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Introduction

At present, the statistical mechanics of systems in thermal equilibrium is
quite well established. On the other hand, little is known in general for non-
equilibrium systems. It seems therefore worthwhile to study simple models
which are out of thermal equilibrium. One of such systems is the model in-
troduced at the beginning of the eighties by Katz, Lebowitz, and Spohn [21]
(described in Chapter 1), who studied the stationary state of a lattice gas
under the action of an external drive. The model, hereafter called driven lat-
tice gas (DLG), is a kinetic Ising model on a periodic domain with Kawasaki
dynamics and biased jump rates. In a sense the DLG may be considered as
the “Ising model” for nonequilibrium critical phenomena, given its simplic-
ity and richness. Indeed although not in thermal equilibrium, the DLG has
a time-independent stationary state and shows a finite-temperature tran-
sition (Section 1.2 and 1.4), which is however different in nature from its
equilibrium counterpart 1.

Despite its simplicity, the DLG has not been solved exactly 2. Nonethe-
less, many results have been obtained by means of Monte Carlo (MC) sim-
ulations and by using field-theoretical methods. In particular, Refs. [26, 27]
developed a continuum model which is believed to capture the basic fea-
tures of the transition and which provides exact predictions for the critical
exponents. The analysis of Refs. [26, 27] has been recently criticized in
Refs. [49, 50, 53], opening an ongoing debate we sum up in Section 1.5. Sev-
eral computer simulations studied the critical behaviour of these systems
in two and three dimensions [38, 40, 41, 45]. These simulations provided
good support to the field-theoretical predictions, once it was understood
that the highly anisotropic character of the transition required some kind of
anisotropic finite-size scaling (FSS, discussed in Chapter 2).

In spite of the extensive numerical work, there are no direct studies of the
correlation length so far, essentially because it is not easy to define it. Our
first concern will be to define a finite-volume transverse correlation length
(see Section 1.3) generalizing the definition of the second-moment correla-

1For an extensive presentation of the DLG and of many generalizations, see Refs.
[20, 18].

2The DLG is soluble for infinite drive in the limit in which the ratio of jump rates
parallel and perpendicular to the field direction becomes infinite [22].
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tion length that is used in equilibrium systems. Because of the conserved
dynamics, such a generalization requires some care. To this end, we will ex-
tend euristically our results of ref. [95] on the proper definition of correlation
lenght in finite systems at fixed magnetization (or density).

Since anisotropic FSS scaling requires the preliminary knowledge of the
anisotropy exponent ∆ we try to understand in sec. 2.4 what can be ex-
pected, on general grounds, when the wrong value of ∆ is used in simula-
tions. This led us to the study of an exaclty soluble model to confirm our
conjectures, the analisys is described in chap. 3. In general shape mismatch
in FSS is poorly understood and more thorough investigations would be
needed to assess a firm theoretical framework for anisotropic FSS. This has
a huge relevance in the understanding of critical phenomena outside ther-
mal equilibrium where strong anisotropy (correlation lengths diverging with
different exponents in different directions) is a rule.

In sec. 2.5 we analyze the behaviour in a finite box of the field-theory
believed to describe the critical phenomena in the DLG and compute FSS
functions for several observables.

Then in sec. 4 we report the results of extensive numerical simulations
of the DLG in two dimensions and compare the results with the theoretical
prediction of the standard field-theory, finding a good agreement. Exploiting
the correlation lenght and FSS arguments, our analysis essentially confirms
the gaussian nature of transverse fluctuations in DLG as expected by field
theory. A preliminary investigation of shape mismatch effects in the DLG
is attempted, however the situation is still far from being clear and more
insights (mainly from the theoretical side) are needed.

Finally, I would like to acknowledge the very interesting collaboration
with S. Caracciolo and A. Gambassi which led to many of the results I
present here.
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Chapter 1

The Driven Lattice Gas

1.1 The lattice gas

A lattice gas1 is a model of indistinguishable classical particles moving on
a d-dimensional hypercubic lattice Λ ⊂ Zd constrained by an hard-core
repulsive interaction. A configuration η of the system is completely described
by the occupation numbers ηi of each site i ∈ Λ. We will consider only
models in which at most one particle may occupy a given site, then ηi ∈
{0, 1} and the state space is given by C(Λ) := {0, 1}Λ(2), η ∈ C(Λ) is a
particular configuration of the gas. Unit vectors in the principal directions
of the lattice Λ will be denoted êµ, µ = 1, . . . , d, |i − j | is the distance
between i , j ∈ Λ, |i − j | = 1 when i and j are nearest-neighbours (NN).
Given a configuration η ∈ C we will denote with ηij the configuration

ηij (k) :=


η(j ), if k = i ,

η(i), if k = j ,

η(k), otherwise.

i.e. ηij is obtained from η by exchanging site i with site j .
The gas evolves through random jumps of particles to neighboring sites.

This can be conveniently described prescribing the rates c(i , j , η) of transi-
tion form the configuration η to the configuration ηij .

Consider a finite volume Λ and let P0(η) be the an initial probability
distribution over C(Λ), let Pt(η) be the probability of finding the gas in
configuration η at time t. It obeys the Fokker-Planck equation

d

dt
Pt(η) = L∗Pt(η) =

1
2

∑
i,j∈Λ

{c(i , j , ηij )Pt(ηij )− c(i , j , η)Pt(η)}. (1.1)

1Its simplest form was used as a model in seminal works on phase transitions [2, 4].
2Dynamics may restricts configuration to a subset of {0, 1}Λ.
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A Markov process over the state space C(Λ) is canonically associated with
this evolution equation for Pt (for details see e.g. [3]).

The dynamics is conservative and the density

ρΛ(C) :=
1
|Λ|
∑
i∈Λ

ηi , (1.2)

does not change in time: the configuration space is decomposed into invari-
ant subspaces with different densities, i.e. C = ∪ρCρ, where Cρ = {C ∈
C | ρΛ(C) = ρ}. With some conditions on the rates (satisfied in the mod-
els we will consider) the dynamics is irreducible [62] in every Cρ, i.e. from
each state it is possible to get to each other state by a finite number of
allowed transitions. This is sufficient to ensure that there exists a unique
invariant probability (i.e. a stationary solution of (1.1)) P sρ (C) in each Cρ
and that it is independent of the initial configuration chosen. Consider the
lattice gas as a thermodynamical system allowed to exchange energy with
a thermal bath, then we are led to formulate two main constraints on the
allowed dynamics: first, the stationary measure P s should be a Gibbs mea-
sure for a suitable energy function H : C(Λ) → R and parametrized by the
temperature of the thermal bath. Second, the stochastic process associated
to Fokker-Planck eqn. (1.1) should be stochastically reversible [3], that is
in the stationary state the law of the associated Markov process must be
invariant by time-reversal. By well known arguments, this implies that the
rates c(i , j , η) must satisfy the detailed balance condition

P s(η)c(i , j , η) = P s(ηij )c(j , i , ηij ), ∀i , j ∈ Λ. (1.3)

If Ps(η) = Z−1 exp (−H(η)) then

c(i , j , η)
c(j , i , ηij )

= exp
(
H(η)−H(ηij )

)
, ∀i , j ∈ Λ (1.4)

which can be satisfied by choosing rates c satisfying

c(i , j , η) = w(H(η)−H(ηij ))

where w is an aribitary function such that w(−x) = exp(x)w(x). Different
dynamics correspond to different choices for w. The stationary distribution
on C(Λ) of the resulting Markov process is, nevertheless, the same, irrespec-
tive of the specific dynamics chosen 3.

A non-equilibrium steady state can be produced by perturbing an equi-
librium dynamics satisfying (1.3) by coupling the lattice gas with external

3One popular choice for w is the Metropolis rate

w(x) = min{1; e−x} .
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force fields acting on the bulk. The essential features of the class of models
called driven lattice gases (DLG) is the presence of an external field E act-
ing on every bond of the lattice in such a way that the detailed balance in
the local form (1.4) is modified in

cE(i , j , η)
cE(j , i , ηij )

= exp
(
H(η)−H(ηij ) + β|E(i , j )|`

)
(1.5)

for i , j nearest neighbours in Λ and where ` = −1, 0,+1 for jumps of particles
in the direction of E , in trasverse directions and in the opposite direction,
respectively. This modification takes into account the work done by the
external field. If E is integrable, i.e. there exists a function −V on Λ whose
discrete gradient is E then the stationary measure for the rates cE is just
the Gibbs measure associated to the energy function HE = H + V . The
driven lattice gases are obtained taking E constant and imposing periodic
boundary conditions (allowing particles to jump across the boundaries of
Λ for landing at the opposite boundary). In this situation there not exists
a global potential function V and the stationary state carries a non-zero
flux of particles along E explicitly violating time-reversal symmetry. The
stationary measure is not known a-priori.

1.2 The KLS model

A simple example of DLG was introduced by Katz, Lebowitz and Spohn in
1984 [21]. This model, which we will call the KLS model (and will be our
standard model of DLG), is specified by requiring that the particle interacts
with NN attractive couplings: the energy function is then

HΛ = 2βJ
∑
〈i ,j 〉

η(i)η(j ) := βHI , (1.6)

where angular brackets means summation over NN pair of sites i , j ∈ Λ.
With vanishing external field (E = 0) the stationary state is the Gibbs

measure associated to HΛ in CN (Λ). Introducing Ising spins σ(i) = (2η(i)−
1) the Hamiltonian HI is exaclty that of an Ising model and β is propor-
tional to the inverse of the temperature of the thermal bath kBT = β−1.
Gas particles and holes corresponds respectively to positive and negative
spins, density ρ = N/|Λ| becomes magnetization m = 2ρ − 1 which thus is
conserved. The Gibbs measure is then

Z−1 exp(−βHI)δ

(∑
i∈Λ

σi −m|Λ|

)
(1.7)

In the thermodynamic limit this ensemble is equivalent to the standard Ising
model where the magnetic field is such that the mean magnetization is m.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1.1: Typical configurations of the 2d KLS model on a 64×64 lattice.
Temperature is decreasing from the left to the right: (a,b,e,f) T > Tc(E);
(c,d,g,h) T < Tc(E). (a,b,c,d) refer to ordinary lattice gas E = 0. (e,f,g,h)
refer to DLG with a saturating electric field E = ∞, along the vertical
direction

At half density (ρ = 1/2) the corresponding magnetization is zero and
the second-order phase transition point of the Ising model is accessible by
tuning T to the critical temperature Tc (in two dimensions Onsager’s result
gives βc = 1/(kBTc) = log(1+

√
2)/2 ≈ 0.44). From the point of view of the

lattice gas this is a “gas-liquid” transition: the gaseous phase with T > Tc
(cfr. Fig. 1.1 (a,b)) has homogeneous density and 〈σi 〉 = 0 for every i ∈ Λ.
In liquid phase (cfr. Fig. 1.1 (c,d)) there is segregation of a particle-rich
phase 〈σi 〉 = +m(T ) and an hole-rich phase 〈σi 〉 = −m(T ). The presence
of the interface is due to the global conservation law. This transition is of
course well understood both from the thermodynamical point of view [5],
and for what concerns dynamical effects [1].

The key feature of the KLS model is that there are strong numerical
evidences that the phase transition is present also in the case E := |E | > 0
(Fig. 1.1 (e,f,g,h)) and that for ρ = 1/2 it is a continous phase transition
(we will see below which is the meaning of this statement). (numerical
evidences in d = 2 and d = 3, can be found in a lot of papers, see [20, 18] for
comprehensive reviews) This transition occours at an inverse temperature
βc(E) which, in two dimensions, saturates at βc(∞) ≈ 0.709(5)βc(0) [39, 40,
41]. For β < βc(E) particles are homogeneously distributed in space, while
for β > βc(E) the gas segregates in two regions, one almost full and the
other almost empty, with interfaces parallel to E , as shown in Figure 1.1.
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Symmetries

Let us define the following transformations for the DLG model:
C :ηi

C7→ 1− ηi ∀i ∈ Λ

R :E R7→ −E

P :x̂ P7→ −x̂

(1.8)

It’s easy to realize that transition rates (and so the model) are invariant for
lattice translations of both initial and final configurations and for all possible
pairings of the transformations (1.8), i.e. CR, CP and PR. Moreover any
ortogonal transformation in the transverse space is a symmetry. These sym-
metries play special rôle to set up a mesoscopic description of the observed
phase transition, see Section 1.4 and 1.5.

1.3 Observables

In this section we define observables which will allow us to characterize
quantitatively the phase transition of the DLG and which can be measured
in numerical simulations [56]. Our principal concern is with the 2d DLG so
we will refer to this case even though the given definitions can readily be
generalized to generic d.

We consider a finite square lattice of size L‖×L⊥ with periodic boundary
conditions.

A very important feature of the model is the fact that total magneti-
zation is constant (and set to zero to be able to reach the critical regime)
and thus does not allow to distinguish between the two phases. The signal
of the transition is encoded into long-wave disomogeneities of local magne-
tization. A natural object of interest is then the Fourier transform of the
magnetization field σi which we will denote φ(k):

φ(k) :=
∑
j∈Λ

eik ·jσj , (1.9)

where the allowed momenta are

kn,m :=
(

2πn
L‖

,
2πm
L⊥

)
, (1.10)

with (n,m) ∈ ZL‖ × ZL⊥ . At half filling, i.e. for ρ = 1/2 we have∑
j∈Λ

σj = 0, i.e. φ(k0,0) = 0. (1.11)
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In the ordered phase |φ(k)| takes its maximum for k = k0,1, and the
expectation value on the steady state of its module

m(L‖, L⊥) :=
1
|Λ|
〈|φ(k0,1)|〉 (1.12)

is a good order parameter.
In momentum space the static structure factor

G̃(k ;L‖, L⊥) :=
1
|Λ|
〈|φ(k)|2〉 (1.13)

vanishes at k0,0 because of Eq. (1.11) and is maximal at k0,1, so that it is
natural to define the susceptibility as4

χ(L‖, L⊥) := G̃(k0,1;L‖, L⊥). (1.14)

In Fig.1.2 we reported results from Monte Carlo simulations showing
χ as a function of E and β on a finite lattice. It is evident the onset of
long-range order when β increases. Note how the effect of the external fields
saturates rapidly. Figure 1.3 shows a characteristic feature of the transi-
tion: we compared χ with its longitudinal counterpart χ‖ = 〈|φ(k1,0)|2〉 to
illustrate the fact that ordering is expected only in the transverse direction.

Another interesting observable is a generalization of Binder’s cumu-
lant [70] adapted to our transverse order parameter:

g(L‖, L⊥) := 2− 〈|φ(k0,1)|4〉
〈|φ(k0,1)|2〉2

. (1.15)

If φ(k0,1) has a Gaussian law in the stationary state, then 〈|φ(k0,1)|4〉 =
2〈|φ(k0,1)|2〉2 and g = 0. This is expected in the high-temperature phase of
the model. At low temperature, where long-range order sets it we expect on
the other hand that 〈|φ(k0,1)|n〉 ≈ 〈|φ(k0,1)|〉n giving g = 1.

1.3.1 The correlation length

Next, we would like to define a correlation length. In infinite-volume equi-
librium systems there are essentially two different ways of proceeding. One
can define the correlation length in terms of the large-distance behavior of
the two-point function or by using the small-momenta behavior of the two-
point function (e.g. second-moment correlation length). In the DLG both
methods require careful considerations. Indeed a well estabilished feature of
non-equilibrium steady states of conservative dynamics is that they develop
generic long-range correlations in the disordered phase [20, 18, 19].

4We must note that the susceptibility defined by using the linear response theory does
not coincide in general non-equilibrium system with that defined in terms of the Fourier
transform of the two-point correlation function.
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Figure 1.2: Plot of χ on a 30×30 lattice for various values of β and different
values of the external field E = 5(◦), 0.75(�), 0.3(4), 0(♦).

Figure 1.3: Comparison between χ (◦) e χ‖ (•) (χ‖ = 〈|φ(k1,0)|2〉) for various
β on a 32×128 lattice.
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In our case, the two-point function

G(x − y) = 〈ηxηy 〉 =
1

L⊥L‖

∑
k

G̃(k)e−ik ·(x−y)

has already been studied by MC simulations and approximate analytic meth-
ods [20, 18]: it shows a generic power-law behaviour

G(x ) ∝ |x |−d (1.16)

and is not positive-definite (as a consequence of (1.16) and of the conserva-
tion law), see Fig. 1.3.1.

Figure 1.4: G(x ) for the DLG on a 2d 128× 128 lattice in the high-
temperature region (β � 1) and for E = ∞. (�) is G(x ) for x‖E ; (N)
−G(x ) for x⊥E . Note that transverse correlations are negative. The dot-
ted line has a slope of −2.

The algebraic power–law decay of correlations, as expressed by Eq. (1.16),
gives rise to a discontinuity of the static structure factor G̃(k) for k = 0 .
Figure 1.5 shows the function G̃(k) for the DLG on a 2d 128×128 lattice
obtained by a MC simulation. The discontinuity is quite evident.

From this peculiar behaviour one problem arise: how can we define a
correlation length for this system? At equilibrium correlations decay expo-
nentially with distance, at least in the high–temperature phase, so that a
natural length scale emerges in that context. But here correlations decay
generically following a power–law and there is no evident emerging length
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Figure 1.5: G̃(k) for the DLG in d = 2, L‖×L⊥ = 128×128 lattice. n‖, n⊥
are wave-numbers: k‖,⊥ = 2πn‖,⊥/L‖,⊥ where ‖,⊥ denote directions parallel
and transverse to E .

scale. Nevertheless it is possible to show that if one considers the mean cor-
relation of two points on the solid angle, an exponential decay is recovered
(see, for details, [20]).

Fig. 1.6 shows the crossover in the two-point function G(x ) of the 2d-
DLG as the temperature approach the phase transition point. Clearly the
power-law behaviour associated with the critical state sets in first at small
distances, while the long-range behaviour is still described by Eq. (1.16).
Then we would like to identify the characteristic length scale at which the
crossover takes place.

In Refs. [47] a parallel correlation length is defined. However, this
definition suffers from many ambiguities (see the discussion in Ref. [20]) and
gives results for the exponent ν‖ which are not in agreement with the theory
[38]. Even more difficult appears the definition of a transverse correlation
length because of the presence of negative correlations at large distances
[38, 20].

To overcome the difficulties of the real-space strategy we will define the
correlation length by using the two-point function for small momenta. We
follow Ref. [95], where we discussed the possible definitions of correlation
length in the absence of the zero mode, as it is the case here.

We consider the structure factor in finite volume at zero longitudinal
momenta

G̃⊥(q;L‖, L⊥) := G̃((0, q);L‖, L⊥), (1.17)

(note that the conservation law implies G̃⊥(0;L‖, L⊥) = 0) and introduce a

14



Figure 1.6: 2d-DLG : The function G(x ) for x‖E for different β =
0.2 (H),0.25 (N), 0.28 (�), 0.3025 (•). Lattice size is 128×64, E = ∞
and βc ≈ 0.313. Straight lines have slope −2 and −2/3.

finite-volume (transverse) correlation length

ξij(L‖, L⊥) :=

√√√√ 1
q̂2j − q̂2i

(
G̃⊥(qi;L‖, L⊥)

G̃⊥(qj ;L‖, L⊥)
− 1

)
, (1.18)

where q̂n = 2 sin (πn/L⊥) is the lattice momentum.
Some comments are in order:

(i) If we consider an equilibrium system or a steady state in which corre-
lations decay exponentially, then we have for q → 0 that

G̃−1
⊥ (q;L‖, L⊥) = χ(L‖, L⊥)−1(1+ξ2ij(L‖, L⊥) q2+O(q4, L−2)). (1.19)

where χ(L‖, L⊥) is the susceptibility. Thus, ξ2ij(∞,∞) is a good def-
inition of correlation length which has an infinite-volume limit inde-
pendent of i and j.

(ii) Since G̃⊥(0;L‖, L⊥) = 0, qi and qj must not vanish. Moreover, as
discussed in Ref. [95], the definition should be valid for all T in fi-
nite volume. Since the system orders in an even number of stripes,
G̃⊥(qi;L‖, L⊥) = 0 is zero for i even as T → 0. Therefore, if our
definition should capture the nature of the phase transition, we must
require i and j to be odd. Although any choice of i, j is conceptually
good, finite-size corrections increase with i, j, a phenomenon which
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should be expected since the critical modes correspond to q → 0.
Thus, we will choose (i, j) = (1, 3).

Another quantity which is considered in the analysis is the amplitude
A13 defined by

A13(L‖, L⊥) :=
ξ213
χ
. (1.20)

1.4 Field-theory of the DLG

There are many examples of non–equilibrium systems in which, by adjusting
the value of some parameter, a phase transition can occur. See, for some ex-
amples, [20, 18] and references therein. Among lattice models we want to re-
call percolation, low dimensional models as one dimensional non–equilibrium
systems (for recent reviews see [16, 17]), and many generalizations of stan-
dard DLG as randomly driven lattice gas [31, 32, 20], two–temperatures
lattice gas [28, 29, 30, 20], DLG with tilted or open boundary conditions
[33, 34] and DLG with quenched disorder [35] to cite only some of them.

All of them are lattice models. However, in a neighborhood of the critical
point (critical region) we can limit ourselves to consider slowly-varying (in
space and time) observables. At criticality (corresponding to the onset of
long-range order) the lattice spacing a is negligible compared to the length
and time scales at which long-range order is established so that it can be
removed by taking the formal limit a → 0. In this way, it is possible to
formulate a description of the system in terms of mesoscopic variables de-
fined on a continuum. In principle, the dynamics of such variables can be
obtained by coarse graining the microscopic system. However, given the dif-
ficulty of performing a rigorous coarse-graining procedure, one postulates5

a continuum field theory, in the form of a stochastic Langevin equation for
the order parameter, that has all the symmetries of the microscopic lattice
model. We will discuss this point again in Section 1.5, giving an overview
of a recent still ongoing debate.

By universality [6] the continuum model should have the same critical
behaviour of the microscopic one. This statement has quite rigorous founda-
tions in the theory of equilibrium critical phenomena, from both static and
dynamical point of view, and may be explained by means of the Renormal-
ization Group (RG) approach to the problem. As far as dynamical aspects
of the problem are concerned, we want to point out that we expect that
the microscopic dynamics play a rôle in the problem only in determining
conservation laws to which the system is subjected during time evolution.

5In some simple cases it is possible to derive, at least heuristically and in a mean-field
approximation (factorization of joint probabilities in the Master equation), the mesoscopic
equation from the microscopic model [55].
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Accordingly, we expect no dependence of the critical behaviour of the sys-
tem from the exact realization of the lattice dynamics employed to generate
the equilibrium state.

On the other hand this fact is not evident at all in the case of non–
equilibrium critical phenomena which depend strongly on dynamical real-
ization of the system. To what extent universality applies to this case is not
clear. We discuss this issue in Section 1.5.

Assuming universality, a field theory for the DLG (see discussion in
Sec. 1.5) has been proposed [26, 27] (see also Ref. [20]) and analyzed, giving
rise to exact predictions for critical exponents in space dimension d with
2 < d < 5(6).

Using standard methods it is possible to analyze the continuum theory
in terms of a dynamical functional [11, 12, 13, 14] which reads (neglecting
terms which are irrelevant by power-counting) [26]

J [ϕ, ϕ̃] =
∫ {

ϕ̃[λ−1∂t + ∆⊥(∆⊥ − τ)− ρ∆‖]ϕ+
1
2
u0∇‖ϕ̃ ϕ

2 + ϕ̃∆⊥ϕ̃

}
(1.21)

where ϕ(x , t) is the local “density” field (actually, the coarse-grained ver-
sion of σi ), ϕ̃ is the Martin-Siggia-Rose response field[11], ‖ and ⊥ subscript
means spatial direction parallel and perpendicular to the external field, τ
is the effective distance from the critical point, ρ is a parameter and u0

the coupling-constant of the theory, proportional to the coarse-grained mi-
croscopic force field, and takes into account its leading effects. The upper
critical dimension for this theory turns out to be dc = 5. Power counting
allows the conclusion that only the parameter ρ is renormalized by inter-
actions. A dangerous irrelevant operator is also present. Renormalization
group analysis leads to the following scaling form for Γñ n (1PI vertex func-
tions with ñ fields s̃ and n fields s)

Γñ n({p‖,p⊥, ω}; τ, u, v) =

lQñ,nΓñ n
({ p‖

l2+η
,
p⊥
l
,
ω

l4

}
;
τ

l2
, u∗, lκ

∗
v
) (1.22)

where u ∝ µ−ερ−
3
2u2

0, ε = 5−d, µ is a momentum scale, l� 1 in the scaling
limit, u∗ = O(ε) is the non trivial IR fixed-point value of the coupling u, v
is the coupling of the dangerous irrelevant operator. η = (5− d)/3 exactly
and κ∗ = 2

3(d− 2);

Qñ,n = −2 η
(
n+ ñ

4
− 1

2

)
+ d+ 5− ñ

d+ 3
2

− n
d− 1

2
6A field theory for the DLG was also derived in Ref. [25], starting from the standard

Model B dynamics. The external drive partially breaks the supersymmetry (SUSY) of
Model B, giving rise to a crossover towards a new fixed point in d = 5, with a residual
symmetry ( 1

2
SUSY of Ref. [25]).
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From (1.22) we see that when considering time-independent observables at
vanishing p‖ the scaling form obtained is that of a mean-field theory for
2 < d < 5 (with a dangerous irrelevant operator).

1.5 On the universality class of the DLG

We said that the rigorous mapping between lattice models and corresponding
continuum field theories is rather difficult and seldom rigorously obtained.
Then, in principle, every postulated field theory may be questioned. In
recent years the field theory (1.21) proposed to describe the physics of DLG
has been criticized by some authors. We want here to take a quick survey
of this open debate (to which we wish to contribute with our findings [56]).

Episode I: 1986

The theory proposed, from various perspectives, in [27, 26, 25] is based on
a Langevin equation for the order parameter, derived from the heuristic
arguments we want to describe briefly.

We expect that the description of DLG from a mesoscopic point of view
may be formulated in terms of the order parameter which is readily identified
in numerical simulation with the scalar field of particle density. Our interest
will be in its fluctuations around the mean spatial value (fixed by some
initial condition), i.e. in the fluctuating field ϕ(x , t). DLG dynamics is a
conservative one: this means that this field satisfies continuity equation

∂tϕ+∇ · J = 0 . (1.23)

In the theory of dynamical critical phenomena [5, 6] we assume that J , the
particel current, is given by Model B [1]:

J = −λ∇δH
δϕ

+ JL , (1.24)

where λ plays the rôle of a diffusion constant and H is assumed to be a
Ginzburg–Landau–Wilson Hamiltonian (GLW):

H =
∫
ddx

{
1
2
(∇ϕ)2 +

τ

2
ϕ2 +

f

4!
ϕ4

}
,

where τ is the deviation from a reference temperature T0, i.e. τ ∝ T − T0.
The choice of GLW is due to the fact that it includes all those operators
(according to RG classification) that are relevant at the Gaussian fixed point.
JL is a stochastic current that takes into account microscopic fluctuations
around the deterministic part of the evolution equation for ϕ (with 〈· · · 〉 we
mean an average over possible noise realizations),

〈JL,i(x , t)〉 = 0 ,

〈JL,i(x , t)JL,j(x ′, t′)〉 = 2λδijδd(x − x ′)δ(t− t′) ,
(1.25)
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we assume J to have a Gaussian distribution.
These are standard definitions in the context of weak perturbation around

a thermodynamical equilibrium state. For example (1.24) has its meaning
in the context of linear response theory [9].

By means of standard manipulations one gets

∂tϕ = λ∆
δH
δϕ

+ νL where νL = −∇ · JL and

〈νL(x , t)〉 = 0 ,

〈νL(x , t)νL(x ′, t′)〉 = −2λ∆x δ
d(x − x ′)δ(t− t′) ,

(1.26)

which is exactly Model B. If one now introduces the external field E we
expect (a) an additional contribution to J in (1.23), due to the mesoscopic
version of enhanced transition in the direction of the field (a sort of “conduc-
tion”), of the form JE = σ(ϕ)E (linear approximation is assumed ) and (b)
anisotropy of diffusion coefficients. The latter means that the breaking of
isotropy in the system may give rise to mesoscopic anisotropic coefficients,
as it has been showed in [25]. We expect anisotropic expression for GLW
as well. In RG language we can say that the anisotropy introduced by the
field may drive the RG isotropic fixed point towards an anisotropic one (this
means that even the field propagator shows anisotropic scaling).

Taking into account all this factors one ends up with [20]

∂tϕ = λ[∆⊥(τ⊥ − κ⊥∆⊥) + ρ∆‖(τ‖ − κ‖∆‖)− κ∆‖∆⊥]ϕ−E · ∇σ(ϕ) + νL

〈νL(x , t)νL(x ′, t′)〉 = −2λ(γ∆⊥ + ς∆‖)δ
d(x − x ′)δ(t− t′) ,

(1.27)
where we assumed a constant E . ‖ and ⊥ subscript means spatial direction
parallel and perpendicular to E , respectively. All the parameters in this
equation are introduced to take into account anisotropy. Let us note that
we now have two temperature parameters, namely τ⊥ and τ‖, which the
onset of transverse or longitudinal order depends on. We have, in general

σ(ϕ) = σ0 + σ1ϕ+ σ2ϕ
2 + · · · , (1.28)

by means of symmetry arguments it is easily shown that only σ2 matters [26].
Now we can discuss the dynamical functional associated with the Langevin
equation (1.27) and determine the critical dimensions of its possible fixed
points. To this end we take advantage of the classification of operators ac-
cording their scaling dimensions and behaviour under RG flow into relevant,
irrelevant and marginal ones [6]. It is not difficult to realize that the case
corresponding to numerically observed ordered state (see Fig. 1.1) is the one
giving rise to the dynamic functional (1.21).

Now the question is whether the field-theoretical results obtained from
the standard RG analysis of (1.21) agree with numerical data or not.
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As we can see from Tab. 1.2, early numerical simulations [47] seemed
in agreement with theoretical predictions apart from a quite different value
of the critical exponent β (we want to remark that the theoretical result
β = 1/2 may be affected by logarithmic corrections in d = 2, given the
presence of a marginal field). A better understanding of FSS in anisotropic
systems (we discuss this issue in section 2.3), led to a reconciliation between
numerics and theory ([39, 40]). Indeed in [39] (whose expanded version is
in [40]) it was shown (in a quite clear way) that an effective exponents
βeff ≈ 1/3 may be a consequence of an incorrect FSS, in which one tries
to collect on a single scaling plot, data coming from systems with different
small shape factor S (see sec. 2.4). In a sense, βeff describes the cross-over to
the case S = 0. Nevertheless, some doubts remained, and numerical analysis
was debated [44, 49].

To have a flavour of such a debate let us have a look at literature. In [42]
the main concern is the two–layers DLG7 but, as a byproduct of their nu-
merical analysis, it is claimed that Leung’s results [39, 40] are incorrect, and
that correct scaling plots ruled out the value β = 1/2. A reply to these
criticism appear in [43]: There it is shown (using as an example the well–
known 2D Ising model) that results in [42] are due to the inclusion in scaling
plots of data well outside what we expect to be a reasonable critical region.
Subsequent papers bear evidence supporting the standard picture [41] even
if discrepancies are still numerically observed [44] (also this last papers deals
with two-layer DLG).

Episode II: May 1997

Following a proposed criticism [48] (also supported by some numerical obser-
vation [44]) to the widely accepted näıvely determined mesoscopic equation,
Garrido, los Santos and Muñoz [49] introduced a new Langevin equation
for driven diffusive systems in which the effects of the microscopic dynamics
were carefully taken into account. They claimed that the aboved-mentioned
discrepancy between field–theoretical results and MC simulations was due
to the fact that microscopic DLG master equation and the mesoscopic equa-
tion used to analyze critical behaviour in driven diffusive systems were not
describing the same physics. In particular the mesoscopic equation derived
in [49], has coefficients depending in a quite precise way on microscopic pa-
rameters which the dynamics of the underlying lattice model depends on (es-
pecially the microscopic driving field E), while in the standard case [26, 27]
it is not possible to determine this dependence. For finite value of E the

7It is defined as the union of a pair of parallel copies of DLG, so that each site in
one of them has the corresponding one into the other. Inter–copy jumps are allowed
only between corresponding sites, according to Metropolis rate, without any interaction
Hamiltonian between copies.
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equation of [49] is the same as that of [26, 27]8, they write in the form

∂tϕ =
e(0)
2

[
−∆⊥(∆⊥ − τ)ϕ+

g

3!
∆⊥ϕ

3
]
+

−τh′(E)∆‖ϕ− E h′(E)∇‖ϕ
2 +

√
e(0)∇⊥ · ζ⊥ , (1.29)

where ζ is a δ-correlated gaussian noise, h′(E) is a function of the microscopic
field strenght E, and all others are given parameters. The current term is
−E h′(E)∇‖ϕ

2.
But for |E | = ∞ 9(this case is sometimes called infinitely fast driven

lattice gas – IDLG), i.e. when jumps against field are not allowed in the
lattice model, a non trivial result is obtained only in the isotropic case (the
same scaling for all directions at least näıvely, i.e. ∆ = 0 at tree level, see
Tab. 1.1), with an upper critical dimension dc = 4 instead of 5, and the
equation turns out to be quite different from the previous one:

∂tϕ =
e(0)
2

[
−∆⊥(∆⊥ − τ)ϕ+

g

3!
∆⊥ϕ

3
]
+

− e(0)
2 ∆⊥∆‖ϕ+

√
e(0)∇⊥ · ζ⊥ +

√
e(0)
2 ∇‖ · ζ‖ . (1.30)

Indeed the term proportional to the current disappears in the critical theory,
showing that particle current is not a relevant feature of the dynamics. As
a consequence of Eq. (1.30) we expect a different set of critical exponents
(although, at variance with the standard case, not exactly computable),
resulting also in a different universality class.

The observed discrepancy between simulations and theory is then traced
back to the fact that the former may be affected by strong cross–over effects
between the two possible theories, depending on the value of E used in
simulations.

Even though the statements made by authors of [49] are all resonable we
have to notice that arguments leading to their conclusions are quite ques-
tionable. Their “derivation” of the newly proposed Langevin equation has,
to our concern, less rigour than claimed and, moreover, it fails to reproduce
some well–established properties of the microscopic model (see [54]).

In a subsequent paper by the same authors [50] details of the new deriva-
tion were given in a more extensive way, but again with some quite heuristic
assumption.

Then a paper devoted to the RG analysis at one loop of the new model [49]
for the IDLG appeared [51]. We checked the calculation reported there and

8In some papers, including [49], mesoscopic equations describing a diffusion mechanism
coupled to an external drive, as it is the case of DLG equation of [26, 27], are termed driven
diffusive systems – DDS.

9We want to point out that even if microsopic driving field is infinite, the coarse–grained
one may be finite.
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found a combinatorics error [52]. Even more severe were the generic IR prob-
lems of this theory [52]. Meanwhile a paper appears by other authors bearing
evidences against the theory and pointed also out those mistakes [54]. In
particular it is easy to realize that equation (1.30) obeys a spurious conser-
vation law [52, 54, 53], given that if one defines a “row density”, i.e.

ρr(x‖, t) :=
∫
dd−1x⊥ ϕ(x , t) ,

then, after averaging on the noise, it is a conserved quantity ∀x‖. This is an
additional conservation law which is not present in the original model and it
causes the IR problems of the theory (as one easily realize putting the theory
on finite volume), and an ill–defined static structure factor (with a line of
singularities in momentum space instead of only one point of discontinuity).

Moreover in [54] it was pointed out that Langevin equation in [49] has
a symmetry not observed in MC simulations. Indeed the absence of a cou-
pling with external field results in a theory with Ising up–down symmetry
(particle–hole symmetry ϕ 7→ −ϕ, i.e. the C-symmetry of Eq. (1.8) for den-
sity fields), leading to a vanishing three–point correlation function for all
T ≥ Tc in disagreement with existing numerical data. Thus, in a sense, meso-
scopic theory has an higher degree of symmetry than the microscopic one.
This may be justified only showing explicitly that the corresponding fixed
point is stable against perturbations by symmetry-breaking operators [54].

Episode III: January 2000

A new paper by Garrido, Muñoz and de los Santos [53], appear to correct
the previously proposed Langevin equation, following suggestions and ob-
servations of Refs. [52, 54]. By means of heuristic arguments they introduce
a new term ρ∇‖ϕ(x , t) in the Langevin equation, suitable for healing IR di-
vergencies, and due, in their opinion, to a correct evaluation of the “entropic
term” was overlooked in the previous derivation (we are still waiting for an
analytic proof of the new term, see Ref. [18] in [53]). This term changes
a lot of features of the theory previously proposed in [49]: The näıve (tree
level) anisotropic scaling is recovered and, by power–counting analysis, the
critical theory (there called anisotropic diffusive system – ADS) turns out
to be a well–known Langevin equation, i.e. that of the randomly driven
lattice gas (RDLG). This model was introduced in [31] (and discussed in a
detailed way in [32]), to describe, from a mesoscopic point of view, a lattice
gas with annealed randomness given by a fluctuating gaussian random driv-
ing field (insted of a fixed one, as in the case of standard DLG). The näıve
Langevin equation associated with this model has no current term, for obvi-
ous symmetry reason: The random field causes anisotropy but not an overall
current. The relevant non–linearity is due to a cubic term in s, instead of the
usual quadratic one given by the non linear dependence of “conductivity”
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σ(ϕ) from the density (see Eq. (1.28)), coupled to mesoscopic external field.
Then the conclusion of [53] was, again, that at least for the infinite driving
field case, the particle current is not the relevant features of the DLG. This
is due, in their opinion, to a saturation of microscopic transition rates in
the Master–Equation, that, in a sense, wipes out any dependence from the
precise value of the field and so from the current coupled to it [53]. For
the ADS upper critical dimension is dc = 3 (compare to 5 of the standard
case, see Tab. 1.1). At variance with microscopic DLG model, the ADS
(i.e. RDLG) shows again an up–down symmetry (ϕ 7→ −ϕ) resulting in a
vanishing three point correlation function [53, 54], which may be irrelevant
at the critical point. Indeed the closely related triangular anisotropies seems
to disappear in the limit of large (compared to typical energy scale) external
driving field [58, 59].

A brief summary of theoretical predictions of these models is reported
in Tab. 1.1.

A contribution to this debate appeared in [55], where an heuristic and
approximate scheme is presented to derive the mesoscopic kinetic equations
from the microscopic dynamics of the system. The method consists of two
steps:

• a mean-field type factorization of joint probabilities, appearing into
the Master equation, into single variable ones (i.e. correlations are
neglected),

• a näıve continuum expansion, in which probabilities are replaced by the
corresponding mesoscopic density fields. In this way a deterministic
(there is no noise term) kinetic equation for these field is obtained.

By applying this method, it is possible to determine the dependence of
mesoscopic parameter from microscopic ones. In [55] 1D, 2D and 3D Ising
model with Glauber (i.e. spin flip) dynamics are considered, and quite good
estimates for critical temperatures are obtained in the last two cases. The
kinetic equation derived is, of course, a time dependent Ginzburg–Landau
equation. The case of 1D (with only hard–core interaction) and 2D (with
heat–bath rates) DLG is also considered, the latter leading to a deterministic
kinetic equation in agreement with standard theory [26, 27, 25]. Even the
explicit temperature dependence of the mesoscopic transverse and parallel
mass parameters (τ⊥, τ‖), is in qualitative agreement with what was stated
heuristically in [27, 26]. Moreover for |E | = ∞ (being E the microscopic
field), the relevant non-linearity still come from the coupling of the current
with external field, at variance with [53].

Episode IV: June 2001

Recently we concluded our FSS analysis of DLG [56], finding good agree-
ment between numerical results and theoretical predictions of [26, 27]. We

23



DLG IDLG RDLG

[26, 27]† [51]‡ [53, 31, 32]

Current Yes No No

Symmetries∗ CP, CR, PR C, P C, P

dc 5 4 3
η∗∗⊥ 0 O(ε2) 4

243
ε3 + O(ε4)

ν∗∗⊥
1
2

1
2

+ ε
12

+ O(ε2) 1
2

+ ε
12

+ ε2

18

h
67
108

+ ln 2√
3

i
+ O(ε3)

z = z⊥ 4 4 + O(ε2) 4− 4
243

ε3 + O(ε4) := 4− η

β 1
2

1
2
− ε

6
+ O(ε2) 1

2
− ε

6
+ ε2

18

h
− 7

54
+ ln 2√

3

i
+ O(ε3)

∆ 1 + ε
3

O(ε2) 1− 2
243

ε3 + O(ε4) := 1− η
2

Table 1.1: Theoretical predictions for (transverse) critical exponents for
Langevin equations recently proposed to describe DLG. ε := dc − d where
dc is showed in the table. We define these transformations [58]: s C7→ −s,
E

R7→ −E , x̂ P7→ −x̂ . We recall that ν‖ = (1 + ∆)ν⊥, z‖ = z⊥/(1 + ∆). ∗ We
do not indicate the obvious O(d−1) symmetry in transverse space, common
to all these models. † Exponents exactly known for 2 < d < 5. ‡ This theory
has severe IR problems [52, 54]. ∗∗ Exponent inferred from the scaling form
in momentum space (for strongly anisotropic systems it differs from that
emerging from real space scaling forms, see Ref. [20]).

performed various cross-checks, as discussed in chapter 4, studing a suitably
defined correlation length and several observables, defined in section 1.3.

Before entering into details of our work, we have to say that shortly after
our paper, a new one by Achahbar, Garrido, Marro and Muñoz [57] appeared
supporting their previous conclusions in a surprising way. By means of MC
simulation and a suitable anisotropic FSS, they conclude that:”. . . , MC
results support strongly that both the IDLG and the RDLG belong in the
same universality class, and share not only critical exponents and scaling
functions, but also the scaling amplitudes” (quotation from [57]). Summing
up, they carried out MC simulations of both RDLG and IDLG, on lattices
20 × 20, up to 125 × 50. By using Binder’s cumulant crossing method (see
section 2.2.1) they determined critical temperatures for both models and
then perform an anisotropic FSS analysis (see sections 2.3) for the finite
volume magnetization, susceptivity and Binder’s cumulant. In order to have
a good data collapse (where the goodness is judged by eye inspection) one has
to adjust some parameters, whose values are related to critical exponents, as
explained in section 2.2.1. Estimated values (though authors do not perform
any error analysis, judged to be “. . . inessential in this context.”–quotation
from [57]) of critical exponents are in agreement with theoretical ones (even
though computed within ε–expansion) for RDLG see Tab. 1.1. Moreover,
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d = 2

DLG IDLG RDLG MC

[26, 27] [51] [53]∗ [47] [39] [44] [41] [57]

∆ (†) 2 0 1 0 2 0 1.98(4)‡ ∼ 1

η⊥ 0 0 0
ν⊥ 1/2 2/3 0.626 0.62(12)a 0.5 0.7 0.625
z 4 4 4
β 1/2 1/6 0.334 0.23(2) 0.5 0.3 1.00(2)ν⊥ 0.33
γ 1 4/3 1.25 2.03(3)ν⊥ 1.22

Table 1.2: Theoretical predictions for (transverse) critical exponents for a
two–dimensional DLG (these results come from ε–expansion results listed in
Tab. 1.1, up to O(ε2), and näıvely extended to the proper value of ε, without
any resummation attempts and neglecting possible logarithmic corrections
due to marginal operators in d = 2), compared to MC results. Remember
that γ = ν⊥(2− η⊥). ∗ See also [31, 32]. † To perform an anisotropic FSS of
MC data, the value of ∆ has to be assumed. ‡ Assuming results from [46] it
is possible to determine ∆ (by using FSS cross-over). Indeed it was found
ν⊥/ν‖ = 2.98(4) := 1 + ∆. (a) This result is reported in [47] as 0.55+0.20

−0.05 .

unexpectedly, FSS functions turns out to be exactly the same for the two
models, without having to adjust any amplitude [57].

Episode V: April 2002

Very recently Ref. [61] appeared in the literature, announcing unexpected
numerical results and making the statement of Ref. [57], about universal-
ity classes, even stronger. At variance with previous studies, the numerical
investigation of the DLG and some related models, is there carried out by
means of short-time dynamic MC method. This numerical technique has
been extensively used to investigate dynamical and static properties of sev-
eral well-known equilibrium models (see Ref.s [97] for early works and re-
view), giving exponents in good agreement with those obtained by standard
MC simulations. The general underlying ideas are related to the short-time
universal scaling behaviour observed in relaxation processes starting from a
prepared initial condition (fully ordered and completely disordered ones are
considered in Ref. [61]). Remarkably enough, short-time MC simulations
do not suffer the problem of critical slowing down [97] and even finite-size
effects do not play the same rôle as they do in standard MC simulations (at
least in the very early stages of relaxation). In Ref. [61] the DLG with finite
and infinite driving field (there called FKLS and IKLS, respectively), the
RDLG with infinite random field (called IRDLG) and the driven lattice gas
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with an oscillatory field 10 (introduced in Ref. [36]) in the limit of infinite
field (IOKLS) are studied to clarify the long-standing controversy about the
universality class of the DLG. At variance with previous works, the analy-
sis of the numerical results should not be influenced by the problem of the
strongly anisotropic FSS, and this should make the results more reliable and
not biased by theoretical expectations (no value of the anisotropy exponent
∆ is required and, indeed, it is possible to measure it). The main results of
this work are

• As a consequence of the short-time scaling forms assumed in the paper,
the critical exponents of all the models studied are the same as those
predicted by the field-theory of the RDLG [31, 32], while there is a
quantitative disagreement with the prediction of Ref.s [27, 26]. Short-
time scaling forms differ only for nonuniversal amplitudes.

• The models IKLS, FKLS, with a macroscopic current and IRKLS and
IOKLS, without any current, have the same critical exponents, and
thus belong to the universality class. This observation support the con-
clusion of Ref. [57], that the relevant feature of DLG is the anisotropy
and not the current (which does not paly any role neither to determine
the universality class nor to give rise to strong anisotropy).

First of all we note that these results go well beyond the statements done
in Ref. [51, 57]. There it was argued that the IKLS, i.e. the DLG driven
with an infinite field, should be in the same universality class as the RDLG,
while for finite driving (FKLS) the field-theory of Ref.s [27, 26] should be
the correct one to describe critical properties. In a sense the limit of infinite
driving was regarded as a singular one. Here the stronger statement is made
that in all the cases the critical behavior is that of the RDLG.

We remark that the conclusion of this work depend crucially on some
assumptions on the short-time scaling forms made in the paper. These
generalize in a nontrivial way standard scaling arguments usually done when
dealing with short-time scaling forms in finite systems. For example the
authors implicitly assume that there is only one exponent z = z‖, instead of
the two standards z⊥, z‖ and thus, depending on the chosen initial condition,
t ∼ τ−ν‖z, or t ∼ τ−ν⊥z (t is the typical time scale of the dynamics and τ
measures the distance from the critical point). This is not usually the case.
In Ref. [61] there is no attempt to justify these unnatural assumptions.
Moreover, if one tries to analize the results of this paper following a more
reasonable extension of short-time scaling forms 11, one finds these results
in disagreement with both proposed field-theoretical descriptions of critical

10The field acts along a given lattice axis exactly as in the standard definition of the
DLG but its sign is reversed once every 10 MC sweeps [36].

11For example keeping in mind that at least in principle z⊥ 6= z‖, as also predicted by
field-theoretical approach of both Ref.s [27, 26] and Ref. [57]
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properties. We refer to Ref. [61] for the numerical results of that paper, not
reported in Table 1.2.

We believe that these unclear aspects of the work reported in Ref. [61]
should be clarified before making any statement based on it.
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Chapter 2

Finite-size scaling

Phase transitions are characterized by a non-analytic behaviour at the crit-
ical point [2, 4, 6]. These non-analyticities are however observed only in the
infinite-volume limit. If the system is finite, all thermodynamic functions
are analytic in the thermodynamic parameters, temperature, applied mag-
netic field, and so on. However, even from a finite sample, it is possible to
obtain many informations on the critical behaviour. Indeed, large but finite
systems show a universal behaviour called finite-size scaling (FSS). The FSS
hypothesis, formulated for the first time by Fisher [7, 67, 68] and justified
theoretically by using renormalized continuum field theory [66, 71] and con-
formal field theory (a collection of relevant articles on the subject appears
in [73]), is a very powerful method to extrapolate to the thermodynamic
limit the results obtained from a finite sample, both in experiments and in
numerical simulations. In particular, the most recent Monte Carlo studies
rely heavily on FSS for the determination of critical properties (see, e.g.,
[76, 85, 86, 87, 75, 78, 88, 89, 90] for recent applications in two and three
dimensions; the list is of course far from being exhaustive).

2.1 Thermodynamic limit

We will describe FSS in the context of continuous (second-order) phase
transitions in systems controlled by a single scalar parameter T which we
assimilate to a temperature. We assume the existence of a thermodynamic
description of the system in a finite box Λ (e.g. a bounded subset of a
discrete lattice where spin-like variables live): given any observable O we
can compute its value on the thermodynamic state determined by T and Λ
as

OΛ(T ) := 〈O〉Λ(T )

where 〈·〉Λ(T ) is the appropriate averaging. The infinite system is then un-
derstood in terms of the thermodynamic limit. Given an increasing sequence
{Λn}n of boxes, the value O∞(T ) of the observable in the infinite-volume
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system is given by

O∞(T ) := 〈O〉∞ := lim
n→∞

OΛn(T ).

Usually this limit exists for a wide class of O and taking arbitrary shapes
for Λn. Boundary conditions can influence the limiting procedure in the
cases where there are more than one thermodynamical phases coexisting
at the same value of T . Moreover in non-equilibrium steady states the
thermodynamic limit of certain observables may depend on the shape of the
box even in the disordered phase [23, 24].

The correlation length. The existence of the thermodynamic limit is
tightly linked to the decay of correlation functions for local observables. In
particular, in systems with short-range interactions, the (connected) corre-
lation function

Gφ,∞(x) := 〈φ(x);φ(0)〉∞
of a general local observable φ has an exponential decay. Equivalently the
corresponding Fourier trasform Ĝφ,∞(k) (the structure factor) is an analytic
function of k in a neighborhood of the origin.

It is then possible to define a exponential correlation length ξ(exp)
φ,∞ for φ

as
ξ(exp)
∞ := − lim

|x|→∞

|x|
log |G∞(x)|

,

note that a-priori this correlation length will depend also on the direction
along which we take the limit |x| → ∞. We will elaborate on this point
below.

Another possible definition of infinite-volume correlation length is give
by second moment correlation length ξ(2)

φ,∞

ξ
(2)
φ,∞ :=

(
1
2d

∑
xG∞(x)|x|2∑
xG∞(x)

)1/2

=

 1

2dĜ∞(0)

d2Ĝ∞(q)
dqidqi

∣∣∣∣∣
q=0

1/2

. (2.1)

which captures the quadratic behaviour of the inverse structure factor Ĝ∞(k)−1

in the neighborhood of k = 0. Of course if Ĝ(k) happens to be dominated by
a single pole the two definitions of correlation length will be stricly related.
The simplest example of Ĝ∞(k) is given by the structure factor of the order
parameter in isotropic mean-field models where fluctuactions are gaussian
and

Ĝ∞(k) =
Z

|k|2 + λ
.

In this case ξ(exp)
∞ = ξ

(2)
∞ = λ−1/2.
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In finite volume does not exists a natural definition of correlation length
and the exponential correlation length cannot be generalized to finite vol-
ume. However, if we consider a finite d-dimensional box Λ of linear sizes
(L1, . . . , Ld) with periodic boundary conditions, the two-point functionGφ,Λ(x )
will be periodic and its Fourier transform Ĝφ,Λ(q) will be defined for discrete
values of q = qn = (2πn1/L1, . . . , 2πnd/Ld). So we can devise definitions
that converge to ξ(2)

∞ as Λ →∞: for instance

ξ
(2a)
L :=

[
Ĝφ,Λ(0)− Ĝφ,Λ(qmin)

q̂2
minĜφ,Λ(qmin)

]1/2

,

where qmin = (2π/L1, 0, . . . , 0) and

q̂2 =
d∑
i=1

4 sin2(qi/2).

In general there are 2d inequivalent definitions of qmin which give rise to dif-
ferent correlation lengths. When the finite-sistem enjoys cubic symmetry it
is possible to show that this definition converges to ξ(2)∞ (which is intrinsically
isotropic).

The definition is motivated by the desire to have, also for finite L, the
same relation between ξ and λ in the case of mean-field models (or, more
concretely, in mean-field approximations to interacting theories). Indeed, in
this case, we would have

ĜL(q) =
ZL

q̂2 + λL

so that
ξ
(2a)
L = λ

−1/2
L ,

exactly. However, equally valid definitions would be

ξ
(2b)
L :=

[
Ĝφ,Λ(0 )− Ĝφ,Λ(qmin)

q̂2
minĜφ,Λ(0 )

]1/2

,

which gives
ξ
(2b)
L =

(
λL + q̂2

min

)−1/2
,

or

ξ
(2c)
L :=

[
Ĝφ,Λ(0 )− Ĝφ,Λ(qmin)

q̂2
min(2Ĝφ,Λ(qmin)− Ĝφ,Λ(0 ))

]1/2

,

which gives
ξ
(2c)
L =

(
λL − q̂2

min

)−1/2
.
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For L→∞ at T fixed (i.e. λL → λ∞ asymptotically constant )

ξ
(2a)
L ≈ ξ

(2b)
L ≈ ξ

(2c)
L → ξ(2)

∞ ,

so that all of them recover the correct thermodynamic limit, but a relevant
issue is whether all of them have the correct FSS properties. In Ref. [95]
we study the large-N limit of the N -vector model, and we show the exis-
tence of several constraints on the definition of the finite volume correlation
length if regularity of the finite-size scaling functions and correct anoma-
lous behaviour above the upper critical dimension are required. Moreover
these constraints also ensure the correct behaviour taking into account log-
arithmic corrections at the upper critical dimension [96]. Then, we study in
detail the N -vector model (N 7→ ∞) in which the zero mode is dynamically
constrained, as it is the case of the lattice gas. Also in this case, we find that
the finite-volume correlation length must meet some requirements in order
to obtain regular finite-size scaling functions, and, above the upper critical
dimension, an anomalous scaling behaviour.

Critical singularities. When T → Tc there are quantities O∞ which
behave as

O∞(t) ∼ |t|−xO for t→ 0 (2.2)

where t:=(T − Tc)/Tc is the reduced temperature and where ∼ means that
|t|xOO∞(t) has a finite limit as t→ 0. Along with these diverging quantities
it is possible to identify a distinguished local operator φ (the order pa-
rameter) for which the associated exponential correlation length ξ∞:=ξ(exp)

φ,∞
diverges as

ξ∞ ∼ |t|−ν . (2.3)

If the exponent ν characterizing the diverging correlation length does not
depend on the direction along which ξ is measured we will say that the
system undergoes an isotropic phase transition (note that this does not
means that the system itself is isotropic); otherwise the phase transition
will be anisotropic.

Usually in the isotropic case ξ(2)φ,∞ has a singular behaviour described by
the same exponent ν. This can be easily understood on a dimensional ground
assuming that ξ∞ is the only relevant scale of length in the neighborhood
of the phase transition point.

As we already remarked, in the finite systems all thermodynamic func-
tions have an analytic dependence on control parameters which means that
the interchange of the infinite-volume limit with the limit t→ 0 is in general
not permitted:

lim
t→0

lim
Λ↑∞

|t|xOOΛ(t) 6= lim
Λ↑∞

lim
t→0

|t|xOOΛ(t) = 0
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if, for example, xO > 0.
FSS theory predicts the asymptotic shape of the function OΛ(t) when

Λ → ∞ and t → 0 in a well-determined fashion. We will review the
phenomenological approach to FSS theory [67, 69] for isotropic (or weakly
anisotropic) phase transitions with the aim of extending the results to the
anisotropic case, relevant to our analysis of the critical behaviour of the
DLG. Note that, in the context of DLG, a phenomenological approach to
FSS has been discussed in [47], keeping into account the strong anisotropy
observed in the transition (for d = 2 see Refs. [41, 40, 46], for d = 3 see
Refs. [45]).

2.2 Isotropic FSS

In the case of isotropic phase transitions a natural way of taking the infinite-
volume limit is to consider boxes of size L in all directions. Denote the
corresponding averages with 〈·〉L. When t→ 0 there is a (essentially unique)
correlation length ξ which diverges. If L is large and if there are not other
characteristic lengths of magnitude comparable to that of ξ or L 1 we can
write OL(t) as a function of ξ∞(t) and L:

OL(t) ≈ FO,0(ξ∞(t), L) = ξ∞(t)yOFO,0(1, L/ξ∞(t))
= ξ∞(t)yOFO,1(ξ∞(t)/L)

(2.4)

where ≈ means equality modulo terms which are asymptotically negligible
as L, ξ∞ →∞. Indeed it is clear that, being ξ∞ and L the only dimensionful
quantities present, the function FO,0(x, y) must be an homogeneous function
whose degree yO can be determined by letting L→∞ with ξ∞ fixed:

O∞(t) = lim
L→∞

OL(t) = ξ∞(t)yOFO,1(0) ∼ |t|−yOν

giving yO = xO/ν. Note that the existence of a finite limit for FO,1(z) when
z → 0 depends on two main assumptions:

i) the existence of a well defined thermodynamic limit for the quantity
OL;

ii) the possibility to interchange the FSS limit with the thermodynamic
limit.

While the first of these assumptions depends only on the observable, the
validity of the second assumption depends also on the specific way the FSS
limit is attained as we will explore below (chap. 3). For the time being we

1If it is not the case we have violations of FSS and hyperscaling relations fail, generally
because of dangerously irrelevant operators [8]

32



will assume both of them and the reader must realize that many results of
FSS rely crucially on their validity.

Another way of rephrasing eq. (2.4) is

OL(t) ≈ LxO/ν FO,2

(
ξ∞(t)
L

)
, (2.5)

for L → ∞ with z:=ξ∞/L constant, where FO,2(z) has a finite limit for
z →∞ and

FO,2(z) ∼ |z|xO/ν for z → 0.

For a good finite-volume definition of correlation length ξL we obtain
similarly

ξL(t) ≈ LFξ,2

(
ξ∞(t)
L

)
(2.6)

since in this case xξ = ν. Moreover

lim
z→0+

Fξ,2(z)
z

= 1.

2.2.1 Asymptotic FSS

The functional relation expressed by eq. (2.5) cannot be direclty used to
analyze simulation (or experimental) data since usually the infinite-volume
correlation length is an unknown quantity – inaccessible, if we are not able
(or do not want) to perform the infinite volume limit. A very common
approach to overcome this problem is that of substituting the asymptotic
expression of ξ∞ as a function of t in (2.5) resulting in:

OL(t) ≈ LxO/νGO

(
tL1/ν

)
. (2.7)

The function gO(z) is finite and non-vanishing in zero, and should satisfy2

gO(z) ∼ |z|−xO for z →∞. (2.8)

In eq. (2.7) only accessible quantities appear: t can be tuned by the exper-
imentalist while OL(t) is directly measurable. Even if the (infinite-volume)
correlation length does not shows up explicitly it is always lurking in the
background as witnessed by the presence of the related critical exponent ν.
This form of FSS relies heavily on the knowledge of the critical temperature
Tc (present in the definition of t). In this approach there are two widely
used tecniques to locate Tc from finite-sample data: the first is to study
the shape of some quantity like the finite-volume susceptibility χ which in

2Note that the behaviour of |z|xOgO(z) for z →∞ is not directly related to the finite-
size corrections to OL(t) for L → ∞ at t fixed in the limit of small t. See the detailed
discussion in Refs. [91].
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infinite volume diverges at Tc while in finite-volume has a peak whose size
grows with L, by eq. (2.7) we have

χL(T ) ≈ Lγ/νGχ(tL1/ν)

where γ = xχ as usual. Then if we call Tc(L) the value of T for which ξL(T )
attains its maximum we have

Tc(L) ≈ Tc + Tcu
∗L−ω

where u∗ = argmaxuG(u) and ω = min(1/ν, 1). Then using an extrapo-
lation it is possible to locate Tc. The second widely used method is more
closely related to FSS and is based on the observation that in many systems
it is possible to find an observable O such that xO = 0, that is without
scaling dimension. For example, for systems in the universality class of the
ϕ4 field theory, we can define an adimensional ratio of moments of the order
parameter Φ like the Binder’s cumulant [70] g defined, for instance, as

g :=
〈Φ4〉
〈Φ2〉2

. (2.9)

FSS predicts for g the following behaviour (xg = 0)

gL(T ) ≈ Gg(tL1/ν). (2.10)

with Gg(u) → 0 for u → +∞ and Gg(u) → G(−∞) finite for u → −∞.
When t = 0 we have gL(Tc) ≈ Gg(0): the critical temperature can be
located by looking at the value of T such that gL(T ) is independent of L.
If Gg(0) > 0 this independence shows up in the form of the crossing of the
plots of gL(T ) as a function of T for various values of L. The value of T for
which this crossing occours is then Tc.

Once we know Tc we can find the critical exponents though eq. (2.7)
which says that there is a well defined functional dependence between y =
L−xO/νOL and x = tL1/ν . We can then try to estimate values of xO and ν
such that the set of points (xn, yn) gathered from experiments collapse on
a single curve irrespective of T and L. Of course this can approximately
happen only for T near enough at Tc (for the scaling hypotesis to hold) and
for L large enough (so that corrections to FSS are small): this is the critical
region.

2.2.2 Correlation length FSS

Following e.g. [75], instead of replacing ξ∞ with t in FSS relations we can
proceed by inverting the functional relation expressed by eq. (2.6) to obtain

ξ∞
L
≈ Fξ,3

(
ξL
L

)
. (2.11)
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Plugging this in eq. (2.5) we obtain a relationship which relates only quan-
tities directly measurable in finite systems:

OL(t) ≈ LxO/ν FO,3

(
ξL(t)
L

)
. (2.12)

Taking the ratio of OL at two different sizes L and αL we get

OαL(t)
OL(t)

≈ FO

(
ξL(t)
L

)
, (2.13)

where the (unknown) ratio xO/ν disappears.
Let z = ξL/L and define

z∗ = F3,ξ(∞). (2.14)

The value z∗ is directly related to the behavior of the finite-size correla-
tion length at the critical point, since ξL(βc) ≈ z∗L. For ordinary phase
transitions z∗ is finite.

The knowledge of the FSS functions Fξ and FO (whatever the observable
O is) allow the determination of the exponents ν and xO without any knowl-
edge of the critical temperature. Indeed, at the critical point (wherever it
is), it holds

OL(βc) ∼ LγO/ν . (2.15)

Then, it must be

FO(z∗) =
OαL(βc)
OL(βc)

= αγO/ν , (2.16)

and therefore
γO
ν

=
logFO(z∗)

logα
. (2.17)

where z∗ is determined solving the equation Fξ(z∗) = α. Now, if we let
u = tL1/ν , z = ξL/L, then z = Gξ(u) and

d

du
Fξ(z) ≈

d

dz

ξαL
ξαL

≈ α
d

du

Gξ(α1/νu)
Gξ(u)

= α1+1/ν
G′
ξ(α

1/νu)
Gξ(u)

− α
Gξ(α1/νu)G′

ξ(α
1/νu)

Gξ(u)2
.

The Taylor expansion for Fξ(z) around z∗ (that is, around u = 0) is

Fξ(z) = Fξ(z∗) +

[(
dz

du

)−1 dFξ(z)
du

]
z=z∗

(z − z∗) + O((z − z∗)2)

= α
(
1 + (α1/ν − 1)

( z
z∗
− 1
))

+ O((z − z∗)2)
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since Gξ(0) = z∗. We conclude that the exponent ν can be recovered from
the FSS function Fξ as

z
d

dz
logFξ(z)

∣∣∣∣
z=z∗

= α1/ν − 1. (2.18)

Another very powerful application of FSS in the form of eq. (2.13) is to
the determination of the thermodynamic limit for the observables. Assume
we know Fξ and FO for α > 1 and that we measure ξL and OL from a finite
simple of size L and we are in a regime where FSS it is proven to hold (up
to negligible corrections). Then using eq. (2.13) we can compute the values
of ξαL and OαL as

ξαL = ξLFξ

(
ξL
L

)
OαL = OLFO

(
ξL
L

)
which means that we are able also to predict ξαnL and ξOnL for arbitary
n until the limiting values ξ∞ and O∞ are attained (up to numerical and
statistical errors).

The shape factor. FSS is a statement about the behaviour of the ther-
modynamic quantities as L, ξ∞ → ∞ with z = ξ∞/L (or equivalently
u = tL1/ν) constant. This holds true provided the only length scale char-
acterizing the finite box is L. If however the system is in a box with two
different linear sizes L,M then by extending the previous arguments it is
possible to argue that all the FSS functions depend also on the shape factor
S = M/L, e.g.

OL,M (t) ≈ FO,0(ξ∞(t), L,M)
= ξ∞(t)yOFO,0(1, L/ξ∞(t),M/ξ∞(t))
= ξ∞(t)yOFO,1(ξ∞(t)/L, S)
= LyOFO,2(ξ∞(t)/L, S).

At the critical point we get, for example,

χL,M (Tc) = Lγ/νFχ,2(0, S) = (LM)γ/2νFχ,4(S)

where Fχ,4(x) is a distinguished function such that Fχ,4(x) = Fχ,4(1/x)
using the isotropy assumption (even if the model itself is not isotropic we
can argue starting from a microscopically isotropic model in the same uni-
versality class). This prediction is confirmed by conformal field theory for
two dimensional models (and can be verified by exact computations both in
O(∞) vector-model and in the 2d Ising model).
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2.3 Anisotropic FSS

In intrinsically anisotropic systems it could happens that the (infinite-volume,
exponential) correlation length diverges at the critical point with different
critical exponents in different directions3. Some examples are uniaxial sys-
tems with strong dipolar forces [5], the Kasteleyn model of dimers on the
brick lattice [74]4, anisotropic Lifshitz points and, of course, field theories
associated to driven-diffusive systems and (by numerical evidences) the KLS
model. An analogous situation is that of dynamic critical behaviour where
there are two different exponents related the decay of correlations in the
spatial and temporal directions.

Consider an anisotropic system in which there exists a local observable Ψ
(the order parameter) for which two different exponential correlation lengths
exist: ξ‖,∞ in the direction of the first coordinate axis and ξ⊥,∞ in the
directions transverse to that axis. Let us assume that these correlation
lengths diverge at criticality with different exponents, resp. ν‖ and ν⊥, in
particular

ξ‖,∞(t) ∼ ξ⊥,∞(t)1+∆

with ∆ = ν‖/ν⊥ − 1.
In the specific case of DLG, continuum field theories introduced (see

sec. 1.5) to describe its critical singularities predicts indeed a nontrivial
anisotropy exponent ∆ (see tab. 1.1). For example, the scaling form of the
critical two-point function for the DLG should have the form (see eq. (1.22)
in section 1.4, and section 2.5)

G̃(k⊥, k‖) ≈ µ−2+ηG̃(µk⊥, µ1+∆k‖), (2.19)

where η is the anomalous dimension of the order parameter.

In a finite box of sizes (M,L), where M is the linear dimension in the
direction of the first axis and L that in the perpendicular directions, we can
argue that a generic long-range observable O will behave as

OM,L(t) ≈ ξ
xO/ν⊥
⊥,∞ FO,⊥,1

(
ξ⊥,∞(t)
L

, S∆

)
(2.20)

where we introduced the anisotropic shape factor S∆ = M/L1+∆ which
should be kept constant while performing the limit ξ⊥, ξ‖, L,M → ∞. To
justify this FSS form we need strong assumptions, in particular it is not
really clear why there appears the ratio z = ξ⊥,∞/L and not e.g. ξ⊥,∞/Lρ

3These systems are called strongly anisotropic in the literature to distinguish them
from those weakly anisotropic systems in which the microscopic anisotropy is an irrelevant
perturbation of the critical theory and has effects only on the non-universal metric factors
which appears in the scaling laws near criticality [20].

4Here the presence of strong anisotropies in the critical regime is probed by indirect
means.
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for some ρ 6= 1. In section (Quale?) we will discuss some examples in
which this is indeed the right form for anisotropic FSS.

Here we would like to give a simple heuristic argument to support our
conjecture. Assume the generic FSS form

OM,L(t) ≈ ξ
xO/ν⊥
⊥,∞ FO,⊥,1

(
ξ⊥,∞(t)
Lρ

, Sδ

)
(2.21)

with δ and ρ possibly different from what we expect. The function FO,⊥,1(x, s)
is assumed to have a regular (i.e. finite and non-zero) limit for x→ 0 and s
fixed and moreover that the themodynamic limit can be interchanged with
the FSS limit. This imply necessarily that the prefactor in eq. (2.21) should
be ξxO/ν⊥⊥,∞ .

If we let Sδ → ∞ in eq. (2.21) keeping zρ = ξ⊥,∞(t)/Lρ constant we
expect that the limit is regular and given by

OM,L(t) ≈ ξ
xO/ν⊥
⊥,∞ FO,⊥,1 (zρ,∞) . (2.22)

since in this case we are sending M → ∞ faster than what required to
keep Sδ constant and thus the finite-size effects associated with M should
disappear in the limit. Moreover this limit should coincide with the FSS
form of the system in the strip geometry (∞, L):

O∞,L(t) ≈ ξ
xO/ν⊥
⊥,∞ F strip

O,⊥ (z).

which is obtained by sending first M → ∞ and then performing the FSS
limit (with z constant – here appears z = z1 since only one finite lenght L
it is present in the strip geometry). so that

FO,⊥,1 (zρ,∞) = F strip
O,⊥ (z).

which implies that ρ = 1 and FO,⊥,1 (x,∞) = F strip
O,⊥ (x). By an analogous

argument another regular limit is obtained for Sδ → 0 in the FSS form

OM,L(t) ≈ ξ
xO/ν‖
‖,∞ F̃O,‖,1

(
ξ‖,∞

Lρ(1+∆)
, Sδ

)
= ξ

xO/ν‖
‖,∞ FO,‖,1

(
ξ‖,∞

Mρ1
, Sδ

)
. (2.23)

obtained from (2.21) with the substitution ξ‖,∞ ∼ ξ1+∆
‖,∞ and where ρ1 =

ρ(1 + ∆)/(1 + δ), giving

FO,‖,1

(
ξ‖,∞

Mρ1
, 0
)

= F strip
O,‖

(
ξ‖,∞

M

)
. (2.24)

where F strip
O,‖ is the FSS function associated to the vertical strip (M,∞) by

OM,∞(t) ≈ ξ
xO/ν‖
‖,∞ F strip

O,‖

(
ξ‖,∞

M

)
. (2.25)
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Then eq. (2.24) implies that ρ1 = 1 and FO,‖,1 (x, 0) = F strip
O,‖ (x). As a

conclusion we get ρ = 1 and δ = ∆.
As we have seen in the previous section on isotropic FSS, the FSS ansatz

eq. (2.20) can be used to estimate universal quantities from the analisys of
finite-sample data. In the isotropic situation a common way to proceed is
to gather data from experiments in boxes of linear size L in all directions.
This procedure is guaranteed by the fact that all the geometries taken into
account have the same (isotropic) shape factor S = S0 which is simply the
ratio of linear sizes in (two) different directions5

In the application of FSS to anisotropic critical phenomena a key dif-
ficulty if that of find out the right shape of the finite-sistems to keep S∆

constant and being able to apply eq. (2.20). Indeed the exponent ∆ is not
known in advance and there arise the problem of understanding what hap-
pens to FSS when we do not keep S∆ constant in the limiting procedure.

2.4 Shape mismatch

Assume the FSS limit is performed keeping constant Sδ with δ 6= ∆. What
happens? Depending on being δ > ∆ or δ < ∆ we have that S∆ → 0 or
S∆ →∞, respectively. Then we are led to study the asymptotic behaviour
of FSS forms like eq. (2.20). We already remarked that in some cases we
expect that the limit will behave in a regular way (i.e. that the FSS functions
have a regular limit): see for example eq. (2.22). However we do not expect
this to be always true. Let S∆ → 0 in the FSS form (eq. (2.20) ):

OM,L(t) ≈ ξ
xO/ν⊥
⊥,∞ FO,⊥,1

(
ξ⊥,∞(t)
L

, S∆

)
. (2.26)

That this limit cannot be regular is implied by the assumed regularity of
the limiting FSS when z‖ = ξ‖/M is kept constant (eq. (2.23)). Indeed, if
we assume that the limit for S∆ → 0 of eq. (2.26) is regular we should have

OM,L(t) ≈ ξ
xO/ν⊥
⊥,∞ FO,⊥,1

(
ξ⊥,∞(t)
L

, 0
)
.

where if we let L→∞ we obtain (assuming there are no problems in taking
the thermodynamic limit at this point)

OM,∞(t) ≈ ξ
xO/ν⊥
⊥,∞ FO,⊥,1 (0, 0)

which does not make any sense in view of eq. (2.25).
5In general in a d-dimensional box with linear sizes L1, . . . , Ld there are d− 1 isotropic

shape factors S(i) = Li+1/Li, i = 1, . . . , d− 1 which appears in FSS functions.
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So we are led to conjecture (cfr. Leung [39, 40], Binder and Wang [46])
that the limit S∆ → 0 in eq. (2.26) leads to multiplicative singularities in
the form

OM,L(t) ≈ ξ
xO/ν⊥
⊥,∞ Sα1

∆ F#
O,⊥

(
ξ⊥,∞(t)
L

Sα2
∆

)
. (2.27)

that, after a comparision with eq. (2.23), leads to the identifications α1 = 0,
α2 = −1/(1 + ∆) and F#

O,⊥(x1/(1+∆)) = F strip
O,‖ (x). Note a small subtlety

of this reasoning: the two limits involved are different, the strip limit is
obtained for M fixed and L → ∞ keeping ξ⊥/M

1/(1+∆) fixed while this
second limit was obtained keeping ξ⊥/L fixed while sending L to infinity
faster than M1/(1+∆). Another charactertistic of this result is that the FFS
function F#

O,⊥ does not depend on the specific value of δ (as long as δ > ∆).
This arguments are confirmed by the exact computations in chap. 3

where the case of shape mismatch in the FSS limit of the O(∞) model with
short and long range anisotropic interactions is considered.

Another confirmation is given by extact computations of Bhattachar-
jee and Nagle [74] for the Kasteleyn model of dimers on the brick lattice.
This model is isomorphic to an anisotropic domain-wall model and features
generic long-range correlations in the disordered phase due to a conservation
law and a second-order phase transition. Note however that this is a gen-
uinely equilibrium system. They found that in a finite box of sizes 2N×2M ,
where 2N is the number of lattice sites in the direction perpendicular to the
preferred axis for the domain walls and 2M is the size of the transverse di-
rection, the specific heat CN,M (t) as a function of the reduced temperature
t takes the asymptotic form

CN,M (t) ≈M1/2P(tM,S) (2.28)

where

S =
N2

M
M := M

S
1 + S

=
MN2

M +N2

And where the function P(x, y) has well defined limits for y → 0 and y →
∞. When S → 0 we have M → N2 while for S → ∞ we obtain M →
M , correspondingly the FSS function converges to the FSS function in the
geometry 2N ×∞ or ∞× 2M respectively. A remarkable feature is that no
other nontrivial FSS limits are possible. So in case of shape mismatch the
systems behaves effectively as a stripe for what concerns FSS.

Note that the anisotropic FSS theory envisaged by Binder and Wang
in [46] has essentially the same features (when hyperscaling holds). By
euristic arguments they find that in two-dimensional anisotropic models in
a finite box with periodic boundary conditions we should have at criticality:

χ(Tc) ∝ L
γ/ν⊥
⊥ for S∆ →∞,
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and
χ(Tc) ∝ L

γ/ν‖
‖ for S∆ → 0.

as expected using eq. (2.27).

2.5 Field-theory of the DLG in a finite box

In section 1.4 we explain why a lattice model as the DLG may be described,
in the critical region, with suitable field theories, outlining its derivation in
section 1.5. Here we want to draw further conclusions from the theory (1.21).

For the structure factor the renormalization-group analysis gives the
scaling form (see Eq. (1.22))

G̃(k‖, k⊥; τ) = µ−2+ηG̃(k‖µ
−1−∆, k⊥µ

−1; τµ−1/ν), (2.29)

where, in d dimensions (see Tab. 1.1),

η = 0, (2.30)

ν =
1
2
, (2.31)

∆ =
1
3
(8− d), (2.32)

and τ ∝ T − Tc. In two dimensions, for the transverse structure factor, this
implies the simple scaling form

G̃⊥(k ; τ) = τ−1f(|k |2/τ). (2.33)

Thus, in infinite volume we have, by using definition (1.18),

ξij ∼ τ−ν , χ ∼ τ−γ , (2.34)

where ν is given in Eq. (2.31) and

γ = 1. (2.35)

The function f(x) defined in Eq. (2.33) is trivial. Indeed, keeping into
account causality and the form of the interaction vertex one can see that
for k‖ = 0 there are no loop contributions to the two-point function (and
also to the response function 〈ϕ̃0ϕx 〉). Thus, for all 2 ≤ d ≤ 5, G̃⊥(k, τ) is
simply given by the tree-level expression

G̃⊥(k ; τ) =
1

|k |2 + τ
. (2.36)

Two observation are here in order. First it is usually assumed that τ is an
analytic function of t such that τ = 0 for t = 0; thus, τ = bt for t→ 0 with
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b positive constant. Second, the function that appears in Eq. (2.36) refers
to the coarse-grained fields, which, in the critical limit, differ by a finite
renormalization from the lattice ones. Thus, for the lattice function we are
interested in, in the scaling limit t→ 0, k → 0, with |k |2/t fixed, we have

G̃⊥,latt(k ; t) =
Z

|k |2 + bt
, (2.37)

where Z and b are positive constants. Eq. (2.37) implies the exponential
decay of

G⊥,latt(x⊥; t) =
∫
dd−1k eik ·x⊥ G̃⊥,latt(k ; t), (2.38)

which fully justifies our definition of transverse correlation length.
In section 4.2, we study the FSS behaviour of the model by means of

numerical simulations. Here, we want to analyze the corresponding con-
tinuum field theory in a finite geometry following the method applied in
equilibrium spin systems (see, e.g. ref. [5, chap. 36] and references therein).
The idea is quite simple. Consider the system in a finite box with periodic
boundary conditions. The finite geometry has the only effect of quantizing
the momenta. Thus, the perturbative finite-volume correlation functions
are obtained by replacing momentum integrals by lattice sums. Ultraviolet
divergences are not affected by the presence of the box [66] and thus one
can use the infinite-volume renormalization constants [71, 72]. Once the
renormalization is carried out, geometry-dependent finite-size correlation
functions are obtained.

Following this idea, if we consider a finite box of size L‖×Ld−1
⊥ , Eq. (2.29)

becomes

G̃(k‖, k⊥; τ ;L‖, L⊥) = µ−2G̃(k‖µ
−1−∆, k⊥µ

−1; τµ−2;L‖µ
−1−∆, L⊥µ

−1),
(2.39)

which shows that at T = Tc

ξij(Tc) ∼ L⊥, χ(Tc) ∼ L
γ/ν
⊥ ∼ L2

⊥. (2.40)

Moreover, Eq. (2.36) holds in finite volume. Keeping again into account
the relation between coarse-grained and lattice quantities, we obtain for the
lattice correlation function in a finite volume in the continuum limit (i.e. in
the FSS limit with k → 0 keeping |k |2/t fixed)

G̃⊥,latt(k ; t;L‖, L⊥) =
Z(t;L‖, L⊥)

|k |2 + τ(t;L‖, L⊥)
, (2.41)

where Z and τ are analytic functions of their arguments. In the FSS limit,
we expect

Z(t;L‖, L⊥) = Z̃(tL2
⊥, S∆), (2.42)

τ(t;L‖, L⊥) = L−2
⊥ τ̃(tL2

⊥, S∆). (2.43)
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Using these expressions, in the FSS limit we find

ξ13(t;L‖, L⊥)
L⊥

=
(
(2π)2 + τ̃(tL2

⊥, S∆)
)−1/2

, (2.44)

A13 :=
ξ213(t;L‖, L⊥)
χ(t;L‖, L⊥)

=
[
Z̃(tL2

⊥, S∆)
]−1

, (2.45)

valid for t → 0, L‖, L⊥ → ∞ with S2 and tL2
⊥ fixed. Therefore, from the

scaling of the correlation length and of the amplitude A13 we can derive the
scaling functions Z̃ and τ̃ .

If we make the simplest approximations

Z̃(tL2
⊥, S∆) = const and τ̃(tL2

⊥, S∆) = const × tL2
⊥,

we obtain for the scaling functions defined in eq. (2.13) the approximate
forms

Fξ(z) =
[
1−

(
1− α−2

)
(2π)2z2

]−1/2
, (2.46)

Fχ(z) = F 2
ξ (z) =

[
1−

(
1− α−2

)
(2π)2z2

]−1
. (2.47)

As we shall see, these expressions provide reasonably good approximations
to our data, but do not describe the data exactly: The functions τ̃ and Z̃
that are determined from the data are nontrivial (see chap. 4).

As we know from the field-theoretical analysis, a peculiarity of this model
is the presence of an operator which is dangerously irrelevant for 2 < d <
5 and becomes marginal at d = 2 (recall that scaling dimensions of the
operators at the fixed-point are knows at all orders in the ε-expansion). Is
this operator which fix the magnetization exponent to its mean-field value
of β = 1/2. It is well known that a dangerous irrelevant operator may cause
violation of FSS, e.g.: the O(N) vector model above four dimensions [66, 71].
Some care should be exercized to treat it in the proper way.

In general the presence of this dangerous operator could modify the
scaling relations (2.29), (2.33), and (2.39). Considering, for example, G̃⊥(k)
we have

G̃⊥(k ; τ ;L‖, L⊥;u) = L2
⊥G̃⊥

(
kL⊥; τL2

⊥;L‖/L
1+∆
⊥ , 1;L−2σ

⊥ u
)
, (2.48)

where σ = (d− 2)/3 and u is the coupling of the dangerous operator. If the
function G̃⊥(k; τ ;L‖, L⊥;u) is singular for u→ 0 then we cannot neglect the
contributions coming form the irrelevant operator. To understand the effects
of the dangerous operator on the FSS behaviour we will parallel the analysis
of Brezin and Zinn-Justin [71] of the FSS behaviour of the O(N)-vector
model above four dimensions.

At the fixed point the eigenoperator A associated with the irrelevant
coupling is [26]

uA = ϕ̃∆⊥(u1ϕ̇+ u2∆2
⊥ + u3ϕ

3) (2.49)
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so that the renormalized dynamic functional near the fixed-point has the
form

J (ϕ̃, ϕ) ' J∗(ϕ̃, ϕ) + uA+O(u2)

where J∗ is the fixed point dynamic functional and we neglected all the other
irrelevant operators. Let ψ := ϕ(k0,1), ψ̃ := ϕ̃(k0,1) (when d > 2 choose one
of the equivalent modes).

e−Σ(ψ̃,ψ) =
∫ ′

e−J (ϕ̃,ϕ)dϕ̃dϕ

where the prime on the integration is to remember to leave out the modes
corresponding to ψ, ψ̃. At the leading order we can simply neglect all the
other k 6= k0,1 modes and obtain

Σ(ψ̃, ψ) = Ld−1
⊥ L‖ψ̃

{
(1 + u1k

2
0,1)ψ̇

+ k2
0,1

[
(k2

0,1 + τ + u2k
4
0,1)ψ + u3|ψ|2ψ

]
+ n⊥k2

0,1ψ̃
}

This effective dynamic functional can be exaclty integrated to give the sta-
tionary probability distribution of ψ

P (ψ) = Z−1 exp(−Seff(ψ))dψ (2.50)

with

Seff(ψ) = Ld−1
⊥ L‖

[
1
2
(k2

0,1 + τ + u2k
4
0,1)|ψ|2 +

u3

4
|ψ|4

]
(2.51)

Let

En = 〈|ψ|n〉 =
∫
|ψ|n exp(−Seff(ψ))dψ∫

exp(−Seff(ψ))dψ
= (u3/4)−n/4Mn

(
k2

0,1 + τ + u2k
4
0,1√

u3

)
Using RG arguments (see [71]) we know that we can compute the distri-

bution of ψ in the box (L‖, L⊥) using the box of transverse lenght L⊥ = 1

by substituting t 7→ tL2
⊥, u 7→ uL−2σ

⊥ and ϕ 7→ L
(d−1+η)/2
⊥ ϕ:

Seff(ψ) = S∆

[
1
2
((2π)2 + τL2 + u2L

−2σ
⊥ (2π)4)|ψ|2 +

u3L
−2σ
⊥

4
|ψ|4

]

= S∆

[
1
2
((L⊥/ξL)2 + u2L

−2σ
⊥ (2π)4)|ψ|2 +

u3L
−2σ
⊥

4
|ψ|4

] (2.52)

and

En = L
n(d−1+η−σ)/2
⊥ (u3/4)−n/4Mn

√S∆
(L⊥/ξL)2 + u2L

−2σ(2π)4√
u3L

−2σ
⊥


= L

nd/2
⊥ (u3/4)−n/4Mn

(√
S∆

(L⊥/ξL)2Lσ + u2L
−σ
⊥ (2π)4

√
u3

)
(2.53)
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Note that in the high temperature region ξL/L is bounded from above
by 1/2π uniformly and for L⊥ →∞ we are allowed to approximate

(L⊥/ξL)2Lσ + u2L
−σ
⊥ (2π)4

√
u3

≈ (L⊥/ξL)2Lσ
√
u3

which goes to infinity if we keep ξL/L fixed. Then, in the FSS limit, we
obtain

En ≈ L
nd/2
⊥ (u3/4)−n/4Mn

(
(L⊥/ξL)2Lσ

√
u3

)
≈ L

nd/2
⊥ (u3/4)−n/4

(
(L⊥/ξL)2Lσ

√
u3

)−n/2
∝ L

n(d−1+η)/2
⊥ (L⊥/ξL)−n

(2.54)

which means that the dangerous irrelevant coupling of the infinite-volume
theory is actually not dangerous – and can be asimptotically neglected –
for what concerns the FSS behaviour of the model in the disordered phase.
Note that this is a peculiarity which stems from the absence of the zero
mode6.

For d = 2 the dangerous operator becomes marginal and we loose the
control on the scaling behaviour of the field theory. However, if we assume
that the operator will be marginally irrelevant (as it seems the case from
the results of chap. 4), then the above considerations apply, provided we
substitute for the factors Lσ⊥ the true asymptotic behaviour of the operator:
e.g. logaritms in the form (logL⊥)a for some, unknown, power a > 0. This
suggest that, in numerical simulations, can be hard to test the asymptotic
regime described by eq. (2.54). To analize the possible presence of these
logaritmic corrections we note that the values En, in the approximation we
considered, are functions of the ratio

z# :=
(L⊥/ξL)2YL + u2Y

−1
L (2π)4

√
u3

where there are unknown amplitudes u2 and u3 and where YL = Lσ⊥ for
2 < d < 5 and maybe YL = log(L⊥)a with a > 0 for d = 2. Adimensional
ratios of Ens should be functions of z#: in particular

gL = 2− 〈|ψ|4〉
〈|ψ|2〉2

= 2− M4(z#)
M2(z#)2

=: Mg(z#) (2.55)

and

XL := Ld−1
⊥ L‖

m2

χ
=
〈|ψ|〉2

〈|ψ|2〉
=
M1(z#)2

M2(z#)
=: MX(z#). (2.56)

6In the corresponding treatment of the O(N) model above four dimensions instead of
xi2L/L2 we would have tL2 which cannot be bounded away from zero uniformly in all the
high-T region.
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This analisys shows that for 2 < d < 5 the standard observables we
considered (like g, χ,m) should not show anomalous finite-size behaviour.
This is ultimately due to the absence of the zero mode which allows the per-
turbative handling of perturbations of the gaussian effective theory for the
transverse modes. This feature has been overlook in literature (see [46, 40])
where it was assumed that, above two dimensions, the dangerously irrel-
evant operator should induce violations of FSS even in the high-T region.
The analysis of the finite-size behaviour of the model in the low-temperature
phase should, of course, take into account the rôle of the dangerous operator
in stabilizing the order parameter. At this time we feel that a deeper under-
standing of FSS behaviour of models without zero modes above their upper
critical dimension is needed. To our knowledge, apart from our work on the
proper definition of correlation lenght [95], only a work of Eisenriegler and
Tomaschiz [93] on the φ4 model with fixed magnatization below the upper
critical dimension deals with finite-volume effects without zero mode.
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Chapter 3

Shape mismatch in the O(∞)
model

In this chapter we analyze the finite-size scaling behaviour of the O(N)-
vector model in the N → ∞ limit where the model is exaclty solvable [5].
This model has been a classical example in FSS investigations, starting
from the seminal work of Brezin [66]. Recently a very nice book on FSS [98]
analized systematically finite-size effects in the spherical model (equivalent
to the O(∞) vector model) for a wide range of modifications, including
presence of long-range correlations and of boundary effects. We will consider
a general class of O(∞) models which includes the classical isotropic short-
range and long-range cases but also models where the correlation function
decay with different power-laws in different lattice directions. This will
induce a strongly anisotropic phase transition. For these models we analyze
the effects on FSS functions of shape mismatch, i.e. of using finite boxes
with arbitrary shape factors. As we will see, our result will confirm the
phenomenological picture outlined in sec. 2.4.

3.1 The models

Let us recall in this section some basic facts about the model we are going to
study. We consider a d-dimensional hypercubic lattice Λ of finite extentM in
the first q directions (called the “parallel” directions) and L in the remaining
p directions (with d = q + p) volume V = M qLp and unit N -vector spins σ
defined at the sites of the lattice interacting with Hamiltonian

H = −N
∑
x ,y

J(x − y)σx · σy −Nh
∑
x

σ1
x , (3.1)

where J(x ) is a coupling potential whose Fourier transform Ĵ(q) has the
asymptotic form

Ĵ(q) ' Ĵ(0 ) + |q⊥|2ρ + |q‖|2σ, for |q | → 0
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with 0 < σ ≤ 1. The partition function is simply

Z =
∫ ∏

x

[dσx δ(σ2
x − 1)] e−βH. (3.2)

In tha large-N limit, assuming periodic boundary conditions and h = 0, the
theory is solved in terms of the gap equations (β = 1/T )

λV σV = 0, β = βσ2
V +

1
LpM q

∑
q∈Λ∗V

1
K(q) + λV

, (3.3)

where K(q) = −2(Ĵ(q)− Ĵ(0 )) and Λ∗
V is the lattice

Λ∗
V =

(
2πM−1 ZqM , 2πL

−1 ZpL,
)
. (3.4)

In the infinite volume, the same equations holds, with the simple substitution
of the summation with the normalized integral over the first Brillouin zone
[−π, π]d.

The meaning of the parameters λV and σV is clarified by considering the
magnetization and the two-point function. If 〈·〉V is the mean value for a
system of volume V , we define

MV = 〈σ1〉V , GV (x ) = 〈σ0 · σx 〉V . (3.5)

Then

MV = σV , ĜV (q) =
β−1

K(q) + λV
, (3.6)

where Ĝ(q) is the Fourier transform of G(x). As we show in sec. A.2 the
correlation function, in the thermodynamic limit, has the form

G∞(x ) = ξ
ρ(2−D)
⊥ G̃∞(x⊥/ξ⊥,∞,x‖/ξ‖,∞)

where
ξ⊥,∞ = λ−1/2ρ

∞ , ξ‖,∞ = λ−1/2σ
∞ .

So even if the model has long-range correlations in the high-T phase it is
sensible to look at ξ⊥,∞ and ξ‖,∞ as appropriate typical length-scales of the
system. For simplicity we will refer to them respectively as transverse and
longitudinal correlation lenghts. They are linked by the obvious relation

ξ‖,∞ = ξ
ρ/σ
⊥,∞

and in the following we will write ξ∞ := ξ⊥,∞. The critical point is character-
ized by a vanishing mass gap, i.e. ξ−1

∞ = 0 and by vanishing magnetization,
σ∞ = 0 so that critical temperature is given by (see Eq. (3.3))

βc =
∫ π

−π

ddp

(2π)d
1

K(p)
(3.7)
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which is finite whenever the effective dimensionalityD := p/ρ+q/σ is greater
than 2 and infinite for D ≤ 2 (the system undergoes a zero-temperature
phase transition). Moreover, given we will be interested in finite volume
properties, we have MV = 0, for all values of β, so that we can set σV = 0
in the gap equation.

3.2 Anisotropic FSS

We do not address here the problem of the definition of a finite volume
correlation length and we will use simply

ξ⊥,V = λ
−1/2ρ
V , ξ‖,V = λ

−1/2σ
V .

Both ξ⊥ and ξ‖ have an infinite volume limit ξ⊥,∞ and ξ‖,∞ respectively
so they are bona-fide finite-volume correlations lenghts. For brevity ξV will
mean ξ⊥,V .

In the appendix A we show that, in the limit where L,M → ∞ with
z = (4π)−ρ/2(L/ξV )ρ and S = M/Lρ/σ constant, the gap equation take the
form

(4π)ρ+(d−ρD)/2(β − βc)Lρ(D−2) = −(4π)ρd/2A+ I(z, S) (3.8)

where β = 1/T , βc is given in Eq. (3.7). Then we can take ∆ = σ/ρ − 1
so that S = S∆. Moreover the two-point function, in the FSS limit with
|x⊥|/L and |x‖|/M constant, becomes (cfr. eq. (A.7))

GV (x ) ≈ ξ
ρ(2−D)
⊥ G̃∞(x⊥/ξ⊥,V ,x‖/ξ‖,V , S, ξ⊥,V /L).

Now a simple question arises: is it possible to have a nontrivial FSS
function even if the scaling is performed keeping constant the anisotropic
aspect ratio

Sδ=
M

L1+δ

(we set, in the following Sδ = 1) with δ 6= ∆? We consider in the following
only the case δ > 0, given that the case −1 < δ < 0 is obtained performing,
in the formulas below, the substitutions

p↔ q, L↔M, ρ↔ σ, δ → −δ/(1 + δ).

If Sδ is kept constant (δ > ∆), we have S∆ →∞ for L→∞. As shown
sec. A.3, in this limit and for D > 2 the gap equation takes the form

(4π)ρ+(d−ρD)/2(β − βc)Lρ(D−2) = −(4π)ρd/2AzD−2

+ rσ−q/2J1(z2rσ) + J2(z2) + Cσ,p

∫ rσ

1
dt e−z

2tt−q/2σ

(3.9)
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where βc is given in Eq. (3.7), r = (4π)ρ/σ−1S2 and

J1(x) =
e−x

x
+ Gσ,q(x)

J2(x) = −Cσ,qCρ,p
∫ ∞

1
dt t−D/2e−xt + Gρ,p(x)

(3.10)

where

Gσ,q(x) :=
∫ ∞

1
dt e−xt [Bq (τt)− 1] +

∫ 1

0
dt e−xtτ

−q/2
t

[
Bq
(
τ−1
t

)
− 1
]
.

In Eq. (3.9) we have to explicit the dependence of the last term on the
variables z and zS. We have

∫ rσ

1
e−z

2tt−q/2σ dt =



z−2+q/σ

∫ rσz2

0
e−tt−q/2σ dt−

∫ 1

0
e−ztt−q/2σ dt

for 0 < q/σ < 2∫ ∞

1
e−z

2tt−q/2σ dt− rσ−q/2
∫ ∞

1
e−r

σz2tt−q/2σ dt

for q/σ ≥ 2
(3.11)

Then, according to the fact that 0 < q/σ < 2 or otherwise, we are led to
two different forms of the gap equation suitable for taking limits:

• 0 < q/σ < 2: the gap equation is

(4π)ρ+(d−ρD)/2(β − βc)Lρ(D−2) = −(4π)ρd/2AzD−2 + rσ−q/2J1(z2rσ)

+ J2(z2)− Cσ,p

∫ 1

0
e−ztt−q/2σ + Cσ,pz

−2+q/σ

∫ rσz2

0
e−tt−q/2σ dt

(3.12)

• q/σ ≥ 2: in this case, instead

(4π)ρ+(d−ρD)/2(β − βc)Lρ(D−2) = −(4π)ρd/2AzD−2 + J2(z2)

+ Cσ,p

∫ ∞

1
e−z

2tt−q/2σ dt

+ rσ−q/2
[
J1(z2rσ)− Cσ,p

∫ ∞

1
e−r

σz2tt−q/2σ dt

] (3.13)

Scaling M as L1+δ corresponds to consider more and more elongated
geometries, in which the first q dimensions approaches infinity faster than
the remaining p. Two possible interesting limits should be considered (we
recall that z ∼ (L/ξV )ρ, zSσ ∼ (M/ξ‖,V )σ)
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(a) If one keeps constant, doing the FSS limit, the ratio ξV /L ∼ z−1/ρ,
then we expect the final “effective” geometry should be ∞q × Lp and
the FSS be that of a “layer”. In terms of the parameters appearing in
the previous expressions this limt corresponds to

zSσ →∞, z constant;

(b) Also ξ‖,V /M can be kept constant in FSS. The expected “effective”
geometry should be that of an q-dimensional hypercube with linear
size M (M q×0p), and thus we should observe the corresponding FSS.
This limits corresponds to

zSσ constant, z → 0.

3.3 ξV ∼ L

Assume that 0 < q/σ < 2. Consider the term rσ−q/2J1(rσz2), we have

rσ−q/2J1(rσz2) ∼

{
rσ−q/2e−r

σz2 for σ = 1
rσ−q/2(rσz2)−2 for 0 < σ < 1

and thus is negligible in this limit with respect to the others terms. Moreover
(given that zS →∞)

z−2+q/σ

∫ rσz2

0
e−tt−q/2σ dt = z−2+q/σ

∫ ∞

0
e−tt−q/2σ dt+ · · ·

=
∫ ∞

0
e−z

2tt−q/2σ dt+ · · ·

thus the gap equation becomes

4π(β−βc)Ld−2 = −(4π)ρd/2AzD−2+J2(z2)+Cσ,p
∫ ∞

1
e−z

2tt−q/2σ dt (3.14)

which is, as expected, the gap equation for a layered geometry∞q×Lp. From
the scaling form, the exponent ν is easily identified as 1/ν = D−2, expected
for a bulk system in D (effective) dimensions. Note that for q/σ > 2, taking
into account Eq (3.13) and the fact that the last two terms are exponentially
small for zS → ∞, the gap equation is exactly the same as eq. (3.14), as
expected.

3.4 ξ‖,V ∼ M

Case 0 < q/σ < 2

We observe that J2(z2) has a finite limit for z → 0. The same is true for the
second integral on the r.h.s. of Eq. (3.11). The gap equation is Eq. (3.12),
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i. e.

(4π)ρ+(d−ρD)/2(β − βc)Lρ(D−2) = −(4π)ρd/2AzD−2 + rσ−q/2J1(z2rσ)

+ J2(z2)− Cσ,p

∫ 1

0
e−ztt−q/2σ + Cσ,pz

−2+q/σ

∫ rσz2

0
e−tt−q/2σ dt

(3.15)

Given that z → 0, the last term on the r.h.s. is greater than the sum of
those on the first line of r.h.s., at least when

z2−q/σ

Cσ,p

∣∣∣∣−(4π)ρd/2AzD−2 + J2(z2)− Cσ,p

∫ 1

0
e−ztt−q/2σdt

∣∣∣∣
�
∫ rσz2

0
e−tt−q/2σ dt

so that the gap equation may be rewritten in the form

(4π)ρ+(d−ρD)/2(β − βc)Lρ(D−2)rq/2−σ =

J1(z2rσ) + Cσ,p(rσz2)q/2σ−1

∫ rσz2

0
e−tt−q/2σ dt

(3.16)

We note, first, that this scaling is possible only for β > βc, given the r.h.s. is
a positive function. Given that M is scaled according to M ∼ L1+δ, then an
effective exponent ν̃(δ) can be identified from the power of M on the l.h.s.

LD−2rq/2−σ ∼M
ρ(D−2)+(δ−∆)(q−2σ)

1+δ

giving
1

ν̃(δ)
=
ρ/νD + (δ −∆)σ/νq/σ

1 + δ
(3.17)

where ν−1
d :=d− 2 is the exponent of a d-dimensional system (at least when

d > 2). Moreover the gap equation can be rewritten as (see app. A)

(4π)ρ+(d−ρD)/2(β − βc)L1/ν̃(δ) =
∫ ∞

0
dtΨσ(rσz2t)t−q/2σBq

(
t−1/σ

)
(3.18)

Which has the same form of the gap equation for an hypercubic systems
with geometry M q (i.e. (p = 0)) when q/σ < 2 (i. e. below the l.c.d. of the
model):

(4π)σβM q−2σ =
∫ ∞

0
dtΨσ(rσz2t)t−q/2σBq

(
t−1/σ

)
. (3.19)

The FSS properties in this particular limit are influenced by the exponent
with which the scaling is performed. In the limit of small δ the standard
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scaling exponent is recovered. For δ →∞, a sort of crossover towards a finite
q-dimensional systems occours, as one could näıvely expect. Note, however,
that we have assumed q/σ < 2, that is the eventual effective geometry has a
dimensionality below the lower critical dimension of the reduced model, and
we have ν−1

q/σ < 0. As a consequence the FSS is singular when ν̃−1(δ) = 0,
i.e. δ = ρ(D − 2)/(2σ − q) > 0.

Thermodynamic limit

We observe that Eq. (3.15) may be rewritten as

(β − βc)M ν̃−1(δ) = Φ0(M/ξ‖,V ) + Sq−2σΦ1(L/ξV ) (3.20)

If M/ξ‖,V is kept constant (as in the scaling we are interested in), given that
Φ1(x) ∼ 1 for x→ 0, the second term on r.h.s.

Sq−2σΦ1(Lρ/ξV ) = Sq−2σΦ1(Mσ/ξV S
−1) ∼ Sq−2σ

is negligible compared to the first one for L,M →∞, so the FSS form

(β − βc)M ν̃−1
= Φ0(M/ξ‖,V ) (3.21)

holds. This scaling form is apparently inconsistent with the requirement
of a well-defined infinite volume limit. Indeed to cancel out, for ξ finite
(β 6= βc) and M → ∞, the dependence on M , we have to suppose that
Φ0(x) ∼ x1/ν̃ for x → ∞, so that ξ∞ ∼ (β − βc)−ν̃ , in contrast with the
expected thermodynamic limit ξ‖,∞ ∼ (β − βc)−1/σ(D−2).

To recover correctly the thermodynamic limit we have to take into ac-
count that those terms which are negligible for M → ∞ with ξ‖,V /M kept
constant may be not negligible when ξ‖,V is bounded and M →∞. Indeed,
going back to Eq. (3.20), given that Φ0(x) ∼ 0 while Φ1(x) ∼ xρ(D−2) for
x→∞, we get Sq−2σΦ1(L/ξV ) ∼M ν̃−1

ξ
σ(2−D)
‖,V and thus the dependence of

Eq. (3.20) on M cancels and ξ‖,∞ ∼ (β − βc)−1/σ(D−2), as expected.

Case q/σ ≥ 2

The gap equation is given in Eq. (3.13), i. e.

(4π)ρ+(d−ρD)/2(β − βc)Lρ(D−2) = −(4π)ρd/2AzD−2 + J2(z2)

+ Cσ,p

∫ ∞

1
e−z

2tt−q/2σ dt+ rσ−q/2
[
J1(z2rσ)− Cσ,p

∫ ∞

1
e−r

σz2tt−q/2σ dt

]
(3.22)

From this expression it is easy to see that for fixed z2rσ (zS) and r large
enough, the second line is negligible with respect to the first line, which has
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a finite limit for z → 0. Thus no nontrivial scaling emerges. We can observe,
however, that there is a way out, by noting that, for 1 < b < 2, a > 0∫ ∞

1
dte−att−b =

1
b− 1

+ Γ(1− b)ab−1 +O(a)

thus, the gap equation may be also written as (2 < q/σ < D < 4)

(4π)ρ+(d−ρD)/2(β − βc)Lρ(D−2) −K = O(zD−2) + Cσ,pz
q/σ−2Γ(1− q/2σ)

+ rσ−q/2
[
J1(z2rσ)− Cσ,p

∫ ∞

1
e−r

σz2tt−q/2σ dt

]
(3.23)

where
K = J2(0) + Cσ,p

1
q/2σ − 1

now, in terms of a shifted temperature we can recover a sensible scaling with
zS0 constant, i.e.

(4π)ρ+(d−ρD)/2

(
β − βc −

K̃

Lρ(D−2)

)
Lρ(D−2)rq/2−σ = Cσ,p(rσz2)q/2σ−1Γ(1− q/2σ)

+ J1(z2rσ)− Cσ,p

∫ ∞

1
e−r

σz2tt−q/2σ dt+ O(zp/2ρ)

(3.24)

This can be rewritten as (see section A.3 in the appendix)

(4π)ρ+(d−ρD)/2(β−β̃c(L))L1/ν̃(δ) =
∫ ∞

0
dtΨσ(rσz2t)t−q/2σ

[
Bq
(
t−1/σ

)
− 1
]

(3.25)
where

β̃c(L) = βc +
K̃

Lρ(D−2)
.

Again this is the same gap equation of the lower (M q) dimensional system
(above the l.c.d. of the model: q/2σ ≥ 2):

(4π)σ(β − βlow
c )M q−2σ =

∫ ∞

0
dtΨσ(rσz2t)t−q/2σ

[
Bq
(
t−1/σ

)
− 1
]
. (3.26)

where βlow
c is the corresponding critical temperature. It is easy to see that

the l.h.s of the previous equation is the same as that of Eq. (3.14) with
q = 0, p 7→ q and z 7→ zS0, i.e. as the r.h.s. of the gap equation for a finite
hypercubic system in geometry Lq. The effective exponent ν̃(δ) appears also
in this case in the FSS.
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3.5 Which one is the correct exponent?

Using the result from previous section we would like to address here the
problem of the “phenomenological” determination of the critical exponents
(we consider the case of ν⊥ and ν‖ for the model we are dealing with) without
any a priori knowledge of the right value of ∆. First of all we note that,
calling ν ′⊥, ν ′‖ the exponents deduced from data collapse according to the
FSS relations

tM
1/ν′‖ = F‖,δ(ξ‖,V /M,Sδ)

and
tL1/ν′⊥ = F⊥,δ(ξ⊥,V /L, Sδ)

we have

1/ν ′⊥ =

{
ρ(D − 2) δ > 0
σ/νD+(δ−∆)ρ/νp/ρ

1+δ δ < 0
, (3.27)

and

1/ν ′‖ =

{
ρ/νD+(δ−∆)σ/νq/σ

1+δ δ > 0
σ(D − 2) δ < 0

. (3.28)

Whatever scaling is performed (i.e. ξV ∼ L, ξV ∼ M), there is a range
of δ for which the exponent ν ′∗ extracted from the data does not depend
on δ and ν ′∗ = ν∗. Moreover the scaling function one finds differs from
the one determined for δ = ∆, the former being that of a layer geometry.
This behaviour is fully consistent with our discussion of shape mismatch
in sec. 2.4. To our opinion the other nontrivial FSS limits in which the
exponents ν ′∗ are function of δ, and which can be realized only in the low
temperature phase are a perculiarity of the O(∞) model due to the fact that
in low temperature the finite-volume correlation lenght can diverge faster
than the corresponding dimension of the lattice.

This analysis suggest that, in simulations where the exact value of ∆
is not known, one can proceed by using a sequence of increasing values of
δ and estimate critical exponents by FSS with Sδ fixed until the estimates
do not change anymore with δ. This provided it is possible to measure the
correlation lenght of the system in the “transverse” direction so to be able
to keep ξ⊥,V /L fixed.
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Chapter 4

Numerical experiments

4.1 Setup

We studied the phase transition of the DLG in two dimensions by Monte
Carlo simulations. Our aim was to check the validity of the FSS assumptions
and eventually to use FSS to compute the critical exponents. The observ-
ables we took into account are those described in Section 1.3. We used the
dynamics described in Sec. 1.1, with Metropolis rates, i.e. we set

w(x) = min (1, e−x). (4.1)

Simulations were performed at infinite driving field E: therefore, forward
(backward) jumps in the direction of the field are always accepted (rejected).

The dynamics of the DLG is diffusive and the dynamic critical exponent
is expected [26] to be z⊥ = 4. Thus, it is important to have an efficient
implementation of the Monte Carlo sampling algorithm in order to cope
with the severe critical slowing down.

For the pseudo random-numbers we used the congruential generator of
Parisi-Rapuano which is a 32 bit shift-register generator based on

an = (an−24 + an−55) XOR an−61

where a is an array of 256 unsigned 32−bit integers. To initialize the array
we used the congruential generator x = x∗31167285+1 (see [64]) with 48−bit
integers to make it independent of the computer architecture (suggested by
A. Sokal). The same random number generator is used to choose the links
to flip and to perform the Metropolis rejection step.

A multi-spin coding technique is used to evolve simultaneously many
independent configurations. The number of spin configuration to evolve it
is chosen to be 128 optimizing the number of single-spin sweeps per second.
Indeed we observed that on Pentium or PowerPC processors there is an
abrupt change of performances increasing the number of spins in the multi-
spin implementation, e.g. on a Pentium processor with 32 spins we have
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updating at a speed of 1.3 ·108 spin-flip/sec, raising to 2.7 ·108 for 128 spins,
while it drops to 2.0 · 108 for 192 spins; after that it starts to raise againg
(with the number of spins) to reach 3.8 · 108 for 960 spins. This behaviour
can be traced to optimal allocation of the various level of cache memory
present in this architectures.

Our first aim has been to test the theoretical prediction of the stan-
dard field theory for the DLG, see sec. 1.4. This implies that the correct
FSS limit must be achieved with S2 = L‖/L

3
⊥ constant. The following

geometries were taken into account (L‖, L⊥): (21, 14), (32, 16), (46, 18),
(64, 20), (88, 22), (110, 24), (168, 28),(216, 30), (262, 32), (373, 36), (512, 40),
(592, 42), (681, 44), (778, 46), (884, 48), for which S2 ' 0.2; and the follow-
ing values of β: 0.28, 0.29, 0.3, 0.305, 0.3075, 0.31, 0.3105, 0.311, 0.31125,
0.3115, 0.31175 0.312, which lies all in the disordered phase (albeit very near
to the critical line).

It is very important to be sure that the system has reached the steady-
state distribution before sampling. Metastable configurations in which the
Markov chain could be trapped for times much longer than typical relaxation
times in the steady state are a dangerous source of bias. In the DLG,
configurations in which multiple stripes aligned with the external field are
present are very long-lived and it is possible that they persist for times of the
order of those of typical simulation runs, thus effectively inducing a spurious
geometry on the system. To avoid the formation of stripes, we took care to
initialize the larger systems by suitably rescaled thermalized configurations
of smaller systems (where the stripes decay faster) at the same temperature
and value of S2.

We computed the autocorrelation time τχ for the susceptibility χ. Such
an observable is expected to have a good overlap with the slowest modes of
the system, so that τχ should give a good indication of the number of sweeps
necessary to generate independent configurations. We found that, for one
of the lowest temperature we considered (β = 0.311), τχ ≈ 900, 1400, 2700
sweeps, for L = 20, 24, 28 respectively, where a MC sweep is conventionally
defined as the number of moves equal to the volume of the lattice. For
this reason, in order to have approximately independent configurations, we
measured once every 1500 sweeps for every value of β.

For each geometry and β we collected approximately 3 · 105 measures,
sometimes more. The raw data are reported in Tables B.1, B.2.

The statistical variance of the observables is estimated by using the jack-
knife method [65]. To take into account the possible residual correlations
of the samples, we used a blocking technique in the jackknife analysis. In
the standard jackknife method the estimator for the variance is obtained
discarding single data points. In the blocking technique, several variance
estimators are considered, discarding blocks of data of increasing length and
monitoring the estimated variance until it reaches a maximum.
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Figure 4.1: τL for different geometries as a function of the inverse temper-
ature β. Filled (respectively empty) points refer to geometries with aspect
ratio S2 (respectively S1) fixed. Here S2 ≈ 0.200, S1 ≈ 0.106. Errors are
smaller than the size of the points.

4.2 Finite-size scaling

First we checked that the correlation lenght ξ13 (which in the following will
be called ξ) has a good thermodynamic limit indipendently from the chosen
geometry. In this respect we considered also a sequence of systems for which
S1 were constant and with L⊥ going form 14 to 48 as above. With the aim to
test the theoretical prediction on the finite-size correction to the correlation
lenght:

ξL(β)−2 = ξ∞(β)−2 + 4π2L−2 + O(L−4) (4.2)

we introduce the following quantity

τL(β) = ξL(β)−2 − 4π2L−2. (4.3)

A good behaviour of ξL as L→∞ is reflected in a good behaviour of τL and
viceversa. Moreover we expect from (4.2) that τL will be constant for large
L when the shape factor S2 is kept constant, but not otherwise. Indeed, as
figure 4.1 shows, a good thermodynamic limit seem to exists for every value
of β. As expected, when the temperature approaches the critical value,
it is necessary to use larger and larger lattices to see the convergence to
the infinite-volume limit. At β fixed we expect the convergence to become
eventually exponential in L. However, for lattices with S2 fixed we observed
an intermediate region of values of L in which τL is apparently constant.
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β Lmin N R2 R2
c τ∞ a

0.28 22 4 3.12 9.49 0.2397(13) -5.44(87)
0.29 22 4 2.76 9.49 0.15309(87) -4.19(56)
0.3 22 4 5.09 9.49 0.07607(35) -2.02(24)
0.3025 22 4 5.19 9.49 0.05864(36) -1.30(25)
0.305 24 8 14.63 15.50 0.04382(26) -1.91(26)
0.3075 26 2 0.70 6.00 0.02961(52) -3.33(67)
0.31 22 4 8.29 9.49 0.01309(11) 0.310(74)
0.3105 22 4 7.57 9.49 0.01069(18) 0.09(13)
0.311 24 7 14.78 14.08 0.00852(21) -0.17(18)
0.31125 22 4 2.65 9.49 0.00703(11) -0.012(72)
0.3115 22 4 8.56 9.49 0.00586(14) 0.01(13)
0.31175 24 3 9.21 7.82 0.00421(20) 0.49(19)
0.312 28 6 11.46 12.59 0.00348(16) 0.01(20)

Table 4.1: Fit of τL(β) with τ∞ + aL−2 (for S2 constant): Lmin is the
minimum value of L allowed in the fit, N are the degrees of freedom, R2 is
the sum of square residuals and R2

c is the critical value for R2 at the 95%
confidence level based on a χ2 distribution with N degrees of freedom.

Such a region widens as β approaches the critical point and is therefore
consistent with the relation (4.2), that is

1
ξ2∞(β)

≈ 1
ξ2L(β)

− 4π2

L2
,

in the FSS limit L→∞, T → Tc. But this only happens for the geometries
with S2 constant. Note also that for the geometries with S1 constant the
corrections to the infinite volume limit are larger, which is what expected
since the geometries with S1 constant tend to be smaller than those with
S2 constant when comparing system with the same transverse size, as we do
here.

The good behaviour of τL hints to the possibility of extracting the infinite
volume limit τ∞ directly by fitting τL, for large enough L, with the constant
value τ∞ = 1/ξ2∞.

Table 4.1 shows the results of fitting τL(β) as a function of L with the
linear model τ∞(β) + a(β)L−2 discarding the observations with L < Lmin

where Lmin is chosen to have a reasonable value of the sum of squared
residuals R2. In the table are also reported critical values of R2 at the 95%
confidence level based on the χ2 statistics which shows that almost all the
fits are consistent (only two of them have R2 > R2

c and this is statistically
compatible with the 95% confidence level). The value of the parameter
τ∞(β) gives then our preferred estimate for the infinite volume correlation
lenght ξ∞(β) = 1/

√
τ∞(β).
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Performing the same kind of analisys on the data obtained in the geome-
tries with S1 constant is not reliable since these data are clearly affected by
larger corrections and thus a straigth extrapolation would be questionable.

A simple argument shows that the formula (4.2) implies that ν = 1/2.
Then, given the values of τ∞(β) we can check the expected value of ν and
estimate the critical value of β.

We fitted

τ∞(β) = A

∣∣∣∣ ββc − 1
∣∣∣∣2ν

for β > βmin choosing for βmin the lowest value for which R2 < R2
c (here

and in the following we will use always critical values at the 95% confidence
level) and we obtained βmin = 0.31, N = 4, R2 = 4.2 (p = 0.38, R2

c =
9.48), A = 1.09(31), 2ν = 0.921(65), βc = 0.312557(93). Adding analytic
corrections to scaling does not produce better results.

A better estimate of βc is obtained by fixing ν = 1/2. In this case
βmin = 0.31, N = 5, R2 = 5.56 (p = 0.35, R2

c = 11.07), A = 1.540(24),
βc = 0.312670(26). Adding the first analytic correction to scaling (with the
same value of βmin = 0.31) gives N = 4, R2 = 4.02 (p = 0.40, R2

c = 11.07),
A = 1.70(13), βc = 0.312603(54) and B = −15(12).

The we will consider as out best estimate of the critical temperature:

βc = 0.312603(54). (4.4)

The result for βc should be compared with the existing determinations:

βc =

{
0.3108(11) (Ref. [39]);
0.3125(13) (Ref. [41]).

(4.5)

Our result (4.4) is in fairly good agreement with both estimates, although
more precise.

The good FSS behaviour of the correlation lenght is witnessed by the plot
of ξ2L/ξL vs. ξL/L in fig. 4.2. The solid line is the theoretical prediction. It
is clear that as the size of the systems increase the points converge towards
the theoretical line. We would like to emphasize that in this plot there are
no tunable parameters involved. So the observed collapse is very remarkable.
To get rid of the small corrections to FSS still present, in fig. 4.3 we plotted
ξ2L/ξL vs. ξ2L/2L. The use of data from the larger system for the values in
the horizontal axis reduces significantly the corrections in the FSS plot.

Next we checked the FSS behaviour of various observables plottingO2L/OL
vs. ξ2L/2L. The susceptibility is plotted in fig. 4.5, showing the same fea-
tures present in the FSS plot for ξ. In fig. 4.4 we report the amplitude A
for which the theory predicts no anomalous dimensions, here we have large
error-bars (due to the very small range in the vertical axis); the data points
shows a right trend towards the theoretical prediction (shown as a dotted
line).
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The plot for the magnetization of fig. 4.7 shows a good collapse of data
points. If we look for the value of the ratio m2L/mL at the critical point
(i.e. when ξ2L/2L = 1/2π ' 0.159 we see that it should be around 0.5 which
means that β/ν ' 1 in accordance with the standard theory.

The behaviour of the Binder parameter reported in fig. 4.6 seems to
present a good data collapse and a rough estimate of the anomalous di-
mensions of g would give in this case γg/ν ' −0.4 meaning that g = 0
at the critical point. Even if we conjecture this limit to be true and thus
supports the theory which predicts gaussian transverse fluctuations at the
critical point, the analysis of the scaling plot could be more sublte and we
give some arguments that what we see could be (logarithmic?) corrections
to FSS in the next section.

The last plot shows some preliminary results about the parallel correla-
tion lenght which can be defined in analogy to the trasverse by looking at
the structure function at zero transverse momenta. In this case we used a
definition of the correlation lenght base on the first and the second non-zero
parallel momenta. Fig. 4.9 report a plot of ξ‖/L‖ vs. ξL/L. There are huge
corrections to FSS but data points seems going to collapse on a well-defined
curve.

4.3 Corrections to FSS

Now we would like to exploit the analysis of sec. 2.5 to check for the presence
of logarithmic corrections to FSS. In the upper plot in fig. 4.10 we report
XL versus gL according to the data compared to the theoretical prediction
which says that

Xth = M1(z#)2/M2(z#), gth = 2−M1(z#)/M2(z#)2 (4.6)

to achieve this purpose, for each data point we determined z#
L (β) such that

gL(β) = 2−M1(z
#
L (β))/M2(z

#
L (β))2

and then plugged this into the first of the eqns. (4.6) to obtain Xth as a
function of gL(β). It is clear from the second plot in fig. 4.10 that deviations
(even if somewhat systematic) are very small and compatible with statisti-
cal errors. Note that g → 0 is the gaussian limit where X → 4/π ≈ 0.785
and that g ≈ 0.43 corresponds to the strongly anharmonic limit were our
approximation is no more justified. Note also that using an effective ac-
tion Seff with a different kind of interaction (e.g. ϕn, n 6= 4) gives result
incompatible with statistical errors.

Using the values of z#
L (β) as determined from the cumulant gL(β) we

proceeded to fit them to the form

z#
L (β) = a1

(
L

ξL(β)

)2

(logL)a2 + a3(logL)−a2
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to mimic the structure of the corrections above two dimensions and assum-
ing logarithmic behaviour for the marginally irrelevant coupling. The fit
is unreliable and cannot be used to confirm this palusible L dependence
of the corrections. However, estimated parameters can be used to provide
an explicit example showing how logaritmic corrections to FSS can gener-
ate an FSS plot like that of fig. 4.6 which almost looks like a good scaling
plot. In this example, reported in fig. 4.11, we set a1 = 0.0103, a3 = −8.55,
a2 = 1.42 and used the observed values of ξL(β), ξ2L(β) to evaluate the theo-
retical prediction for g2L/gL. This look indistinguishable from the observed
data.

4.4 FSS for S1 fixed

Here we report preliminary results about a series of simulations with ge-
ometries with fixed value of S1 = L‖/L

2
⊥ with the aim of understanding the

effects of shape mismatch in this model. Indeed, by the results reviewed in
the previous sections, we are fairly confident that S2 is the right shape factor
for the DLG – the one which should appear in FSS functions. Then keeping
S1 constant while doing the FSS limit means that S2 → 0. If we try to keep
ξ⊥,L/L⊥ constant in this limit we should expect a singular behaviour of the
FSS functions as argued in sec. 2.4.

We considered the following geometries with S1 ≈ 0.106 constant: (20, 14),
(27, 16), (34, 18), (42, 20), (51, 22), (61, 24), (72, 26), (83, 28), (96, 30), (109, 132),
(123, 34), (138, 36), (154, 38), (170, 40), (188, 42), (206, 44), (225, 46), (245, 48).
And the following values of β: 0.27, 0.28, 0.29, 0.3, 0.305, 0.3075, 0.31,
0.3105, 0.311, 0.312. Raw data are reported in table B.3 and table B.4.

In fig. 4.12 we reported the (2L/L) plot for ξ in the case of fixed S1.
It shows larger corrections compared to that obtained with S2 constant
– however this is somewhat natural given that the geometries considered
are smaller with respect to the corresponding geometries for S2 constant.
In any case, the most relevant feature of the plot is that it is clear that
ξ2L/ξL ≤ 1.85. Note in fact that the set of β considered for these geometries
is the same of those with S2 constant and we have data up to β = 0.312, quite
near to βc ≈ 0.3126. To understand the scaling behaviour of ξL at βc we
took the data with β = 0.312 and assuming ξL(βc) ∝ Laξ tried to estimate aξ.
To do this we proceeded as follows: given that Ln is an increasing sequence
of values of L at our disposal we computed the ratios

rn =
log(ξLn+1(β))− log(ξLn(β))

log(Ln+1)− log(Ln)

with the corresponding statistical errors: note that if ξLn ∝ L
aξ
n we have

rn = aξ. We estimated a from the rn by doing a constant fit. The best fit
is obtained considering data with L ≥ Lmin = 24 and gives aξ = 0.847(13)
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with R2 = 3.765 and N = 10. Repeating the same procedure for χ with the
same value of Lmin we got: aχ = 1.676(16) with R2 = 6.210 and N = 10.
For m (again same Lmin): am = −0.6787(91) with R2 = 8.260 and N = 10.

Note that the determinations of aξ,aχ and am are consistent with the
equations aχ = 2aξ, am = aχ/2− 3/2 obtained from the relations

χL ∝ ξ2L, m2
L ∝

χL
L‖L⊥

valid for the mean-field theory.
This suggests that the appropriate FSS form in this case should be

ξL/Leff = F [ξ (ξ∞/Leff), χL/Leff = F [χ(ξ∞/Leff) (4.7)

where Leff = Laξ is an effective lenght-scale entering the FSS functions. Note
that a similar result was found (in the same limit S2 → 0) by Leung [39, 40]
which by theoretical arguments and analysis of finite-size data was led to
the conclusion that

χL(t) = L
1/3
‖ L⊥Hχ(ṫL

1/2
‖ L

1/2
⊥ )

where ṫ is a shifted reduced temperature. The exponents in this results are
not exact but approximate values consistent with the data at his disposal.
However they partially agree with our observations. Indeed for S1 constant
L‖ ∝ L2

⊥ and Leung’s results become

χL(t) = L
5/3
⊥ Hχ(ṫL

3/2
⊥ )

which shows that, near criticality, χL ∝ L
5/3
⊥ in agreement with our obser-

vation that aχ ≈ 1.676.
We think that this situation is not very clear, first of all because we

where expecting that in the limit of S∆ → 0 FSS would hold with ξL/L
1/3
‖ ∝

ξL/L
2/3
⊥ constant1 which would give an exponent too small to be consistent

with our data.
For reference we reported also the (2L/L) FSS plots for the other ob-

servables χ,m, g resp. in fig. 4.13, 4.14, 4.15. However we are prevented to
interpret them by the strange scaling behaviour of the correlation length.

We used aξ ≈ 0.847 to check eq. (4.7) by plotting ξL/Laξ versus (Laξ/ξ∞)2

as determined by the extrapolation in the previous section. This is reported
in fig. 4.19. The solid line is the function F [ξ defined by

F [ξ (x) = A0H
∗(x/

√
A0)

1This is appropriate for the strip geometry where L⊥ →∞ and consistent with exact
solutions, our findings in the O(∞) model and also with the phenomenological FSS analysis
of Binder and Wang [46].
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where A0 is a non-universal amplitute fitted (by eyes) to the data and H∗

is the FSS function for the correlation lenght of the 1d Ising model:

ξising
L /L = H∗((L/ξising

∞ )2)

where ξising
L is related to the mass gap of the 1d Ising model of L sites as

usual and ξising
∞ is the corresponding infinite-volume limit. This particular

choice of the FSS function can be justified heuristically by noting that when
S2 � 1 and ξ‖ � L⊥ the system behaves as effectively one-dimensional and
the discrete model resembles a 1d Ising model. As can be seen, the result is
not really bad (remember that we have at our disposal only the parameter
A0) but of course is just an hint for future investigations. Finally, fig. 4.18
reports a plot of ξ2L/ξL versus ξ2L/2Laξ with again the prediction from the
1d Ising model with the same amplitude estimate before. Here deviations
from the prediction are marked.

In fig. 4.20 we check relations between adimensional ratios, in the spirit
of fig. 4.10, for S1 geomeries: the results are very similar to that for the S2

geometries.

4.5 Conclusions

By the means of a well-behaved transverse correlations lenght we were able
to probe the FSS regime of the DLG in much deeper detail than previous
works in the literature, first of all avoiding the deprecable tecnique of data
collapsing for the determination of critical exponents. Data collapse, indeed,
is usually judged by eyes: in doubtful situations like ours, a more quanti-
tative approach to the verification of scaling relations is needed. We want
to stress again that simulations at S2 constant agree fairly well with the
theory without any tuning of parameters. This give strong evidences that
the correct scaling limit can be obtained with S2 constant. The prediction
of ν and γ are thus consistent with the mean-field behaviour of the trans-
verse correlations predicted by the field-theoretical approach of sec. 1.4. By
our arguments of sec. 2.4, even if ∆ < 2, the FSS scaling of the transverse
correlation function is not modified by shape mismatch, indeed we expect
that the relation

ξ2L
ξL

≈ Fξ

(
ξL(t)
L

, S∆

)
,

has a regular limit for S∆ →∞ (this is what happens if we keep S2 constant
and ∆ < 2). In particular our analysis applies also to the case ∆ = 1.

Another novelty of our approach is the different perspective on the rôle
of the dangerous operator in the FSS behaviour of the standard field-theory
for the DLG, and thus on the KLS model if we assume the standard picture
to be correct. Indeed we showed how this dangerous operator does not lead
to violations of FSS above two dimensions and in high temperature due to
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the absence of the zero-mode. This ultimately means that the standard set
of observables in finite-volume is not suited for capturing the anomalous
behaviour expected from the analysis of the infinite-volume field-theory. A
better understanding of this phenomenon, an in particular of the finite-
size behaviour of the theory below the critical temperature is under current
investigation. Even if we do not still have strong arguments we believe that
our data for the Binder cumulant are affected by (logarithmic?) corrections
to FSS. If that is the case it would be very difficult to see this logarithmic
nature by MC simulations due to the need of simulating prohibitively large
boxes. In any case the method of crossing of g to find the critical temperature
should not be used in this situation.

An analisys of the data from geometries at S1 constant is under consid-
eration to understand the discrepancy between the recent claims made in
the literature [57] with our results.
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Figure 4.2: FSS plot for ξ with α = 2. Marks are as follows : L = 16(◦),
18(�), 20(4), 22(♦), 24(F). On the right ξ2L/ξL is plotted against ξ2L/(2L)
to reduce the effects of corrections to FSS. The lines are the theoretical
prediction.
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Figure 4.3: FSS plot for ξ. Marks are as in fig. 4.2. ξ2L/ξL is plotted
against ξ2L/(2L) to reduce the effects of corrections to FSS. The line is the
theoretical prediction.
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Figure 4.4: FSS plot for A. Marks are as in fig. 4.2. The solid line is the
theoretical prediction.
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Figure 4.5: FSS plot for χ. Marks are as in fig. 4.2. The line is the theoretical
prediction.
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Figure 4.6: FSS plot for g. Marks are as in fig. 4.2.
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Figure 4.7: FSS plot for m. Marks are as in fig. 4.2.
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Figure 4.8: FSS plot for ξ‖. Marks are as in fig. 4.2.
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Figure 4.9: FSS plot of ξ‖/L‖ versus ξ/L. All the data points are shown.
For the same value of β (same marker) the larger geometries are on the left
of smaller ones. The plot clearly shows that corrections to FSS dies out as
L increases.
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Figure 4.10: Check of FSS corrections: upper figure is the plot of XL vs. gL
(see sect. 2.2.2) and a plot of the theoretical prediction, they are indistin-
gushable in this scale. Lower figure reports XL−Xth

L vs. gL, deviations are
seen for gL ' 0.43 (the limit of large quartic coupling).
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Figure 4.11: Check of FSS corrections: here it is shown how the FSS plot
for g, i.e. g2L/gL vs ξL/L looks like assuming a specific pattern for the L
dependence of the corrections. In this case it is indistinguishable from the
real data.
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Figure 4.12: FSS plot for ξ with S1 fixed. Marks are as in fig. 4.2.The line
is the theoretical prediction of FSS with S2 fixed, for comparison.
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Figure 4.13: FSS plot for χ with S1 fixed. Marks are as in fig. 4.2. The line
is the theoretical prediction of FSS with S2 fixed, for comparison.
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Figure 4.14: FSS plot for m with S1 fixed. Marks are as in fig. 4.2.
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Figure 4.15: FSS plot for g with S1 fixed. Marks are as in fig. 4.2.
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Figure 4.16: FSS plot for ξ‖ with S1 fixed. Marks are as in fig. 4.2.
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Figure 4.17: FSS plot of ξ‖/L‖ versus ξ/L for S1 geometries. All the data
points are shown. For the same value of β (same marker) the larger geome-
tries are on the left of smaller ones.
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Figure 4.18: FSS plot for ξ with S1 fixed . Marks are as in fig. 4.2. Here
Leff = L

aξ

⊥ (aξ = 0.847). The solid line is the FSS curve of the one di-
mensional Ising model with one adjustable parameter to account for non-
universal metric factor.
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Figure 4.19: Plot of ξL/Leff vs (Leff/ξ∞)2 with Leff = L
aξ

⊥ (aξ = 0.847); for
each β the six largest geometries are shown, different marks stay for different
temperatures. The solid line is the FSS curve of the one dimensional Ising
model with one adjustable parameter to account for non-universal metric
factor.
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Figure 4.20: Check of FSS corrections for the geometries with S1 constant:
upper figure is the plot of XL vs. gL (see sect. 2.2.2) and a plot of the
theoretical prediction, they are indistingushable in this scale. Lower figure
reports XL −Xth

L .
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Appendix A

Computations in the O(∞)
model

A.1 FSS of the gap equation

By standard arguments (see eq. [66]), the gap equation can be approximated
with

β − βc ≈ −λV
∫

[−π,π]d

ddp

(2π)d
1

K(p)(K(p) + λV )
+ Σ′ ≈ −λD/2−1

V A+ Σ′.

(A.1)
with K(p) = |p⊥|2ρ + |p‖|2σ where 0 < σ ≤ 1, 0 < ρ ≤ 1 and where
D = p/ρ+ q/σ,

A :=
∫

Rd

ddp

(2π)d
1

K(p)(K(p) + 1)

and

Σ′ :=
1
V

∑
p∈Λ∗V

1
K(p) + λV

−
∫

[−π,π]d

ddp

(2π)d
1

K(p) + λV
.

Using Poisson summation formula

b∑
n=a

f(n) =
∑
k

∫ b

a
dnf(n)ei2πnk +

1
2

(f(a) + f(b))

we have

1
V

∑
p∈Λ∗V

f(p) =
∑
n

∫
[−π,π]d

ddp

(2π)d
f(p)eip‖n‖M+ip⊥n⊥L+O(L−1|f(π)+f(−π)|).

(A.2)
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so that

Σ′ ≈
∑
n 6=0

∫
[−π,π]d

ddp

(2π)d
eip‖n‖M+ip⊥n⊥L

K(p) + λV

≈
∑
n 6=0

∫
Rd

ddp

(2π)d
eip‖n‖M+ip⊥n⊥L

K(p) + λV

(A.3)

where we have extended the integration to all the space, convergence being
guaranteed by the oscillating phase factor.

Introduce the function

B(s) :=
∑
n∈Z

e−πn
2s, with B(s) = s−1/2B(1/s).

To deal with the particular form of the propagator it will be useful to
introduce auxiliary integrations. It happens that actually these integrations
are mean values according to particular probability ditribution. Then, in
the following, we will denote with E the probabilistic mean value. Since
the random variables we introduce are just a trick to perform computations
if r.v. appears in final results the operation of taking the mean will be
understood whenever not present.

Recall that a subordinator Xt (for detail see e.g. [15]) of order α, for
0 < α < 1 is a positive and increasing jump process over R+ with stationary
independent increments and such that

E e−uXt = e−tu
α

for u > 0. It holds that EXβ
t < ∞ for β < α and that X`t

d= `1/ατt where
equality means equality in ditribution. The law of X1 is then an α-stable
law supported on the positive semiaxis, its density fα(x) with respect of
Lebesgue measure on R+ has the asymptotic behaviour

fα(x) ∼ x−(1+α), for x→ +∞.

and
fα(x) ∼ exp

(
−Cx−α/(1−α)

)
, for x→ 0+,

where C is a positive constant.
We can consider the case α = 1 as a limiting situation in with the process

Xt becomes deterministic and ballistic: Xt = t.
Introducing auxiliary integrations over a parameter t and over the dis-

tribution of independent subordinators ηt and τt of respective order ρ and
σ (with 0 < σ ≤ 1 and 0 < ρ ≤ 1), is possible to factorize the multiple
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summations in eq. (A.3) as follows:

Σ′ =
∑
n 6=0

∫
Rd

ddp

(2π)d

∫ ∞

0
dt e−λV t−t|p⊥|2ρ−t|p‖|2σ+ip⊥·n⊥L+ip‖n‖M

= E
∑
n 6=0

∫
Rd

ddp

(2π)d

∫ ∞

0
dt e−λV t−ηt|p⊥|2−τt|p‖|2+ip⊥·n⊥L+ip‖n‖M

= E
1

(4π)d/2
∑
n 6=0

∫ ∞

0
dt η

−p/2
t τ

−q/2
t e−λV t−(n⊥L)2/(4ηt)−(n‖M)2/(4τt)

= E
L(2−D)ρ

(4π)ρ+(d−ρD)/2

∫ ∞

0
dt η

−p/2
t τ

−q/2
t e−z

2t

[
Bp

(
1
ηt

)
Bq

(
r

τt

)
− 1
]

with S = M/Lρ/σ, r = (4π)ρ/σ−1S2, z = Lρ
√
λ/(4π)ρ, D = p/ρ + q/σ.

We see that the r.v. τt and ηt can be interpreted as auxiliary random
times replacing the unique deterministic auxiliary time variable (Schwinger’s
proper-time) appearing in the treatment of short-range case (σ = ρ = 1).
This allows a unified treatment of a whole host of models.

This last expression readly implies that in the FSS limit with S constant
we obtain the gap equation

(4π)ρ+(d−ρD)/2(β − βc)Lρ(D−2) = −(4π)ρd/2A+ I(z, S) (A.4)

where β = 1/T , βc is given in Eq. (3.7), z = (4π)−ρ/2(L/ξV )ρ.
In the low temperature regime (β > βc fixed) we have

β − βc = −λD/2−1
V A+ Σ′ > 0

which implies that Σ′ must remain constant in the limit L,M → ∞ and
thus z is forced to go to zero. Then

(4π)ρ+(d−ρD)/2

Lρ(2−D)
Σ′ =

∫ ∞

0
dt η

−p/2
t τ

−q/2
t e−z

2tBp

(
1
ηt

)
Bq

(
r

τt

)
−
∫ ∞

0
dt η

−p/2
t τ

−q/2
t e−z

2t

=
∫ ∞

0
dt e−z

2tBp (ηt)Bq (τt)−
∫ ∞

0
dt η

−p/2
t τ

−q/2
t e−z

2t

=
∫ ∞

0
dt e−z

2tBp (ηt)Bq (τt)−
∫ ∞

0
dt η

−p/2
t τ

−q/2
t e−z

2t

' z−2

which implies that in the infinite volume limit

ξV ∼ LρD/2. (A.5)
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A.2 FSS of the correlation function

Now we consider the FSS limit for the (real-space) correlation function
GV (x ):

GV (x ) =
1
V

∑
p∈Λ∗V

eip·x

K(p) + λV
(A.6)

Using again the Poisson summation formula of eq. (A.2) we get

GV (x ) =
1
V

∑
p∈Λ∗V

∫ ∞

0
dt eip·x−t|p⊥|

2ρ−t|p‖|2σ−tλV

=
1
V

∑
p∈Λ∗V

∫ ∞

0
dt eip·x−ηt|p⊥|2−τt|p‖|2−λV t

≈
∫ ∞

0
dt e−λV t

∑
n

∫
Rd

ddp

(2π)d
eip‖(n‖M+x‖)+ip⊥(n⊥L+x⊥)−ηt|p⊥|2−τt|p‖|2

≈ 1
(4π

√
π)d

∫ ∞

0
dt e−λV tτ

−q/2
t η

p/2
t

∑
n∈Zd

e−|x⊥+Ln⊥|2/(4ηt)−|x‖+Mn‖|2/(4τt)

(≈ means again equality modulo finite-size corrections uniform in T ). In
the infinite volume limit with x and λV fixed only the n = 0 term is non-
vanishing and we get

GV (x ) ≈ 1
(4π

√
π)d

∫ ∞

0
dt e−λV tτ

−q/2
t η

p/2
t e−|x⊥|

2/(4ηt)−|x‖|2/(4τt)

=
∫

Rd

ddp

(2π)d
eipx

K(p) + λV
= ξ

ρ(2−D)
⊥ G̃∞(x⊥/ξ⊥,x‖/ξ‖)

where
ξ⊥ = λ−1/2ρ, ξ‖ = λ−1/2σ.

If we perform the limit L,M →∞ with S, ξ‖/L, x⊥/L, x‖/M constant we
get instead

GV (x ) ≈ Lρ(2−D)

(4π
√
π)d

∫ ∞

0
dt e−(λV L

2ρ)tτ
−q/2
t η

p/2
t∑

n∈Zd

e−|(x⊥/L)+n⊥|2/(4ηt)−S2|(x‖/M)+n‖|2/(4τt)

= Lρ(2−D)F (x⊥/L,x‖/M,S, λLL
2ρ)

= ξ
ρ(2−D)
⊥ G̃(x⊥/ξ⊥,x‖/ξ‖, S, ξ⊥/L, S)

(A.7)

which is the FSS form of the correlation function.

88



A.3 Gap equation for S →∞
Now we will determine the limiting form of the gap equation (A.1) for L→
∞, M →∞ such that S →∞ and arbitrary values of z = L/ξV .

We have

(4π)ρ+(d−ρD)/2

Lρ(2−D)
Σ′ = E

∫ ∞

1
dt η

−p/2
t τ

−1/2
t e−z

2t

[
Bp

(
1
ηt

)
Bq

(
r

τt

)
− 1
]

+ E
∫ 1

0
dt η

−p/2
t τ

−q/2
t e−z

2t

[
Bp

(
1
ηt

)
Bq

(
r

τt

)
− 1
]

=: A+B

where

A =

C︷ ︸︸ ︷∫ ∞

1
dt e−z

2tr−q/2
[
Bp (ηt)Bq

(τt
r

)
− 1
]
+
∫ ∞

1
dt e−z

2t
[
r−q/2 − η

−p/2
t τ

−q/2
t

]
= C +

r−q/2e−z
2

z2
−
∫ ∞

1
dt η

−p/2
t τ

−q/2
t e−z

2t

with

C = rσ−q/2
∫ ∞

1/rσ

dt e−z
2rσt

[
Bp(rσ/ρηt)Bq (τt)− 1

]
= rσ−q/2

∫ 1

1/rσ

dt e−z
2rσt

[
Bp
(
rσ/ρηt

)
Bq (τt)− 1

]
+ rσ−q/2

∫ ∞

1
dt e−z

2rσt
[
Bp(rσ/ρηt)Bq (τt)− 1

]
= rσ−q/2

∫ 1

1/rσ

dt e−z
2rσtτ

−q/2
t Bp(rσ/ρηt)Bq

(
1
τt

)
− rσ−q/2

∫ 1

1/rσ

dt e−z
2rσt

+ rσ−q/2
∫ ∞

1
dt e−z

2rσt
[
Bp(rσ/ρηt)Bq (τt)− 1

]
= rσ−q/2

∫ 1

1/rσ

dt e−z
2rσtτ

−q/2
t Bp(rσ/ρηt)

[
Bq

(
1
τt

)
− 1
]

+
∫ rσ

1
dt e−z

2tτ
−q/2
t [Bp(ηt)− 1] +

∫ rσ

1
dt e−z

2tτ
−q/2
t

− rσ−q/2
∫ 1

1/rσ

dt e−z
2rσt + rσ−q/2

∫ ∞

1
dt e−z

2rσt
[
Bp
(
rσ/ρηt

)
Bq (τt)− 1

]
=: C1 + C2 + C3 + C4 + C5

We can extend integrations in C1 and C2, (eventually substituteBp(rσ/ρt) →
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1 in C5), perform integration of C4, to obtain:

C ≈ rσ−q/2
{∫ 1

0
dt e−z

2rσtτ
−q/2
t Bp(rσ/ρηt)

[
Bq

(
1
τt

)
− 1
]

+
∫ ∞

1
dt e−z

2rσt
[
Bp(rσ/ρηt)Bq (τt)− 1

]}∗
+
∫ ∞

1
dt e−z

2tτ
−q/2
t [Bp(ηt)− 1] +

∫ rσ

1
dt e−z

2tτ
−q/2
t + rσ−q/2

e−z
2rσ − e−z

2

z2rσ

So

A = −Cσ,qCρ,p
∫ ∞

1
dt t−D/2e−z

2t + rσ−1/2 e
−z2rσ − e−z

2

z2rσ
+ rσ−q/2

e−z
2

z2rσ

+ Cσ,q

∫ rσ

1
dt e−z

2tt−q/2σ + Cσ,q

∫ ∞

1
dt e−z

2tt−q/2σ [Bp(ηt)− 1] + rσ−q/2 {· · · }∗︸ ︷︷ ︸
I(r,z2)

and

B = Cσ,q

∫ 1

0
dt e−z

2tη
−p/2
t t−q/2σ

[
Bp

(
1
ηt

)
− 1
]
.

Finally

A+B = Cσ,q

∫ rσ

1
dt e−z

2tt−q/2σ − Cσ,qCρ,p

∫ ∞

1
dt t−D/2e−z

2t

+ Cσ,q

∫ ∞

1
dt e−z

2tt−q/2σ [Bp(ηt)− 1]

+ Cσ,q

∫ 1

0
dt e−z

2tt−q/2ση
−p/2
t

[
Bp(η−1

t )− 1
]

+ rσ−q/2
e−z

2rσ

z2rσ

+ rσ−q/2
∫ ∞

1
dt e−z

2rσt [Bq (τt)− 1]

+ rσ−q/2
∫ 1

0
dt e−z

2rσtτ
−q/2
t

[
Bq
(
τ−1
t

)
− 1
]

+ rσ−q/2
∫ 1

0
dt e−z

2rσtτ
−q/2
t

[
Bp
(
rσ/ρηt

)
− 1
] [
Bq

(
1
τt

)
− 1
]

The last term is always negligible in the limit r → ∞ and will be dropped
from now on.

Then we can write the gap equation as

(4π)ρ+(d−ρD)/2(β − βc)Lρ(D−2) = −(4π)ρd/2AzD−2

+ rσ−q/2J1(z2rσ) + J2(z2) + Cσ,p

∫ rσ

1
dt e−z

2tt−q/2σ

(A.8)
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where β = 1/T , βc is given in Eq. (3.7), z = (4π)−ρ/2(Lρ/ξV ) and

J1(x) :=
e−x

x
+ Gσ,q(x)

J2(x) := −Cσ,qCρ,p
∫ ∞

1
dt t−D/2e−xt + Gρ,p(x)

(A.9)

where

Gσ,q(x) :=
∫ ∞

1
dt e−xt [Bq (τt)− 1] +

∫ 1

0
dt e−xtτ

−q/2
t

[
Bq
(
τ−1
t

)
− 1
]

=
∫ ∞

0
dt e−xtτ

−q/2
t

[
Bq
(
τ−1
t

)
− 1
]
+
∫ ∞

1
e−xt(τ−q/2t − 1) dt

=
∫ ∞

0
dt e−τ

−σ
1 xtt−q/2στ−σ1

[
Bq
(
t−1/σ

)
− 1
]

+
∫ ∞

1
e−xt(τ−q/2t − 1) dt

=
∫ ∞

0
dtΨσ(xt)t−q/2σ

[
Bq
(
t−1/σ

)
− 1
]

+ Cσ,q

∫ ∞

1
e−xtt−q/2σ dt− e−x

x

and Ψσ(x) := E[e−τ
−σ
1 xτ−σ1 ]. The function Ψσ(x) has the following asymp-

totic behaviours if 0 < σ < 1:

Ψσ(x) ∼ x−2 for x→ +∞

and
Ψσ(x) ∼ x−1 exp

(
−Cx−1/(1−σ)

)
for x→ 0+

for some positive constant C, while Ψ1(x) = e−x.
Note that when z2rσ is constant (for r →∞) and q/σ < 2 we get:

J1(rσz2)+rq/2−σCσ,p
∫ rσ

1
dt e−z

2tt−q/2σ

=
∫ ∞

0
dtΨσ(rσz2t)t−q/2σ

[
Bq
(
t−1/σ

)
− 1
]

+ Cσ,q

∫ ∞

1/rσ

e−r
σz2tt−q/2σ dt

=
∫ ∞

0
dtΨσ(rσz2t)t−q/2σBq

(
t−1/σ

)
+ Cσ,q

∫ 1/rσ

0
e−r

σz2tt−q/2σ dt

≈
∫ ∞

0
dtΨσ(rσz2t)t−q/2σBq

(
t−1/σ

)
.

and this corresponds to the FSS function of the q dimensional system. In
the case q/σ ≥ 2 we have simply (see sec. 3.4):

J1(z2rσ)− Cσ,p

∫ ∞

1
e−r

σz2tt−q/2σ dt

=
∫ ∞

0
dtΨσ(rσz2t)t−q/2σ

[
Bq
(
t−1/σ

)
− 1
]
.
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Appendix B

Raw data from simulations

Here we collect all the relevant quantities we measured in MC simulations.
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L‖ L ξ χ A m g ξ‖
β = 0.28

32 16 1.6191(18) 10.758(12) 0.24368(40) 0.130291(73) 0.19471(80) 1.5953(65)
46 18 1.6939(19) 11.782(13) 0.24353(42) 0.106822(60) 0.14899(76) 2.5022(91)
64 20 1.7486(24) 12.577(15) 0.24312(52) 0.088528(55) 0.11355(89) 3.641(10)
88 22 1.7952(23) 13.221(16) 0.24375(45) 0.073648(45) 0.08358(94) 5.122(12)
110 24 1.8295(27) 13.731(17) 0.24375(55) 0.064195(40) 0.0663(11) 6.346(13)
168 28 1.8838(33) 14.568(22) 0.24359(60) 0.049452(37) 0.0416(11) 9.453(23)
262 32 1.9130(38) 15.109(23) 0.24221(70) 0.037688(30) 0.0277(11) 13.582(41)
373 36 1.9339(50) 15.484(28) 0.24155(93) 0.030126(27) 0.0167(13) 17.804(73)
512 40 1.9589(64) 15.839(38) 0.2423(12) 0.024660(29) 0.0089(24) 22.22(13)

β = 0.29
32 16 1.8263(17) 13.231(13) 0.25208(39) 0.145232(73) 0.25367(72) 1.7096(61)
46 18 1.9385(20) 14.892(18) 0.25235(37) 0.120651(76) 0.20415(84) 2.6886(74)
64 20 2.0284(26) 16.334(19) 0.25189(49) 0.101281(61) 0.16350(80) 3.9684(87)
88 22 2.1010(25) 17.559(23) 0.25139(41) 0.085143(56) 0.12623(83) 5.625(10)
110 24 2.1626(26) 18.572(24) 0.25184(41) 0.074864(49) 0.10536(88) 7.064(12)
168 28 2.2486(38) 20.138(33) 0.25108(56) 0.058257(49) 0.0701(11) 10.627(18)
262 32 2.3090(40) 21.315(37) 0.25011(56) 0.044811(40) 0.0437(13) 15.740(35)
373 36 2.3518(49) 22.110(44) 0.25016(66) 0.036028(36) 0.0285(14) 21.017(54)
512 40 2.387(14) 22.84(10) 0.2494(21) 0.029636(61) 0.0165(55) 27.09(49)

β = 0.3
32 16 2.0810(19) 16.654(18) 0.26003(20) 0.16414(12) 0.3287(11) 1.8128(99)
46 18 2.2599(26) 19.612(20) 0.26040(55) 0.139479(84) 0.2857(11) 2.8963(90)
64 20 2.4111(19) 22.351(29) 0.26009(50) 0.119294(98) 0.2426(13) 4.3016(32)
88 22 2.5570(29) 25.083(30) 0.26066(45) 0.102430(75) 0.20601(64) 6.202(16)
110 24 2.6604(17) 27.218(18) 0.26004(21) 0.091161(32) 0.17936(56) 7.8399(71)
168 28 2.8383(41) 31.017(47) 0.25972(43) 0.072636(58) 0.13168(89) 11.964(14)
262 32 2.9828(34) 34.254(60) 0.25974(33) 0.057022(57) 0.0952(16) 18.223(30)
373 36 3.0875(46) 36.748(72) 0.25942(34) 0.046562(47) 0.0643(12) 24.984(81)
512 40 3.1673(69) 38.735(99) 0.25899(53) 0.038667(45) 0.0487(26) 32.511(60)

β = 0.3025
32 16 2.1529(18) 17.656(16) 0.26252(34) 0.169306(83) 0.34838(66) 1.8477(56)
46 18 2.3538(21) 21.087(22) 0.26274(33) 0.144925(78) 0.30826(63) 2.9442(74)
64 20 2.5344(27) 24.444(31) 0.26276(35) 0.125037(84) 0.26921(72) 4.4080(77)
88 22 2.6955(29) 27.681(36) 0.26249(38) 0.107824(73) 0.23164(74) 6.3251(94)
110 24 2.8283(30) 30.490(40) 0.26235(40) 0.096697(67) 0.20661(81) 8.033(11)
168 28 3.0548(37) 35.567(58) 0.26238(41) 0.077917(66) 0.1559(11) 12.367(16)
262 32 3.2340(55) 39.948(89) 0.26181(44) 0.061649(71) 0.1127(14) 18.913(30)
373 36 3.3720(64) 43.30(11) 0.26258(45) 0.050597(68) 0.0819(16) 26.068(50)
512 40 3.4664(82) 45.92(14) 0.26170(58) 0.042138(63) 0.0598(23) 34.334(90)

β = 0.3050
32 16 2.2299(16) 18.781(16) 0.26476(24) 0.175010(84)
46 18 2.4605(22) 22.815(26) 0.26534(26) 0.151172(96)
64 20 2.6633(27) 26.749(38) 0.26517(27) 0.13114(10)
88 22 2.8588(35) 30.793(54) 0.26541(29) 0.11403(11)
110 24 3.0259(43) 34.462(70) 0.26570(29) 0.10308(11)
168 28 3.3077(62) 41.22(11) 0.26543(36) 0.08412(12)
216 30 3.4114(70) 44.06(13) 0.26415(36) 0.07390(12)
256 32 3.5286(85) 47.07(17) 0.26450(42) 0.06786(13)
365 36 3.710(11) 52.05(22) 0.26442(50) 0.05621(12)
500 40 3.888(14) 56.95(29) 0.26548(64) 0.04759(13)
592 42 3.914(16) 57.93(31) 0.26443(99) 0.04298(12) 0.0714(39) 41.03(19)
681 44 3.979(15) 60.18(30) 0.26308(84) 0.039892(98) 0.0653(30) 46.27(16)
778 46 4.038(10) 61.62(20) 0.26462(57) 0.036916(61) 0.0589(20) 51.86(14)
884 48 4.0554(99) 62.51(19) 0.26310(58) 0.034121(55) 0.0483(24) 57.63(16)

β = 0.3075
32 16 2.3093(21) 19.992(18) 0.26676(35) 0.181034(88) 0.39515(57) 1.9069(49)
46 18 2.5687(19) 24.682(23) 0.26733(32) 0.157657(78) 0.36309(69) 3.0624(65)
64 20 2.8141(24) 29.501(31) 0.26844(33) 0.138181(79) 0.33179(70) 4.5961(80)
88 22 3.0400(30) 34.533(43) 0.26762(32) 0.121188(79) 0.29934(68) 6.6479(79)
168 28 3.6017(45) 48.397(93) 0.26804(31) 0.091505(93) 0.2356(11) 13.145(14)
262 32 3.9228(68) 57.37(14) 0.26825(43) 0.074304(94) 0.1859(14) 20.397(27)
373 36 4.1764(87) 65.23(18) 0.26740(45) 0.062411(92) 0.1485(16) 28.500(45)
512 40 4.374(10) 71.66(24) 0.26701(48) 0.052849(94) 0.1167(24) 38.117(78)
681 44 4.549(14) 77.60(34) 0.26669(54) 0.04540(10) 0.0950(21) 48.88(12)

Table B.1: Observables for S2 geometries.
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L‖ L ξ χ A m g ξ‖
β = 0.31

32 16 2.3975(28) 21.392(31) 0.26870(25) 0.18784(15) 0.42136(99) 1.9320(82)
46 18 2.6893(22) 26.803(21) 0.26983(48) 0.164882(77) 0.39503(46) 3.1211(84)
64 20 2.9691(13) 32.596(27) 0.27044(27) 0.145826(79) 0.36797(77) 4.6893(89)
88 22 3.2437(43) 39.005(63) 0.26975(63) 0.12933(12) 0.3399(14) 6.7983(51)
110 24 3.4866(24) 44.941(38) 0.27049(21) 0.118671(53) 0.32316(66) 8.6928(80)
168 28 3.9556(44) 57.703(84) 0.27116(28) 0.100412(81) 0.2893(11) 13.564(13)
262 32 4.3976(58) 71.31(12) 0.27119(33) 0.083257(82) 0.2425(15) 21.143(30)
373 36 4.7836(81) 84.43(20) 0.27101(36) 0.071388(92) 0.2109(18) 29.947(46)
512 40 5.112(12) 96.54(34) 0.27073(41) 0.06163(12) 0.1760(23) 40.289(97)

β = 0.3105
32 16 2.4141(18) 21.584(17) 0.27000(31) 0.188709(78) 0.42424(50) 1.9437(49)
46 18 2.7082(23) 27.167(24) 0.26996(34) 0.166028(80) 0.39866(62) 3.1332(61)
64 20 3.0040(30) 33.295(35) 0.27104(40) 0.147436(82) 0.37382(59) 4.7005(70)
88 22 3.2910(33) 39.952(49) 0.27109(35) 0.130987(88) 0.34836(80) 6.8253(92)
110 24 3.5446(38) 46.274(61) 0.27151(37) 0.120523(85) 0.33253(72) 8.749(11)
168 28 4.0443(58) 60.03(12) 0.27247(37) 0.10250(11) 0.2993(12) 13.658(15)
262 32 4.5097(78) 74.75(19) 0.27205(37) 0.08534(12) 0.2559(13) 21.358(23)
373 36 4.940(11) 89.79(30) 0.27177(41) 0.07372(13) 0.2281(18) 30.152(49)
512 40 5.291(13) 103.04(38) 0.27166(45) 0.06374(13) 0.1934(20) 40.584(81)

β = 0.3110
32 16 2.4295(20) 21.876(18) 0.26982(35) 0.190095(85) 0.42942(53) 1.9526(50)
46 18 2.7330(23) 27.666(25) 0.26998(34) 0.167675(85) 0.40611(63) 3.1384(68)
64 20 3.0375(31) 34.004(36) 0.27133(39) 0.149149(86) 0.38293(61) 4.7344(75)
88 22 3.3367(30) 40.949(49) 0.27189(36) 0.132722(85) 0.35717(70) 6.8476(85)
110 24 3.6087(35) 47.810(61) 0.27239(36) 0.122655(85) 0.34509(79) 8.787(10)
168 28 4.1255(52) 62.29(11) 0.27324(33) 0.10453(10) 0.3117(11) 13.767(15)
262 32 4.6328(72) 78.78(19) 0.27243(35) 0.08778(11) 0.2775(12) 21.587(23)
373 36 5.094(12) 95.09(33) 0.27294(44) 0.07597(14) 0.2445(20) 30.390(43)
512 40 5.497(12) 110.66(39) 0.27303(38) 0.06615(13) 0.2101(22) 41.149(65)
592 42 5.675(10) 118.34(32) 0.27217(33) 0.062069(87) 0.2028(15) 47.288(60)
681 44 5.900(14) 127.52(47) 0.27299(37) 0.05864(11) 0.1943(19) 53.826(94)
778 46 6.060(21) 134.56(72) 0.27292(51) 0.05503(16) 0.1776(32) 61.22(17)
884 48 6.176(25) 140.72(88) 0.27105(64) 0.05165(17) 0.1672(32) 69.04(20)

β = 0.31125
32 16 2.4391(21) 22.020(21) 0.27017(34) 0.190759(98) 0.43198(51) 1.9496(46)
46 18 2.7438(24) 27.858(25) 0.27025(36) 0.168324(83) 0.40925(54) 3.1504(59)
64 20 3.0473(30) 34.278(36) 0.27090(40) 0.149801(87) 0.38624(68) 4.7501(71)
88 22 3.3586(35) 41.500(52) 0.27182(35) 0.133692(89) 0.36231(68) 6.880(11)
110 24 3.6414(40) 48.512(68) 0.27334(33) 0.123605(96) 0.34876(90) 8.7956(94)
168 28 4.1695(60) 63.68(13) 0.27298(39) 0.10579(11) 0.3197(11) 13.791(15)
262 32 4.6869(85) 80.48(23) 0.27293(37) 0.08872(13) 0.2777(13) 21.586(26)
373 36 5.172(11) 97.82(33) 0.27350(41) 0.07711(14) 0.2516(17) 30.574(43)
512 40 5.604(19) 115.01(60) 0.27304(62) 0.06757(18) 0.2286(28) 41.61(13)

β = 0.3115
32 16 2.4499(21) 22.206(20) 0.27029(35) 0.191660(94) 0.43570(56) 1.9444(47)
46 18 2.7630(23) 28.101(26) 0.27166(33) 0.169113(85) 0.41200(53) 3.1561(62)
64 20 3.0710(26) 34.685(33) 0.27190(34) 0.150740(77) 0.38977(61) 4.7504(72)
88 22 3.3783(39) 42.010(63) 0.27167(36) 0.13457(11) 0.36717(79) 6.894(10)
110 24 3.6678(42) 49.176(70) 0.27356(39) 0.124528(95) 0.35446(75) 8.8076(88)
168 28 4.2136(58) 64.79(12) 0.27404(38) 0.10677(10) 0.32546(96) 13.840(14)
262 32 4.7588(76) 82.70(20) 0.27383(39) 0.09004(12) 0.2897(13) 21.687(26)
373 36 5.2512(90) 100.80(27) 0.27356(32) 0.07832(11) 0.2583(15) 30.613(44)
512 40 5.698(13) 118.80(42) 0.27327(43) 0.06871(13) 0.2344(20) 41.721(66)

β = 0.3118
32 16 2.4574(22) 22.305(18) 0.27073(38) 0.192139(82) 0.43817(50) 1.9559(55)
46 18 2.7764(21) 28.383(23) 0.27159(31) 0.170033(76) 0.41621(51) 3.1652(61)
64 20 3.0867(27) 35.021(38) 0.27207(32) 0.151519(88) 0.39259(56) 4.7673(68)
88 22 3.4079(36) 42.577(56) 0.27277(35) 0.135525(97) 0.37079(73) 6.9033(91)
110 24 3.6859(45) 49.781(77) 0.27291(38) 0.12533(11) 0.35856(88) 8.846(11)
168 28 4.2503(57) 66.04(13) 0.27352(36) 0.10787(11) 0.3322(12) 13.855(15)
262 32 4.8231(79) 84.93(21) 0.27390(39) 0.09131(12) 0.2979(12) 21.773(29)
373 36 5.3518(97) 104.56(30) 0.27392(40) 0.07985(12) 0.2702(18) 30.811(53)
512 40 5.824(15) 123.75(52) 0.27406(42) 0.07015(16) 0.2419(23) 41.981(78)

β = 0.312
32 16 2.4678(20) 22.462(19) 0.27113(34) 0.192845(85) 0.43929(51) 1.9516(55)
46 18 2.7878(22) 28.602(24) 0.27173(34) 0.170722(77) 0.41788(58) 3.1652(62)
64 20 3.1094(26) 35.444(36) 0.27279(34) 0.152516(82) 0.39803(57) 4.7690(69)
88 22 3.4340(31) 43.148(50) 0.27331(33) 0.136530(86) 0.37673(70) 6.9430(85)
110 24 3.7134(37) 50.531(64) 0.27289(37) 0.126343(86) 0.36395(73) 8.879(11)
168 28 4.2984(63) 67.50(13) 0.27372(39) 0.10914(11) 0.3402(11) 13.924(14)
262 32 4.8875(75) 87.18(20) 0.27400(35) 0.09258(11) 0.3047(14) 21.838(24)
373 36 5.452(11) 107.89(34) 0.27552(39) 0.08121(14) 0.2824(19) 30.973(50)
512 40 5.947(17) 128.62(60) 0.27501(50) 0.07164(18) 0.2575(23) 42.297(66)
592 42 6.211(12) 140.35(42) 0.27490(28) 0.06784(11) 0.2466(17) 48.474(63)
681 44 6.457(19) 151.99(71) 0.27428(46) 0.06427(16) 0.2389(26) 55.32(11)
778 46 6.718(37) 163.8(1.5) 0.27547(67) 0.06097(30) 0.2271(49) 62.87(24)
884 48 6.967(41) 176.7(1.8) 0.27476(44) 0.05773(21) 0.2143(29) 70.94(14)

Table B.2: Observables for S2 geometries (continued).
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L‖ L ξ χ A m g ξ‖
β = 0.2700

27 16 1.4454(19) 8.862(12) 0.23573(45) 0.128502(86) 0.17296(81) 1.1913(69)
34 18 1.4954(20) 9.470(10) 0.23614(51) 0.111341(62) 0.14255(87) 1.6062(72)
42 20 1.5329(24) 9.967(12) 0.23576(55) 0.097300(62) 0.1151(10) 2.0688(93)
51 22 1.5592(24) 10.346(13) 0.23499(56) 0.085656(57) 0.09695(96) 2.5861(89)
61 24 1.5894(28) 10.710(13) 0.23587(66) 0.076194(48) 0.07837(97) 3.145(11)
72 26 1.6041(31) 10.940(16) 0.23519(68) 0.068041(50) 0.0652(13) 3.734(12)
83 28 1.6228(33) 11.176(17) 0.23564(72) 0.061684(47) 0.0546(11) 4.348(13)
96 30 1.6333(37) 11.347(19) 0.23510(81) 0.055797(48) 0.0454(11) 5.042(14)
109 32 1.6343(36) 11.482(15) 0.23262(84) 0.050981(35) 0.0404(13) 5.696(17)
123 34 1.6522(40) 11.654(19) 0.23424(84) 0.046886(40) 0.0327(12) 6.392(17)
138 36 1.6522(43) 11.713(19) 0.23304(95) 0.043113(35) 0.0289(11) 7.156(20)

β = 0.2800
27 16 1.6078(18) 10.608(12) 0.24371(40) 0.141098(82) 0.21683(73) 1.2656(61)
34 18 1.6790(22) 11.544(14) 0.24421(48) 0.123372(77) 0.18615(89) 1.7196(69)
42 20 1.7372(23) 12.355(16) 0.24425(46) 0.108684(75) 0.15826(85) 2.2208(78)
51 22 1.7773(23) 12.997(15) 0.24303(48) 0.096259(57) 0.13224(88) 2.7900(83)
61 24 1.8204(27) 13.598(18) 0.24371(56) 0.086066(58) 0.11185(85) 3.4055(86)
72 26 1.8476(28) 14.043(18) 0.24308(54) 0.077252(48) 0.09492(89) 4.082(11)
83 28 1.8734(33) 14.431(21) 0.24321(62) 0.070217(51) 0.08127(98) 4.755(11)
96 30 1.8945(34) 14.768(25) 0.24303(58) 0.063750(54) 0.0675(10) 5.526(12)
109 32 1.9043(38) 15.028(23) 0.24131(70) 0.058397(46) 0.0586(10) 6.268(14)
123 34 1.9323(40) 15.331(26) 0.24353(72) 0.053840(47) 0.0512(13) 7.054(15)
138 36 1.9343(43) 15.469(27) 0.24188(77) 0.049596(44) 0.0445(12) 7.884(17)

β = 0.2900
27 16 1.8037(19) 12.916(14) 0.25188(41) 0.156535(86) 0.27642(63) 1.3439(60)
34 18 1.9076(22) 14.419(15) 0.25237(44) 0.138582(78) 0.24633(73) 1.8381(61)
42 20 1.9976(25) 15.785(19) 0.25279(45) 0.123430(78) 0.21559(75) 2.3915(69)
51 22 2.0698(26) 16.985(19) 0.25222(49) 0.110566(65) 0.19109(77) 3.0210(77)
61 24 2.1357(30) 18.064(24) 0.25251(50) 0.099601(70) 0.16537(83) 3.7082(84)
72 26 2.1844(31) 18.968(26) 0.25155(48) 0.090113(65) 0.14495(83) 4.466(10)
83 28 2.2336(34) 19.779(30) 0.25224(51) 0.082481(65) 0.12726(97) 5.219(12)
96 30 2.2689(41) 20.458(38) 0.25164(59) 0.075258(71) 0.1109(10) 6.075(12)
109 32 2.2940(43) 21.033(36) 0.25021(63) 0.069279(61) 0.09770(98) 6.906(13)
123 34 2.3295(50) 21.600(45) 0.25122(66) 0.064065(69) 0.0863(12) 7.816(16)
138 36 2.3419(51) 21.911(42) 0.25032(71) 0.059143(59) 0.0742(12) 8.761(15)

β = 0.3000
20 14 1.8678(18) 13.359(13) 0.26114(36) 0.19981(11) 0.38211(68) 0.9423(43)
27 16 2.0451(18) 16.048(16) 0.26064(35) 0.175755(92) 0.35074(64) 1.4267(55)
34 18 2.2007(23) 18.525(18) 0.26143(42) 0.158235(82) 0.32416(63) 1.9608(59)
42 20 2.3416(25) 20.966(24) 0.26152(38) 0.143360(85) 0.30099(57) 2.5730(67)
51 22 2.4671(26) 23.294(26) 0.26128(41) 0.130462(77) 0.27686(60) 3.2779(66)
61 24 2.5877(34) 25.550(34) 0.26208(47) 0.119365(83) 0.25488(78) 4.0314(76)
72 26 2.6846(33) 27.551(37) 0.26160(42) 0.109383(77) 0.23121(75) 4.8877(86)
83 28 2.7722(39) 29.392(45) 0.26148(47) 0.101252(80) 0.21389(89) 5.7302(99)
96 30 2.8580(44) 31.168(57) 0.26207(48) 0.093527(90) 0.19614(94) 6.6920(86)
109 32 2.9138(52) 32.634(67) 0.26017(51) 0.086828(93) 0.1780(10) 7.648(12)
123 34 2.9866(56) 34.180(77) 0.26097(52) 0.081052(95) 0.1628(13) 8.691(12)
138 36 3.0370(64) 35.371(87) 0.26075(58) 0.075560(98) 0.1479(14) 9.745(14)
154 38 3.0917(75) 36.63(10) 0.26097(62) 0.07077(10) 0.1334(13) 10.877(15)
170 40 3.1348(68) 37.663(93) 0.26091(62) 0.066508(85) 0.1206(14) 11.965(17)
188 42 3.1616(73) 38.480(99) 0.25976(63) 0.062341(81) 0.1111(16) 13.231(17)
206 44 3.2164(77) 39.64(10) 0.26099(66) 0.059016(80) 0.1033(18) 14.405(21)
225 46 3.2507(86) 40.49(12) 0.26100(70) 0.055792(87) 0.0949(19) 15.656(23)
245 48 3.270(11) 41.04(15) 0.26059(91) 0.052654(95) 0.0854(20) 16.949(26)

β = 0.3050
20 14 1.9723(17) 14.656(13) 0.26540(34) 0.21009(10) 0.41775(57) 0.9678(42)
27 16 2.1854(20) 18.010(17) 0.26520(35) 0.187020(96) 0.39378(54) 1.4718(48)
34 18 2.3748(22) 21.200(19) 0.26602(39) 0.170114(82) 0.37334(59) 2.0229(54)
42 20 2.5586(28) 24.546(29) 0.26671(40) 0.155959(97) 0.35571(67) 2.6680(69)
51 22 2.7211(28) 27.834(30) 0.26602(38) 0.143433(84) 0.33657(68) 3.4026(58)
61 24 2.8880(35) 31.164(42) 0.26762(43) 0.132607(97) 0.31780(78) 4.2086(73)
72 26 3.0252(33) 34.280(46) 0.26697(39) 0.122762(89) 0.29762(81) 5.1162(83)
83 28 3.1607(42) 37.379(57) 0.26726(44) 0.114903(93) 0.28322(92) 6.0117(82)
96 30 3.2921(50) 40.442(80) 0.26799(43) 0.10717(11) 0.2648(11) 7.0637(99)
109 32 3.3951(51) 43.112(87) 0.26737(42) 0.10040(10) 0.24926(96) 8.089(10)
123 34 3.4976(66) 45.84(11) 0.26685(47) 0.09441(12) 0.2331(13) 9.183(12)
138 36 3.5890(70) 48.27(11) 0.26688(51) 0.08877(11) 0.2172(13) 10.340(13)
154 38 3.6723(83) 50.59(15) 0.26655(54) 0.08365(13) 0.2046(15) 11.564(14)
170 40 3.7468(78) 52.72(13) 0.26630(54) 0.07912(11) 0.1910(17) 12.752(15)
188 42 3.8238(93) 54.83(16) 0.26664(60) 0.07479(12) 0.1756(15) 14.098(17)
206 44 3.9064(90) 57.14(17) 0.26705(54) 0.07122(11) 0.1695(20) 15.397(18)

Table B.3: Observables for S1 geometries.
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L‖ L ξ χ A m g ξ‖
β = 0.3075

20 14 2.0260(18) 15.377(14) 0.26693(37) 0.21562(11) 0.43514(58) 0.9739(41)
27 16 2.2591(18) 19.086(17) 0.26741(34) 0.192989(89) 0.41587(57) 1.4878(47)
34 18 2.4703(21) 22.757(22) 0.26815(34) 0.176750(89) 0.40000(53) 2.0536(55)
42 20 2.6805(28) 26.667(28) 0.26944(38) 0.163081(93) 0.38605(61) 2.7072(64)
51 22 2.8694(26) 30.587(30) 0.26919(36) 0.150870(81) 0.37077(59) 3.4618(64)
61 24 3.0660(37) 34.732(45) 0.27065(43) 0.140522(99) 0.35528(71) 4.2969(65)
72 26 3.2320(35) 38.708(50) 0.26986(37) 0.130984(92) 0.33958(81) 5.2175(75)
83 28 3.3983(42) 42.685(62) 0.27054(41) 0.123258(97) 0.32456(88) 6.1509(79)
96 30 3.5586(52) 46.757(90) 0.27085(42) 0.11573(12) 0.31052(84) 7.2287(95)
109 32 3.6914(63) 50.44(11) 0.27017(46) 0.10908(13) 0.2965(11) 8.320(10)
123 34 3.8308(70) 54.23(14) 0.27061(42) 0.10316(14) 0.2835(14) 9.465(10)
138 36 3.9527(77) 57.72(15) 0.27068(48) 0.09751(13) 0.2677(15) 10.647(13)
154 38 4.0672(88) 61.27(17) 0.26999(54) 0.09246(13) 0.2556(15) 11.915(13)
170 40 4.1867(92) 64.66(19) 0.27108(53) 0.08802(14) 0.2436(16) 13.194(16)
188 42 4.2847(91) 67.99(21) 0.27004(47) 0.08368(14) 0.2331(18) 14.581(15)
206 44 4.380(12) 71.10(25) 0.26985(59) 0.07980(15) 0.2235(19) 15.968(18)
225 46 4.480(12) 74.30(25) 0.27012(57) 0.07626(14) 0.2113(19) 17.400(21)
245 48 4.597(19) 77.59(41) 0.27230(87) 0.07305(20) 0.2012(29) 18.905(30)

β = 0.3100
20 14 2.0803(17) 16.099(14) 0.26882(34) 0.22114(11) 0.45550(55) 0.9858(38)
27 16 2.3350(18) 20.249(18) 0.26927(31) 0.199294(92) 0.43898(56) 1.5114(45)
34 18 2.5740(24) 24.454(22) 0.27094(38) 0.183806(91) 0.42857(57) 2.0910(49)
42 20 2.8085(29) 29.010(29) 0.27189(38) 0.170689(92) 0.41803(60) 2.7541(56)
51 22 3.0279(27) 33.728(35) 0.27182(33) 0.159041(90) 0.40608(65) 3.5199(61)
61 24 3.2576(36) 38.830(49) 0.27329(39) 0.14921(10) 0.39540(71) 4.3808(68)
72 26 3.4681(35) 44.015(56) 0.27326(33) 0.140330(95) 0.38513(68) 5.3551(78)
83 28 3.6659(45) 49.047(79) 0.27399(38) 0.13281(12) 0.37484(82) 6.3058(89)
96 30 3.8708(51) 54.601(99) 0.27441(40) 0.12574(12) 0.36477(97) 7.4272(91)
109 32 4.0477(61) 59.83(12) 0.27385(43) 0.11947(13) 0.3539(10) 8.547(10)
123 34 4.2325(72) 65.25(16) 0.27455(39) 0.11381(15) 0.3424(12) 9.720(12)
138 36 4.3939(79) 70.38(17) 0.27433(45) 0.10831(14) 0.3303(13) 10.977(11)
154 38 4.5703(95) 75.93(22) 0.27508(48) 0.10358(16) 0.3227(14) 12.292(13)
170 40 4.735(10) 81.35(25) 0.27561(48) 0.09937(16) 0.3128(17) 13.625(13)
188 42 4.866(13) 86.36(31) 0.27424(59) 0.09492(18) 0.3032(19) 15.069(17)
206 44 5.038(12) 92.33(29) 0.27490(51) 0.09153(16) 0.2957(19) 16.540(21)
225 46 5.180(13) 97.53(35) 0.27508(50) 0.08798(17) 0.2888(20) 18.062(19)
245 48 5.308(16) 102.39(45) 0.27523(60) 0.08450(20) 0.2778(24) 19.649(22)

β = 0.3105
20 14 2.0938(19) 16.262(16) 0.26957(37) 0.22237(12) 0.45986(56) 0.9873(38)
27 16 2.3509(18) 20.494(18) 0.26968(32) 0.200643(93) 0.44444(50) 1.5144(44)
34 18 2.5933(21) 24.793(21) 0.27125(36) 0.185200(84) 0.43405(53) 2.0948(53)
42 20 2.8349(28) 29.515(31) 0.27230(37) 0.172285(98) 0.42387(59) 2.7650(62)
51 22 3.0629(27) 34.435(35) 0.27243(35) 0.160827(88) 0.41367(61) 3.5498(55)
61 24 3.3017(36) 39.732(48) 0.27437(40) 0.151077(100) 0.40393(73) 4.4067(72)
72 26 3.5166(37) 45.117(56) 0.27410(37) 0.142234(97) 0.39465(72) 5.3678(75)
83 28 3.7252(42) 50.504(72) 0.27477(38) 0.13492(10) 0.38514(78) 6.3260(89)
96 30 3.9348(50) 56.272(95) 0.27514(38) 0.12780(12) 0.37533(91) 7.4512(88)
109 32 4.1305(65) 62.08(13) 0.27485(43) 0.12187(14) 0.3677(12) 8.5713(93)
123 34 4.3159(78) 67.64(16) 0.27540(45) 0.11604(15) 0.3562(13) 9.794(11)
138 36 4.4987(89) 73.47(19) 0.27547(47) 0.11084(16) 0.3463(14) 11.044(13)
154 38 4.686(11) 79.62(25) 0.27577(49) 0.10623(18) 0.3381(15) 12.363(15)
170 40 4.8519(98) 85.29(23) 0.27602(50) 0.10192(15) 0.3302(15) 13.698(15)
188 42 5.018(12) 91.28(30) 0.27587(52) 0.09776(17) 0.3215(18) 15.189(16)
206 44 5.197(13) 97.72(34) 0.27643(49) 0.09435(18) 0.3159(19) 16.662(18)
225 46 5.334(13) 103.14(34) 0.27580(51) 0.09060(16) 0.3025(20) 18.216(20)
245 48 5.489(17) 109.22(46) 0.27590(60) 0.08741(20) 0.2957(26) 19.836(22)

β = 0.3110
20 14 2.1061(19) 16.430(15) 0.26998(37) 0.22362(11) 0.46423(55) 0.9908(38)
27 16 2.3666(19) 20.736(16) 0.27011(36) 0.201910(87) 0.44876(57) 1.5182(49)
34 18 2.6156(23) 25.172(21) 0.27178(37) 0.186712(85) 0.43921(53) 2.0986(50)
42 20 2.8638(28) 30.029(28) 0.27312(37) 0.173898(87) 0.43062(52) 2.7792(61)
51 22 3.0987(27) 35.107(36) 0.27350(34) 0.162528(90) 0.42106(58) 3.5550(65)
61 24 3.3405(37) 40.632(50) 0.27464(39) 0.15292(10) 0.41237(68) 4.4207(61)
72 26 3.5649(34) 46.252(52) 0.27476(35) 0.144130(88) 0.40306(72) 5.3925(75)
83 28 3.7869(45) 52.038(78) 0.27557(38) 0.13712(11) 0.39676(82) 6.3605(82)
96 30 4.0117(55) 58.29(11) 0.27609(39) 0.13023(13) 0.38748(97) 7.4973(92)
109 32 4.2089(68) 64.25(13) 0.27570(44) 0.12414(14) 0.3792(12) 8.5935(95)
123 34 4.4081(77) 70.40(16) 0.27602(45) 0.11853(15) 0.3689(13) 9.822(11)
138 36 4.6000(86) 76.64(19) 0.27610(44) 0.11339(16) 0.3620(15) 11.112(12)
154 38 4.8075(96) 83.44(22) 0.27699(46) 0.10894(16) 0.3550(15) 12.449(12)
170 40 4.990(11) 89.74(27) 0.27749(46) 0.10471(17) 0.3461(17) 13.804(15)
188 42 5.157(12) 96.24(32) 0.27639(45) 0.10055(18) 0.3393(21) 15.286(16)
206 44 5.360(15) 103.48(39) 0.27761(59) 0.09725(20) 0.3332(20) 16.773(17)
225 46 5.525(13) 110.00(38) 0.27749(48) 0.09376(18) 0.3239(20) 18.320(20)
245 48 5.693(18) 116.79(51) 0.27751(62) 0.09055(21) 0.3147(24) 19.951(20)

Table B.4: Observables for S1 geometries (continued).
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