of f in � determine the function everywhere.
The points nω + n′ω′, n, n′ ∈ Z, form a lattice in C.

A doubly periodic entire function is necessarily constant (being continuous
on the compact set � it is bounded, but then it is bounded on C by periodicity,
i.e. it is constant by Liouville’s theorem). We then have to allow for isolated
poles:

Definition 15.4.1. An elliptic function is a doubly periodic meromorphic func-
tion. The number of poles (counted with their order) inside a fundamental
parallelogram, is the order of the elliptic function.

A famous example is the Weierstrass elliptic function (1872):

℘(z) =
1

z2
+
∑
m,n6=0

1

(z −mω1 − nω2)2
− 1

(mω1 − nω2)2
(15.44)

It has a second order pole at each site of the lattice mω1 +nω2. For review and
applications see https://arxiv.org/pdf/1706.07371.pdf.

These properties hold in general for elliptic functions:

Proposition 15.4.2. Let f(z) be an elliptic function and consider the poles pk
and the zeros ak of the function f(z)− a inside a fundamental parallelogram:
1) the sum of the residues is zero:∑

k

Res (f, pk) = 0

2) the number of zeros equals the number of poles (both counted with their order),
i.e. an elliptic function takes each complex value a number of times equal to its
order:

#ak = #pk

3) the sum of the zeros minus the sum of the poles is a lattice point, i.e. the
sum of the points where the function takes a fixed value equals (modulo a lattice
point) the sum of the poles:∑

k

ak =
∑
k

pk + nω + n′ω′

4) If two elliptic functions f and g have the same periods, then there is a poly-
nomial P (z, z′) with constant coefficients such that P (f(z), g(z)) = 0. In par-
ticular, f satisfies a differential equation of the type

P (f(z), f ′(z)) = 0 (15.45)
10Jacobi proved that a non-constant single-valued analytic function whose singularities do

not have limit points at finite distance cannot have more than two periods, not proportional
by a real factor

https://arxiv.org/pdf/1706.07371.pdf
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Proof. By the theorem of residues: 2πi
∑
k Res(f, pk) =

∮
∂
dzf(z); as f takes

the same values on opposite edges (with opposite orientations), the integral is
zero. The function f ′/(f − a) has simple poles at the zeros ak of f − a (with
residue equal to the order of the zero), and simple poles pk at the poles of f
(with residues equal to the opposite of their order). Then:∮

∂

dz

2πi

f ′(z)

f(z)− a
= #ak −#pk

the integral vanishes because of the periodicity of f and f ′. Next, consider the
integral ∮

∂

dz

2πi
z

f ′(z)

f(z)− a
=
∑
k

ak −
∑
k

pk

The integral is evaluated by parametrizing the four sides of the parallelogram
with ordered vertices 0, ω, ω + ω′, ω′. Using the periodicity of f and f ′ on
opposite sides, the contour integral is:

ω

2πi

∫ 1

0

dt[tω − (ω′ + tω)]
f ′(tω)

f(tω)− a
+

ω′

2πi

∫ 1

0

dt[(ω + tω′)− tω′] f ′(tω′)

f(tω′)− a

=
ωω′

2πi

∫ 1

0

dt

[
− f ′(tω)

f(tω)− a
+

f ′(tω′)

f(tω′)− a

]
= − ω′

2πi
log[f(tω)− a]1t=0 +

ω

2πi
log[f(tω′)− a]1t=0

As f − a is periodic, the real parts of log at t = 1 and t = 0 cancel, while
arguments may only differ by an integer multiple of 2πi. Therefore the contour
integral is nω + n′ω′, i.e. for any choice of a:∑

k

ak =
∑
k

pk + nω + n′ω′.

The last proposition is proven for example in M. Lavrentiev and B. Chabat,
Méthodes de la Théorie des fonctions d’une variable complexe, Éditions de
Moscou 1972.

15.5 Theta functions

Closely related to elliptic functions are the Jacobi Theta functions11. Let’s begin
with

ϑ3(z|τ) =
∑
m∈Z

eiπ(m2τ+2mz) = 1 + 2

∞∑
m=1

eiπm
2τ cos(2πmz) (15.46)

For Im τ > 0 the series is everywhere absolutely convergent and defines an
entire function. Besides the obvious periodicity ϑ3(z|τ) = ϑ3(z+ 1|τ), it is easy
to show that

ϑ3(z + τ |τ) = e−iπ(τ2+2z)ϑ3(z|τ)

11N. I. Akhiezer, Elements of the theory of elliptic functions, Translations of Mathematical
Monographs 79, AMS
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The logarithmic derivative has the property

ϑ′3(z + τ |τ)

ϑ3(z + τ |τ)
= −2iπ +

ϑ′3(z|τ)

ϑ3(z|τ)

The ratio has simple poles at the zeros of ϑ3 (if p is the order of the zero, the
ratio has a simple pole with residue p). The derivative cancels the term −2iπ
with the result that the function

ϕ(z|τ) =
d

dz

ϑ′3(z|τ)

ϑ3(z|τ)

is an elliptic function with double poles at the zeros of ϑ3 and periods 1, τ .
Next, consider the Theta function:

ϑ0(z|τ) = ϑ3

(
z +

1

2

∣∣∣τ) =
∑
m∈Z

(−1)meiπ(m2τ+2mz). (15.47)

ϑ0(z+τ |τ) = ϑ3

(
z + τ + 1

2 |τ
)

= e−iπ(τ2+2z+1)ϑ3(z+ 1
2 |τ) = −e−iπ(τ2+2z)ϑ0(z|τ),

and ϑ0(z + 1|τ) = ϑ0(z|τ). The ratio

ϕ3(z|τ) =
ϑ3(z|τ)

ϑ0(z|τ)
(15.48)

is meromophic with isolated double poles at the zeros of ϑ0. Since ϕ3(z+1|τ) =
ϕ3(z|τ) and ϕ3(z+τ |τ) = −ϕ3(z|τ), it is an elliptic function with periods 1 and
2τ . Two other Theta functions are:

ϑ1(z|τ) = ie−iπ(z− τ4 )ϑ3

(
z +

1− τ
2

∣∣∣τ) , (15.49)

ϑ2(z|τ) = e−iπ(z− τ4 )ϑ3

(
z − τ

2

∣∣∣τ) . (15.50)

Exercise 15.5.1. Prove that the ratios

ϕ1(z|τ) =
ϑ1(z|τ)

ϑ0(z|τ)
, ϕ2(z|τ) =

ϑ2(z|τ)

ϑ0(z|τ)
(15.51)

are elliptic functions, with periods 2, τ and 2, 1 + τ .

15.6 Reduction of elliptic integrals

Example 15.6.1.∫ x

a

dx′√
(x′ − a)(b− x′)(c− x′)

=
2√
c− a

F

(
θ,

√
b− a
c− a

)
, sin2 θ =

x− a
b− a

where a ≤ x ≤ b < c. Similarly:∫ x

a

x′ dx′√
(x′ − a)(b− x′)(c− x′)

=

∫ x

a

dx′

[
c√

(x′ − a)(b− x′)(c− x′)
−

√
c− x′

(x′ − a)(b− x′)

]

=
2c√
c− a

F

(
θ,

√
b− a
c− a

)
− 2
√
c− aE

(
θ,

√
b− a
c− a

)
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In both cases the Legendre form is obtained with the replacement x′ = a+ (b−
a) sin2 θ′. Then x = a+ (b− a) sin2 θ.

Exercise 15.6.2. ∫ 1

0

dx√
1− x4

= 1√
2
K
(

1√
2

)
The integral is also amenable to Euler’s Beta function, 1

4B( 1
4 ,

1
2 ).

Exercise 15.6.3. (from Bowman. Put t = tan θ)∫ x

0

dt√
t4 ± 2t2 cosϕ+ 1

=
1

2
F

(
2 arctg x,

√
1∓ cosϕ

2

)
(15.52)

∫ ∞
0

dt√
t4 ± 2t2 cosϕ+ 1

= K

(√
1∓ cosϕ

2

)
(15.53)

Jacobi elliptic functions are useful in the evaluation of elliptic integrals. A
standard change of variable is:

x =
A1 +A2sn2(u|k)

A3 +A4sn2(u|k)
, 0 ≤ u ≤ K (15.54)

The constants Ai and the modulus k are chosen in order that dx/
√
P (x) = g du,

where g is a constant.

Example 15.6.4.∫ x

0

dx′√
x′(1− x′)(c− x′)(d− x′)

x ≤ 1 ≤ c ≤ d

As 0 ≤ x′ ≤ 1, we require x = 0 for u = 0 and x = 1 for u = K in (15.54), then

x =
(1 + q)sn2(u|k)

1 + q sn2(u|k)
, dx = 2(1 + q)

sn(u|k)cn(u|k)dn(u|k)

[1 + q sn2(u|k)]2

dx√
P (x)

= 2

√
1 + q

cd

dn(u|k) du√
1− (1/c+ q/c− q)sn2(u|k)

√
1− (1/d+ q/d− q)sn2(u|k)

Set q = 1/(d− 1) and k2 = 1/c+ q/c− q = (d− c)/[c(d− 1)] to eliminate one
of the square roots and cancel the other with dn(u|k). Then:∫ x

0

dx√
P (x)

= 2
1√

c(d− 1)
u = 2

1√
c(d− 1)

F

(√
x(d− 1)

d− x

∣∣∣√ d− c
c(d− 1)

)



Chapter 16

QUATERNIONS AND
BEYOND

16.1 Quaternions and vector calculus.

After the successful construction of C as the set of pairs of real numbers,
(a, b) = a+ ib, with vector sum and distributive product with the rule i2 = −1,
W. R. Hamilton eagerly tried to generalize the construction of new number fields
by considering triplets (a, b, c). After years of efforts, in 1843, he realized that
a consistent multiplication could be defined for quadruplets (a, b, c, d), which he
called quaternions.
With three units I = (0, 1, 0, 0), J = (0, 0, 1, 0), K = (0, 0, 0, 1) (instead of a
single i = (0, 1)) a quaternion is a number q = a+ bI + cJ + dK, where a, b, c, d
are real numbers. Multiplications are done with the rules I2 = J2 = K2 = −1
and

IJ = −JI = K, JK = −KJ = I, KI = −IK = J

The set H of quaternions is a non-commutative algebra with conjugation q† =
a− bI − cJ − dK (i.e. I† = −I etc.) and (q1q2)† = q†2q

†
1.

H has the inner product (q|p) = 1
2 (q†p + p†q). The norm of a quaternion is

‖q‖ =
√

(q|q) =
√
a2 + b2 + c2 + d2, with the property ‖qp‖ = ‖q‖ ‖p‖1.

A realization of the quaternion basis is given by the 2 × 2 complex Pauli
matrices: 1 = σ0 (the unit 2× 2 matrix), I = iσ3, J = iσ2 and K = iσ1, where

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (16.1)

Quaternions are then represented by complex matrices, with the ordinary matrix
operations. The algebra of sigma matrices is summarized by the matrix identity2

σiσj = δijσ0 + i

3∑
k=1

εijkσk (16.2)

1The rule implies a nontrivial identity: given integers mi and ni there are integers pi
(i = 1, 2, 3, 4) such that (m2

1 +m2
2 +m2

3 +m2
4)(n2

1 + n2
2 + n2

3 + n2
4) = p2

1 + p2
2 + p2

3 + p2
4.

2εijk is the totally antisymmetric symbol; ε123 = −ε213 = 1 and cyclic permutations, zero
otherwise.

123
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In modern language a quaternion with b = c = d = 0 is a (real) scalar,
and a purely imaginary quaternion bI + cJ + dK (a = 0) is a vector. Then
a quaternion can be viewed as a pair (a,~v), and this is where vector calculus
originated from.
Hamilton introduced the operator ∇ = I∂x + J∂y +K∂z, and named it nabla3.
If q is a scalar then ∇q is a vector. If q is a vector, ∇q is a quaternion with scalar
part −div q and vector part rot q. Quaternions influenced James Clerk Maxwell
in the formulation of his fundamental Treatise on Electricity and Magnetism
(1873), though he preferred the more familiar Cartesian form4.
It is interesting to notice that modern 3D vector calculus stemmed from quater-
nions (but also from the works of Hermann Grassmann, less known at the time).
The inauguration was made independently by Josiah Gibbs5, professor of chem-
ical physics at Yale’s university, and Oliver Heaviside, the engineer who formu-
lated Maxwell’s equations in the present vector form6.

A natural approach to quaternions is to define them as pairs of complex
numbers (z1, z2) with sum (z1, z2)+(w1, w2) = (z1 +w1, z2 +w2), multiplication

(z1, z2)(w1, w2) = (z1w1 − w2z2, z2w1 + w2z1), (16.3)

and conjugation (z1, z2) = (z1,−z2). A pair (a + ib, c + id) identifies with the
real combination a+Ib+cJ+dK with units I = (i, 0), J = (0, 1) and K = (0, i).

16.2 Octonions

A generalization of quaternions is O, the set of octonions or Cayley numbers7.
They can be defined as pairs of quaternions (q1, q2) with multiplication and
conjugation defined as above, for the pairs of complex numbers. The octonion
algebra is both non commutative and non associative (because of non associa-
tivity, octonions cannot be represented as matrices). The conjugation acts as

follows: (O1O2)† = O†2O
†
1.

In alternative, one can introduce 8 units, Ij whose multiplication table IiIj =
fijkIk is not given here, and write O =

∑
j ojIj . The norm

‖O‖2 = O†O = o2
0 + o2

1 + . . .+ o2
7

has the property ‖O1O2‖ = ‖O1‖‖O2‖. This makes O a division algebra (see
below). Octonions enter in the construction of certain exceptional Lie algebras.
Quaternions and Octonions are examples of Clifford algebras8, which are rele-
vant in the study of Dirac’s equation for odd spin particles (fermions).

3The symbol ∇ recalls the nabla, an ancient Hebrew musical instrument.
4I am convinced, however, that the introduction of the ideas, as distinguished from the

operations and methods of Quaternions, will be of great use ... especially in electrodynamics
... can be expressed far more simply by a few words of Hamilton’s, than the ordinary equations.
One of the most important features of Hamilton’s method is the division of quantities into
Scalars and Vectors.

5J. Gibbs and E. Wilson, Vector analysis, 1901.
6A detailed account is in M. J. Crowe, A history of vector analysis, Dover reprint of Notre

Dame University Press, 1967.
7John Baez, Octonions, Bull. Am. Math. Soc. 39 (2001) 145-205.
8V. V. Prasolov, Problems and theorems in linear algebra, translations of mathematical

monographs 134, Am. Math. Soc.
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Continuation of the process with pairs of octonions brings to Sedenions, of di-
mension 16, with weaker algebraic properties.

Remark 16.2.1. R, C, H, O are real division algebras of dimensions 1, 2, 4
and 8, i.e. the equations ax = b and ya = b (where a 6= 0 and b are elements
of the algebra) have unique solutions x and y in the algebra (for commutative
algebras x = y).

Theorem 16.2.2 (Bott-Milnor (1958), Kervair (1958)). The only possible di-
mensions of a real division algebra are 1, 2, 4, 8.

Proof. The proofs (for 2, 4, 8) are based on the topological assertion that the
only spheres Sn = {x ∈ Rn+1 : ‖x‖ = 1} that admit n linearly independent
vector fields (parallelizable spheres) are S1, S3 and S7.
No algebraic proof of the theorem is known.

Algebras with anticommuting units ξiξj + ξjξi = 0 (where in particular ξ2
i =

0) were developed since 1844 by Hermann Grassmann, a gymnasium professor.
Grassmann calculus is nowadays the basis for the path integral description of
fermions, supersymmetry, and a tool in the theory of disordered systems and
random matrices.

Exercise 16.2.3. 1) Evaluate the quaternion product of two vectors (aI+ bJ +
cK)(a′I + b′J + d′K) and show that it coincides with the vector product.
2) Represent quaternions as complex matrices and find the inverse of a quater-
nion. Show how addition and multiplication translate into operations on the
four-vectors (a,~b)t.



Part II

FUNCTIONAL ANALYSIS
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Figure 16.1: Maurice Fréchet (Maligny 1878, Paris 1973) had the fortu-
nate chance of having the eminent mathematician Jacques Hadamard as teacher
in secondary school. Hadamard noticed him and started an individual tutor-
ship. In 1900 Maurice enrolled in mathematical studies at the École Normale
Supérieure. His doctorate dissertation Sur quelques points du calcul fonctionelle,
with Hadamard, contains the new concept of metric space. Fréchet served sev-
eral institutions in France and abroad, with a period near the front-line during
world war I.

Figure 16.2: Stefan Banach (Kraków 1892, Lviv 1945). The turn in
his life happened in Kraków when the mathematician Hugo Steinhaus, dur-
ing an evening walk, heard by chance the young engineer Banach and Otto
Nikodym talking about Lebesgue measure. The three founded, with others,
Kraków’s (now Polish) Mathematical Society. The doctorate dissertation Sur
les opérations dans les ensembles abstraits et leur application aux équations in-
tegrales (1920) contains the axioms of what Fréchet coined “Banach spaces”. In
1924 he became full professor. His monograph Théorie des Opérations linéaires
(1931) was very influential. After the German invasion in 1941 several collegues
were murdered. He survived feeding lices in Weigl’s institute for infectious dis-
eases, but his health paid the toll. He died of cancer one year after the Soviets
entered Lviv. Banach’s main achievements are in functional analysis, measure
theory, topological spaces, orthogonal series.
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METRIC SPACES

There are many contexts in mathematics where, given two items x and y (func-
tions, matrices, sequences, operators, ...), one wishes to quantify how much they
differ. In 1906 Maurice Fréchet, in his doctorate thesis, gave the axioms of a
very general structure, the Metric Space, that allows to discuss topological con-
cepts that arise in most situations of analysis.
Soon after, in 1914, Felix Hausdorff gave the axioms for Topological Spaces, the
most general conceptualization of “nearness”.

17.1 Metric spaces and completeness

Definition 17.1.1. A Metric Space (X, d) is a set X equipped with a dis-
tance between pairs of elements. A distance is characterized by the natural
requirements of being symmetric, non negative, and constrained by the trian-
gular inequality:

d(x, y) = d(y, x); (17.1)

d(x, x) = 0, d(x, y) > 0 if x 6= y; (17.2)

d(x, y) ≤ d(x, z) + d(z, y) ∀x, y, z. (17.3)

The distance defines a topology on X, i.e. a family of neighbourhoods at each
point x. Such a family is the set of disks centred in x with radii r > 0:

D(x, r) = {y ∈ X : d(x, y) < r}.

With this definition, a metric space is a Topological Hausdorff Space. The
following definitions are of great relevance:

Definition 17.1.2. A sequence xn in X is convergent to x ∈ X if the sequence
of distances d(xn, x) converges to zero, i.e. ∀ε > 0 ∃Nε such that d(xn, x) < ε
∀n > Nε.

Definition 17.1.3. A sequence xn is a Cauchy sequence (or a fundamental
sequence) if ∀ε ∃Nε such that d(xm, xn) < ε ∀m,n > Nε.

Exercise 17.1.4. Prove that if xn is a Cauchy sequence in a metric space, and
xnj is a subsequence with limit x, then xn → x.
Hint: use the triangle inequality d(xn, x) ≤ d(xn, xnj ) + d(xnj , x).

128
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Every convergent sequence is a Cauchy sequence (by the triangle inequality),
but a Cauchy sequence may not converge. We are thus led to the important
definition:

Definition 17.1.5. A metric space (X, d) is complete if every Cauchy sequence
is convergent in X.

Completeness is a fundamental property: once a metric space is established to
be complete, the Cauchy criterion ensures convergence of a sequence without
knowledge of the limit.
A metric space that is not complete may be completed, in a manner similar to
the construction of R as the completion of Q.

Theorem 17.1.6. If a metric space X is not complete, it is always possible to
construct a metric space X, the completion of X, which is complete.

Proof. Consider the set of Cauchy sequences xn in X. Two sequences are equiv-
alent, xn ∼ x′n, if they definitely approach:

∀ε ∃ Nε : d(xn, x
′
m) < ε ∀m,n > Nε

The reflexive and symmetric properties are obvious, the transitive property is
true by the triangle inequality: if xn ∼ x′n and x′n ∼ x′′n then: d(xn, x

′′
m) ≤

d(xn, x
′
p) + d(x′′m, x

′
p) ≤ 2ε for all m,n, p > max(Nε, N

′
ε), i.e. xn ∼ x′′n.

Define X as the set of equivalence classes of Cauchy sequences in X. Such
classes are of two types: for every x ∈ X there is a class [x] containing the
constant sequence x and equivalent ones; the other type are the classes [xn] of
Cauchy sequences with no limit in X.
X is a linear space by the rules: [xn + yn] = [xn] + [yn] and λ[xn] = [λxn]. It is
a metric space with the distance

d([xn], [yn]) = lim
n→∞

d(xn, yn)

A finite limit exists because d(xn, yn) is a Cauchy sequence in R: |d(xn, yn) −
d(xm, ym)| ≤ |d(xn, yn) − d(xn, ym)| + |d(xm, ym) − d(xn, ym)| ≤ d(yn, ym) +
d(xm, xn) < 2ε for m,n > Nε because xn and yn are Cauchy sequences.
X is complete: let [xn]m be a Cauchy sequence (a Cauchy sequence of equivalent
Cauchy sequences): then d([xn]p, [xn]q) = limn→∞ d(xn,p, xn,q) ≤ ε for p, q >
Nε. The sequence zn = xn,n is a Cauchy sequence: d(zn, zm) = d(xn,n, xm,m) ≤
d(xn,n, xn,p) + d(xn,p, xm,p) + d(xm,m, xm,p) < 3ε for large enough n,m, p.
The class [zn] is the limit in X of the Cauchy sequence: d([xn]m, [zn]) =
limn→∞ d(xn,m, xn,n)→ 0.

17.2 Maps between metric spaces

Let f : X → Y be a map between metric spaces, with domain D(f). The
image of the domain is the range Ranf = {y ∈ Y : y = f(x), x ∈ D(f)}.

Definition 17.2.1 (Continuity). A map f is continuous at x ∈ D(f) if:

∀ε ∃ δε,x such that d(f(x′), f(x))Y < ε ∀x′ ∈ D(f) with d(x′, x)X < δε,x.

A map f is sequentially continuous at x ∈ D(f) if for every sequence {xn} in
D(f) with limit x it is f(xn)→ f(x) in Y
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Theorem 17.2.2. f is continuous at x if and only if f is sequentially contin-
uous at x.

Proof. Suppose that f is continuous and xn → x in D(f). Then ∀ε > 0 ∃ δε,x
such that d(f(xn), f(x)) < ε for all xn such that d(xn, x) < δε,x i.e. for all
n > Nδ. This means precisely that f(xn)→ f(x).
To prove the converse, suppose that xn → x and x′n → x (same limit). Then
f(xn) and f(x′n) converge by hypothesis. The limits coincide (suppose that they
differ, then the sequence x′′2n = xn and x′′2n+1 = x′n converges to x but f(x′′n)
has no limit, contrary to the hypothesis). Therefore all sequences that converge
to x are mapped to sequences that converge to y. This implies continuity:
limz→x f(z) = y (otherwise a sequence of points zn belonging to disks d(zn, x) <
(1/n) for n large enough, would be mapped to a limit different from y).

17.3 Contractive maps

Definition 17.3.1. A map A : X → X is a contraction if there is a constant
α < 1 such that d(Ax,Ay) ≤ αd(x, y) for every pair in X.

Exercise 17.3.2. Show that a contraction is a continuous map.

A point x ∈ X is a fixed point for a map A : X → X if Ax = x. Contractions
have this fundamental property:

Theorem 17.3.3 (Fixed point theorem). Every contraction on a complete
metric space has a unique fixed point.

Proof. Given an initial point x0, let xk = Akx0 be the sequence generated by
iteration of the map. Let’s show that xk is a Cauchy sequence; for n > m:

d(xn, xm) = d(Axn−1, Axm−1) ≤ αd(xn−1, xm−1) ≤ . . . ≤ αmd(xn−m, x0)

≤ αm[d(xn−m, xn−m−1) + . . .+ d(x2, x1) + d(x1, x0)]

≤ αm[αn−m−1 + . . .+ α+ 1] d(x1, x0) ≤ αm

1− α
d(x1, x0)

If m is large enough the estimate can be made smaller than any prefixed ε.
Because of completeness, the Cauchy sequence converges to a limit x. Since A
is continuous: Ax = A limn xn = limnAxn = limn xn+1 = x. Then a fixed point
x exists (and is the limit of the sequence of iterates of a point).
Unicity is now proven. Suppose that a different fixed point y exists. The equality
d(x, y) = d(Ax,Ay) ≤ αd(x, y) implies d(x, y) = 0.

Example 17.3.4 (Kepler’s equation). A planet’s orbit is an ellipse with semi-
axis a and b and parametric equation x = a cosE, y = b sinE, where the angle
E is the eccentric anomaly. The angle varies in time according to Kepler’s
equation, which translates the area law:

M = E − e sinE,

e < 1 is the eccentricity and the mean anomaly M = 2πt/T is measured by the
time t from the perihelion passage, and T is the orbital period.
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The transcendental equation can be solved as a fixed point problem E = K(E)
where K(E) = M + e sinE is a contraction on [0, 2π]:

|K(E)−K(E′)| = e| sinE − sinE′| = e| cosE∗| |E − E′| ≤ e|E − E′|

The initial value E0 = M can be used, then E1 = K(E0), ... Convergence is
faster the smaller is the eccentricity e.

Example 17.3.5 (Volterra’s equation). Consider the integral equation, with
real λ and g ∈ C [0, 1], K a continuous function on the unit square:

u(x) = g(x) + λ

∫ x

0

dyK(x, y)u(y), x ∈ [0, 1] (17.4)

It can be written as a fixed point equation in C [0, 1] equipped with the sup norm:
Tu = u with (Tu)(x) = g(x) + λ

∫ x
0
dyK(x, y)u(y). Let us evaluate:

|(Tu1)(x)− (Tu2)(x)| ≤|λ|
∫ x

0

dy|K(x, y)||u1(y)− u2(y)|

≤|λ| sup
y∈[0,1]

|u1(y)− u2(y)|
∫ x

0

dy|K(x, y)|

≤|λ|K ‖u1 − u2‖, K = sup
x∈[0,1]

∫ x

0

dy|K(x, y)|

Take the sup x ∈ [0, 1]: ‖Tu1 − Tu2‖ ≤ |λ|K ‖u1 − u2‖. If |λ|K < 1, T is a
contraction and the equation u = Tu has a unique solution in C [0, 1], which
may be obtained by iteration: u0 = g, u1 = Tg, u2 = Tu1 . . . .
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BANACH SPACES

18.1 Normed and Banach spaces

Definition 18.1.1. A linear space X equipped with a norm is a normed
space. A norm is defined by the properties (x ∈ X, λ ∈ C):

‖λx‖ = |λ|‖x‖; (18.1)

‖x‖ ≥ 0, ‖x‖ = 0⇔ x = 0; (18.2)

‖x1 + x2‖ ≤ ‖x1‖+ ‖x2‖. (18.3)

The definition of abstract normed space was given in the years 1920 - 22
by various authors, the most influential being the Polish mathematician Stefan
Banach. It is straightforward to check that a normed space is a metric space
with distance

d(x1, x2) = ‖x1 − x2‖ (18.4)

A sequence {xn} converges to x if ‖xn − x‖ → 0.

Definition 18.1.2. A Banach space is a complete normed space (every Cauchy
sequence is convergent).

Example 18.1.3. The set C [a, b] of continuous functions f : [a, b] → C is a
Banach space with the sup-norm:

‖f‖∞ = sup
a≤x≤b

|f(x)|

Proof. Completeness: let fn be a Cauchy sequence: ∀ε > 0 ∃Nε such that
for all n,m > Nε it is supx |fn(x) − fm(x)| < ε. This implies that for each
x ∈ [a, b], the sequence fn(x) is a Cauchy sequence in C. Then it converges
to a complex number which we name f(x). This defines a function f . As
m→∞, the Cauchy condition becomes supx |fn(x)− f(x)| < ε, i.e. fn → f in
the sup-norm. It remains to show that f belongs to C [a, b]. This amounts to
prove that a uniformly convergent sequence of continuous functions converges
to a continuous function. Continuity of f is proven as follows: |f(x)− f(y)| ≤
|f(x) − fn(x)| + |f(y) − fn(y)| + |fn(x) − fn(y)| ≤ 3ε for |x − y| small and n
large enough.

132
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The following linear spaces are Banach spaces in the sup norm:
C (R) (the set of continuous and bounded complex functions),
C∞(R) (the set of continuous functions that vanish at infinity). It is the

completion of the normed space C0(R) (the set of continuous functions with
compact support).

18.2 The Banach spaces Lp(Ω)

Let Ω be Rn or a measurable subset, and consider the set of complex valued
Lebesgue measurable functions f : Ω → C. The sum of two functions and the
product by a complex number λ are defined pointwise: (f +g)(x) = f(x)+g(x)
and (λf)(x) = λf(x), and are measurable functions.

18.2.1 L1(Ω) (Lebesque integrable functions)

Consider the measurable functions on Ω such that∫
Ω

dx |f(x)| <∞ (18.5)

Since |f(x) + g(x)| ≤ |f(x)| + |g(x)| and |λf(x)| = |λ||f(x)|, it turns out that
f + g and λf are in L 1(Ω) if f and g are. Then L 1(Ω) is a linear space.

The integral (18.5) cannot define a norm because
∫
|f | dx = 0 implies f = 0

a.e. (almost everywhere) i.e. infinitely many functions, not the single null
element f = 0 of the linear space. The remedy is to identify these functions by
introducing equivalence classes: two functions f, g ∈ L 1 are equivalent if f = g
a.e.
Let [f ] be the equivalence class containing f and all functions that differ from
it on a set of measure zero. The set of equivalence classes of functions in L 1(Ω)
is a linear space with: [f ] + [g] = [f + g] and λ[f ] = [λf ]. The linear space is
L1(Ω), and it is a normed space with the norm1

‖f‖1 =

∫
Ω

|f(x)| dx (18.6)

Now comes the beautiful proof of completeness:

Theorem 18.2.1 (Riesz - Fisher). L1(Ω) is complete (is a Banach space).

Proof. Let {fn} be a Cauchy sequence in L1: ∀ε it is ‖fn − fm‖1 < ε for
n,m > Nε. To prove convergence of the Cauchy sequence, it is sufficient to
prove convergence of a subsequence, which is now produced.
For the choices ε = 1/2, 1/22, . . . , 1/2k, . . . the Cauchy condition is satisfied for
Nε = N1, N2, . . . Nk, . . . The subsequence fN1

, . . . , fNk , . . . has the property
‖fNk+1

− fNk‖1 < 2−k.
Consider the sequence, with fN0

= 0:

Sm(x) =

m−1∑
k=0

|fNk+1
(x)− fNk(x)|

1as f can be any function in [f ], purists avoid writing f(x), which can be any value by
changing f within its class.
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Figure 18.1: Construction for Hölder’s inequality. The curve is y = x2.

It has the properties: Sm(x) ≥ 0; Sm+1(x) ≥ Sm(x) and ‖Sm‖1 ≤
∑m
k=0

1
2k
≤ 2.

By Beppo Levi’s theorem2 the sequence Sm converges a.e. pointwise to a func-
tion S in L1(Ω) and

∫
Smdx→

∫
Sdx.

Convergence of Sm(x) is the absolute convergence of the sequence of partial

sums sm(x) =
∑m−1
k=0 [fNk+1

(x)− fNk(x)]. Since the sum is telescopic, it is

sm(x) = fNm → f(x) a.e.

i.e the subsequence fNm converges a.e. point-wise to a function f .
Since |fNm(x)| = |sn(x)| ≤ Sn(x) ≤ S(x) and S is integrable, it follows that f
is integrable and fNm → f in L1 (dominated convergence theorem)3.

18.2.2 Lp(Ω) spaces

Consider the set L p(Ω) of measurable functions such that

‖f‖p =

(∫
Ω

|f |pdx
) 1
p

<∞ (18.7)

where p ≥ 1. To show that L p is a linear space one must show that it is closed
for the sum of two functions. This follows from Minkowski’s inequality, whose
proof requires Hölder’s inequality.

Proposition 18.2.2 (Hölder’s inequality). If f ∈ L p(Ω) and g ∈ L q(Ω),
where p, q > 1 and p−1 + q−1 = 1 then: fg ∈ L 1(Ω) and

‖fg‖1 ≤ ‖f‖p‖g‖q 1 = 1
p + 1

q (18.8)

2Monotone Convergence Theorem (B. Levi): Let fn be a sequence of real integrable func-
tions such that 0 ≤ f1(x) ≤ f2(x) ≤ . . . a.e. in Ω and

∫
Ω fndx ≤ K. Then the sequence fn(x)

converges a.e. in Ω, fn(x)→ f(x), with f ∈ L 1(Ω) and
∫
Ω fn dx →

∫
Ω f dx.

3Dominated Convergence Theorem: Given a sequence of measurable functions such that
fn(x)→ f(x) a.e x ∈ Ω, and a function g ∈ L 1(Ω) such that |fn(x)| ≤ g(x) a.e. in Ω and for
all n, then f ∈ L 1(Ω) and

∫
Ω fn dx→

∫
Ω f dx.
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Proof. Consider the curve y = xp−1 in the positive quadrant. Inversion gives
x = yq−1. The area of the rectangle 0 < x < u and 0 < y < v, is (see fig.18.1)

uv ≤
∫ u

0

dx xp−1 +

∫ v

0

dy yq−1 =
up

p
+
vq

q
(18.9)

Put u = |f(x)|/‖f‖p and v = |g(x)|/‖g‖q and integrate x on Ω:∫
Ω

dx
|fg|

‖f‖p‖g‖q
≤ 1

p

∫
Ω

dx
|f |p

‖f‖pp
+

1

q

∫
Ω

dx
|g|q

‖g‖qq
=

1

p
+

1

q
.

The inequality is obtained.

Remark 18.2.3. If m(Ω) <∞, one may take g = 1 in Hölder’s inequality, and
note that if f ∈ L p(Ω) then f ∈ L 1(Ω), i.e. L p(Ω) ⊆ L 1(Ω), for any p > 1.

Proposition 18.2.4 (Minkowski’s inequality). If f , g in L p(Ω) then:

‖f + g‖p ≤ ‖f‖p + ‖g‖p (18.10)

Proof. Inequality (18.9) with u > 0 and v = zp, 1
p + 1

q = 1, is

uzp−1 ≤ up

p
+
zp

q

Put u = |f(x)|/‖f‖p, z = |f(x) + g(x)|/‖f + g‖p and integrate:∫
Ω

dx |f(x)| |f(x) + g(x)|p−1 ≤ ‖f‖p‖f + g‖p−1
p

Add the inequality with f and g exchanged:∫
Ω

dx(|f(x)|+ |g(x)|) |f(x) + g(x)|p−1 ≤ (‖f‖p + ‖g‖p)‖f + g‖p−1
p

Since |f(x) + g(x)| ≤ |f(x)|+ |g(x)|, the inequality becomes:∫
Ω

dx|f(x) + g(x)|p ≤ (‖f‖p + ‖g‖p)‖f + g‖p−1
p

i.e. ‖f + g‖pp ≤ (‖f‖p + ‖g‖p)‖f + g‖p−1
p , and the result follows.

The inequality implies that L p(Ω) is a linear space. To promote ‖f‖p to a
norm one must switch to the set of equivalence classes. Minkowski’s inequality
proves the triangle inequality, and Lp(Ω) is a normed space. The Riesz-Fisher
theorem states that it is complete (a Banach space) for all p ≥ 1.

Hölder’ inequality shows that the functions of Lq(Ω) define linear continuous
functionals on Lp(Ω) if 1/p + 1/q = 1. One actually proves that a space is the
dual of the other.
The dual of L1(Ω) is the space L∞(Ω), but the dual of L∞ contains L1 (see
Reed and Simon, Functional Analysis, Academic Press).
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18.2.3 L∞(Ω) space

L∞(Ω) is the space of measurable functions f : Ω→ C that are a.e. bounded:
given f , there is a constant Mf such that the set where |f(x)| > Mf has
Lebesgue measure zero. The inf of such bounds Mf is ‖f‖∞, which becomes
a norm for the equivalence classes of functions that are equal a.e. The space
L∞(Ω) is a Banach space.
C (R) is a subspace of L∞(R). The norm coincides with the sup-norm.

18.3 Continuous and bounded maps

Hereafter Â : X → Y is a map (the term “operator” will be used) between
normed spaces, with domain D(Â). The image of the domain is the range
RanÂ = {y ∈ Y : y = Âx, x ∈ D(Â)}, the kernel is the set KerÂ = {x ∈ X :
Âx = 0}. We recall a definition and a result exported from the more general
context of metric spaces:

Definition 18.3.1. A map Â is continuous at x ∈ D(Â) if:

∀ε ∃ δε,x such that ‖Âx′ − Âx‖Y < ε ∀x′ ∈ D(Â) with ‖x′ − x‖X < δε,x.

The map is sequentially continuous at x ∈ D(Â) if for any sequence {xn} → x
in D(Â) it is Âxn → Âx.

Theorem 18.3.2. Â is continuous at x if and only if Â is sequentially contin-
uous in x (see metric spaces).

Remark 18.3.3. The kernel of a continuous operator is a closed set. (Suppose
that xn is a sequence in KerÂ and xn → x ∈ D(Â). Then Âx = limY Âxn = 0
i.e. x ∈ KerÂ).

Definition 18.3.4. Â is bounded if there is a constant CA > 0 such that
‖Ax‖Y < CA‖x‖X for all x ∈ D(Â).

18.3.1 Linear operators

Definition 18.3.5. Â is linear if D(Â) is a linear subspace and Â(x+ λx′) =
Âx+ λÂx′ for all x, x′ ∈ D(Â), λ ∈ C.

Remark 18.3.6. If Â is linear, then Â is continuous if and only if it is con-
tinuous at x = 0.

Theorem 18.3.7. A linear map Â : D(Â)→ Y is bounded if and only if it is
continuous.

Proof. Suppose that Â is bounded and xn → 0 in D(Â). Then ‖Âxn‖ ≤
CA‖xn‖ → 0 i.e. Â is sequentially continuous in the origin i.e. Â is continuous.
Let Â be continuous. Then for ε = 1 there is δ > 0 such that ‖Âx‖ < 1 for all
x in the domain with ‖x‖ < δ. For any y ∈ D(Â), put x = yδ/(2‖y‖). Then
‖x‖ ≤ δ so that 1 ≥ ‖Âx‖ = ‖Ây‖/‖y‖(δ/2) i.e. Â is bounded.

Theorem 18.3.8. Let X be a normed space and Y a Banach space. A linear
bounded operator Â : D(Â) ⊂ X → Y extends uniquely to a linear bounded

operator on the closure of the domain: A : D(Â)→ Y .
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Proof. If x ∈ D there is a convergent sequence xn in D with limit x. A conver-
gent sequence is Cauchy, therefore ‖Âxn − Âxm‖Y ≤ CA‖xn − xm‖X ≤ ε for
n,m > Nε i.e. Âxn is Cauchy in Y . Since Y is Banach, Âxn → y.
Define Ax = y. The domain D(A) is a linear space: if xn → x and x′n → x′

in D(A), then xn + x′n → x + x′ and λxn → λx. A is linear: A(x + x′) =
limn Âxn + limn Âx

′
n = Ax+Ax′. A is bounded: since the norm is continuous,

‖Ax‖ = limn ‖Âxn‖ ≤ CA limn ‖xn‖ = CA‖x‖.

18.3.2 The inverse operator

If Â : X → Y is an operator with domain D(Â), the inverse operator Â−1 :
Y → X exists if Â is injective, i.e. Âx = Âx′ implies x = x′. Then, if Âx = y
it is Â−1y = x, with D(Â−1) = Ran Â, and Ran Â−1 = D(Â).

Proposition 18.3.9. If Â is linear, Â−1 exists if and only if Ker Â = {0}. If
Â−1 exists, it is linear.

Proof. The condition Âx = Ây if and only if x = y is equivalent to Â(x−y) = 0
iff x− y = 0 i.e. Ker (A) = {0}.
If Âx = y and Âx′ = y′ then Â(λx + x′) = λy + y′. The inverse is such that
x = Â−1y, x′ = Â−1y′ and λx + x′ = Â−1(λy + y′), i.e. λÂ−1y + Â−1y′ =
Â−1(λy + y′), i.e. Â−1 is linear.

18.4 Linear bounded operators on X

The set L (X,Y ) of linear operators on a normed space X, with domain X, to
a normed space Y , is a linear space with the definitions

(Â+ B̂)x = Âx+ B̂x, (λÂ)x = λ(Âx), x ∈ X, λ ∈ C.

If two operators are bounded, their sum is bounded:

‖(Â+ B̂)x‖Y ≤ ‖Âx‖Y + ‖B̂x‖Y ≤ (‖Â‖+ ‖B̂‖)‖x‖X , ∀x ∈ X (18.11)

B(X,Y ) is the linear space of linear and bounded operators from X to Y .
To be bounded is a very strong property of an operator Â. The best bound

is the least constant CA such that ‖Âx‖Y /‖x‖X ≤ CA for all x ∈ X, x 6= 0.
This constant is the operator norm of Â:

‖Â‖ = sup
x∈X,x 6=0

‖Âx‖Y
‖x‖X

= sup
‖x‖X=1

‖Âx‖Y (18.12)

As a consequence the best inequality is

‖Âx‖Y ≤ ‖Â‖‖x‖X , ∀x ∈ X.

Eq.(18.12) defines a norm and makes B(X,Y ) a normed space: if ‖Â‖ = 0 it is
‖Âx‖Y = 0 for all x, i.e. Â = 0. The property ‖λÂ‖ = |λ|‖Â‖ is straightforward.
The triangle inequality is obtained with (18.11): divide by ‖x‖X 6= 0 and take
the sup: ‖Â+ B̂‖ ≤ |Â‖+ ‖B̂‖.

.
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Theorem 18.4.1. If Y is a Banach space, then B(X,Y ) is a Banach space.

Proof. Let Ân be a Cauchy sequence of operators in B(X,Y ):

∀ε ∃Nε s.t. ‖Ân − Âm‖ < ε ∀n,m ≥ Nε
It follows that also Ânx is a Cauchy sequence in Y by the inequality

‖Ânx− Âmx‖Y ≤ ‖Ân − Âm‖‖x‖X (18.13)

Since Y is complete, the sequence Ânx converges. Define Â as the operator
Âx = limn Ânx. Â is linear: Â(x + λy) = limn Ân(x + λy) = limn Ânx +
λ limn Âny = Âx+ λÂy.

By the inequality4
∣∣∣ ‖Ân‖ − ‖Âm‖ ∣∣∣ ≤ ‖Ân − Âm‖, the sequence of norms ‖Ân‖

is a Cauchy sequence in R. As such, ‖An‖ converges to a number α.
Eq. (18.13) implies: ‖Ânx − Âmx‖Y ≤ (‖Ân‖ + ‖Âm‖)‖x‖X m,n > Nε. For
infinite m: ‖Ânx− Âx‖Y ≤ (‖Ân‖+α)‖x‖X . Therefore Ân− Â is bounded, i.e.
Â is bounded. Ân → Â in the operator topology: ‖Ân− Â‖ = sup‖x‖=1 ‖Ânx−
Âx‖Y → 0 because Ânx− Âx→ 0 for all x.

Remark 18.4.2. Convergence Ân → Â in B(X,Y ) implies Ânx → Âx in Y ,
for any x (norm convergence implies strong convergence).

18.4.1 The dual space

In 1929 Banach introduced the important notion of dual space X∗ of a Ba-
nach space X: it is the space of bounded linear functionals B(X,C). Since C
is complete, X∗ is a Banach space.

There are two ways by which a sequence may converge in X:
1) xn → x strongly if ‖xn − x‖X → 0;
2) xn → x weakly if Fxn → Fx in C for all F ∈ X∗.

There are three ways by which a sequence of operators in B(X,Y ) converges:
1) Ân converges in norm to Â if ‖Ân − Â‖ → 0;
2) Ân converges strongly if Ânx converges in Y -norm for all x ∈ X;
3) Ân converges weakly if FÂnx converges in C for all x ∈ X, F ∈ Y ∗.

18.5 The Banach algebra B(X)

If X = Y , the space B(X) ≡ B(X,X) is closed for the product. If Â and
B̂ are linear and bounded operators X → X, the operator ÂB̂ is defined by
(ÂB̂)x = Â(B̂x). The product is linear and bounded: ‖(ÂB̂)x‖ ≤ ‖Â‖ ‖B̂x‖ ≤
(‖Â‖‖B̂‖)‖x‖. Therefore:

‖ÂB̂‖ ≤ ‖Â‖ ‖B̂‖ (18.14)

Then B(X) is an associative algebra (associative and distributive properties)
with unit (the identity operator).

4By the triangle inequality ‖x‖ ≤ ‖x − y‖ + ‖y‖, it is always ‖x‖ − ‖y‖ ≤ ‖x − y‖. The
same holds with x and y exchanged, so the modulus can be taken.
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18.5.1 The inverse of a linear operator

Suppose that Â ∈ B(X) is invertible, and that Ran Â = X, so that D(Â−1) =
X. The inverse operator need not be bounded. From ‖x‖X = ‖ÂÂ−1x‖X ≤
‖Â‖‖A−1x‖X for all x, it is

‖Â−1x‖
‖x‖

≥ 1

‖Â‖
(18.15)

If A−1 is bounded, then ‖A−1‖ ≥ ‖A‖−1.

Theorem 18.5.1 (Neumann). If X is a Banach space, Â ∈ B(X), and
‖Â‖ < 1, then (1− Â)−1 exists in B(X) and is given by the Neumann series:

(1− Â)−1 =

∞∑
k=0

Âk (18.16)

Proof. Consider the partial sums Ŝn = I + Â+ Â2 + · · ·+ Ân in B(X). It is a
Cauchy sequence: for any ε the norm ‖Ŝn+m − Ŝm‖ = ‖Âm+1 + · · ·+ Âm+n‖ ≤
‖Â‖m+1 + · · ·+‖Â‖m+n ≤ ‖Â‖

m+1

1−‖Â‖ ≤ ε for all n and all m greater that a suitable

N . Therefore Ŝn converges to the geometric series
∑
k Â

k in B(X).

Since ‖(1− Â)Ŝn− 1‖ = ‖Ân+1‖ ≤ ‖Â‖n+1 → 0 for n→∞, (18.16) is true.

18.5.2 Power series of operators

The Neumann series is the operator analogue of the geometric series in complex
analysis. Several important complex functions that are expressed as power series
may be extended to functions of operators. Consider the two power series

f(z) =

∞∑
n=0

cnz
n, f(Â) =

∞∑
n=0

cnÂ
n

where Â ∈ B(X). If ŜN are the operator partial sums, it is ‖ŜN+p − ŜN‖ =

‖
∑N+p
n=N+1 cnÂ

n‖ ≤
∑N+p
n=N+1 |cn| ‖Â‖n. Therefore, the partial sums form a

Cauchy sequence in B(X) if the partial sums of the power series f(‖Â‖) are a
Cauchy sequence in C. A sufficient condition is

‖Â‖ < R

where R is the radius of convergence of the power series f(z).

Exercise 18.5.2. Show that if Â and f(Â) are in B(X), and if Âx = λx,
where x ∈ X, then f(Â)x = f(λ)x.

Example 18.5.3 (The exponential of an operator).
If Â ∈ B(X) and z ∈ C, then the exponential series

ezÂ =

∞∑
k=0

(zÂ)k

k!
(18.17)

always converges in the operator norm to a bounded operator.
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Proposition 18.5.4. If Â and B̂ are commuting operators in B(X) then

(exp Â)(exp B̂) = exp(Â+ B̂) (18.18)

Proof. Consider the product of partial sums:

Sn(Â) · Sn(B̂) =(1 + Â+ 1
2 Â

2 + ...+ 1
n! Â

n)(1 + B̂ + 1
2 B̂

2 + ...+ 1
n! B̂

n)

=1 + (Â+B) + 1
2 (Â+ B̂)2 + ...+ 1

n! (Â+ B̂)n +Rn(Â, B̂)

Rn(Â, B̂) = ÂB̂n

n! + Â2

2! ( B̂
n

n! + B̂n−1

(n−1)! ) +
ˆ̂A3

3! ( B̂
n

n! + B̂n−1

(n−1)! + B̂n−2

(n−2)! ) + ...

+ Ân

n! ( B̂
n

n! + B̂n−1

(n−1)! + · · ·+ B̂)

Then Sn(Â)Sn(B̂) − Sn(Â + B̂) = Rn(Â, B̂). We prove that ‖Rn(Â, B̂)‖ → 0
in B(X) as n→∞. The triangle inequality and ‖ÂB̂‖ ≤ ‖Â‖ · ‖B̂‖ give:

‖Rn(Â, B̂)‖ ≤‖Â‖1
‖B̂‖n
n! + ‖Â‖2

2! (‖B̂‖
n

n! + ‖B̂‖n−1

(n−1)! ) + ‖Â‖3
3! (‖B̂‖

n

n! + ‖B̂‖n−1

(n−1)! + ‖B̂‖n−2

(n−2)! )

+ ...+ ‖Â‖n
n! (‖B̂‖

n

n! + ‖B̂‖n−1

(n−1)! + · · ·+ ‖B̂‖
1 ) = Rn(‖A‖, ‖B‖)

Note that Rn(‖A‖, ‖B‖) = Sn(‖A‖)Sn(‖B‖)− Sn(‖A‖+ ‖B‖). Since Sn(‖A‖)
converges to exp ‖A‖ in R, then Rn(‖A‖, ‖B‖)→ 0 as n→∞.

In particular: (exp zÂ)(expwÂ) = exp(z+w)Â and (exp zÂ)−1 = exp(−zÂ).
For non-commuting operators, (exp Â)(exp B̂) is evaluated by the Baker - Camp-
bell - Hausdorff formula.



Chapter 19

HILBERT SPACES

The theory of Hilbert spaces originates in the studies of David Hilbert and his
student Erhard Schmidt on integral equations. The classification of linear inte-
gral equations bears the names of Vito Volterra (1860-1940) and Ivar Fredholm
(1866-1927). The relevance of Hilbert spaces for the mathematical foundation of
quantum mechanics led John von Neumann to give them an axiomatic setting,
in the years 1929-30.

19.1 Inner product spaces

Definition 19.1.1 (Inner product). A linear space H (on C) is an Inner
Product Space (or pre-Hilbert space) if there is a map (the inner product)
( | ) : H ×H → C such that for all x, y, z ∈H and λ ∈ C:

(x|x) ≥ 0 and (x|x) = 0 iff x = 0 (19.1)

(x|y + z) = (x|y) + (x|z) (19.2)

(x|λy) = λ(x|y) (19.3)

(x|y) = (y|x). (19.4)

The properties imply antilinearity in the first argument1:

(x+ λy|z) = (x|z) + λ(y|z).

For real spaces the rule (19.4) is replaced by (x|y) = (y|x), which implies bi-
linearity (linearity in both arguments of the inner product).
It will be shown that the inner product induces a norm; we begin by introducing
the notation ‖x‖ =

√
(x|x).

Exercise 19.1.2. Show that: 1) (x|0) = 0; 2) if (x|y) = 0 ∀y then x = 0.

Definition 19.1.3. Two vectors x and x′ are orthogonal, x ⊥ x′, if (x|x′) = 0.
A set of vectors u1, . . . , un is an orthonormal set if (ui|uj) = δij .

Pythagoras’ relation holds: if x ⊥ x′ then ‖x+ x′‖2 = ‖x‖2 + ‖x′‖2.

1In the mathematical literature the inner product is often defined to be linear in the first
and antilinear in the second argument. Physicists prefer the converse.

141
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Theorem 19.1.4 (Bessel’s inequality2). Let {uk}nk=1 be an orthonormal set,
then for any x:

‖x‖2 ≥
n∑
k=1

|(uk|x)|2 (19.5)

Proof. Set x′ =
∑
k(uk|x)uk; since it is the sum of orthonormal vectors, ‖x′‖2 =∑

k |(uk|x)|2. Next, let’s show that x′ and x− x′ are orthogonal: (x′|x− x′) =

(x′|x)− ‖x′‖2 =
∑
k (uk|x)(uk|x)− ‖x′‖2 = 0. Then ‖x‖2 = ‖(x− x′) + x′‖2 =

‖x− x′‖2 + ‖x′‖2 ≥ ‖x′‖2.

Bessel’s inequality for n = 1 is ‖x‖ ≥ |(u|x)|. With u = y/‖y‖ it gives a famous
and fundamental inequality:

Proposition 19.1.5 (Schwarz’s inequality). ∀x, y ∈H :

|(x|y)| ≤ ‖x‖‖y‖ (19.6)

Exercise 19.1.6. Let ‖x‖ = ‖y‖ = 1. Show that if (x|y) = 1 then x = y, and
if |(x|y)| = 1 then x = (x|y)y.
Show that |(x|y)| = ‖x‖ ‖y‖ if and only if y = λx, λ ∈ C.

19.2 The Hilbert norm

Proposition 19.2.1. An inner product space is a normed space, with norm

‖x‖ =
√

(x|x) (19.7)

Proof. We prove the triangle inequality: ‖x + y‖2 = (x + y|x + y) = (x|x) +
2Re(x|y) + (y|y) ≤ ‖x‖2 + 2|(x|y)| + ‖y‖2 ≤ ‖x‖2 + 2‖x‖‖y‖ + ‖y‖2 = (‖x‖ +
‖y‖)2.

The existence of a norm implies notions such as continuity, convergent se-
quences, Cauchy sequences, etc.

Proposition 19.2.2. Fix x ∈H , the function (x| · ) : H → C is continuous.

Proof. Let {yn} be a convergent sequence, yn → y; we show that (x|yn)→ (x|y):
|(x|yn)− (x|y)| = |(x|yn − y)| ≤ ‖x‖‖yn − y‖ → 0.

The following Polarization formulae express the inner product in terms of
the Hilbert norm:

Re(x|y) = 1
4 (‖x+ y‖2 − ‖x− y‖2) (19.8)

Im(x|y) = 1
4 (‖x− iy‖2 − ‖x+ iy‖2) (19.9)

2Atle Selberg gave an extension of Bessel’s inequality to non orthonormal vectors y1...yn
(for a proof see: Inequalities in Hilbert spaces, J. Wigestrand, 2008, https://ntnuopen.ntnu.
no/ntnu-xmlui/handle/11250/258406):

‖x‖2 ≥
n∑
k=1

|(yk|x)|2∑
j=1..n |(yj |yk)|

https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/258406
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/258406
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Figure 19.1: David Hilbert (Königsberg 1862, Göttingen 1943) continued
the glorious tradition in mathematics of his predecessors Gauss, Dedekind and
Riemann at the University of Göttingen, until the racial laws in 1933 dissolved
his group. In 1899 he published the Grundlagen der Geometrie (The Foun-
dations of Geometry) which contains the definitive set of axioms of Euclidean
geometry. In his lecture on The problems of mathematics at the International
Mathematical Congress in Paris (1900) he set forth a famous list of 23 problems
for the mathematicians of the XX century. His studies on integral equations
prepared for the important developments in functional analysis and quantum
mechanics. He got interested in general relativity and derived the field equations
from a variational principle. A partial list of famous students: Felix Bernstein,
Richard Courant, Max Dehn, Erich Hecke, Alfréd Haar, Wallie Hurwitz, Hugo
Steinhaus, Hermann Weyl, Ernst Zermelo.

Figure 19.2: János von Neumann (Budapest 1903, Washington 1957). Only
few persons in XX century contributed to so many different fields. He made
advances in axiomatic set theory, logic, theory of operators, measure theory,
ergodic theory, the mathematical formulation of quantum mechanics, fluid dy-
namics, nuclear science, and is a founder of computer science. He started as
a prodigiuos child: at the age of 15 he was tutored by the analyst Szegö; by
the age of 19 he already published two major papers (providing the modern
definition of ordinal numbers, which supersedes G. Cantor’s definition). At 22
he received a PhD in mathematics and a diploma in chemical engineering (from
ETH Zurich, to comply with his father’s desire of a more practical orientation).
He taught as Privatdozent at the University of Berlin, the youngest in its his-
tory. Since 1933 he was professor in mathematics at Princeton’s Institute for
Advanced Studies. He worked in the Manhattan Project.
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The Hilbert norm has the parallelogram property, which can be directly
checked out of its definition:

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2 (19.10)

Proposition 19.2.3. A norm is a Hilbert norm (i.e. there is a inner product
such that the norm descends from it) if and only if it fulfils the parallelogram
condition.

Proof. We only need proving that a norm with the parallelogram property fol-
lows from an inner product. The formulae (19.8) and (19.9) suggest the following
expression as a candidate for the inner product (for a real space the last two
terms are absent):

(x|y) = 1
4‖x+ y‖2 − 1

4‖x− y‖
2 − i

4‖x+ iy‖2 + i
4‖x− iy‖

2 (19.11)

The difficult task is to prove linearity in the second argument, the other prop-
erties being easy to prove. By repeated use of the parallelogram property,

Re (x|y + z) = 1
4‖x+ y + z‖2 − 1

4‖x− y − z‖
2

= ( 1
2‖x+ y‖2 + 1

2‖z‖
2 − 1

4‖x+ y − z‖2)− 1
4‖x− y − z‖

2

= 1
2‖x+ y‖2 + 1

2‖z‖
2 − 1

2‖x− z‖
2 − 1

2‖y‖
2

Now sum to it the expression with y and z exchanged, divide by 2 and obtain

Re (x|y + z) = 1
4‖x+ y‖2 − 1

4‖x− z‖
2 + 1

4‖x+ z‖2 − 1
4‖x− y‖

2

= Re (x|y) + Re (x|z).

The same procedure works for the imaginary part: Im (x|y + z) = Im (x|y) +
Im (x|z). Hence the additive property is proven.
Linearity for scalar multiplication: for p ∈ N, additivity implies (x|py) = p(x|y).
For q ∈ N: p(x|y) = p(x|q(y/q) ) = pq(x|y/q) = q(x|p(y/q)) ⇒ p

q (x|y) =

(x|pq y). Since the inner product is continuous and (x| − y) = −(x|y) (see

(19.11)), the property extends from rationals p/q to real numbers. Moreover,
since (x|iy) = i(x|y) holds (see (19.11)), the property holds for complex num-
bers.

Exercise 19.2.4. In a normed space, a vector x is orthogonal to y in the sense
of Birkhoff-James if and only if ‖x‖ ≤ ‖x+ λy‖ for all λ ∈ C. Prove that in a
inner-product space the definition coincides with (x|y) = 0.

Definition 19.2.5. A Hilbert space is a inner product space which is complete
in the Hilbert norm topology.

Example 19.2.6. The linear space Cn is a Hilbert space with the scalar product
(z|w) =

∑
k zkwk.

Exercise 19.2.7. Show that the set of complex matrices Cn×n is a Hilbert space
with inner product (A|B) = tr(A†B). The corresponding norm

‖A‖ =
√

trA†A =

√∑
ij
|Aij |2
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is known as the Frobenius norm.
Show that also (A|B) = tr(PA†B) is an inner product, if P > 0 (a matrix is
positive if and only if P = M†M , with M invertible).

Example 19.2.8. L2(Ω) is the Banach space of (equivalence classes of) Lebesgue
square integrable functions, with squared norm ‖f‖22 =

∫
Ω
|f |2dx. The norm has

the parallelogram property, and descends from the inner product

(f |g) =

∫
Ω

fg dx (19.12)

This is perhaps the most important space in functional analysis. Depending on
the measurable set Ω, one introduces important families of orthogonal functions
(see section 19.4.1).

Exercise 19.2.9. Evaluate the norms of f(x) = 1/(1 + ix) as an element in
L1(0, 1) and in L2(0, 1)

Example 19.2.10. The set C [−1, 1] of continuous complex-valued functions on

[−1, 1] is an inner product space with (f |g) =
∫ 1

−1
dxf(x)g(x), but it is not a

Hilbert space as this counter-example shows:

fn(x) =


−1 −1 ≤ x ≤ −1/n

nx −1/n < x < 1/n

1 1/n ≤ x ≤ 1

(19.13)

is a Cauchy sequence (i.e. ∀ε there is N such that
∫ 1

−1
dx|fn(x)− fm(x)|2 < ε2

for all n,m > N) but the limit function (the step function) is not continuous.

19.3 Isomorphism

Definition 19.3.1. Two Hilbert spaces H1 and H2 are isomorphic if there is
a linear operator Û : H1 → H2 that is a bijection among the two spaces, and
conserves the norm ‖Ûx‖2 = ‖x‖1 ∀x. Û is a unitary operator.

Remark. By the polarization formula (19.11), norm conservation and linearity
imply the conservation of inner products: (Ûx|Ûy)2 = (x|y)1 ∀x, y ∈H1.

Any complex n-dimensional Hilbert space Hn is isomorphic to Cn. Given an
orthonormal basis {uk}nk=1 in Hn, the expansion x =

∑n
k=1 xkuk has coefficients

xk = (uk|x) that define a vector x ∈ Cn. The map Ûx = x is a unitary operator
from Hn to Cn.
Is there a canonical isomorphism for infinite-dimensional Hilbert spaces? The
answer is affirmative, with a distinction about the cardinality of the linear basis.
The first, and most important, case is that of countable basis set. We’ll show
that they are in this class:

Definition 19.3.2. A Hilbert space is separable if it has a countable dense
subset.
The infinite dimensional analogue of Cn (or Rn for real Hilbert spaces) is the
following.
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19.3.1 Square summable sequences

In 1906 David Hilbert introduced the set `2(C) of complex sequences {ak}∞k=1

such that
∞∑
k=1

|ak|2 <∞

• `2(C) is a linear space. If a = {ak} and b = {bk}, define:

a+ b = {ak + bk}, λa = {λak}

The inequality |ak + bk|2 ≤ |ak|2 + |bk|2 + 2|akbk| ≤ 2|ak|2 + 2|bk|2 (use 0 <
(x− y)2 = x2 + y2 − 2xy) implies that a+ b ∈ `2(C).
• `2(C) is an inner product space with

(a|b) =
∑∞

k=1
akbk (19.14)

The series converges absolutely: 2|akbk| ≤ |ak|2 + |bk|2. The formal properties
of inner product are easily checked.
• `2(C) is complete (it is a Hilbert space).

Proof. Let {aν} be a Cauchy sequence of elements in `2 (a sequence of sequences
{aνk}), i.e. for any ε > 0 there is N such that for all ν, µ > N it is

‖aν − aµ‖2 =
∑∞

k=1
|aνk − aµk|2 < ε2 (19.15)

We show that aν converges in `2(C). The Cauchy condition implies that |aνk −
aµk| < ε for all k and ν, µ > N , then each sequence {aν1}, {aν2}, ... is Cauchy
and converges in C to limits a1, a2 ... Let a = {a1, a2, ...} be the sequence of
such limits.
Eq.(19.15) holds for all ν, µ > Nε; now let µ = ∞:

∑
k |aνk − ak|2 < ε2, i.e.

aν − a ∈ `2(C). Since aν belongs to the linear space, also a does. Moreover,
‖aν − a‖ ≤ ε, i.e. an → a in the `2 topology.

• `2(C) is separable.

Proof. Consider the set `′ of sequences q = {q0, q1, ..., qk, 0...}, where Reqj and
Imqj are rational numbers for j < k, and qj = 0 for j > k (where each sequence
has its own k). The set `′ is countable. We show that it is dense in `2(C), i.e.
for any element a and any ε > 0 there is an element q ∈ `′ such that ‖a−q‖ < ε.
Fix ε and choose n such that

∑∞
k=n+1 |ak|2 <

1
2ε

2 and q = {q1, . . . , qn, 0, . . . }
such that |ak − qk|2 ≤ ε2/2n for all k ≤ n (the numbers qk are dense in C).

Then: ‖a− q‖2 =
∑n
k=1 |ak − qk|2 +

∑
k>n |ak|2 < n ε

2

2n + 1
2ε

2 = ε2.

Example 19.3.3 (A non-separable Hilbert space3). Consider the set E =
{eω}ω∈R of functions eω(t) = exp(iωt), t ∈ R. The finite linear combinations
f =

∑
ω fωeω with complex numbers fω form a linear space. The following

“time average” is always well defined, and is an inner product:

(f |g) = lim
T→∞

1

T

∫ T/2

−T/2
f(t)g(t)dt (19.16)

3N.I.Akhiezer and I.M.Glazman, ”Theory of linear operators in Hilbert spaces”, vol 1,
par.13 (1961) (Dover reprint).
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The completion of the linear space with respect to the norm is a Hilbert space.
As (eω|eω′) = δω,ω′ , it is ‖eω − eω′‖2 = 2 if ω 6= ω′. Since E is uncountable,
with elements separated by a finite distance, there cannot exist a countable set
of functions such that any eω is approximated by a linear combination of such
functions (we’d need an uncountable set of approximating functions!). Then the
Hilbert space is non-separable.

19.4 Orthogonal systems

Given n linearly independent points x1, . . . , xn it is always possible to produce
linear combinations u1, . . . , un that form an orthonormal set. The (Gram -
Schmidt) orthonormalization procedure is:

y1 = x1, ⇒ u1 = y1/‖y1‖,
y2 = x2 − (u1|x2)u1, ⇒ u2 = y2/‖y2‖,
y3 = x3 − (u1|x3)u1 − (u2|x3)u2, ⇒ u3 = y3/‖y3‖,
. . . . . .

Exercise 19.4.1. Given vectors x1, . . . , xn, introduce Gram’s matrix Gij =
(xi|xj). Show that:
1) the vectors are linearly dependent iff detG = 0;
2) the matrix is non-negative (G ≥ 0) i.e. u†Gu ≥ 0 ∀u ∈ Cn;
3) detG ≤ ‖x1‖2 · · · ‖xn‖2 (use Hadamard’s inequality for positive matrices).

Exercise 19.4.2. In Cn, given n linearly independent vectors x1, . . . , xn, a
vector has expansion u =

∑n
i=1 cixi. The coefficients ci solve the linear sys-

tem (xi|u) =
∑
j Gijcj where G is Gram’s matrix. Obtain the useful formula

(Kramer):

u =
(−1)

detG
det


0 x1 · · · xn

(x1|u) (x1|x1) · · · (x1|xn)
...

...
...

(xn|u) (xn|x1) · · · (xn|xn)

 (19.17)

19.4.1 Orthogonal polynomials

Let p0, p1, . . . be a sequence of real polynomials of degree 0, 1, . . . , that satisfy
the orthogonality condition∫

σ

dxω(x) pi(x)pj(x) = hjδij (19.18)

where ω(x) ≥ 0 is a weight function, σ is a real (possibly unbounded) interval
and hj > 0 are constants.

The table lists some important sets of orthogonal polynomials, that may be
obtained by orthogonalization of the monomials 1, x, x2, . . . :
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σ ω(x) pk
R e−x

2

Hk Hermite
[0,∞) e−x Lk Laguerre
[−1, 1] 1 Pk Legendre

[−1, 1] (1− x2)−
1
2 Tk Chebyshev

[−1, 1] (1− x2)α−
1
2 Cαk Gegenbauer

Proposition 19.4.3. Orthogonal polynomials satisfy a three-term recursion re-
lation with real constants ak, bk and ck:

xpk(x) = akpk+1(x) + bkpk(x) + ckpk−1(x) (19.19)

Proof. Suppose that the recursion contains the term dkpk−2(x). Multiply the
recursion by ω(x)pk−2(x) and integrate. All terms but two vanish by orthogo-
nality: ∫

σ

dxω(x)xpk(x)pk−2(x) = dkhk−2.

Since xpk−2 = ak−2pk−1 + . . . , also the left integral vanishes by orthogonality.
Therefore dk = 0. In the same way one proves the absence of all lower order
terms in the recurrence.

The constants ak may be chosen positive. One finds pk(x) = xkp0/[ak−1 . . . a0]+
.... For monic orthogonal polynomials (the coefficient of the leading power is
unity) ak are all equal to 1.
The relations ckhk−1 =

∫
σ
dxω xpkpk−1 and xpk−1 = ak−1pk + . . . give

ckhk−1 = ak−1hk (19.20)

The recursion of polynomials may be written in multiplicative form:[
pk+1(x)
pk(x)

]
=

[
(x− bk)/ak −ck/ak

1 0

] [
pk(x)
pk−1(x)

]
Iteration provides pk in terms of p1 and p0 via a product of k matrices (transfer
matrix). In a different guise, the recursion corresponds to the evaluation of the
determinant of a symmetric tridiagonal matrix. For monic polynomials:

pk+1(x) = det


x− bk

√
ck

√
ck

. . .
. . .

. . . x− b1
√
c1√

c1 x− b0


This has an important implication: the zeros of orthogonal polynomials are real.

Proposition 19.4.4 (Christoffel-Darboux summation formulae).

n∑
k=0

pk(x)pk(y)

hk
=
an
hn

pn+1(x)pn(y)− pn(x)pn+1(y)

x− y
(19.21)

n∑
k=0

pk(x)2

hk
=
an
hn

[
p′n+1(x)pn(x)− p′n(x)pn+1(x)

]
(19.22)
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Proof. Multiply the recursion (19.19) by pk(y), and subtract the same expression
with x and y exchanged. Divide by hk and sum on k. Cancellation of all but
two terms occurs, because of (19.20). The second formula is the limit y → x of
the first one.

Exercise 19.4.5. Show that pk(x) and p′k(x) cannot be zero at the same point,
i.e. the zeros of orthogonal polynomials are simple4.

The books Orthogonal Polynomials by Szego and Special functions by Askey
are standard references. Orthogonal polynomials arise in the theory of Jacobi
operators (infinite Hermitian tridiagonal matrices), Sturm-Liouville differential
equations, approximation theory, soluble models of statistical mechanics. They
arise unexpectedly and beautifully in random matrix theory (see the books by
Mehta, or Deift, or Forrester). Two important sets of orthogonal polynomials
are discussed below.

Legendre polynomials

Legendre’s polynomials Pk(x) result from the orthogonalization of the monomi-
als 1, x, x2, . . . in L2(−1, 1):∫ 1

−1

dxPi(x)Pj(x) = hjδij

The constants hj are determined by the conditions Pj(1) = 1. Then P0(x) = 1
and P1(x) = x (they are orthogonal). P2 has no linear term to ensure or-
thogonality with P1: P2(x) = C2(x2 + A2); the conditions 1 = P2(1) and 0 =∫ 1

−1
dxP0P2 give P2(x) = (3x2−1)/2. The odd polynomial P3(x) = C3(x3+A3x)

is orthogonal to even polynomials, and is evaluated by imposing P3(1) = 1 and

0 =
∫ 1

−1
dxP3(x)P1(x). The next one is even: P4(x) = C4(x4 +A4x

2 +B4), with
parameters determined by three conditions: P4(1) = 1, P4 ⊥ P2 and P4 ⊥ P0.
The process is tedious to continue. Instead one can succeed in obtaining the
recursive relation (where parity of polynomials is accounted for):

xPk(x) = akPk+1(x) + ckPk−1(x)

by evaluating hk, ak and ck. For x = 1 it is 1 = ak+ck, moreover (1−ak)hk−1 =
ak−1hk, by (19.20). Another equations is obtained by taking the derivative of
the recursion, Pk+xP ′k = akP

′
k+1+ckP

′
k−1, multiplication by Pk and integration

on [−1, 1],

hk + 1
2

∫ 1

−1

x
d

dx
P 2
k dx = ak

∫ 1

−1

PkP
′
k+1dx

and integration by parts: 1
2hk + 1 = 2ak. The two equations for ak and hk give

hkhk−1 + hk − hk−1 = 0 with initial condition h0 = 2, i.e. h−1
k = h−1

k−1 + 1.

The solution is h−1
k = k+h−1

0 i.e. hk = 2
2k+1 . Therefore, the orthogonality and

4Besides being real and simple, the zeros of orthogonal polynomials are all in the interval
of orthogonality σ. Moreover, any zero of pk(x) is between two consecutive zeros of pk+1(x)
(interlacing property).
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recursive relations are:∫ 1

−1

dxPm(x)Pn(x) = 2
2n+1δmn (19.23)

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x) (19.24)

Hermite polynomials

Hermite polynomials are obtained by orthogonalization of the functions 1, x, x2, . . .
on the real line, with weight ω(x) = e−x

2

:∫ ∞
−∞

dx e−x
2

Hi(x)Hj(x) = hjδij

They are determined with the requirement on the leading coefficient Hk(x) =
2kxk + . . . . Because weight and domain are symmetric for x → −x, Hermite
polynomials have definite parity:

Hk(−x) = (−1)kHk(x).

This simplifies the recursion relation: xHk(x) = 1
2Hk+1(x) + ckHk−1(x). To

evaluate ck and hk note that ckhk−1 = 1
2hk. The derivative of the recursion is

multiplied by Hk and integrated with the weight:

hk + 1
2

∫
R
dx e−x

2

x
d

dx
H2
k(x) = 1

2

∫
R
dx e−x

2

Hk(x)H ′k+1(x)

Integrate by parts, 1
2hk+

∫
R dx e

−x2

[xHk(x)]2 =
∫
R dx e

−x2

xHk(x)Hk+1(x). Use

the recursion to obtain 1
2hk + 1

4hk+1 + c2khk−1 = 1
2hk+1, i.e. hk+1

hk
= hk

hk−1
+ 2

with solution hk+1

hk
= 2k + h1

h0
. Since h1 =

∫
R dx 4x2e−x

2

= 2
√
π and h0 =∫

R dx e
−x2

=
√
π, one obtains hk+1 = 2(k + 1)hk i.e. hk = 2kk!

√
π and ck = k.

Therefore: ∫
R
dx e−x

2

Hi(x)Hk(x) = 2k k!
√
π δik (19.25)

Hk+1(x) = 2xHk(x)− 2kHk−1(x) (19.26)

Hermite polynomials are related to Hermite functions, that are an orthonormal
basis in L2(R):

hk(x) =
1√

2kk!
√
π
e−

1
2x

2

Hk(x) (19.27)

A proof of completeness will be given in theorem 27.2.1, based on the theory of
Fourier transform. The large-n distribution of the zeros of Hn(x) is discussed
in subsection 25.4.2.
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19.4.2 Gauss quadrature formula

As a nice application of orthogonal polynomials is a method by Gauss to ap-
proximately evaluate integrals. The formula is

∫
σ

dxw(x)f(x) =

n∑
k=1

wkf(xk) +Rn (19.28)

wk =
1

p′n(xk)

∫
σ

dx
pn(x)

x− xk
, Rn =

hn
(2n)!

f (2n)(ξ) (19.29)

{xk} are the zeros of the monic polynomial pn(x), belonging to an orthogonal
set on the interval σ with weight function w. The weights wk and the roots
xk are tabulated (for the frequently used Chebyshev polynomials they are the
zeros of cosnθ, with x = cos θ). The remainder Rn is here given for a smooth
f , and ξ is a point in σ.

Proof. This proof gives a simple justification of the quadrature, but not of the
remainder. The integral is equal to:∫

σ

dxw(x)
f(xk) + f(x)− f(xk)

pn(x)
pn(x)

=

n∑
k=1

1

p′n(xk)

∫
σ

dxw(x)
f(xk) + [f(x)− f(xk)]

x− xk
pn(x)

One reads the quadrature approximation, and the remainder. Let us insert in
the latter a truncated Taylor expansion where last f (N) is evaluated at ξ ∈ σ:

R(N)
n =

n∑
k=1

1

p′n(xk)

N∑
`=1

f (`)(xk)

`!

∫
σ

dxw(x)(x− xk)`−1pn(x)

By orthogonality, all terms ` < n give zero. If we stop at N = n+ 1 the integral
is hn =

∫
dxw(x)pn(x)2, and

R(n+1)
n = hn

f (n+1)(ξ)

(n+ 1)!

n∑
k=1

1

p′n(xk)
= 0

because the sum is zero. If N = n+ 2:

R(n+2)
n =

n∑
k=1

1

p′n(xk)

[
f (n+1)(xk)

(n+ 1)!
hn +

f (n+2)(ξ)

(n+ 2)!

∫
σ

dxw(x)(x− xk)n+1pn(x)

]

Consistently, expand f (n+1)(xk) = f (n+2)(ξ) + f (n+2)(ξ)(xk − ξ). Then:

R(n+2)
n = hn

f (n+2)(ξ)

(n+ 2)!

n∑
k=1

xk
p′n(xk)

= 0.

The sum
∑
k x

j
k/p
′
n(xk) is zero for j = 0, . . . , n − 2. It equals 1 for j = n − 1.

Therefore, the first non-zero result appears at N = 2n. The quadrature is exact
for f being a polynomial of degree not higher that 2n− 1.
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19.5 Linear subspaces and projections

Definition 19.5.1. A linear subspace M is closed if any sequence in M that is
convergent has limit in M . The closure M of a linear subspace is still a linear
subspace.

Definition 19.5.2. If M is a linear subspace of H , the orthogonal complement
of M is the set M⊥ of points that are orthogonal to M .

Proposition 19.5.3. M⊥ is a linear closed subspace.

Proof. M⊥ is a linear space: if x1 and x2 are in M⊥, then (z|x1 + λx2) =
(z|x1) + λ(z|x2) = 0 if z ∈M , i.e. x1 + λx2 ∈M⊥. If xn is a sequence in M⊥,
and xn → x then, by the continuity of the inner product, 0 = (z|xn) → (z|x)
for all z ∈M , i.e. x ∈M⊥.

Exercise 19.5.4. Show that if M1 ⊂M2 then M⊥2 ⊇M⊥1 .

The linear subspaces of R3 are planes and straight lines through the origin.
A point x external to a line r of parametric equation x(t) = ~at has orthogonal
projection ~p ∈ r which coincides with the point of minimal distance of x from
the set r. Orthogonal projection means that the element x− ~p is orthogonal to
all points in r. This geometric property (minimal distance and orthogonality)
is shared by Hilbert spaces.
The first non-trivial step is to prove that, given a closed linear subspace and a
point x, there exists one and only one point p belonging to it, whose distance
from x is minimal (the set distance of x).

Definition 19.5.5. The distance of a point x from a set M is d(x,M) =
infy∈M ‖x− y‖.

Lemma 19.5.6. Let M be a linear closed subspace in H . Then, given x ∈H ,
there is a unique p ∈M such that d(x,M) = ‖x− p‖.

Proof. Let d be the distance of x from M . By definition, there is a sequence yn
in M such that ‖yn − x‖ → d; we show that it is a Cauchy sequence.
By the parallelogram law:

‖yn−ym‖2 = ‖(yn−x)−(ym−x)‖2 = 2‖yn−x‖2+2‖ym−x‖2−‖2x−(yn+ym)‖2

The vector 1
2 (yn + ym) belongs to M , then ‖x− 1

2 (yn + ym)‖ ≥ d and

‖yn − ym‖2 ≤ 2‖yn − x‖2 + 2‖ym − x‖2 − 4d2

By hypothesis, for any ε > 0 there is Nε such that ‖yn − x‖2 − δ2 ≤ ε for all
n ≥ Nε. Then it is ‖yn − ym‖2 ≤ 4ε for all n,m ≥ Nε. The Cauchy sequence
{yn} has a limit point p ∈ M (M is closed); as the norm is a continuous map
of H to R, it follows that ‖x− p‖ = limn ‖x− yn‖ = d.
Suppose that there is another p′ ∈M such that ‖x− p′‖ = d, then for the given
x: ‖p − p′‖2 = ‖(p − x) − (p′ − x)‖2 = −‖p + p′ − 2x‖2 + 4d2. The mid-point
p′′ = (p+ p′)/2 belongs to M and ‖x− p′′‖ ≥ d. Therefore ‖p− p′‖2 ≤ 0.

Theorem 19.5.7 (Projection theorem). Let M be a closed subspace in a
Hilbert space H . A vector in H has the unique decomposition

x = p+ w, p ∈M, w ∈M⊥ (19.30)
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Proof. Given x there is a unique vector p in M such that ‖x− p‖ = d. We have
to show that w ≡ x− p ∈M⊥. For any λ and y ∈M it is p+ λy ∈M and

d2 ≤ ‖x− (p+ λy)‖2 = d2 − 2Re[λ (w|y)] + |λ|2‖y‖2.

−2 Re[λ(w|y)] + |λ|2‖y‖2 ≥ 0 for all complex λ if (w|y) = 0 for all y, i.e.
w ⊥M .
Suppose that x = p + w = p′ + w′ with p, p′ in M and w,w′ in M⊥. Then
(p − p′) + (w − w′) = 0 with p − p′ ∈ M and w − w′ ∈ M⊥. The vanishing of
the norm, ‖p− p′‖2 + ‖w − w′‖2 = 0, implies p = p′ and w = w′.

Proposition 19.5.8. If M is a linear subspace, then M⊥⊥ = M .

Proof. The statements: x ∈ M⊥⊥ ⇔ (x|y) = 0 ∀y ∈ M⊥ ⇒ x ∈ M imply that
M ⊆ M⊥⊥, and M ⊆ M⊥⊥. The other way, suppose that there is a vector
x ∈M⊥⊥ with x /∈M . Then x ∈M⊥: this means x = 0, as M⊥ and M⊥⊥ are
orthogonal sets.

Definition 19.5.9 (Orthogonal sum). Given two orthogonal closed subspaces
M1 and M2 in H , their orthogonal sum is

M1 ⊕M2 = {x1 + x2, x1 ∈M1, x2 ∈M2}.

Exercise 19.5.10. Prove that M1 ⊕M2 is closed. (Hint: show that if x1j +
x2j → x then x1j and x2j are Cauchy sequences in M1 and M2).

The projection theorem states that if M is closed then H = M ⊕M⊥.

Example 19.5.11. Suppose that a subspace M is spanned by the orthonormal
vectors {uk}nk=1. Given a point x, its projection is the point p =

∑n
k=1 pkuk in

M that minimizes the squared distance of x from M :

d2 = ‖x− p‖2 = ‖x‖2 −
n∑
k=1

[
pk(x|uk) + pk(uk|x)− pkpk

]
Minimization in the coefficients pk and pk gives the projection of x,

p =

n∑
k=1

(uk|x)uk (19.31)

and the (squared) minimal distance ‖x− p‖2 = ‖x‖2 −
∑n
k=1 |(uk|x)|2.

Example 19.5.12. Consider the function

f(x) =
1

a− x
, x ∈ [−1, 1], |a| > 1

and the problem of finding its “best approximation” in terms of real polynomials
of order n. In L2(−1, 1), this means to find the polynomial An of degree n with
least L2(−1, 1)-norm deviation from the function, i.e. to minimize the squared
error

‖f −An‖2 =

∫ +1

−1

dx

[
1

a− x
− (anx

n + . . .+ a1x+ a0)

]2
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with respect to the coefficients an . . . a0. The minimal norm is realized by the
distance of the function from the (closed) subspace Pn of polynomials of degree
n, and the ”best approximation” is precisely the projection of the function on
Pn. The Legendre polynomials Pk form an orthogonal basis of L2(−1, 1), and
any polynomial of order n is a linear combination of them with k ≤ n. Taking
into account normalization, the best polynomial of order n is:

An(x) =

n∑
k=0

CkPk(x), Ck =
2k + 1

2

∫ +1

−1

dx
Pk(x)

a− x

From the recursive relation (19.24) of the polynomials, one may obtain a recur-
sion scheme for Ck (in this case Ck = (2k+1)Qk(a), where Qk(x) is a Legendre
functions of the second kind).

Other norms give different approximations. In L2([−1, 1], dx/
√

1− x2) the
Chebyshev polynomials are orthogonal (see also 2.5.2, 11.3.3). The projection
on the subspace of polynomials of order n is:

Ãn(x) =

n∑
k=0

C̃kTk(x), C̃k =
1

hk

∫ 1

−1

dx√
1− x2

Tk(x)

a− x

with h0 = π, and hk = π/2. The coefficients may be evaluated with the Residue
Theorem:

C̃k =
2

π

∫ π

0

dθ
cos(kθ)

a− cos θ
= e−(k+1)ξ

where a = cosh ξ. The error can be computed exactly with the Christoffel-
Darboux formula:∣∣∣ 1

cosh ξ − x
− Ãn(x)

∣∣∣ =
eξTn+1(x)− Tn(x)

(cosh ξ − x) sinh ξ
e−(n+1)ξ

The property |Tk(x)| ≤ 1 on [−1, 1] allows for a uniform upper bound of the
error: ∣∣∣ 1

a− x
− Ãn(x)

∣∣∣ ≤ eξ + 1

(a− 1) sinh ξ
e−(n+1)ξ, −1 < x < 1.

19.6 Complete orthonormal systems

Theorem 19.6.1. Let {uk}∞k=1 be a countable set of orthonormal vectors in
H , and {ck}∞k=1 a complex sequence. Then

∞∑
k=1

ckuk ∈H ⇐⇒
∞∑
k=1

|ck|2 <∞

and, if the series converges to x, it is ck = (uk|x).

Proof. The partial sums xn =
∑n
k=1 ckuk form a Cauchy sequence if and only

if
∑n
k=1 |ck|2 is a Cauchy sequence in C: this follows from the identity

‖xn − xm‖2 =
∥∥∥ n∑
k=m+1

ckuk

∥∥∥2

=

n∑
k=m+1

|ck|2.
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Then xn → x iff ck ∈ `2(C).
Moreover ck = (uk|xn)→ (uk|x) by continuity of the inner product, and ‖x‖2 =
limn ‖xn‖ = limn

∑n
k=0 |ck|2 =

∑∞
k=0 |ck|2.

Definition 19.6.2. An orthonormal set {ua}a∈A of vectors, (ua|ub) = 0 if a 6= b
and ‖ua‖ = 1, is complete if it is not a subset of another orthonormal set.
An equivalent statement is: an orthonormal set {ua}a∈A is complete if

(ua|x) = 0 ∀a ∈ A ⇒ x = 0 (19.32)

A Hilbert space with a countable orthonormal complete set of vectors is
separable, and it is isomorphic to `2(C).

Theorem 19.6.3 (Parseval’s identity). In a separable Hilbert space, if {uk}∞k=1

is an orthonormal complete basis, then:

x =

∞∑
k=1

(uk|x)uk, ‖x‖2 =

∞∑
k=1

|(ua|x)|2, ∀x ∈H (19.33)

(x|y) =

∞∑
k=1

(x|uk)(uk|y) (19.34)

The numbers (uk|x) are the Fourier coefficients of the expansion.

19.7 Bargmann’s space

Bargmann’s space B(C) is the linear space of entire functions5 such that∫
dzdz

π
e−|z|

2

|f(z)|2 <∞

where dz dz ≡ dx dy and z = x+ iy. It is a Hilbert space with the inner product

(f |g) =

∫
dzdz

π
e−|z|

2

f(z)g(z) (19.35)

The functions uk(z) = 1√
k!
zk are orthonormal (use polar coordinates):∫
dzdz

π
e−|z|

2

znzm = n! δnm

Since every entire function has a power series expansion, the functions uk form
a complete set. On suitable domains one defines the linear operators

(âf)(z) = f ′(z), (â†f)(z) = zf(z).

They act as ladder operators (lowering and raising operators) on the basis func-
tions: â uk =

√
k uk−1 and â†uk =

√
k + 1uk+1. The operator N̂ ≡ â†â = z d

dz

has action N̂ uk = k uk.

5V. Bargmann, On a Hilbert space of analytic functions and an associated integral trans-
form, Comm. Pure Appl. Math. 14 (1961) 187.
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The eigenstates of the lowering operator (âφξ)(z) = ξφξ(z) are named coher-
ent states, and exist for any value ξ ∈ C. In Bargmann’s space they are the
functions

φξ(z) = e−
1
2 |ξ|

2+ξz = e−
1
2 |ξ|

2∑∞

k=0
uk(ξ)uk(z)

The inner product of two coherent states vanishes exponentially in the distance
of parameters |(φξ|φη)| = exp(−|ξ− η|). The interest of such functions is in the
following property: for any f ∈ B(C) it is true that

f(z) =

∫
dξdξ

π
e−|ξ|

2+ξzf(ξ) =

∫
dξdξ

π
e−

1
2 |ξ|

2

f(ξ)φξ(z) (19.36)

(check it on the basis functions uk). The first equality shows that e−|ξ|
2+ξz

is a reproducing kernel. The second equality shows that coherent states are
a continuous basis-set of normalized but not orthogonal functions (an over-
complete set). Can one remove coherent states from the basis without losing
completeness? The answer is yes: one can select a countable set of ξ values that
belong to a two dimensional lattice ξ = n1ω1 +n2ω2, and completeness survives
if ω1ω2 < 1.
Coherent states are important in quantum mechanics, semiclassical dynamics
of complex systems, quantum optics, path integral formulation of bosons6. A
standard reference is: A. Perelomov, Generalized Coherent States and their
Applications, (Springer-Verlag, Berlin 1986).

Exercise 19.7.1. The set of functions holomorphic on the unit disk D = {z ∈
C : |z| < 1} and such that

∫
D
dzdz
π |f(z)|2 <∞ form a Hilbert space.

i) Show that the functions uk(z) =
√
k + 1 zk are orthonormal.

ii) Evaluate the norm of (z − a)−1, |a| > 1.
iii) Evaluate the series:

∑∞
k=0 uk(z)uk(ζ) (z, ζ ∈ D).

6for fermions one needs a Hilbert space of anticommuting variables



Chapter 20

TRIGONOMETRIC
SERIES

20.1 Fourier Series

Let f be a 2π-periodic real function and ask the following question: which are
the real coefficients of an expansion in harmonics that “best” approximates f?

SN (x) =
1

2
a0 +

N∑
k=1

ak cos(kx) + bk sin(kx) (20.1)

We may require minimization of the total quadratic error

δ2 =

∫ π

−π
dx[f(x)− SN (x)]2

0 =
∂δ2

∂a0
= −

∫ π

−π
dx [f(x)− SN (x)]

0 =
∂δ2

∂ak
= −2

∫ π

−π
dx [f(x)− SN (x)] cos(kx)

0 =
∂δ2

∂bk
= −2

∫ π

−π
dx [f(x)− SN (x)] sin(kx)

Because of the “orthogonality” of the basis functions∫ π

−π
dx cos(mx) sin(nx) = 0, (20.2)∫ π

−π
dx cos(mx) cos(nx) =

∫ π

−π
dx sin(mx) sin(nx) = πδmn (20.3)

the coefficients can be easily obtained (Euler):

ak =
1

π

∫ π

−π
dxf(x) cos(kx), bk =

1

π

∫ π

−π
dxf(x) sin(kx). (20.4)

157
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They are well defined for integrable functions, and do not depend on N (a
consequence of “orthogonality”). The quadratic error at minimum is evaluated:

δ2 =

∫ π

−π
dxf(x)2 − π

[
a2

0

2
+ a2

1 + ...+ b2N

]
Since δ2 ≥ 0 it is clear that the approximation improves by increasing the
number of basis functions. If the error saturates to zero, one gets Parseval’s
identity: ∫ π

−π
dxf(x)2 =

π

2
a2

0 + π

∞∑
k=1

(a2
k + b2k) (20.5)

By inserting the integral expressions for the coefficients (20.4) in the finite sum
(20.1), one gets

SN (x) =

∫ π

−π
dyf(y)

[
1

2π
+

1

π

N∑
k=1

cos k(x− y)

]
=

∫ π

−π
dyf(y)DN (x− y)

with Dirichlet’s kernel

DN (x− y) =
1

2π

sin[(N + 1
2 )(x− y)]

sin[ 1
2 (x− y)]

(20.6)

Properties: DN (−x) = DN (x), DN (0) = 1
π (N + 1

2 ),∫ π

−π
dxDN (x) =

∫ π

−π

dx

π

(
1
2 + cosx+ cos 2x+ . . .

)
= 1

We wish to study the large N behaviour of the difference

SN (x)− f(x) =

∫ π

−π
dy[f(y)DN (x− y)− f(x)DN (y)]

=

∫ π

−π
dy[f(y + x)− f(x)]DN (y) (20.7)

The main question is: under which conditions does the difference converge
to zero point-wise, uniformly, or almost everywhere? Is the minimisation of the
quadratic error the best criterion for constructing the trigonometric approxima-
tion? These problems require an appropriate setting in functional analysis1.

Exercise 20.1.1. 1) Prove the orthogonality relations. 2) Evaluate Dirichlet’s
kernel (hint: use the complex representation).

Remark. The Fourier expansion (20.1) can be rewritten as:

f(x) =

∞∑
n=−∞

cn
einx√

2π
(20.8)

1see for example: A. Kolmogorov and S. Fomine, Éléments de la théorie des fonctions et
de l’analyse fonctionelle, Éditions de Moscou (1974), also a Dover reprint.
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Figure 20.1: The Sawtooth function, and the Fourier approximation S5

where cn =
√

π
2 (an−ibn) and c−n = cn. For unrestricted coefficients cn and c−n

the formula is the Fourier expansion of a complex function. The orthogonality
relation and Parseval’s identity (completeness) are:

∫ π

−π

dx

2π
ei(n−m)x = δnm ,

∫ π

−π
dx|f(x)|2 =

∞∑
n=−∞

|cn|2 (20.9)

Example 20.1.2. Consider the function f(x) = x on (−π, π], repeated period-
ically (sawtooth function). Being an odd function, the Fourier coefficients an
are null, and bn = 1

π

∫ π
−π dxx sin(nx) = 2(−1)n+1/n. Then:

x = 2

∞∑
n=1

(−1)n+1 sin(nx)

n
(20.10)

Parseval’s identity is:
∫ π
−π dxx

2 = 4π
∑∞
n=1 1/n2, which is true. Therefore the

squared error is zero, δ2 = 0, meaning that, up to a zero-measure set, the series
and the functions coincide.
At the point of discontinuity x = π the periodic function has two limits: f(π−) =
π and f(π+) = −π. The Fourier series, being unable to choose which value to
approximate, takes the value in the middle: S∞(π) = 0.
For x = π

2 one obtains the sum of Leibnitz’s series: π
4 = 1− 1

3 + 1
5 −

1
7 + . . . .

Note that, being the function discontinuous, high frequency terms are needed to
“fill the edges”. Correspondingly, Fourier coefficients decay slowly, as 1/n, and
the series has slow convergence.

20.2 Pointwise convergence

We need the following lemma:

Lemma 20.2.1 (Riemann). If f ∈ L 1(a, b) then

lim
n→∞

∫ b

a

dxf(x) sin(nx) = 0 (20.11)



CHAPTER 20. TRIGONOMETRIC SERIES 160

Proof. If f ′ exists and is continuous, a partial integration gives∫ b

a

dxf(x) sin(nx) = − 1

n
f(x) cos(nx)

∣∣∣b
a

+
1

n

∫ b

a

dxf ′(x) cos(nx)

An arbitrary function in L 1(a, b) can be approximated by functions in C 1(a, b):
for any ε > 0 there is a function with continuous derivative such that ‖f−ϕε‖1 =∫

[a,b]
dx |f − ϕε| < ε. Then:∣∣∣∣∣

∫ b

a

dxf(x) sin(nx)

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ b

a

dx[f(x)− ϕε(x)] sin(nx)

∣∣∣∣∣+

∣∣∣∣∣
∫ b

a

dxϕε(x) sin(nx)

∣∣∣∣∣
≤

∫ b

a

dx|f(x)− ϕε(x)|+

∣∣∣∣∣
∫ b

a

dxϕε(x) sin(nx)

∣∣∣∣∣
The first term can be made arbitrarily small, the second decays to zero.

Remark 20.2.2. There is a relationship between the regularity properties of
f and the decay properties of its Fourier coefficients (which dictate how fast
the series converges, i.e. how many terms are needed to reproduce the function
with small error). For a periodic function in C 1(−π, π) the boundary term in
the proof of the Lemma is zero, therefore the Lemma proves that the Fourier
coefficients an and bn decay at least as 1/n. However, if f is periodic and C k,
further integrations by parts show that the coefficients decay at least as 1/nk.

In the partial sum SN of the Fourier series, the numerator of Dirichlet’s
kernel produces convergence for large N (the Lemma), but the zero in the
denominator has to be neutralized; this is done in the theorem:

Theorem 20.2.3 (Dini2). Let f ∈ L 1(−π, π) and suppose that for a fixed point
x there is a δ > 0 such that∫ δ

−δ
dt

∣∣∣∣f(x+ t)− f(x)

t

∣∣∣∣ <∞ (20.12)

then SN (x)→ f(x) at x.

Proof.

SN (x)− f(x) =

∫ π

−π
dt[f(x+ t)− f(x)]DN (t)

=

∫ π

−π
dt
f(x+ t)− f(x)

t

t

2π sin( 1
2 t)

sin(N + 1
2 )t

If Dini’s condition holds, the ratio f(x+t)−f(x)
t

t
2 sin(t/2) is integrable on (−π, π).

Then, by Riemann’s lemma, |SN (x)− f(x)| → 0 as N →∞.

2Ulisse Dini (1845, 1918) formerly a student in Pisa of Enrico Betti, went to Paris and
got acquainted with Charles Hermite and J. L. Francoise Bertrand. He became professor
in Pisa, member of the Parliament and senator, and for many years he directed the Scuola
Normale. He was the advisor of Luigi Bianchi and Gregorio Ricci-Curbastro (with Betti) and
Luigi Fubini. Other students of Betti in Pisa were Cesare Arzelá, Federigo Enriques and Vito
Volterra.
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Dini’s condition can be replaced by existence of the left and right integrals:∫ δ

0

dt

∣∣∣∣f(x+ t)− f(x+)

t

∣∣∣∣ , ∫ 0

−δ
dt

∣∣∣∣f(x+ t)− f(x−)

t

∣∣∣∣ .
It implies the following sufficient condition for point-wise convergence:

Corollary 20.2.4. If f is a bounded 2π-periodic function with only a finite
number of discontinuities of the first kind (left and right finite limits exist at each
discontinuity) on [0, 2π], and if the left and right derivatives exist everywhere,
then the Fourier series is point-wise convergent where f is continuous and takes
the value 1

2 [f(x+) + f(x−)] at a discontinuity.

Example 20.2.5. f(x) = x2 on [−π, π) (periodic parabolic arc). Fourier coef-
ficients: a0 = 1

π

∫ π
−π dxx

2 = 2
3π

2, an = 1
π

∫ π
−π dxx

2 cos(nx) = 4(−1)nn−2 and
bn = 0 (even function). Then:

x2 =
π2

3
+ 4

∞∑
n=1

(−1)n

n2
cos(nx) (20.13)

The function is continuous but its derivative is discontinuous at x = −π: note
that its Fourier coefficients decay as 1/n2.
At x = π one obtains ζ(2) =

∑∞
n=1 1/n2 = π2/6, while at x = 0:

∑∞
n=1(−1)n/n2 =

−π2/12. Parseval’s identity allows to obtain a further relation:
∫ π
−π dxx

4 =

2π π
4

9 + 16πζ(4), i.e. ζ(4) = π4/90.

Example 20.2.6. f(x) = (1−2a cosx+a2)−1 on [−π, π) (a2 < 1). The Fourier
coefficients can be evaluated by the Residue Theorem in the unit circle (ζ = eix):

an = Re
1

π

∫ π

−π
dx f(x)einx = Re

∫
C(0,1)

dζ

iπζ

ζn

1− aζ − a/ζ + a2

= −Re

∫
C(0,1)

dζ

iπa

ζn

(ζ − a)(ζ − 1/a)
=

2an

1− a2

1

1− 2a cosx+ a2
=

1

1− a2
+

2

1− a2

∞∑
n=1

an cos(nx) (20.14)

The function is continuous with all its derivatives; the Fourier coefficients decay
exponentially, as e−n| log a|.
Note that, with cosx = t, it is cos(nx) = Tn(t), and the generating function of
Chebyshev polynomials is recovered, eq.(11.25).

Exercise 20.2.7. Show that

∞∑
k=0

yk

k!
cos(kx) = ey cos x cos(y sinx),

∞∑
k=1

yk

k!
sin(kx) = ey cos x sin(y sinx)

Trigonometric sums define functions, that may be rather extravagant. Con-
sider the finite sum (it is not a Fourier series because of the modulus) fN (x) =∑N
k=1 | sin(kπx)|/k. The function fN (x) has a strict local minimum at every ra-

tional p/q with |q| ≤
√
N (An amusing sequence of functions, S. Steinerberger,

arXiv:1610.04090).
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20.2.1 Gibbs’ phenomenon

The Fourier series of a function with a jump discontinuity exhibits the Gibbs
phenomenon, explained by Gibbs in 1899 in a letter to Nature. It is an over-
shooting of the Fourier series caused by the high frequencies needed to describe
the jump, that near the discontinuity pile up.

If a is a point of discontinuity and ∆f is the jump of a 2π-periodic function,
the partial sum SN has the jump ∆N = |SN (a− π/N)− SN (a+ π/N)|. Gibbs
noted that in the limit it is not ∆f :

lim
N→∞

∆N

∆f
= 1.17898...

The error is about 18%, and has fixed size for any large N . It occurs in a region
of width ≈ 1/N around the point of discontinuity.
Since it is a local effect, this is well illustrated by the following example.

Consider the periodic sawtooth function of Example 20.1.2. The jump at
a = π is 2π. The partial sums give:

SN (π − ε)− SN (π + ε) = 4

N∑
n=1

sin(nε)

n

For ε ≤ π/N all terms are positive and add up without interfering. At ε = π/N :

∆N

∆f
=

2

π

N∑
k=1

sin(Nπ/n)

n
→ 2

π

∫ π

0

dt
sin t

t
= 1.17898...

(in the continuum limit nπ/N = t, dt = π/N). The series overestimates the
value of the function by 9%, at each sides of the discontinuity.

Exercise 20.2.8. Show that the Fourier series of cos(ax) on [−π, π] is:

cos(ax) =
sin(aπ)

πa
+

sin(aπ)

π

∞∑
k=1

(−1)k
2a

a2 − k2
cos(kx), a /∈ N.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0
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Figure 20.2: The Sawtooth function restricted to [0, π] and the Fourier approxi-
mation S120, showing the onset of the Gibbs phenomenon near the discontinuity.
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In x = π the function is continuous and the series converges. This gives

cotg(aπ) =
1

πa
+

1

π

∞∑
k=1

2a

a2 − k2
(20.15)

It is the logarithmic derivative of the famous Euler’s product expansion for the
sine (1784), analogous to the factorization of a polynomial in terms of the roots:

sin(πz) = πz

∞∏
k=1

(
1− z2

k2

)
(20.16)

20.2.2 Fourier series with different basis sets

Consider a function f with period 1. As a periodic function it has a Fourier
series expansion on [0, 1], with basis functions cos(2kπx) and sin(2kπx):

f(x) =
α0

2
+

∞∑
k=1

αk cos(2kπx) + βk sin(2kπx)

However, as a function on the interval [0, 1] alone, other trigonometric series
are possible. For example, the even/odd extensions of f on [−1, 1],

fe(x) =

{
f(x) x ∈ [0, 1]

f(−x) x ∈ [−1, 0)
fo(x) =

{
f(x) x ∈ [0, 1]

−f(−x) x ∈ [−1, 0)

can be represented respectively as Fourier series with functions cos(kπx) or
sin(kπx). The two series, restricted to the interval [0, 1], give two new trigono-
metric expansions of f :

f(x) =
a0

2
+
∑
n

an cos(nπx) =
∑
n

bn sin(nπx), x ∈ [0, 1].

The functions {1, cos(kπx)} and {sin(kπx)} form two independent sets of or-
thogonal functions on [0, 1]:∫ 1

0

dx cos(mπx) cos(nπx) = 1
2δmn,

∫ 1

0

dx sin(mπx) sin(nπx) = 1
2δmn.

Example 20.2.9. Consider the function with period 1, which is “x” on [0, 1].
It has the Fourier expansion

x = 1
2 −

∞∑
k=1

sin(2πkx)

πk
, 0 < x < 1 (20.17)

The expansions on [−1, 1] of the even extension |x| and of the odd extension x,
give two new representations of x on [0, 1]:

x = 1
2 − 4

∞∑
k=0

cos(2k + 1)πx

π2(2k + 1)2
= −2

∞∑
k=1

(−1)k
sin(kπx)

πk

Outside the interval [0, 1] the three Fourier series describe different periodic
functions. Note the faster convergence of the series for |x|, which is continuous.
Parseval’s identity gives:

∞∑
k=0

1

(2k + 1)4
=
π4

96
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20.3 Applications

20.3.1 Heat Equation

In his fundamental treatise Théorie analytique de la chaleur (1822) Jean Bap-
tiste Fourier discussed the transmission of heat in bodies of various shapes and
different boundary conditions. By assuming that the transfer of heat between
near regions is proportional to the temperature difference, he obtained the Heat
Equation for the temperature field:

1

D

∂T

∂t
−∇2T = 0

D is the constant of thermal diffusion. Fourier solved the stationary problem of
the temperature distribution in a rectangle with sides at different temperatures,
by trigonometric series.

Consider the square [0, π]× [0, π] with three sides held at temperature T = 0
and one at temperature T (x, π) = x (at one corner there is a jump ∆T = π).
The stationary field T (x, y) solves Txx + Tyy = 0 with the specified b.c. As
Fourier noted, an elementary harmonic solution is e±ay sin(ax). It is zero at x =
0, π if a is an integer. The linear combination T (x, y) =

∑∞
n=1 cn sinh(ny) sin(nx)

is a solution and is zero at three sides of the rectangle. The coefficients are
determined by the b.c.: x =

∑∞
n=1 cn sinh(nπ) sin(nx). Fourier evaluated the

infinite number of unknowns xn = cn sinh(nπ) through the infinite linear system
obtained by taking even derivatives of all order:

0 = x1 sinx+ 22x2 sin(2x) + 32x3 sin(3x) + . . .

0 = x1 sinx+ 24x2 sin(2x) + 34x3 sin(3x) + . . .

. . .

Instead, we exploit orthogonality:
∫ π

0
dxx sin(`x) =

∑
n xn

∫ π
0
dx sin(`x) sin(nx)

i.e. x` = − 2
` (−1)`. The solution is:

T (x, y) = 2

∞∑
n=1

(−1)n+1

n

sinh(ny)

sinh(nπ)
sin(nx).

Figure 20.3: Fourier’s solution for the temperature distribution in the square.
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20.3.2 Kepler’s equation

The elliptic orbit of a planet has semi-axis a and b (a ≥ b) and eccentricity
e =

√
1− (b/a)2; the position of the Sun is the focus (ae, 0).

The position of the planet can be parameterized as x = a cosE, y = b sinE,
where 0 ≤ E ≤ 2π is the eccentric anomaly, E = 0 at perihelion and E = π at
aphelion. The distance from the Sun is r = a(1− e cosE).
Since the areal velocity is constant (conservation of angular momentum), the
area swept at time t after the passage at perihelion (E = 0 at t = 0) is πab(t/T ),
where T is the orbital period. The evaluation of the same area in terms of E
gives Kepler’s law:

E − e sinE = M, M =
2π

T
t (20.18)

M is the “mean anomaly”, E(M + 2π) = E(M) = −E(−M). At each time one
evaluates M and solves Kepler’s equation to obtain E and the position of the
planet.
The solution of Kepler’s equation was first obtained by the astronomer Bessel
in 1824 as a Fourier series (some terms were previously obtained by Lagrange,
1770) E −M =

∑∞
k=1Bk sin(kM) with coefficients that are Bessel’s functions

(see eq.(13.5))

Bk =
1

π

∫ 2π

0

dM (E −M) sin(kM) =

∫ 2π

0

dM

(
dE

dM
− 1

)
cos kM

πk

=
2

k

∫ π

0

dE

π
cos(kE − ke sinE) =

2

k
Jk(ke)

Then: E = M + 2J1(e) sinM + J2(2e) sin(2M) + 2
3J3(3e) sin(3M) + . . .

Exercise 20.3.1. Consider the generating function for Bessel’s functions of
integer order with z on the unit circle:

eix sin θ =

∞∑
n=−∞

einθJn(x).

Prove the properties: 1 = J0(x)2 + 2
∑∞
k=1 Jk(x)2 (Parseval’s identity), and

eik·r = J0(kr) + 2

∞∑
n=1

in cos(nθ)Jn(kr) (20.19)

where θ is the angle formed by the vectors. The formula is useful in scattering
theory.

20.3.3 Vibrating string

A thin stretched string is clamped at x = 0 and x = L. Its deviation from the
straight configuration is a function f(x, t) that solves the Wave Equation

ftt − c2fxx = 0,

where c is the speed of wave propagation. The Cauchy problem is specified by
initial conditions f(x, 0) = f1(x) and ft(x, 0) = f2(x). Boundary conditions
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(b.c.) f(0, t) = 0 and f(L, t) = 0 are imposed at all times.
Multiplication by µ0ft and integration by parts lead to a conservation law for
the total energy (µ0 is the linear mass density):

E =
µ0

2

∫ L

0

dx
(
f2
t + c2f2

x

)
E is time independent and is fixed by the initial conditions.
The wave equation is first solved for stationary states (i.e. factorized in time and
space): f(x, t) = A(t)u(x), with solutions e±iωt[αeikx + βe−ikx], ω = kc ≥ 0.
The b.c. impose: α+β = 0 and αeikL+βe−ikL = 0, i.e. α = −β and k = πn/L,
n = 0, 1, 2, . . . (wave-lengths are quantized). Therefore, the stationary solutions
(normal modes) are:

e±iωnt sin
(nπx
L

)
, n = 1, 2, . . .

The general solution is a real linear superposition of normal modes

f(x, t) =
∞∑
n=1

(cne
iωnt + cne

−iωnt) sin
nπx

L
, ωn =

πc

L
n (20.20)

The period of the nth mode is Tn = 1
n (2L/c); the longest one is a global period:

f(x, t+T1) = f(x, t). The coefficients cn are determined by the initial conditions∑
n(cn + cn) sin(nπx/L) = f1(x),

∑
n iωn(cn − cn) sin(nπx/L) = f2(x). By

means of the orthogonality relation
∫ L

0
dx sin mπx

L sin nπx
L = L

2 δmn one evaluates:

Re cn =
1

L

∫ L

0

dxf1(x) sin
nπx

L
, Im cn = − 1

Lωn

∫ L

0

dxf2(x) sin
nπx

L
.

The general solution, though describing oscillations of a string of length L, is
2L−periodic. At t = 0 it coincides with f1(x) on [0, L] but on [L, 2L] it equals
−f1(2L− x).

The total energy of the solution f(x, t) is extensive (proportional to L) and
is the sum of the energies of the single modes3:

E = L
µ0

2

∞∑
n=1

ω2
n[cncn + cncn] (20.21)

As an example, let us suppose that the string is initially stretched as a
triangle, f1(x) = αx for 0 < x ≤ L/2 and f1(x) = α(L − x) for L/2 < x < L,
and left free to vibrate (f2 = 0, no initial velocity on the whole length). The
coefficients cn and the solution are evaluated:

f(x, t) =
4αL

π2

∞∑
n=1

(−1)n

(2n+ 1)2
cos(knct) sin(knx), kn = n

π

L

=
2αL

π2

∞∑
n=1

(−1)n

(2n+ 1)2
[sin[kn(x+ ct)] + sin[kn(x− ct)]]

= 1
2 [F1(x+ ct) + F1(x− ct)]

3The expression of the energy is ready to undergo “second quantization”, which yields
an operator for a quantum description of vibrations in terms of elementary quanta called
phonons.
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Here, F1(x) is the 2L-periodic function with value F1(x) = f1(x) for 0 ≤ x ≤ L
and F1(x) = −f1(2L− x) for L ≤ x ≤ 2L.

20.3.4 The Euler - Mac Laurin expansion

Dirichlet’s kernel DN (x − a) is 2π-periodic and peaked at the points a + 2πn.
If we multiply it by a smooth function and integrate on an interval [a, b], with
b = a+ 2πM , it is:∫ b

a

dxDN (x− a)f(x) =

∫ b

a

dx

2π
f(x) +

N∑
k=1

∫ b

a

dx

π
cos[k(x− a)] f(x)

The integral in the left-hand-side is evaluated on sub-intervals [a, a + π), [a +
π, a+ 3π), . . . [b− π, b]. On sub-intervals of width 2π, as N goes to infinity, the
kernel becomes a normalized delta function peaked at the center of the interval.
On the intervals [a, a + π) and [b − π, b] only half of the kernel contributes.
Therefore the integral is:

M∑
k=0

f(a+ 2πk)− f(b) + f(a)

2

In the right side we integrate by parts twice and obtain a recursive law:

Ck[f ] =

∫ b

a

dx cos[k(x− a)]f(x) =
1

k2
[f ′(b)− f ′(a)]− 1

k2
Ck[f ′′]

For large N :

1

π

N∑
k=1

Ck[f ] =
ζ(2)

π
[f ′(b)− f ′(a)]− ζ(4)

π
[f ′′′(b)− f ′′′(a)] +R

with remainder R = 1
π

∑
k

1
k6Ck[f iv]. The Euler - Mac Laurin formula gives the

corrections to an integral approximating a sum:

M∑
k=0

f(a+ 2πk) =

∫ b

a

dx

2π
f(x) +

1

2
[f(b) + f(a)] (20.22)

+
π

6
[f ′(b)− f ′(a)]− π3

90
[f ′′′(b)− f ′′′(a)] +R

20.3.5 Poisson’s summation formula

This is a very useful tool in many areas of physics. Given an integrable function
f(t) on R, the sum F (t) =

∑∞
k=−∞ f(t+kT ) (if convergent) defines a T -periodic

function, which can be expanded in Fourier series. The result is Poisson’s sum-
mation formula, which replaces the infinite sum on shifts of f with an infinite
Fourier series:

∞∑
k=−∞

f(t+ kT ) =
1

T

∞∑
`=−∞

f̂`e
i 2πT `t (20.23)
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where

f̂` =

∫ T

0

dt F (t) e−i
2π
T `t =

∞∑
k=−∞

∫ (k+1)T

kT

dtf(t)e−i
2π
T `t =

∫ ∞
−∞

dtf(t)e−i
2π
T `t.

Example 20.3.2. f(t) = e−at
2

, f̂` =
√

π
a e
−`2/4a.

∞∑
k=−∞

e−a(t+2kπ)2 =
1

2
√
πa

∞∑
`=−∞

e−`
2/4a+i`t (20.24)

In particular, for t = 0:

∞∑
k=−∞

e−4π2ak2 =
1√
4πa

∞∑
k=−∞

e−
k2

4a (20.25)

These series arise in the theory of Jacobi’s theta functions.

Example 20.3.3. f(t) = e−ω|t|, f̂` = 2ω
ω2+k2 .

∞∑
k=−∞

e−ω|t+2πk| =
ω

π

∞∑
`=−∞

ei`t

ω2 + `2
(20.26)

For t = 0 the l.h.s. is −1 + 2
∑∞
k=0 e

−2πωk = coth(πω). Then:

coth(πω) =
ω

π

∞∑
`=−∞

1

ω2 + `2
. (20.27)

Example 20.3.4. Let us evaluate the partition function Z for non-interacting
particles in a cubic box with side-length L. The energy levels are εk = ~2k2/2m,
where k = (2π/L)n, n ∈ Z3. It is:

Z =
∑
k

e
− εk
kBT =

[ ∞∑
n=−∞

exp

(
−λ

2

L2
πn2

)]3

where λ =
√

2π~2/mkBT is the “thermal length” (the de Broglie length of a par-
ticle with energy kBT ). For large L, the terms are a slowly decreasing sequence.
The sum can be computed via Poisson’s formula (20.25):

∞∑
n=−∞

exp(−λ
2

L2
πn2) =

L

λ

∞∑
n=−∞

exp(−L
λ
πn2) =

L

λ
(1 + negligible terms).

The standard procedure in statistical mechanics to approximate the sum with an
integral (for large L) is legitimate:

Z = L3

∫
dk

(2π)3
exp

(
− ~2k2

2mkBT

)
=

(
L

λ

)3

In general, the extension to 3D of the Poisson sum for a period 2π/L is:∑
k

f(k) =
∑
n∈Z3

f(
2π

L
n) =

L3

(2π)3

∑
m∈Z3

∫
R3

dsf(s)eiL(m·s)
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If the function f(k) has slow variation on the scale 1/L, for large L the Fourier
terms vanish except the term m = 0:

∑
k

f(k) ≈ L3

∫
dk

(2π)3
f(k)

Example 20.3.5. Poisson’s formula is used to extend Riemann’s series ζ(z)
on Re z > 1 to a function on Re z < 0 (the strip 0 < Rez < 1 is left out).

Let g(t) =
∑∞
k=1 e

−k2πt and evaluate∫ ∞
0

dt g(t)tz−1 =

∞∑
k=1

∫ ∞
0

dt e−k
2πttz−1 =

1

πz
ζ(2z) Γ(z)

Eq.(20.25) shows the symmetry 2g(t) + 1 = (1/
√
t)[2g(1/t) + 1] i.e. g(t) =

−1/2+1/(2
√
t)+g(1/t)1/

√
t, which is used to evaluate the integral in a different

way:

1

πz/2
ζ(z)Γ(z/2) =

∫ 1

0

dt g(t) tz/2−1 +

∫ ∞
1

dt g(t) tz/2−1

=

∫ 1

0

dt

[
−1

2
+

1

2
√
t

+
1√
t
g(1/t)

]
tz/2−1 +

∫ ∞
1

dt g(t)tz/2−1

= −1

z
− 1

1− z
+

∫ ∞
1

dt

t
(t(1−z)/2 + tz/2)g(t)

The r.h.s. is invariant under the replacement z → 1− z, therefore: ζ(z)Γ( z2 ) =√
π ζ(1− z)Γ( 1

2 −
z
2 ) or

ζ(1− z) = ζ(z)
2

(2π)z
cos( 1

2πz)Γ(z) (20.28)

For z = −2,−4, . . . the function Γ(z) has poles; however the left-hand side is
finite. Then ζ(z) must be zero at z = −2,−4, . . . : these are the “trivial zeros”
of Riemann’s zeta function. The famous Riemann’s hypothesis states that the
non-trivial zeros are all located on the line Re z = 1

2 . The statement is relevant
for the study of the distribution of prime numbers4.

Exercise 20.3.6. Show that ζ(−1) = − 1
12 , ζ(0) = − 1

2 (see exercise 12.3.5).

20.4 Fejér sums

The powerful theory developed by Lipót Fejér on trigonometric series allows to
prove the “completeness” of the basis of trigonometric functions in the Banach
spaces C ([−π, π]) of continuous functions on [−π, π], and in the spaces L1(−π, π)

4Riemann’s hypothesis is one of the seven problems that were selected by the Clay Math-
ematics Institute in 2000 (Millennium Prize). The single problem that has been solved so far
is Poincaré’s conjecture (every simply connected closed 3-manifold is homeomorphic to the
3-sphere) stated in 1904. The winner Grigorij Perelman declined the one-million $ prize, and
a Fields medal.
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Figure 20.4: The trigonometric approximations S5 and σ5 of the Sawtooth
function.

and L2(−π, π). It means that any function can be approximated arbitrarily well
by a finite combination of trigonometric functions in the topology of the space.

A function that is continuous and 2π-periodic may not have a convergent
Fourier series, and therefore may not be reproduced as the limit N →∞ of SN .
However, the arithmetic averages of the partial sums (Fejér sums) do the job in
an excellent way. Consider the Fejér sum

σN (x) =
1

N
[S0(x) + S1(x) + . . .+ SN−1(x)] =

∫ π

−π
dt f(x+ t)ΦN (t) (20.29)

where ΦN (x) is Fejér’s kernel:

ΦN (t) =
1

N
[D0(t) +D1(t) + . . .+DN−1(t)]

=
1

2π
+

1

π

N−1∑
k=1

(
1− k

N

)
cos(kt)

=
1

2πN

sin2(Nt/2)

sin2(t/2)
(20.30)

The function is a finite sum of trigonometric functions, it is positive and has unit
integral on [−π, π]. The Fejér sums σN are the Cesaro means5 of the Dirichlet
sums Sk. The interesting fact about them, is that they behave much better
than Dirichlet sums, as the next theorems show.

Theorem 20.4.1 (I Fejér theorem, 1905). If f is real continuous and 2π-
periodic, the sequence of Fejér sums σn converges to f uniformly on R.

Proof. Since f is real and continuous on [−π, π] it is bounded, |f(x)| < M , and
uniformly continuous: ∀ε ∃δ : |f(x+ t)− f(x)| < ε/2 ∀x, ∀t s.t. |t| < δ.
Being periodic, f is bounded and uniformly continuous on the whole real line.
Let us estimate the difference

σN (x)− f(x) =

∫ π

−π
dy[f(x+ y)− f(x)]ΦN (y) = J<(x) + J0(x) + J>(x)

5Ernesto Cesaro (1859, 1906) was professor in Naples. He proved that if a sequence an
converges to a (or diverges) then: the sequence of arithmetic averages sn = 1

n

∑n
k=1 ak and

the sequence of geometric averages pn = (a1 · · · an)1/n converge to the same limit (or diverge).
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where integration is split on three intervals [−π,−δ) ∪ [−δ, δ] ∪ (δ, π].

|J0(x)| ≤
∫ δ

−δ
dt|f(x+ t)− f(x)|ΦN (t) <

ε

2

∫ δ

−δ
dtΦN (t) ≤ ε

2

|J>(x)| ≤
∫ π

δ

dt|f(x+ t)− f(x)|ΦN (t) < 2M

∫ π

δ

dtΦN (t)

≤ M

πN

∫ π

δ

dt
1

sin2(t/2)
≤ M

πN

π − δ
sin2(δ/2)

≤ M

N sin2(δ/2)

The same estimate is valid for J<. Now, given ε and δ, left’s choose N such
that M

N
sin−2(δ/2) < ε/4. Then |σN (x)− f(x)| < ε for all N > N .

The theorem was proven by Fejér in 1905 at the age of 19, and strength-
ens the theorem by Weierstrass, that states that any continuous and periodic
function is uniformly approximated by a sequence of trigonometric polynomials.
Fejér has given an explicit expression (the Fejér sums) for such polynomials! A
similar proof can be given for integrable functions:

Theorem 20.4.2 (II Fejér’s theorem). If f ∈ L 1(−π, π), the sequence of
Fejér’s sums converges to f in L1(−π, π).

Proof. Given f in L 1, its Fejér sum σN (x) =
∫ π
−π dy f(x + y)ΦN (y) is well

defined, because ΦN is a finite sum of trigonometric functions. We show that
‖f − σN‖1 =

∫ π
−π dx |f(x)− σN (x)| → 0 as N →∞.

‖f − σN‖1 =

∫ π

−π
dx

∣∣∣∣∫ π

−π
dy[f(x+ y)− f(x)]ΦN (y)

∣∣∣∣
≤
∫ π

−π
dx

∫ π

−π
dy|f(x+ y)− f(x)|ΦN (y)

The integrals can be exchanged by Fubini’s theorem:

=

∫ π

−π
dyΦN (y)

∫ π

−π
dx|f(x+ y)− f(x)|

The integral in y is split on the intervals [−π,−δ]∪ (−δ, δ)∪ [δ, π] where δ is by
now unspecified but small. Because of the 2π-periodicity of the functions, the
first interval is shifted by 2π and added to the third. Then:

=

∫ δ

−δ
+

∫ 2π−δ

δ

dyΦN (y)

∫ π

−π
dx|f(x+ y)− f(x)|

The first integral is:

≤

[
sup
|y|<δ

∫ π

−π
dx |f(x+ y)− f(x)|

]∫ δ

−δ
dyΦN (y) ≤ sup

|y|<δ

∫ π

−π
dx |f(x+y)−f(x)|

because Fejér’s kernel is normalized; the sup-term can be made smaller than ε,
for δ ≤ δε. The second integral is:

≤

[
sup

δε<y<2π−δε

∫ π

−π
dx |f(x+ y)− f(x)|

]∫ 2π−δε

δε

dyΦN (y) ≤ 2‖f‖1
N sin2(δε/2)

It is smaller than ε provided that N is large enough, once the δε of the previous
integral is fixed.
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Figure 20.5: Lipót Fejér (Pécs 1880, Budapest 1959) studied in Budapest and
Berlin, as a student of Hermann Schwarz. In Budapest he led a relevant school
of analysis, and was thesis advisor of John von Neumann, Paul Erdös, George
Pólya, Pál Turán, Marcel Riesz, Gábor Szego, Michael Fekete, and others.

Figure 20.6: Andrey N. Kolmogorov (Tambov 1903, Moscow 1987) is the
founder of axiomatic probability theory (1933). Independently with Chapman,
he developed the basic equations for stochastic processes. He gave fundamental
contributions to the theory of turbulence and of dynamical systems. Among his
doctoral students are: Vladimir Arnold, Roland Dobrushin, Eugene Dynkin,
Israel Gelfand, Yakov Sinai.

Corollary 20.4.3. If f ∈ L 1(−π, π) has all Fourier coefficients an = bn = 0,
then f = 0 a.e.

Proof. If an = bn = 0 for all n, the Dirichlet’s sums SN (x) and Fejér’s sums
σN (x) vanish for all N . But II Fejér’s theorem shows that ‖f − σN‖1 → 0 as
N →∞. Then ‖f‖1 = 0⇒ f = 0 a.e.

20.5 Convergence in the mean

Proposition 20.5.1. The trigonometric functions

1√
2π
,

1√
π

cos(nx),
1√
π

sin(nx), n = 1, 2, . . .

are a complete orthonormal system in L2(−π, π).

Proof. If f ∈ L2(−π, π) then f ∈ L1(−π, π) (Schwarz’s inequality: ‖f‖1 =
(1||f |) ≤

√
2π‖f‖2). f orthogonal to all basis elements (an = bn = 0 ∀n)

implies f = 0 a.e. by Corollary 20.4.3.

By a change of scale, the Fourier basis in L2(a, b) is (n = 1, 2, . . . ):

1√
b− a

,

√
2

b− a
cos

(
2πnx

b− a

)
,

√
2

b− a
sin

(
2πnx

b− a

)
(20.31)
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If complex functions are used, the following form is more convenient:

un(x) =
1√
b− a

exp

[
i

2πn

b− a
x

]
, n ∈ Z (20.32)

Since {un} is a complete orthonormal set, any function in L2(a, b) has the Fourier
expansion

f =

∞∑
n=−∞

fnun, fn = (un|f) =

∫ b

a

dxun(x)f(x) (20.33)

where convergence is in L2 norm (in the mean): if SN is the partial sum (Dirich-

let’s sum) SN =
∑N
n=−N (un|f)un, then ‖Sn − f‖2 =

∫ b
a
dx |SN − f |2 → 0 as

N →∞. Moreover:

‖f‖22 =

∫ b

a

dx |f(x)|2 =

∞∑
n=−∞

|fn|2 (Parseval) (20.34)

What can be said about point-wise convergence? Luzin6 conjectured (1906) that
L2 convergence implies almost everywhere convergence: SN (x)→ f(x) a.e.
The conjecture was proven by Lennart Carleson7 in 1966 and extended by Hund
to spaces Lp for p > 1. The important case p = 1 has a different story: in 1923
and at the age 19, Andrei Kolmogorov provided a Lebesgue integrable function
such that the sequence of partial sums is a.e. divergent. Two years later he
sharpened it by showing that divergence is everywhere, and became a celebrity.

20.6 From Fourier series to Fourier integrals

Consider the Fourier expansion of a function on the interval [−L2 ,
L
2 ] :

f(x) =

∞∑
k=−∞

ei2πkx/L

L
fk, fk =

∫ L/2

−L/2
dy e−i2πky/Lf(y)

where for convenience the two normalization factors
√
L are replaced by L in

the sum. In view of the limit L → ∞, introduce the new variable s = 2πk/L,
with spacings δs = 2π/L:

f(x) =
∑
s

δs
eisx

2π
f̃(s), f̃(s) =

∫ L/2

−L/2
dy e−isyf(y)

6Nikolai Luzin and the older Dimitri Egorov were influential mathematicians of Moscow’s
Mathematical Society during stalinian purges. They were both attacked and censured as re-
actionaries. Egorov was arrested and died one year after. Luzin, a specialist in real analysis,
was processed but rehabilitated. No longer were important papers published on foreign jour-
nals. Luzin had important students, like Aleksandr Khinchin, Andrei Kolmogorov, Mickail
Lavrentiev, Aleksei Lyapunov, Pavel Uryson.

7L. Carleson, On the convergence and growth of partial sums of Fourier series, Acta Math.
116 (1966).
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If f is integrable, the function f̃(s) exists for L→∞. If f̃ is sufficiently regular,
it does not change on the scale δs, and the sum may be replaced by an integral:

f(x) =

∫ ∞
−∞

ds

2π
eisx

∫ ∞
−∞

dy e−isyf(y)

According to this formula a function is a continuous superposition of Fourier
components, weighted by a function of the continuous index:

f(x) =

∫ ∞
−∞

ds√
2π
eisx(Ff)(s) (20.35)

(Ff)(s) =

∫ ∞
−∞

dy√
2π

e−isyf(y) (20.36)

The second line defines the Fourier integral of f (the factors 2π are often dis-
tributed differently).



Chapter 21

BOUNDED LINEAR
OPERATORS ON
HILBERT SPACES

21.1 Linear functionals

The space of linear bounded functionals B(H ,C) is H ∗, the dual space of H .
The inner product with a fixed vector (x|·) is a linear functional and is bounded,
by Schwarz’s inequality. The following theorem proves that all functionals act
as inner products:

Theorem 21.1.1 (Riesz’s lemma). For each F ∈ H ∗ there is a unique
xF ∈H such that Fx = (xF |x) for all x ∈H . In addition ‖F‖ = ‖xF ‖.

Proof. If Ker F=H then xF = 0. If KerF is a proper subspace, then there
is a vector y orthogonal to it. Any vector x can be decomposed as x =
(x − y FxFy ) + y FxFy , where the first term belongs to KerF and then is orthog-

onal to y. The evaluation (y|x) = Fx (y|y)
Fy shows that xF = y (Fy)∗

‖y‖2 . The vector

is unique, for suppose that Fx = (xF |x) = (x′F |x) for all x, then 0 = (xF−x′F |x)
i.e. xF = x′F .
Because of Schwarz’s inequality: |Fx| = |(xF |x)| ≤ ‖xF ‖‖x‖; equality is at-

tained at |FxF | = ‖xF ‖2. Therefore: ‖F‖ = supx
|Fx|
‖x‖ = ‖xF ‖.

Because of the identification of bounded functionals with vectors, Hilbert
spaces are self-dual.

21.2 Bounded linear operators

The linear bounded operators with domain H and range in H form the Banach
space B(H ). The set is closed for the involutive action of adjunction:

175
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Theorem 21.2.1. For any operator Â ∈ B(H ) there is an operator Â† ∈
B(H ) (the adjoint of Â) such that:

(x|Ây) = (Â†x|y) ∀x, y ∈H (21.1)

and ‖Â†‖ = ‖Â‖.

Proof. Fix x ∈H , the map y → (x|Ây) is a linear bounded functional. Then,
by Riesz’ theorem, there is a unique vector v such that (x|Ây) = (v|y) for all
y. The correspondence x → v is linear, i.e. it defines a linear operator on H :
v = Â†x.
Equality of norms follows from Schwarz’s inequality and boundedness of Â:
|(Â†x|y)| = |(x|Ây)| ≤ ‖x‖ ‖Â‖‖y‖, if y = Â†x then ‖Â†x‖ ≤ ‖x‖‖Â‖ i.e. Â† is
bounded and ‖Â†‖ ≤ ‖Â‖. The proof of equality is left to the reader.

Exercise 21.2.2. Show that:

(Â+ B̂)† = Â† + B̂† (λÂ)† = λÂ† (21.2)

(ÂB̂)† = B̂†Â† (Â†)† = Â (21.3)

Ân → Â ⇒ Â†n → Â† (21.4)

Proposition 21.2.3. Let Â ∈ B(H ), then Ker Â is closed and

H = Ker Â⊕ RanÂ† = Ker Â† ⊕ RanÂ (21.5)

Proof. Suppose that xn is a sequence in Ker Â, and xn → x. Then ‖Âxn−Âx‖ ≤
‖Â‖‖xn − x‖ → 0 i.e. Âx = limn Âxn = 0 i.e. x ∈ Ker Â.
Since Ker Â is a closed linear subspace, it is H = KerÂ⊕ (KerÂ)⊥.

(RanÂ†)⊥ ={x : (x|y) = 0 ∀y ∈ RanÂ†}
={x : (x|A†x′) = 0 ∀x′ ∈H }
={x : (Âx|x′) = 0 ∀x′ ∈H }
={x : Âx = 0} = KerÂ

Therefore (KerÂ)⊥ = RanÂ†. The second equality results after exchanging the
operators.

This statement is of practical utility. Consider the equation Âx = y; a
solution x exists in H if y belongs to the range of Â. Suppose that the range
is a closed set; then y belongs to it if it is orthogonal to all vectors that solve
Â†x′ = 0.

Exercise 21.2.4. Show that if Â ∈ B(H ) is invertible with bounded inverse,
then also Â† is invertible with bounded inverse, and (Â†)−1 = (Â−1)†.

If the equation Âx = λx has a nonzero solution x ∈ H , then λ and x are
respectively an eigenvalue and an eigenvector of Â, and |λ| ≤ ‖A‖.

Definition 21.2.5. An operator Â ∈ B(H ) is self-adjoint if Â = Â†:

(Âx|y) = (x|Ây), ∀x, y ∈H
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Theorem 21.2.6. The eigenvalues of a self-adjoint operator in B(H ) are real,
and the eigenvectors corresponding to different eigenvalues are orthogonal.

Proof. Let x and x′ be eigenvectors corresponding to eigenvalues λ 6= λ′. From
(Âx|x) = (x|Âx) one obtains λ = λ. From (Âx|x′) = (x|Âx′) one obtains
(λ− λ′)(x|x′) = 0 i.e. x ⊥ x′ if λ 6= λ′.

Exercise 21.2.7. Show that if Â is normal (i.e. ÂÂ† = Â†Â), then eigenvectors
corresponding to different eigenvalues of Â are orthogonal.

Exercise 21.2.8. 1) Let Â ∈ B(H ); show that ‖Â†Â‖ = ‖Â‖2.
2) If Â and B̂ are bounded and self-adjoint then ‖ÂB̂‖ = ‖B̂Â‖.

Exercise 21.2.9. Suppose that Â ∈ B(H ), and H is complex. Prove that:
if (x|Âx) = 0 for all x then Â = 0;
if (x|Âx) is real for all x, then Â = Â†.
(if H is real, the first condition implies Â = −Â†).

Exercise 21.2.10. Show that for a bounded and self-adjoint operator it is:

‖Â‖ = sup
x 6=0

|(x|Âx)|
‖x‖2

(21.6)

21.2.1 Orthogonal projections

Given a closed subspace M and a vector x, the projection theorem states that
x = p + w, where p ∈ M and w ∈ M⊥, and the decomposition is unique.
Therefore the projection operator on M , P̂ : x→ p, is well defined (sometimes
we write P̂ (M) to identify the subspace).

Proposition 21.2.11. The orthogonal projector P̂ is linear, bounded, self-
adjoint, and idempotent (P̂ 2 = P̂ ).

Proof. - Linearity. Let x = p + w and x′ = p′ + w′, then αx + βx′ = (αp +
βp′) + (αw + βw′), where αp + βp′ ∈ M and αw + βw′ ∈ M⊥, ∀α, β. As the
decomposition is unique, necessarily it is P (αx+βx′) = αp+βp′ = αP̂x+βP̂y.
- Boundedness. Since x = P̂ x + w, ‖x‖2 = ‖P̂ x‖2 + ‖w‖2 ≥ ‖P̂ x‖2 then
‖P̂ x‖ ≤ ‖x‖. Equality holds for x ∈M . Then P̂ ∈ B(H ) and

‖P̂‖ = 1 (21.7)

- Self-adjointness. (x− P̂ x|y − P̂ y) = (x− P̂ x|y) (because x− P̂ x ∈ M⊥), for
analogous reason (x− P̂ x|y − P̂ y) = (x|y − P̂ y); then (P̂ x|y) = (x|P̂ y).
- Idempotency. P̂ 2x = P̂ p = p = P̂ x, then P̂ 2 = P̂ .

These properties uniquely characterise an orthogonal projection operator. It
is convenient to reverse the approach and introduce such operators through the
definition:

Definition 21.2.12. P̂ ∈ B(H ) is an orthogonal projector if P̂ 2 = P̂ , P̂ † = P̂ .
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The definition recovers the properties of the original geometric characterization:
1) The subspace of projection is M = RanP̂ .

If x ∈M then x = P̂ y and P̂ x = P̂ 2y = x.
2) 1− P̂ is an orthogonal projector if P̂ is. Since (1− P̂ )(P̂ y) = 0, it is

Ker (1− P̂ ) = M . Therefore M is closed.
3) Let y = x− P̂ x, then P̂ y = 0 and (y|P̂ x) = 0 ∀x, i.e. KerP̂ = M⊥.
4) ‖P̂ x‖2 = (P̂ x|P̂ x) = (P̂ 2x|x) ≤ ‖P̂ x‖‖x‖, then ‖P̂ x‖ ≤ ‖x‖. Equality holds

for x ∈M , then ‖P̂‖ = 1.
5) Since M ⊕M⊥ = H , a projector P̂ has only the eigenvalues 1 and 0, with

eigenspaces M and M⊥.

Examples: 1) In L2(R) the multiplication operator f → χ[a,b]f , where χ[a,b] is
the characteristic function of an interval [a, b], is an orthogonal projector. The
invariant subspace M is given by functions that vanish a.e. for x /∈ [a, b].
2) The operators (P±f)(x) = 1

2 [f(x)± f(−x)] are orthogonal projectors on the
orthogonal subspaces of (a.e.) even and odd functions.

Exercise 21.2.13. Let P̂ and P̂ ′ be projectors on subspaces M and M ′, then:
1) P̂ + P̂ ′ is a projector iff M ⊥M ′. In this case P̂ + P̂ ′ = P̂ (M ⊕M ′).
2) P̂ P̂ ′ is a projector iff P̂ and P̂ ′ commute. In this case P̂ P̂ ′ = P̂ (M ∩M ′).

Example 21.2.14. If {uk}Nk=1 is a s.o.n. the operator P̂ x =
∑N
k=1(uk|x)uk is

the orthogonal projector on the linear subspace spanned by the vectors uk.
This is true also for N =∞. For a s.o.n.c. P̂ = 1 (identity operator).

Exercise 21.2.15. Let x1 . . . xn be linearly independent vectors in a Hilbert
space. Write the projection operator on the linear subspace spanned by the n
vectors.
Solution: P̂ y =

∑
ij xi[G

−1]ij(xj |y), where Gij = (xi|xj) is Gram’s matrix.

Exercise 21.2.16. Let (D̂Nf)(x) =
∫ 2π

0
dyDN (x− y)f(y), where DN (x) is the

Dirichlet kernel (20.6), and f ∈ L2(0, 2π). Show that D̂N is a projector, and
identify the subspace. Are the sequences D̂N and D̂Nf both convergent?

21.2.2 Integral operators

Linear integral operators are important, and arise for example in the study of
linear differential equations. Consider the inhomogeneous equation

f(x) = g(x) + λ

∫
Ω

dy k(x, y)f(y),

where λ is a parameter, k is the kernel of the integral operator, g is assigned
and f is the unknown function. In operator form it is f = g + λK̂f ,

(K̂f)(x) =

∫
Ω

dy k(x, y) f(y) (21.8)

The appropriate functional setting is suggested by the properties of the function
g and of the kernel k. A solution exists if g belongs to the range of 1− λK̂.

Let Ω be a bounded interval ([0, 1] for definiteness). If k ∈ L 2(Q) (Q is
the unit square) then K̂ is a bounded operator on L2(0, 1): by Fubini’s theorem
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the function y → |k(x, y)| is measurable and belongs to L 2(0, 1); by Schwarz’s
inequality |(K̂f)(x)| ≤ ‖k(x, ·)‖‖f‖2. Squaring and integration in x gives:

‖K̂f‖2 ≤ ‖k‖ ‖f‖2

where ‖k‖2 =
∫
Q
dxdy|k(x, y)|2. The adjoint operator is now evaluated1:

(h|K̂f) =

∫ 1

0

dxh(x)

[∫ 1

0

dy k(x, y)f(y)

]
=

∫ 1

0

dy

[∫ 1

0

dxk(x, y)h(x)

]
f(y) = (K̂†h|f)

(K̂†h)(x) =

∫ 1

0

dyk(y, x)h(y) (21.9)

The integral operator is self-adjoint if k(x, y) = k(y, x).
Let us enquire about the solution of the integral equation (I − λK̂)f = g.

A solution exists if g ∈ Ran(I − λK) i.e. g ⊥ Ker(I − λK̂†). This means that g
must be orthogonal to the eigenvectors K̂†u = (1/λ)u.
In particular, if |λ|‖K‖ < 1, it is both Ker (1−λK̂†) = {0} and Ker (1−λK̂) =
{0}, and the operator (1− λK̂)−1 exists with domain H . The operator can be
expanded in a geometric series that converges for any g:

f = g + λK̂g + λ2K̂2g + . . .

The powers of the operator are integral operators with kernels k1(x, y) = k(x, y),

kn+1(x, y) =
∫ 1

0
du k(x, u) kn(u, y).

Example 21.2.17. Consider the integral equation

f(x) = g(x) +

∫ x

0

f(y)dy, a.e. x ∈ [0, 1], g ∈ L2(0, 1)

It corresponds to the Cauchy problem f ′ = f + g′ with f(0) = g(0). The kernel
k(x, y) = θ(x − y) has L2 norm 1/

√
2, therefore the iterative solution of the

integral equation converges, with kernels kn+1(x, y) = θ(x− y) (x− y)n/n!. The
convergent Neumann series gives

f(x) = g(x) +

∫ x

0

dy ex−yg(y)

Example 21.2.18. In L2(0, 2π) (real functions) consider the equation

f = λK̂f + g, (K̂f)(x) =

∫ 2π

0

dy sin(x+ y)f(y), λ ∈ R

1the steps are justified by Fubini’s theorem for the exchange of order of integration: let
f(x, y) be measurable on M×N , then

∫
M dm(

∫
N dm|f |) <∞ iff

∫
N dm(

∫
M dm|f |) <∞ and,

if they are finite it is: ∫
M
dm

(∫
N
dmf

)
=

∫
N
dm

(∫
M
dmf

)
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It is (K̂f)(x) = f1 sinx + f2 cosx, where f1 =
∫
dx cos(x)f(x) and f2 =∫

dx sin(x)f(x). The operator K̂ is rank 2 and self-adjoint. The problem is
then two-dimensional and the solution, if existent, has the form:

f(x) = λ(f1 sinx+ f2 cosx) + g(x)

By taking the inner products with cosx and sinx we get:[
1 −λπ
−λπ 1

] [
f1

f2

]
=

[
g1

g2

]
where g1 = (cos |g) and g2 = (sin |g). The solution exists for any g and is unique
if 1− λ2π2 6= 0.
- If λ 6= ± 1

π , matrix inversion gives f1 and f2, and:

f(x) = g(x) + λ

∫ 2π

0

dy
sin(x+ y) + λπ cos(x− y)

1− λ2π2
g(y)

- If λ = 1
π , a solution exists if g ∈ Ran(I− 1

π K̂) i.e. g ⊥ Ker(I− 1
π K̂) (K̂ = K̂†).

The functions K̂u = πu, up to a pre-factor, are: u(x) = sinx + cosx. Then:∫ 2π

0
dx(sinx+ cosx)g(x) = g1 + g2 = 0. The solution is

f(x) =
f1

π
sinx+

f1 − g1

π
cosx+ g(x)

where f1 is an arbitrary constant.
- If λ = − 1

π the case is treated similarly.

Exercise 21.2.19. Show that the following linear operator belongs to B(L2(R))
and it is self-adjoint:

(T̂ f)(x) =

∫ ∞
−∞

dy
f(y)

x2 + y2 + 1

(T̂ is not invertible, as all odd-parity functions belong to the kernel).

21.2.3 The position operator

On L2[a, b] define the “position” operator that multiplies a function f by the
function x (x(t) = t): Q̂f = xf i.e. (Q̂f)(t) = tf(t).
The operator is bounded, ‖Q̂f‖ ≤ max(|a|, |b|) ‖f‖, and it is self-adjoint:

(g|Q̂f) =

∫ b

a

dt g(t)t f(t) =

∫ b

a

dt tg(t)f(t) = (Q̂g|f).

The eigenvalue equation Q̂f = λf has no solution in L2[a, b]: the equation
(t − λ)f(t) = 0 a.e. t ∈ [a, b] implies that f = 0 a.e. We may ask if there
are “approximate eigenfunctions”: ‖Q̂u − λu‖ < ε‖u‖. Given λ, consider the
normalized functions uη = 1√

2η
χ[λ−η,λ+η] and evaluate

‖Q̂uη − λuη‖2 =

∫ b

a

dt(t− λ)2uη(t)2 =
η2

3
→ 0



CHAPTER 21. BOUNDED LINEAR OPERATORS 181

The limit η → 0 of uη does not exist in Hilbert space2. λ is a generalized
eigenvalue, and uη is a generalized eigenfunction. The set of such eigenvalues is

the continuum spectrum; in this case σc(Q̂) = [a, b].

21.2.4 The linear momentum operator

In L2[a, b] the operator acting as a derivative requires that a function admits
derivative and is square-integrable. We introduce a suitable set.
A function f is absolutely continuous on [a, b], f is AC[a, b], if there is a function
h ∈ L 1[a, b] such that:

f(x) = f(a) +

∫ x

a

dx′h(x′), x ∈ (a, b).

The functions AC[a, b] are continuous and differentiable: f ′ = h a.e.. They form
a linear subset in L p(a, b) for all p ≥ 1. If h is a continuous function, by the
theorem of the mean: f ′(x) = h(x).
The derivative is the “linear momentum” operator3

(P̂ f)(x) = −if ′(x) (21.10)

with domain of functions AC[a, b] such that f ′ ∈ L 2[a, b]. If f1 and f2 are such
functions, integration by parts gives:

(f1|P̂ f2) = −i
∫ b

a

dxf1(x)f ′2(x) = −if1f2

∣∣∣b
a

+ (P̂ f1|f2).

The operator is symmetric provided that the boundary terms cancel. This
is achieved if the domain of P̂ is restricted to AC functions with appropriate
boundary conditions (b.c.): f(b) = f(a) = 0 (Dirichlet b.c.), or f(b) = ±f(a)
(periodic/antiperiodic b.c.) or f(b) = eiθf(a) (Bloch b.c. with θ ∈ R). They
produce three different definitions of P̂ (same action but different domains where
it is symmetric).
With periodic b.c. the operator P̂ has a complete orthonormal set of eigenfunc-
tions P̂ uk(x) = kuk(x), k ∈ Z, given by the Fourier basis (20.32) .

21.3 Unitary operators

Definition 21.3.1. A linear operator Û with domain H and range in H is an
isometry if ‖Ûx‖ = ‖x‖ for all x. If also Ran Û = H the operator is unitary.

1) The conservation of the norm implies that Ker Û = {0} i.e. Û−1 exists and

(Ûx|Ûy) = (x|y) ∀x, y (21.11)

2) The operator is bounded with norm ‖Û‖ = 1.
3) (x|y) = (Ûx|Ûy) = (Û†Ûx|y) ∀x, y, then Û†Ûx = x for all x i.e.

Û†Û = I (21.12)

2the functions do not form a Cauchy sequence: for δ < η it is ‖uη − uδ‖2 = 2(1−
√
δ/η)

which may not be small as η, δ → 0.
3physicists introduce Planck’s constant, P̂ f = −i~f ′.



CHAPTER 21. BOUNDED LINEAR OPERATORS 182

Therefore, Û† = Û−1, and it is a unitary operator: ‖x‖ = ‖Û(Û†x)‖ = ‖Û†x‖
for all x.
4) If λ is an eigenvalue of Û , then |λ| = 1. Eigenvectors with different eigenvalues
are orthogonal.
5) The product of unitary operators is unitary.

Exercise 21.3.2. If Û and V̂ are unitary then ‖Û ÂV̂ ‖ = ‖Â‖ ∀Â ∈ B(H ).

Exercise 21.3.3. If {uk}∞k=1 is a complete orthonormal system and {qk}∞k=1

are real numbers, then

Ûx =

∞∑
k=1

eiqk(uk|x)uk

is a unitary operator.

Proof. If Ênx is the partial sum, for all x the sequence Ênx is Cauchy:

‖Ên+px− Ênx‖2 =
∑n+p

k=n+1
|(uk|x)|2

because
∑n
k=1 |(uk|x)|2 is convergent (Parseval). Then Ênx converges and Ûx

exists for all x. ‖Ênx‖2 =
∑n
k=1 |(uk|x)|2. As the norm is continuous, in the

limit and by Parseval’s theorem: ‖Ûx‖ = ‖x‖ ∀x (i.e. Û is isometric).
The vectors Ûuk = eiqkuk are a complete orthonormal system contained in
Ran Û . Then Ran Û = H (Û is unitary).
If |qk| ≤ Q for all k, then Û = exp(iĤ) where Ĥx =

∑∞
k=1 qk(uk|x)uk is

bounded and self-adjoint, and ‖Ĥ‖ ≤ Q.

Example 21.3.4. If Ĥ ∈ B(H ) and Ĥ = Ĥ†, then Ût = e−itĤ , t ∈ R are
unitary operators and form a one-parameter strongly continuous group

ÛtÛs = Ût+s

lim
t→0

Ûtx→ x ∀x ∈H

Ĥ is the generator of the group.

Proof. The sequence Ên(t) =
∑n
k=0(−itĤ)k/k! converges in B(H ) for all t.

- It is Ên(t)† = Ên(−t); the adjunction is a continuous map, then Û†t = Û−t.
- The operators form a 1-parameter group: ÛtÛs = Ût+s.
- Ût is isometric: (Ûtx|Ûty) = (Û†t Ûtx|y) = (x|y).
- Given y ∈H ∃x s.t. Ûtx = y? It is Û−ty. Then Ran Ût = H (Ût is unitary).

- Strong continuity: ‖Ên(t)x− x‖ ≤
∑n
k=1

|t|k
k! ‖H‖

k‖x‖ ≤ (e|t|‖H‖ − 1)‖x‖ ∀n.

For t→ 0 one obtains that ‖Ên(t)x− x‖ → 0 uniformly in n.

Exercise 21.3.5. Let Ĥ ∈ B(H ) be self-adjoint. Show that the Cayley trans-
form of Ĥ, (1− iĤ)(1 + iĤ)−1, is well defined and is a unitary operator. What
is the Cayley transform of a projector?

Exercise 21.3.6. Show that if Ĥ is bounded and self-adjoint, the operators

Ût = e−itĤ , t ∈ R, are unitary and form a group. Ĥ is the generator of the
group (see Sect.18.5.3).

Exercise 21.3.7. P̂ is a projector; evaluate eiθP̂ and (z − P̂ )−1 (z 6= 0, 1).
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21.4 Notes on spectral theory

Discrete spectrum: z ∈ σp(Â) if z is an eigenvalue:

∃u ∈H such that Âu = zu

i.e. Ker(z − Â) 6= {0} i.e. (z − Â)−1 does not exist.
Continuous spectrum: z ∈ σc(Â) if z is a generalized eigenvalue:

z /∈ σp(Â), ∃{un} ⊂H , ‖un‖ = 1, such that lim
n→∞

‖Âun − zun‖ = 0.

For a bounded operator, the set σ = σp ∪ σc is the spectrum of the operator.

Remark 21.4.1.
1) If Â = Â†, then σp(Â) ⊆ R.
2) Continuous spectrum: {un} is not a Cauchy sequence. Convergence un → u
and continuity of Â would imply that u is an eigenvector and z ∈ σp(Â).

3) If z ∈ σc(Â) the operator (z − Â)−1 exists, but it cannot belong to B(H ).
Proof: Suppose that it does (then the domain is H and it is bounded):

1 = |(un|(z − Â)−1(z − Â)un)| ≤ ‖(z − Â)−1‖‖zun − Âun‖

since for n→∞ the last factor is zero, the other factor cannot be finite.
It turns out that either (z − Â)−1 has domain H without being bounded, or its
domain is strictly contained in H .
4) Since |(un|(Â − λ)un)| ≤ ‖Âun − λun‖, it is λ = limn→∞(un|Âun). Then,
for self-adjoint operators, it is σc(Â) ⊆ R and |λ| ≤ ‖Â‖ (use continuity of the
modulus).
5) If z ∈ σc(Â) then z ∈ σc(Â†) and {0} = Ker (z − Â†) = Ran (z − Â)⊥ i.e.

H = D (z − Â)−1. Therefore, either D(z− Â)−1 = H (but the resolvent is not
bounded) or D(z − Â)−1 is a proper subset, but dense.

Proposition 21.4.2. If z /∈ σ then (z − Â)−1 ∈ B(H )

Proof. Since z /∈ σ the resolvent exists. The domain of the resolvent Ran (z−Â)
is dense in H : {0} = Ker(z − Â)† = Ran(z − Â)⊥. It is also:

∃δ such that ‖(z − Â)u‖ ≥ δ‖u‖ ∀u ∈H

The vectors v = (z − Â)u span the domain of the resolvent, then:

∃δ such that ‖v‖ ≥ δ‖(z − Â)−1v‖ ∀v ∈ D(z − Â)−1

Then the resolvent is bounded by 1/δ on its domain. By theorem 18.3.8 the
resolvent extends to a bounded operator on the closure of the domain, H .



Chapter 22

UNITARY GROUPS

The Hilbert space is the mathematical stage for quantum mechanics, continuous
symmetries are main actors in the play, and correspond to unitary operators1.
Of special importance are groups that depend continuously on one parameter,
like rotations around a given axis, or translations along a given direction. They
correspond to special families of unitary operators. The following theorems are
very important and useful (they are stated without proof2).

22.1 Stone’s theorem

Definition 22.1.1. A family of unitary operators {Ûs, s ∈ R}, is a strongly
continuous one-parameter unitary group if:

ÛsÛs′ = Ûs+s′

lim
s→0
‖Usx− x‖ = 0 ∀x ∈H .

It is clear that the group is Abelian, Û0 = I and Û−1
s = Û−s. For such groups,

the following fundamental theorem holds:

Theorem 22.1.2 (Stone’s theorem). Let Ûs be a strongly continuous one-
parameter unitary group on a Hilbert space. Then there is a self-adjoint operator
Ĥ such that

Ûs = e−isĤ (22.1)

Ĥ is the generator of the group, with domain

D(Ĥ) = {x ∈H such that lim
s→0

Ûsx− x
−is

exists},

and Ĥx is precisely the above limit.

1Discrete symmetries may correspond also to anti-unitary (i.e. antilinear and norm con-
serving) operators. An example is time-reversal.

2see for example: K. Schmüdgen, Unbounded Self-adjoint Operators on Hilbert Space,
Springer 2012.
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Theorem 22.1.3 (Lie-Trotter formula). Let Â and B̂ be self-adjoint opera-
tors. If Â+ B̂ is self-adjoint on D(Â) ∩D(B̂), then:

eit(Â+B̂)x = lim
n→∞

[
eitÂ/neitB̂/n

]n
x (22.2)

22.2 Weyl operators

Two important families of unitary operators on L2(Rn) are:
translations by vectors a ∈ Rn:

(Ûaf)(x) = f(x− a), ÛaÛa′ = Ûa+a′ (22.3)

multiplication by a phase factor with vector p ∈ Rn:

(V̂pf)(x) = e−
i
~p·xf(x), V̂pV̂p′ = V̂p+p′ (22.4)

Planck’s constant ~ is here introduced to give x, a the physical dimension of
length, and p the dimension of momentum.
The translations along a fixed direction Ûan, a ∈ R, and phase multiplications
V̂pn, p ∈ R, are strongly continuous one-parameter unitary groups. Stone’s
theorem implies the existence of self-adjoint generators.
On the dense set S (R3) (C∞ rapidly decreasing functions) a Taylor expansion
gives:

(Ûanf)(x) = f(x− an) = f(x) + (−an · ∇)f(x) + 1
2! (−an · ∇)2f(x) + . . .

Therefore, the generator of translations with direction n is the self-adjoint op-
erator whose restriction to analytic functions is −i~n · ∇ =

∑
i niP̂i, and

Ûa = exp
[
− i

~a · P̂
]
, P̂kf = −i~ ∂f

∂xk

P̂k is the generator of translations along the direction k. Momentum operators
are self-adjoint on a dense domain in L2(R3) and act as derivatives on the
subset of analytic functions. The property ÛaÛa′ = Ûa′Ûa for all vectors a and
a′ implies, for infinitesimal vectors, the relation [P̂i, P̂j ] = 0.

The generator of the one-parameter group (V̂pnf)(x) = exp(− i
~pn · x)f(x)

is the (unbounded) self-adjoint operator n · Q̂, and

V̂p = exp

[
− i
~

p · Q̂
]
, (Q̂if)(x) = xif(x).

The n operators Q̂i are self-adjoint and commute on a dense domain in L2(R3).
The generators Q̂i and P̂i i = 1 . . . n form Heisenberg’s algebra:

[Q̂i, Q̂j ] = 0, [P̂i, P̂j ] = 0, [Q̂i, P̂j ] = i~δij

The first two commutation relations correspond to the fact that the unitary
groups are Abelian. The mixed commutator, proportional to the identity oper-
ator, reflects a simple relation among the groups (Weyl’s commutation relation):

V̂p Ûa = e
i
~p·a Ûa V̂p (22.5)
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Proof. (V̂pÛaf)(x) = e
i
~p·x(Ûaf)(x) = e

i
~p·xf(x− a) = e

i
~p·a(V̂pf)(x− a)

= e
i
~p·a(ÛaV̂pf)(x).

Exercise 22.2.1. Show that the translation operator (Ûaf)(x) = f(x− a) does
not have eigenvectors in L2(R). (Hint: a periodic function cannot be integrable).

Exercise 22.2.2. Let [Â, B̂] = iI, Â = Â† and B̂ = B̂†. Show that Â and B̂
cannot be both bounded.
Sketch of the proof: suppose that Â and B̂ are bounded, then [Ân, B̂] = inÂn−1

and [exp(−itÂ), B̂] = t exp(−itÂ); conclude that ‖B̂‖ is larger that any real
number.

Exercise 22.2.3 (Scale transformations). On L2(R) the operators

(D̂λf)(x) = e−λ/2f(e−λx), λ ∈ R (22.6)

are a strongly continuous one-parameter unitary group. On the dense subspace
S (R) (see chapter on Schwartz space):
1) obtain the generator D̂ = 1

2 (Q̂P̂ + P̂ Q̂) i.e. D̂λ = exp(−iλD̂);

2) show that D̂†λQ̂D̂λ = eλQ̂ and D̂†λP̂ D̂λ = e−λP̂ .

Scale transformations are related to the Virial property. This is illustrated
for the anharmonic oscillator, Ĥ = 1

2m P̂
2 + 1

2kQ̂
2 + bQ̂4 (b > 0).

Let Ĥψ = Eψ, then E = 1
2m 〈P̂

2〉+ 1
2k〈Q̂

2〉+ b〈Q̂4〉, where E = 〈Ĥ〉 = (ψ|Ĥψ)

etc. are the average values. The action of a scale transformation is: 〈D̂†λĤD̂λ〉 =

e−2λ 1
2m 〈P̂

2〉+ e2λ 1
2k〈Q̂

2〉+ be4λ〈Q̂4〉. The linear term of an expansion in small

λ is: i(ψ|[D̂, Ĥ]ψ) = −2 1
2m 〈P̂

2〉+ 2 1
2k〈Q̂

2〉+ 4b〈Q̂4〉. Since the left hand side is
zero for an eigenvector, an identity is obtained among terms that contribute to
the total energy. If b = 0, one gets the equality of kinetic and potential energy
terms of the harmonic oscillator, 〈 1

2m P̂
2〉 = 〈 12k

2Q̂2〉, that is used, for example,
in the theory of specific heats.

22.3 Space rotations, SO(3)

Space rotations act on vectors in R3 as 3 × 3 real matrices R that preserve
lengths, RRt = I3, and orientation, detR = 1. They form the group SO(3).
Being unitary, rows or colums of R are orthogonal and normalized, eigenvalues
are on the unit circle.
The characteristic polynomial det(zI3−R) is real cubic, then it necessarily has
a positive real zero (equal to one) corresponding to a real eigenvector of R: the
invariant vector Rn = n.
The other two eigenvalues may be 1, 1 or −1,−1 (then R is the identity matrix
or a diagonal matrix describing two reflections) or e±iϕ with eigenvectors u± iv
making with n an orthogonal set in C3. This implies that the vectors n, u and
v are orthogonal in R3. Note that trR = 1 + 2 cosϕ.
The eigenvalue equation R(u± iv) = e±iϕ(u± iv) i.e. the pair

Ru = u cosϕ− v sinϕ

Rv = u sinϕ+ v cosϕ
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shows that two vectors rotate under the action of R in the plane perpendicular
to n. For the rotation to be anticlockwise, the orientation n = v× u is chosen.
Every vector x can be expanded in the orthonormal basis: x = xnn+xuu+xvv
where xn = x · n etc. The action of R is:

Rx =xnn + xu(u cosϕ− v sinϕ) + xv(u sinϕ+ v cosϕ)

=xnn + (xuu + xvv) cosϕ+ (xvu− xuv) sinϕ

=xnn + (x− xnn) cosϕ+ n× x sinϕ

= x cosϕ+ (1− cosϕ)(n · x)n + n× x sinϕ

Exercise 22.3.1. Write the rotation as a matrix on the column vector (x, y, z)t.

The invariant unit vector n that identifies the rotation axis and the rotation
angle ϕ measured anticlockwise, are a useful parametrization of rotations. We’ll
soon discover that the parameters n and ϕ combine in a vector nϕ.
The expansion for an infinitesimal angle provides the neighbourhood of the iden-
tity matrix, which is extremely instructive in the study of groups with analytic
dependence on parameters (Lie groups):

Rx = x + n× x δϕ + . . . = (I3 + δϕA+ . . .)x

A =

 0 −n3 n2

n3 0 −n1

−n2 n1 0

 = n ·A (22.7)

A1 =

 0 0 0
0 0 −1
0 1 0

 , A2 =

 0 0 1
0 0 0
−1 0 0

 , A3 =

 0 −1 0
1 0 0
0 0 0


The rotations with same invariant vector form a commutative subgroup:

R(nϕ1)R(nϕ2) = R(n(ϕ1 + ϕ2)) (22.8)

If one angle is infinitesimal: R(nϕ)(I3 + δϕn ·A + . . . ) = R(n(ϕ+ δϕ)). Since
the factors can be exchanged, one concludes that the matrices of the subgroup
R(nϕ) commute with n ·A (then, they have the same eigenvectors). Moreover,
by taking the limit δϕ to zero:

d

dϕ
R(nϕ) = (n ·A)R(nϕ) (22.9)

with the initial condition R(0) = I3. Since factors commute, the solution is

R(nϕ) = eϕn·A (22.10)

The matrix n ·A is the generator of rotations along the direction n. The three
matrices Ai are the generators along the three coordinate directions, and are a
basis for antisymmetric matrices.
Real antisymmetric matrices form a linear space that is closed under the oper-
ation A,A′ → [A,A′]. The commutator is a Lie product3, and the linear space

3In a linear space X, a Lie product is a bilinear map ∗ : X ×X → X such that x ∗ x = 0,
x ∗ y = −y ∗ x, (x ∗ y) ∗ z + (y ∗ z) ∗ x+ (z ∗ x) ∗ y = 0 (Jacobi property).
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with Lie product is the Lie algebra so(3) of the SO(3) group. Because Ai are a
basis, the Lie product of two basis matrices is expandable in the basis itself,

[Ai, Aj ] = εijkAk (22.11)

The coefficients4 εijk are the structure constants of so(3) and are typical of the
rotation group.
The characteristic polynomial of a 3×3 matrix M is det(z I3−M) = z3 +az2 +
bz + c = 0. Cayley-Hamilton’s theorem states that M3 + aM2 + bM + cI3 = 0.
Then it is possible to expand the exponential of a 3 × 3 matrix into a sum of
powers:

R = eϕ(n·A) = α I3 + β(n ·A) + γ(n ·A)2

If this identity is acted on the three eigenvectors of R (that are also eigenvectors
of n ·A with eigenvalues 0, ±i) a linear system is obtained: 1 = α, e±iϕ =
α± iβ−γ. The coefficients are evaluated and one re-obtains the explicit general
form of a rotation matrix:

R(nϕ) = I3 + sinϕ(n ·A) + (1− cosϕ)(n ·A)2 (22.12)

Each rotation is identified by a vector nϕ in the ball of radius π. A diameter
corresponds to the subgroup of rotations with same rotation axis; the two op-
posite points ±nπ at the surface give the same rotation and must be identified.
The diameter is then a circle, the center of the sphere is the unit of the group.
Therefore, the manifold of parameters is a sphere with opposite points at the
surface being identified (a bundle of circles through the origin). The identifi-
cation makes the manifold doubly connected: two rotations (two points A, B
of the manifold) may be connected by two inequivalent paths (one path cannot
be continuously deformed into the other). A choice is: the chord AB, the path
that joins A to the surface at a point C = C′ (antipode) and continues to B.

Example 22.3.2. Find the angle and the invariant vector of the rotation

R = eA , A =

 0 3 1
−3 0 −5
−1 5 0

 .
Note that A = −At is normal and shares with R the same eigenvectors. There-
fore if z is an eigenvalue of A, ez is an eigenvalue of R. The invariant vector
solves An = 0 i.e. 0 3 1

−3 0 −5
−1 5 0

 n1

n2

n3

 = 0 ⇒ n = ± 1√
35

 5
1
−3

 (22.13)

The eigenvalues of A solve 0 = det(zI3 − A) = z3 + 35z. They are 0, ±i
√

35.
The angle of rotation is therefore

√
35 radiants (mod. 2π).

Since the rotation angle is positive if anticlockwise with respect to the direction
of n, we must decide the sign of n. This can be done by checking the infinites-
imal rotation of a conveniently chosen vector: a rotation with same axis but

4ε123 = 1 and cyclic, ε213 = −1 and cyclic, zero otherwise. Note that the vector product
of two real vectors is (~a×~b)i = εijkajbk.
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infinitesimal angle is I3 + ε√
35
A + . . . . The vector v = (0, 0, 1)t transforms to

v + δv where

δv =
ε√
35

 1
−5
0

 = εn× v

provided that n is chosen with the upper sign in (22.13).

22.3.1 SU(2)

More fundamental than SO(3) for the theory of rotations is the group SU(2) of
unitary 2× 2 complex matrices, U†U = I with detU = 1:

U =

[
z −w
w z

]
, |z|2 + |w|2 = 1 (22.14)

The parameters span the surface of the unit sphere in R4, which has no bound-
ary, and is simply connected. Another parametrization of SU(2) is obtained by
solving the constraints:

U(nϕ) = cos
ϕ

2
− in · σ sin

ϕ

2
(22.15)

σi are the Pauli matrices. It is simple to check that the expression corresponds
to the exponential representation:

U(nϕ) = e−
i
2ϕn·σ (22.16)

The generators σi/2 are a basis for traceless Hermitian 2 × 2 matrices, which
is the Lie algebra su(2) of SU(2), with Lie product H,H ′ → −i[H,H ′]. The
structure constants are the same of su(3):

−i
[σi

2
,
σj
2

]
= εijk

σk
2

(22.17)

The exponential map takes the Lie algebra to the Lie group:

exp : su(2) → SU(2).

Despite the diversity of SO(3) and SU(2), their exponential representations are
formally identical: only a replacement of the basis matrices changes one into
another, the structure constants being the same.
For SU(2) the parameter space is the ball in R3 of radius 2π. However, all
“surface” points correspond to the single matrix of inversion: U(±n 2π) = −1.
Therefore, the manifold is a bundle of circles (the diameters are the one param-
eter subgroups) with points (matrices) ±n 2π in common.
This parameter space, or the surface of the unit sphere in R4 (|z|2 + |w|2 = 1)
are simply connected manifolds: this makes SU(2) more fundamental (covering
group) than SO(3).

Exercise 22.3.3. Show that U†σU = Rσ, R ∈ SO(3). Therefore ±U corre-
spond to the same R matrix.
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22.3.2 Representations

From the point of view of physics, space rotations are a subgroup of the Galilei
and of the Lorentz groups of symmetries for physical laws.
An observer O is specified by an orthonormal frame ek, which can be identified
materially by rigid rulers for measuring positions, at right angles at a point (the
origin). A rotated observer O′ is an orthonormal frame e′k with same origin
and orientation. A point P has coordinates x′k linked by a rotation matrix to
the coordinates measured by O: x′k = Rkjxj .
Suppose that O and O′ measure in every point some quantity (a field). In the
simplest case the quantity is a number (a scalar) that is a property of the point.
They measure two scalar fields f and f ′, and the values of the two fields at the
same physical point P (of coordinates x and x′) must be the same:

f(x) = f ′(x′), i.e. f ′(x) = f(R−1x) (22.18)

If they measure a vector field (for example a force field), they measure a physical
arrow at each point. Since they use rotated frames, the components of the arrow
at a point are different:∑

k

Vk(x)ek =
∑
k

V ′k(x′)e′k, ⇒ V ′k(x) = RkjVj(R
−1x) (22.19)

The two laws describe the transformation of a scalar field and a vector field under
rotations. A spinor 1/2 field is a two component complex field that transforms
with a SU(2) rotation:

ψ′a(x) = U(R)abψb(R
−1x) (22.20)

If the (scalar, spinor, vector or whatever) fields F and F ′ measured by O
and O′ are thought of as points in the same functional space, the rotation
of coordinates R induces a map UR : F → F ′. Since fields can be linearly
combined, the map is asked to be linear. Moreover, if two rotations R and R′

are done in the order, the observer O′′ is linked to O by x′′ = R′Rx, and thus
F ′′ = UR′RF i.e. maps form a linear representation of the rotation group:

UR′R = UR′UR (22.21)

Let us consider some relevant cases.
• Think of a scalar field f as a “point” in the function space L2(R3). A
rotation induces the linear map f ′ = ÛRf defined by (ÛRf)(x) = f(R−1x).
The operators ÛR are unitary because Lebesgue’s measure is rotation invariant,
then ÛR−1 = Û†R.
The rotations with fixed direction n correspond to a commutative subgroup
parameterized by the angle: Ûn(ϕ)Ûn(ϕ′) = Ûn(ϕ + ϕ′) (they are a strongly
continuous one-parameter group). By Stone’s theorem there is a self-adjoint

(unbounded) generator such that Ûn(ϕ) = e−
i
~ϕL̂(n). The self-adjoint operator

L̂(n) is the generator of the one parameter group, and is conveniently found by
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considering the action of an infinitesimal rotation on the set of analytic functions

(Ûn(δϕ)f)(x) =f(x− δϕ n× x + . . .)

=f(x)− δϕ (n× x)k
∂f

∂xk
(x) + . . .

=f(x)− i

~
δϕ (n · Lf)(x) + . . .

The generator is found to be L̂(n) = n · L, the projection along n of the orbital
angular momentum

L = Q×P (22.22)

The three operators L̂x, L̂y and L̂z satisfy the Lie algebra

1

i~
[L̂i, L̂j ] = εijkL̂k (22.23)

and generate the unitary subgroups representing rotations around the three
coordinate axis.
• For a 1/2 spinor field ψa (a = 1, 2), the expansion near unity of (22.20) gives

[U(n δϕ)ψ]a(x) =
[
I − iδϕn · σ

2
+ . . .

]
ab

(
I − i

~
δϕn · L + . . .

)
ψb(x)

= ψa(x)− i

~
δϕ (n · J)abψb(x) + . . .

σkab are the components of the Pauli matrix σk. The generator is the projection
along n of the total angular momentum, which is the vector sum of spin and
orbital angular momentum operators, acting independently on spin variables
(components a, b) and on position variables:

J = S + L (22.24)

where S = ~
2σ are the spin operators (matrices) for spin 1/2 particles.

Also in this case the algebra is that of angular momentum (rotation group):

1

i~
[Ĵi, Ĵj ] = εijkĴk. (22.25)

Exercise 22.3.4. Show that [Ĵ2, Ĵi] = 0, where Ĵ2 =
∑
i Ĵ

2
i .



Chapter 23

UNBOUNDED LINEAR
OPERATORS

Many operators of interest are unbounded, and are defined on a subset of the
Hilbert space. The domain (D), the range (Ran) and the kernel (Ker) of a linear
operator are linear subspaces. If the kernel only contains the null vector, the
operator is injective and the inverse operator exists (and is linear).

23.1 The graph of an operator

The graph of a real function f is the set (x, y) in R2, where x is in the domain of
f and y = f(x). A very useful tool is the graph of a linear operator, introduced
by Von Neumann: the graph of a linear operator is the set

G(Â) = {(x, y) : x ∈ D(Â), y = Âx} (23.1)

It is a subset of H 2 = H ×H , with elements X = (x, y). H 2 is a linear space
with the rules λX = (λx, λy) and X+X ′ = (x+x′, y+ y′), and a Hilbert space
with inner product

(X|X ′) = (x|x′) + (y|y′).

The norm is ‖X‖2 = ‖x‖2 + ‖y‖2. Completeness is readily proven: if Xn is a
Cauchy sequence, ‖Xn−Xm‖2 = ‖xn−xm‖2 +‖yn−ym‖2 < ε for all n,m > Nε,
then xn and yn are both Cauchy sequences, and then converge to x and y. The
pair X = (x, y) is the limit of Xn in H 2: ‖Xn−X‖2 = ‖xn−x‖2+‖yn−y‖2 → 0.

The graph of a linear operator is a linear subspace in H 2. Conversely, a
linear subspace S is the graph of a linear operator if (x, y) ∈ S and (x, y′) ∈ S
imply y = y′ (the assignment x → y is unique). This is equivalent to: (0, y) ∈
S ⇒ y = 0.

If the inverse of the operator Â exists, its graph is

G(Â−1) = {(y, x) : (x, y) ∈ G(Â)} (23.2)

Definition 23.1.1. A linear operator Â′ is an extension of a linear operator Â
if G(Â) ⊂ G(Â′) (in other words: D(Â) ⊂ D(Â′) and Â′ = Â on D(Â)).

192
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23.2 Closed operators

A graph is a closed set if every Cauchy sequence Xn in the graph converges to a
point X in the graph (a Cauchy sequence Xn is convergent, by the completeness
of H 2; the point is that the limit X must be in the graph).

Definition 23.2.1. A linear operator Â is closed if its graph is a closed set.

This definition is an example of how useful the concept of graph is. Without
it, the definition is: Â is closed if ∀xn in D(Â) such that xn → x and Âxn → y
⇒ x ∈ D(Â) and y = Âx.

Remark 23.2.2.
1) “Â is closed” does not mean that D(Â) is closed nor that Â is continuous:
it only means that D(Â) contains the limit points of convergent sequences such
that also the sequence Âxn converges, and converges to the image of the limit
point (the graph is very useful to visualize this).
2) If Â is closed, Ker Â is a closed subspace.
3) The inverse of a closed linear operator is closed.

If the graph G(Â) of a linear operator is not closed, the set can be always

extended to its closure G(Â) by adding the frontier. The closure is still a linear
subspace1 and it is the smallest closed extension of the set. However, it might
not be a graph of a linear operator, as it may fail to have the property (0, y) ∈
G(Â)⇒ y = 0.

Definition 23.2.3. If G(Â) is the graph of a linear operator Â, the operator Â is

the closure of Â, and it is the minimal closed extension of Â. It is G(Â) = G(Â).

Proposition 23.2.4. If G(Â) is not a graph of a linear operator, then Â has
no closed extensions.

Proof. If G(Â) is not a graph, it contains a point (0, y) with y 6= 0. Suppose

that Â has a closed extension Âc; then G(Â) is necessarily a proper subset of
G(Âc). But if (0, y) ∈ G(Âc), the set cannot be the graph of an operator.

The property of being a closed operator is important. In this presentation
it will be a prerequisite for the introduction of the spectrum.
The following theorem due to Banach is important:

Theorem 23.2.5 (closed graph theorem). Let Â be a linear operator with a
closed domain. Then Â is continuous if and only if Â is closed.

Proof. If Â is continuous and xn → x is a convergent sequence in D(Â), then
x ∈ D(Â) (by hypothesis) and Âxn → Âx. This means that G(Â) is closed, i.e.
the operator is closed.
Suppose that Â is closed, with a closed domain. Then for any convergent se-
quence xn in D(Â) such that Âxn is also convergent (to y), it is xn → x ∈ D(Â)
and y = Âx. Since the graph is closed, it is y = Âxn, i.e. Â is continuous.

By the general theorem 18.3.7, if Â has a closed domain, Â is continuous if
and only if Â is bounded.

1If two limit points X and X′ belong to the frontier there are two sequences Xn and X′n
convergent to them. X + λX′ belongs to the closure because it is the limit of Xn + λX′n that
belongs to the graph, a linear space.
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23.3 The adjoint operator

Let us enquire about the existence of the adjoint operator. According to the
definition given for bounded operators, the adjoint operator should map x ∈
D(Â†) to an element x′ such that (x′|y) = (x|Ây) for all y ∈ D(Â). The vector
x′ corresponding to x must be unique; suppose that there are two such vectors,
then (x′ − x′′|y) = 0 for all y ∈ D(Â), i.e. x′ − x′′ ∈ D(Â)⊥. Since we need

x′ = x′′, it must be {0} = D(Â)⊥ i.e. H = D(Â)⊥⊥ = D(Â) i.e. Â must be
densely defined.

Proposition 23.3.1. If Â is a densely defined linear operator, then the adjoint
Â† exists, it is a linear operator, and the domain is the maximal set

D(Â†) = {x ∈H : ∀y ∈ D(Â) ∃x′ s.t. (x′|y) = (x|Ây)},
A†x = x′.

This is the relation between Â and its adjoint:

(Â†x|y) = (x|Ây), ∀x ∈ D(A†), ∀y ∈ D(Â) (23.3)

The requirement that the domain of the adjoint is maximal, implies the following
statement:

Proposition 23.3.2. Let Â be densely defined. If Â′ is an extension of Â, then
the adjoint of Â is an extension of the adjoint of Â′:

Â ⊆ Â′ ⇒ Â
′† ⊆ Â† (23.4)

The graphs of Â and Â† are closely related. Let us introduce the involution
V (x, y) = (y,−x). It has the properties: (V X|X ′) = (X|V X ′), V (S⊥) =
(V S)⊥, V 2X = −X, V 2S = S (S is a linear subspace).

Proposition 23.3.3 (Graph of the adjoint operator).

G(Â†) = (V G(Â))⊥ (23.5)

Proof. If (x, x′) ∈ G(Â†) then x ∈ D(Â†) and, for all y ∈ D(Â),

(x|Ây) = (x′|y)⇔ (x|Ây) + (x′| − y) = 0⇔ ( (Ây,−y) | (x, x′) ) = 0

in the inner product of H 2. Then: X ∈ G(Â†) ⇔ (V X ′|X) = 0, ∀X ′ ∈ G(Â).
This gives (X ′|V X) = 0 i.e. V G(Â†) = G(Â)⊥ i.e. G(Â†) = V (G(Â)⊥) and the
statement is obtained.

This characterization of the graph of the adjoint has an important corollary.
Since V G(Â) is a linear subspace (not necessarily the graph of a linear operator),
its orthogonal complement G(Â†) is closed, and so is the operator:

Corollary 23.3.4. The adjoint of a linear operator is a closed operator.

Proposition 23.3.5. If Â is densely defined, then Ker Â† = (RanÂ)⊥
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Proof. (RanÂ)⊥ = {x ∈ H : (x|Âx′) = 0,∀x′ ∈ D(Â)} = {x ∈ H :
(Â†x|x′) = 0,∀x′ ∈ D(Â)}. Since Â is densely defined the set is {x ∈ H :
Â†x = 0} = KerÂ†.

Suppose that also Â† is densely defined: then Â†† exists and is closed (be-
cause it is the adjoint of Â†). We show that it is the closure of Â:

Proposition 23.3.6. Â†† = Â.

Proof. G(Â††) = V (G(Â†))⊥ = (G(Â))⊥⊥ = G(Â) = G(Â).

Corollary 23.3.7. Â††† = (Â†)†† = Â† = Â† because A† is closed.

23.3.1 Self-adjointness

In applications one often encounters operators that are densely defined and
symmetric. The issue is then to establish a self-adjoint extension for them.
Self-adjointness is a requirement for an operator to represent an observable in
quantum mechanics.

Definition 23.3.8. A densely defined linear operator Â is symmetric if

(Âx|y) = (x|Ây), ∀x, y ∈ D(Â) (23.6)

The definition is equivalent to the statement Â ⊆ Â†. Then Â† is a closed
extension of the symmetric operator Â. However, the smallest closed extension

of Â (if it exists) is Â = Â††. Then, in general (the last inclusion holds for a

symmetric operator), Â ⊆ Â = Â†† ⊆ Â†.

Exercise 23.3.9. Show that the eigenvalues of a symmetric operator are real,
and the eigenvectors with different eigenvalues are orthogonal.

Definition 23.3.10. A densely defined operator Â is self-adjoint if Â = Â†.

1) If Â is self-adjoint then it is closed, and Â = Â = Â†† = Â†.
2) If Â is symmetric and Â′ is a self-adjoint extension of it, then Â ⊂ Â′ =
Â
′† ⊆ Â†. Therefore the self-adjoint extension of Â, if it exists, is “between” Â

and Â†.
3) If Â is self-adjoint it is KerÂ = (RanÂ)⊥, i.e.

H = KerÂ⊕ RanÂ (23.7)

An intermediate situation is Â ⊂ Â† and Â = Â†. Since Â† = Â†, it is

Â = Â†. This occurs frequently in practice, and deserves a definition:

Definition 23.3.11. A densely defined operator is essentially self-adjoint if

Â is symmetric and Â is self-adjoint.

If Â is essentially self-adjoint: Â ⊂ Â = Â†† = Â†. The closure is the unique
self-adjoint extension of Â (suppose that B̂ is another self-adjoint extension and

Â ⊂ B̂; then B̂ = B̂† ⊂ Â, which is impossible).
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Example 23.3.12. The position operator (Q̂0f)(x) = xf(x) is well defined
on the domain S (R) of C∞ functions of rapid decay (see chapter), which is a
linear space dense in L2(R). The domain is invariant under the action of Q̂0,
and Q̂0 is symmetric on it:

(Q̂0ϕ|ψ) = (ϕ|Q̂0ψ), ∀ϕ,ψ ∈ S

The domain of Q̂†0 is the set of functions f ∈ L2(R) such that there is g ∈ L2

such that (g|ϕ) = (f |Q̂0ϕ) ∀ϕ ∈ S (R). This is:∫
R

(g − xf)ϕdx = 0, ∀ϕ ∈ S (R).

Since S is dense in L2, this means g = xf a.e., i.e.

D(Q̂†0) = {f ∈ L2(R) s.t.

∫
R
|xf |2dx <∞}, Q̂†0f = xf

This domain contains S . What about Q̂††0 ? The iteration of the above con-

struction shows that the domain is unchanged and Q̂†0 = Q̂††0 . Therefore Q̂0 is

essentially self-adjoint, and the operator Q̂ = Q̂†0 is the self-adjoint extension of

Q̂0.

23.4 Spectral theory (for closed operators)

Consider a n×n matrix A. The resolvent set ρ(A) is the set of complex numbers
z such that z − A is invertible. This means that Ker (z − A) = {0}, i.e. the
eigenvalue equation Au = zu has only the trivial solution u = 0. The matrix
(z −A)−1 is called the resolvent of A at z.
The set σ(A) = C/ρ(A) is the spectrum; for finite matrices it consists of at most
n eigenvalues zi for which the equation Au = zu has a non-trivial solution.
Let us review the spectral theory of operators on Hilbert spaces.

23.4.1 The resolvent and the spectrum

Hereafter Â is a closed linear operator. If z − Â is invertible, the operator

R̂(z) = (z − Â)−1 (23.8)

is closed and it is named the resolvent of Â at z ∈ C. The domain of the
resolvent is Ran (z − Â). The resolvent set is defined as follows:

Definition 23.4.1. If R̂(z) exists with domain H , then z belongs to the re-
solvent set ρ(Â).

Being closed with domain H the resolvent R̂(z) is bounded by the closed
graph theorem 23.2.5. Therefore, z ∈ ρ(Â)⇔ R̂(z) ∈ B(H ). We state without
proof:

Proposition 23.4.2.
1) ρ(Â) is an open set in C.
2) R̂(z) is an analytic function of z ∈ ρ(Â), i.e. it admits a norm-convergent
power expansion on any disk in the resolvent set: R̂(z) =

∑∞
n=0 Ĉn(z − z0)n.
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Exercise 23.4.3. For z1, z2 ∈ ρ(Â) prove the “resolvent identity”:

R̂(z1)R̂(z2) = − R̂(z2)− R̂(z1)

z2 − z1
(23.9)

Hint: start from (z2 − z1 + z1 − Â)R̂(z2) = 1.

Definition 23.4.4. The closed set C/ρ(Â) = σ(Â) is the spectrum of Â. It
may be decomposed into the pure, the continuous and the residual spectrum:

σ(Â) = σp(Â) ∪ σc(Â) ∪ σr(Â)

σp(Â) = {z : 6 ∃(z − Â)−1}, (23.10)

σc(Â) = {z : ∃(z − Â)−1 Ran(z − Â) = H }, (23.11)

σr(Â) = {z : ∃(z − Â)−1, Ran(z − Â) 6= H }. (23.12)

Les us comment on this partition:
z ∈ σp means that Ker (z−Â) 6= {0}, i.e. the equation Âu = zu has solution

in D(Â). Therefore σp is the set of eigenvalues.

z /∈ σP (Â) means that the resolvent (z − Â)−1 exists. There are three
disjoint possibilities: the resolvent has domain H (and is necessarily bounded,
z ∈ ρ(Â)), the domain of the resolvent is dense in H (the resolvent cannot be
bounded, z ∈ σc), the closure of the domain of the resolvent is a subset of H
(z ∈ σr).

Proposition 23.4.5. The spectrum of a self-adjoint operator is real: σ(Â) ⊆ R.

Proof. If λ ∈ σP (Â)¡ then λ is real. Suppose that λ ∈ σc,r(Â), and λ = λ1 + iλ2

with λ2 6= 0. Then (λ − Â)−1 exists with domain Ran(λ − Â) that is dense in
H . For Â self-adjoint we obtain the inequality

‖(λ− Â)x‖2 = ‖(λ1 − Â)x‖2 + |λ2|2‖x‖2 > |λ2|2‖x‖2

for all x ∈ D(Â). It implies that (λ− Â)−1 is bounded. But then λ ∈ ρ(Â).

Definition 23.4.6. A resolution of the identity (or spectral family) is a
family of projection operators {Êt, t ∈ R} such that:

ÊtÊs = Êmin(t,s) (23.13)

lim
t→s+

‖Êtx− Êsx‖ → 0, ∀x ∈H (23.14)

lim
t→−∞

Êtx = 0, lim
t→+∞

Êtx = x, ∀x ∈H (23.15)

1) If Êt and Ês belong to the spectral family, property (23.13) implies that they
commute: ÊtÊs = ÊsÊt.
2) The closed subspaces Mt = RanÊt have the properties:

Ms ⊆Mt if s ≤ t, Ms =
⋂
t>s

Mt,
⋂
t∈R

Mt = {0},
⋃
t∈R

Mt = H
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3) For t ≥ s, define Ê(s,t] = Êt − Ês. The operator is a projector. Property

(23.14) says that ‖Ê(t,t+δ]x‖ → 0, as δ → 0+. Of interest is the weak limit

lim
δ→0+

1

δ
(Ê(t,t+δ]x|y)

4) For generic x, introduce the positive measure µx(s, t) = (x|Ê(s,t]x) = ‖Ê(s,t]x‖2,
s ≤ t. In particular µx(−∞, s) ≤ µx(−∞, t) ≤ µx(R) = ‖x‖2.
The complex measures µxy(s, t) = (x|Ê(s,t]y) can be expressed via the polariza-
tion formula, as a combination of positive measures with vectors x± y, x± iy.
5) The support of the spectral family is the closure of the set of t-values such
that Êt 6= 0 and Êt 6= 1.

Example 23.4.7. In L2(R) consider the projection operators

(Êt f)(x) = χ(−∞,t](x)f(x), t ∈ R.

{Êt} is a spectral family: property (23.13) follows from χ(−∞,t]χ(−∞,s] = χ(−∞,u]

where u = min(s, t); property (23.14): for t→ s+ it is

‖Êtf − Êsf‖2 =

∫
χ(s,t](x)|f(x)|2dx→ 0

by Lebesgue’s dominated convergence theorem. The same theorem proves proper-
ties (23.15). The spectral measure is µf,g(−∞, t) =

∫ t
−∞ fg dx. By the general

theory of Lebesgue integral, µf,g is a continuous function of t and is a.e. differ-
entiable:

dµf,g(t) = (f |dÊtg) = f(t) g(t) dt

If F is a bounded real continuous function, it is

(f |F (Q̂)g) =

∫
R
f(t)F (t)g(t) dt =

∫
R
F (t) dµfg(t) =⇒ F (Q̂) =

∫
R
F (t)dÊt

This is the spectral theorem for multiplication operators.

Theorem 23.4.8 (The spectral theorem). If Â is a self-adjoint operator,
there is a unique spectral family Êt such that

D(Â) =

{
x ∈H :

∫
σ(Â)

t2 (x|dÊtx) <∞

}
(23.16)

Â x =

∫
σ(A)

t dÊt x. (23.17)



Chapter 24

SCHWARTZ SPACE AND
FOURIER TRANSFORM

24.1 Introduction

As Laurent Schwartz recalls, his intuition of distributions came one night in
1944, just after the liberation of France. The two volumes Théorie des distribu-
tions were published in 1950, and the same year he received the “Fields medal”
with Atle Selberg1.
Similar work on generalized functions was done by the Russian mathematicians
Israel M. Gel’fand and his collaborator E. Shilov. Earlier contributors to the
ideas were S. Bochner, J. Leray, K. Friedrichs and S. Sobolev. Distributions
are the natural frame for the study of partial differential equations, and play a
dominant role in the formulation of quantum field theories.

Distributions are defined on the basis of a set of well-behaved test functions
ϕ that decay fast to zero at infinity, with some notion of convergence. The linear
sequentially continuous functionals are the distributions. They include integral
functionals ϕ →

∫
dxf(x)ϕ(x) where f belongs to a large set, because of the

good properties of ϕ. Some operations on test functions may be extended to
such general(ized) functions through duality. For example, the derivative f ′ can
be defined as the functional ϕ→ −

∫
dxf(x)ϕ′(x), which coincides with

∫
dxf ′ϕ

if integration by parts can be done. In this manner one obtains a calculus for
generalized functions, always to be understood in the weak sense.

Test functions are often taken in two sets: the space D(Rn) of C∞ functions
with compact support in Rn, and the larger Schwartz space S (Rn) of rapidly
decreasing C∞ functions. The dual spaces are respectively the space of distri-
butions D ′(Rn) and the smaller space of tempered distributions S ′(Rn).
Because of their relevance in quantum physics and Fourier analysis, we privi-
lege the study of the Schwartz space (in n = 1) and its dual. There are other
motivations: S is left invariant by the important multiplication and derivation

1The Fields golden medal is assigned every four years by the International Mathematical
Union to mathematicians not older than 40. It was established by the Canadian professor
J. C. Fields. The Italians in the Fields list are Enrico Bombieri (1947) and Alessio Figalli
(2018).
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operators, and the Fourier transform is a bijection on it2.

24.2 The Schwartz space

Definition 24.2.1. The Schwartz space S (R) of rapidly decreasing functions
is the set of C∞ functions ϕ : R→ C such that for all m,n ∈ N:

‖ϕ‖m,n = sup
x∈R
|xm(Dnϕ)(x)| <∞ (24.1)

Hereafter D = d/dx. The functions and their derivatives fall off at infinity more
quickly than the inverse of any polynomial. By the obvious properties:
1) ‖λϕ‖m,n = |λ| ‖ϕ‖m,n,
2) ‖ϕ1 + ϕ2‖m,n ≤ ‖ϕ1‖m,n + ‖ϕ2‖m,n,
the Schwartz space is a linear space, and ‖ · ‖m,n is a family of seminorms for it
(actually each one is a norm on S ).

S (R) ⊂ C (R) (Banach space of bounded continuous functions with sup norm):

‖ϕ‖∞ = sup
x∈R
|ϕ(x)| = ‖ϕ‖0,0 <∞

S (R) ⊂ L 1(R). The following trick is frequenly used:

‖ϕ‖1 =

∫
R
dx |ϕ(x)| ≤ sup

x
|(1 + x2)ϕ(x)|

∫
R

dx

1 + x2
≤ (‖ϕ‖0,0 + ‖ϕ‖2,0)π

S (R) ⊂ L p(R). Use the inequality:

‖ϕ‖pp =

∫
R
dx|ϕ|p =

∫
R
dx|ϕ|p−1 |ϕ| ≤ ‖ϕ‖p−1

∞ ‖ϕ‖1.

The space contains the functions e−
1
2x

2

xn and the Hermite functions:

hn(x) =
1√

2nn!
√
π
e−

1
2x

2

Hn(x). (24.2)

24.2.1 Seminorms and convergence

Definition 24.2.2. A sequence of functions ϕr converges to ϕ in S (R) if:

‖ϕr − ϕ‖m,n → 0, ∀m,n.

Convergence in S (R) is very restrictive, as this example illustrates: the

sequence ϕr(x) = 1
2r e
−(rx)2 is uniformly convergent to zero (‖ϕr‖0,0 → 0),

but it does not converge for all seminorms: ‖ϕr‖0,1 = supx |xr e−(rx)2 | =

supy |ye−y
2 | = 1/

√
2e 6= 0.

Definition 24.2.3. A sequence ϕr in S (R) is a Cauchy sequence if it is Cauchy
for every seminorm, i.e.

∀ε, m, n ∃Nε,m,n such that ‖ϕr − ϕs‖m,n < ε ∀r, s > Nε,m,n.
2Bibliography: Reed and Simon Functional Analysis, Academic Press; Blanchard and

Bruning, Mathematical Methods in Physics, Birkhauser (2003).



CHAPTER 24. SCHWARTZ SPACE AND FOURIER TRANSFORM 201

Figure 24.1: Laurent Schwartz (Paris 1915, Paris 2002) was nephew of
Jacques Hadamard; his wife Marie-Helene Levy was daughter of probabilist Paul
Levy. Because of their Jewish origins, during the second world war they worked
at the university of Strasbourg with different names. After the war he taught in
Grenoble and Nancy and, from 1958 to 1980, at the École Politechnique. He was
politically engaged and was suspended for two years for his opposition to the
Algerian war. In 1951 he earned the Fields medal for the theory of distributions.
Among his students are Jacques-Louis Lyon, Alexander Grothendieck, Francois
Bruhat.

Figure 24.2: Israel Gelfand (Odessa 1913, New Brunswick 2009). At the
age of 16 Gelfand already attended lectures at Moscow State University, and
when he was 19 he was admitted directly to the graduate school. He completed a
doctorate on abstract functions and linear operators in 1935 under Kolmogorov.
He started a famous weekly Mathematics Seminar, and devoted much effort
to education of young mathematicians. In 1990 he moved to USA. He won
three Orders of Lenin and the first Wolf prize in mathematics (1978), with
Siegel, for his important contributions to functional analysis and the theory of
representations of groups.
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Theorem 24.2.4. S (R) is complete in the seminorm topology3 (every Cauchy
sequence is seminorm-convergent).

Proof. If ϕr is a Cauchy sequence in S (R) then, for all (m,n), the sequences
xmDnϕr are Cauchy sequences in the sup−norm and converge to functions
ψm,n ∈ C (R) (which is complete in the sup-norm). In particular ϕr → ψ0,0. If
we show that ψm,n(x) = xm(Dnψ0,0)(x) for all x, it follows that ‖ψ0,0‖m,n =
supx |ψm,n(x)| < ∞ and therefore ψ0,0 ∈ S (R) and ϕr → ψ0,0 also in the
seminorm topology.

Consider the identity (xmDkϕr)(x) = (xmDkϕr)(0) +
∫ x

0
D(ymDkϕr)(y)dy.

Convergence in r is uniform, so we may take the limit r → ∞ also in the
integral: ψm,k(x) = ψm,k(0) +

∫ x
0

[mψm−1,k(y) + ψm,k+1(y)]dy. Therefore ψm,k
is differentiable for all m, k and

Dψm,k = mψm−1,k + ψm,k+1.

For m = 0: Dψ0,k = ψ0,k+1, i.e. ψ0,k = Dkψ0,0; this also implies that ψ0,0

can be differentiated any number of times resulting in continuous functions that
decay to zero at infinity. The previous identity gives the following one:

ψm,k+1 − xmψ0,k+1 = D(ψm,k − xmψ0,k)−m(ψm−1,k − xm−1ψ0,k)

Iteration provides ψm,k+1−xmψ0,k+1 as a linear combination of powers of deriva-
tives of the simpler functions ψm,0 − xmψ0,0. To show that ψm,k = xmDkψ0,0

it is then sufficient to prove that ψm,0 = xmψ0,0. This is done here:

|ψm,0 − xmψ0,0| ≤ |ψm,0 − xmϕr|+ |xmϕr − xmψ0,0|
≤ sup

x
|ψm,0 − xmϕr|+ |x|m sup

x
|ϕr − ψ0,0|

≤ ε(1 + |x|m), ∀r > Nε

where both ε and Nε are independent of x (uniform convergence).

Exercise 24.2.5.
1) Show that ‖ · ‖0,2 is a norm in S (R).
2) Show that convergence in S (R) implies L2 convergence.

Proposition 24.2.6. The linear operators (Q̂0ϕ)(x) = xϕ(x) and (P̂0ϕ)(x) =
−iϕ′(x) on S (R) are continuous in the seminorm topology.

Proof. The identity Dn(xϕ) = xDnϕ + nDn−1ϕ implies ‖Q0ϕ‖m,n = supx
|xmDn(xϕ)| ≤ ‖ϕ‖m+1,n+n‖ϕ‖m,n−1. Similarly: ‖P0ϕ‖m,n = supx |xmDnϕ′| =
‖ϕ‖m,n+1. If ϕk → 0 then Q0ϕk → 0 and P0ϕk → 0.

Exercise 24.2.7. Show that the operator P̂0 is invertible. What is the domain
of the inverse operator?

3such spaces are named Frechét spaces.
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24.3 The Fourier Transform in S (R)

A main motivation to introduce the Schwartz space is the special behaviour of
the Fourier transform in this space.

Definition 24.3.1. The Fourier transform and antitransform of a function in
S (R) are:

(Fϕ)(k) =

∫
R

dx√
2π
e−ikxϕ(x) (24.3)

(F−1ϕ)(k) =

∫
R

dx√
2π
eikxϕ(x) (24.4)

The notation anticipates that FF−1 = 1: this will be a main result to
prove. The transforms are related by (F−1ϕ)(k) = (Fϕ)(−k) and are well
defined, as S (R) ⊂ L 1(R).

Theorem 24.3.2. The Fourier transform F and antitransform F−1 are con-
tinuous maps of S (R) on itself.

Proof. We must show that all seminorms of (Fϕ)(k) are finite:

km
dn

dkn
(Fϕ)(k) =

∫
R

dx√
2π

(−ix)nϕ(x)

(
−i d
dx

)m
e−ikx

= . . . =

∫
R

dx√
2π
e−ikx

(
i
d

dx

)m
[(−ix)nϕ(x)]

Multiply and divide by 1 + x2 and note that Dm(xnϕ) =
∑m
p=0 cpx

n−pDm−pϕ
(cp = 0 if n− p < 0. The precise values of cp have no relevance here). Then:

‖Fϕ‖m,n ≤
√
π/2

m∑
p=0

|cp|(‖ϕ‖n−p,m−p + ‖ϕ‖n−p+2,m−p) <∞

Then Fϕ ∈ S (R). The bound implies that the Fourier transform is continuous
(a sequence seminorm-convergent to zero is mapped to a sequence seminorm-
convergent to zero). The same conclusions hold for F−1.

Theorem 24.3.3 (Inversion theorem).

ϕ(x) =

∫
R

dk√
2π
eikx(Fϕ)(k) (24.5)

Proof. The double integral is meaningful because Fϕ ∈ S (R):

I(x) =

∫
R

dk√
2π
eikx

∫
R

dy√
2π
e−ikyϕ(y)

To circumvent the difficulty that the two integrals cannot be exchanged, let
us replace the function (Fϕ)(k) with e−εk

2

(Fϕ)(k) ∈ S (R). The product
function is in S (R) and converges to Fϕ as ε → 0 point-wise and in the
seminorm topology. Since F−1 is continuous:

I(x) = lim
ε→0

∫
R

dk√
2π
eikxe−εk

2

∫
R

dy√
2π
e−ikyϕ(y)
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The two integrals can now be exchanged

Iε(x) =

∫
R
dy ϕ(y)

∫
R

dk

2π
e−εk

2+ik(x−y) =

∫
R
dy ϕ(y)

1√
4επ

e−(x−y)2/4ε

The function ϕ multiplies the Heat kernel, whose integral is one. Then:

Iε(x)− ϕ(x) =

∫
R
dy [ϕ(x+ y)− ϕ(x)]

e−y
2/4ε

√
4επ

Take the modulus and use Lagrange’s theorem:

|Iε(x)− ϕ(x)| ≤
∫
R
dy |ϕ(x+ y)− ϕ(x)|e

−y2/4ε
√

4επ

≤ sup
ξ
|ϕ′(ξ)|

∫
R
dy |y|e

−y2/4ε
√

4επ
= 2

√
ε

π
‖ϕ‖0,1

As ε→ 0 the limit is zero, for all x.

Corollary 24.3.4. (F 2ϕ)(x) = ϕ(−x); F 3 = F−1, F 4 = 1.

Proof. (F 2ϕ)(x) = (F−1Fϕ)(−x) = ϕ(−x); (F 3ϕ)(x) = (F 2Fϕ)(x) =
(Fϕ)(−x).

Proposition 24.3.5. The Hermite functions (24.2) are eigenfunctions of the
Fourier transform:

(Fhn)(k) = (−i)nhn(k) (24.6)

Proof. The generating function of the Hermite functions is obtained from the
generator of Hermite polynomials:

1
4
√
π
e−t

2+2tx− 1
2x

2

=

∞∑
n=0

(t
√

2)n√
n!

hn(x) (24.7)

By acting with F (integrate the variable x):

1
4
√
π

∫
R

dx√
2π
e−t

2+2tx− 1
2x

2

e−ikx =

∞∑
n=0

(t
√

2)n√
n!

(Fhn)(k)

The integral in the left hand side is

e−t
2

4
√
π

∫
R

dx√
2π
e(2t−ik)x− 1

2x
2

=
1
4
√
π
et

2−2ikt− 1
2k

2

=

∞∑
n=0

(−it
√

2)n√
n!

hn(k)

The equality of coefficients of powers tn of the two series gives the result.

Proposition 24.3.6. In the inner product of L2(R):

(ϕ|Fψ) = (F−1ϕ|ψ), ∀ϕ, ψ ∈ S (R) (24.8)

(Fψ|Fϕ) = (ψ|ϕ), ‖Fψ‖2 = ‖ψ‖2 (24.9)
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Proof. ∫
R
dkϕ(k)(Fψ)(k) =

∫
R
dkϕ(k)

∫
R

dx√
2π
e−ikxψ(x)

=

∫
R
dxψ(x)

∫
R

dk√
2π
ϕ(k)e−ikx =

∫
R
dxψ(x)(F−1ϕ)(k)

The other relations follow.

Example 24.3.7 (Fourier transform of xne−a
2x2

).∫
R

dx√
2π

xne−a
2x2

e−ikx = in
∂n

∂kn

∫
R

dx√
2π
e−a

2x2−ikx =
in

a
√

2

∂n

∂kn
e−

k2

4a2

Rodrigues’ formula (11.21) is used to evaluate the derivatives, and the result
contains the Hermite polynomial of degree n:

∫
R

dx√
2π

xne−a
2x2

e−ikx =
1

(2ia)n
1

a
√

2
e
−
k2

4a2 Hn

(
k

2a

)
(24.10)

The “unitarity” (24.9) of the Fourier transform gives the integral identity:∫
R
dx e−(a2+b2)x2

xn+p =
2in−p

(2a)n+1(2b)p+1

∫
R
dke−k

2 a2+b2

4a2b2 Hn

(
k

2a

)
Hp

(
k

2b

)
Note that n and p must have the same parity (or the result is zero). The left
hand side is evaluated with the change x2 = t and gives a Gamma function4.

Proposition 24.3.8.

Q̂0F = F P̂0, P̂0F = −F Q̂0, (24.11)

Proof. Integrate by parts. Boundary terms cancel because ϕ is of rapid decrease:

(Q̂0Fϕ)(k) = k(Fϕ)(k) =

∫
R

dx√
2π
ϕ(x) i

d

dx
e−ikx

=

∫
R

dx√
2π
e−ikx(−i) d

dx
ϕ(x) = (F P̂0ϕ)(k)

The other equality is proven similarly.

Exercise 24.3.9. Show that the operators P̂ 2
0 + Q̂2

0 and F commute.

24.4 Convolution product

Definition 24.4.1. The convolution product of two functions in S (R) is

(ψ ∗ ϕ)(x) =

∫
R
dy ψ(x− y) ϕ(y) (24.12)

4A useful source of tabulated integrals is Gradshteyn - Ryzhik, Tables of Integrals, Products
and Series, Academic Press.
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Exercise 24.4.2. Show that the convolution product is commutative.

Theorem 24.4.3. ψ ∗ϕ ∈ S (R) if ψ and ϕ are in S (R). The map ψ → ψ ∗ϕ
is linear and continuous,

F (ψ ∗ ϕ) =
√

2π (Fψ)(Fϕ) , (Fψ) ∗ (Fϕ) =
√

2πF (ψϕ) (24.13)

The convolution product is commutative, associative and distributive.

Proof. The convolution of two functions in S is in S :

|xmDn(ψ ∗ ϕ)(x)| =
∣∣∣ ∫

R
dy xmDn

xψ(x− y)ϕ(y)
∣∣∣

≤
m∑
k=0

(
m

k

)∫
R
dy|(x− y)m−kDn

xψ(x− y)| |ykϕ(y)|

≤
m∑
k=0

(
m

k

)
sup
z
|zm−kDn

zψ(z)|
∫
R
dy|ykϕ(y)|

let us introduce factors (1 + y2) in the integral and take the sup:

‖ψ ∗ ϕ‖m,n ≤ π
m∑
k=0

(
m

k

)
‖ψ‖m−k,n(‖ϕ‖0,0 + ‖ϕ‖2,0)

Then ψ ∗ ϕ is in S (R) is ψ and ϕ are. Moreover, if ϕr → ϕ it follows that
ψ ∗ ϕr → ψ ∗ ϕ (continuity).
The Fourier transform:

F (ψ ∗ ϕ)(k) =

∫
dx√
2π
e−ikx

∫
dyψ(x− y)φ(y)

=

∫
dyφ(y)e−iky

∫
dx√
2π
e−ik(x−y)ψ(x− y) =

√
2π(Fϕ)(k) (Fψ)(k)

The other relation follows: replace ψ,ϕ by Fψ, Fϕ; then F (Fψ ∗Fϕ)(x) =√
2πψ(−x)ϕ(−x). Apply F−1 = F 3 and obtain Fψ ∗Fϕ =

√
2πF (ψϕ).

The identity F [(ϕ1∗ϕ2)∗ϕ3] =
√

2πF (ϕ1∗ϕ2)F (ϕ3) = 2πF (ϕ1)F (ϕ2)F (ϕ3)
shows that the product is associative.

24.4.1 The Heat Equation

In one space dimension the heat (or diffusion) equation is(
1

D

∂

∂t
− ∂2

∂x2

)
u(x, t) = 0 (24.14)

The Heat Kernel is the function of time t > 0 and space coordinate x:

Kt(x− y) =
1√

4Dtπ
exp

[
− (x− y)2

4Dt

]
(24.15)

As a function of x it is peaked in y, with height decreasing in time; its space
integral is one at all times t. The heat kernel solves the heat equation with
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initial condition K0(x− y) = δ(x− y). It describes the diffusive spread in time
of a quantity (temperature, pollutant density ...) that is initially delta-localized
in x = y. The width of the Gaussian grows with the square root law ≈

√
Dt.

Since the equation is linear, the linear superposition of heat kernels with
parameters y weighted by a function ϕ(y) is also a solution; it is the convolution:

u(x, t) = (Kt ∗ ϕ)(x) =

∫
R
dyKt(x− y)ϕ(y) (24.16)

It solves the Heat equation with the initial condition u(x, 0) = ϕ(x).
The same result is obtained with the aid of Fourier integral. Put

u(x, t) =

∫
R

dk√
2π
eikxũ(k, t)

in the Heat equation, and obtain the first order equation

1

D

d

dt
ũ(k, t) + k2ũ(k, t) = 0 ⇒ ũ(k, t) = C(k)e−Dtk

2

The initial condition imposes C(k) = ũ(k, 0) = ϕ̃(k). The solution in x−space
is then obtained:

u(x, t) =

∫
R

dk√
2π
eikx−k

2Dtϕ̃(k)

This is the Fourier antitransform of the product of two Fourier transforms: ϕ̃(k)

and e−k
2Dt. Then it coincides (up to numerical factor) with the convolution

product (24.16) of the Heat kernel and the initial condition, i.e. (24.16).

24.4.2 Laplace equation in the strip

Consider the Laplace equation in the strip −∞ < x < ∞, 0 ≤ y ≤ 1 with
boundary conditions (b.c.):

uxx + uyy = 0, u(x, 0) = u0(x), u(x, 1) = u1(x) (24.17)

For simplicity, u0, u1 ∈ S (R). With the Fourier representation

u(x, y) =

∫ ∞
−∞

dx√
2π
eikxũ(k, y) (24.18)

Laplace’s equation gives: −k2ũ+ũyy = 0, i.e. ũ(k, y) = Ak exp(ky)+Bk exp(−ky).
The functions Ak and Bk are determined by the b.c. At y = 0: ũ0(k) = Ak+Bk;
at y = 1: ũ1(k) = Ake

k +Bke
−k. Then:

ũ(k, y) = ũ0(k)
sinh[k(1− y)]

sinh k
+ ũ1(k)

sinh(ky)

sinh k

To evaluate u(x, y) by (24.18) we exploit the properties of the convolution. Let’s
identify ũ as ũ(k, y) = ũ0(k)S̃1−y(k)+ ũ1(k)S̃y(k) where S̃y(k) is evaluated with
the Residue theorem (see ex.14.3.20):

Sy(k) =

∫ ∞
−∞

dk√
2π
eikx

sinh(ky)

sinh k
=

√
π

2

sin(πy)

cosh(πx) + cos(πy)
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The Fourier transform (24.18) becomes the sum of two convolutions, and the
solution of the Laplace equation in the strip is obtained:

u(x, y) =
1√
2π

[(Sy ∗ u1)(x) + (S1−y ∗ u0)(x)]

=
1

2

∫ ∞
−∞

dx′
[

sin(πy)u1(x′)

cosh[π(x− x′)] + cos(πy)
+

sin(πy)u0(x′)

cosh[π(x− x′)]− cos(πy)

]
.



Chapter 25

TEMPERED
DISTRIBUTIONS

Depuis l’introduction par Dirac de la fameuse fonction δ(x), qui serait nulle

partout sauf pour x = 0 et serait infinie pour x = 0 de telle sort que
∫ +∞
−∞ dx δ(x) =

+1, les formules du calcul symbolique sont devenues plus inacceptables pour la
rigueur des mathématiciens. Ecrire que la fonction d’Heaviside θ(x) égale a 0
pour x < 0 et á 1 pour x ≥ 0 a pour dérivé la fonction de Dirac δ(x) dont
la définition même est mathématiquement contradictoire, et parler de dérivées
δ′(x), δ′′(x) ... de cette fonction denuée d’existence réelle, c’est dépasser les
limites qui nous sont permises ... (L. Schwartz, “Théorie des Distributions”,
Hermann & C. Paris, 1950)

25.1 Introduction

The linear continuous functionals on Schwartz’s space provide a generalization of
ordinary functions that is very useful in many applications, like Green functions
in the theory of differential equations, and spectral theory of operators.

A linear continuous functional on S (R) is a linear map

f : ϕ ∈ S (R)→ fϕ ∈ C

such that fϕk → 0 for any seminorm-convergent sequence ϕk → 0.

Definition 25.1.1. The space of linear continuous functionals on S (R) is the
space S ′(R) of tempered distributions.

It is a linear space with the linear operations (f +λg)ϕ = fϕ+λ (gϕ) (if f and
g are sequentially continuous, so are their linear combinations)1.

A sufficient condition for continuity is boundedness with respect to a semi-
norm (or a finite sum of seminorms): there is a constant Cf and a seminorm
such that:

|fϕ| ≤ Cf‖ϕ‖k,m ∀ϕ ∈ S (R).

1A nice and instructive presentation is: I. Richards and H. Youn, Theory of distributions:
a non-technical introduction, Cambridge University Press (1990).

209
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The regular distributions are the integral functionals

fϕ =

∫
R
dxf(x)ϕ(x)

where the function f is locally integrable (i.e. integrable on any compact subset
of the line) and algebraically bounded for large x: there are constants C > 0,
R > 0, and an integer n > 0 such that |f(x)| ≤ C|x|n for all |x| > R. Then:

|fϕ| ≤
∫ R

−R
dx|f(x)||ϕ(x)|+ C

∫
|x|>R

dx|x|n|ϕ(x)|

≤ ‖ϕ‖00

∫ R

−R
dx|f(x)|+ Cπ sup

x
[|x|n(1 + x2)|ϕ(x)|]

≤ K(‖ϕ‖00 + ‖ϕ‖n,0 + ‖ϕ‖2+n,0)

where K depends on f but not on the test function.

Definition 25.1.2 (convergence). fn → f in S ′(R) if fnϕ→ fϕ ∀ϕ ∈ S (R).

Example 25.1.3. The sequence fn(x) = cos(nx) has no limit as a function.
However, in the distributional sense it has limit zero: fnϕ =

∫
R dx cos(nx)ϕ(x) =

1
n

∫
R dx sin(nx)ϕ′(x). Then |fnϕ| ≤ 1

n

∫
R dx |ϕ

′(x)| ≤ π
n (‖ϕ‖0,1 + ‖ϕ‖2,1) → 0

as n→∞, for all ϕ, i.e. fn → 0 in S ′(R).

Remark 25.1.4. We adopt Dirac’s bra and ket notation to write the action of
any tempered distribution on a test function:

fϕ =< f |ϕ >

Regular distributions extend functionals in the dual of L2. Show that if f ∈
L 2(R) then < f |ϕ >= (f |ϕ) is a regular distribution on S (R).

25.2 Special distributions

25.2.1 Dirac’s delta function

The Dirac’s delta at a point a ∈ R is the functional

< δa|ϕ >= ϕ(a) (25.1)

Since | < δa|ϕ > | ≤ ‖ϕ‖0,0, the functional δa is continuous. It is customary
(and convenient) to write the action of the functional as if it were a regular one,
with a generalized function: < δa|ϕ >=

∫
R dx δ(x− a)ϕ(x).

There are several approximations of Dirac’s delta by regular distributions; this
one is particularly important:

Proposition 25.2.1. The following function converges to δa in S ′(R) as ε→
0+ (Lorentzian or Cauchy distribution):

ε

π

1

(x− a)2 + ε2
(25.2)
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Proof. For any ε the function has unit integral, and defines a regular distribu-
tion. Let’s show that for any test function ϕ, the action on ϕ converges to ϕ(a)
as ε→ 0. This amounts to the vanishing of

I =

∫
R
dx

ε

π

ϕ(x)− ϕ(a)

(x− a)2 + ε2

shift the variable by a and take the symmetric part of numerator

=

∫
R
dx

ε

2π

ϕ(a+ x) + ϕ(a− x)− 2ϕ(a)

x2 + ε2

|I| ≤ ε

2π

∫
R
dx
|ϕ(a+ x) + ϕ(a− x)− 2ϕ(a)|

x2

The integral is a finite number, as the function is finite in x = 0 and decays at
least as |x|−2 at infinity. Then the limit ε→ 0+ is zero.

The following regular distributions also converge to δa in S ′(R) as ε → 0+

(proofs are simple and left as exercise)

1√
πε
e−

1
ε (x−a)2 ,

1

2ε
χ[a−ε,a+ε](x) (25.3)

Exercise 25.2.2. Show that the sequences converge to δ0:

2

πε2

√
ε2 − x2 θ(ε2 − x2),

sin(nx)

πx
.

(Hint for the second case: the function [ϕ(x) − ϕ(0)χ[−1,1](x)]/x is in L 1(R)
for ϕ ∈ S (R). Use the Riemann-Lebesgue theorem 27.1.3).

25.2.2 Heaviside’s theta function

Consider the functional θa, a ∈ R,

< θa|ϕ >=

∫ ∞
a

dxϕ(x) (25.4)

It is a regular distribution, with function θ(x− a) = χ[a,∞)(x).

Exercise 25.2.3.
Prove the distributional limits (n→∞)2

1) χ[0,n] → θ(x),

2) fn(x) =


0 x < 0

xn x = [0, 1]

x = 1 x > 1

→ θ(x− 1)

3)
1

enx + 1
→ θ(−x).

2The function 3) with n = µ
kBT

and x = E−µ
µ

is the Fermi-Dirac distribution, which gives

the average number of fermions with energy E, in thermal equilibrium at temperature T and
chemical potential µ > 0. The limit distribution, θ(µ − E), is the Fermi distribution (the
ground state, T = 0).
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25.2.3 Principal value of 1
x−a

The function 1
x−a has a non-integrable singularity in x = a and thus it does not

yield a regular distribution. One then defines the “principal value of 1
x−a” as

the functional

< P 1
x−a |ϕ >= −

∫
R
dx

ϕ(x)

x− a
(25.5)

The principal value is:

lim
ε→0+

(∫ a−ε

−∞
dx+

∫ ∞
a+ε

dx

)
ϕ(x)

x− a
= lim
ε→0+

∫ ∞
ε

dx
ϕ(a+ x)− ϕ(a− x)

x
; (25.6)

the limit ε→ 0+ exists. Now, use Lagrange’s formula on the interval ε ≤ x ≤ 1,
and the triangle inequality on x ≥ 1:∣∣∣< P 1

x−a |ϕ >
∣∣∣ ≤ 2(1− ε) sup

x
|ϕ′(x)|+

∫ ∞
1

dx(|ϕ(a+ x)|+ |ϕ(a− x)|)

≤ 2‖ϕ‖0,1 + 2‖ϕ‖L1

The L1 norm is majored by seminorms, therefore the principal part is a tempered
distribution.

25.2.4 The Sokhotski-Plemelj formulae

The following identities among distributions are extremely useful in the study of
Green functions (differential equations, potential theory, linear response theory,
spectral theory of operators)3:

lim
ε→0+

1

x− a± iε
= P

1

x− a
∓ iπδ(x− a) (25.7)

a is real and the limit is distributional, i.e.

lim
ε→0+

∫
R
dx

ϕ(x)

x− a± iε
= −
∫
R
dx

ϕ(x)

x− a
∓ iπ ϕ(a), ϕ ∈ S (R)

Proof. The real part is the distribution∫
R
dx

(x− a)ϕ(x)

(x− a)2 + ε2
=

∫
R
dx
xϕ(x+ a)

x2 + ε2
=

∫ ∞
0

dx
x

x2 + ε2
[ϕ(a+ x)− ϕ(a− x)]

3The identities were discovered by Sokhotski in 1873, and proven rigorously about thirty
years later by Josip Plemelj. Given a Cauchy integral on a curve (it can be open or closed)

F (z) =

∫
γ

dζ

2πi

f(ζ)

ζ − z
, z /∈ γ

and the Hölder condition |f(ζ)−f(ζ0)| ≤ A|ζ− ζ0|α (A, α > 0) for all ζ, ζ0 ∈ γ, the identities
establish the limits F±(ζ0) as z approaches a point ζ0 ∈ γ different than endpoints, from the
left or the right sides of γ.
The identities are frequently used in theoretical physics with the path γ given by the real axis.
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which, for ε → 0, converges to −
∫

ϕ
x−a (see eq.(25.6)). The imaginary part is a

regular distribution that converges to the delta function:∫
R
dx

∓ε
(x− a)2 + ε2

ϕ(x)→ ∓πϕ(a).

Exercise 25.2.4. Prove the identity, for real x, y, and ε, η > 0:∫
R

dx′

π2
Re

[
1

x′ − x+ iε

]
Re

[
1

x′ − y + iη

]
=

1

π

ε+ η

(x− y)2 + (ε+ η)2
(25.8)

Therefore, for x 6= y and in the limit ε+ η → 0+:∫
dx′

π2

P

x′ − x
P

x′ − y
= δ(x− y) (25.9)

Exercise 25.2.5 (Hilbert transform). The Hilbert transform of a function
is

(H f)(x) = −
∫
R

dx′

π

f(x′)

x− x′
(25.10)

By means of (25.9) show that (H 2ϕ)(x) = −ϕ(x). Therefore, the solution of
the integral equation H f = g is f = −H g.

Exercise 25.2.6. Show that this is a tempered distribution:

< P
1

x2
|ϕ >= lim

ε→0+

[ ∫ −ε
−∞

dx
ϕ(x)− ϕ(0)

x2
+

∫ ∞
ε

dx
ϕ(x)− ϕ(0)

x2

]
(25.11)

Can you suggest a generalization to define P (1/xn)?

25.3 Linear response and Kramers-Krönig rela-
tions

The theory of linear response evaluates the variation in time of an observable
of a system that is coupled to a weak time-dependent field δϕ(t), in the linear
approximation. The physical requirement of causality, i.e. the effect on the
system may only depend on the field’s values at earlier times, implies the general
Kramers and Kronig relations for the response function.

Let g(t) be the value at time t of a measurable quantity of the system in
presence of the perturbation, and g0(t) be the value of the same quantity in
absence of the perturbation. In the linear approximation, the variation δg(t) =
g(t) − g0(t) is linearly related to the external perturbation through a response
function R(t, t′) that only depends on the variables of the unperturbed system:

δg(t) =

∫ t

−∞
R(t, t′) δϕ(t′)dt′

The integral involves the history of the system at times less than t because of
the physical requirement of causality.
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If the properties of the unperturbed system are time-independent (as in thermal
equilibrium), the response function depends on t − t′. If the upper limit t is
replaced by +∞ with the insertion of a theta function, the integral becomes the
convolution:

δg(t) =

∫ +∞

−∞
θ(t− t′)R(t− t′) δϕ(t′)dt′ (25.12)

Hereafter we consider this very common situation.
In frequency space the convolution (25.12) becomes the product of the Fourier
transforms4, and the linear response takes the simple form of a direct propor-
tionality between response and driving field at the same frequency:

δg(ω) = χ(ω)δϕ(ω) (25.13)

Notable examples are: J = σE, M = χH, D = εE (where each quantity
depends on ω, with possible further dependence on wave-vector). The response
function χ(ω) is the generalized susceptibility:

χ(ω) =

∫
R
dt eiωt θ(t)R(t) =

∫ ∞
0

dt eiωtR(t) (25.14)

According to Paley and Wiener’s theorem, if R ∈ L 2(0,∞), the function χ(ω)
is analytic on Im ω ≥ 0. This is a consequence of causality and, in turn, it
implies the Kramers - Kronig relations. They were obtained independently in
1926 and 1927, and relate the real and imaginary parts of the response in ω
space:

Proposition 25.3.1. Suppose that χ(ω)→ 0 if |ω| → ∞; for real ω it is:

Reχ(ω) = −−
∫ ∞
−∞

dω′

π

Imχ(ω′)

ω − ω′
, Imχ(ω) = −

∫ ∞
−∞

dω′

π

Reχ(ω′)

ω − ω′
(25.15)

Proof. Since χ(ω′) is analytic in Im ω′ > 0 it is:∫
R
dω′

χ(ω′)

ω − ω′ − iε
= 0, ω ∈ R

(check: close the path of integration with a semicircle in the upper half plane).
The Plemelj-Sokhotski formula gives:

0 = −
∫
R
dω′

χ(ω′)

ω − ω′
+ iπχ(ω)

Separation of real and imaginary parts gives the relations.

25.4 Eigenvalues of random matrices

A random matrix is an element of an ensemble of matrices defined by choosing
the matrix elements with some probability distribution. For example, the en-
semble of n×n matrices X with Xij = ±1 with equal probability, is a finite set

4In physics it is customary to define the Fourier transform of a function of time as f̃(ω) =∫
R dtf(t)eiωt, with inverse f(t) =

∫
R
dω
2π
f̃(ω)e−iωt. In this section we use this convention.
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Figure 25.1: Left: the histogram of the eigenvalues of two Hermitian matrices
of size 1000 with real and imaginary parts of matrix elements chosen uniformly
in [-1,1]. The Semicircle Law by Wigner is a general feature of eigenvalues of
large random real-symmetric or complex-Hermitian matrices with independent
identically distributed (i.i.d.) matrix elements. Right: the complex eigenvalues
of two non-Hermitian matrices of size 1000 with i.i.d. matrix elements (Circle
Law by Ginibre). If the real and imaginary parts have different variance, the
distribution is the Elliptic Law.

of 2n
2

equally probable matrices. Another choice are Gaussian and identically
distributed matrix elements. The random matrices may be constrained to be
Hermitian, unitary, positive, banded, ... according to the problem at hand. An
interesting question is: what are the statistical properties of the eigenvalues?

Random matrices in physics were introduced by Wigner in the fifties as a
reference model for the statistical properties of sequences of nuclear resonances5.
Since then, they found many applications: the study of quantum systems with
chaotic classical motion (quantum chaos), transport in mesoscopic structures
with impurities, spectra of Dirac matrices in QCD, molecular spectra, statistical
mechanics on random graphs, random surfaces, etc. The subject is still evolving
in several unexpected directions, with beautiful mathematics6.

25.4.1 Semicircle law of GUE random matrices

The Gaussian Unitary Ensemble (GUE) of matrices consists of Hermitian matri-
ces Hij where Hii, ReHij and ImHij (i < j) are independent random numbers
with Gaussian distribution. The probability measure on GUE matrices is

p(H)dH ∝
∏
i

e−nH
2
iidHii

∏
i<j

e−2n|Hij |2d2Hij = e−ntrH2

dH

5It was noted that the energy separations s of resonances normalized by an average value,

obey the same statistical laws P (s) ≈ sβe−ks2 of the normalized separations of eigenvalues of
Gaussian random matrices (k is a constant, β is 1 for real symmetric matrices, 2 for complex
Hermitian matrices and 4 for quaternionic self-dual). Note the feature of “level repulsion”:
small spacings are rare.

6see: The Oxford Handbook of Random Matrix Theory, G. Akemann, J. Baik and
P. Di Francesco Editors, Oxford University Press, 2011; M. L. Mehta, Random Matrices,
3rd Ed. Elsevier, 2004; F. Haake, Quantum signatures of chaos, 3rd Ed. Springer, 2010. See
the book by G. Livan. online at https://arxiv.org/pdf/1712.07903.pdf.

https://arxiv.org/pdf/1712.07903.pdf
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The set GUE and the measure are invariant under the action of unitary matrices
H → U†HU . Unitary invariance implies the factorization of the matrix measure
dH into a (Haar) measure on the unitary group dU and a measure for the
eigenvalues. The joint probability density for the eigenvalues is found to be:

p(λ1 . . . λn) =
1

Zn

∏
i<j

(λj − λj)2e−n
∑
λ2
i ≡ 1

Zn
e−n

2U(λ1...λn)

U(λ1 . . . λn) =
1

n

∑
i

λ2
i −

2

n2

∑
i<j

log |λi − λj |.

with normalization constant Zn =
∫
dλ1 . . . dλn exp(−n2U). For GUE the joint

probability density vanishes quadratically when two eigenvalues approach (de-
generate eigenvalues are rare, with level repulsion exponent β = 2)7.
For large n, the largest contribution to the probability density comes from the
set of eigenvalues that minimize the “potential energy” U . This configuration
determines the statistical properties of eigenvalues of GUE matrices for n→∞.
It has the interpretation of minimal energy state of a bidimensional gas of n
charged particles (log potential) in a harmonic potential. The minimum solves

∂U

∂λi
= 0 i.e. λi =

2

n

∑
j 6=i

1

λi − λj
→ xi =

∑
j 6=i

1

xi − xj
, xi =

√
n

2
λi

The solution is found by a nice trick (Stieltjes): define the polynomial p(x) =
(x − x1) · · · (x − xn). By eq.(9.2) the n conditions for minimum become: xi =
p′′(xi)/p

′(xi) i.e. the polynomial p′′(x)−xp′(x) must be zero at x = x1, . . . , xn.
Since it is of degree n, it is proportional to p(x) itself. Then p′′(x) − xp′(x) +
np(x) = 0, with solution p(x) = cnHn(x

√
2). Therefore, for n → ∞ the eigen-

values of a random GUE matrix (with probability one) have a semicircle distri-
bution with radius determined by the variance of the Gaussian (in this case the
radius in 1

2

√
n).

25.4.2 Zeros of large-n Hermite polynomials

Let x1 . . . xn be the zeros of the Hermite polynomial Hn(x). They are real and
simple, and we wish to evaluate their distribution when n is large. The polyno-
mial solves the differential equation (11.20), H ′′n(x)− 2xH ′n(x) + 2nHn(x) = 0,
which becomes Weber’s equation (the equation of the harmonic oscillator in
quantum mechanics):

−h′′n(x) + (x2 − 2n− 1)hn(x) = 0

for the Hermite function (19.27). If x2 > 2n + 1, hn(x) and h′′n(x) have the
same sign, and vanish at infinity. Therefore, as |x| decreases from ∞, |hn(x)|

7A simple argument for level repulsion. Let x, y be the real eigenvalues of the 2× 2 GUE
matrix (β = 2): (

a b− ic
b+ ic d

)
, |x− y| =

√
(a− d)2 + 4b2 + 4c2

To have x = y we need that the random numbers a− d, b and c are zero simultaneously: this
is very unlikely. For random real symmeric matrices (GOE) it is c = 0 and level repulsion is
weaker (β = 1).
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Figure 25.2: The oscillatory part of the Hermite function h36 with its 36 real
zeros, is confined in the interval |x| <

√
73, between the extreme zeros of h′′36.

The plot of the function is shifted upwards by 73 to show that the zeros are
confined in the parabolic well.

increases. For a zero to occur the curvature h′′n must change sign, and then the
function may start to point to the real axis. As a consequence, the zeros of
Hn(x) are confined in the interval x2 < 2n+ 1.

Rescale the zeros xi = si
√

2n, (i = 1 . . . n); if a limit distribution exists the
rescaled zeros si are described by a density ρ(s) = limn→∞

1
n

∑n
i=1 δ(s − si)

with support in σ = [−1, 1]. To evaluate the density we introduce the useful
function Fn(z), and the limit function:

Fn(z) =
1

n

n∑
i=1

1

z − si
F (z) =

∫
σ

ds
ρ(s)

z − s
z /∈ σ

For large |z|, F (z) behaves as 1/z and, by the Sokhotski-Plemelj identity:

ρ(s) =
1

π
ImF (s− iε) (25.16)

The limit function F (z) is obtained from Fn(z) by noting that

H ′n(x)

Hn(x)
=

n∑
i=1

1

x−
√

2n si
=

√
n

2
Fn

(
x√
2n

)
A derivative in x and the equation H ′′n(x) − 2xH ′n(x) + 2nHn(x) = 0 give the
Riccati equation

1

n
F ′n(z) + F 2

n(z)− 4zFn(z) + 4 = 0

In the large-n limit the derivative is neglected: F 2(z) − 4zF (z) + 4 = 0. The
solution with correct large z asymptotics is: F (z) = 2z − 2

√
z2 − 1.

Eq.(25.16) gives the semicircle law:

ρ(s) =

{
2
π

√
1− s2 if |s| < 1

0 if |s| > 1
(25.17)

It is a remarkable fact that the semicircle law also describes the distribution of
eigenvalues of Hermitian matrices with random matrix elements, in the large n
limit.
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25.5 Distributional calculus

Important operations such as conjugation, derivative, Fourier transform, may
be extended simply and naturally from well behaved functions (such as test
functions or functions associated to regular distributions) to distributions (gen-
eralized functions, which may be as awkward as a delta function). The procedure
reproduces the steps of this first example.

Complex conjugation has a natural definition if the distribution is regular:
if f is the regular distribution < f |ϕ >=

∫
dx f(x)ϕ(x), its complex conjugate

is the distribution f∗ with action < f∗|ϕ >=
∫
dx f(x)ϕ(x) = < f |ϕ >. As the

last equality does not depend on f being a regular distribution, it provides the
extension: The complex conjugate of a distribution f is the distribution

< f∗|ϕ >= < f |ϕ > (25.18)

Example 25.5.1. The Dirac’s delta is real: δ∗a = δa.

Along the same line one defines the multiplication of a tempered distribution
by a C∞ function g that is algebraically bounded with all its derivatives8. It is
the tempered distribution

< gf |ϕ >=< f |g ϕ > (25.19)

25.5.1 Derivative

Consider a regular distribution with a function f ∈ C 1(R) such that f ′ still
defines a regular distribution. Then:

< f ′|ϕ >=

∫ ∞
−∞

dx f ′ϕ = −
∫ ∞
−∞

dx fϕ′ = − < f |ϕ′ > .

This evaluation suggests the definition of the derivative of any distribution:

Definition 25.5.2. The derivative of a distribution f is the distribution f ′ with
action

< f ′|ϕ >= − < f |ϕ′ > (25.20)

As derivation is a continuous operator on S (R), the derivative of tem-
pered distributions gives tempered distributions, and is linear and continuous
on S ′(R). One can evaluate as many derivatives of a distribution as wanted.

Example 25.5.3. Derivative of Heaviside’s functional θa.
By definition: < θ′a|ϕ >= − < θa|ϕ′ >= −

∫∞
a
ϕ′(x)dx = ϕ(a). Therefore:

θ′a = δa, or

d

dx
θ(x− a) = δ(x− a)

Example 25.5.4. Derivative of δa. By definition: < δ′a|ϕ >= −ϕ′(a).

Exercise 25.5.5. Show that: d
dx |x| = signx, < d

dxδa|ϕ >= − d
da < δa|ϕ >.

8g(x) = cos(ex) is bounded and smooth, but g′(x) is unbounded
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Example 25.5.6. The derivative of F (x) = θ(x2−m2), m > 0, is by definition:

< F ′|ϕ >= −
∫ −m
−∞ dxϕ′(x)−

∫∞
m
dxϕ′(x) = −ϕ(−m)+ϕ(m) =< δm−δ−m|ϕ >.

As an identity among generalized functions one writes:

d

dx
θ(x2 −m2) = δ(x−m)− δ(x+m).

Remark 25.5.7. In ordinary calculus one would write: d
dxθ(x

2−m2) = 2x δ(x2−
m2), leading to the conclusion

δ(x2 −m2) =
1

2x
[δ(x−m)− δ(x+m)] =

1

2m
[δ(x−m) + δ(x+m)]

This can be generalized; the evaluation of the derivative of θ(f(x)), where f is a
smooth real function with isolated zeros x1, . . . , xn, leads to the useful formula:

δ(f(x)) =

n∑
k=1

δ(x− xk)

|f ′(xk)|
(25.21)

Example 25.5.8. It is instructive to evaluate the derivative of the regular dis-
tribution f(x) = log |x|. By definition it is

< f ′|ϕ >= −
∫
R
dx log |x|ϕ′(x)

An integration by parts would give a non-integrable factor 1/x. We make
progress by removing a neighborhood of x = 0, noting that the integral coin-
cides with the following one:

=− lim
ε→0+

[∫ −ε
−∞

dx log(−x)ϕ′(x) +

∫ ∞
ε

dx log xϕ′(x)

]
= lim
ε→0+

log ε[ϕ(ε)− ϕ(−ε)] + lim
ε→0+

∫ −ε
−∞

+

∫ ∞
ε

dx
1

x
ϕ(x) = −

∫ +∞

−∞
dx

1

x
ϕ(x)

The lesson is that the introduction of an appropriate ε may surmount difficulties.
Here we can identify f ′ with P 1

x .

We state but not prove the following characterisation of tempered distribu-
tions:

Theorem 25.5.9. Every tempered distribution is the distributional derivative
of finite order of a continuous algebraically bounded function: f ∈ S ′(R) ⇔
there is a continuous function ξ such that |ξ(x)| ≤ C(1 + |x|n) for some C and
n, and k ≥ 0 such that

< f |ϕ >=< ξ(k)|ϕ >= (−1)k
∫ ∞
−∞

dx ξ(x)ϕ(k)(x).

25.5.2 Fourier transform

To extend the Fourier transform to distributions, start from regular functionals.
Suppose that both f and Ff are functions that produce regular distributions
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(for example f is in S ). Then:

< Ff |ϕ >=

∫
R
dx(Ff)(x)ϕ(x) =

∫
R
dxϕ(x)

∫
R

dk√
2π
e−ikxf(k)

=

∫
R
dk f(k)

∫
R

dx√
2π
e−ikxϕ(x) =< f |Fϕ >

The extension to all distributions is:

Definition 25.5.10. The Fourier transform of a tempered distribution f is the
distribution Ff with action

< Ff |ϕ >=< f |Fϕ > (25.22)

Proposition 25.5.11. The Fourier transform F : S ′(R)→ S ′(R) is invert-
ible (FF−1f = f) and continuous.

Proof. Continuity and the inversion property are exported from the same prop-
erties in S (R): < F−1Ff |ϕ >=< Ff |F−1ϕ >=< f |FF−1ϕ >=< f |ϕ >.
Since the Fourier transform is linear, it is enough to check continuity in the ori-
gin: let fn → 0 in S ′(R) then < Ffn|ϕ >=< fn|Fϕ >→ 0 i.e. Ffn → 0.

Example 25.5.12. Fourier transform of δa.

< F δa|ϕ >=< δa|Fϕ >= (Fϕ)(a) =

∫
R
dx
e−iax√

2π
ϕ(x).

The Fourier transform of Dirac’s delta is the regular distribution with function:

(F δa)(x) =
e−iax√

2π
(25.23)

In particular: 1 =
√

2πF δ0 (=
√

2πF−1δ0).
The same result is obtained by exploiting the continuity of the Fourier transform,
acting on a regular approximation of δa. For example:

uε(x) =
1

π

ε

(x− a)2 + ε2
, (Fuε)(x) =

1√
2π
e−ε|x|−ixa (25.24)

As a family of regular distributions, for ε → 0 the sequence uε converges to
δa. The sequence of Fourier transforms also converges in S ′ and the limit is
(25.23).

Example 25.5.13. The following approximation of the delta function is useful:

lim
N→∞

sin(Nx)

πx
= δ0 (25.25)

A simple proof based on continuity of the Fourier transform: since χ[−N,N ] → 1

in S ′(R), then Fχ[−N,N ] →
√

2πδ0.
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Example 25.5.14.

Fxn = in
√

2π δ
(n)
0 (25.26)

< Fxn|ϕ >=< 1|xnFϕ >= (−i)n < 1|Fϕ(n) >. Since 1 =
√

2πF δ0, it is:

< Fxn|ϕ >= (−i)n
√

2π < δ0|ϕ(n) >= in
√

2π < δ
(n)
0 |ϕ >

Example 25.5.15. Fourier transform of P 1
x−a .

< F
P

x− a
|ϕ >= −

∫
dx

x− a

∫
R

dk√
2π
e−ikxϕ(k) = lim

R→∞

∫
R

dk√
2π
ϕ(k)e−ika−

∫ +R

−R

dx

x
e−ikx.

The interval [−R,R] is specified to exchange the integrals. The principal-valued
integral is evaluated in C with appropriate contour:

−
∫ +R

−R

dx

x
e−ikx = sign(k)

[
−iπ + i

∫ π

0

dθei|k|Re
iθ

]
.

The second term, coming from the semi-circle, is bounded in modulus and yields
an integral with ϕ(k) that vanishes for R→∞. Then:

(FP
1

x− a
)(k) = −i

√
π

2
sign(k)e−ika (25.27)

Example 25.5.16. Fourier transform of θa.

< Fθa|ϕ >=< θa|Fϕ >=

∫ ∞
a

dx

∫
R

dy√
2π
e−ixyϕ(y)

Since integrals cannot be exchanged, introduce a convergence factor and consider
the Fourier transform of the distributions θa,ε(x) = e−εxθa(x) (ε > 0). As
θa,ε → θa and the Fourier transform is continuous in S ′, it is

< Fθa|ϕ >= lim
ε→0+

∫ ∞
a

dx e−εx
∫
R

dy√
2π
e−ixyϕ(y)

=

∫
R
dy ϕ(y)

∫ ∞
a

dx√
2π
e−ixy−εx =

∫
R
dy

1

i
√

2π

e−iay

y − iε
ϕ(y)

In the last line it is understood that the limit ε → 0+ is taken. The limit can
be done after the action on a test function is evaluated (this is the meaning of
convergence of distributions). We obtain Fθa as a limit of regular distributions:

(Fθa)(x) =
1

i
√

2π

e−iax

x− iε
. (25.28)

Inversion gives a useful representation of Heaviside’s function:

θ(x− a) =

∫ ∞
−∞

dk

2πi

eik(x−a)

k − iε
= i

∫ ∞
−∞

dk

2π

e−ik(x−a)

k + iε
(25.29)

Exercise 25.5.17 (Fourier transform of the sign-function). Show that

(F sign)(x) = −i
√

2

π
P

1

x
(25.30)
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Exercise 25.5.18. Evaluate the Fourier transform of the following generalized
functions: 1) (x− a); 2) log |x|; 3) exp(−iωx), ω ∈ R.

Exercise 25.5.19. What is the Plemelj-Sokhotski identity after Fourier trans-
form?

25.6 Fourier series and distributions

Definition 25.6.1. A tempered distribution f is periodic with period τ if
< f |Uτϕ >=< f |ϕ >, where (Uτϕ)(x) = ϕ(x− τ).

We state a generalization of Fourier series (but omit the proof), that is well
defined as a distribution although it may not converge as an ordinary function:

Theorem 25.6.2. f is a τ−periodic tempered distribution if and only if there
are constants cn with |cn| < C(1 + |n|k) for some k, such that

f =
∑
n∈Z

cn exp

(
i
2πn

τ
x

)
, i.e. < f |ϕ >=

∑
n∈Z

cn

∫
R
dxϕ(x) exp

(
i
2πn

τ
x

)
or, equivalently:

Ff =
√

2π
∑
n∈Z

cnδ2πn/τ , i.e. < Ff |ϕ >=
√

2π
∑
n∈Z

cnϕ

(
2πn

τ

)
Example 25.6.3. Consider the periodic distribution ∆x =

∑
n∈Z δx+nτ , with

action < ∆x|ϕ >=
∑
n ϕ(x + nτ). The series is well defined because ϕ is

in S (R), and defines a periodic function g(x) with period τ . Then, g can be
expanded in Fourier series: g(x) =

∑
n gne

i(2π/τ)nx.

25.7 Linear operators on distributions

We’ll prove that the Hermite functions are a complete orthonormal system in
L2(R), therefore the Schwartz space S (R) is dense in L2(R), i.e. any square-
integrable function is the limit of a L2norm-convergent sequence of rapidly de-
creasing functions.
By Riesz’s theorem L2(R) is self-dual, i.e. each function f can be viewed as
a linear sequentially continuous functional on L2(R) and thus as a tempered
distribution (up to conjugation):

| < f |ϕ > |2 = |(f̄ |ϕ)|2 ≤ ‖f‖22‖ϕ‖22 ≤ ‖f‖22 π‖ϕ‖00(‖ϕ‖00 + ‖ϕ‖20)

for all test functions. Therefore we have the relation (Gel’fand triplet):

S (R) ⊂ L2(R) ⊂ S ′(R) (25.31)

The structure is useful for extending operators with domain S (R) to operators
on S ′(R), and give meaning to expansions of L2 functions in terms of generalized
functions.

Suppose that the operator A : S (R) → S (R) is linear and continuous
(convergent sequences are mapped to convergent sequences, in the seminorm
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topology). If f is a tempered distribution, the functional ϕ →< f |Aϕ > is a
tempered distribution. Therefore, the operator A induces an “adjoint” operator
on tempered distributions: A′ : S ′(R)→ S ′(R)

< A′f |ϕ >=< f |Aϕ >, f ∈ S ′(R), ϕ ∈ S (R) (25.32)

Being A densely defined in L2(R), the adjoint A† exists: (A†f |ϕ) = (f |Aϕ),
∀f ∈ D(A†), ∀ϕ ∈ S (R). By viewing A†f and f as elements of the dual space
L2(R)∗, and thus as distributions, we rewrite it as < (A†f)∗|ϕ >=< f∗|Aϕ >,
i.e. < (A†f∗)∗|ϕ >=< f |Aϕ >. Therefore, for distributions that are functions
f ∈ D(A†) it is

A′f = (A†f∗)∗ (25.33)

With this rule, A′ is an extension of A† to S ′.

25.7.1 Generalized eigenvectors

The eigenvalue equation A′f = λf has solution in S ′ if

∃ fλ such that < fλ|Aϕ >= λ < fλ|ϕ > ∀ϕ ∈ S (R). (25.34)

fλ is a ”generalized eigenvector”.

Example 25.7.1. The operator (Q0ϕ)(x) = xϕ(x) leaves S invariant and is
continuous; the corresponding operator Q′0 acts on distributions as multiplication
by the algebraically bounded function x. The eigenvalue equation Q′0fλ = λfλ,
i.e. < fλ|Q0ϕ >= λ < fλ|ϕ > ∀ϕ has solution for any real λ: fλ = δλ.
Note the “completeness” property with respect to the inner product of L2:

(ϕ1|ϕ2) =

∫
R
dλ< δλ|ϕ1 > < δλ|ϕ2 > .

Example 25.7.2. The operator P0ϕ = −iϕ′ leaves S invariant and is continu-
ous. The operator P ′0 on distributions is < P ′0f |ϕ >=< f |− iϕ′ >= i < f ′|ϕ >,
i.e. P ′0f = if ′. The eigenvalue equation P ′0eλ = λeλ is solved by the ordinary
functions eλ(x) = e−iλx/

√
2π, λ ∈ R (Im λ 6= 0 gives exponentially divergent

functions, which do not give regular distributions). The normalization is such
that < eλ|ϕ >= (Fϕ)(λ), which implies the completeness property:

(ϕ1|ϕ2) =

∫
R
dλ< eλ|ϕ1 > < eλ|ϕ2 > .
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Green functions

In physics one often deals with inhomogeneous linear differential equations.
Green functions are an important tool for solving them. Let us begin with
examples.

26.1 The Yukawa equation

The inhomogeneous Yukawa equation (∇2
x − m2)ϕ(x) = −4πρ(x) contains a

local linear operator and a source ρ. For m = 0 it is the Poisson equation for
the electrostatic potential generated by a charge distribution.

The standard approach to the inhomogeneous equation is to exploit linearity
and begin by solving the equation with a point-source1

(∇2
x −m2)G(x,y) = −4πδ(x− y)

This is the fundamental equation, and a solution is a Green function of the
operator. Evidently, this equation is meaningful in the space of distributions.
Two solutions differ by a solution of the homogeneous equation.
With the Green function, a particular solution of the inhomogeneous problem
is

ϕ(x) =

∫
dyG(x,y)ρ(y)

Since the operator is local and the delta-source is translation-invariant, the
Green function depends on x− y, and can be found via Fourier transform.
With the conventions of physicists for functions of space coordinates:

G(x− y) =

∫
dk

(2π)3
e+ik·(x−y)G(k)

δ(x− y) =

∫
dk

(2π)3
e+ik·(x−y)

In k−space the equation is algebraic: −(k2 +m2)G(k) = −4π. Back to coordi-

1δ(x−y) = δ(x1−y1)δ(x2−y2)δ(x3−y3), where xi and yi are the Cartesian components.
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nates r = x− y:

G(r) =

∫
dk

(2π)3

4π

k2 +m2
eik·r

= 2π

∫ ∞
0

k2dk

(2π)3

4π

k2 +m2

∫ π

0

sin θdθ eikr cos θ

=

∫ ∞
0

k2dk

π

1

k2 +m2

eikr − e−ikr

ikr
=

1

r

∫ ∞
−∞

kdk

iπ

eikr

k2 +m2

with simple poles k = ±im. Since r > 0 the path is closed in the upper half-
plane, and

G(r) =
exp(−mr)

r

This is the Green function of the Yukawa operator (and the static Yukawa
potential for a massive boson). It is non-unique, as we may add a solution of
the homogeneous equation. It is the one that decays at infinity.
With m = 0 it is the familiar Coulomb potential (if m = 0 from the start, the
poles would have been on the real axis but, in the sense of distributions, one
may freely modify k2 to k2 + ε2, with ε = 0 in the end).
The solution of the inhomogeneous problem is:

ϕ(x) =

∫
dy

exp(−m|x− y|)
|x− y|

ρ(y) (26.1)

26.2 The forced undamped oscillator

ẍ(t) + Ω2x(t) = F (t)

The general solution is the sum of a solution of the homogeneous equation,
x0(t) = A cos(Ωt) + B sin(Ωt), and a particular solution xP (t). The latter is
obtained via a Green function, xP (t) =

∫
dsG(t, s)F (s) that solves

d2

dt2
G(t, s) + Ω2G(t, s) = δ(t− s)

Here the Green function is a function of t − s. In Fourier space the variable
conjugated to time is ω and the following sign convention is used:

G(t− s) =

∫
R

dω

2π
G(ω)e−iω(t−s)

The equation for G(ω) is algebraic: (−ω2 + Ω2)G(ω) = 1. Then:

G(t− s) = −
∫
R

dω

2π

e−iω(t−s)

ω2 − Ω2

The poles ±Ω are real. They have to be pushed off the real axis by adding
imaginary parts ±iε. Each sign combination gives a different Green function.
They differ by solutions of the homogeneous equation.
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The choice with all poles in the lower half-plane (i.e. the poles are ±Ω − iε)
defines the retarded Green function (the reason will become clear):

GR(t− s) =

∫
R

dω

4πΩ
e−iω(t−s)

[
1

ω + Ω + iε
− 1

ω − Ω + iε

]
If t < s the path is closed in Im ω > 0 and the integral is zero. If t > s the path
encloses both poles:

GR(t− s) = θ(t− s) −2πi

4πΩ
[eiΩ(t−s) − e−iΩ(t−s)]

= θ(t− s) 1

Ω
sin[Ω(t− s)]

The particular solution

xP (t) =
1

Ω

∫ t

−∞
ds sin[Ω(t− s)]F (s)

has the property of causality: its value at time t only depends on the forcing field
at earlier times. This makes the retarded Green function of special importance
in physics.
For example, if F (t) = 0 for t < 0 and F (t) = F0 sinωt for t > 0 it is

xp(t) =
F0

Ω2 − ω2
[sin(ωt)− ω

Ω
sin(Ωt)]

The motion is a superposition of oscillations with forcing frequency ω and nat-
ural frequency Ω. If ω = (1+ ε)Ω, for ε→ 0 the expression becomes a resonance
(an amplitude grows linearly in time):

xp(t) =
F0

2Ω2
sin(Ωt)− F0

2Ω
t cos(Ωt).

26.3 Wave equation with source

The wave equation with source ρ is

�ϕ(x) = −ρ(x) (26.2)

� = ∇2 − 1

c2
∂2

∂t2
(26.3)

where x = (x, ct), and � is the d’Alembertian operator (or the wave operator).
The Green function (or “fundamental solution”) of the wave operator is the
distribution that solves

�xG(x, x′) = −δ4(x− x′) (26.4)

Then, ϕ(x) = ϕ0(x) + ϕP (x), where ϕ0 solves the homogeneous equation,
�xϕ0 = 0 and ϕP (x) =

∫
d4x′G(x, x′)ρ(x′) is a particular solution.

The Green function is not unique. Its determination can be dictated by physics.
For example causality requires that the field ϕP at time t cannot depend on val-
ues of the source ρ at later times t′ > t (actually, because of the finite wave speed
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c, the effect is further delayed). Being the equation (26.4) translation-invariant,
we’ll solve it by the Fourier expansion

G(x, x′) =

∫
d4k

(2π)4
eik·(x−x

′)G(k)

where k = (k, ω/c), k · x = k · x − ωt. In Fourier space eq.(26.4) is algebraic:
−(k · k)G(k) = −1 i.e. (|k|2 − ω2/c2)G(k, ω) = 1. Therefore

G(x, x′) =

∫
dk

(2π)3
eik·(x−x

′)

∫ ∞
−∞

dω

2πc
e−iω(t−t′) (−c2)

ω2 − |k|2c2

A general feature occurs: the integral is singular with poles at ω = ±|k|c. This
is no problem: we are dealing with distributions, and small epsilons may be
introduced to shift poles off the real axis. As this can be done in different ways,
there are different Green functions.
Causality determines one choice of the signs. If t′ > t the integration path closes
in the upper half-plane (this ensures exponential decay on the semicircle); if we
require that G(x, x′) = 0 for t′ > t, no poles must be encircled, i.e. the two poles
are in the lower half plane. This choice defines the retarded Green function:

GR(x, x′) =

∫
dk

(2π)3
eik·(x−x

′)

∫ ∞
−∞

dω

2π
e−iω(t−t′) (−c)

(ω + iε)2 − |k|2c2

= θ(t− t′)
∫

dk

(2π)3
eik·(x−x

′) −c
2|k|c

[
e−i|k|c(t−t

′) − ei|k|c(t−t
′)
]

= θ(t− t′)
∫ ∞

0

k2dk

(2π)2

−1

2k

[
e−ikc(t−t

′) − eikc(t−t
′)
] ∫ π

−π
sin θ dθeik|x−x

′| cos θ

= θ(t− t′)
∫ ∞

0

dk

8π2

[
e−ikc(t−t

′) − eikc(t−t
′)
] [
eik|x−x

′| − e−ik|x−x
′|
]

A change k → −k gives the sum of two delta functions, one of which is identically
zero, and a factor 2π. Then:

GR(x, x′) = θ(t− t′)δ(|x− x′| − c(t− t′))
4π|x− x′|

The Green function has support on the spherical surface centred in x′ with
radius c(t− t′) > 0, increasing with t. The causal field with source ρ(x′, t′) is a
continuous superposition of such spherical waves being emitted at every point
of the source:

ϕP (x, t) =

∫
dx′

∫ t

−∞
dt′

δ(|x− x′| − c(t− t′))
4π|x− x′|

ρ(x′, t′)

=

∫
dx′

ρ(x′, t− 1
c |x− x′|)

4πc |x− x′|
(26.5)

26.3.1 Green functions as distributions.

Let us consider the problem of inverting Âf = g naively.
In the basis of position, the equation ÂÂ−1 = 1 is

∫
dx′〈x|Â|x′〉〈x′|Â−1|y〉 =
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δ(x− y). If Â is diagonal, namely if 〈x|Â|x′〉 = δ(x− x′)Ax where Ax acts with
derivates and multiplication by functions of x, it is:

AxG(x, y) = δ(x− y)

where G(x, y) = 〈x|Â−1|y〉 is the Green function of the local operator Ax. The
problem (Âf)(x) = g(x) has general solution:

f(x) = f0(x) +

∫
dy G(x, y)g(y)

where f0 solves the homogeneous problem Âf0 = 0.
Now let’s be more formal. Let A : S (R) → S (R) be a linear continuous

operator. A Green function Gs of A, if it exists, is a distribution that solves the
equation < Gs|Aϕ >=< A′Gs|ϕ >= ϕ(s), for any test function i.e.

A′Gs = δs, s ∈ R

In terms of generalized functions it is
∫
dxGs(x)(Aϕ)(x) = ϕ(s). The inhomo-

geneous equation Âϕ = ψ has the particular solution

ϕ(s) =< Gs|ψ >=

∫
dxGs(x)ψ(x)

Proof. ϕ(s) =< δs|ϕ >=< A′Gs|ϕ >=< Gs|Âϕ >=< Gs|ψ >.

A second Green function would produce a particular solution that differs by
a solution of the homogeneous equation Aϕ = 0.

Example 26.3.1. The Green functions of (P0ϕ)(t) = iϕ′(t) solve −iG′t = δt:

−i
∫
ds

d

ds
Gt(s)ϕ(s) = ϕ(t)

A solution is Gt = iθt i.e. Gt(s) = iθ(s− t); it gives the particular solution for
P0ϕ = ψ:

ϕ(t) =< Gt|ψ >= i

∫
R
ds θ(s− t)ψ(s) = i

∫ ∞
t

dsψ(s)

The Green function is named “advanced” (the solution is built with the source at
later times). The Green function Gt(s) = −iθ(t− s) yields a retarded solution:

ϕ(t) = −i
∫
R
ds θ(t− s)ψ(s) = −i

∫ t

−∞
dsψ(s)

The difference of the two solutions is a constant (solution of the homogeneous
equation).
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FOURIER TRANSFORM
II

The Fourier transform F and antitransform F−1 were studied in detail in S (R)
and extended to the dual space. The same properties generalize to S (Rn) and
the dual, with

(Fu)(q) =

∫
Rn

dnx

(2π)n/2
e−iq·xu(x) (27.1)

(F−1u)(q) =

∫
Rn

dnx

(2π)n/2
eiq·xu(x) (27.2)

It is of great interest to investigate the properties of F as operators on the spaces
Lp(Rn). Here we restrict to one dimension (n = 1). Most of the properties
continue to hold in higher dimension.

27.1 Fourier transform in L1(R)

By the inequality |Fu(k)| ≤
∫
R dx |u(x)| the Fourier transform is well defined

on the whole space L 1(R), and |Fu(k)| ≤ 1√
2π
‖u‖1 for all k. Therefore F is a

linear operator from L1(R) to L∞(R), and

‖Fu‖∞ ≤
1√
2π
‖u‖1

The operator is continuous: if un → 0 in L1(R) then Fun → 0 uniformly, i.e.
Fun → 0 in L∞(R).

Exercise 27.1.1. What is the condition for an integrable real function to have
a real Fourier transform?

Example 27.1.2. The Fourier transform of a characteristic function

(Fχ[a,b])(k) =

∫ b

a

dx√
2π
e−ik x =

√
2

π

sin[ b−a2 k]

k
e−i

b+a
2 k

is a continuous bounded function, i.e. ∈ C (R), and vanishes for |k| → ∞.
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The same properties hold true for ladder functions σ, which are finite linear
combinations of χ functions, and are a dense subset of L1(R). This anticipates
the fundamental theorem:

Theorem 27.1.3 (Riemann - Lebesgue). If f ∈ L 1(R) then Ff is bounded,
continuous, and

lim
|k|→∞

|(Ff)(k)| = 0 (27.3)

Proof. If σn is a sequence of ladder functions and σn → f in L1, then Fσn →
Ff uniformly. Since Fσn are continuous, also Ff is continuous1.
∀ε there is a ladder function σ such that ‖f − σ‖1 < ε. Since |Fσ| vanishes
at infinity, there is R such that for all |k| > R it is |(Fσ)(k)| < ε. Then, for
|k| > R it is:

|(Ff)(k)| ≤ |F (f − σ)(k)|+ |(Fσ)(k)| ≤ 1√
2π
‖u− σ‖1 + |(Fσ)(k)| < ε

up to a constant.

Remark 27.1.4. The set where Fχ[a,b](x) 6= 0 has infinite measure. This is
true in general: if f ∈ L 1(R) and the Lebesgue measures of the sets where
|f | 6= 0 and |Ff | 6= 0 are both finite, then f = 0 a.e. (M. Benedicks, On
Fourier transforms of functions supported on sets of finite Lebesgue measure,
Math. Anal. Appl. 106 (1985) 180–183). The theorem holds in any dimension.

Since the Fourier transform is bounded, the following integrals exist and are
equal (Fubini’s theorem applies):∫

R
dk(Ff)(k)g(k) =

∫
R
dkf(k)(F−1g)(k) (27.4)

Theorem 27.1.5 (Inversion). If f ∈ L 1(R) ∩L∞(R), then FF−1f = f .

Proposition 27.1.6 (Convolution product). The convolution product of
f, g ∈ L 1(R)

(f ∗ g)(x) =

∫
R
dy f(x− y)g(y) (27.5)

is a function in L 1(R), ‖f ∗ g‖1 ≤ ‖f‖1‖g‖1, and

F (f ∗ g) =
√

2π(Ff)(Fg) (27.6)

The product ∗ is commutative, associative and distributive.

Proof.
∫
R dx|(f ∗ g)(x)| ≤

∫
R dx

∫
R dy|f(x − y)||g(y)| = ‖f‖1‖g‖1 after a shift

x′ = x− y. The Fourier transform of f ∗ g exists, and

F (f ∗ g)(k) =

∫
R

dx√
2π
e−ik(x−y)

∫
R
f(x− y)g(y)eiky =

√
2π(Ff)(k)(Fg)(k)

1If fn is a sequence of continuous functions that converges to f uniformly, then f is
continuous. Proof: for any x it is |f(x) − f(y)| ≤ |f(x) − fn(x)| + |f(y) − fn(y)| + |fn(x) −
fn(y)| ≤ 3ε for n large enough and |y − x| < δ.
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27.2 Fourier transform in L2(R)

Hermite functions belong to S (R) ⊂ L2(R). The following theorem has various
interesting implications:

Theorem 27.2.1. The Hermite functions hm are an orthonormal and complete
set in L2(R).

Proof. From the generating function of Hermite polynomials (11.17) one obtains
the generating function of Hermite functions:

h(x, z) =

∞∑
m=0

zm√
m!
hm(x) =

1
4
√
π
e−

1
2 (x2−

√
2zx+z2)

The series converges in L2 norm because the coefficients zm/
√
m! are a sequence

in `2(C) (Parseval theorem). Suppose that there is f ∈ L2 such that (hm|f) = 0
for all m. This implies that (h|f) = 0 for all z. For z = −ik/

√
2, up to irrelevant

factors, it is

0 =

∫
R

dx√
2π

e−
1
2x

2−ixkf(x) = (Fg)(k), g(x) = e−
1
2x

2

f(x)

The function g belongs to L 1(R) (Schwarz inequality) and its Fourier transform
is zero. Then g ∈ KerF , but Ker F = {0} by the inversion theorem in L1.
Then g = 0 i.e. f = 0.

Since F is isometric on S (R) (‖Fϕ‖2 = ‖ϕ‖2) and the Schwartz space is
dense in L2, the operator may be extended to a unitary operator F̂ on L2(R).
The explicit construction exploits the property of hn to be eigenstates of F̂ and
to form an orthonormal complete set.
Consider the expansion f =

∑
n(hn|f)hn; then fN =

∑
n≤N (hn|f)hn is a

Cauchy sequence of functions in S (R) that is norm-convergent to f . It is
FfN =

∑
n≤N (−i)nun(un|f). This new sequence is again a Cauchy sequence.

Its limit defines the Fourier-Plancherel operator

F̂ f =

∞∑
n=0

(−i)n (hn|f)hn (27.7)

The inverse transform F−1 extends uniquely to the adjoint F̂ †.

Remark 27.2.2. The Hermite functions are the eigenfunctions of the number
operator N̂ = 1

2 (P̂ 2 + Q̂2 − 1): N̂hn = nhn. The operator is the generator in
L2(R) of the one-parameter unitary group

Û(θ) = e−iθN̂ =

∞∑
n=0

e−inθ(hn| · )hn

with domain D(N̂) = {f :
∑∞
n=0 n

2|(hn|f)|2 < ∞}. The group describes the

2π-periodic evolution in time θ of the quantum oscillator. Both N̂ and Û(θ)
leave S (R) invariant. It is Û(π2 ) = F̂ , Û(−π2 ) = F̂−1 = F̂ †. Û(π) is the parity
operator.
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Another way to evaluate the Fourier transform of a function f ∈ L 2 is to
consider the functions χ[−R,R]f ∈ L 1(R). On such functions F̂ = F and, since

F̂ is continuous:

(F̂ f)(k) = l.i.m.
R→∞

∫ R

−R

dx√
2π
e−ikxf(x)

where l.i.m. is ”limit in the mean”, i.e. in L2 topology.

27.2.1 Completeness of the Fourier basis

The Fourier transform of a function in S (R) can be written as

(Fϕ)(k) =

∫
R
dxuk(x)ϕ(x) =< uk|ϕ >, uk(x) =

eikx√
2π
, k ∈ R

where < uk| > is the action of a regular distribution. By the inversion theorem
it is:

ϕ(x) =

∫
R
dk < uk|ϕ > uk(x) (27.8)

Since Schwartz’s space is dense in L2, the relation shows the completeness of
the continuous system of functions {uk}. They are the eigenfunctions of the
derivative operator on distributions, which extends the self-adjoint unbounded
operator P̂ .

Proposition 27.2.3 (Vladimirov2).

ϕ ∈ S (R) ⇐⇒
∞∑
n=0

n2k|ϕn|2 <∞ ∀ k ∈ N (27.9)

where ϕn = (hn|ϕ) are the coefficients of the expansion in the Hermite basis.

Similarly one proves the theorem: f ∈ S ′(R) if and only if there are a
positive constants C, p such that | < f |un > | ≤ C(1 + n)p, for all n ∈ N.

2V. Vladimirov, Le distribuzioni nella fisica matematica, Mir (1981).



Chapter 28

THE LAPLACE
TRANSFORM

28.1 The Laplace integral

The Fourier transform exists for functions that belong to L 1(R). This is very
restrictive in applications, for it leaves out several important functions. How-
ever, a non-integrable function f(x) multiplied by e−cx may become integrable
on x ≥ 0 for suitable Re c > 0. At the same time, to avoid problems at the
other end of integration, one requires f(x) = 0 for x < 0. Then, if f has the
property ∫ ∞

0

dx e−cx |f(x)| <∞ (28.1)

for a suitable value c, the Fourier integral of the function
√

2πe−cxf(x) for x ≥ 0
and 0 for x < 0 exists, and is:

∫∞
0
dx e−ikxe−cxf(x).

By setting z = c+ ik, the integral defines the Laplace transform of f :

(L f)(z) =

∫ ∞
0

dxf(x)e−zx (28.2)

The complex function is well defined for Re z > c, where c is some real number
that depends on f , and is bounded by (28.1):

|(L f)(z)| ≤
∫ ∞

0

dx e−xRez|f(x)| ≤
∫ ∞

0

dx e−cx|f(x)|.

Proposition 28.1.1.
lim

Re z→+∞
|(L f)(z)| = 0

Proof. For x ≥ 0 and Re z →∞: |e−zxf(x)| → 0. Moreover:

|e−zxf(x)| = e−x(Rez−c)e−cx|f(x)| ≤ e−cx|f(x)| ∈ L 1(R+)

By the dominated convergence theorem the limit Rez → ∞ can be exchanged
with integral of the Laplace transform.

233
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Lemma 28.1.2. If |(L f)(z)| <∞ for Rez > c+ ε then |(L xnf)(z)| <∞ for
Rez > c+ ε.

Proof.
∣∣∫∞

0
dx e−zxxnf(x)

∣∣ ≤ supx≥0[xne−x(Rez−c−ε)]
∫∞

0
dx e−(c+ε)x|f(x)| <

∞

Theorem 28.1.3. (L f)(z) is holomorphic in the half-plane Re z > c and

d

dz
(L f)(z) = −(L xf)(z) (28.3)

Proof. Let’s show that the limit h→ 0 exists:∣∣∣∣ (L f)(z + h)− (L f)(z)

h
+ (L xf)(z)

∣∣∣∣ =

∣∣∣∣∫ ∞
0

dx e−xzf(x)

[
e−hx − 1

h
+ x

]∣∣∣∣
≤
∫ ∞

0

dx e−xRez|f(x)|
∣∣∣∣e−hx − 1

h
+ x

∣∣∣∣ ≤ |h|2
∫ ∞

0

dx e−xzx2|f(x)| → 0

where the following inequality is used∣∣∣∣e−hx − 1

h
+ x

∣∣∣∣ =

∣∣∣∣∫ x

0

dy(e−hy − 1)

∣∣∣∣ ≤ ∫ x

0

dy|e−yh − 1| ≤ 1
2 |h|x

2

The last step is proven here: let y > 0, h = h1 + ih2, then: |e−yh−1| = |e−yh1−
eiyh2 | = [(e−yh1 − 1)2 + 4e−yh1 sin2( 1

2yh2)]1/2 ≤
√

(yh1)2 + (yh2)2 = y|h| by
means of Lagrange’s formula and the bound | sinx/x| ≤ 1.

28.2 Properties

These properties are proven without difficulty:

L (af + bg) = aL f + bL g (linearity) (28.4)

(L f)(z) = (L f)(z) (28.5)

(L f ′)(z) = −f(0) + z(L f)(z) (28.6)

(L f ′′)(z) = −f ′(0)− zf(0) + z2(L f)(z) (28.7)

(L xf)(z) = −(L f)′(z) (28.8)

(L e−axf)(z) = (L f)(z + a). (28.9)

Some simple Laplace transforms:

(L [eαx])(z) =
1

z − α
, Re z > Re α (28.10)

(L [sinωx])(z) =
ω

z2 + ω2
, Re z > 0 (28.11)

(L [cosωx])(z) =
z

z2 + ω2
, Re z > 0 (28.12)

Example 28.2.1.

(L [xa−1])(z) =

∫ ∞
0

dx e−zxxa−1 =
Γ(a)

za
, Re a > 0, Re z > 0 (28.13)
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Logs and powers can be included by replacing a by a+ ε, and expanding in ε:

xa−1+ε = xa−1[1 + ε log x+ 1
2ε

2(log x)2 + . . . ]

Γ(a+ ε) = Γ(a)[1 + ε ψ(a) + 1
2ε

2ψ2(a) + . . . ]

where ψ(z) is the digamma function etc. By equating equal powers of ε one
obtains (Re z > 0):

(L [xa−1 log x])(z) =
Γ(a)

za
[ψ(a)− Logz] (28.14)

(L [xa−1 log2 x])(z) =
Γ(a)

za
[ψ2(a)− 2ψ(a)Logz − Log2z] (28.15)

28.3 Inversion

The Laplace transform can be inverted. With the understanding that f(x) = 0
for x < 0, recall the correspondence:

(F [
√

2πe−axf(x)])(k) = (L f)(a+ ik)

If, as a function of k, it is (L f)(a+ ik) ∈ L 1(R), the Fourier transform can be
inverted: √

2πe−axf(x) =

∫ ∞
−∞

dk√
2π

(L f)(a+ ik)eikx.

The formula transforms into: f(x) =
∫∞
−∞

dk
2π e

(a+ik)x(L f)(a + ik). Put z =
a+ ik, dz = idk and the inversion formula is obtained:

f(x) =

∫ a+i∞

a−i∞

dz

2πi
ezx(L f)(z) (28.16)

The line of integration is parallel to the imaginary axis with a > c. The func-
tion (L f)(z) is analytic for Re z > c. If it is meromorphic for Rez < c, the
computation of the integral can be done by the Residue Theorem, by closing the
integration path by a semicircle in Re z < c surrounding the poles (Bromwich’s
contour).

28.3.1 Hankel’s representation of Γ

The antitransform of (L [xa−1])(z) is

xa−1 = Γ(a)

∫ c+i∞

c−i∞

dz

2πi
ezxz−a

where c > 0 is arbitrary. For x = 1 Hankel’s integral representation of the
Gamma function is obtained:

1

Γ(a)
=

∫ ε+i∞

ε−i∞

dz

2πi
ezz−a (28.17)

The path of integration can be deformed to the loop shown in fig. 28.1. In
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Figure 28.1: Hankel’s loop for 1/Γ(a).

particular, if a = n the singularity is a pole in the origin, the loop may be
deformed to a circle, and the Residue Theorem gives Γ(n) = (n− 1)!.

If a 6= n the evaluation of the loop integral gives an important identity of the
Gamma function. Let za = eaLogz; the loop runs along the cut of discontinuity
of the Log: Log (x± iε) = log |x| ± iπ for x < 0. Then:

1

Γ(a)
=

∫
loop

dz

2πi
ez−aLogz =

∫ 0

−∞

dx

2πi

[
ex−iε−aLog(x−iε) − ex+iε−aLog(x+iε)

]
=

sin(πa)

π

∫ ∞
0

dx e−xx−a

The identity is:

Γ(a)Γ(1− a) =
π

sinπa
(28.18)

28.4 Convolution

The Fourier transform of the convolution of two functions is the product of
their Fourier transforms. Because of the relation between Fourier and Laplace
transforms, a similar property is expected for the Laplace transform.

Consider two functions of the type considered so far,
√

2πθ(x)e−axf(x) and√
2πθ(x)e−axg(x), where the vanishing condition for x < 0 is written explic-

itly. Let’s write their convolution product according to the theory of Fourier
transform: ∫ ∞

−∞
dy[
√

2πθ(y)f(y)e−ay][
√

2πθ(x− y)g(x− y)e−a(x−y)]

= 2πe−ax
∫ x

0

dyf(y)g(x− y)

This integral defines the convolution product of two Laplace-transformable func-
tions:

(f ∗ g)(x) =

∫ x

0

dy f(y)g(x− y) (28.19)

Exercise 28.4.1. Show that the convolution product is commutative.

Theorem 28.4.2 (Convolution theorem).

∫ x

0

dy f(y)g(x− y) =

∫ a+i∞

a−i∞

dz

2πi
ezx(L f)(z)(L g)(z) (28.20)



CHAPTER 28. THE LAPLACE TRANSFORM 237

Proof. We use results from the theory of Fourier transform. By the convolution
theorem for the Fourier transform, it is

2πe−ax
∫ x

0

dyf(y)g(x− y)

=
√

2πF−1
(
F [
√

2πθ(y)f(y)e−ay]F [
√

2πθ(y)g(y)e−ay]
)

(x)

=

∫ ∞
−∞

dk eikx(L f)(a+ ik)(L g)(a+ ik)

Therefore:∫ x

0

dyf(y)g(x− y) =

∫
R

dk

2π
e(a+ik)x(L f)(a+ ik)(L g)(a+ ik)

Now put z = a+ ik, dz = idk.

Example 28.4.3. Consider the inhomogeneous equation{
f ′′(t) + ω2f(t) = g(t)

f(0) = A, f ′(0) = B

The Laplace transform yields the algebraic equation (z2 +ω2)(L f)(z)− f ′(0)−
zf(0) = (L g)(z), with solution

(L f)(z) =
(L g)(z) +B +Az

z2 + ω2
.

To obtain f one inverts a Laplace transform:

f(t) =L −1

(
L [g]

1

ω
L [sinωt] +

B

ω
L [sinωt] +

A

ω
L [cosωt]

)
=

∫ t

0

dt′
sinω(t− t′)

ω
g(t′) + fhom(t),

where fhom(t) = B
ω sinωt+ A

ω cosωt solves the homogeneous equation. The par-
ticular solution exhibits the causality property: its value at time t is determined
by the values of the forcing field at times t′ < t.

28.5 Mellin transform

In analogy with the construction of the Laplace transform, the Fourier identity

f(x) =

∫ ∞
−∞

dk

2π
e−ikx

∫ ∞
−∞

dy eikyf(y)

is formally modified to define the useful Mellin transform1.
In the identity put x = log s and y = log t:

f(log s) =

∫ ∞
−∞

dk

2π
s−ik

∫ ∞
0

dt tik−1f(log t)

1for a nice introduction see: https://www.cs.purdue.edu/homes/spa/papers/chap9.ps

https://www.cs.purdue.edu/homes/spa/papers/chap9.ps
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Let z = c + ik, dz = idk: s−cf(log s) =
∫ c+i∞
c−i∞

dz
2πis

−z ∫∞
0

dt tz−1t−cf(log t);

rename f(log s)s−c as f(s). Then: f(s) =
∫ c+i∞
c−i∞

dz
2πis

−z ∫∞
0

dt tz−1f(t).
The Mellin transform of a function is:

(M f)(z) =

∫ ∞
0

dxxz−1f(x) (28.21)

It exists for |(M f)(z)| ≤
∫∞

0
dx|f(x)|xRez−1 < ∞, which means that z is

bounded in some strip of the complex plane. The inversion formula is

f(x) =

∫ c+i∞

c−i∞

dz

2πi
x−z(M f)(z) (28.22)

The Mellin transform of e−x is Γ(z), and is defined for Rez > 0.

Exercise 28.5.1. Prove the properties:

(Mxf)(z) = (M f)(z + 1) (28.23)

(M f ′)(z) = −(z − 1)(M f)(z − 1) (28.24)

(MxnDnf)(z) = (−1)n(z − n) . . . (z − 1)(M f)(z) (28.25)∫ ∞
0

dx|f(x)|2 =

∫ c+i∞

c−i∞

dz

2πi
|M f(z)|2 (Parseval identity) (28.26)

(M fg)(z) =

∫ c+i∞

c−i∞

dz

2πi
(M f)(z′)(M g)(z − z′) (28.27)
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