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Introduction

This work deals with the statistical properties of some walk models in two
dimensions in their critical limits, with particular attention to their conformal
invariance.

Statistical mechanics is the framework in which physicists study systems
with a large number of degrees of freedom. Exact methods for solving the
equations of motion often become useless already when the number of degrees
of freedom is of order 10 (see for instance the three-body problem). Say one
is interested in the behavior of a large collection of interacting objects, such
as the molecules in a gas, the dipoles in a magnet, or even cars on a highway.
Oftentimes not only is it impossible to exactly solve the equation governing
such complex situations, but also it would be experimentally unfeasible to
measure all the initial conditions that are to be plugged into the equations in
order to get the trajectories of the single objects. Moreover, in the end one is
not really interested in having access to such a huge load of information. The
change in paradigm introduced by statistical mechanics is a change of focus
from the many microscopical quantities to a few number of macroscopical
observables. In the examples above, these could be for instance temperature
for gases, mean magnetization for magnets, or number of jams for traffic.
By following this strategy, an initially complicated problem gets reduced
to more tractable (and — often — interesting) approximations regarding a
restricted set of quantities. These approximations turn out to be more and
more precise as the so-called thermodynamic limit is reached, that is, the
limit as the number of degrees of freedom goes to infinity.

A great majority of the interesting models in statistical mechanics (the
self-avoiding walk we will define in Chapter 1 is a notable exception) have
one or more parameters, which represent the tunable characteristics of the
physical situation, the metaphorical experimentalist’s knobs. For instance,
in modeling, say, a swarm of mosquitos, after having decided what the in-
teraction between the single insects would be (e.g. everyone flies following
its nearest neighbors), one can leave the strength of this interaction unspec-
ified (e.g. how much one is affected by the direction its nearest neighbors



4 Introduction

are flying). The goal of statistical mechanics is the to study the behavior of
the system as a function of the parameters. When doing so, a very common
feature of statistical systems emerges, which is the presence of critical points.
Roughly speaking, a critical point is a particular choice of the parameters
(there could also be a whole continuum of such choices, that is a continuum
of critical points) where the system does not behave in an analytical fashion.
Some observables could become infinite, others could be non-continuous. Ac-
tually, such a non-analytical behavior is impossible to get if we consider only
a finite number of degrees of freedom, since the so-called partition function,
from which every interesting quantity can be calculated, is then a finite sum
of terms, and therefore analytical. But in the true thermodynamic limit, the
terms become infinite, and if every degree of freedom in the system “coop-
erate”, observable features of the system may actually become infinite. The
hallmark of such a critical point is the divergence of the correlation length,
which describes the scale at which the microscopical degrees of freedom “co-
operate” (i.e. are correlated).

Critical phenomena show a variety of interesting behaviors, but they also
manifest an important “grouping” feature, ubiquitous in physics: universal-
ity. Universality is displayed by systems in which the microscopic degrees of
freedom behave and interact in possibly very different ways, but which dis-
play identical qualitative and quantitative behavior at their critical points.
(See Section 1.3 for a deeper explanation).

In this work we shall study lattice walks from a statistical-mechanics
point of view. A lattice is a regular graph, composed of nodes (sites) and
links between them, the latter defining a notion of neighborhood on the lat-
tice. A lattice walk is an ordered collection of sites such that two consecutive
sites are connected by a link. An ensemble of walks can be defined by col-
lecting together many of them (usually sharing some property) each with its
own statistical weight. This amounts to considering an experiment the out-
come of which is a lattice walk with certain properties — characterized by
a probability distribution — but which is otherwise unpredictable. One can
ask questions such as “What is the mean number of steps?”, “What is the
mean distance travelled?”, “How strong are the deviations from the average
behavior?”, and so on.

Why study lattice walk models? Firstly, there is a direct application to
actual problems in polymer science (see Chapter 1. Polymers are ordered
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Introduction 5

collections of unit cells (called monomers) and experiments and industrial
applications usually treat a very high number of identical polymers at once.
Hence the interest in a statistical description of the polymer’s properties. Sec-
ondly, walk models are stimulating mathematical objects, with connections
to many other fields, such as field theory (Section 1.3), conformal field theory
(CFT) in two dimensions (Section 2.5), geometric critical phenomena. By
varying the type of local interaction between the monomers, polymer models
flow into many universality classes studied in other fields. Dense polymers
are a well-known realization of a c = −2 (logarithmic) CFT, ..., and — rather
amazingly — tricritical polymers at the collapse transition are described by
a geometric critical phenomenon (namely percolation) which does not really
need any tuning (see Chapter 1).

The divergence of the correlation length at criticality is a crucial feature
when the continuum limit of the lattice model is to be defined. The contin-
uum limit is reached by embedding the lattice in the continuum (for instance
R2 or C in two dimensions), sending the lattice spacing to zero and the size
of the lattice to infinity at the same time, in such a way that the correla-
tion length does not scale to zero, because otherwise the continuum model
would be trivial. This is why the continuum limit is defined for the lattice
system at criticality. In this way we obtain a critical continuum system. An-
other way of keeping the continuum correlation length away from zero is to
reach the thermodynamic and the critical limit at the same time, by keeping
some combination of the two characteristic scales (size and lattice correlation
length) fixed. This limiting procedure is called critical crossover limit and
yields a non-zero but finite continuum correlation length. What comes out
is known as a massive theory — in the field-theoretic jargon, mass is the
inverse of the correlation length — or an off-critical model, as it is called in
the mathematic literature.

In this work we will be solely interested in the usual critical limit, where
the lattice model sits at its critical point, since this is the situation that
displays conformal invariance. Critical systems are rotationally and scale-
invariant (such is their fractal nature), but usually (there are exceptions)
they also exhibit a much broader symmetry group: that of conformal trans-
formations (see Section 2.2). Conformal invariance in two dimensions is a
strict requirement which is full of consequences for the properties of the sta-
tistical system, ranging from the scaling form of the correlation functions to
exact prediction of the critical exponents. The study of these properties is
one of the applications of conformal field theory (see Section 2.5 for some
references).

But when continuum walk models are concerned, yet another method is
available for the study of the statistical properties of conformally-invariant

5



6 Introduction

systems. It was introduced by Loewner in the early twentieth century for
studying the geometry of interfaces and has revived in the very late years of
the century thanks to the brilliant work of Oded Schramm. The basic idea
is to turn attention from the walks themselves to some conformal maps that
encode every information about them, so that every possible walk has an as-
sociated element in the group of conformal maps (namely, the one that maps
the “exterior” of the walk to some standard domain). It is possible to obtain
a differential equation for the parametrized family of maps which describe the
time parametrization of a single walk. This is called a Loewner evolution.
The generalization introduced by Schramm was a stochastic version of it
(thus involving a stochastic differential equation), which is called Schramm-
Loewner evolutions, or SLE. SLE is a powerful framework for demonstrating
non-rigorous results obtained through other methods, and has proved use-
ful for performing new calculations and even for exploring new directions in
CFT and geometric phenomena (see Chapter 2).

In this work we will be interested in the critical behavior and the contin-
uum limits of some lattice walk models, namely the self-avoiding walk and
the interacting self-avoiding walks (see Chpater 1). A connection has been
(non-rigorously) established between these two models and SLE when the
environment is a half-plane. From a CFT point of view the presence of a
boundary (as is the case for the half-plane) is a very important feature. We
will be interested in studying this connection when the domain is the whole
plane. Moreover we will concentrate on the critical behavior of the inter-
acting self-avoiding walks (the so-called θ point). Most of the present work
relies on extensive numerical analysis obtained through careful Montecarlo
simulations of the models.

Chapter 1 introduces the modelization of polymers in a solution and the
lattice walk models we will be using. It also includes a discussion of what
universality means and why it is of such importance for the subject at hand.
In Chapter 2 we first recall some concepts from the theory of conformal maps
and then introduce SLE. We describe some of its properties, the connection
to CFT, and review the relevant results in the extensive literature. Chapter 3
describes the methods we will use for the numerical simulation of SLE, start-
ing from the well-known half-plane case and concluding with the whole plane,
which is the relevant case for our purposes. Chapter 4 is a somewhat techni-
cal investigation of three ways of approaching the problem of reparametrizing

6



Introduction 7

the SLE curves, which is crucial for the kind of connection that we want to
establish here. Chapter 5 presents a wealth of numerical data about the θ
point. We obtain high precision estimates of the critical exponents and the
shape of the distribution functions, finding good agreement with theory. In
Chapter 6 we finally compare the walk models and the SLE in the whole
plane. We test a conjecture by Werner, and reveal an unexpected result.
The appendices gather some calculations which are essential building blocks
of our algorithm described in Chapter 3.

Chapters 1 and 2 are mainly reviews. Chapter 3 is a review of very recent
literature. The last section of Chapter 3 is original material. Everything in
Chapter 4 is original, except for the concept of fractal variation. The first
section of Chapter 5 is a review of theoretical results, while the second section
is original numerical work. Chapter 6 is original.

7
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Chapter 1

Polymers on the lattice

In this chapter we review what polymers are, and how they are modeled by
means of lattice models. We focus on the self-avoiding walks, the interacting
self-avoiding walks and the percolation explorer, which will play central roles
in the following chapters.

1.1 Polymers in a solvent

A polymer [1, 2, 3, 4, 5, 6] is a long, repeating chain of atoms, formed through
the linkage of many molecules, called monomers. When the number of bonds
becomes large, the overall polymer dimensions greatly exceed those of the
constituent monomer units; because of its large dimensions the polymer is
also called a macromolecule; real polymers can consist of more than 105

monomers.

X − X − X − · · · − X

If the monomers (X) are identical then the chain is called a homopolymer,
otherwise it is called a heteropolymer. The number of monomers in a sin-
gle chain (usually denoted by N) is called degree of polymerization, and is a
very important quantity, because it is responsible — as will be clear in the
following — of the approach to criticality. When one considers ensembles
of polymers, two different choices are possible with respect to the degree of
polymerization: one considers either fixed-N or variable-N ensembles. The
former case is referred to as monodisperse, while the latter is the polydis-
perse ensemble. In this work we will be dealing mainly with monodisperse
homopolymers.

When a large number of polymers is put together, the different chains
interact with each other. The bulk properties of this ensemble depend on the
type of polymers and on the temperature: the phase can be solid, liquid, or
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glassy. The liquid phase is characterized by its viscosity, which raises rapidly
with the molecular mass, but its behavior under external solicitation is vis-
coelastic, that is, the liquid reacts at first in an elastic way, and the viscosity
manifest itself only after a time which raises with the molecular mass. In
general, the bulk properties of mass polymers are hard to describe mathe-
matically, because several kinds of interactions are involved, and because the
polymers all interact with each other. An example of the complex behavior
of these ensembles is the glassy transition, that is the transition between the
glassy and the solid phase: the transition temperature depends on the speed
at which the temperature is lowered. This complexity is smoothed when one
considers polymers in diluted solutions.

A complete theory of polymers — be it solutions, melts, or solid state —
would be enormously complicated and almost certainly the mathematical and
computational difficulties in solving or extracting valuable information from a
thorough model would be severe. Modelization of polymers in the framework
of statistical mechanics and the renormalization group [see chapter 4] helps in
both simplifying the models one has to study and providing new techniques
and new perspectives that are valuable tools in coping with the problems
encountered when investigating such a vast and faceted subject.

In general, a polymer model on a configuration space Ω (be it on a lattice,
on continuum space, with discrete segments or with continuous chains) can
be described by means of an ensemble of instances {ω}, specified — with
respect to an underlying measure dµ on the state space — by a Hamiltonian
H[ω] which specifies the energy of a configuration. The Hamiltonian gives
information about the system statistics through the postulation of the Gibbs
distribution, by which the mean value of an observable O[ω] over the ensemble
is given by

〈O〉H =
1

Z

∫

Ω

e−βH[ω]O[ω]dµ[ω] (1.1)

where

Z =

∫

Ω

e−βH[ω]dµ[ω] (1.2)

is called partition function, and β is the inverse temperature.

When two monomers become close in space, they repel each other through
a force F whose strength depends on the separation between them, as well as
on the chemistry of each bead and on temperature and pressure conditions.
When a liquid solvent is introduced into the system, and a dilute solution
is generated, other kinds of interactions are present. Now each bead has a
chance to interact with solvent molecules as well as other beads. As a result,
the effective force F +F ′ that acts between a pair of beads is no longer equal

10



1. Polymers on the lattice 11

to the vacuum value F , because it gets mediated by the solvent, which con-
tributes a force F ′. The type of this mediation — which modifies the effective
interaction that drives the chain — depends on the particular choice of the
two constituents of the solution, and on the temperature. Solvent-mediated
interactions can be either repulsive or attractive. If the bead-solvent interac-
tion favors bead-solvent contact over the bead-bead one, the solvent is said
to be a good solvent (for the polymer and temperature considered), while
if the reverse is the case, it is called a poor solvent. In a good solvent the
segment-solvent interaction tends to pull pairs of segments apart, so that the
effective force F ′ is repulsive as is F . On the other hand F ′ is attractive in
poor solvents. A solution of two fixed constituents can be made poorer or
better by changing the temperature: the hotter, the better. There happen to
exist a certain temperature — called θ temperature — for which on average
F +F ′ = 0. Roughly speaking, at the theta temperature the attractive forces
exactly balance the repulsive ones; the chain is then expected to behave ide-
ally. Actually, we will see that in two dimensions the θ-point behavior is far
from ideal, but is nonetheless different from the good- and poor-solvent ones.

In the good solvent regime, the chain is expected to be in a swelled
state. This means that the average extension of the polymer has to be larger
than in the non-interacting case, because now the interactions are mainly
repulsive. On the contrary, for a poor solvent below the θ temperature, the
polymer is expected to be dominated by the attractive interactions between
its monomers, so that it will be found in a globular collapsed state. A way
to measure how much a walk is collapsed or swelled is by looking at how its
size scales with the number of steps. In polymer theory, this corresponds to
considering how the size of the polymer depends on the number of monomers
in the chain. Let us call R the approximate size of the chain (more precise
definitions will be given in Chapter 5). Then one expects that for N large

R ∼ N ν (1.3)

where ν is sometimes called swelling exponent and is an example of a critical
exponent (see Section 1.3). It is easy to see that ν = 1/2 for simple random
walks or Brownian motion (which are the simplest polymeric models), for
which Equation 1.3 is the well-known relation between time and space, and
it holds in any dimension. For a collapsed polymer one expects that all
available space is occupied by the chain (one says that it is space-filling) so
that ν = 1/d. For swelled and θ-point polymers, on the other hand, ν takes
non-trivial values.

11



12 1.2. Models

1.2 Models

1.2.1 Self-avoiding walks

Consider N -step walks ω taking values on some lattice Λ. ω is defined as
the ordered collection of lattice sites ω0, . . . , ωN such that ωi and ωi+1 are
lattice nearest neighbors. By translation invariance we will always fix ω0 to
be the origin. We restrict to walk that do not visit any site of Λ more than
once. The flat measure on such walks is a model called the self-avoiding walk
(SAW).

Microscopically, this models a repulsive interaction (which is short-ranged
in space, but long-ranged in the length of the walk). One could also allow for
some self-intersections, but discourage them by assigning an energy to each
of them. Such a model is called Domb-Joyce, and it is known to lie in the
same universality class as the SAW for any finite temperature.

There is a wealth of rigorous results on the SAW; see for instance the
book by Madras and Slade [7].

What we will be interested in, is the behavior of the ensemble as N →
∞, since it is only in this regime that the correlation length (for a precise
definition, see Chapter 5) becomes infinite, and one can hope to obtain a
non-trivial scaling limit. Not much is known rigorously in this limit, and the
connection with the Schramm-Loewner evolution we will be focusing on in
most of this work helps to shed light on some of the interesting questions in
this regard.

An example of a typical SAW on the square lattice is displayed in Figure
1.1. (For an account of the manifold numerical methods for the SAW see
[8]).

1.2.2 Interacting SAWs

As we have seen, the SAW models the repulsive interaction which is domi-
nant in good solvents. If one instead wants to model poor solvents and the
transition between the two regimes, then opposite-sign interactions must be
introduced. One possibility is to consider an attractive interaction between
neighboring sites: the walk can not pass more than once on the same site (it
is still self-avoiding), but if it comes close to itself it looses energy.

Thus, for each walk we define an energy function E defined as follows:

E ≡ −
N−2∑

i=0

N∑

j=i+2

cij, (1.4)

12
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Figure 1.1: A typical self-avoiding walk on the square lattice (N = 5000).

where

cij ≡
{

1 if |ωi − ωj| = 1

0 otherwise
(1.5)

Essentially, E is the number of nearest-neighbor contacts without considering
the trivial contacts between subsequent monomers.

We consider the ensemble of N -step walks with partition function

ZN =
∑

{ω}

e−βE , (1.6)

where β is the inverse temperature and the sum is extended over all N -step
walks. The model defined in this way is called interacting self-avoiding walk
(ISAW). What happens is that there is some critical value βθ such that for
β < βθ the model behaves (in the large-N limit) as the SAW, while for
β > βθ one observes a very different behavior: the walk becomes a compact,
globule-like, essentially two-dimensional object. Precisely at the critical point
β = βθ the behavior is yet another, and it at this transition that we will be
studying the model the most. This transition is called θ point, coil-globule
or collapsing transition. A wide spectrum of results is presented in detail in
Chapter 5. A typical θ-point walk is displayed in Figure 1.2.

13
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Figure 1.2: A typical θ-point interacting self-avoiding walk on the square
lattice (N = 3000).

1.2.3 Walks in percolation

Percolation is a vast subject. The interested reader can find a wealth of
results and references in [9]. In this section we will be interested in a special
case, which is commonly referred to as site percolation on the triangular
lattice. Actually, we will be working on the dual lattice (which in this case is
the honeycomb lattice), because this is where the natural notion of interface
can be defined. A percolation configuration is an assignment of a spin (+
or -) to every plaquette in the hexagonal lattice (corresponding to sites in
the triangular lattice). Every plaquette gets a + with probability 0 ≤ p ≤ 1
(we will then color it gray) or a - with probability 1 − p (we will then color
it white). One focuses on the connectivity properties of the clusters of gray
cells. Of course, if p is close to 0 then gray hexagons will be rare, while
when p is close to 1 almost every cell in the lattice will be colored gray, and
there will be a cluster “percolating” through the lattice, that is an infinite
cluster. There turns out to exist a non trivial pc such that for p > pc this
happens with probability 1 (while for p < pc with probability on it does not
happen). The honeycomb lattice enjoys a particular symmetry by virtue of
which it can be argued that pc = 1/2. This is not true in general for other

14



1. Polymers on the lattice 15

Figure 1.3: A percolation configuration with fixed boundary conditions on
the honeycomb lattice and the corresponding interface.

lattices (for instance the square lattice has pc > 1/2). The critical measure
on the honeycomb lattice is then simply the flat measure on every possible
configuration {σi}.

Let us consider a “rectangle” of the honeycomb lattice, with sides 2a and
2b, with a, b two fixed real parameters. To do this, simply label each cell with
the coordinates (x, y) that its center gets when the lattice is embedded on the
Cartesian plane, and the consider those cells for which |x| < a and |y| < b.
Refer to Figure 1.3 for an example. Let us fix the value of the spins on the
boundary plaquettes of the rectangle, so that the boundary cells with x > 0
are grey and those with x < 0 are white, for instance. With this choice of
boundary conditions, every configuration will produce one interface between
gray and white cells, which will be a walk defined on the hexagonal lattice
itself (it is the only one interface with loose ends: there exist others, but they
are all closed curves). Figure 1.3 shows an example of such a configuration,
together with its interface.

Notice that, from an operative point of view, we do not really need to
know every single spin in a configuration in order to know the interface.
Actually, one can grow the curve a step at a time, tossing a coin at every
step to choose the color of the single hexagon that the walk is facing. In
this way, when the walk has reached the other side of the lattice only the
plaquettes that are adjacent to the interface will have been colored. This
process is called the percolation exploration process and it is then seen to be

15
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Figure 1.4: A percolation explorer on the honeycomb lattice (N = 3000).

local, meaning that a realization of the walk only depends on the plaquettes
it visits, and not on the other local degrees of freedom. Figure 1.4 displays
one such exploration process, stopped before it reaches the upper side of the
lattice. Of course we will be interested in the scaling limit of such a process,
so we will always be sending the size of the rectangle to infinity, and the
lattice spacing to zero.

By construction, these walks are self-avoiding. Let us now try and com-
pare the ensemble generated by the percolation measure with the flat measure
on the SAW we defined in Section 1.2.1. Fix a realization of the walk, say ω.
How many different realizations of the percolation give rise to ω? Let us call
this number N (ω). By locality, we know that every spin that is not adjacent
to the walk is unconstrained. So we have

N (ω) = 2V −N(ω) (1.7)

where V is the volume of the lattice and N(ω) is the number of spins involved
in the growing of ω. In order to express N(ω) in terms of the geometric
features of the walk, consider what happens when the walk moves a step
further. Four things can happen: (i) the spin of the hexagon ω is facing has
not been tossed yet; (ii) the spin has been fixed because the walk has already
been facing that hexagon once; (iii) the spin is fixed because the walk has

16



1. Polymers on the lattice 17

already been facing that hexagon twice; (iv) the spin is fixed because it is a
boundary spin. It is then clear that the number of constrained spins N(ω) is

N(ω) = (L − 1) − N2 − 2N3 − NB, (1.8)

where L is the length of the walk, Ni (i = 1, 2) is the number of hexagons
hosting i disconnected steps of the walk, and NB is the number of bound-
ary hexagons touched by the walk. It is with this argument that Coniglio
et al. conjectured in [10] that the percolation exploration process and the
interacting self-avoiding walk at the θ transition be in the same universality
class. Indeed, if one considers fixed-length walks for definiteness, the statisti-
cal weight in (1.7) with N(ω) given by (1.8) displays an attractive interaction
between neighboring bonds.

1.3 Universality

The theoretical study of polymer models is focused on the long-chain limit.
This is not only because real polymers have high degrees of polymerization.
The importance of this particular regime is related to a fundamental aspect
of statistical systems: universality. We shall devote this section to a — rather
informal — discussion of what universality means and implies, since it is the
central methodological approach this work is based on.

General statistical system exhibit a vast variety of behaviors, which are
specified by the particular choices of a multitude of model parameters, for
instance the microscopic characteristics of the model, the approximations
introduced, the type of lattice on which the system is placed. But there
exists a particular situation in which much more symmetry and simplicity
seems to emerge from this apparently wild plethora of behaviors. When they
are observed in the true thermodynamic limit (infinite degrees of freedom),
statistical systems happen to have a point — that is, a particular choice of
their parameters — for which they behave in some non-continuous fashion,
and many of their measurable quantities diverge. This point is called critical
point, and is defined as a particular set of model parameters for which an
appropriate correlation length diverges. The correlation length is a quantity
that measures the typical size of likely fluctuations, that is, the distance along
which the system exhibits coherence.

The correlation length defines a typical scale of the system. For a walk
model at fixed N , the obvious definition of correlation length would be the
mean space travelled by the walker. It is easy to guess that, when this
scale becomes infinite, the small-scale characteristics of the model become
irrelevant. This is indeed a general property of statistical systems at a critical

17



18 1.3. Universality

point: they exhibit universality; that is, some properties do not depend on
the short-scale specifics of the models, and are therefore called universal. The
critical exponents, which describe the rate of divergence of some observables
near the critical point, are examples — and perhaps the most important ones
— of universal quantities.

Most qualitative and quantitative features of critical phenomena (that is,
statistical systems at the critical point) can be understood in the framework
of the renormalization group (RG) [11, 12]. The RG idea is to study the
behavior of the system under some sort of transformation which neglects the
small scale particulars of the model, so that truly universal features become
apparent. This transformation induces a renormalization flow on the space
of theories. The fixed points of this flow correspond to those theories which
exhibit scale invariance. For a walk model, this means that the walk is self-
similar. In critical walk models, for instance, small loops are as likely to be
found as large ones, at all scales. Critical theories flow towards the fixed
points: their universal quantities are the fixed-point universal quantities. In
this picture, the parameter space is divided into “attraction basins”, each
corresponding to a fixed point. Critical theories in the same basin flow to-
wards the same point. As a consequence they will share the same universal
properties. Therefore, they are said to be in the same universality class.

With universality in mind, it is natural to ask whether there exist a
field theory whose universal quantities are those of polymer models. The
affirmative answer is due to the original intuition of de Gennes [13]. The
remarkable statement is that the statistical properties of polymers in good
solutions (respectively, at the θ point) are related to the properties of the
critical gφ4 (respectively, tricritical gφ6) field theory in the ‘unphysical’ limit
N → 0. As a consequence, all critical exponents for polymer models are
those obtained for the zero-component field theory.

In two dimensions there are other methods which are of great help in
extracting critical quantities, the most important of which are conformal
invariance methods (see for instance [14], for an introduction, and the refer-
ences given in Section 2.5). The study of conformal invariance properties of
polymers, whose central charge — in the terminology of conformal field the-
ory — is zero, has been carried out in [15]. The idea behind these techniques
again is based on symmetry considerations. Critical systems in two dimen-
sions are expected to show more than the sole scale invariance. Actually, they
usually exhibit invariance under a much wider group of symmetries, namely
the conformal group, which basically collects local scale transformations and
rotations. Using the constraints imposed by this infinite-dimensional sym-
metry group, it is then possible to classify universality classes and to gather
information about operators, critical exponents, correlations, and so on (see
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1. Polymers on the lattice 19

Section 2.2 for the definitions and more in-depth discussion).
Another thing that is exactly known from field theory is the upper critical

dimension d+. It is the dimension strictly above which excluded-volume or
θ-point polymers behave asymptotically exactly as free (Gaussian) chains
(precisely at the upper critical dimension, one expects logarithmic corrections
to the ideal behavior). Field theory predicts d+ = 4 for the φ4 operator1, and
d+ = 3 for φ6. Indeed, it can be proved that self-avoiding walks in d > 4 have
the same scaling limit as ordinary random walks. In this work we will be
always considering two-dimensional space, so both good-solvent and θ-point
behaviors are non-trivial.

1Indeed, this is very easy to explain heuristically in the polymer language, since Brow-
nian motion paths have dimension 2, and one expects that two such paths almost never
intersect in d > 2 + 2: a 4-dimensional walker has a large volume to explore, and will
rarely come back to a place it already visited.
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Chapter 2

Schramm–Loewner evolutions

This chapter is a (hopefully self-contained) introduction to SLE and some
of its applications. It will give the reader everything that is needed to fully
understand the material in chapters 3, 4 and 6. For much more thorough
and authoritative presentations see for instance reviews [16, 17, 18, 19, 20]
and the wealth of references therein.

2.1 Introducing SLE

2.1.1 Motivation

Studying walk models on the lattice, from a physicist’s point of view, usually
means focusing on the universal properties which are displayed at the critical
point. What one is tipically interested in are the critical exponents — which
are the descriptors of the power law nature of criticality — and the scaling (or
crossover) functions. These quantities encode a lot of information about the
universality class that the physical situation one is trying to describe belongs
to. As far as polymers in a solution are concerned, for instance, the sole
swelling exponent ν can tell whether the phase is globule-like, tricritical or
swelled, by giving quantitative information about a configurational property
of the polymer, namely its size. Crossover functions, on the other hand,
effectively describe the universal properties of the approach to criticality, i.e.
they encode precious information about the abrupt changes in the behavior
of observables that one encounters close to a critical point.

What is usually lacking within this framework is a complete description
of the scaling limit. By complete description one refers to a mathematical
formulation of a well-defined continuum model which is a (suitably defined)
limit of the lattice model as the lattice spacing goes to zero and the volume
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goes to infinity. Such a continuum description need not necessarily offer pow-
erful computational methods to address unanswered questions in the lattice
framework; in fact this is not the case most of the time. But if one is able
to find a continuum description of the full scaling limit of some (class of)
models, which is at the same time an effective tool in computing formerly
unreachable quantities of interest, and perhaps even a good starting point to
extend or generalize the initial problem, then that model is definitely going
to be successful.

Schramm-Loewner evolutions (briefly referred to as SLE ) are indeed such
a powerful tool. SLE is a model defined (loosely speaking) in the complex
plane — it is what we would call a continuum model — which corresponds to
the full scaling limit of several lattice walk models1. Moreover it gives access
to a huge amount of information, since it is a relatively user-friendly com-
putational framework, and its semplicity make it a fertile and solid terrain
to build on. On the other hand, from a mathematician’s point of view, SLE
provides a framework to find rigorous proofs of conjectures and non-rigorous
results obtained by physicists with other methods (e.g. CFT, field theory,
Coulomb gas, mapping to other models...), it also assists in proving the very
existence of some scaling limits, and their conformal invariance. Last, but
not least, the rigorous nature of SLE together with its fruitful connection
to CFT happily gave some common ground for theoretical physicists and
mathematicians to discuss about conformal invariance related questions. It
is not even to be excluded that this rigorous view on conformal invariance
and CFT could be the starting point for a reformulation of field theory itself.
In John Cardy’s words:

One might ask whether QFT has outlived its usefulness to gen-
erate new results, or whether (rather like string theory) it can
reinvent itself in the 21st century, in a different and more power-
ful form — perhaps QFT as fractal geometry?

2.1.2 Overview of the model

We give here a quick overview of what SLE, intended as a statistical mechan-
ics model, is. The remainder of the chapter is devoted to a more formal and
precise explanation.

The idea behind the SLE approach to describing (measures on) curves
in the complex plane has its roots in the theory of conformal maps. The
strategy — first proposed in 1923 by Löwner[21] — consists in describing

1As will be clear in a moment, this does not mean that these models need to be in the
same universality class, since SLE actually refers to a whole family of evolutions.
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2. Schramm–Loewner evolutions 23

the curves through some conformal maps that encode everything about the
curves themselves. Thus, instead of having some complex-valued function of
time, which is the usual way to describe a parametrized curve, one works
with functions taking values in the group of conformal maps. At every time,
a conformal map describes the shape of the curve. How is this map defined?
Let us consider the upper complex half-plane H, and a simple1 curve γ start-
ing from the origin and staying in H. Now let γ[0, t] be the image of the curve
up to time t: this is a connected set touching the real line, i.e. what will be
called a hull2. We want to find a map encoding the shape of this hull. The
most natural thing to do is then to map it onto some fixed standard domain.
Unfortunately, this is not a sensible strategy, as far as the very existence of
the map is concerned. One instead focuses on the complement of the hull
H \ γ[0, t]. This is an open simply connected set, and can be safely mapped
onto the whole upper half-plane H by the Riemann mapping theorem. With
some care in choosing the normalization, the map that does the work is
unique, and can be given a name: it is the Loewner map gt. Now, turning
attention from a relatively simple object like a single curve to a much more
involved entity like a conformal map does not seem a winning strategy, at
first. But the beauty and power of this approach is unveiled by the Loewner
theorem, which reveals how the whole conformal mapping (together with its
evolution, i.e. its dependence on time t) can be described in terms of a much
simpler mathematical object: a real function. In other words one completely
characterizes a two-dimensional object (the curve γ(t), for each t ∈ [0,∞])
by means of a one-dimensional object (the so-called driving function). It is
this “holographical” property that is at the core of Loewner evolutions and
their stochastic version, SLE. Schramm–Loewner evolutions3 put the forego-
ing machinery at the service of statistical mechanics. In statistical mechanics
one deals with ensembles of curves (in the language of mathematics: with
probability measures on the set of curves). The probabilistic formulation
seamlessly integrates into the classical deterministic treatment. If one puts
a measure on the set of driving functions one gets a measure on the curves
that are described, in the Loewner formalism, by those functions. Therefore
asking that certain properties be satisfied by (the measure on) the curves in-
duces constraints on (the measure on) the driving functions. This is exactly
what has been done by Schramm. He proved that if the curves have to be

1Actually, Loewner evolutions describe much more than simple curves. See the next
paragraphs.

2A hull is a somewhat more general object than discussed here. See the remainder of
this chapter for more precise statements.

3Actually, the leading S stood for stochastic in the seminal paper by Schramm himself,
but it was soon replaced by everybody else.
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24 2.2. Definitions and background

conformally invariant and satisfy a conformal version of the Markov prop-
erty then the driving function is constrained to be Brownian motion times
a constant. This constant is conventionally chosen to be

√
κ 1. SLE finally

reveals itself as a one-parameter family of stochastic processes taking values
in the group of conformal maps.

The behaviour of SLE turns out to depend strongly on the parameter κ.
Roughly speaking κ controls how fast the curve is bending. For κ = 0 the
Brownian motion is actually a constant function, and the Loewner evolution
(which is not stochastic in this particular case) generates straight lines. As
one turns on stochasticity by increasing κ, the curves start to display wrinkles
(and they do so at every scale, thanks to the self-similarity of the driving
function) and they visit more and more points of the plane, by turning more
and more severely: in a word, they become fractal. There are “critical”
values of the parameter that separate different “phases”, i.e. regions where
the qualitative behaviour of the curves is different. For low enough variance
of the Brownian motion (κ < 4) the curves are simple, while for large values
(κ ≥ 8) they visit every single point of the plane2.

This variety gives SLE the power to describe curves and interfaces in
very different statistical systems — that is, to describe a wide spectrum of
physical objects.

2.2 Definitions and background

2.2.1 Measures on curves

SLE is essentially a probability measure on some well-defined set of curves.

Definition Let D be some domain of the extended complex plane C∗. A
curve in D is a continuous map γ: [0,∞] −→ D. We say that γ starts at
γ(0) and ends at γ(∞).

Actually, we will always be interested in curves as equivalence classes of
parametrized curves, that is we shall not distinguish between curves that
can be obtained from one another by a monotonic change of parametrization.
Essentially, this means that one focuses on the support of the curve. This is
true for simple (i.e. injective) curves — up to an overall orientation sign —,
but the requirement of monotonicity distinguishes non-simple curves by the

1Notice that the letter under the square root is a Greek κ, not the Latin k.
2Of course, these properties hold almost surely with respect to the SLE measure. Al-

ternatively, the partition function restricted to those curves for which these properties do
not hold is zero.
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2. Schramm–Loewner evolutions 25

orientation of each of their loops. The reason for this choice will hopefully
become clear in the forthcoming.

It is very natural to start by considering simple curves, as we did in the
informal description of the model, in section 2.1. In fact, we are going to do
so also in section 2.3, where a heuristic argument will be proposed, to justify
the definition of the SLE equation itself. Nonetheless, SLE will turn out to
describe a more general class of objects (one to which some non-simple curves
belong as well)1. Therefore, simplicity of the curves is not to be understood
in the following statements.

We shall consider probability measures on some sets of curves, i.e. mea-
sures with total mass equal to 1, and we will stick to curves living in simply
connected regions, since multiply connected domains are still very young in
the SLE literature. Actually, since we are interested in the conformal prop-
erties of the physical models (the continuum limits of the lattice models),
we also have to add information about the way these measures change when
a conformal transformation of the complex plane is performed. Moreover,
topological arguments and intuition from conformal theory suggest to distin-
guish between curves that start and end at interior (bulk) or boundary points
of the domain. Altogether, the measures and all the information we need to
know about them (how they transform and the topology of the curves they
are supported on) will be called processes or evolutions2. These considera-
tions justify the following

Definition A chordal process is a collection of probability measures
µ(D, z, w), one for each choice of (D, z, w), where D is a simply connected
domain (6= C) and z and w are two points on its boundary, over the set of
all curves defined on the closure of D that start at z and end at w.

Definition A radial process is a collection of probability measures
µ(D, z, w), one for each choice of (D, z, w), where D is a simply connected
domain (6= C), z is a point on its boundary and w a point in its interior, over
the set of all curves defined on the closure of D that start at z and end at w.

Notice that the foregoing definitions do not exhaust all possible ensembles of
curves, since for instance an interior→interior path is not taken into account.
More subtly, also interior→exterior paths are not considered, since as far as

1We will discuss some intuition regarding this more general class of curves in the fol-
lowing.

2The former stems from the mathematical formulation of stochastic processes, while
the latter is suggested by the “dynamical” description that naturally comes up in the SLE
formalism.
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our previous definition goes we are treating oriented curves1. This issue
becomes apparent when trying to define (section 2.7) and simulate (section
3) SLE on the whole plane.

2.2.2 Conformal maps

Conformal mappings lie at the very heart of the whole SLE industry. We in-
formally recall that a conformal map is defined on R2 as a differentiable map
which preserves angles. An important theorem of complex analysis states
that a map from an open subset of the complex plane D to another open
subset D′ is conformal if and only if it is a one-to-one, onto, analytic function
of D to D′. Now, this (almost–) equivalence between conformal maps and
analytic functions in two dimensions has an enormous power. Informally,
this means that one has infinite degrees of freedom in choosing a confor-
mal map (more precisely: the conformal group is infinite-dimensional in two
dimensions). This high versatility is quantified by the following, most useful

Theorem 1 (Riemann mapping theorem) Let z be an internal point of a
simply connected region D 6= C. Then there is a unique conformal transfor-
mation f of D into the unit disc D such that f(z) = 0 (z is mapped to the
origin) and f ′(z) > 0 (the derivative in z is real and positive).

As a corollary, any two simply connected domains are conformally equivalent,
i.e. there is at least one conformal map between them2.

The Riemann theorem guarantees existence and uniqueness of the map-
ping, provided one fixes a special point to be sent to the origin. Actually,
given two simply connected domains D and D′, one can always write a con-
formal mapping f between them as a composition of two mappings φD and
φ−1

D′ that have the unit disc D as co-domain and domain respectively:

φD φ−1
D′

D −→ D −→ D′
(2.1)

If one fixes these two maps, then one sees that f is defined modulo an auto-
morphism of the disc. Since we will be interested in defining such a conformal
map for domains in the half plane in a unique way, some normalization
property must be asked.

1The issue of reversibility is still object of research among mathematicians studying
SLE.

2There are other versions of this theorem, for example when one wants the map to be
supported also on the boundary of the domain (and this particular case is interesting in
that it shows how conformal maps between two given domains have “three real degrees of
freedom”). See for instance [22] for formal statements and proofs.
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2. Schramm–Loewner evolutions 27

Definition A bounded subset A of H is a compact H-hull if A = H∩ Ā and
H \ A is simply connected.

Essentially, a compact H-hull is a compact set touching the real axis and
not disconnecting any point from infinity. With this definition, a very useful
corollary of the Riemann theorem states existence and uniqueness of the
conformal map:

Theorem 2 If A is a compact H-hull then there is a unique conformal map
gA : H \ A −→ H such that

lim
z→∞

(gA(z) − z) = 0. (2.2)

The choice that gA behave as the identity near infinity is called hydrodynamic
normalization1. Such a map is called uniformizing. Its uses are manifold. It
is used on a daily basis for technological applications, since it permits one to
solve an originally complicated Laplace problem in much simpler geometries.
For instance, if A (together with R) is a charged conductor, then gA greatly
helps in determining the electrical field in the rest of H.

Having chosen a standard domain (H) and a normalization, we now have
a canonical map from the set of compact H-hulls to the group of conformal
mappings. In other words, we are describing a hull A through its uniformizing
map gA. Let us take a look at the Laurent expansion of a uniformizing map
g around infinity:

g(z) = z +
∞∑

n=1

bn

zn
(2.3)

Since the map has to be the identity at infinity, the first coefficient must
be 1 (no rescaling) and the second has to be 0 since we are not allowing
for translations. A property of hulls that can be defined by means of the
foregoing correspondence is the half-plane capacity:

Definition Let A be a compact H-hull and gA its uniformizing map. The
half-plane capacity of A is the coefficient of 1/z in the Laurent expansion of
gA. It will be denoted hcap(A).

The capacity is a measure of the conformal size of the hull, “as seen from
infinity”. In the application to electrostatics, the coefficients of the Laurent
series are the multipole moments of the charged hull (along with its mirror
image with respect to R); the half-plane capacity is the electric dipole mo-
ment. More precisely, capacity satisfies the following properties (the proofs
are elementary):

1If one considers g as describing one time-step of the evolution of a 2-dimensional fluid,
then the normalization means the fluid does not move at infinity.
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• If A1 ( A2 then hcap(A1) < hcap(A2).

• hcap(A + x) = hcap(A), x ∈ R.

• hcap(rA) = r2 hcap(A), r ≥ 0.

Since we will be needing it at the end of this Chapter, when defining the
whole-plane version of SLE, we introduce here the concept of a (C)-hull:

Definition A compact hull is a connected compact subset of C which con-
tains more than one point and such that its complement in C is connected.

The Riemann mapping theorem is very directly applied to such a domain,
and the corresponding notion of capacity can be defined. We will do so in
Section 2.7.

Now we introduce two properties (both in contact with the conformal
nature of the formalism we are building on) that our processes will be required
to satisfy.

Definition A (chordal or radial) process µ(D, z, r) is conformally invariant
if

f ◦ µ(D, z, w) = µ(D′, f(z), f(w))

for every conformal transformation of D into D′. (Here, f ◦ µ denotes the
image of the measure µ under f).

Definition Let γ be “split” into two disjoint parts γ1, starting from z and
ending in ζ, and γ2, starting from ζ and ending in w. A (chordal or radial)
process satisfies the domain Markov property if

µ|γ1
(D, z, w) = µ(D \ γ1, ζ, w)

where D \ γ1 is the complement of the support of γ1 in D, and µ|γ1
(D, z, w)

is the conditional measure on γ1, i.e. the measure µ(D, z, w) restricted to
those γ’s that agree with γ1 from z to ζ, divided by their total mass1.

Let us briefly discuss their meaning. That of conformal invariance in
physical systems is a concept that dates back to the Eighties, when its role
in quantum field theory was explored (see [23] for a review). Conformal in-
variance happens to have a very important role in statistical mechanics too,

1Sometimes the process is said to be domain Markov covariant. The term covariance

is used to state equivalence of two measures up to a multiplicative factor, in this case the
mass of all curves agreeing with γ1.
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since (almost all) systems on their critical manifolds possess wider invari-
ance properties than the sole global scale and rotational symmetries. Ac-
tually, they display invariance under local rescaling and rotation. The first
and simplest walk model that was known to be conformally invariant was
the scaling limit of the lattice random walker: the Brownian motion. The
starting lattice model clearly has a much narrower symmetry group, since
the underlying lattice itself is invariant only under a discrete set of rota-
tions. But the magic of criticality here is that it organizes the microscopic
degrees of freedom in such a way that the scaling limit has a much broader
symmetry group: Brownian motion transformed through a conformal map
“looks the same” as Brownian motion in the transformed geometry. Putting
a magnifying lens over a small portion of a Brownian path does not change
the (statistical) properties of the whole path. The application of Conformal
Field Theory methods to statistical mechanics has helped theoreticians to
derive a wealth of new exact results and gain more in-depth knowledge of
many models and the nature of phase transitions themselves (see [24]).

The second property, that of domain Markov invariance, is much less ubiq-
uitous. Its definition was first proposed in the seminal paper by Schramm[25],
for the purpose of formulating precisely what stochastic version of the Loewner
evolution was to be reached for. It was chosen as a sensible property to
require, since a lattice version of it holds for many walk models (such as
the loop-erased random walk — which is the original model addressed by
Schramm —, the self-avoiding walk, the percolation exploration process, etc.
See section 2.6). This is a very natural generalization of the usual Markov
property, which clearly does not hold for any interesting walk model, apart
from the plain random walk. While Markov property asks the process not to
“remember its past”, the domain Markov property states that the evolution
of the curve can indeed depend on its past, but only through a restriction
of its domain: the path already travelled is not distinguishable from the
boundary.

2.2.3 Loewner equation

With all the definitions in the previous paragraphs we are ready to put ev-
erything together. Recall the key idea of Loewner evolutions: describing a
parametrized curve by the evolution of the normalized conformal maps

gt : H \ γ[0, t] −→ H. (2.4)

In particular, one focuses on the image of the tip of the curve, that is on
Ut = gt(γ(t)). As we said, we will first consider simple curves. The follow-
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ing theorem says that gt satisfies a differential equation, known as Loewner
equation.

Theorem 3 (Loewner equation) Let γ be a simple curve in H (parametrized
by t) starting at the origin, such that its half-plane capacity hcap(t) is C1 and
goes to infinity for large t. Let gt be the unique conformal map of H \ γ[0, t]
onto H with the hydrodynamic normalization, and let Ut = gt(γ(t)). Then

ġt(z) =
d
dt

hcap(t)

gt(z) − Ut

. (2.5)

Notice that by definition g0(z) = z. Even when hcap(t) is not C1 it can be
shown to be strictly increasing and continuous (even for non-simple curves).
It is then always possible to gauge hcap(t) = 2t through a change of parametriza-
tion, thus obtaining the canonical form of the Loewner equation

ġt(z) =
2

gt(z) − Ut

. (2.6)

The function Ut is called driving function. It is real-valued, since the tip of
the curve lies on the boundary of H \ γ, and has then to be mapped to the
boundary of H, which is R.

Now, let us discuss some intuition about simplicity of the curves. The
driving function can be proved to be continuous for simple curves, but ac-
tually it is continuous for a broader set of curves. The lattice models we
will consider all give rise to strictly self-avoiding lattice walks (polymers).
This fact alone does not at all imply that the measure in the scaling limit be
supported on simple curves (by being supported on simple curves we mean
that the set of non-simple curves has null measure). In fact, while this is true
for instance for the (supposed) scaling limit of the SAW, continuum curves
describing collapsed dense polymers do have double contacts, and they do
so with probability one. Intuitively, this is due to the fact that when the
lattice size goes to zero loops can actually close in the limit, and then the
almost-sure simplicity depends on how the weights of large loops scale in
this limit. Yet, there are two things that can not happen: the curve can
not cross itself, and it can not enter a region which has been disconnected
from infinity (the inside of a loop). In words, this simply means that when it
touches itself it “bounces off” immediately. In terms of conformal maps this
property has a much more precise characterization. Imagine a portion of a
curve that is close to forming a loop, as in Figure 2.1. Let us call z+ and z−

the right and left limits to the contact point z and consider the action of the
conformal map gγ that maps H \ γ onto H. This map sends z+ and z− to

30
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Figure 2.1: A loop is going to close. z+ and z− are the right and left limits
to the intersection point respectively.

two different points on the real axis. If at time t the curve has not yet closed
the loop, the image of the end-point will be close to gγ(z

+). First of all, if
after hitting itself the curve enters the region inside the loop, the tip will not
be mapped onto R anymore, because it is no longer on the boundary of the
domain. But if at time t + δt the curve has crossed itself, the tip will be
then mapped somewhere near gγ(z

−). Thus, such a crossing would probably
break continuity of the driving function. So one sees that the continuity of
Ut prevents the curve from passing “from one side to the other” of itself.

The foregoing reasoning suggests that if one goes the other way around
than theorem 3, by assuming some continuous function Ut and then studying
the solutions to the Loewner equation, one is not going to get simple curves.
This inverse problem (which is the relevant one for our purposes) is defined
in the following way. Let us consider equation (2.6) for a continuous real-
valued function Ut, with initial condition g0(z) = z (which means that the
growing hull starts from being a subset of the real axis). The denominator
in (2.6) can go to zero for a fixed point z, causing the solution to fail to exist
after some finite time. Let us call this time (which depends on z) Tz, if it
exists; otherwise let us set Tz = ∞. Then the growing hull is defined as the
complement of the domain of the solution at time t:

Kt = {z ∈ H : Tz ≤ t}. (2.7)

It is the set of all points “swallowed” by the evolution up to time t. The
trace of the evolution is of course defined as γt = g−1

t (Ut), and it is the curve
such that the domain H \Kt of gt is the unbounded component of H \ γ[0, t].
One says that the evolution is generated by γ.

We conclude this paragraph by discussing some intuition about the com-
position of partial Loewner maps, which will be useful in the forthcoming,
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32 2.3. Heuristic argument

Figure 2.2: The Loewner map gs+t as a composition of an earlier Loewner
map with the incremental map ĝt.

especially when considering how domain Markov covariance translates into
a statistical property for the driving function.

Imagine we have grown a hull for a time s + t (refer to Figure 2.2 for
a sketch). Let us suppose it is a simple curve, and let us divide it in two
parts, the first from the origin to zs and the second from zs to zs+t. The
uniformizing map of the whole curve gs+t can be thought of as acting in two
stages: a first map gs swallowing the curve up to point zs, and a second map
ĝt swallowing the image under gs of the remainder of the curve (from z′s to
z′s+t). The hat in ĝt is to remind that this map does not necessarily satisfy
Loewner equation with the same driving function as g. By uniqueness of the
maps (that is, commutativity of the diagram in figure),

gs+t = ĝt ◦ gs ⇒ ĝt = gs+t ◦ g−1
s (2.8)

Since gs+t satisfies Loewner equation with driving function Us+t, we have

d

dt
ĝt(z) =

d

dt
gs+t ◦ g−1

s (z) =
2

gs+t ◦ g−1
s (z) − Us+t

=
2

ĝt(z) − Us+t

(2.9)

from where one recognizes the function that drives the Loewner evolution of
the partial map ĝt: Ût = Us+t. Of course, one also have to check that the
initial condition for the differential equation is satisfied, but this is straight-
forward, since setting t = 0 in (2.8) yields ĝ0(z) = z.

2.3 Heuristic argument

As we said earlier in this chapter, the idea that led to the formulation of SLE
was that of incorporating the stochastic nature of random curves directly
into the Loewner formalism. Every constraint one puts on the process (ev-
ery property required of it) propagates into a corresponding property for the
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2. Schramm–Loewner evolutions 33

driving function. For SLE, we will require the processes to satisfy conformal
invariance and domain Markov covariance. Moreover, a very natural prop-
erty will be required as well, since it is satisfied by almost every statistical
mechanical system: that of reflection invariance, that is invariance under the
transformation z → −z∗, which is not conformal. These constraints can be
seen to lead to a very strong characterization of the driving process: it has
to be a rescaled Brownian motion.

We will present here the chordal version of the original argument by
Schramm. The same exact reasoning can be applied to other versions of
SLE, like the important (for our purposes) radial case.

Suppose we have a random family of simple curves starting at the ori-
gin and staying in the upper half-plane. Let us consider one such curve γ
parametrized in such a way that hcap(γ[0, t]) = 2t, and suppose the prob-
ability measure is both conformal invariant and domain Markov covariant.
We fix a time T and condition the curve on γ[0, T ], that is, on its past up to
time T . Let g be the Loewner uniformizing map that sends H \ γ[0, T ] onto
H (with the hydrodynamic normalization). Of course this map completely
swallows the first part of the curve, sending it to the real axis. Now consider
what happens to the rest of the image of the curve: γ[T, T + t] is a curve that
starts at UT . From time T on, γ lives in H \γ[0, T ], and by Markov property
it has there the same distribution as γ conditioned on γ[0, T ]. But now, by
conformal invariance, this means that this distribution is the same as that of
γ itself. Therefore, if we translate the curve g(γ[T, T + t]) so that it starts
at the origin, the two properties imply that it has the same distribution as
the original random curve, and it is independent of γ[0, T ]. Now let us take
two curves γ1 and γ2, both picked up according to the same ensemble, the
definition of which is the goal of this paragraph. Let g1

t and g2
t be their

uniformizing maps at time t, and U1
t and U2

t their driving functions. We
construct a curve γ̂ by chaining these two curves as follows. For t ≤ T , γ̂(t)
is just γ1(t). For t > T , it is the pre-image of γ2 under g1

T , that is the uni-
formizing map of the first curve, evaluated at the cutting time T . Of course,
one has to perform a shift in time — in order to let γ̂(T + t) correspond to
γ2(t) — and a shift in space — in order to have the pre-image start where the
first part of the curve ends, so that the two join continuously. One therefore
considers

γ̂(t) =

{
γ1(t) for t ≤ T

(g1
T )−1(γ2(t − T ) + U1

T ) for t > T.
(2.10)

Notice that since γ2 is constrained to stay strictly in the upper half-plane,
its pre-image under g1

T is ensured not to hit γ1[0, T ] = γ̂[0, T ], since the pre-
image of the latter set is a subset of the real axis. So γ̂(t) is a simple curve
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34 2.4. Some properties

starting at the origin and staying in the upper half-plane for all t ≥ T . The
property discussed earlier — consequence of conformality and Markovianity
— then says that γ̂ has the same distribution as γ1 and γ2. Let us then call
ĝt the uniformizing map of γ̂[0, t] and Ût its driving function. We have

ĝ2
t (z) = g2

t−T (g1
T (z) − UT ) + UT (2.11)

which, by differentiating with respect to t, yields

˙̂gt(z) =
2

g2
t−T (g1

T (z) − U1
T ) − U2

t−T

=
2

ĝt(z) − U1
T − U2

t−T

. (2.12)

One can then recognize in this formula the driving function Ût as U1
T +U2

t−T .

Since ÛT = U1
T , one can write Ût − ÛT = U2

t−T . This implies that Ût − ÛT is

independent of Ûs for s ≤ T and the distribution of this increment does not
depend on T . What this means is that the process Ût, which is what we are
trying to characterize, has independent and stationary increments.

Now, let us ask one more property for the probability measure. Let us
suppose that the measure is such that γ and −γ∗ (which is the reflection of
γ against the imaginary axis) have the same distribution. The uniformizing
map of the reflected curve is just −g∗

t , whose driving function is simply −Ut.
Then, Ut and −Ut have the same distribution, that is the mean of the process
has to be zero for all t. The only one dimensional continuous process with
stationary, independent increments and mean zero is the Brownian motion.
Its variance is not fixed by the constraints we chose, so we can take it to
be the square of any positive number. Finally one ends up with the SLEκ

equation

ġt(z) =
2

gt(z) −√
κBt

, g0(z) = z (2.13)

where Bt is standard unit variance one-dimensional Brownian motion.
Let us note here in passing that the first more natural generalization that

comes into mind is the extension to more general classes of driving processes,
which is to say, relaxation of the constraints. Some work has been done in
the past years about SLE processes driven by Levy flights. In this particular
case, the hull turns out not to be necessarily generated by a curve. The
interested reader can find advances in [26] and the references therein.

2.4 Some properties

2.4.1 Phases

We have seen that SLEκ naturally depends on a real parameter: the variance
of the driving Brownian motion. We saw in last section that whether the
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2. Schramm–Loewner evolutions 35

Figure 2.3: A sketch of how the three phases of SLE look like. Left: κ ≤ 4;
center: 4 < κ < 8; right: κ ≥ 8. Grey-shaded regions indicate points that
belong to the hull but not to the trace.

curves generated are simple depends on the smoothness of the driving func-
tion. Actually, SLE happens to be right on the boundary between simple
and non-simple curves, since Brownian motion sits right on the line between
“smooth” and “not smooth enough” processes. In fact, the behaviour of the
curves changes qualitatively as well as quantitatively while the parameter κ
is changed [27]. There happen to be (at least) three phases1 with different
global behaviour. Three instances of SLE are plotted in Figure 2.4.1 for
values of κ belonging to the three different phases.

• κ ∈ [0, 4]. The SLE trace γ in this regime is almost surely a simple
path. Moreover, since by conformal Markov covariance the role of the
boundary is the same as the support of the curve, the trace almost
surely does not hit the real line and stays in the upper half-plane after
time 0. As a consequence, the hulls Kt coincide with the trace itself.

• κ ∈ (4, 8). The trace is no longer simple for κ > 4: every point
belonging to H \ {0} almost surely becomes part of the hull in finite
time. This means that every point eventually gets swallowed, either
because it is on the trace or because it is disconnected from infinity by
the trace. In this phase, that is for κ < 8, the former happens with
probability zero: the trace swallows the entire half-plane in blobs, but
touches itself only a few times. The trace is not dense but nonetheless
every z ∈ H \ {0} becomes part of the hull in finite time.

• κ ≥ 8. In this regime the trace becomes dense in the half-plane. With
probability one γ[0,∞) = H. The hulls coincide again with the trace.

1Here, the terms “phase”, “phase transition” and “critical point” are used with a loose
meaning, without any connection to the formal theory of criticality in statistical mechanics.
They stand to underline the sharpness of the transitions, with different properties holding
in the different phases.
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36 2.4. Some properties

2.4.2 Fractal dimension

Of course, one of the first very important properties of a random curve one
wants to study is its fractal dimension. Roughly speaking, the fractal dimen-
sion is a measure of how “dense” the curve is. A line has fractal dimension 1,
and a space-filling curve has the dimension of the embedding space, in this
case 2. For fractal objects living in-between these two extremes, one wants
to look closer and closer to the curve and see how completely it appears to
fill space. Of course one could do this also in the opposite limit, that is by
looking at larger and larger sections of the object, but the fractal dimension
is a local quantity. The possible definitions are manifold. We will use the
following

Definition Let A be a subset of the plane. Let N(ǫ) be the minimum
number of discs of radius ǫ required to cover A. Then if N(ǫ) ∼ ǫ−df as
ǫ → 0, df is called the fractal dimension of the set A.

Of course, different samples of a random process will in general have
different fractal dimensions. Nonetheless, it will turn out that almost all
SLE samples (for a fixed value of the parameter κ) will have the same df .
In order to calculate it, we rely on a property of random curves which is
very closely related to the fractal dimension. Let us define P (x, y, ǫ) as the
probability that a given point z = x+ iy lies within a distance ǫ of the curve
γ. Its scaling behavior is expected to be of the form

P (x, y, ǫ) ∼ ǫ2−df f(x, y) as ǫ → 0 (2.14)

P can be calculated in the SLE framework by deriving a differential equation
for it. Let us consider the action of the infinitesimal Loewner map at time 0

dg : z 7→ z +
2

z
dt (2.15)

on a curve γ going from 0 to ∞. Under this map the point z and the distance
from the curve ǫ scale as

x 7→ x +
2x

x2 + y2

y 7→ y − 2y

x2 + y2

ǫ 7→ |∂zdg(z)| ǫ ∼ ǫ − 2(x2 − y2)

(x2 + y2)2
ǫ

(2.16)

and at the same time the origin gets mapped to
√

κdB. The probability
P (x, y, ǫ) has to be equal to the sum over all possible realizations of the
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2. Schramm–Loewner evolutions 37

Brownian motion of the probability in the transformed geometry, that is
P (x′ − √

κdB, y′, ǫ′), where the translation in x sends
√

κdB back to the
origin. One then obtains the “master equation”

P (x, y, ǫ) =
〈
P (x′ −√

κdB, y′, ǫ′)
〉

dB
. (2.17)

By expanding at first order in dt, remembering that 〈dB〉 = 0 and that by
Itō calculus 〈dB2〉 = dt, one finally obtains the following PDE:

(
2x

x2 + y2
∂x −

2y

x2 + y2
∂y +

κ

2
∂2

x −
2(x2 + y2)

(x2 + y2)2
ǫ∂ǫ

)
= 0. (2.18)

The ansatz P = ǫ2−dF yα(x2+y2)β satisfies the equation with α = (κ−8)2/8κ,
β = (κ − 8)/2κ and

df = 1 +
κ

8
(2.19)

which is then (with probability 1; see [28] for details) the fractal dimension of
SLE curves, as far as κ ≤ 8. For κ > 8 the equation admits a solution with
df = 2, which is of course the expected fractal dimension for space-filling
curves.

We mention here an important conjecture due to Duplantier [29]. For
κ > 4 the curve is not simple, but the frontier of the hull is by definition
simple. The conjecture states that locally this curve is SLEκ̃, with

κ̃ =
16

κ
(2.20)

. Under this duality, the fractal dimension df goes to

d̃f = 1 +
2

κ
. (2.21)

For example, the frontier of a percolation cluster and a self-avoiding walk are
locally the same in the scaling limit.

2.5 Connection to CFT

SLE as we described it in the foregoing sections is a measure on curves satis-
fying conformal invariance. Of course, when the conformal transformations
belong to the symmetry group of a problem, the tool of choice for a theoreti-
cal physicist is conformal field theory (CFT). A description of CFT is widely
out of the scope of this thesis; we refer the reader to the extensive literature
on the subject [30].
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38 2.5. Connection to CFT

It is very natural to try and find a connection between SLE and CFT.
This can be done in several ways [31, 32, 16]. We will present here the
original approach by Bauer and Bernard, and supplement it later with ideas
by Cardy.

Let us consider the Virasoro algebra — which is the (unique) central
extension of the Lie algebra of conformal transformations —, generated by
{Ln}n∈Z

, satisfying the commutation relations

[Ln, Lm] = (n − m)Ln+m +
c

12
(n − 1)n(n + 1)δn+m,0 (2.22)

Recall from general CFT that the action of the Virasoro generators on a
primary field of weight ∆ is

[Ln, φ∆(z)] =
[
zn+1∂z + (n + 1)∆zn

]
φ∆(z) (2.23)

Connection with SLE is established through the so-called lifted process,
which is a random walk on the Virasoro group — obtained by formal ex-
ponentiation of the elements of the algebra —, defined as

d(log G) ≡ G−1
t dGt = −2L−2 dt + L−1 dξt, (2.24)

where Gt is an element of the group and ξt =
√

κBt. The initial condition
for the differential equation is G0 = 1, which corresponds to the identical
conformal map. Equation (2.24) describes the flow of a family of elements of
the Virasoro group. As such, it is possible to study its action on conformal
primary fields φ∆. By definition of primary field one has

G−1
t φ∆(z)Gt = (∂zgt(z))∆ φ∆ (gt(z)) , (2.25)

where gt is the conformal transformation induced by Gt. We want to derive
a differential equation for gt. In order to do so, let us differentiate both sides
of Equation (2.25). By using the identities

G−1
t G = I

d

dt
G−1

t G = 0
(2.26)

the left-hand side yields

d

dt

(
G−1

t φ∆(z)Gt

)
=

[
G−1

t φ∆(z)Gt , G−1
t

d

dt
Gt

]
(2.27)
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2. Schramm–Loewner evolutions 39

The commutator is easily evaluated by using the intertwining relations (2.23),
the definition of the lifted process (2.24) and the scaling form (2.25):

d

dt

(
G−1

t φ∆(z)Gt

)
= (∂zgt(z))∆

[
φ∆ (gt(z)) , −2L−2 + L−1

dξt

dt

]

= (∂zgt(z))∆

[
Ω(1) ∂z

∂tgt(z)
− Ω(0)

]
φ∆ (gt(z)) ,

(2.28)

where

Ω(1) =

(
2

g
− dξt

dt

)

Ω(0) =
2∆

g2
t (z)

.

(2.29)

The differentiation of the right-hand side of Equation (2.25) instead gives

d

dt

(
G−1

t φ∆(z)Gt

)
= (∂zgt(z))∆

[
Ω̃(1) ∂z

∂tgt(z)
− Ω̃(0)

]
φ∆ (gt(z)) , (2.30)

with

Ω̃(1) = ġt(z)

Ω̃(0) = ∆
∂zġt(z)

∂zgt(z)
.

(2.31)

Equating the differentials of both sides of Equation (2.25) finally yields

Ω(1) = Ω̃(1)

Ω(0) = Ω̃(0)
(2.32)

which read

ġt(z) =
2

gt(z)
− dξt

dt

∂zġt(z) = − 2

g2
t (z)

∂zgt(z).

(2.33)

The first equation is immediately recognized as the chordal SLE equation,
by substituting gt(z) → gt(z) − ξt. The second equation is simply the space
derivative of the first.

One could have also gone the other way around. Following Cardy [16],
one can define what a curve state |γt〉 is in (boundary) CFT by restriction of
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40 2.6. Identification with lattice models

the path integral. The representation of the conformal group on the Hilbert
space of states is realized through insertion of line integrals of the stress-
energy tensor T (z). For instance, the action of the infinitesimal translated
Loewner map dgt(z) = 2dt/z−dξt corresponds to inserting (1/2πi)

∮
(2dt/z−

dξt)T (z)dz. With the usual definition

Ln =
1

2πi

∮
zn+1T (z) dz (2.34)

one can see that in operator notation the state |γt〉 transforms as

|dg (γt)〉 = T exp

(∫ t

0

(2L−2dτ − L−1dξτ )

)
|γt〉 (2.35)

where T exp denotes a time-ordered exponential. Now, integrating |γt〉 with
the measure induced by the restriction of the path integral yields a unique
state |h〉 which does not depend on time. This state turns out to be the state
corresponding to a boundary condition changing operator at the origin: it is
the state obtained by conditioning the path integral on the existence of one
curve going from the origin to ∞. |h〉 is then invariant under the action of
the conformal map, so one can integrate Equation (2.35) over all realizations
of the Brownian motion, using Itō calculus, and finally find

(
2L−2 −

κ

2
L2
−1

)
|h〉 = 0 (2.36)

which means that the Virasoro representation corresponding to |h〉 has a null
state at level 2. From this condition, by acting with L1 and L2 to extract
the central charge, it is then easy to find

c =
(3κ − 8)(6 − κ)

2κ
(2.37)

which relates SLE with parameter κ and CFT with central charge c. Notice
that as expected percolation (κ = 6) and the SAW (κ = 8/3) correspond to
c = 0. Also notice that the dual partners κ and 16/κ yield the same c.

2.6 Identification with lattice models

Schramm-Loewner evolutions are interesting mathematical objects per se.
Yet they become powerful tools for the physicist when they are used in the
context of statistical mechanics. A wealth of lattice models are proved or
supposed to have some SLEκ as their scaling limits. Even more models —
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2. Schramm–Loewner evolutions 41

while not being described by a single curve — do display SLE-like properties
when looked at from the right perspective, that is, when the right observable
has been chosen. It turns out that a multitude of statistical systems at their
critical points “generate” SLE’s, ranging from the obvious polymeric models,
to interfaces in statistical systems, spin-glasses and even out of equilibrium
phenomena like turbulent flow. We will focus here on some of the lattice
walk models presented in Chapter 1, namely the self-avoiding walk and the
critical percolation explorer.

The SLE machinery permits straightforward proofs of convergence for
some lattice models. One just follows the most natural way. Imagine em-
bedding the lattice — at finite mesh size a — in the complex plane C, and
consider a lattice curve γ̃a(ti), i = 0, 1, . . . ,∞. The discrete parametrization
t0, t1, . . . can be uniquely extended to continuous time t ∈ [0,∞) by linear
interpolation. Of course, such a (random but non-fractal) curve γa(t) has a
Loewner driving function Ua(t). The strategy is to try and prove that Ua(t)
converges to Brownian motion with variance κ as a → 0 and t is rescaled
appropriately. Indeed, this is the way that loop-erased random walks, the
harmonic explorer and the Peano curve around uniform spanning trees were
proved to converge to SLE2, SLE4 and SLE8 respectively.

Yet, there are models for which this strategy is not feasible. Two such
models are the self-avoiding walk and the percolation explorer. We will
discuss here two properties1 that lead to conjectures for their values of κ.

Definition Suppose L is a H-hull bounded away from the origin. Let Kt

and K∗
t be the hull families of two chordal processes from 0 to ∞ in H and

H \ L respectively. The process is said to satisfy the locality property if for
all such hulls L the distribution of Kt and K∗

t is the same2, up to the hitting
time to the boundary of L.

In words, a process satisfying locality is affected by a change in the shape
of the domain only from the moment it hits the changed region on. As long
as one is interested in the behaviour of the process before the hitting time,
there is no difference in growing the hulls in the larger or in the restricted
domain. In some very loose sense, the process is blind, in that it “feels the
boundary only when it hits it”. It can be proved that the only SLE process
satisfying this property is that with parameter κ = 6. There is a lattice

1The reader be warned that there are almost as many ways of defining these properties
as there are papers on the subject. We choose what we feel to be the most geometrical
approach.

2Remember that equivalence up to a monotonic reparametrization of time is under-
stood.
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42 2.7. Radial and whole-plane SLE

process satisfying a lattice version of the locality property: it is the critical
percolation explorer (see Chapter 1). Since one expects the lattice property
to be conserved under the continuum limit, one is led to conjecture SLE6 as
the scaling limit for the percolation explorer.

Definition Suppose L is a H-hull bounded away from the origin and let
gL be the uniformizing map of L. Consider a conformal process supported
on simple curves γ going from 0 to ∞ and not touching the real axis. The
process is said to satisfy the restriction property if for all such hulls L, the
distribution of the image under gL of γ is the same as the distribution of γ,
conditioned not to hit L1.

Since this definition requires the process to assign null measure to non-simple
curves and to curves touching the real axis, we shall apply it only to SLEκ

with κ ≤ 4. Loosely speaking, the restriction property states that if the
domain is extended, then the new process will give the same relative weights
to the curves that still live in the smaller domain. The one SLE process
satisfying restriction is that with parameter κ = 8/3. Self-avoiding walks on
the lattice happen to satisfy a lattice version of this property (see Chapter
1), so they are conjectured to have SLE8/3 as their scaling limit.

As we said, many more models have been either proved or conjectured to
yield SLE processes in the scaling limit. Some of these are summarized in
Table 2.6.

2.7 Radial and whole-plane SLE

One can also consider curves in other geometries. For instance, radial pro-
cesses growing from a boundary point towards the bulk are not accounted for
by the discussion in the preceding sections. Eventually, we will be interested
in defining a version of SLE in the whole plane. It turns out to be useful to
first develop the theory for a bounded region of C. Of course, the natural
choice is to take the unit disc D as the standard domain, and the origin as
the interior point toward which the curve goes. The Riemann mapping the-
orem then says that there is exactly one conformal mapping g of any simply
connected domain containing the origin to D and such that g(0) = 0 and
g′(0) > 0. We will again call this unique map g the uniformizing map of
the domain. The simply connected regions we are interested in are of course

1There is a technical subtlety here, since the conditioning could happen to be on a set
of null measure. In the SLE case, this is not a concern, since the requirement of simplicity
actually implies that the set be of finite measure.
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Model κ df Ref

Loop-erased random walk 2 5/4 [25, 33]

Ising spin glass ∼ 2.1 [34]

Self-avoiding walk 8/3 4/3 [35]

Ising model (spin clusters) 3 11/8 [27]

Dimer tilings 4 3/2 [36]

Harmonic explorer 4 3/2 [37]

Level lines of Gaussian field 4 3/2 [38]

Inverse turbulent cascades 4 3/2 [39]

Ising model (FK clusters) 16/3 5/3 [27]

Percolation 6 7/4 [40, 41]

Uniform spanning trees 8 2 [33]

Table 2.1: Some models for which a connection to SLE has been established,
either by proof, conjecture or numerical analysis. The table shows the values
of κ and of the fractal dimension.

those corresponding to the hulls of radial processes starting from a boundary
point w ∈ ∂D and going to 0:

Definition A subset A of D \ {0} is a D-hull if A = D ∩ Ā and D \ A is
simply connected.

Just as the half-plane capacity represents the “conformal size” of a H-hull
“as seen from infinity”, there is a corresponding definition here of “conformal
size” of a D-hull “as seen from the origin”:

Definition Let A be a D-hull and gA its uniformizing map. Then g′
A(0) is

a real positive number. The logarithmic capacity of A (in the unit disc) is

lcap0(A) = log g′
A(0). (2.38)

Notice a nice property of the logarithmic capacity that regards its behavior
under composition of the maps: if A, B and C are D-hulls such that gA =
gB ◦ gC then lcap0(A) = lcap0(B) + lcap0(C).

There exists a version of the Loewner equation also in D, which describes
the evolution of a conformal Markov radial process in terms of a real function.
The same reasoning as in the chordal case then leads to considering rescaled
Brownian motion as a driving function, finally leading to the radial SLE
equation

ġt(z) = gt(z)
eiξt + gt(z)

eiξt − gt(z)
, g0(z) = z, (2.39)
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44 2.7. Radial and whole-plane SLE

where ξt =
√

κBt. As in the chordal case, the denominator in (2.39) can
(and does) become zero. Of course, the hulls of the process are defined as in
the chordal case: Kt is the set of those points in D for which the differential
equation does not admit a solution that exists up to time t. By differentiating
(2.39) and evaluating at z = 0, one finds

∂tg
′
t(0) = g′

t(0) (2.40)

which means that the logarithmic capacity grows linearly in time, as was the
case for the half-plane capacity in chordal SLE:

lcap(Kt) = t, (2.41)

where Kt are the radial SLE hulls.
By applying a conformal transformation, one can turn (2.39) into an

equation for a radial process in any simply connected domain. One very
special such transformation is the complex inversion

Π(z) =
1

z
(2.42)

which sends the unit circle D onto its exterior C\D, which is simply connected
only on the Riemann sphere. Let g̃(z) be the map in the “punctured” plane
C \ D defined by

g̃(z) = Π ◦ g ◦ Π(z) =
1

g(1
z
)
. (2.43)

Then, from Equation (2.39) one gets the whole-plane version of SLE

∂tg̃(z) = g̃t(z)
e−iξt + g̃t(z)

e−iξt − g̃t(z)
, g̃0(z) = z. (2.44)

This process is sometimes just referred to as the radial SLE growing toward
infinity, when the name whole-plane SLE is reserved for another flavor of
SLE, where one considers the radial process transformed with Π and extended
to t ∈ (−∞,∞). Yet, we will refer to (2.44) with t ≥ 0 as whole-plane SLE,
for we are not going to really shrink the circle to a point, since we will be
interested only in the long distance behavior of the curve and will be treating
the finite size of D as a cut-off.

Of course, the hull Kt in this case is defined as the set of points belonging
to C \ D such that the differential equation does not have a solution up to
time t. Also, the notion of capacity can be extended. If K is a compact hull
and g̃K is a conformal map of C \ D onto C \ K with limz→∞ g̃K(z)/z > 0
then the logarithmic capacity of K as seen from infinity is defined as

lcap∞(K) = log lim
z→∞

g̃K(z)

z
(2.45)
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2. Schramm–Loewner evolutions 45

With some abuse of language we shall call this whole-plane capacity loga-
rithmic capacity tout court, as that defined for maps of the unit disc.

By differentiating (2.43), remembering g(0) = 0, one obtains a useful
formula that relates the logarithmic capacities in the disc and in the plane:

g′(0) = lim
z→∞

(
g̃(z)

z

)−1

(2.46)

If we call K and K ′ a D-hull and its image under Π respectively, we then
have

lcap0(K) = lcap∞(K ′) (2.47)

Sometimes (especially when simulating SLE, see Chapter 3) it will be more
natural to consider the inverse of the Loewner map, g−1. By substituting the
identity 1 = g′(g−1(z)) (g−1)

′
(z) in Equation (2.46), one obtains

lcap∞(K ′) = − log
(
g−1
)′

(0) (2.48)

which gives the logarithmic capacity of a hull in C\D in terms of the derivative
of the inverse Loewner map of its pre-image in D.
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Chapter 3

Simulating SLE

This chapter introduces a few techniques for simulating Schramm-Loewner
evolutions both in H and in C. Simulating SLE is an exercise of carefulness
and compromise. Many steps are involved, and many possible strategies can
be chosen. This chapter is not intended to be a comprehensive survey of the
possibilities and hindrances one can face, but only a presentation of how the
numerical results in later chapters have been obtained.

3.1 Discretizing time

We are going to approximate SLE by what is called a discrete SLE. This is
not to be intended in the most strict sense. Actually, only the proper time
variable t in Loewner equation will be discretized, while we will retain full
continuity in the complex space variable1: the plane does not get replaced
by a lattice. This is possible because one works with the iteration of confor-
mal maps which will be chosen among a parametrized family: in this way,
very complicated conformal maps can then be described by a string of real
parameters.

Recall what we observed in Chapter 2 about the evolutor

ĝt = gs+t ◦ g−1
s . (3.1)

It satisfies the Loewner equation with driving function shifted by s. Indeed,
this fact is not dependent on the explicit form of the equation. Let us consider
a general Loewner-type equation of the form

d

dt
gt(z) = Θ [gt(z), Ut] , g0(z) = z (3.2)

1Of course, this is to be intended in the computer-science meaning, that is, continuity
up to the machine’s floating point precision.



48 3.1. Discretizing time

where Θ depends explicitly only on the Loewner map and the driving function
at time t. Then by deriving (3.1) one finds

d

dt
ĝt(z) =

(
d

dt
gs+t

)
◦ g−1

s

= Θ
[
gs+t ◦ g−1

s (z), Ut

]
.

(3.3)

which states the Loewner semigroup property for this more general class of
Loewner equations. Then, it holds also in the radial cases, that is for the
SLE in the disc and in the punctured plane. This is a direct consequence of
the Markov property. One can continue growing an already grown hull at
finite time s by simply using the driving function from that time on. It is
this property of the Loewner increments that permits an easy discretization
of time.

Let us consider chordal SLE in H for definiteness. Let us partition [0,∞)
into discrete intervals 0 = t0 < t1 < t2 < · · · < tk < · · · (in actual simulations
we are going to consider only the first n such intervals). We define the
increment at time tk as [43]

Gk = gtk ◦ g−1
tk−1

. (3.4)

Then

gtk = Gk ◦ Gk−1 ◦ · · · ◦ G1. (3.5)

By the calculation above, Gk(z) is obtained by solving the Loewner equation
with driving function Utk−1+t for t ∈ (0, tk − tk−1). Equation (3.5) represents
the discretization of the process that we will use. It bears information about
the whole conformal map. Most of the time we will only be interested in
points on the trace γ(t). With the foregoing approximation, we have access
only to finite points on the trace, namely to

γ(tk) = g−1
tk

(Utk)

= G−1
1 ◦ · · · ◦ G−1

k (Utk) .
(3.6)

The increments G−1
k map the half-plane onto the half-plane minus a hull

comprising the real point Utk−1
.

G−1
k : H −→ H \ gtk−1

(γ[tk−1, tk]) . (3.7)

We will instead consider the following maps

hk(z) = G−1
k (z + Utk) − Utk−1

. (3.8)
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3. Simulating SLE 49

Figure 3.1: The composition of the incremental maps hk building the curve
by curvilinear segments.

which map the half-plane onto the half-plane minus a hull containing the
origin. Equation (3.6) then becomes

γ(tk) = h1 ◦ · · · ◦ hk(0) (3.9)

Equation (3.9) is the basis of the discretization procedure, as well as of
the simulation strategy we will deploy. The incremental maps hk act by
growing a small piece of hull from the origin (refer to Figure 3.1). They
are then concatenated in order to grow the whole hull. The first map hk

produces a small cut starting from the origin, by mapping a small interval
of the real axis containing the origin up into the half plane. This cut will be
of whatever shape is needed, but we will choose very simple and standard
incremental maps for our simulations (see subsequent sections and Appendix
A). The origin is sent to the tip of the cut. The second map hk−1 then does
the same thing but with a possibly differently-shaped cut, thus growing one
more curvilinear segment, and so on. Notice that the order of composition
in (3.9) is the opposite than what one could naively expect, as the rightmost
map is actually the last one in the ordered string. This very fact has a high
impact on the time-per-point the computation takes, since we will have to
go through the whole list of maps every time we need to compute a single
point on the chain.

The incremental maps hk will be chosen from a parametrized family of
maps. One samples the driving function Ut at discrete times tk, and defines
it on the intervals tk−1 < t < tk in such a way that the Loewner equation has
an explicit solution that can be computed during that interval. This solution
is Gk, from which by translation one can find hk by (3.8).

Let

∆k = tk − tk−1

δk = Utk − Utk−1
.

(3.10)

In the most simple case, the interpolating driving function will depend only
on ∆k and δk. One will then have to deal with families parametrized by two
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50 3.2. Half plane

such parameters, playing the roles of the quantized steps in time and space
respectively. Actually, it is always easier to parametrize the curve by its
capacity, so that the numerator in the right hand side of the SLE equation
(2.5) will be a constant. The time parameter is thus closely related to the
capacity of the incremental map. These parameters will have to be randomly
chosen in such a way as to reproduce a discretization of the Brownian motion
with the correct variance κ. We will say more about this in the forthcoming
section.

One can also adopt a slightly different strategy. One can consider maps
that do not map the origin to the tip of the curve, but instead do so for some
small real number ±δ. Of course, the concatenation of these increments is
not going to give a curve, since the hull will present branching points for
every single step. Yet, a careful choice can lead nonetheless to a process that
does converge to SLE (see next section).

3.2 Half plane

Let us consider now the discretization procedure for SLE in the half plane
H. A possible choice for the incremental map would be

hk(z) = (z + yk)
1−α(z − xk)

α (3.11)

with real numbers xk and yk chosen in such a way as to satisfy hydrodynamic
normalization and capacity 2∆k. This map produces a tilted slit of angle α
with respect to the positive real axis. This choice amounts to approximating
SLE by tilted segments. Notice that this does not imply that the produced
hull actually be a union of segments. In fact, segments already grown get
distorted more and more as the rest of the curve is built.

Instead, we will choose to follow a simpler strategy, and use incremental
maps that do not send the origin to the tip of the curve (see the discussion
in the preceding section). We will thus define

hk = Tδk
◦ φH

k (3.12)

where
φH

k (z) =
√

z2 − 4∆k (3.13)

is the atomic map, which depends on a single (time-like) parameter related
to the capacity. Tδk

is a translation by the real (space-like) parameter δk.
There is an important subtlety here, which concerns the branch-cut of the
square root. Let us fix the principal value so that

√
1 = +1. The common

use is to put the branch-cut on the negative real axis. We will instead choose
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3. Simulating SLE 51

Figure 3.2: The image — under the atomic map in (3.13) — of a lattice with
links parallel to the coordinate axes. The bottom line is not the image of
the real axis. Rather, it corresponds to a line parallel to the real axis and
slightly offset in the imaginary direction. The image of R is not a regular
curve. Notice the singularity at z = 2i.

to have it on the positive real axis, so that (3.13) actually has the upper
half plane as co-domain. The map in (3.13) is graphically depicted in Figure
3.2. It maps the half plane onto the half plane minus a vertical slit based
at the origin and has capacity 2∆k, that is to say, the segment is of length
2
√

∆k. It is the inverse map of the solution to the Loewner equation in the
special case where the driving function is constant in time (in particular it is
0; otherwise the map would simply get shifted). In this case, the evolution is
very simple, and the hull is a straight segment of the imaginary axis, growing
with capacity 2t (that is, its length grows with the square root of time). With
this choice for the incremental map, Equation (3.9) then becomes

γ(tk) = Tδ1 ◦ φH

1 ◦ Tδ2 ◦ φH

2 ◦ · · · ◦ Tδk
◦ φH

k (0). (3.14)

In words, the first (rightmost) map grows a slit based at the origin: this slit
will become the last curvilinear segment of the hull. Then the half plane is
translated and another slit is created at the origin. The process continues
until the last slit — which constitutes the first segment of the hull — is
created and no translation is performed, so that the hull will be based at the
origin. Where does the tip of the hull get mapped to by the Loewner map?
Refer to Figure 3.3. Imagine we have grown the hull up to discrete time tk
using the map h1 ◦ · · · ◦ hk. The Loewner map at this time will be gk, which
absorbs the hull and sends the tip zk to the real point Uk. Now let us add
one step. This means adding one map hk+1 at the beginning, that is at the
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52 3.2. Half plane

Figure 3.3: The hull at step k is created by the map h1◦· · ·◦hk and absorbed
back into the half plane by gk. The latter does not absorb the hull at step
k + 1, but leaves a slit based at U − k + δk+1.

rightmost place in the composition chain. The new hull is built with map
h1 ◦ · · · ◦ hk ◦ hk+1 and absorbed by the Loewner map gk+1 = Gk+1 ◦ gk, from
Equation (3.4). The first step is performed by gk, which maps zk to Uk and
the last segment of the hull (ending at zk+1) to a slit based at Uk + δk+1.
Then, the map Gk+1, which by Equations (3.8) and (3.12) can be written as

Gk+1 = TUk+1
◦ h−1

k+1 ◦ T−Uk

= TUk+1
◦
(
φH

k+1

)−1 ◦ T−δk+1
◦ T−Uk

= TUk+1
◦
(
φH

k+1

)−1 ◦ T−δk+1−Uk
,

(3.15)

sends what remains to the half plane, mapping the tip of the slit to the real
number Uk+1. One then sees that

Uk+1 = Uk + δk+1. (3.16)

This equation tells us that — as was to be expected — the process δk is
an approximation of the discrete time derivative of the process Uk. In the
scaling limit, where we want Ut to be a Brownian motion with variance κ,
we then expect δt to be κ-correlated white noise. We have several possible
choices for the discrete process δk. We choose to draw δk (independently
of k) with uniform measure in the set {√κ∆k,−

√
κ∆k}, which amounts to

approximating the Brownian motion by a simple random walk with step
length

√
κ∆k. A formal theorem about convergence of this “discrete SLE”

process to continuum SLE has been proved by Bauer [44].
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3. Simulating SLE 53

Figure 3.4: Four examples of approximate SLE traces in the half plane. Top-
left: κ = 2; top-right: κ = 8/3; bottom-left: κ = 6; bottom-right: κ = 8.

Some examples of the approximate SLE trace for various values of the
diffusivity κ are presented in Figure 3.4.

3.3 Whole plane

Simulating SLE in the whole plane is just a matter of finding the right atomic
map φk. The rest is the application of the same reasoning as in the preceding
section. We choose the atomic map following the same strategy as in the half
plane. We look for the solution of the whole-plane Loewner equation in the
simple case when the driving function is constant. Here, of course, we can
not fix the constant to zero, since it lives on the unit circle. Instead, we will
take it to be 1, so as to have a curve starting from a point on the real axis:

eiθt = 1. (3.17)

Of course, this choice explicitly breaks rotational invariance, since the real
point 1 selects a specific direction in the complex plane. Nonetheless, we will
be interested here in radial quantities, that is, we will be averaging out the
angular dependence of observables, so that symmetry will be reestablished
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54 3.3. Whole plane

Figure 3.5: The image — under the atomic map in (3.18) — of a lattice made
of radii and circumferences around the unit circle. The innermost curve is not
the image of ∂D. Rather, it is a circumference with radius slightly greater
than 1. Notice the singularity, which lies on the real axis.

(see Chapter 6). See Appendix A for the details of the calculation and some
heuristics about the solution to the whole-plane Loewner equation with con-
stant driving function. The atomic map, obtained by interpreting Loewner
time in the solution as the parameter ∆k and then taking the inverse, is
finally

φ
C\D

k = Π ◦ φD

k ◦ Π, (3.18)

where Π(z) = 1/z is the complex inversion and φD

k is the inverse slit solution
to the Loewner equation with constant driving function in the unit disc D

φD

k (z) =
1

4e−∆kz

[
2(z + 1)2 − 4e−∆kz − 2(z + 1)

√
(z + 1)2 − 4e−∆kz

]
.

(3.19)
A visualization of the map1 in (3.18) is in Figure 3.5. A very close relative to
this map already appeared in the literature about diffusion limited aggregates
(see Section 4.2 and references therein).

1Here, as well as in the chordal case, the choice of the analytical branch for the square
root is crucial, especially for the purpose of simulating (the visualization in Figure 3.5 of
course makes use of this). See Appendix A for details.
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It is easy to check that the atomic map builds a hull of logarithmic ca-
pacity ∆k. In fact, by expanding (3.18) around z = 0 one has

φD

k =
1

4e−∆kz

[
4e−2∆kz2 + o(z2)

]
= ze−∆k + o(z) (3.20)

which by equation (2.48) and the additivity property of the logarithmic ca-
pacity, means that the growing approximated hull at step k has logarithmic
capacity

∑
∆k, and ∆k again plays the role of time in the Loewner equation

as in the chordal case, since by Equation (2.41) whole-plane SLE grows with
logarithmic capacity t.

In the half plane, back in the preceding chapter, we built the incremental
maps by chaining the slit map with translations by a real number. Here
in the whole (punctured) plane, what plays the role of translations is the
rotations around the origin. Indeed, Brownian motion in chordal SLE lives
on the real axis, so that it can be regarded as a random walk in the group of
real translations. On the other hand, Brownian motion in radial and whole
plane SLE lives on the unit circle, and can be thus regarded as a random
walk in the group of rotations. The incremental maps we are going to employ
are then1

ck = Rδk
◦ φ

C\D

k

= Rδk
◦ Π ◦ φD

k ◦ Π,
(3.21)

where
Rδk

(z) = eiδkz (3.22)

so that Equation (3.9) is replaced by

γ(tk) = c1 ◦ · · · ◦ ck(0). (3.23)

As well as in the half-plane case, we draw the δk’s as Bernoulli variables
in the set {√κ∆k,−

√
κ∆k}. We mention here that one has actually one

more degree of freedom. In fact, there remains to choose the time-steps ∆k,
that is the partitioning of time. The most natural choice would be to take
them equally spaced. What one sees is that if one does so, then the points
on the SLE trace come out to be farther and farther apart as one travels
along the curve. This is true for the whole-plane version, while the opposite
happens for chordal SLE in the half plane: the points appear more and more
distant from each other as one approaches the origin. To prevent this from
happening, we let ∆k scale with a certain law depending on k. The tedious

1Remember that φD

k implicitly depends on ∆k so that the incremental maps actually
depend on both time- and space-like parameters ∆k and δk.
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56 3.3. Whole plane

Figure 3.6: Four examples of approximate SLE traces in the whole plane.
The black dots corrspond to the unit disc, which is avoided by the curve.
Top-left: κ = 2; top-right: κ = 8/3; bottom-left: κ = 6; bottom-right:
κ = 8.

computations that show how this law must be chosen are presented in detail
in Appendix B. Basically, half-plane SLE requires

∆k ∼ k1/2, (3.24)

while for whole-plane SLE approximate time-invariant distribution of the
steps is achieved through the choice

∆k ∼ k−1. (3.25)

Examples of the approximation to the whole-plane SLE trace obtained
by the method presented in this section are shown in Figure 3.6.

Finally, figures 3.7 and 3.8 show (the image of the coordinate lattice
under) the conformal maps corresponding to a few steps of the algorithms
described in this chapter for half-plane and whole-plane SLE. Notice that
the Jacobian of the map becomes large close to the trace, as is displayed by
the increasing size of the cells. The apparent finite width of the trace is for
illustration purposes: of course every point has a counter-image, no matter
how close to the trace it is.
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Figure 3.7: An example of an iterated conformal map that grows a half-plane
hull.

Figure 3.8: An example of an iterated conformal map that grows a whole-
plane hull.
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Chapter 4

Reparametrizing SLE

This chapter gathers material about the specific issue of SLE trace repara-
metrization. Those presented here are just hints and ideas, since work is still
in progress. Much of what follows is preliminary, and is only intended as
a statement of the problem and and indication of some possible directions
where to look for a solution.

4.1 Reparametrization issues

Most of the observables mathematicians are interested in are parametrization-
independent. For instance, the fractal dimension of a curve or the probability
that it passes to the left of a given point are only dependent on the shape of
the curve, that is, on its support. On the other hand, polymer scientists and
statistical mechanicists more often focus their attention on quantities that do
depend on the particular choice of the parametrization. One very important
example (especially for our purposes) is the distribution of the end-point of
a walk. Actually, every observable concerning the position of the end-point
will depend on how one measures the “length” of the walk, since a definition
of length is indeed necessary for the very definition of end-point. Of course,
a real polymer has a very natural way of measuring length along the chain:
one counts the number of polymers, starting from one end and travelling
towards the other. This monomer-counting procedure is essentially what one
also uses for the self-avoiding walk. In trying to define the scaling limit of
SAWs the most natural thing to do is to define a continuum parametrization
of the lattice walk, so as to embed it in the complex plane:

ωi ∈ Λ ω̃(t) ∈ C, (4.1)
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one then passes from a discrete index i ∈ N to a continuum time t ∈ R+.
The obvious choice is to let

ωi = ω̃(t) fort = i (4.2)

and linearly interpolating for non-integer times. This choice leads to what
we will call the natural parametrization in the scaling limit (if it exists).
Basically, since it amounts to counting the number of equal-length steps on
the walk, it is a parametrization by length.

Of course, when one compares parametrization-dependent quantities in
the lattice models with those in SLE, one wants to be using the same param-
etrization in the continuum models. It is not at all obvious that SLE as it
is generated by the algorithm described in Chapter 3 should have a parame-
trization in any way similar to that of the SAW. In fact, we already chose a
particular parametrization for SLE in Chapter 2, such as to have the usual
Brownian motion appear as the driving function. This parametrization is
that by capacity, which means that capacity grows linearly with proper time
along the curve. Since we sample Brownian motion by discretizing its natural
parametrization, we are generating samples of SLE parametrized by capacity.
Even if we rescale time as in (3.24) and (3.25) to try and have approximately
steps of equal length, we are simply reparametrizing the curves in a global
fashion. We are just changing time labelling of every sample in the same
way. If we were to rescale time in such a way, and computed the scaling
dimension of the end-to-end radius Re, we would find the trivial result ν = 1
nonetheless. This is due to the fact that we are compensating for the scaling
of the step-length only on average, but the step-lengths still have a high vari-
ance, and retain a strong correlation with the geometry of the already-grown
hull. Figure 4.1 presents a plot of an SLE trace (in the whole plane) with the
non-random scaling (3.25), for the sake of comparison with the techniques
we will present in the forthcoming.

If one looks closely at how length and capacity are (un-)related, one
clearly sees that the reparametrization procedure has to be done on a sample-
by-sample basis. In fact, capacity and length are not in one-to-one correspon-
dence, even for discrete curves. It is easy to produce two (non-fractal) curves
with the same length but different capacities, and vice-versa. This means
that the reparametrization must be random. This fact was first highlighted
in [45], with the aid of numerical computations. In the rest of this chapter we
will be dealing with ways of simulating SLE with the correct parametrization
(that is, with that of the supposed continuum limits of the lattice walks). In
other words, we will be interested in a numerical strategy. Rigorous analysis
of the problem and some proposals for analytically tractable definitions are
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Figure 4.1: The approximate reparametrized SLE trace, obtained by simply
rescaling the time-steps as in (3.25) (here κ = 8/3). The crosses indicate
consecutive points on the trace.

presented in a recent work by Lawler [46], but almost no analytical results
are yet available.

4.2 Intermezzo: diffusion-limited aggregation

We take a short break and briefly describe a model of fractal growth called
DLA. What it shares with SLE is the computational strategy based on con-
formal maps, and it will then serve as a comparison for the reparametrizing
techniques we will discuss in this chapter.

Diffusion limited aggregation (DLA) was introduced by Witten and Sander
[47]. It is a kinetic model where finite-sized particles perform random walks
(one at a time) from infinity until they stick irreversibly to a cluster, which
grows from a seed at the origin. DLA and its variants provide simple models
for many fractal patterns in nature, such as colloidal aggregates, dendritic
electro-deposits, snowflakes, lightning strikes (dielectric breakdown), mineral
deposits. It is a very interesting mathematical object per se, and many of its
properties are not yet well-understood.
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Let us suppose there is a cluster around the origin of the complex plane
(DLA itself can be studied in any dimension, but we are interested in the
2-dimensional model here). We want to compute the probability PC(∆) that
a random walker Bt (Brownian motion) started from infinity hits the cluster
C for the first time inside a subset ∆ ⊂ ∂C of its boundary ∂C. Since
the Brownian motion is conformally invariant, the problem can be reduced
to a much simpler situation by use of a conformal map. If we define the
uniformizing map as the conformal map1 that maps the cluster to the unit
disc

φC : C 7→ D (4.3)

then

PC(∆) = PφC(C)≡D (φC(∆)) (4.4)

where φC(∆) is a subset of the boundary of the unit disc D. Of course, in
the new φ-transformed geometry, the problem is radially symmetric, and very
easy to solve, since the probability density p(θ) giving rise to PD is a constant
function of the angle θ. This view on DLA highlights its similarity with a
continuum non-stochastic growth model called Laplacian growth, which is
ubiquitous in the study of interfacial dynamics (see for instance the nice
review by Crowdy [48]).

Hastings and Levitov [49] took advantage of this conformal symmetry,
and proposed an algorithm which turns out to be quite similar to what we
use for simulating Schramm-Loewner evolutions. The algorithm works as
follows. The seed of the growth is the unit disc. At each time-step, an angle
θ is chosen with the uniform distribution in [0, 2π). A conformal map gλ,θ is
applied, that creates a bump of fixed area λ centered at eiθ. Then, another
θ is chosen, the maps are composed, and so forth.

This growth process satisfies an even stronger version of the domain
Markov property we discussed in Chapter 2, since now the growth of the
fractal at a specific time does not even depend on where it last grew, so the
future does not depend on the past, but — modulo a conformal transforma-
tion — it does not depend on the present either.

An important technical aspect of this algorithm is that one wants to grow
bumps of approximately equal size as time grows. But peripheral bumps have
undergone several conformal maps and have thus changed their shape and
size. To compensate this rescaling, one wants to create bumps of different
sizes, depending on the whole history of maps the will be subject to in the
remainder of the growth process. As a first approximation, as long as the

1This map is unique if one fixes the image of the origin and the direction of the derivative
in the origin. See Chapter 2.
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Figure 4.2: A DLA cluster generated with the method of Hastings and Lev-
itov, through composition of conformal maps.

new bump is sufficiently small, it is natural to try and correct only for the
Jacobian factor Jn−1 of the previous conformal map, calculated at the center
of the new bump, so that the n-th bump size would be

λn =
λ0

Jn−1(eiθn)
. (4.5)

This strategy seems to give satisfying results (there is another subtlety, see
[50]). An example of a small cluster generated with these techniques is in
Figure 4.2;

4.3 Numerical strategies

4.3.1 First derivative of φ

It is very natural to try and apply the DLA strategy to the numerical repa-
rametrization of SLE: rescaling the size of the k-th step of the approximated
SLE trace by the dilatation factor given by the Jacobian. Let us restrict to
the whole-plane case (the half-plane situation is just easier). The size Lk of
the k-th step is a function of the time-like parameter ∆k that controls the
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capacity of the atomic map at step k

∆k = log

(
Lk

1+Lk
− 2
)2

4
(
1 − Lk

1+Lk

) , (4.6)

as can be seen by calculating the length of the segment created inside the
circle by φD

k

L̃ = 1 − φD

k (1) (4.7)

and then observing that complex inversion sends

L̃ 7→ L, L̃ =
L

1 + L
(4.8)

Finally one wants to rescale ∆k so that Lk gets rescaled by a factor given by
the Jacobian

Jk = |∂zgk(z)|w (4.9)

calculated in terms of the derivative of the complex map gk that grows the
whole hull at step k, evaluated at the point w on the unit circle where the
next slit is to be placed.

Unfortunately, there happens to be a great obstruction to this program,
due to the fact that SLE satisfies “only” domain Markov property, instead
of the stronger independence of the DLA steps that we discussed in Section
4.2. If we look at Equation (4.5) we see that the rescaling of the step-sizes
is possible because of the independence of θn (the space-like variable) from
λn (the time-like variable). This independence in DLA stems from the fact
that the distribution of the θ’s is flat on [0, 2π) and does not change, so
that one can operatively choose every step θ0, . . . , θn before performing the
composition of the corresponding maps. In SLE, on the contrary, despite the
fact that the steps satisfy domain Markov independency, the increments δk

are drawn with a Bernoulli distribution from the set
{√

κ∆k,−
√

κ∆k

}
, which

does depend on time, since it depends explicitly on the time-like parameter
∆k. Therefore, the problem is that we do not really know where to compute
the Jacobian, until we have actually computed it! This is ultimately related
to the fact that SLE is driven by a non-trivial stochastic process, so that ∆k

and δk are intertwined.
A possible way out of this impasse is to try and guess the position (call

it δ0
k) of the next spike — based on some scaling or heuristics —, calculate

the Jacobian there, and then rescale both ∆k and δk accordingly. Of course
the new δk will generally be different from the tentative one. It is there-
fore possible to measure the error one is making, and iteratively repeat the
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procedure in a self-consistent fashion, until the error drops under a reason-
able bound. There is nonetheless no assurance that this procedure will ever
converge. In fact, some preliminary numerical results show that the error
actually increases after the first iteration, and gets completely out of control.
We will thus stick to a single iteration in the upcoming.

Since δk is a Bernoulli variable in
{√

κ∆k,−
√

κ∆k

}
, only its amplitude

depends on ∆k, but not its sign. One can then draw a random sign sk ∈
{+1,−1}, which is independent of the properties of the conformal map, and
then calculate ∆k and δk based on it. This amounts to choosing the direction
to turn (whether left or right) first, and then using the Jacobian to calculate
how far to go. The first value of δ one tries will then be

δ0
k = skλk (4.10)

One has some freedom in the choice of the tentative step-length λk. Taking
a constant λk = λ is not a good choice because as we saw in Chapter 3
the values of ∆k increase (decrease) more and more as the chain grows, in
whole-plane (half-plane) SLE. One can follow several strategies:

• Rescale λk according to the known scaling law, (3.24) or (3.25);

• Set it to the previously calculated “true” δ:

λk =
δk−1

sk−1

; (4.11)

• Guess it with some heuristics based on the knowledge of the whole
history {δk}k.

The third strategy needs a deep understanding of how the conformation of
the chain and the Jacobian of the conformal map are linked. We implemented
the first and the second ones instead (which seem to give similar results).

Notice that it is impossible to get information from the first derivative
in 0 (for half-plane SLE) or in 1 (for whole-plane SLE), since the Loewner
maps are singular there, and the atomic map has null derivative.

An example of the approximate SLE trace obtained by this method is in
Figure 4.3.

4.3.2 Second derivative of φ

So, the main problem with the first-derivative approach is that δk and ∆k

depend on one another, so that one does not really know where to compute
the derivative. One way to overcome this problem is the following. Expand
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Figure 4.3: The approximate reparametrized SLE trace, obtained by the
first-derivative method of Section 4.3.1 (here κ = 8/3). The crosses indicate
consecutive points on the trace. The sample has been generated with the
same sequence of signs used for that in Figure 4.1.

the derivative of gk, the map that grows the whole hull at step k, around its
zero, which occurs at z = 1, and evaluate it at the point ei∆k , which is the
place where the (k + 1)-th slit is going to be placed:

∂gk(e
iδk) = ∂gk(1) +

(
eiδk − 1

)
∂2gk(1) + . . . (4.12)

where a shorthand ∂gk(w) ≡ ∂zgk(z)|w is used for the first and second deriva-
tives. By expanding the exponential, taking the modulus, and remembering
that ∂zgk(1) = 0 one obtains the Jacobian at order |δk|

Jk ≈ |δk|
∣∣∂2

z (1)
∣∣ . (4.13)

We want to rescale the length of the slit Lk by Jk, so we rewrite the equation
relating ∆k and Lk (4.6) using

Lk =
λ

Jk

, (4.14)

where λ is the desired step length, and the Brownian relation

|δk| =
√

κ∆k. (4.15)
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Finally, we obtain an equation which (if solved) gives the time-step ∆k such
that it produces both the correct rescaling and the right relation with the
space-step δk:

e∆k =
1

4

(
2 − λ

λ + ∂2gk(1)
√

κ∆k

)2(
1 − λ

λ + ∂2gk(1)
√

κ∆k

)−1

. (4.16)

The actual sign of δk = ±√
κ∆k is to be chosen at random, according to the

Bernoulli nature of δk.
Unfortunately, Equation (4.16) is transcendental, and can not be solved

explicitly. A little thinking shows that for ∂2gk(1) large one expects a small
∆k. A crude approximation is then obtained by expanding (4.16) in powers of
∂2gk(1) around ∞, keeping only the terms up to O(∆4

k), so that the resulting
algebraic equation can be solved explicitly. Nothing ensures that the resulting
∆k will be real (this means that the desired point where the derivative has the
right properties does not necessarily lie on the unit circle), but nonetheless
we get the approximate scaling in ∂2gk(1). The resulting behavior is finally

∆k ∼ Λ

∂2gk(1)
, (4.17)

where the constant Λ is a function of κ and λ. Since the equation for Λ is
of grade 4, one actually gets 4 roots. They happen to be all real, meaning
that under this approximation the point we are seeking is indeed on the unit
circle. We choose the one solution that is different from 0 and positive

Λ =
λ

2
√

κ
. (4.18)

An example of the approximate SLE trace obtained by this method is in
Figure 4.4.

4.3.3 Fractal variation

A different approach was proposed and studied by Kennedy [45, 51]. Instead
of trying to grow the trace with strictly constant step lengths, one could
also use the natural parametrization by capacity, and stop the growth when
a fixed “length” has been reached. For this purpose, one needs a sensible
definition of what the “length” of a discretized fractal object is.

Let γ(t) be a parametrized curve. If γ is the trace of a Brownian motion
in the plane, then it is a well-known result of probability theory that if one
partitions time with 0 = t0 < t1 < · · · < tn = t then the naive notion of
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Figure 4.4: The approximate reparametrized SLE trace, obtained by the
second-derivative method of Section 4.3.2 (here κ = 8/3). The crosses indi-
cate consecutive points on the trace. The sample has been generated with
the same sequence of signs used for that in Figure 4.1.

length defined by Ln(γ[0, t]) =
∑

i |γ(ti) − γ(ti−1)| diverges as n → ∞, while
the quadratic variation

var2(γ[0, t]) = lim
n→∞

n∑

i=1

|γ(ti) − γ(ti−1)|2 (4.19)

is finite. This is of course due to the fractal nature of the Brownian paths,
for which “space” scales as the square root of “time”. It is then very natural
to consider the fractal variation, defined for an arbitrary fractal curve as

vard(γ[0, t]) = lim
n→∞

n∑

i=1

|γ(ti) − γ(ti−1)|d (4.20)

where d is the fractal dimension of γ. Notice that this definition actually
depends on the parametrization, and in principle different choices could give
different values of vard.

To define the fractal variation in a parametrization-independent way, but
in close analogy with (4.20), one does the following. Fix a scale λ, and let
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t0 = 0. The times {ti}i=1...n are defined recursively as follows. Given ti, let
ti+1 be the first time after ti such that |γ(ti+1) − γ(ti)| ≥ λ. Then the fractal
variation of the whole curve is defined as

vard(γ[0, t]) = lim
λ→0

nλd (4.21)

where n is the largest integer such that tn ≤ t. The very existence of this
variation can not be established rigorously, but numerical evidence for its
convergence has been given in [51]. In practical applications, the fractal
dimension d will be computed as 1/ν, where ν is the swelling exponent defined
in Equation (1.3).

4.4 Comparison

In this section we compare the results of the two methods presented in Sec-
tions 4.3.1 and 4.3.2. We are going to compare the results only in the radial
whole-plane case, that is for SLE growing from the unit circle to infinity.

Controlling the step length becomes more and more difficult as the pa-
rameter κ increases. This is due to the fact that the trace gets more and
more entangled (and self-touching for κ > 4) so that large domains of the
complex plane have a higher chance to be mapped to very small regions by
the Loewner map. This essentially means that the derivatives of the map
fluctuate more and more, thus spoiling the precision of the approximations.
We choose to perform the comparisons for the two values κ = 8/3 and κ = 6
which lie at different sides of the transition point κ = 4, and which are rele-
vant for our purposes, since we are going to study these two cases in Chapter
6.

Figure 4.5 is a plot of the step lengths |γ(ti) − γ(ti − 1)| for κ = 8/3. It
compares the two methods (based on the first and the second derivative of the
map), together with the results obtained through simple global rescaling as in
(3.25). It is just a little section of a much longer chain. The three plots were
obtained using the same sequence of signs sk, so that the three paths actually
have the same pattern of right/left turns. The large fluctuations that the
naive rescaling shows seem to be much softer in both other reparametrizing
methods. The second-derivative curve still retains some correlation with the
naive one. On the other hand, the first-derivative step lengths suffer instead
from a high self (anti-)correlation, displayed by the oscillations that occur
on a time-scale of 2 steps. These might be due to the systematic nature of
the error one does in choosing the tentative point where the derivative is
computed. The variances of the step lengths (calculated on a much more
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Figure 4.5: The lengths of the discrete steps (in whole-plane SLE), obtained
by three different reparametrization methods (here κ = 8/3).

wide data range than that displayed in figure) are

σ2
|γ(ti)−γ(ti−1)| =





0.69(4) (Global rescaling)

0.0713(3) (First derivative)

0.0196(1) (Second derivative)

These variances are renormalized on an average step-length of 1, so they
represent the entity of the fluctuations with respect to the average.

As far as κ = 8/3 is concerned, the first- and second-derivative approaches
both yield good results in so far as their variances are at least one order of
magnitude less than that of the unconstrained steps. Let us now increase the
value of κ beyond the critical value 4, thus entering a region where simulations
are much harder.

Figure 4.6 displays the same information as above, now for κ = 6. The
first-derivative reparametrization now fails completely, its fluctuations being
orders of magnitude larger than those obtained with the globally rescaled
parametrization. This is probably due to the oscillating nature of these
fluctuations, that now wildly dominate the behavior. On the contrary, the
second-derivative approach still yields step lengths whose variance is less than
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Figure 4.6: The lengths of the discrete steps (in whole-plane SLE), obtained
by three different reparametrization methods (here κ = 6). Notice the loga-
rithmic scale on the y-axis.

that obtained with the naive approach.

σ2
|γ(ti)−γ(ti−1)| =





0.76(4) (Global rescaling)

∼ 106 (First derivative)

0.038(1) (Second derivative)

For the second-derivative approach to be used as a tool for simulating
SLE, one has to be sure that it actually yields the expected parametrization.
It turns out that it does indeed. See Chapter 6 for a check of the distribution
functions obtained by this method.
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Chapter 5

The θ point

This chapter deals with the end-to-end distribution function of polymers
at the θ transition, with the aim of obtaining high-precision estimates of
several universal and some non-universal quantities of interest. We perform
extensive Monte Carlo simulations and compare the results with theoretical
predictions. Material presented here will be published in [52].

5.1 Theoretical results

5.1.1 Critical exponents

We consider three different observables (radii) that measure the size of the
walk ω:

• The mean square end-to-end distance

R2
e ≡ (ωN − ω0)

2. (5.1)

• The mean square radius of gyration

R2
g ≡ 1

N + 1

N∑

i=0

(
ωi −

1

N + 1

N∑

k=0

ωk

)2

=
1

2(N + 1)2

N∑

i,j=0

(ωi − ωj)
2.

(5.2)

• The mean square monomer distance from an endpoint

R2
m ≡ 1

N + 1

N∑

i=0

(ωi − ω0)
2. (5.3)
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Ref. year method βθ

[69] 1987 EE 0.75

[70] 1988 MC 0.65(3)

[71] 1990 EE 0.67(4)

[72] 1990 MC 0.658(4)

[73] 1992 EE 0.657(16)

[74] 1993 MC 0.658(4)

[75] 1994 EE 0.660(5)

[76] 1995 MC 0.665(2)

[77] 1996 MC 0.664, 0.666

[78] 1997 MC 0.667(1)

Table 5.1: Estimates of βθ on the square lattice. EE stands for exact enu-
meration, MC for Monte Carlo.

Correspondingly we define the universal ratios1 :

AN ≡ 〈R2
g〉N

〈R2
e〉N

, BN ≡ 〈R2
m〉N

〈R2
e〉N

, CN ≡ 〈R2
g〉N

〈R2
m〉N

. (5.4)

Finally, we introduce the specific heat

cN(β) ≡ 1

N

∂〈E〉N
∂β−1

=
β2

N

(
〈E2〉N − 〈E〉2N

)
.

(5.5)

As is well known, the θ point corresponds to a very specific value βθ of β,
which depends on the microscopic details of the model. For the SAW, the
best present-day estimates on the square lattice are reported in Table 5.1.

In a neighborhood of βθ the radii have a scaling behavior of the form

〈R2〉N = N2νθf±
[
Nφ(β − βc)

]
, (5.6)

with f±(0) 6= 0. In two dimensions, the universal exponents φ and νθ are
given by [68]

νθ =
4

7
, φ =

3

7
. (5.7)

1Of course, knowledge of two of them yields the third.
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The crossover exponent φ can be measured directly at β = βθ by considering
the specific heat, which scales as

cN ∼ N2φ−1, (5.8)

or

DN ≡ − 1

〈R2〉N
d〈R2〉N

dβ

= 〈E〉N − 〈R2E〉N
〈R2〉N

∼ Nφ,

(5.9)

where R2 is one of the radii.
We also introduce the exponent γθ that controls the large N -behavior of

the partition function
ZN ∼ µNNγθ−1. (5.10)

Here µ is a lattice- and model-dependent constant, while γθ is universal,
γθ = 8/7.

Finally, we mention a general relation (which will henceforth be called
CSCPS) that has been proved for noniteracting SAWs [54, 53] and which
has been conjectured to hold at the θ-point too [75]. If we define

FN =

(
2 +

2

γθ + 2νθ

)
AN − 2BN +

1

2
, (5.11)

then, it is conjectured that F∞ = 0.

5.1.2 End-to-end distribution function

We consider a monodisperse ensemble of polymers with N monomers. If
r is the vector joining the endpoints of the walk, we will be interested in
computing the unnormalized distribution cN(r) of the endpoint vector1. We
also introduce a normalized distribution

PN(r) =
cN(r)∑
r cN(r)

, (5.12)

the mean squared end-to-end distance

R2
e,N =

∑

r

|r|2PN(r), (5.13)

1In continuum models, the function cN (r) is not well defined. For models regularized
on a lattice, cN (r) can be identified with the number of walks starting at the origin and
ending in r.
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and the related correlation length

ξ2
N =

1

2d
R2

e,N . (5.14)

In the limit N → ∞, |r| → ∞, with |r|N−ν fixed, the function PN(r) has
the scaling form [61, 62, 63]

PN(r) ≈ 1

ξd
N

f(ρ)
[
1 + O(N−∆)

]
, (5.15)

where ρ = r/ξN , ρ = |ρ|, d is the space dimensionality, and ∆ is a correction-
to-scaling exponent. By definition

∫ ∞

0

ρd−1dρ f(ρ) =
1

Sd

, (5.16)

∫ ∞

0

ρd+1dρ f(ρ) =
2d

Sd

, (5.17)

where Sd is the volume of the d-dimensional sphere

Sd =
2πd/2

Γ(d/2)
. (5.18)

Several facts are known about f(ρ). For large values of ρ it behaves as
[60, 61, 62, 63]

f(ρ) ≈ f∞ρσ exp
(
−Dρδ

)
, (5.19)

where σ and δ are given by

δ =
1

1 − ν
, (5.20)

σ =
2νd − 2γ + 2 − d

2(1 − ν)
. (5.21)

For ρ → 0, we have [62, 63]

f(ρ) ≈ f0

(ρ

2

)θ

, (5.22)

where

θ =
γ − 1

ν
. (5.23)

We can also consider the Fourier transform of f(ρ),

f̃(Q) =

∫
dd

ρ

(2π)d
eiQ·ρ f(ρ), (5.24)
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which is the critical (large-N) limit of c̃N(q)/c̃N(0) with Q ≡ qξN fixed,

c̃N(q) being the Fourier transform of cN(r). For Q → 0, f̃(Q) has a regular
expansion in powers of Q2, while for Q2 → ∞ it behaves as

f̃(Q) = f̃∞Q−θ−d. (5.25)

The constants f̃∞ and f0 are related. Indeed

f0 = f̃∞ (4π)−d/2 Γ
(
− θ

2

)

Γ
(

θ+d
2

) . (5.26)

For the purpose of computing D and δ from Monte Carlo data, it is much
easier to consider the “wall-to-wall” distribution function

PN,w(x) =
∑

x2,...,xd

PN(x, x2, . . . , xd), (5.27)

which represents the probability that the endpoint of the walk lies on a plane
at a distance x from the origin of the walk. In the large-N limit, PN,w(x) has
the scaling form

PN,w(x) =
1

ξN

fw(ρ)
(
1 + O(N−∆)

)
, ρ =

|x|
ξN

. (5.28)

For large ρ we have

fw(ρ) ≈ fw,∞ρσw exp(−Dρδ) , (5.29)

where δ is given by (5.20), D is the same constant appearing in Eq. (5.19),
and

σw = δ

(
ν − γ +

1

2

)
. (5.30)

5.1.3 Phenomenological expression

A phenomenological representation for the function f(ρ) has been proposed
by McKenzie and Moore [62] and des Cloizeaux [55]:

f(ρ) ≈ fph(ρ) = fphρ
θph exp

(
−Dphρ

δph
)
. (5.31)

Here δph and θph are free parameters, while fph and Dph are fixed by the
normalization conditions (5.16) and (5.17):

Dph =

{
Γ[(1 − ν)(2 + d + θph)]

2d Γ[(1 − ν)(d + θph)]

} δph

2

, (5.32)

fph =
δphD

(d+θph)(1−ν)

ph

Sd Γ[(1 − ν)(d + θph)]
. (5.33)
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5.1.4 Internal points distribution function

Beside the endpoint distribution function one may consider the probability
PN,M(~r) that ωM − ω0 = ~r, where ωM is an internal point, i.e. M < N .
Then, consider the limit N,M → ∞, ~r → ∞ with rN−ν and M/N fixed.
We obtain

PN,M(~r) ≈ 1

ξd
M

fint(r/ξM ,M/N), (5.34)

where ξ2
M = (ωM − ω0)

2/(2d). For ρ → 0 and M/N 6= 0, 1, we have

fint(ρ,M/N) ∼ ρθint (5.35)

where the exponent is independent of M/N . The exponent θint has been
computed exactly in two dimensions, obtaining θint = 5/6 for noninteracting
SAWs and θint = 5/12 at the θ point. Such an exponent can be determined
by measuring the probability PENN

N that the endpoint is a nearest neighbor
of the walk, i.e. ciN = 1 for some i < N − 1. By adding an analytic
background, due to local interactions that are not taken into account in the
previous analytic behavior, we can write

PENN
N ≈ a +

b

N
+

c

N ν(d+θint)−1
+ . . . (5.36)

At the θ point this gives

PENN
N ≈ a +

b

N
+

c

N8/21
, (5.37)

while for noninteracting SAWs the analytic correction is the dominant one

PENN
N ≈ a +

b

N
+

c

N9/8
. (5.38)

5.1.5 Gyration tensor

Typically, the shape of a polymer is not spherical. In order to characterize
this asymmetry it is customary to consider the gyration tensor defined by

QN,αβ =
1

2(N + 1)2

N∑

i,j=0

(ωi,α − ωj,α)(ωi,β − ωj,β), (5.39)

which is such that Tr QN = R2
g,N . The relevant quantities are the eigenvalues

qα, that are expected to scale as

〈qα〉N ≈ BαN2νθ , (5.40)
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for N → ∞, and, more generally, obey a scaling law of the form

PN(qα) =
1

〈qα〉N
Fα

(
qα

〈qα〉N

)
. (5.41)

To characterize the shape, one also considers the asphericity

AN =
1

d(d − 1)

d∑

α=1

〈
(qα − q̄)2

q̄2

〉

N

, (5.42)

where q̄ =
∑

α qα/d = R2
g,N/d.

5.2 Numerical results

We have performed extensive simulations using a Monte Carlo algorithm that
uses reptation moves and bilocal moves. It is described in detail in Ref. [67].
For the simulation we have fixed β = 0.665, which is the estimate of Ref. [76]
of βθ, and performed runs for walk lengths N = 100, 800, 1600, 3200.

5.2.1 Critical exponents and reweighting

Results for several observables of interest are reported in Table 5.2 together
with accurate error estimates (in parentheses).

In order to determine νθ we have performed a fit of 〈R2〉N to the ansatz
aN2νθ with and without the data for N = 100. The results are in Table 5.3.
These estimates are close to the theoretical prediction νθ = 4/7 ≈ 0.5714 . . .,
but the data apparently overshoot. One may think this is due to the fact
that β = 0.665 < βθ so that we are seeing the beginning of the crossover
towards the good-solvent value ν = 3/4. To verify this hypothesis, we have
computed the mean values for other β values using the standard reweighting
technique. In particular, we have computed 〈R2〉N for β = 0.665 − 0.0005n,
n = 1, 2, 3, 4. All these points should lie in the high-temperature phase and
should scale as

〈R2〉N = aN2νθ + bN2νθ+φ(β − βθ), (5.43)

valid for Nφ(β−βθ) . 1. Fits performed by letting all five parameters run or
by fixing the two exponents to their theoretical values — both with the full
range of N and with data restricted to Nmin = 800 — yield similar results
for βθ, which are reported in Table 5.41. Our final estimate is

1Errors are to be taken with a grain of salt, since they are computed from a non-linear
two-variable iterative fit, and tend to be over-optimistic.
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N 〈R2
g〉N 〈R2

e〉N 〈R2
m〉N 〈E〉N 〈E2〉N − 〈E〉2N

100 43.4385(75) 241.874(71) 123.024(26) 46.3044(24) 68.095(16)

800 472.72(30) 2604(3) 1332(1) 429.712(26) 909.53(60)

1600 1050.19(37) 5784(3) 2957(1) 877.717(21) 2034.49(68)

3200 2338.7(1.5) 12895(13) 6584(5) 1780.259(53) 4460.2(2.5)

N AN BN CN DN

100 0.179592(61) 0.50863(18) 0.35309(97) 2.2793(15)

800 0.18152(22) 0.51139(64) 0.35496(35) 6.826(15)

1600 0.18156(12) 0.51123(35) 0.35514(19) 9.54(1)

3200 0.18137(21) 0.51060(63) 0.35521(35) 13.170(29)

Table 5.2: Results for 〈R2
g〉N , 〈R2

e〉N , 〈R2
m〉N , 〈E〉N , 〈E2〉N − 〈E〉2N , AN , BN ,

CN , DN .

Nmin νθ (from R2
g) νθ (from R2

e) νθ (from R2
m)

100 0.5746(3) 0.5727(6) 0.5736(4)

800 0.5767(7) 0.5770(10) 0.5764(8)

Table 5.3: Estimates of νθ at β = 0.665.

βθ = 0.667(1) (5.44)

Better results for νθ can then be obtained by performing a fit on the reweighted
data at β = 0.667; see Table 5.5.

In order to compute the crossover exponent we have analyzed DN and cN .
The fit results are reported in Table 5.6. Corrections to scaling are emerging
to some extent here, but since no error can be computed when Nmin = 800
(for the number of data points equals the number of free parameters) their
strength is difficult to guess. Nonetheless, there seems to be good agreement
with the expected value φθ = 0.428 . . .

Finally, we have tested the CSCPS relation, obtaining the results in Table
5.7. Results are all compatible with the expected asymptotic value F∞ = 0
(except perhaps F100). The result obtained by including all data with N ≥
1600 is

F∞ = 0.0021(48). (5.45)
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Nmin ν φ βθ βθ (fixed exponents)

Rg
100 0.5720(2) 0.480(4) 0.6669(1) 0.6675(1)

800 0.5721(2) 0.480(5) 0.6669(1) 0.6675(1)

Re
100 0.5678(3) 0.480(5) 0.6677(1) 0.6670(1)

800 0.5683(3) 0.480(5) 0.6676(1) 0.6670(1)

Rm
100 0.5706(3) 0.478(6) 0.6672(1) 0.6671(1)

800 0.5711(3) 0.478(5) 0.6670(1) 0.6671(1)

Table 5.4: Estimates of exponents and critical temperature obtained from
reweighted data.

νθ (from R2
g) νθ (from R2

e) νθ (from R2
m)

0.5708(3) 0.5720(1) 0.5712(1)

Table 5.5: Estimates of νθ from reweighted data at β = 0.667.

5.2.2 End-to-end distribution function

We have studied the EEDF closely following the strategy employed in Ref.
[66] to analyze the same quantity for non-interacting SAWs. In principle we
should correct for the estimate of βθ obtained in Section 5.2.1. However,
the error is negligible on the EEDF and thus we will analyze the results for
β = 0.665 without additional corrections.

First, we have considered the wall-wall distribution fw(ρ) — see Eq.
(5.28) — and we have performed two different fits

ln fw(ρ) = ln fw,∞ − Dρδ, (5.46)

ln(ρ1/6fw(ρ)) = ln fw,∞ − Dρδ. (5.47)

In the second fit we have used the theoretical prediction for σw. In or-
der to detect corrections to scaling, we have repeated the fit for each N =
100, 800, 1600, 3200. Moreover, Eqs. (5.46) and (5.47) are valid only for
ρ → ∞ and thus we have included in each case only the data with ρ ≥ ρmin,
for ρmin = 2, 2.5, 3. Finally, corrections to scaling increase with ρ, and
thus we have also studied the dependence of the results on the upper cutoff
ρmax = 4, 5, 6. Results obtained with the first ansatz (5.46) are reported in
Table 5.8; a plot of the curves is in Fig. 5.1.

Two features are manifest. Firstly, a mild systematic dependence on N
is evident, if one neglects the results for N = 100 which are always op-

81



82 5.2. Numerical results

Nmin φθ (from cN) φθ (from DN)

100 0.450(4) 0.436(5)

800 0.430 0.416

Table 5.6: Estimates of φθ. The values for Nmin = 800 have no error because
there are as many fit parameters as data.

N FN

100 0.0052(28)

800 0.0050(97)

1600 0.0026(53)

3200 -0.0007(120)

Table 5.7: CSCPS values.

posite to the trend; the curve at N = 100 is also visibly less close to the
asymptotic regime (especially where ρ is small). As expected, these correc-
tions become more important as ρmax increases, but values are nonetheless
consistent within error bars, at least for the greater values of N . Secondly,
data apparently do not display any systematic dependence on either ρmin

or ρmax, and the very slight drift in ρmin that is visible for certain choices
of the parameters gets completely lost in the noise. Fits become more and
more unstable as ρmin and ρmax increase, especially in the regime ρmin ? 3.5,
ρmax ? 6 (not shown here). Our final estimates are obtained by fitting all
data with N ≥ 800 in the window 3 ≤ ρ ≤ 5.

From the first fit, we obtain finally

δ = 2.354(24) D = 0.163(7), (5.48)

while from the second one (results with ρmax = 5 are in Table 5.9)

δ = 2.395(24) D = 0.149(7). (5.49)

In order to estimate fw,∞, we cannot neglect the multiplicative factor ρσw

and thus only the results of the second fit are relevant. We obtain

fw,∞ = 0.562(24). (5.50)

The results for the exponent δ should be compared with the theoretical value
δ = 7/3 = 2.33 . . . The second fit yields an overestimated value, but Table 5.9
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N ρmax ρmin δ D

100

4

2 2.517(3) 0.127(1)

2.5 2.516(6) 0.128(1)

3 2.501(21) 0.131(5)

5

2 2.466(6) 0.142(1)

2.5 2.483(7) 0.138(2)

3 2.504(13) 0.133(3)

6

2 2.565(14) 0.117(3)

2.5 2.579(19) 0.114(4)

3 2.601(29) 0.109(6)

800

4

2 2.394(12) 0.148(3)

2.5 2.392(26) 0.149(6)

3 2.410(82) 0.144(20)

5

2 2.318(9) 0.173(3)

2.5 2.319(15) 0.173(5)

3 2.305(29) 0.177(9)

6

2 2.378(20) 0.153(6)

2.5 2.372(28) 0.155(8)

3 2.361(43) 0.158(13)

1600

4

2 2.426(5) 0.141(1)

2.5 2.423(11) 0.142(2)

3 2.390(30) 0.150(8)

5

2 2.353(7) 0.164(2)

2.5 2.358(12) 0.162(3)

3 2.358(21) 0.162(6)

6

2 2.414(15) 0.144(4)

2.5 2.418(21) 0.142(6)

3 2.430(32) 0.139(9)

3200

4

2 2.455(11) 0.135(2)

2.5 2.426(24) 0.142(6)

3 2.423(77) 0.142(18)

5

2 2.371(15) 0.159(4)

2.5 2.368(24) 0.160(7)

3 2.375(45) 0.158(13)

6

2 2.469(31) 0.132(8)

2.5 2.468(43) 0.132(11)

3 2.493(67) 0.125(16)

Table 5.8: Fit results for the wall-wall EEDF. Fit function (5.46).
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Figure 5.1: The renormalized wall-wall EEDF.

shows that the non-asymptotic corrections — which were absent in the first
fit — are now present and dragging it towards the expected limit. The
two values of D are not compatible with each other; however, the second
value is again affected by corrections in ρmin that are pushing it towards the
other value. A precise estimate of the systematic errors is hard here, since
corrections to scaling and non-asymptotic corrections have different signs.
But there is evidence that one should trust the first fit more, since it does
display less dependence on the cut-off, and it yields a better value of δ, so it
probably works better for D as well.

Let us consider now the radial distribution f(ρ) — see Eq. (5.15). From
the Monte Carlo data we can estimate P̂N(~r), which is the probability that
the endpoint is in ~r. This quantity is not well suited for the analysis because
of fluctuations due to the lattice structure. In order to average them out, we
will use a trick, already used in this context in Refs. [64, 65, 66]. We shall
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5. The θ point 85

N ρmin δ D log fw,∞

100

2 2.527(4) 0.125(1) 0.640(5)

2.5 2.533(7) 0.124(2) 0.649(9)

3 2.545(13) 0.121(3) 0.670(2)

800

2 2.377(10) 0.153(3) 0.577(13)

2.5 2.366(16) 0.156(4) 0.560(23)

3 2.345(30) 0.162(9) 0.520(53)

1600

2 2.412(7) 0.145(2) 0.607(9)

2.5 2.406(12) 0.146(3) 0.598(17)

3 2.397(22) 0.149(6) 0.581(37)

3200

2 2.431(15) 0.140(4) 0.620(18)

2.5 2.417(24) 0.144(6) 0.599(35)

3 2.417(46) 0.144(12) 0.598(78)

Table 5.9: Fit results for the wall-wall EEDF. Fit function (5.47). (ρmax = 5).

consider two different averages

P̂
(av)
1,N (r1,n) =

1

2N1,n(r1,n)

∑

~r:r2
1,n−1<r2≤r2

1,n

P̂N(~r), (5.51)

P̂
(av)
2,N (r2,n) =

1

2N2,n(r2,n)

∑

~r:r2
2,n−1<r2≤r2

2,n

P̂N(~r), (5.52)

where r1,n = r0 + n∆, r2
2,n = r2

0 + n∆ where r0 and ∆ are fixed parameters1,
and N1,n(r1,n) and N2,n(r2,n) are the number of lattice points with the same

parity2 of N that lie in the considered shell. For ∆ fixed, P̂N(~r), P̂
(av)
1,N (r) and

P̂
(av)
2,N (r) have the same scaling behavior as N → ∞. For practical purposes,

we measure ∆ in units of the correlation length: we define Λ = ∆/ξN and
keep it fixed for all N . The curves in Figure 5.2 are obtained with (5.51) and
Λ = 1/15.

In order to determine the parameters D and δ we have performed a fit of
the form

log f(ρ) = log f∞ − Dρδ (5.53)

1Procedure (5.51) corresponds to fixing the width of the annuli on which the average
is computed, while (5.52) corresponds to fixing the volume.

2A point (x, y) is odd (resp. even) if x + y is odd (resp. even).
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Figure 5.2: The renormalized EEDF.

for each N and for several ρmin and Λ. Note that in this case theory predicts
σ = 0 and thus this fit allows us to determine f∞ too. Results are in Tables
5.10 and 5.11. An oscillating behavior in N is now visible, and again the
data for N = 100 appear largely out of the scaling regime (this is visible also
in Figure 5.2). Since no systematic corrections are apparent, the final results
are obtained by including in the fit only walks with N ≥ Nmin, where Nmin is
chosen so that the estimates for all N ≥ Nmin are independent of N within
error bars. Instead, non-asymptotic corrections are much more pronounced
than they were for fw(ρ). For this reason, in final results we choose to keep
the fit window as far into the asymptotic regime as it is allowed by instability
and errors (ρmin = 3.5). The upper cutoff ρmax in Tables 5.10 and 5.11 is
chosen so as to be the last ρ before the sampled distribution function takes
on its first null value. Clearly, for fixed N , ρmax depends on the smoothing
function and on ∆. In the final results ρmax is the min over the distributions
merged.
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Λ N ρmax ρmin δ D log f∞

1/5

100 7

2 2.613(23) 0.103(5) 2.710(50)

2.5 2.613(31) 0.103(7) 2.710(77)

3 2.613(40) 0.103(8) 2.71(11)

3.5 2.596(60) 0.107(13) 2.65(19)

800 6.7

2 2.350(25) 0.156(8) 2.513(52)

2.5 2.317(33) 0.167(11) 2.420(82)

3 2.285(42) 0.178(15) 2.32(12)

3.5 2.209(62) 0.210(28) 2.04(21)

1600 7.2

2 2.400(13) 0.142(4) 2.585(30)

2.5 2.390(17) 0.145(5) 2.556(46)

3 2.383(21) 0.147(7) 2.530(63)

3.5 2.365(31) 0.153(10) 2.46(11)

3200 7.2

2 2.381(25) 0.147(7) 2.560(60)

2.5 2.367(33) 0.151(10) 2.514(91)

3 2.357(41) 0.155(14) 2.48(13)

3.5 2.336(62) 0.162(22) 2.40(22)

1/15

100 7

2 2.597(51) 0.110(11) 2.74(11)

2.5 2.597(67) 0.110(15) 2.74(17)

3 2.592(89) 0.111(20) 2.72(25)

3.5 2.59(13) 0.111(30) 2.72(41)

800 7

2 2.355(32) 0.158(10) 2.566(75)

2.5 2.340(42) 0.163(14) 2.52(11)

3 2.323(56) 0.170(20) 2.46(17)

3.5 2.296(83) 0.180(32) 2.35(30)

1600 7.2

2 2.381(13) 0.150(4) 2.610(32)

2.5 2.375(17) 0.153(5) 2.588(47)

3 2.366(22) 0.155(7) 2.558(70)

3.5 2.351(32) 0.161(11) 2.50(11)

3200 7.2

2 2.368(35) 0.154(11) 2.589(80)

2.5 2.355(47) 0.159(15) 2.55(12)

3 2.340(63) 0.164(21) 2.50(19)

3.5 2.317(95) 0.172(34) 2.42(32)

Table 5.10: Fit results for the large-distance behavior of the radial EEDF
obtained with fixed-width averaging (5.51).
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Λ N ρmax ρmin δ D log f∞

1/15

100 7

2 2.614(63) 0.107(14) 2.66(16)

2.5 2.614(77) 0.108(17) 2.66(21)

3 2.615(93) 0.107(21) 2.60(28)

3.5 2.60(13) 0.110(30) 2.61(42)

800 7

2 2.346(49) 0.162(16) 2.43(13)

2.5 2.331(60) 0.167(21) 2.38(18)

3 2.317(73) 0.173(27) 2.33(24)

3.5 2.29(10) 0.181(39) 2.24(37)

1600 7.3

2 2.393(24) 0.148(7) 2.513(70)

2.5 2.393(29) 0.148(9) 2.513(90)

3 2.393(36) 0.148(11) 2.51(12)

3.5 2.379(48) 0.154(16) 2.46(18)

3200 6.95

2 2.353(30) 0.160(10) 2.446(80)

2.5 2.340(36) 0.164(12) 2.40(11)

3 2.327(45) 0.170(16) 2.36(14)

3.5 2.305(62) 0.177(24) 2.27(22)

1/30

100 6.7

2 2.620(31) 0.106(7) 2.764(71)

2.5 2.620(37) 0.106(8) 2.764(92)

3 2.620(49) 0.106(11) 2.76(13)

3.5 2.626(69) 0.105(15) 2.78(21)

800 6.6

2 2.340(31) 0.165(10) 2.528(75)

2.5 2.327(37) 0.170(13) 2.49(10)

3 2.305(50) 0.177(18) 2.42(15)

3.5 2.271(73) 0.191(29) 2.29(25)

1600 7

2 2.360(33) 0.159(11) 2.560(89)

2.5 2.352(39) 0.161(13) 2.53(11)

3 2.335(51) 0.167(18) 2.47(16)

3.5 2.308(72) 0.177(27) 2.37(26)

3200 6.6

2 2.373(44) 0.155(13) 2.58(10)

2.5 2.374(53) 0.155(17) 2.58(14)

3 2.350(72) 0.163(24) 2.51(21)

3.5 2.33(10) 0.171(38) 2.42(34)

Table 5.11: Fit results for the large-distance behavior of the radial EEDF
obtained with fixed-volume averaging (5.52).
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With the first averaging procedure (5.51) we obtain

δ =

{
2.356(41) Λ = 1/5

2.333(40) Λ = 1/15
(5.54)

D =

{
0.156(13) Λ = 1/5

0.167(15) Λ = 1/15
(5.55)

f∞ =

{
0.086(12) Λ = 1/5

0.085(12) Λ = 1/15
(5.56)

while the second averaging procedure (5.52) yields

δ =

{
2.325(43) Λ = 1/15

2.344(46) Λ = 1/30
(5.57)

D =

{
0.170(16) Λ = 1/15

0.165(16) Λ = 1/30
(5.58)

f∞ =

{
0.098(16) Λ = 1/15

0.084(13) Λ = 1/30
(5.59)

As expected, results obtained with different smoothing procedures and differ-
ent values of Λ are compatible. Finally, a weighted average of the foregoing
yields

δ = 2.340(46) D = 0.164(16) f∞ = 0.088(16), (5.60)

where errors in parentheses are computed as the maximum over those of
the estimates above (they are not the usual deviations from the weighted
average), because results obtained with different averaging procedures and
different Λ are not independent. The exponent δ is in perfect agreement
with theory and D matches the value obtained through the analysis of fw to
a striking precision.

We can also obtain improved estimates of D, f∞, and fw,∞ by fixing δ
to its theoretical value δ = 7/3. From the analysis of the wall-wall EEDF,
using fit function (5.47), we obtain

D = 0.1668(3) fw,∞ = 0.6250(44), (5.61)

while from the radial distribution function we have

D = 0.1656(3) f∞ = 0.0881(15). (5.62)
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ndiscard θ (Λ=1/50) θ (Λ=1/150)

0 0.312(24) 0.296(11)

1 0.252(7) 0.278(12)

2 0.251(10) 0.257(11)

3 0.264(11) 0.243(10)

Table 5.12: Values of θ obtained by fitting data after discarding ndiscard non-
zero semples near the origin. Here ρmax = 1.5.

Results obtained from the wall-wall distribution function are less consistent
and precise, but again this can be due to corrections. On the other hand,
improved estimates from radial EEDF sharply agree with previous results
(5.48) and (5.60) obtained from fits with δ as a free parameter.

We consider now the behavior for ρ → 0, performing fits of the form

log f(ρ) = log f1 + θ log ρ. (5.63)

Since Eq. (5.63) is valid only for ρ → 0 and for r → ∞ (scaling limit) data
must be analyzed in a window ρmin ≤ ρ ≤ ρmax. We also checked consistence
of results for different values of the smoothing parameter Λ. Only data for
N = 3200 has proved useful, since the forthcoming analysis gives very blurry
results for smaller values of N .

Fixing the cut-offs is a twofold process. Firstly, we fix ρmax and study
the behavior of the results as functions of ρmin. We do this by controlling
the number of non-zero data samples that get discarded after cutting off the
small-ρ region. Values of θ for several cut-offs are reported in Table 5.12. It
is evident that the first few samples (depending on Λ) are plagued by lattice
effects, so they will be discarded (we choose ndiscard = 1 for Λ = 1/50 and
ndiscard = 2 for Λ = 1/150). The second step is then to study how results
depend on the upper cut-off, with ρmin fixed by the foregoing analysis. A plot
of θ versus ρmax is shown in Figure 5.3. The plot shows a large amount of noise
in the small-ρmax region, due to the small number of samples that get involved
in the fit. As the number of samples increases, θ reaches a plateaux, after
which it starts to drop, because of deviations from linearity. We therefore
choose as a cut-off the first ρmax in the plateaux, finally obtaining

θ =

{
0.252(7) Λ = 1/50

0.257(10) Λ = 1/150
(5.64)

f1 =

{
0.0807(12) Λ = 1/50

0.0824(18) Λ = 1/150
(5.65)
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Figure 5.3: Exponent θ obtained from fits as a function of the upper cut-off,
for 2 values of Λ. (Notice the logarithmic scale on the X-axis).

The results for θ are in perfect agreement with the theoretical prediction
θ = 1/4. An improved estimate of f1 can be obtained by fixing θ to its
theoretical value:

f1 =

{
0.0806(2) Λ = 1/50

0.0813(4) Λ = 1/150
(5.66)

Finally, we computed the moments

M2k,N =

∑
~r |r|2kPN(~r)

[
∑

~r |r|2PN(~r)]k
. (5.67)

We extrapolated the results by performing a fit of the form

M2k,N = M2k,∞ + aN−∆ (5.68)

where M2k,∞, a, and ∆ are free parameters. Results are reported in Table
5.13. Notice that results for N = 1600 and N = 3200 are already compatible
with each other. Unfortunately, there seems to be a slight systematic under-
estimation of the values at N = 3200 (or an overestimation at N = 1600) that
is probably causing deviations in the extrapolated asymptotic moments.
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N M4,N M6,N M8,N M10,N M12,N

100 1.778(1) 4.422(4) 13.89(2) 52.2(1) 226.8(6)

800 1.815(4) 4.66(1) 15.31(7) 60.8(4) 281(3)

1600 1.819(2) 4.69(1) 15.49(4) 61.8(2) 288(2)

3200 1.818(4) 4.68(2) 15.40(7) 61.2(4) 283(3)

N → ∞ 1.821(4) 4.70(3) 15.5(2) 62(1) 290(10)

Table 5.13: The first five non-trivial even moments, with their extrapolated
asymptotic values.

5.2.3 Phenomenological expression

Fits against expression (5.31) (with Dph and fph given by the expressions
above) for the two different averaging procedures (5.51) and (5.52), with
several values of Λ1, are reported in Table 5.14. Fitting in a window ρmin ≤
ρ ≤ ρmax displayed nearly no dependence on the upper cut-off ρmax; on
the other hand we noticed very high dependence on ρmin, meaning that the
phenomenological parameters are sensitive almost only to the shape of the
distribution function near the origin. Therefore, results were obtained using
the whole available range in ρ. There are differences between values obtained
from the two different averaging procedures. This is due to the fact that the
two regularized distribution functions differ mainly in the small-ρ regime,
where the fits are most sensitive. But fixed-width averaging (5.51) turns
out to give more self-consistent results (as Λ changes), so we choose this
one for our final estimates. Moreover, data for N = 100 still displays strong
corrections to scaling, as one can see by inspecting Table 5.14 and Figure 5.2,
while the other values of N yield results compatible within error bars. Finally,
by merging all data with N ≥ Nmin = 800 we get

θph =

{
0.6091(93) Λ = 1/15

0.6166(83) Λ = 1/50
(5.69)

δph =

{
1.435(27) Λ = 1/15

1.412(22) Λ = 1/50
(5.70)

Values are consistent among different choices of Λ.
One can also fix θph and δph to the theoretical asymptotic values θ and δ,

thus obtaining the results in Table 5.15. The same observations hold as for

1Values of Λ greater than 1/15 yield too few data points, while fits for Λ < 1/50 begin
to be quite unstable.
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5. The θ point 93

Λ N θph δph

1/15

100
0.739(20) 1.690(92)

0.961(25) 2.128(57)

800
0.616(16) 1.431(46)

0.594(23) 1.627(72)

1600
0.609(16) 1.433(45)

0.560(23) 1.559(84)

3200
0.603(17) 1.436(49)

0.518(23) 1.559(84)

1/50

100
0.89(28) 1.24(19)

800
0.645(18) 1.426(48)

0.679(4) 1.560(12)

1600
0.602(13) 1.407(34)

0.675(4) 1.552(12)

3200
0.601(14) 1.406(35)

0.676(4) 1.555(12)

Table 5.14: The phenomenological exponents, obtained by fixing the nor-
malization as in Eqs. (5.32) and (5.33). Double entries refer respectively to
the two averaging procedures (5.51) and (5.52). Missing entries are due to
unstable fits.

the fixed-normalization fits. We obtain

Dph =

{
0.1913(13) Λ = 1/15

0.1947(17) Λ = 1/50
(5.71)

fph =

{
0.07368(26) Λ = 1/15

0.07341(33) Λ = 1/50
(5.72)

These results are not compatible with (5.32) and (5.33) evaluated at θph = θ
and δph = δ (which give Dph = 0.17938 . . . and fph = 0.06931 . . .), meaning
that the asymptotic exponents do not correctly reproduce the region ρ ≈ 1.

It turns out that much better results for the region of interest can be
obtained by letting all 4 parameters (θph, δph, Dph and fph) run in the fit.
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Λ N Dph fph

1/15

100
0.159(11) 0.0637(23)

0.137(16) 0.0573(51)

800
0.0.1901(25) 0.07333(50)

0.1613(45) 0.0686(14)

1600
0.1912(23) 0.07376(46)

0.1646(33) 0.0700(11)

3200
0.1923(21) 0.07397(41)

0.1685(13) 0.07187(43)

1/50

100
0.111(16) 0.0298(22)

0.2022(81) 0.0646(19)

800
0.1885(41) 0.07161(80)

0.1836(16) 0.07029(46)

1600
0.1978(20) 0.07433(38)

0.1844(16) 0.07053(46)

3200
0.1979(20) 0.07434(38)

0.1841(16) 0.07045(46)

Table 5.15: The phenomenological constants, obtained by fixing the expo-
nents in (5.31) to their asymptotic values. Double entries refer respectively
to the two averaging procedures (5.51) and (5.52).

We obtain

θph = 0.2765(82) (5.73)

δph = 1.947(31) (5.74)

Dph = 0.285(11) (5.75)

fph = 0.08046(96) (5.76)

(with Λ = 1/15, Nmin = 800, and using all the available range in ρ). With
this choice one loses proper normalization in favor of a tighter accordance
with data in the region where the EEDF is higher.

A comparative plot of the EEDF and its phenomenological approximants
is displayed in Figure 5.4.
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Figure 5.4: The EEDF against several phenomenological approximants.

5.2.4 Internal points distribution function

We have computed PENN
N at the θ point1 and fitted the results with a+b/N∆

(see Table 5.16).
The estimate for the exponent is

θint = 0.407(11), (5.77)

which is in good agreement with the theoretical value 0.4166 . . . For the
probability in the scaling limit, we find

PENN
∞ = 0.7854(14). (5.78)

5.2.5 Gyration tensor

Numerical results are reported in Table 5.17, while a graph of the scaling
functions Fα is reported in Figure 5.5.

1We have also studied PENN
N for noninteracting SAWs in two and three dimensions. In

both cases the data are well fitted by a + b/N , that allows us to conclude that θint > 1.
Note that in three dimensions we do not observe corrections of order N−∆, ∆ ≈ 0.5, that
are naively expected.
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N PENN
N

100 0.63307(4)

800 0.71579(10)

1600 0.73159(6)

3200 0.74407(10)

N → ∞ 0.7854(14)

θint = 0.407(11)

Table 5.16: Probability that the endpoint is a nearest neighbor of the walk,
with its extrapolated asymptotic value and exponent.

N q1 q2 A
100 35.5431(77) 7.89542(82) 0.376682(82)

800 386.85(30) 85.871(34) 0.37569(28)

1600 859.93(37) 190.262(41) 0.37653(16)

3200 1916.6(1.5) 422.06(17) 0.37805(28)

Table 5.17: Observables related to the gyration tensor: the two eigenvalues
and the asphericity.

Fitting the eigenvalues as functions of N against scaling form (5.40) yields

ν =

{
0.5747(3) from q1

0.5739(1) from q2

(5.79)

which agree with the slightly off-critical values obtained through the analysis
of the radii in Section 5.2.1. Notice that the walk is quite strongly elliptical,
with the major axis being a factor of three longer than the minor one.
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Chapter 6

SLE and walks

In this chapter we put everything together. We compare the end-to-end dis-
tribution function obtained by whole-plane SLE stopped at the random time
when its fractal variation reaches a fixed value and the distribution of an
inner point in the self-avoiding walk and in the critical (θ-point) interact-
ing self-avoiding walk. The main result is numerical evidence in favor of a
conjecture by Loewner, Schramm and Werner [35] about the scaling limit of
whole-plane self-avoiding walks. Much of the material in this chapter will
appear in [80].

6.1 Details of the analysis

Before one can actually try and match two distribution functions, some de-
tails must be checked. First of all, the SLE simulation depends on many
parameters (namely, the number of samples produced, the length used in
computing the fractal variation, the total variation, the mean length of each
step), and one has to check that the correct scaling regime is attained. Sec-
ondly, the distribution function for inner points in the walk models depends
on the ratio M/N , as in Equation (5.34), and since SLE is supposed to repro-
duce the distribution of a finite section inside an infinite walk one should let
M/N → 0; this requires another check to see if the necessarily finite values
of N and M lie deep enough in the scaling limit.

Recall from Chapters 3 and 4 what parameters play a role in the simula-
tions:

• κ: the diffusivity of the Brownian motion that drives the Loewner
evolution.

• N : the number of independent samples generated; it corresponds to
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the total number of iterations, since we use exact sampling.

• λ: the length parameter used to measure the fractal variation of the
curve; the variation is fvarλ(γ) = nλ, where n is the number of segments
of length λ needed to cover the entire curve γ.

• Υ: the total variation of the curve, which defines the stopping time τΥ.

• Λ: the radius of the forbidden circle around the origin; the trace starts
at z = 1 and travels towards ∞ avoiding this region.

• l: the inherent characteristic length of the discretization steps: since
we let ∆k scale with k in such a way as to have approximate constant
behaviour in the step length, this corresponds to the mean distance
between consecutive points along the SLE trace.

Of course, not all parameters are independent, since for instance a shrinking
of Λ corresponds to a swelling of l, for a scale invariant system as the one
we are simulating (one can map each configuration in the two scenarios by a
rescaling).

In the scaling limit1, we want to have

l → 0

Λ → 0

λ → 0

fvarλ(γ) = Υ

(6.1)

In words, one wants to let the size of the steps go to zero, to remove the cutoff
induced by the presence of a forbidden region around the origin, to measure
the fractal variation with a finer and finer mesh, and to have the number of
steps go to infinity. The latter requirement is actually implied by the last
line of Equation (6.1). In fact, keeping a finite value of the total variation
when it is measured at scale λ → 0 means covering the curve with a number
of segments n → ∞. We will also ask that the fractal variation be measured
at a scale large enough with respect to the granularity of the trace, because
actually each single portion of the trace that is covered by one segment of
length λ should be large enough to have the same fractal properties of the
whole curve. In the end what this means is, that we have to let both l and
λ go to 0, but in such a way that 1/l ≫ 1/λ.

1We are not claiming to have a precise statement of convergence for the fractal variation.
The reasoning in this section is purely heuristic.
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6. SLE and walks 101

Operatively, what we will do is the following. We will fix l to some small
value and will measure everything else (but Λ) in units of l. We will compute
the fractal variation using several values for λ and try to recognize the regime
where it is small enough to be far into the scaling limit, but not too small
to be comparable with the step-size of the discretization. Then, instead of
letting Λ → 0, we will keep it fixed to Λ = 1 (this is very convenient because
of the nature of the simulations) and let Υ → ∞. Again, what this means
operatively is that we will perform the simulations for increasings values of
Υ and check whether we are already in the scaling regime or there remain
corrections to scaling.

For both κ = 6 and κ = 8/3 we are going to perform these checks
before actually matching the distribution against the lattice models. As we
discussed in Chapter 5, the universal scaling behaviour of the distribution
function of the M -th point in an N -step walk ωi, i = 0, . . . , N (both the
SAW and the ISAW) in the limit N → ∞ and r → ∞ is

PN,M(r) ∼ 1

ξ2
M

fW (ρ,
M

N
) (6.2)

where ρ = |r/ξN | and ξ2
M = 〈(ωM − ω0)

2〉ω is the correlation length after M
steps. The subscript in fW stands for “Walk”, and of course the mean 〈·〉ω
is on the walk ensemble. Again, we will have to perform some smoothing
operation on the raw lattice data, as in (5.51) and (5.52), since wild lattice
artifacts would otherwise cover the true behaviour. This is not necessary
(and we shall not do it) when computing observables of the distribution,
such as the moments.

We define the corresponding quantities also for the SLE approximated
trace γ(tk), k = 0, . . . ,N , where N is the number of points computed on the
trace up to the stopping time τΥ (not counting the starting point). Consider
the probability density P (z) that the point γ(tN ) is z, then we will suppose
it has the following scaling behaviour in the scaling limit defined above:

PΥ(z) ∼ 1

ξ2
Υ

fS(ρ) (6.3)

where ρ = |z/ξΥ|, and

ξ2
Υ =

〈
|γ(tΥ)|2

〉
SLE

(6.4)

and the mean 〈·〉SLE is over all realizations of the Brownian driving function.
We will use here the same smoothing procedure as before (it is needed in this
case as well, even though the end-point lives in the continuum). Of course,
the lattice is replaced by the complex plane, and the denominator in (5.51),
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102 6.1. Details of the analysis

which represents the number of lattice points in each shell, will get replaced
by the volume of each shell:

P av
Υ (Σj) =

1

V (Σj)

∫

Σj

PΥ(z)dz (6.5)

where Σj is the shell1 (j − 1)∆ < |z| < j∆, j = 1, 2, . . ., and its volume is
V (Σj) = π(2j−1)∆2. We shall not explicitly study the behaviour of equation
(6.5) as ∆ is changed — as we did in in Chapter 5 —, because many more
important sources of systematic error are present in this case.

The foregoing relations define the two renormalized distribution functions
fW and fS that we plan to try and match between SLE and the lattice models.
More precisely, we will compare fS(ρ) and fW (ρ,M/N → 0) — which from
now on we shall denote simply fW (ρ) —, so as to avoid boundary effects in
the lattice walk models, and will check whether

fW (ρ) = fS(ρ). (6.6)

Implicit in the forthcoming analysis is the assumption that the distribution
function for the stopped SLE trace behaves as in (6.3), which we are going
to verify a posteriori on a case-by-case basis.

In order to compare quantitatively the distributions, we will focus on
their moments

M2k =

∫∞

0
ρ2k+1f(ρ) dρ

(2π)k−1
[∫∞

0
ρ3f(ρ) dρ

]k , (6.7)

where f(ρ) can be either fW (ρ) or fS(ρ). In practice, we will not use this def-
inition. For simplicity, we will be computing M2k directly from the end-point
data obtained from the simulation. Moreover, it is convenient to introduce
an ultra-violet and an infra-red cutoff — that is, a window for computing the
moments — since deviations from scaling behaviour are more pronounced in
the large and small ρ regimes. Suppose we have N independent samples of
γ(tN ), and call them zi, i = 0, . . . , N − 1. We will compute the following
quantities

M2k(ρmin, ρmax) =

∑′ |zi|2k

[∑′ |zi|2
]k , (6.8)

where the sums
∑′ are restricted to the window

ρmin <
|zi|
ξΥ

< ρmax, (6.9)

1Notice that ∆ here has nothing to do with the ∆k defined elsewhere.
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6. SLE and walks 103

and we shall study how well the moments compare for the two distributions
fW and fS as a function of the cut-offs ρmin and ρmax. Notice that the
moments in (6.8) strongly depend on the cut-offs, especially the higher-order
ones.

6.2 Fractal dimensions

In this section we do some preliminary checks to be sure that the process
we are simulating has the expected properties. First, we check that it has
the scaling property (6.3), by making sure that — modulo slight corrections
to scaling — the renormalized distribution functions obtained with different
values of λ and Υ all collapse onto the same universal curve.

In Figure 6.1 are plotted the distribution functions of whole-plane SLE
with κ = 8/3 for λ = 4, 10, 20, 40 with Υ = 400. Recall that we measure
everything in units of l. As is clear from the plots, the distributions nicely
fall on the same curve, apart from slight deviations in the extreme regimes
(ρ large and ρ small) where corrections due to scaling and to the finiteness
of λ are more important (these are more apparent in the logarithmic plot).
What is clear from the plots is that the curve with λ = 40 suffers from
severe deviations due to the coarse grained nature of the procedure used for
computing the fractal variation. On the other hand, any other value λ < 40
seems to yield distributions falling more or less on the same curve. Actually, a
systematic drift in λ is present also for smaller values, this time in the regime
where ρ ≈ 1. It becomes visible if one carefully computes the moments of
the distributions in a window discarding the tails at ρ large and small. By
inspection of Table 6.3, where this behavior is apparent, we then choose the
value λ = 20, which seems a good compromise, and simulate SLE for a larger
value of the total fractal variation, namely Υ = 800. Results are reported in
the same table, and a comparative plot of two distributions obtained with
different values of Υ and the same λ is in Figure 6.2.

The same check is done for κ = 6: results are in Figure 6.3. We have less
data than in the κ = 8/3 case; here λ = 4, 10, 20 and Υ = 400. Statistical
errors are slightly larger as well.

Next, we measure the fractal dimension df of the SLE traces. For this
purpose, we revert to parametrization by capacity, since the fractal dimen-
sion is not a parametrization-dependent observable, and of course simulating
SLE with its natural proper time is way faster. We produce the SLE trace
approximant γ(tk), k = 0, . . . ,N and then apply the same technique we in-
troduced in Chapter 4 for computing the fractal variation of a growing chain.
For increasing values of λ we measure the number n(λ) of segments of length
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Figure 6.1: The renormalized distribution functions for whole-plane SLE
κ = 8/3 with fixed total fractal variation Υ = 400. The plot on the bottom
has logarithmic scale on the y axis.

λ that are needed to cover up the entire γ. The expected scaling form as
λ → 0 is

n(λ) ∼ λ−df (6.10)

We recall from Chapter 2 that the fractal dimension of SLE is df (κ) = 1+κ/8.
The results for κ = 8/3 and κ = 6 are reported in Figure 6.4 in a log-log plot,
and compared against the two lines corresponding to fractal dimensions 4/3
and 7/4. Notice the expected strong deviations from the scaling form (6.10)
at small values of λ. These deviations are due to the fact that at small scales
(comparable to the step-size l) the curve is of course non-fractal; moreover,
for very small λ a saturation effect occurs, because n(λ) can not exceed the
actual number of steps in γ. Small deviations are expected to appear also at
large λ, when λ is comparable to the end-to-end radius of the trace itself.

Results for fits in a window λmin < λ < λmax are reported in Table 6.2.
We kept λmax fixed to the largest possible value just before the saturated
region (which occurs quite abruptly), while changing λmin. Errors naturally
become larger and larger as λmin is increased, but nonetheless the trend shows
that the fractal dimensions converge to the expected values.
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Figure 6.2: The renormalized distribution functions for whole-plane SLE
κ = 8/3 stopped at fractal variation Υ = 400 and 800. Here λ = 20.

6.3 κ = 8/3 and SAW

Correspondence between the distribution functions for the self-avoiding walk
restricted to stay in the upper half plane and chordal SLE with κ = 8/3
has been tested numerically in [51], yielding a positive answer. We shall not
repeat this test here, but we shall rather move on directly to the whole-plane
case.

Before comparing the distribution functions obtained from whole-plane
SLE and the self-avoiding walk, we study the behaviour of fW (ρ,M/N) as
a function of M/N , since we want to look at fW in the regime where the
parameter goes to zero. Figure 6.5 shows plots of the internal point renor-
malized distribution function for M = 1000, 2000, 4000, 8000, 16000, 32000
and N = 100000. The curves all fall onto the same universal distribution.
Table 6.3 displays the computed moments for these distributions. One can
see that the dependence on M/N is very slight, if present at all. Only the
moments for the extreme values M = 1000 and M = 32000 seem to be very
slightly out of the regime. In the former case, this is probably due to lattice
fluctuations, while in the latter one probably begins to see the corrections
that will eventually sum up to give the usual end-point distribution function
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Figure 6.3: The renormalized distribution functions for whole-plane SLE
κ = 6 with fixed total fractal variation Υ = 400.

as M → N .

We choose to pick the distribution at M = 8000 for the comparison with
SLE data. The choice is not at all crucial, since — as will be clear in the
following — errors in SLE data are much higher than the “distance” between
the SAW distributions for different inner points. Table 6.3 gathers values of
the moments evaluated for the self-avoiding walk and for the whole-plane
SLE for several values of the cut-offs ρmin and ρmax and of the parameter λ,
with fixed Υ = 400 and Υ = 800. Let us take a closer look at the table. Of
course, accordance for low-order moments is more easily established, while
inspection of high-order ones helps in recognizing trends. Notably, systematic
errors are huge. They are due to the scaling behavior in λ and Υ. Moreover,
they are wilder for larger windows, since — as we already noted — corrections
in the extreme regimes are more important. Also, for the same reason they
appear to be more prominent for ρ ∈ [0.5, 3.5] than for ρ ∈ [0, 3]. Let us then
consider only the window ρmin = 0, ρmax = 3. As we noted in Section 6.2, if
we fix Υ = 400 the moments display a maximum corresponding to λ = 20,
which then seems to be the best compromise. Moreover, if one then fixes
λ = 20 and looks at the scaling in the total fractal variation, one can see
that the moments actually keep increasing as Υ is doubled and tend to the
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Figure 6.4: Number of segments of length λ needed to cover the trace. Notice
the logarithmic scale on both axes. The lines represent the theoretical slope
corresponding to fractal dimension 1 + κ/8. (Errors are too small to be
displayed in these plots.)

SAW values.

A comparative plot of the distribution functions of SLE and SAW is in
Figure 6.6.

6.4 κ = 6 and ISAW

Correspondence between SLE with κ = 6 and the critical (θ-point) interact-
ing self-avoiding walks in the half-plane is easily established. The argument
by Coniglio et al. described in Chapter 1 connects the critical ISAW to the
interfaces of critical percolation. The correspondence of the latter with SLE
has been rigorously proved for the triangular lattice [42], and universality sug-
gests that it holds also for the square lattice. Finally, Kennedy has compared
the distribution functions for SLE with κ = 6 and the critical percolation
explorer in [51], finding good agreement.

Here, we consider the whole plane. As we did for the self-avoiding walk
in Section 6.3 we first compare the distributions of the internal points. The
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κ λmin df 1 + κ/8

8
3

1 1.14(1)

4
3

= 1.33 . . .

3 1.241(6)

10 1.283(2)

30 1.284(5)

100 1.29(4)

6

1 1.06(4)

7
4

= 1.75

3 1.36(1)

10 1.37(4)

30 1.40(7)

100 1.61(4)

Table 6.1: The fractal dimension of whole-plane SLE for κ = 8/3 and κ = 6,
measured in shrinking windows.

M M4 M6 M8 M10 M12

1000 1.3821(23) 2.3206(60) 4.477(16) 9.623(46) 22.59(14)

2000 1.3828(23) 2.3243(60) 4.493(16) 9.682(47) 22.81(14)

4000 1.3826(23) 2.3232(60) 4.489(16) 9.677(47) 22.83(15)

8000 1.3822(23) 2.3214(60) 4.482(16) 9.645(46) 22.69(14)

16000 1.3812(23) 2.3179(60) 4.472(16) 9.613(46) 22.58(14)

32000 1.3787(23) 2.3071(59) 4.436(16) 9.504(45) 22.26(14)

Table 6.2: The first 5 non-trivial moments of the self-avoiding walk renor-
malized distribution function for several internal points. Here, the total walk
length is N = 100000.

distributions of two internal points (M = 500, 2000 out of walks of length
N = 3000) together with the distribution of the endpoint are plotted in
Figure 6.7.

The plot in Figure 6.8 shows the distribution functions for whole-plane
SLE with κ = 6 and the interacting self-avoiding walk at the transition point.
It is obvious that there is no coincidence at all.

We want to make sure that the discrepancy is not caused by a scaling in
λ or Υ, and neither by a failure of the fractal variation method due to the
compactness of the trace at κ = 6. Therefore, we compare the distributions
obtained by this method with those obtained with the reparametrization
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λ ρmin ρmax M4 M6 M8 M10 M12

4
0

3 1.304(10) 1.970(18) 3.267(38) 5.787(84) 10.74(18)
3.5 1.337(10) 2.127(21) 3.817(50) 7.49(13) 15.77(32)
∞ 1.342(10) 2.155(22) 3.933(55) 7.94(15) 17.39(42)

0.5
3 1.291(10) 1.928(17) 3.164(37) 5.543(79) 10.18(17)

3.5 1.324(10) 2.084(20) 3.700(49) 7.19(12) 14.97(31)

10
0

3 1.315(7) 2.009(14) 3.374(32) 6.045(70) 11.35(16)
3.5 1.352(10) 2.182(17) 3.979(42) 7.93(11) 16.94(27)
∞ 1.357(7) 2.216(18) 4.120(46) 8.47(12) 18.92(36)

0.5
3 1.300(6) 1.962(14) 3.254(30) 5.760(65) 10.68(14)

3.5 1.337(7) 2.132(17) 3.841(40) 7.57(10) 15.97(26)

20
0

3 1.320(11) 2.022(25) 3.404(55) 6.11(12) 11.48(27)
3.5 1.355(12) 2.188(29) 3.983(71) 7.91(18) 16.79(46)
∞ 1.359(12) 2.212(30) 4.078(75) 8.27(20) 18.06(54)

0.5
3 1.303(11) 1.971(24) 3.274(52) 5.80(11) 10.75(25)

3.5 1.338(12) 2.134(28) 3.835(68) 7.52(17) 15.76(43)

40
0

3 1.318(7) 2.008(14) 3.352(31) 5.955(68) 11.07(15)
3.5 1.344(7) 2.133(16) 3.784(39) 7.282(94) 14.92(23)
∞ 1.345(7) 2.135(16) 3.792(39) 7.311(95) 15.02(24)

0.5
3 1.300(6) 1.954(14) 3.217(30) 5.636(64) 10.33(14)

3.5 1.327(7) 2.077(16) 3.635(37) 6.901(88) 13.95(22)

20
0

3 1.322(9) 2.030(20) 3.428(42) 6.177(93) 11.66(21)
3.5 1.359(9) 2.207(23) 4.048(56) 8.12(14) 17.43(37)
∞ 1.366(10) 2.247(24) 4.218(62) 8.77(17) 19.81(49)

0.5
3 1.304(8) 1.975(18) 3.290(40) 5.845(87) 10.88(19)

3.5 1.341(9) 2.149(22) 3.889(53) 7.69(13) 16.30(34)

SAW
0

3 1.330(2) 2.059(5) 3.508(10) 6.379(23) 12.155(52)
3.5 1.371(2) 2.258(6) 4.211(14) 8.592(36) 18.763(94)
∞ 1.382(2) 2.321(6) 4.482(16) 9.645(47) 22.69(15)

0.5
3 1.312(2) 2.003(5) 3.365(10) 6.034(21) 11.336(48)

3.5 1.353(2) 2.199(5) 4.045(13) 8.141(33) 17.539(87)

Table 6.3: The moments for whole-plane SLE with κ = 8/3, computed in
several windows and for several values of λ. Values in the uppermost table
have Υ = 400 while those in the middle table have Υ = 800. They are
to be compared with the values listed immediately below, which are those
measured in the same windows for the SAW with N = 100000, M = 8000.
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Figure 6.5: The self-avoiding walk renormalized distribution functions for
several internal points (N = 100000).

based on the second-derivative of the map, which we proposed and studied
in Chapter 4. The results for both κ = 8/3 and κ = 6 are in Figure 6.9,
and support the fact that the SLE traces we are producing have the correct
parametrization.

This result is puzzling. Naively one would expect that just as whole-
plane SLE with κ = 8/3 turns out to yield the correct distribution function
of the self-avoiding walk, so should happen for κ = 6 and the θ-point. As
to why this is not so, one can make suppositions. One possibility is that the
correspondence between SLE and the walk model extends to the whole plane
for the self-avoiding walk thanks to some special feature the latter possesses.
One such feature for instance could be restriction covariance [35], that the
θ-point indeed does not possess. It is by restriction covariance that the SAW
in the half plane is just the SAW in the whole plane restricted not to leave
H. On the other hand, the interacting SAW behaves in a very different way
under a change of the domain: in defining the ISAW in the half plane one
faces some ambiguity with the boundary conditions. Should the real axis
be attractive as the walk itself, or should it simply be the boundary of a
forbidden region?

Another possibility is that the θ-point is not in the same universality class
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Figure 6.6: A comparative plot of the distribution functions obtained from
whole-plane SLE and SAW.

as the percolation explorer, even in the half plane. Actually, the argument
by Coniglio et al. uses Ockham’s razor to guess that the attractive interac-
tion introduced by the plaquettes that have already been visited drives the
model towards the tri -critical point. Nothing really ensures that it is not a
transition of higher order criticality. Moreover, the structure of the operators
emerging in the scaling limit is unknown, and there could be exactly marginal
perturbations that could change some properties of the distribution function
without affecting the critical exponents. To check numerically if this is the
case, one should first of all define what the ISAW is in the half plane. If
one wants a chance of obtaining the scaling limit of the percolation explorer,
an attractive real boundary should probably be chosen. This is because the
percolation explorer is defined by fixing the spins of the boundary plaquettes,
which means that the walk has a fixed choice when it hits the boundary, and
this counts as an attractive interaction in the partition function. Moreover,
heuristics tell us that since SLE satisfies conformal Markov covariance, then
the walk model should probably treat the boundary in the same way as the
support of the walk itself. Notice that simulating such a half-plane version of
the ISAW would require devising new algorithms (or relying on PERM [79]),
since the Monte Carlo moves we used for our simulations intrinsically need
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Figure 6.7: The θ-point renormalized distribution functions for two internal
points and the endpoint (N = 3000).

the full plane. In addition, the critical point of such a model is not expected
to be at the same temperature as in the whole-plane version, so one should
also carefully look for it before a match with SLE and/or percolation can be
done.
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Figure 6.8: A comparative plot of the distribution functions obtained from
whole-plane SLE and critical ISAW.
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Figure 6.9: A comparative plot of the distribution functions obtained for
SLE with κ = 8/3 (above) and κ = 6 (below) with two different methods of
reparametrizing the trace.
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Conclusions and outlook

This work was devoted to the study of the critical properties of interact-
ing walks in two dimensions, with particular emphasis on their conformal
invariance.

Two models have been considered, which belong to different universality
classes. The first is the well-known self-avoiding walk, which models poly-
mers in good solutions. The second is the interacting self-avoiding walk, in
which nearest-neighbor contacts between non-consecutive monomers are en-
ergetically favored. As the strength of this interaction is varied a (tri-)critical
point is reached, called the θ point. This model describes polymers in poor
solutions (under the critical temperature) and the critical transition between
the latter and the swelled SAW-like behavior above the critical temperature.

We first focused on the critical properties at the θ point, checking them
against the theoretical predictions. We performed extensive Montecarlo sim-
ulations and obtained high precision estimates for the critical exponents and
the critical temperature, as well as for several quantities such as the universal
ratios and the CSCPS expression. The end-to-end distribution function has
been studied thoroughly (both the short- and large-distance behaviors, and
the phenomenological expression).

Then we moved on to considering conformal-invariance related questions.
The recently-introduced and widely studied Schramm-Loewner evolutions
(SLE) are the perfect candidates for the scaling limits of conformally invari-
ant walk models. SLE is a one-parameter family (κ > 0) of random processes
on the complex plane. Connection to the self-avoiding walk (κ = 8/3) and
to the θ-point interacting self-avoiding walk (κ = 6) has been established in
the literature only in the half plane (the latter relies on the supposed equiv-
alence with the critical percolation explorer). We checked this connection
in the topologically different whole-plane case, focusing in particular on the
distribution functions. To this aim, we devised a way to simulate SLE in C

and introduced and studied some techniques to obtain the correct parame-
trization. We found that the distribution function of an inner point in the
self-avoiding walk actually coincides with the end-point distribution function
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of whole-plane κ = 8/3 SLE with the correct parametrization, thus provid-
ing numerical evidence in favor of a conjecture by Werner. We did the same
check for the θ-point polymers and κ = 6 whole-plane SLE, and surprisingly
found that the two distribution functions do not match. This unexpected
result deserves further investigation, since it could unveil new aspects of the
conformal invariance of θ-point self-avoiding walks, and shed new light on
the connection with critical percolation.

The present results and methods could be extended and developed in
several directions. First of all, the conformal invariance of θ-point polymers
has to be investigated further. Of course, one expects the critical point
to display conformal invariance. The failure of the connection to whole-
plane SLE could be due for instance to the critical interacting SAW not
satisfying the domain Markov property, and this property could be checked
directly. One could also go the other way around, and analyze the statistical
properties of the driving function of ISAWs by embedding the lattice in C and
then taking the continuum limit. One way to do this is the so-called zipper
algorithm, which exploits some of the techniques we described in Chapter 3
to obtain the approximate driving function given the trace.

Another numerical investigation could be done, using this same method.
Lately, several researchers turn their attention to the study of off-critical
(massive) scaling limits of walks and interfaces using Loewner methods [].
The zipper algorithm can be used for such a purpose, for studying the critical
crossover limit to and from the several polymeric universality classes. For
instance the Domb-Joyce model (random walks with energy proportional to
the number of intersections) and the ISAW offer the possibility of such an
investigation.

Higher-order multicritical points could be studied, as well. Polymers at
higher order criticality all have a trivial central charge (this is essentially
because they all map to a O(N→ 0) field theory). But since the mapping
SLE↔CFT expressed by Equation (2.37) is quadratic, at most two values of
κ can be found for a given central charge, namely our old friends κ = 8/3
and κ = 6. An immediate consequence is then that multicritical polymers
either are not conformally invariant or they do not satisfy the domain Markov
property. Necessarily, their driving function is not rescaled Brownian motion.

Now, turning attention to SLE itself, it would be interesting to study its
reparametrization issues more deeply. Firstly, at present we do not know
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how to obtain the distribution function of the end-point of a finite-length
walk (in the scaling limit) from SLE. This could be related to the problem
of the Schramm-Loewner description of the critical crossover. Secondly, the
techniques studied in Chapter 4 should be developed more (for instance by
mixing the first- and second-derivative approaches in order to obtain a better
approximation), since they are very useful in matching conformational prop-
erties of SLE and the walk models. The fractal-variation method is good
for obtaining the distribution of a single point, but it gets slower and slower
when one is interested in computing more and more points on the trace with
the correct parametrization.
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Appendix A

Slit mapping of the disc

In this appendix we give a derivation of the radial map φD(z) that produces
a slit of logarithmic capacity ∆ inside the unit disc, Equation (3.19). The
whole-plane map that produces a slit out of the disc can then be computed
as in (3.18). As we discussed in Chapter 3, φD(z) can be found by solving
the radial Loewner equation in the disc with constant driving force, and then
taking the inverse. In particular, we want the slit to be based at the real
point 1, so the driving term will be taken equal to

eiU0 = 1. (A.1)

The Loewner equation takes the form

ġt(z) = −gt(z)
gt(z) + 1

gt(z) − 1
, g0(z) = z, (A.2)

which gives the map that absorbs the slit as a function of time. The atomic
map that instead produces the slit of capacity ∆ will then be

φD(z) = g−1
t=∆(z). (A.3)

From Equation (A.2), by separation of variables, one obtains

gt − 1

gt(gt + 1)
dgt = −dt (A.4)

where we have dropped the dependency on z for clarity. By integrating, one
gets

2 log
gt + 1

g0 + 1
− log

gt

g0

= t0 − t (A.5)



120

whence, by setting the initial condition t0 = 0 and exponentiating,

g0

(g0 + 1)2

(gt + 1)2

gt

= e−t (A.6)

whose solution is

gt =
(g0 + 1)2

2g0

[
e−t − 2g0

(g0 + 1)2 −
√

e−2t − 4e−tg0

(go + 1)2

]
(A.7)

Actually, since Equation (A.2) is quadratic, it also allows the solution with
the “+” sign before the square root in (A.7). The “−” sign is chosen, because
this is the only solution which sends the interior of D onto D.

Substituting the initial condition g0(z) = z to read the behavior of the
map in the actual complex plane, we get

gt(z) =
1

4etz

[
2(z + 1)2 − 4etz − 2(z + 1)

√
(z + 1)2 − 4etz

]
(A.8)

and finally, by inverting and substituting t = ∆, we obtain the atomic map

φD

k (z) =
1

4e−∆kz

[
2(z + 1)2 − 4e−∆kz − 2(z + 1)

√
(z + 1)2 − 4e−∆kz

]
,

(A.9)
which is of course Equation (3.19). Inversion of equation (A.8) turns out to
be just an inversion of time t 7→ −t. The reason why this is true will be clear
in the following. In this radial case as well as in the chordal case discussed in
Chapter 3, the choice of the analytical branch of the square root is crucial.
Here — opposite to the choice we made for the map in (3.13) — we need
to set the branch cut on the negative real axis, so that

√
(z + 1)2 will have

positive real part for z ∈ D.
Another way of looking at the problem of constructing a slit mapping for

the disc is to try and guess it by composing known maps. The map

φ(z) =
4z

(z + 1)2
(A.10)

sends the open unit disc onto the complex plane minus the semi-infinite real
needle (1,∞). It leaves the points 0 and 1 invariant, and opens up the unit
circumference, mapping it onto the needle. Moreover, real points 0 < x < 1
are mapped to real points 0 < x′ < 1. One can exploit this simple map
by devising the slit mapping in the new geometry realized by φ. In fact, a
dilatation in this geometry

Dt(z) = etz (A.11)
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corresponds to the map gt that absorbs the (t-dependent) slit in the disc
geometry, as a little thinking convinces. Then

gt = φ−1 ◦ Dt ◦ φ (A.12)

which, by substituting the inverse of (A.10)

φ−1(z) =
2 − z − 2

√
1 − z

z
, (A.13)

yields1 the desired result, that is Equation (A.8).
It is now clear that the inverse of gt(z) is simply g−t(z), since from (A.12)

one has

g−1
t =

(
φ−1 ◦ Dt ◦ φ

)−1

= φ−1 ◦ (Dt)
−1 ◦ φ

= φ−1 ◦ D−t ◦ φ = g−t.

(A.14)

1Here, as well as in the previous derivation from the Loewner equation, the sign in
front of the sqare root must be chosen carefully.
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Appendix B

Scaling of the step length in

discrete SLE

We derive here the scaling relations (3.24) and (3.25). Let us start from the
chordal case. Let ln denote the length of the n-th step in the discretized
growth, that is

ln = |γ(tn) − γ(tn−1)| . (B.1)

We saw in Chapter 2 that the half-plane capacity is a measure of the size of
a hull. Then, by approximating (B.1) by

ln ∼ |γ(tn)| − |γ(tn−1)| (B.2)

as if it grew radially, one gets

ln ∼ hcap (γ[0, tn]) − hcap (γ[0, tn−1]) , (B.3)

and since the capacity of the composition of the atomic maps is the sum of
the capacities, one can write

ln ∼

√√√√
n∑

i=0

∆i −

√√√√
n−1∑

i=0

∆i

=
1

2
∆n

(
n−1∑

i=0

∆i

)− 1
2

.

(B.4)

Setting
∆i = ∆i (B.5)

in Equation (B.4) and then expanding at first order around infinity yields

ln ∼
√

∆

2

[
1 +

1

2n
+ O

(
1

n2

)]
, (B.6)
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which shows that scaling ∆i as in (3.24) provides an asymptotically constant
step length. The constant value reached for large n can be adjusted through
the choice of ∆. Of course the foregoing is just an approximation, and the
actual step length is a random variable, but its mean behaves as described.

Let us move on to the whole-plane radial case. Now the exponential of
the logarithmic capacity is a measure of the linear size of the growing hull.
This is essentially a consequence of the Koebe 1/4 theorem, which bounds
the size of the image of the unit disc D under a conformal map g in terms of
g′(0). One gets

ln ∼ exp

(
n∑

i=0

∆i

)
− exp

(
n−1∑

i=0

∆i

)

=
(
e∆n − 1

)
exp

(
n−1∑

i=0

∆i

) (B.7)

Setting

∆i =
∆

i
(B.8)

in Equation (B.7) and expanding yields

ln ∼ e∆γ(n − 1)∆

[
∆

n
+ O

(
∆2

n2

)]
(B.9)

where γ is the Euler-Mascheroni constant. By choosing ∆ = 1 one then has

ln ∼ eγ

[
1 − 1

2n
+ O

(
1

n2

)]
, (B.10)

which shows that scaling ∆i as in (3.25) provides an asymptotically constant
step length. Here, contrary to the half-plane case, there is no freedom left to
choose the mean step length, since ∆ has to be fixed to 1 in order to have
the correct scaling behavior. Operatively, one keeps a constant ∆i for a few
steps, until the step-length has approximately reached the desired value1,
and then sets ∆i = 1/i from then on.

1The actual amplitude will be corrected by a factor eγ , but this is of order unity.
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