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Chapter 1

Why bothering with
combinatorial optimization
problems?

Combinatorial optimization problems (COPs) arise each time we have a (finite)
set of choices, and a well defined manner to assign a “cost” to each of them.
Given this very general (as well as rough) definition, it should not be surprising
that we encounter many COPs in our everyday life: for example, it happens
when we use Google Maps to find the fastest route to our workplace, or to a
restaurant. But we deal with COPs also in much more specific situations, rang-
ing from the creation of safer investment portfolios to the training of neural
networks. Despite their ubiquity, COPs are far from being completely under-
stood. The most impressive example of our lack of knowledge is the so-called “P
vs NP” problem, which puzzles theoretical computer scientists and mathemat-
ics since 1971, when Levin and Cook discovered that the Boolean satisfiability
problem is NP-complete [Coo71].

The study of COPs attracted soon the statistical physics community which,
in those years, was beginning the study of spin glasses and thermodynamics of
disordered systems. The connection between COPs and thermodynamics was
clear since the work of Kirckpatrick, Gelatt and Vecchi [KGV83], and after that
it became even stronger when physicists realized that “random” COPs (RCOPs)
display phase-transition like behaviors (the so-called SAT-UNSAT transitions)
[KS94]. The application of statistical mechanics techniques to COPs flourished
after the seminal paper by Mezard and Parisi [MP85], where they applied the
so-called replica method to study typical properties of the random matching
problem. Their results, together with those obtained after them, are astonishing
and elegant, but they heavily rely on a sort of “mean-field” assumption: the cost
of each possible solution of the COP studied is a sum of independent random
variables. Let us be more precise with an example: consider the problem of
going from the left-bottom corner of a square city to the opposite one. The
possible solutions (or configurations) are the sequences of streets that connect
these two corners of the city, and the cost of a possible solution is the total
length of the path. In the random version of the problem, one consider an
ensemble of cities, each of them with its pattern of streets, and a distribution
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6 CHAPTER 1. WHY BOTHERING WITH COPS?

of probability on them. In this case one is interested statistical properties of
the ensemble such as the average cost of the solution, rather than the cost of
the minimum-length path for a specific city (instance). In this example the
mean-field approximation would consist in choosing the ensemble such that the
length of each road is an independent random variable. On the opposite, in the
original problem the Euclidean structure of the problem introduces correlations
between the street lengths, which are completely neglected in the mean-field
version of the problem. Euclidean correlations are not the only possible which
are neglected in mean-field problems: using again the examples given before,
assets that can be used in a portfolio are correlated (for example, shares of
two companies in the same business area) and images used to train a neural
network are typically “structured”, in opposition with the hypothesis of mean-
field problems.

Most of this manuscript will deal with the introduction of Euclidean cor-
relations in RCOPs. We will see that several RCOPs can be analyzed with a
well-understood formalism in one spatial dimension, and this can sometimes be
extended, in very non-trivial ways, to two-dimensional problems.

We will also discuss another route toward solutions of COPs that physicists
(together with mathematics and computer scientists) are exploring in this years
with intense interest: using quantum computers to solve hard combinatorial
optimization problems. Even though the original idea has been discussed by
Feynman in 1982 [Fey82], many questions are still without an answer. Here we
will use Euclidean COPs as workhorse to analyze some of the open questions of
the field.

This manuscript is organized as follows:

• In Chap. 2 we introduce all the necessary formalism to deal with COPs and
RCOPs from the statistical mechanics point of view. In particular we start
by defining formally what a COP is, and explaining why the statistical
physics framework is a useful point of view to study COPs (Secs. 2.1, 2.2,
2.3). We also briefly review the more relevant points (for our discussion)
of spin glass theory, using the spherical p-spin problem as an example
(Secs. 2.4, 2.4.1). Finally, we discuss large deviation theory (again using
the spherical p-spin model) as a possible path to go beyond the study of
the typical-case complexity for RCOPs.

• In Chap. 3 we address the problem of Euclidean correlations in RCOPs.
We discuss firstly why we tackle problems starting from the 1-dimensional
case (Sec. 3.1.2), then we analyze in details several problems where our
techniques can be used (Sec. 3.2, 3.3, 3.4).

• In Chap. 4 we briefly discuss why quantum computation can be useful to
solve COPs (Sec. 4.1), using the famous Grover problem as an example
(Sec. 4.1.3). Then we introduce two general algorithms of quantum com-
puting which are used to solve COPs, the quantum adiabatic algorithm
(Sec. 4.2) and the quantum approximate optimization algorithm (Sec. 4.3).
In the QAA case, we also analyze the performance of the DWave 2000Q
quantum annealer to solve a specific COP problem, and we use the results
obtained to address one of the current problems for the QAA, the so-called
parameter setting problem (Sec. 4.2.3).
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• Finally, in Chap. 5 we summarize the main results of this work and explore
the possibility of future works to further extend our understanding of
COPs with correlations.

Throughout the manuscript, we make the effort to relegate the technical details
of computations in the appendix, whenever possible, to lighten the text and to
ease the reading. To do that, we have an appendix for each main chapter where
we put the corresponding technical computations.
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Chapter 2

Statistical physics for
combinatorial optimization
problems

Combinatorial optimization problems (COPs) have been addressed by using
methods coming from statistical physics almost since their introduction. In this
chapter we give a concise introduction of both COPs and the statistical physics
of disordered systems (spin glass theory), with a focus on the links between
these two fields. An important remark is due: both COPs and spin glass theory
are deep and well-developed topics, and we do not want (neither would be able)
to give a comprehensive review of them. In fact, we will limit ourselves to
introduce the basic notions that we will need here and in the following chapters.

2.1 Combinatorial optimization problems

Consider a finite set Ω, that is |Ω| <∞, and a cost function C such that

C : Ω → R. (2.1)

The combinatorial optimization problem defined by Ω and C consists in finding
the element σ⋆ ∈ Ω such that

σ⋆ = argmin
σ∈Ω

C(σ). (2.2)

We will call the set Ω configuration space, each element of the configuration
space will be a configuration (of the system). We will call C also Hamiltonian
of the system (sometimes we will also use the label H for it, instead of C)
and C(σ) will be the cost or energy of the configuration σ. Notice that we
are willingly using a terminology borrowed from the physics (and statistical
mechanics) context, but up to this point this is pure appearance. However, as
we will see in the following, this choice has deep root and can lead to extremely
useful insights.

Let us now consider an example of COP. Suppose you and a friend of yours
are invited to a bountiful feast. The two of you sit at the table, and then

9



10 CHAPTER 2. STATISTICAL PHYSICS FOR COPS

start discussing about who should eat what, since each dish is there in a single
portion. Therefore you assign a “value” to each dish, and try to divide all of
them in two equally-valued meal. This is the so-called “integer partitioning”
problem: given a set {a1, . . . , aN} of N integer positive numbers, find whether
there is a subset A such that the sum of elements in A is equal to the sum of
those not in A, or their difference is 1, if

∑N
i=1 ai is odd. More precisely, this

is the “decision” version of the problem, that is it admits a yes/no answer. We
will see later the importance of decision problems, while we will focus here on
restating the problem as an optimization one: given our set {a1, . . . , aN}, find
the subset A which minimizes the cost function

C(A) =

⏐⏐⏐⏐⏐⏐
∑
j∈A

aj −
∑
j /∈A

aj

⏐⏐⏐⏐⏐⏐. (2.3)

Therefore in this case the configuration of a system is the subset A, and its cost
is the “un-balance” between the elements of A and those not belonging to A.
Also notice that if one can solve the optimization problem, then the solution to
the decision problem is readily obtained.

Each COP has some parameters which fully specify it, which most of the
times are inside the cost function. These parameters are, basically, the input of
our problem. When the full set of these parameters is given, we say that we have
an instance of our COP. For example, an instance of the integer partitioning
problem is specified by the set {a1, . . . , aN}.
If we decide to deal with a COP in general, that is without specifying an in-
stance, we have two choices: we can start searching for an algorithm to solve
our problem for each possible value of the input, or try to say something more
general about the solutions. The first one is the direction (mostly!) taken by
computer scientists (however, we will say something about it later), while physi-
cists (mostly!) prefer to analyze the problem from the second point of view. We
will follow this second road, but to do that we have to deal with the fact that
the solution will depend drastically on the specific instance of the problem.
The way out this thorny situation consists in defining an ensemble of instances
and in giving to each of them a certain probability to be selected. Then many
interesting quantities can be computed by averaging over this ensemble, so they
do not depend anymore on any specific instance. For example, let Ω and C be
respectively the configuration space and the cost function of a given COP. An
instance is specified by the continuous parameters x, so we will have C = Cx
and the joint probability p(x) over the parameters (and therefore over the in-
stances). A quantity that we will be interested in is the average cost of the
solution of our problem, which is given by

C⋆ = min
σ∈Ω

Cx(σ) =

∫
dx p(x)min

σ∈Ω
Cx(σ). (2.4)

How do we choose p(x)? In general, we would like to have an ensemble and
a p(x) such that the averages over the ensemble are representative of the typi-
cal case of our COP. That is, we hope that if we define an ensemble of integer
partitioning problems, than our findings will be useful for our banquet problem.
This observation brings us to another important point: on one hand, we would
like to have simple ensembles, where we can carry out as much analytic compu-
tations as possible; on the other hand, this is typically a oversimplified situation.
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For example, the standard ensemble defined for integer partitioning is composed
of all the possible instances made of N integers of the set {0, 1, . . . , 2b−1} (for
a certain parameter b), and each of them has the same probability. In practice,
this is done by choosing at random N integers from our possibility set, each
time we need an instance.
We will say something about what can be learned from this ensemble of integer
partitioning, but one can immediately see that our banquet problem is consid-
erably different: when choosing the value of each dish, you will probably have a
lot of correlations. For example, you could decide to give to an ingredient, say
sea bass, a high value and therefore all dishes containing sea bass will have a
high, correlated value. And you could (and probably would) do the same with
many other ingredients. This is an example of structure in our instance, which
is often difficult to capture with simpler ensembles where each parameter of the
problem is uncorrelated with the others.

In the following, we will deal a lot with a specific kind of structure, that is
the one induced by Euclidean correlations.

2.2 Why statistical physics?

The paradigms of statistical physics, and in particular those of spin glass theory,
are particularly suited to deal with RCOPs. There are three main reasons for
this fact, that we will now discuss.

2.2.1 Partition functions to minimize costs

A COP is defined by its configuration space Ω and its cost function C, and we
are interested in finding its minimum. We introduce a fictitious temperature T
and its inverse β, and define the partition function of our problem as

Z =
∑
σ∈Ω

e−βC(σ), (2.5)

where the name, partition function, arises from the fact that we are interpreting
the cost of a configuration the energy of a (statistical) physics system. When
the temperature is sent to zero, only the solutions of the COP, which minimizes
C(σ), are relevant in Eq. (2.5). Therefore, in this sense, a COP can be seen
as the zero-temperature limit of a statistical physics problem. We can compute
many quantities starting from this point of view, but we will mainly be interested
in the following:

F (β) = − 1

β
logZ, (2.6)

since when we send β → ∞ this quantity is the cost of the solution of our COP.
A useful consequence of the parallelism between low-temperature thermody-
namics and COP that we just described is that we can use the well-developed
techniques coming from the first field to address problems in the second. The
first successful example of this program is the celebrate simulated annealing
algorithm, introduced by Kirkpatrick, Gelatt and Vecchi in [KGV83].

Of course, there is no way we are able to compute Z and F for a given
instance of a realistic (not over simplified) COP since both of these quantities
depend on the parameters which define our instance. Here the idea of RCOPs
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comes in our help, and we can connect our formalism with that of disordered
systems. We define an average, labeled by an overline, exactly as in Eq. (2.4)
and

Fav(β) = F (β) = − 1

β
logZ. (2.7)

The computation of this quantity is at the heart of the so-called spin glass theory
(see, for example, the books [MPV87, Dot05, Nis01]) and several methods have
been devised to deal with this kind of problems. Later we will review in detail
one of these methods, the celebrated replica method.

Before moving to the next section, we want to add an important remark:
the average done in Eq. (2.7) is called “with quenched disorder” and it very
different from computing the average of the partition function first, Z, and then
taking its logarithm (which is called “with annealed disorder”). In general,
the difference is that in the annealed case the disorder degrees of freedom are
considered on the same footing of the “configurational” degrees of freedom of
our systems, while in the quenched case the thermodynamic degrees of freedom
are only the configurational ones, and the average over the disorder is done after
the computation of the partition function.
This distinction is very sharp when we take the COP/RCOP point of view:
computing Eq. (2.7) (quenched case) corresponds to take many instances of our
COP, computing each time the cost of the solution, and then take the average
of that. On the other hand, when we compute the annealed version of Eq. (2.7)
(that is, the one with logZ instead of logZ) we are solving one single instance of
a COP, which in general will be different from the one we started with because
of our average operation.

2.2.2 Phase transition in RCOPs

The connection between statistical physics and RCOPs goes beyond the simple
fact that we can use methods developed for the former to deal with the latter.
This became clear after a first sequence of works [Goe90, CR92, KS94], where
it has been discovered that a certain COP, the k-SAT problem, when promoted
to its random version, exhibits a behavior which is strongly reminiscent of a
statistical-mechanics phase transition. In the k-SAT problem, the input is a
sequence of M clauses, in each of which k variables are connected by the logical
operation OR (∨). There are N different variables, which can appear inside the
M clauses also in negated form. For example x ∨ y ∨ z is a possible clause of
an instance of 3-SAT. The problem consists in finding an assignment to each
variable such that all the clauses return TRUE, or to say that such an assignment
does not exist.
At the beginning of the 90s it has been discovered that, given the ratio α =M/N
and giving the same probability to each instance of k-SAT with parameter α,
when α < αc the probability of finding an instance that can be solved goes to
zero when N → ∞, and if α > αc this probability goes to one when N → ∞.
This is the so-called SAT-UNSAT transition for the k-SAT problem, and αc is
a quantity which depends on k.
Actually, k-SAT problems with k ≥ 3 exhibit a sequence of phase transitions,
discovered in following works (which are reviewed, for example, in Chapter
14 of [MM11] and treated in detail in [Zde09]), which the (random) system
encounter if we change α from zero to αc.
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Other SAT-UNSAT transitions have been found in many other problems
quite different from the k-SAT, for example the Traveling Salesman Problem
(TSP) [GW96b], which we will discuss later, and the familiar integer partitioning
problem (IPP) [Mer98]. Most of the times the transition is found by extensive
numerical experiments, while for the IPP the critical point can be computed
analytically. To have a feeling of why this transition happens, we will present
here an intuitive argument which allows to obtain the correct transition point.
Following Gent and Walsh [GW96a], we consider the IPP problem where n
values are taken from the set {0, . . . , B}. Giving a choice of a subset A, we
compute C as in Eq. (2.3) and we notice that C ≤ nB, so we can write it as
a sequence of about log2 n + log2B bits. Remember that we want to take the
limit n → ∞, so there is no need to be very precise with the number of bits
since we are in any case neglecting sub-dominant terms. Now, the problem has
a solution if C = 0 or C = 1, therefore all the bits of C but the last have to be
0 for the problem to admit a solution. This corresponds to ≃ log2 n + log2B
constraints on the choice of A. Let us suppose now that, for a random instance
of the problem, each given choice of A has probability 1/2 of respecting each
constraint. This is false, as one can easily argue, but it turns out to be a correct
approximation to the leading and sub-leading order in n.
Given that there are 2n different partitions of n objects, the expected number
of partitions which respect all constraints is

E[N ] = 2n−(log2 n+log2 B). (2.8)

The critical point is given by E[N ] = 1, so

log2B = n− log2 n, (2.9)

that is B ≃ 2n to the first order. Actually, the approximation of independent
constraints used is correct up to the second order, but the number of bits in
C, that is the number of constraints, is overestimated by this simple argument.
Indeed we have used the maximum C, which is a crude approximation of the
typical one.

A more formal treatment giving the same result at the first order and the
correct one at the second order can be found in the beautiful book of Moore and
Mertens [MM11] (chapter 14) or, in a language more familiar to the statistical
physics community, in [Mer01]. In Fig. 2.1 we report the result of a numerical
experiment showing the SAT-UNSAT phase transition of the IPP.

2.2.3 Back to spin models

Another point in common of COPs and RCOPs with statistical physics, is that
we can often write COPs cost functions as Hamiltonians in which the thermo-
dynamical degrees of freedom are spin variables. For many COPs studied with
statistical physics techniques this has been actually the first step. In this case
a configuration of the system is given by specifying the state of all the spins.
Although the re-writing of the COP as a spin problem can be very useful, there
is not a general procedure and in many problems with constraints (as we will
discuss later) there is often a certain freedom in choosing the spin system. In-
deed the minimum request the spin system has to satisfy is that given its ground
state we can obtain the solution of the original COP.
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Figure 2.1: Numerical results for the probability of an instance of the integer
partition problem with n integers in the set {1, . . . , 2b} to have a solution, as a
function of the ratio n/b. Each point is obtained by randomly extracting 100
instances of the problem, solving them and computing the number of instances
with a solution. As we can see, at n/b ≃ 1.1 there is a transition from instance
with a small probability of success to instances with a high probability of success.
The vertical, dashed lines are the critical points given by b = n − log2(n)/2
(see [MM11], chapter 14), computed up to the sub-leading term in n to account
for the finite size of the system.
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To be more concrete, let us discuss a spin system associated to the familiar
IPP. Given a set {a1, . . . , an}, we can specify a partition A by assigning a spin
variable σi to each ai, such that ai = 1 (or −1) if ai belongs (or not) to A. As
a function of these new variables, the cost function given in Eq. (2.3) can be
written as

C =

⏐⏐⏐⏐⏐
N∑
i=1

aiσi

⏐⏐⏐⏐⏐. (2.10)

We can get rid of the absolute value by defining the Hamiltonian

H = C2 =

N∑
i,j=1

Jijσiσj , (2.11)

where Jij = aiaj , whose ground states correspond to the solutions of the original
instance of IPP. Starting from this Hamiltonian, the problem has been analyzed
in [FF98], where the anti-ferromagnetic and random nature of the couplings Jij
makes the thermodynamics non-trivial.
As a final remark, notice that there are many other Hamiltonians which are
good spin models for our IPP, for example:

H = C4 =
∑
i,j,k,ℓ

Ji,j,k,ℓσiσjσkσℓ, (2.12)

with Ji,j,k,ℓ = aiajakaℓ. The choice of one model rather than another is driven
by the search for the simplest possible one which is well-suited to the techniques
that we want to use.

2.3 Complexity theory and typical-case complex-
ity

Consider a generic problem, not necessarily a combinatorial optimization one:
we have an input and, according to certain rules which specify the problem, we
want to get the output, that is the solution to the problem. Is a certain problem
difficult or easy? Can we quantify this difficulty and say that some problems
are harder than others? These are deep questions which are not completely
understood, and are the holy grail (in their formalized version) of a branch
of science which involves computer science, mathematics and physics and it is
called complexity theory.

In this section we want to briefly introduce some concepts from complexity
theory that will be relevant in the following and elaborate on the differences
between the worst-case analysis of a COP and a typical-case analysis, which is
the one usually carried out by means of disordered systems techniques.

2.3.1 Worst-case point of view

Let us focus on a specific kind of problems, those called decision problems.
In this case, we have a problem and an input and the output has to be a
yes/no answer. The paradigmatic example is the k-SAT problem introduced
in Sec. 2.2.2, and another example is the definition of the integer partition
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problem that we gave in Sec. 2.1. A first attempt to measure the “hardness” or
complexity of a problem could be done by measuring the number of operations
needed to solve it. In the following, sometimes we will say “time” instead of
“number of operations” for brevity, even if these two quantities are related but
not equivalent. This definition of complexity, however, has several weaknesses:

• the complexity of a problem depends on the algorithm used, while we
would like to characterize the problem itself;

• the complexity depends on the specific instance.

Both problems are solved by introducing the concept of complexity classes.
Before defining them, let us address a tricky point: in general the number of
operations needed to solve a problem will increase with the input size. For
example, if we have an algorithm to solve IPP, whatever algorithm it is, we
expect that we will need to wait longer for the solution if we have a set of
N = 100 integers with respect to the case with N = 10.
However, the exact determination of the size of an instance is a subtle point,
since there is a certain freedom in deciding it. For our purposes, we will always
deal with problems that admit a re-writing in terms of spin systems, so we can
safely define the number of spins as the size of the instance.

Now we are ready to introduce complexity classes. A problem is said to
be “nondeterministic polynomial” (NP) or in the NP complexity class if, given
a configuration of an instance of size N of the problem, the time needed to
check whether this configuration is a solution of the problem scales as O(Nα)
for N → ∞, where α ∈ R does not depend on the configuration and on the
instance. O is the “Landau big-O” notation, that is f(x) = O(g(x)) if there are
c > 0 and x0 > 0 such that f(x) ≤ cg(x) for all x > x0.
For example, IPP is in NP: given a partition A of N objects, to check that this
is or not the solution it is sufficient to compute the sum of |A| objects, those
of N − |A| objects and a single operations to compare this two quantities, so
O(N) operations.
Many COPs are not so easy to place in the class NP: consider the optimization
variant of IPP, that is the problem of finding the minimum of the cost function
Eq. (2.3), even if this is not 0 or 1. Now given a partition A we can again
compute its cost in O(N) time, but this is not a certificate that this partition
is or is not the one with minimum cost. To check that, we would need to solve
the whole problem, so the complexity of checking whether a given partition is
the solution is the same of solving the original problem.

Another very important class is the “polynomial” (P) complexity class. A
problem is said to be in P if there exists an algorithm which is guaranteed to
solve each instance of size N in a time which scales as O(Nα) for N → ∞,
with α ∈ R. This class is defined such that the two issues in our definition of
complexity are now solved: for a problem to be in P it is now sufficient that one
polynomial-time algorithm exists, and, for a given algorithm, the complexity is
computed on the worst-case instance, that is the one where our algorithm needs
more operations to reach the solution.

In 1971, Cook [Coo71] discovered a special property of the SAT problem,
a relaxation of k-SAT where the clauses are allowed to be of any size: each
other problem in NP can be mapped to SAT in polynomial time, in such a
way that if we know are able to solve SAT, we can obtain the solution to each
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other problem in NP with a polynomial overhead. In particular, if SAT turned
out to be in P, each other NP problem would be in P as well. After the work
of Cook, Karp [Kar72] discovered several other problems with this property
(among them, our friend the decision version of IPP) and many others have
been found since then. This class of problems is called NP-complete, and these
problems are sometimes referred to “the hardest problem in NP”.
The question whether an algorithm which solves one of these in polynomial time
exists or not is still open, it is called “P vs NP” problem and is one of the biggest
theoretical challenge for todays computer scientists and mathematics.

Another question remains open: if the the decision version of IPP is NP-
complete, to what class the optimization version of IPP belongs to? The answer
is the so-called “NP-hard” complexity class, which contains all those problems
which are almost as difficult as NP-complete problems. This means that if we
were able to solve the optimization version of IPP in polynomial time, we would
be able to solve also the decision IPP in polynomial time, and then all the NP
problems in polynomial time.

Fig. 2.2 is a cartoon representing the relations among the various complexity
classes discussed here.

There are many other complexity classes, and various refinement of the ideas
presented here. For example, we can incorporate in our class definitions the
scaling with the instance size of the usage of memory (in addition to the time of
computation). These topics are treated in detail in several very good textbooks,
for example [Pap03, JG79].

2.3.2 Optimistic turn: typical case and self-averaging prop-
erty

As we have already discussed, a possible point of view consists in working out
some typical properties of a COP and this can be done through the definition
of an ensemble of instances and a probability weight of each instance. This is
the standard program carried out by physicists, since spin glass techniques are
particularly suited for it.
But has this something to do with the complexity-theoretical perspective de-
scribed before? As we have seen, for a given algorithm its running time is
computed on the worst-case scenario, that is the hardest instance for a that
particular algorithm. However, it can be that this difficult instance has very
low probability in an ensemble, so it gives a very little contribution to whatever
typical quantity we are computing.
This reasoning could lead us to abandon the idea of describing COPs through
their random formulations, but there are also some positive facts about adopting
this perspective. For example, the problems that we usually observe in practi-
cal application are far from being those worst-case instances for our algorithm
(and, even if they are, we can in principle use a different algorithm for which
the hardest instances are different from the typical instances we encounter in
practical applications).
This is actually related to a well-known phenomenon, called self-averaging prop-
erty, which takes place in many physical systems. In practice, consider a random
variable, for example the average cost of the solution of a given RCOP, E. This
quantity will depend on the instance size N and it is said to be self-averaging
if the limit for N → ∞ of it is not a random variable anymore. In other words,
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Figure 2.2: A cartoon highlighting the relations between the complexity classes
P, NP, NP-complete and NP-hard, under the hypothesis that P ̸=NP. Inside each
class, we wrote the names of some COPs belonging to that class. Problems in
the NP-complete class are written in red and are positioned at the border of the
NP class, to indicate that if one of the turned out to be in P, then all the NP class
would be in P. Notice that the problems such that SAT or IPP are understood
in their decision version, and their optimization version is present in the class
NP-hard (we use the word “opt” to indicate optimization version). Finally, a list
of the acronyms used: MST → Minimum Spanning Tree, SAT → Satisfiability,
IPP → Integer Partition Problem, TSP → Traveling Salesman Problem.
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we have

E = lim
N→∞

EN (2.13)

and

lim
N→∞

E2
N − E2 = 0. (2.14)

As we will see in the following, this happens for some problems and does not
happen for others, and it is an indicator which is telling us whether a random
large instance of the problem is well characterized by the typical one.
Notice that even if each quantity of interest of the RCOP (for example, cost of
the solution, number of solutions and others) is self-averaging, we can still build
rare instances, which in our ensemble will have a probability which is going to
zero with their size, in which this quantities are completely different from the
typical case. Actually, there is a branch of physics which deals with this rare
instances: it is called large deviation theory and we will briefly discuss it at
the end of this chapter, while in most of this work the focus will be on typical
properties of RCOPs.

As a final remark, there is another point that we want to mention regarding
the worst-case versus typical-case problems. Using the typical case approach
we can locate phase transitions in RCOPs, as the SAT-UNSAT transition that
we discussed in Sec. 2.2.2. It turns out that most of the times the presence of
“intrinsic hard instances” is related to the presence of these phase transitions:
for example, in the 3-SAT problems we know an algorithm (described in [CO09])
which is guaranteed to find the solution in polynomial time as long as the
parameter α defined in Sec. 2.2.2 is such that α < αr, where αr is a critical
point where the so-called “rigidity” phase transition takes place (see [ACO08]).

2.4 Spin Glass theory comes into play

As we said several times, the paradigm of statistical mechanics most suited to
the application to RCOPs is spin glass theory. The two main ingredients which
distinguish spin glasses from the “standard” statistical mechanics spin systems
are quenched disorder and frustration, two things that we already met in our
general discussion about RCOPs.

• Quenched disorder : the Hamiltonian of our system has some random vari-
ables in it, and the probability density of these variables is explicitly given.
Moreover, the word quenched means that the thermodynamics of the sys-
tem has to be considered after that a specific realization of these random
variables is chosen. We have already met that in the definition of RCOPs.

• Frustration: consider a spin Hamiltonian (this discussion can be trivially
extended to non binary-spin as well) and a random configuration of the
degrees of freedom. Now randomly select a spin (or a set of k spin with
fixed k) and flip it (or all of them) only if this lowers the total energy of
the system, and keep doing that until a minimum of energy is reached,
choosing each time a random spin. Repeat the whole experiment many
times: start from a random configuration and flip spins at random until
a local energy minimum is reached. If it happens that the final state is
not always the same or the final states are not related by a symmetry of
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the initial Hamiltonian, the system is said to be frustrated.1 For many
systems it happens that most of these local minima have different energy
from the ground state. In these cases, a frustrated system is such that
we cannot find its ground state by local minimization of the energy. For
example, is easy to see that (most of the instances of) optimization IPP
is frustrated, and this situation applies.

The spin glass theory exploration begun with the so-called Edwards-Anderson
model [EA75], whose Hamiltonian describes spins arranged in a 2-dimensional
square lattice, and it is

HEA =
∑
⟨i,j⟩

Jijσiσj , (2.15)

where σi is the spin variable number i and the brackets mean that the sum
has to be performed on first neighbors. The Jij are independent and identi-
cally distributed (IID) random variables, and two choices that are often used as
probability density are

p(Jij) =
1√
2πJ2

e−
(Jij−J0)2

2J2 (2.16)

(gaussian disorder)

p(Jij) =
1

2
δ(Jij − 1) +

1

2
δ(Jij + 1) (2.17)

(bimodal disorder).
As for the ferromagnetic 2-dimensional Ising model, the analytical solution,
which basically coincide with the calculation of the partition function, could
be difficult (or even impossible) to find, so a good starting point is to consider
a mean-field approximation of the problem, which in this case takes the name
“Sherrington-Kirkpatrick” model [SK75]:

HSK =
∑
i<j

Jijσiσj . (2.18)

Although their paper is called “Solvable model of a spin-glass”, Sherrington
and Kirkpatrick were not able to solve it in the low temperature phase, where
they obtained an unphysical negative entropy. The model turned out to be
actually solvable also in the low temperature phase, after a series of papers by
Parisi [Par79a, Par79b, Par80b, Par80a], where he introduced the remarkable
replica-symmetry breaking scheme.
The full solution of the SK model goes far beyond what we need to discuss in
this work, so we suggest to the interested readers one of the several good books
on the subject [MPV87, Dot05, Nis01] or the nice review presented in [Mal19].
We will, however, perform a detailed spin glass calculation of the so-called p-
spin spherical model in the next section. This will have a two-fold usefulness: it
will allow us to review some important concepts of spin glass theory, such as the
replica method, the concept of pure states and the replica-symmetry breaking;
it will also constitute the basis for our analysis of large deviations in disordered
system, which we will consider at the end of this chapter.

1there is a more simple but less generic definition of frustration, see for example [Dot05]
(chapter 1), based on frustrated plaquettes, that is closed chains of interactions among spins
whose product is negative; however, for many RCOPs this definition is not immediately ap-
plicable, so we prefer to stick with that given here.
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2.4.1 An ideal playground: the spherical p-spin model

The p-spin spherical model (without magnetic field) Hamiltonian is:

H = −
∑

i1<i2<···<ip
Ji1···ipσi1 · · ·σip , (2.19)

where p ≥ 3 (one can also choose p ≥ 2, but the p = 2 case is qualitatively differ-
ent from the others, see for example [KTJ76]), the spin variables are promoted
to continuous variable defined on the real axis and subject to the “spherical
constraint”

N∑
i=1

σ2
i = N. (2.20)

The interaction strengths are IID random variables and their probability density
is

p(J) =
N

p−1
2√
p!π

e−J
2 Np−1

p! . (2.21)

Notice that the choice of the power of N in p(J) is fixed by the request of
extensivity of the annealed free energy, indeed

Z =

∫ ∞

−∞

⎛⎝ ∏
i1<···<ip

dJi1···ip p(Ji1···ip)

⎞⎠∫ ∞

−∞
dσi1 · · · dσip e−βH δ

(
N −

∑
i

σ2
i

)

=

∫ ∞

−∞
Dσ

⎛⎝ ∏
i1<···<ip

∫ ∞

−∞
dJi1···ip p(Ji1···ip) e

βJi1···ipσi1 ···σip

⎞⎠
=

∫ ∞

−∞
Dσ

∏
i1<···<ip

e
β2

4Np−1 p!σ
2
i1

···σ2
ip ∼

∫ ∞

−∞
Dσ e

β2

4Np−1 (
∑

i σ
2
i )

p

= ΩN e
Nβ2/4

(2.22)

where we used that

p!
∑

i1<···<ip
fi1,...,ip ∼

∑
i1,...,ip

fi1,...,ip (2.23)

when fi1,...,ip is a symmetric under permutations of the indexes and in the
thermodynamical (N → ∞) limit (the error comes from the fact that in the
right-hand side of the approximation we are also considering terms with equal
indexes). We also defined

Dσ = dσi1 · · · dσip δ
(
N −

∑
i

σ2
i

)
. (2.24)

Finally, ΩN is the surface of a N dimensional sphere of radius
√
N . Therefore

the annealed free energy is

Fann = − 1

β
logZ = −N(β/4 + TS∞), (2.25)

where S∞ = logΩN/N ∼ (1 + log(2π))/2 (see Appendix A). Therefore, thanks
to the factorNp−1, this quantity which has to be correct in the high temperature
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limit where the values of the couplings Ji1...ip become irrelevant, is extensive as
it should be. For this reason the label S∞ is used: this quantity (as we will
check) is also the infinite-temperature entropy of the quenched-disorder case.

This model has been introduced by Crisanti and Sommers in [CS92], and
used many times to probe the various aspects of spin glass theory (see, for
example, the beautiful review article [CC05]).
Our aim for this section is the computation of the quenched free energy:

F = − 1

β
logZ. (2.26)

The replica trick at work

To start our computation, we will introduce the replica trick in its standard
form, that is

logZ = lim
n→0

Zn − 1

n
. (2.27)

This exact identity is not a trick, so why the name? The real trick is in our
way to use it: we will consider integer values for n, so that we can compute
Zn, which is simply the average over the disorder of the partition function of
a system made by n non-interacting replicas of the original system. Starting
from the knowledge of Zn for integer n we will try to extend analytically our
function to n ∈ R to obtain the n → 0 limit. According to this interpretation,
it should be clear why this procedure is called replica trick, and we will call n
“replica index”, or “number of replicas”.
We will see that many of the manipulations done to recover a meaningful ana-
lytic extension to real values of n will be impossible to justify formally, but the
whole strategy, sometimes called “replica method”, has been proved to be exact
by many numerical simulations and, for some problems, also by analytical and
rigorous arguments (see [GT02, Gue03]).

The computation of Zn is carried out in Appendix B, the result is

Zn = enN log(2π)/2

∫
DQDλe−NS(Q,λ), (2.28)

where

S(Q,λ) = −β
2

4

∑
a,b

Qpab −
1

2

∑
a,b

λabQab +
1

2
log det(λ), (2.29)

the Q and λ are n×n matrices, Qaa = 1 for all a, the integral with measure DQ
is done over the symmetric real matrices with 1 on the diagonal, the integral
with measure Dλ is done over all symmetric real matrices.
We integrate over the λ matrices by exploiting the saddle-point method2, so at
the saddle point λ is such that

∂

∂λab
S(Q,λ) = 0. (2.30)

2actually the integral on λab should be done over the imaginary line (with the methods
discussed, for example, in Appendix B.1 of [Pel11]); however, at the end of the day this is
perfectly equivalent to the usual saddle point, as pointed out in [CS92].
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Therefore, exploiting the formula valid for a generic matrix M

∂

∂Mab
log detM = (M−1)ba, (2.31)

we obtain the equation for λ

Qab = (λ−1)ab. (2.32)

Putting that back into Eq. (2.29), we obtain

S(Q) = −β
2

4

∑
a,b

Qpab −
1

2
log detQ+

n

2
. (2.33)

The term n/2 can be pulled out of the integral and together with the exponential
outside the integral in Eq. (2.28) will give a constant shift of the free energy of
−NTS(∞), the same that we met already in the annealed calculation Eq. (2.25).
The last step is again a saddle-point integration on the Q variables, and we
obtain the free energy density, f = F/N ,

f = lim
n→0

− β

4n

∑
a,b

Qpab −
1

2nβ
log detQ+ TS(∞), (2.34)

where the matrix Q has Qaa = 1, is symmetric and the off-diagonal entries are
given by the saddle point equations (we use again Eq. (2.31))

β2p

2
Qp−1
ab + (Q−1)ab = 0. (2.35)

Replica-symmetric ansatz and the failure of Occam’s razor

At this point of the discussion, the introduction of n replicas of our system is
simply a technical trick, a formal manipulation. Therefore it seems reasonable
to impose symmetry among replicas to deal with Eq. (2.35). In other words, we
consider the following ansätz for the matrix Q:

Qab = δab + q0(1− δab), (2.36)

that is Q has 1 on the diagonal entries and q0 on the off-diagonal entries. The
inversion of a matrix with this form is

(Q−1)ab =
1

1− q0
δab −

q0
(1− q0)(1 + (n− 1)q0)

(2.37)

and from Eq. (2.35) we obtain the equation for q0 when n→ 0:

β2p

2
qp−1
0 − q0

(1− q0)2
= 0. (2.38)

The first observation is that q0 = 0 is a solution. In this case one obtains for
the free energy density

fRS = −β/4 + TS(∞) (2.39)
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where the subscript RS stands, here and in the following, for “Replica Sym-
metric”. This is exactly the same result we obtained with the annealed compu-
tation, and indeed is the correct result for the high-temperature regime. This
does not happen by chance: if the overlap matrix Q has null off-diagonal en-
tries, the whole replica-trick computation coincide with the annealed one, as
can be checked confronting Eq. (B.4) and Eq. (2.22). However, the annealed
calculation and the RS ansätz differ when the temperature is decreased: for
T < Tc, Eq. (2.38) develop another solution, with q0 ̸= 0. Unfortunately, this
solution is not stable: one can compute the Hessian (with the second derivatives
of Eq. (2.33) or directly of Eq. (2.34)) in the saddle point and check that the
eigenvalues have different signs3. This stability problem has been first noticed
for the Sherrington-Kirkpatrick model in [dAT78], and today it is well known
that to go beyond this impasse, we need to give up our RS ansätz.

Replicas and pure states

The conceptual error that we made in the previous part of our calculation
is to think about replicas as purely “abstract” mathematical objects that we
exploited to ease our computation. This idea brought us to the RS ansätz,
which turned out to be wrong, since it gives a unstable saddle point under a
certain T = Tc.
Before trying to modify our ansätz, let us introduce some useful concepts for
the description of the physics of spin glasses. The first one is the idea of pure
state. A pure state can be defined as a part of the configuration space such
that the connected correlation functions decay to zero at large distances. A
standard example of pure states are the two ferromagnetic phases of a Ising
model in more than 2 dimension, below the critical temperature: one with
positive magnetization, ⟨σ⟩+ = m > 0, the other with negative magnetization
⟨σ⟩− = −m < 0. In this case, the Gibbs measure splits in two components with
the same statistical weight (due to the symmetry of the model), so that we have
for the thermodynamical average ⟨·⟩

⟨·⟩ = 1

2
⟨·⟩− +

1

2
⟨·⟩+ . (2.40)

As one can easily see ⟨σ⟩ = 0, and for the connected two-point correlation
function

⟨σiσj⟩ ∼
1

2
⟨σ⟩2− +

1

2
⟨σ⟩2+ = m2 ̸= 0, (2.41)

where we used that the ⟨·⟩− and ⟨·⟩+ are averages done inside the two pure
states.

It can happen that there are more than 2 pure states, and in this case we

3for a saddle point to be stable, in general the eigenvalues have to be all positive, so that
the matrix is positive-definite and we are actually in a minimum; however, in this case, for
(actually quite nebulous) reasons connected to the limit of vanishing number of replicas, the
saddle point would be stable if all the eigenvalues were negative.
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have for the thermodynamical average

⟨A⟩ = 1

Z

∑
σ

e−βH(σ)A =
1

Z

∑
α

∑
σ∈α

e−βH(σ)A =
∑
α

wα
1

Zα

∑
σ∈α

e−βH(σ)A

=
∑
α

wα ⟨A⟩α
(2.42)

where the sum over α runs over all the pure states,

Zα =
∑
σ∈α

e−βH(σ) (2.43)

and

wα =
Zα
Z
. (2.44)

Now, we go back to our p-spin spherical model and consider the quantity

qαβ =
1

N

∑
i

⟨σi⟩β ⟨σi⟩α (2.45)

where α and β are indexes which label pure states, and the angle brackets mean
thermodynamical average (possibly, as in this case, done inside a pure state).
This quantity is the overlap between pure states, and depends on the specific
instance. Now, given the statistical weights of the pure states defined as in
Eq. (2.44), we introduce the probability PJ(q) that two pure states, chosen
according to their statistical weight, have overlap q and is

PJ(q) =
∑
α,β

wαwβ δ(q − qαβ). (2.46)

The index J simply means that this quantity is instance dependent, so we
average on the disorder to obtain P (q) = PJ(q).
Now, one can prove that [MPV87]

q(k) =
1

Nk

∑
i1,...,ik

⟨σi1 · · ·σik⟩2 =

∫
dq P (q) qk. (2.47)

These quantities can be computed also exploiting the replica method. Consider
q(1),

q(1) =
1

N

∑
i

⟨σi⟩2. (2.48)

We can insert the identity 1 = limn→0 Z
n and write

q(1) =
1

N

∑
i

lim
n→0

⟨σi⟩2 ZnJ , (2.49)

where ZJ is the partition function at fixed disorder. Now, in the spirit of the
replica trick, we consider n integer. We have

q(1) = lim
n→0

1

N

∑
i

ZnJ
1

ZJ

∫
Dσa σai e

−βH[σa
i ]

1

ZJ

∫
Dσb σbi e

−βH[σb
i ]

= lim
n→0

1

N

∑
i

∫ ( n∏
c=1

Dσc

)
σai σ

b
i e

−β∑n
c=1H[σc

i ],

(2.50)
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where we considered Dσa =
∏
i σ

a
i δ(N −∑i(σ

a
i )

2). Following the same step
used to evaluate the free energy, we obtain

q(1) = Q
(SP )
ab , (2.51)

where we have necessarily a ̸= b because of the steps done in Eq. (2.50) and
SP labels the value of the quantity Q computed on the (correct) saddle point.
Notice that Eq. (2.51) makes sense only if Qab does not depend on the choice of
the replica a and b. This would have been true if the RS ansätz had been correct.
Unfortunately, this is not the case. Therefore, as discussed in [Par83, DY83],
we need to average over the contribution of all the (different) pairs of replicas
and we finally obtain

q(1) = lim
n→0

2

n(n− 1)

∑
a<b

Qab. (2.52)

This can actually be generalized to

q(k) = lim
n→0

2

n(n− 1)

∑
a<b

Qkab (2.53)

which, because of Eq. (2.47), brings us to

P (q) = lim
n→0

2

n(n− 1)

∑
a<b

δ(q −Qab). (2.54)

This equation elucidates the physical meaning of the matrix Q: at the saddle
point, the probability that two pure states have overlap q is given by the fraction
of entries equal to q in Q, or, equivalently, each entry Qab = q implies the
existence of to two pure states with overlap q.
There is only a little problem: the matrix Q has n(n−1)/2 independent entries,
and n is going to zero! We can still define (and this is what is done) in some
way the “fraction” of entries by considering n integer (and large) and, only after
all the formal manipulation, by sending n to 0. But the physical intuition of
Q suffers this weird situation, and this is one of the reason why the replica
method is rather ill-defined under a mathematical point of view. However, each
single time this method has been carried out up to the end and later compared
with exact methods or very precise simulations, the resulting free energy (or
whatever observable one wants to compute) computed with replicas turned out
to be correct. Therefore let us take as a guide the physical intuition build around
the matrix Q to propose a new ansätz to overcome the problems encountered
with the RS one.

The magic of replica-symmetry breaking

Consider again our RS ansätz: because of the discussion on Q, we have seen
that there is a correspondence between the values inside the matrix Q and the
(average) properties of the free energy landscape. In particular, the presence
of a single variational parameter can be interpreted as an ansätz on the free
energy landscape, that is the presence of a single pure states. Indeed consider
two configurations: if we choose twice the same configuration we obtain an
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overlap of Qaa = 1, if we choose two different configurations in the pure state
we have that their average (on the disorder and on the Gibbs measure inside
the pure state) overlap is q0. Since this picture turned out to be wrong (the
corresponding saddle point is unstable), we need to assume the presence of more
than one pure state.
However, the simplest possible ansätz in this direction if far from obvious, and
it required a deep intuition pointed out for the first time by Parisi [Par79a]:
we consider that there are many pure states of “size” m, and two possible
values of the overlap between configurations taken from them, that is q1 if
the two configurations belong to the same pure state, q0 if they belong to two
different pure states. Notice that this interpretation implies that q1 ≥ q0. This is
called one-step replica-symmetry breaking (1RSB) ansätz and the corresponding
matrix is

Q = (1− q1) I+ (q1 − q0)E+ q0 C, (2.55)

where I is the identity matrix, E is a block diagonal matrix, where each block
is a m × m block with all entries equal to 1 and C is a matrix with constant
entries equal to 1.
By using this form of Q in Eq. (2.34), we find

−2βf1RSB =
β2

2
(1 + (m− 1)qp1 −mqp0) +

m− 1

m
log(1− q1)+

+
1

m
log (m(q1 − q0) + 1− q1) +

q0
m(q1 − q0) + 1− q1

− 2S(∞).

(2.56)

The details of this computation are given in Appendix B. The parameters are
such that f1RSB is minimum, so they can be found by extremizing Eq. (2.56).
Notice that the 1RSB ansätz includes the RS one, since taking m = 1 or q1 = q0
gives back the RS free energy density. What we have done, in other words, is to
enlarge our ansätz to search for new, stable, saddle points, in a way suggested
by the underlying physical interpretation.

We have that the equation ∂
∂q0

f1RSB = 0 implies q0 = 0 to have a solution
which is different from the unstable RS under the critical temperature. The
other two equations are:

(m− 1)

(
β2

2
pqp−1

1 − q1
(1− q1)(1 + (m− 1)q1)

)
= 0 (2.57)

and

β2

2
qp1 +

1

m2
log

(
1− q1

1 + (m− 1)q1

)
+

q1
m(1 + (m− 1)q1)

= 0. (2.58)

The m = 1 solution of the first equation makes the 1RSB ansatz to coincide
with the RS one, and is the only solution for T > Tc. For T < Tc (notice that
this critical temperature is different from the one where the unstable replica-
symmetric solution appears, see Fig. 2.3), another solution with m ̸= 1 appears,
and actually is the one which gives the most relevant and stable saddle point.
A plot of the situation is given in Fig. 2.3.
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Figure 2.3: Numerical evaluation of the free energy density of the p-spin model
with p = 3, with the various ansätze . Notice that the function plotted is
−βf(β) (without the constant term S(∞)/β) at the saddle points obtained by
using the various ansätze described in Sec. 2.4.1: the blue curve is given by the
annealed computation, the orange curve is given by the RS ansätz and the red
curve is given by the 1RSB ansätze. Since this function appear in a saddle-
point integration (Eq. (2.28)), the correct one is always the smallest. As we
can see, for β < βc ≈ 1.7 the paramagnetic solution (blue curve) is the only
saddle point and it is the correct one. For β > βc the 1RSB solution becomes
the most relevant stable saddle point, while at a smaller temperature (β ≈ 2.2)
the replica symmetric solution appear, but this is an unstable and not relevant
saddle point.

Therefore the system at the critical temperature Tc has a phase transition be-
tween the paramagnetic phase and the so called “spin glass” phase, where the
order parameter q(1) = (1 −m)q1 (q(1) is defined in Eq. (2.48), and because of
Eq. (2.52), m and q1 are the values of the variational parameters at the saddle
point) starts to be different from 0.

Spin glass and optimization problems

What we learned with the p-spin spherical model is that when we deal with dis-
order and frustration, it can happen that the free energy landscape breaks into a
plethora of pure states, which are taken into account via a RSB ansätz (we write
RSB and not 1RSB because for some other models, for example the Sherrington-
Kirkpatrick one, a more sophisticated ansätz, called full replica symmetry break-
ing, is needed).
The presence of pure states is related to metastable states, that is groups of
configurations separated by free energy barriers which become infinitely high
in the thermodynamical limit. In turn, the presence of such metastable states
results in the so-called “ergodicity breaking”. Intuitively, this means that if the
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system is in a given configuration in a metastable state, even in the presence
of thermal fluctuations (up to a certain temperature) it will stay in the same
metastable state “forever”, even if there are other regions of the configuration
space with the same (or lower) free energy (for a more precise definition, see
[VCC+14], chapter 2).

Another interesting fact is that spin glass models, such as the Edwards-
Anderson or the Sherrington Kirkpatrick one, can be seen as COPs whose cost
function is the model Hamiltonian. Actually, it has been proved that the COP
consisting in finding the ground state of Edwards-Anderson models in dimen-
sions greater than 3 are NP-hard [Bar82, Bac84].

Putting together the spin-glass and the optimization-problem perspectives,
we can learn something about COPs (or, at least, get an interesting point of
view): the difficulty in finding an algorithm to solve in polynomial time some
problems seems to be related to the presence of ergodicity breaking, and there-
fore to RSB, in their thermodynamics. Actually, as far as we know there are
no cases where there is RSB for a problem which is in the P complexity class4.
On the opposite, it can happen that a NP-hard problem can be solved via the
RS ansätz. This could be related to the fact that all the discussions about the
energy landscape that we have done here are in fact about the typical situa-
tion, while a problem is NP-hard even if only one instance is hard (for each
known algorithm). In other words, consider a NP-hard COP. To study the ther-
modynamics of the corresponding disordered system, as already discussed, we
need to introduce an ensemble of instances and a probability measure on it,
obtaining a RCOP. Now, it can be that the “hard” instances belong to the en-
semble but have zero weight in the thermodynamical limit for a certain choice of
probability measure. Therefore also if the speculated connection between RSB
and NP-hardness is correct, we would not see RSB in the thermodynamics of a
problem unless we change in a suitable way our probability measure.

2.5 Large deviations

The standard approach of spin glass theory regards only the average over the
disorder (or sometimes, also the variance) of some quantities, such as we have
seen in Sec. 2.4.1 with the p-spin spherical model free energy. On the opposite,
the standard perspective of complexity theory is based on the idea of worst-case
scenario.
A possible way to reduce the gap between these two fields is the large deviation
theory. Basically, as we will see in a minute, large deviation theory (LDT) deals
with the non-typical properties of random variables which depends on many
other random variables. We will now introduce briefly the basic concepts of
LDT, while for a more formal and comprehensive discussion we suggest to read
one of the many good books [Ell07, VCC+14] or the beautiful review [Tou09].

4at first sight, the XORSAT problem (a SAT where the clauses use the logic operation XOR
instead of OR) could seem a counterexample: it is in the P complexity class, but shows 1RSB
when the thermodynamics is studied. However, the tractable problem consists actually in
answering the question “does this system admit solutions?”, while the optimization problems,
“what is the configuration that minimizes the number of FALSE clauses” is NP-hard. Clearly,
the thermodynamic can only say something about the optimization problem, or the generalized
decision problem where we ask (for any given n): “does this system admit a configuration
which has up to n FALSE clauses?”.
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Large deviation principle

We introduce now the large deviation principle (LDP). Consider a random vari-
able AN , which depends on an integer N . Let pAN

(a) be the probability density
of AN , such that

∫
B
pAN

(a)da = P (AN ∈ B) is the probability that AN assumes
a value in the set B. We say that for AN a LDP holds if the limit

lim
N→∞

− 1

N
log(pAN

(a)) (2.59)

exists, and in that case we introduce the rate function of AN , I, as

lim
N→∞

− 1

N
log(pAN

(a)) = I(a). (2.60)

In other words, in a less precise but more transparent way we can write

pAN
(a) ≃ e−NI(a), (2.61)

where the meaning of “≃” is given by Eq. (2.60). Sometimes, as we will see,
the situations where I = ∞ or I = 0 in an interval are of particular interest. In
these cases we say, respectively, that pAN

(a) decays faster than exponentially
in N (these are the so-called very large deviations) or that it decays slower
than exponentially. LDT essentially consists in taking a random variable of
interest and trying to understand whether a LDP holds for it, and what is its
rate function.

Recovering the law of large numbers and the central limit theorem

A first comment on the LDP is that it encompasses both the law of large numbers
and the central limit theorem. Indeed, consider a set ofN IID random variables5

x1, . . . , xN with finite mean ⟨xi⟩ = x and variance ⟨x⟩2 − x2 = σ2. Their
empirical average is

AN =
1

N

N∑
i=1

xi (2.62)

and the law of large numbers guarantees that

lim
N→∞

P (|AN − x| > ϵ) = 0 (2.63)

for each ϵ > 0.
The central limit theorem for IID random variables extends this result by

giving the details on the shape of the probability of obtaining AN inside an
interval [a, b]:

lim
N→∞

P (
√
N(AN − x) ∈ [a, b]) =

1√
2πσ2

∫ b

a

dz e−
z2

2σ2 , (2.64)

The analogous for the probability density is

lim
N→∞

−N log(pAN
(a)) =

(a− x)2

2σ2
. (2.65)

5all this can be extend to non-IID random variables, provided that they are not too much
correlated, but we will use IID random variables to keep things as simple as possible.
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Now, consider that a LDP holds for our empiric average AN . We then have

pAN
(a) ≃ e−NI(a). (2.66)

The only values of a such that limN→∞ pAN
(a) ̸= 0 have to be all the values a⋆

such that I(a⋆) = 0. Therefore we recover the law of large number by noticing
that a⋆ = x, where x is the one in Eq. (2.63). Moreover, we can expand I
around its zero, x, and obtain

I(a) =
1

2
I ′′(x)(a− x)2 + o((a− x)3), (2.67)

where the “small o” notation means that we are neglecting terms of order (a−x)3
or less relevant in the limit a→ x. Therefore, we have

pAN
(a) ≃ e−N(

1
2 I

′′(x)(a−x)2+o((a−x)3)), (2.68)

which is the central limit theorem, after identifying I ′′(x) = σ2. Notice that
this approximation is valid up to |a − x| ∼ N−1/2, while for larger distances
from the average one needs to keep into account higher terms in the expansion
Eq. (2.67).
If one has the full form of I, then the probability of each value of AN can be
computed, also for values very far from the average x. This is the reason why
this field is called large deviation theory and in this sense we can consider LDT
a generalization of the central limit theorem and of the law of large numbers.

The Gärtner-Ellis theorem

But how to compute rate functions? Unfortunately, there is not a general way.
However, often the rate function can be computed by means of the Gärtner-Ellis
theorem, which in its simpler formulation states the following.
Consider the random variable AN , where N is an integer parameter. The scaled
cumulant generating function (SCGF) is defined as

ψ(k) = lim
N→∞

1

N
log
⟨
eNkAN

⟩
, (2.69)

where k ∈ R and ⟨
eNkAN

⟩
=

∫
da pAN

(a) eNka. (2.70)

If ψ(k) exists and is differentiable for all k ∈ R, then AN satisfies a large
deviation principle, with rate function I given by the Legendre transform of the
SCGF, that is

I(a) = sup
k∈R

(ka− ψ(k)) . (2.71)

We will not prove this theorem here, but the interested reader can find the
proof, for example, on Ellis’ book [Ell07] or on Touchette’s review [Tou09].

Here we will limit ourself to some consideration about the SCGF. First of
all, its name is given by the fact that

∂n

∂kn
ψ(k)

⏐⏐⏐⏐
k=0

= lim
N→∞

Nn−1Cn, (2.72)
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where ∂nk denotes n derivatives with respect to k and Cn is the n-th order
cumulant of AN . In particular,

∂

∂k
ψk

⏐⏐⏐⏐
k=0

= lim
N→∞

⟨AN ⟩ (2.73)

and
∂2

∂k2
ψk

⏐⏐⏐⏐
k=0

= lim
N→∞

N
(⟨
A2
N

⟩
− ⟨AN ⟩2

)
, (2.74)

that is the first and second derivatives of the SCGF ψ(k) evaluated in k = 0
are, respectively, the mean and the variance (times N) of AN , in the limit of
large N .
The SCGF ψ(k) has some remarkable properties, that will be useful in the
following:

1. ψ(0) = 0, because of normalization of the probability measure.

2. The function ψ(k) is convex, as can be proven by using the Hölder in-
equality:

⟨XY ⟩ ≤
⟨
X1/p

⟩p ⟨
Y 1/q

⟩q
, 0 ≤ p, q ≤ 1, p+ q = 1. (2.75)

Indeed, if we choose X = epk1NAN , Y = e(1−p)k2NAN , so that⟨
e[pk1+(1−p)k2]NAN

⟩
≤
⟨
ek1NAN

⟩p ⟨
ek2NAN

⟩1−p
, (2.76)

we now take the logarithm, divide by N and, since this inequality is valid
for all N , we can take the limit N → ∞ to obtain

ψ(pk1 + (1− p)k2) ≤ pψ(k1) + (1− p)ψ(k2). (2.77)

3. The function ψ(k)/k is a monotonic non-decreasing function, as can be
proven from another usage of the Hölder inequality: this time we choose
X = ekpNAN , Y = 1. We have now⟨

ekpNAN
⟩
≤
⟨
ekNAN

⟩p
(2.78)

and we take the logarithm, divide by N and get and taking the log

1

N
log
⟨
ekpNAN

⟩
≤ p

N
log
⟨
ekNAN

⟩
, (2.79)

which implies
ψ(pk) ≤ pψ(k). (2.80)

Since p is an arbitrary number between 0 and 1, we have

ψ(pk)

p
≤ ψ(k) (2.81)

and, by dividing by k, we obtain that the function ψN (k)/k must be non
decreasing.
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2.5.1 Large deviations of the p-spin model

In this section, we follow Pastore, Di Gioacchino and Rotondo [PDGR19] in their
discussion about the large deviations of the p-spin spherical model introduced in
Sec. 2.4.1. An interesting relation between large deviation and replica method
(and replica symmetry breaking) is firstly elucidated, then exploited. We notice
that similar techniques can be applied to RCOPs, once they are written as a
spin glass problem.

Replica trick and large deviation theory

As we have seen, the theory of disordered systems has been mainly developed to
describe the average behavior of physical observables, which one hopes to coin-
cide with the typical one (this is true if the physical observable under discussion
is self-averaging).

However, as it has been argued since the early days of the subject, one
can employ spin glass techniques in a more general setting, to estimate prob-
ability distributions [TD81] and fluctuations around the typical values [TFI89,
CNPV90] of quantities of interest. More recently, Rivoire [Riv05], Parisi and
Rizzo [PR08, PR09, PR10b, PR10a] and others [ABM04, NH08, NH09] followed
this line of thought, providing a bridge between spin glasses (and disordered sys-
tems more in general, as in [MPS19]) and the theory of large deviations. The
key quantity providing the bridge is:

G(k) = lim
N→∞

− 1

βN
logZkN , (2.82)

where ZN is the partition function for a system of size N and the bar above
quantities denotes average over disorder. The argument of the logarithm is the
averaged replicated partition function and k is the so-called replica index. We
have changed our notation for the replica number to emphasize that we will not
deal here only with vanishing number of replicas.
From the viewpoint of large deviation theory, S(k) is simply related to the scaled
cumulant generating function (SCGF) of the free energy f = limN→∞ fN by

ψ(k) = lim
N→∞

log ekNfN

N
= −βG(−k/β). (2.83)

We are interested in obtaining, by using the Gärtner-Ellis theorem, as much
information as possible on the full form of the rate function I(x). To do that,
one needs to work out the SCGF for finite replica index k. This problem is
clearly equivalent to determine the full analytical continuation of the averaged
replicated partition function from integer to real number of replicas k and it
was extensively investigated in the early stage of the research in disordered sys-
tems in order to understand the manifestation of the (at that time surprising)
mechanism of replica symmetry breaking we encountered in Sec. 2.4.1. Since
these results are particularly interesting from the more modern large deviation
viewpoint, we briefly mention the main ones in the following.
Van Hemmen and Palmer [vHP79] were the first ones to observe that the ex-
pression in Eq. (2.82) must be a convex function of the replica index k, as we
discussed Sec. 2.5. Shortly after, Rammal [Ram81] added that ψ(k)/k must
be monotonic. However, in some situations, the replica symmetric (RS) ansatz
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gives a trial SCGF which is not convex, or such that ψ(k)/k is not mono-
tonic. This problem has been analyzed for the first time in the context of the
Sherrington-Kirkpatrick model. After Parisi introduced his remarkable hierar-
chical scheme for replica symmetry breaking, Kondor [Kon83] argued that his
full RSB solution was very likely to provide a good analytical continuation of
Eq. (2.82), not only around k = 0.

These results may be considered nowadays as the initial stage of a work that
attempted to give mathematical soundness to the replica method. Although this
vaste program is mostly unfinished, Parisi and Rizzo realized that the original
analysis presented by Kondor is fundamental to investigate the large deviations
of the free-energy in the SK model. Large deviations have been examined only
for a few other spin glass models: Gardner and Derrida discussed the form of the
SCGF in the random energy model (REM) in a seminal paper [GD89], and many
rigorous results have been established later on [FFM07]; on the other side of
the story Ogure and Kabashima [OK04, OK09a, OK09b] considered analyticity
with respect to the replica number in more general REM-like models; Nakajima
and Hukushima investigated the p-body SK model [NH08] and dilute finite-
connectivity spin glasses [NH09] to specifically address the form of the SCGF
for models where one-step replica symmetry breaking (1RSB) is exact.

In this section we add one more concrete example to this list, considering
the p-spin spherical model. In zero external magnetic field, we will show that
the 1RSB calculation at finite k produces a SCGF with a linear behavior below
a certain value kc and a nice geometrical interpretation of this, dating back to
Kondor’s work on the SK model [Kon83], is discussed. Accordingly, the rate
function is infinite for fluctuations of the free energy above its typical value,
which are then more than exponentially suppressed in N , giving rise to a regime
of very-large deviations. This happens for several other spin glass problems, as
discussed for example in [PR10b], and many other systems showing extreme
value statistics[DM08].

The situation changes dramatically when a small external magnetic field is
turned on: the rate function becomes finite everywhere, although highly asym-
metric around the typical value, and the very-large deviation feature disappears
accordingly. We explain intuitively the reason of this change of regime in light
of the geometrical interpretation discussed for the case without magnetic field,
and argue that the introduction of a magnetic field could act as a regularization
procedure for resolving the anomalous scaling of the large deviation principle
for this kind of systems.

Large deviations of the p-spin spherical model free energy

We start our analysis from Eq. (2.28). After the integration on the λ degrees of
freedom, the partition function is (up to finite-size corrections in N):

ZkN =

∫
DQe−NS(Q) , (2.84)

where

S(Q) = −β
2

4

k∑
α,β=1

Qpαβ − 1

2
log detQ− kS(∞). (2.85)

To evaluate the integrals on Q we use again the saddle point method together
with the 1RSB ansätz, which is formulated in terms of the three parameters
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Figure 2.4: The function G(k)/k for the (p = 3)-spin in zero external magnetic
field, for different values of β. Top-left: at high temperature (β = 1.5) the
1-RSB anstatz coincides with the RS one (blue curve); the solution joins the
paramagnetic line (in black) in a point kc > 1, where the function is not differ-
entiable. Top-right: at β = βc ≈ 1.706, the junction is in kc = 1 and becomes
smooth. Bottom line: for β = 2 (left) and β = 3 (right), the 1RSB solution (red
curve) departs from the RS one and becomes a straight line for all the k < kc,
which is the point where the RS function loses its monotonicity. The critical
value kc approaches zero for β → ∞.
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(q1, q0,m) in Eq. (2.55).
We compute S(Q) in terms of the 1RSB parameters as discussed in Appendix
B, but now we do not take the limit k → 0 and we obtain:

S(k; q0, q1,m) = − (βJ)2

4
[k + k(m− 1)qp1 + k(k −m)qp0 ]

− k(m− 1)

2m
log (η0)−

k

2m
log (η1)−

1

2
log

(
1 +

kq0
η1

)
− ks(∞), (2.86)

where η0 = 1−q1 and η1 = 1− (1−m)q1 are the two different eigenvalues of the
1RSB matrix Q once we use that q0 = 0 at the saddle point. This functional is
evaluated numerically at the saddle point (q̄1, q̄0, m̄) for the 1RSB parameters
for each value of k. The three parameters take values in the domains q1 ∈ [0, 1],
q0 ∈ [0, q1], m ∈ [1, k] (if k > 1) or m ∈ [k, 1] (otherwise), and for k < 1 the
saddle point is obtained with a maximization of the functional instead of a min-
imization, as usual within the replica-method framework. Using Eq. (2.83), we
obtain a SCGF ψ(k) which becomes linear above a certain value k = kc.
To ease the visualization of this feature, in Fig. 2.4 we plot the functionG(k)/k =
S(k; q̄1, q̄0, m̄)/(kβ) which, when ψ(k) is linear, becomes an horizontal line in-
tercepting the vertical axis in ftyp. The figure does not change qualitatively
for p ≥ 3. For the p = 2 case, at low temperature the 1RSB ansätz reduces
to the RS one (that is, q̄1 = q̄0) as long as k ≥ 0, therefore the typical values
of all the thermodynamic quantities are obtained under the RS ansätz. On the
opposite, for k < 0 we need to introduce again the 1RSB ansätz which, as in
the p ≥ 3 case, gives the linear behavior of the SCGF. In other words, kc = 0
for the 2-spin spherical model for β > βc.

Before turning to the evaluation of the rate function, we discuss an interest-
ing geometrical interpretation of the SCGF shape. To this aim, let us consider
the RS ansätz (that is, Eq. (2.86) with q1 = q0 = q and m = 1). As we can see
in Fig. 2.4, the RS solution (blue curve) is not monotonic for β < βc. But as we
have seen, G(k)/k has to be a monotonic quantity and therefore the RS solution
can be ruled out. We can check that the 1RSB solution gives a perfectly fine
monotonic G(k)/k (red curve in Fig. 2.4), as one could expect due to the fact
that this ansätz gives the correct typical free energy for this model. Interest-
ingly, however, exactly the same monotonic curve can be obtained by using a
much simpler geometric construction: just consider the RS solution, which is
the right one for large k, and when G(k)/k starts to be non-monotonic continue
with a straight horizontal line (in the G(k)/k vs k plot). This construction actu-
ally dates back to Rammal [Ram81] and is discussed in more detail in Appendix
B.3. Here we limit ourselves to notice that G(k)/k obtained by using the 1RSB
ansätz or the Rammal construction are the same because of the following facts:
(i) for k > kc the 1RSB and RS ansätzë coincide (q̄1 = q̄0 = q ̸= 0) and kc is
exactly the point where G(k)/k is not monotonic anymore if one uses the RS
ansätz; (ii) from the saddle point equations obtained by extremizing Eq. (2.86)
when k < kc, one obtains q̄0 = 0; (iii) the remaining saddle point equations fix
q1 and m, and one can see that these equations are identical to those needed to
perform the Rammal construction, which fix the point kc and the parameter of
the RS ansätz q.
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Figure 2.5: Rate function of the free energy for the (p = 3)-spin in zero external
magnetic field, for different values of β. The fluctuations above the typical value
correspond to the linear part of the SCGF, so that the Legendre transformation
gives an infinite rate function. The fluctuations below the typical value are
described by the branch in red. For β = 1.5 < βc (left), as the SCGF is not
differentiable, we obtain only the convex-hull of the true rate function; in the
interval [x∗, ftyp], where our result gives a straight segment (the part of the curve
overlapping the dotted line), the true, unknown rate function is represented by
the curve in blue. For β = 2 > βc (right) the SCGF is smooth and the Gärtner-
Ellis theorem applies.
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Rate function and very large deviations

Starting from the SCGF, we perform a numerical Legendre transformation to
obtain the rate function according to Eq. (2.71). The result is shown in Fig. 2.5
for different values of β. The rate function displays the following behavior:

• for x = ftyp, it is null as expected;

• for x < ftyp, I(x) is finite, indicating that a regular large deviation princi-
ple holds for fluctuations below the typical value. When β > βc the SCGF
is smooth, so we obtain the rate function via the Gartner-Ellis theorem.
On the other hand, when β < βc the SCGF is not differentiable in a point
(see Fig. 2.4), so we are only able to obtain the convex hull of the rate
function (see Fig. 2.5);

• for x > ftyp, I(x) = +∞. This is due to the linear behavior of the
SCGF below kc discussed in the previous section and it is a signature of
an anomalous scaling with N of the rare fluctuations above the typical
value.

An ambitious goal would be the identification of the correct behavior with N
of these very large deviations. Indeed, a more general way of stating a large
deviation principle is

P (fN ∈ [x, x+ dx]) ∼
{
e−aNI−(x)dx if x ≤ ftyp ,

e−bNI+(x)dx if x > ftyp ,
(2.87)

where aN , bN → ∞ when N → ∞. In other words, the fluctuations resulting
in values of x lower than ftyp are given by the rate function I−(x), while those
resulting in values larger than ftyp have rate function I+(x), but with different
scalings aN , bN . In our case, we have aN ∼ N , then the rate function defined
in Eq. (2.60) can be written as

I(x) ∼
{
I−(x) if x ≤ ftyp ,
bN
N I+(x) if x > ftyp ,

(2.88)

with bN/N → ∞. For this reason, fluctuations above the typical value are re-
ferred to as “very large deviations”. The physical explanation of the substantial
difference in scaling of the deviations of thermodynamical quantities below and
above their typical values resides in the different number of elementary degrees
of freedom involved to obtain the corresponding fluctuation: while in the first
case it is sufficient that only one of the elementary variables assumes an anoma-
lous value below its typical, the others being fixed, in the second case all the
variables have to fluctuate, a joint event with probability heavily suppressed
with respect to the first one.

This argument shows the importance of the resolution of the anomalous
scaling behavior leading to the very large deviations we explained above. In
general, however, although the Gärtner-Ellis theorem can be extended to find
rate functions for large deviation principles with arbitrary speed aN , bN , we
lack techniques to compute the asymptotic scaling of aN and bN for large N ,
because of additional inputs needed to calculate the corresponding SCGF with
a saddle-point approximation (for some other systems this problem has been



2.5. LARGE DEVIATIONS 39

solved with ad-hoc methods [ABM04, DM08], while in [PR10b] a method is
proposed in the context of the SK model).

In the next section we present the main result of our work, which could
be useful to study this anomalous kind of fluctuations also in other problems:
through an extension of the replica calculation to the case with an external
magnetic field, we are able to numerically check that the very large deviation
effect disappears. More in detail, we obtain that with a magnetic field, no
matter how small, not only aN ∼ N as before, but also bN ∼ N .

2.5.2 A “cure” for very-large deviations: p-spin model in
a magnetic field

In this section we generalize the previous discussion to the case of non-zero
magnetic field. The Hamiltonian for the model is

H = Hp − h

N∑
i=1

σi , (2.89)

where Hp is the p-spin Hamiltonian and h represents an external magnetic field
coupled with the spins.

The computation of the SCGF at h ̸= 0 goes beyond the approach of the
work by Crisanti and Sommers, who only considered the typical case. In contrast
to the problem with h = 0, where the finite-k calculation consists of a quite
straightforward generalization of the standard one, here a more substantial effort
is needed to extend the k = 0 result. The derivation is quite technical, therefore
to emphasize the discussion about the large deviation of the free energy we
report here only the final expression we obtained for the SCGF, postponing the
details in Appendix B.4. The functional g(q) in the 1RSB ansatz, for finite k is

S(k; q0, q1,m) = − (βJ)2

4
[k + k(m− 1)qp1 + k(k −m)qp0 ]−

kq̂−
2(η2 − kq̂−)

− k(m− 1)

2m
log (η0)−

k

2m
log (η1)−

1

2
log

(
1 +

k(q0 − q̂−)
η1

)
− (βh)2

2
k (η2 − kq̂−)− ks(+∞) , (2.90)

where q̂− depends on the combination βh and the parameters of the 1RSB
ansatz (its full form is given in Eq. (B.31) of Appendix B.4) and now η0 = 1−q1,
η1 = 1 − (1 −m)q1 −mq0 and η2 = 1 − (1 −m)q1 − (m − k)q0 are the three
eigenvalues of Q (now we do not have anymore q0 = 0).

Again, we numerically compute and plot G(k)/k = S(k; q̄1, q̄0, m̄)/(kβ) in
Fig. 2.6, where again q̄1, q̄0, m̄ are the solutions of the saddle point equations,
obtained by extremization of Eq. (2.90). The most striking feature of these
plots is the difference from those represented in Fig. 2.4: all the horizontal lines
disappear and their place is taken by curves (again given by the 1RSB ansatz)
with non-null derivative. Let us analyze more closely what is happening and
why the external magnetic field is changing the behavior of the system. As
discussed in the last part of Sec. 2.5.1, one can apply the Rammal construction
to correct the non-monotonic behavior of the RS version of G(k)/k (plotted as a
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Figure 2.6: The function G(k)/k for the (p = 3)-spin in a magnetic field h = 0.2,
for different values of β: β = 1.5 < βc(h) (left), β = βc(h = 0) > βc(h) (right).
The application of a magnetic field washes out the linear behavior at small k
observed in zero magnetic field.

blue curve in Fig. 2.6). Exactly as in the h = 0 case, the resulting function will
be monotonic and will have an horizontal line, which is the smooth continuation
of G(k)/k from km, the point where it loses monotonicity. However, as one can
see from Fig. 2.6), the result will not be the 1RSB solution. This difference from
the h = 0 case can be seen as a consequence of the saddle point equations: now
the equation for q0 is non-trivial and so either q̄0, q̄1 and m̄ depends on k also in
1RSB phase, giving rise to the non-trivial behavior of G(k)/k also for k < kc.
Notice that another interesting feature appears: when h = 0 we have that kc,
the point where the 1RSB solution becomes different from the RS one, coincide
with km, the point where G(k)/k obtained by the RS ansatz loses monotonicity.
With h ̸= 0 we have that kc > km for β > βc, that is the 1RSB branch departs
from the RS one before (coming from large k) the point where G(k)/k starts
to be not monotonic. Finally, we numerically checked that the shape of G(k)/k
below kc depends on p.

This change in the SCGF has an important effect, in turn, on the rate
function: taking the numerical Legendre transformation of the SCGF we now
obtain a continuous curve, meaning that very rare fluctuations are disappeared,
see Fig. 2.7. In other words, now the two quantities aN and bN introduced in
Eq. (2.87) are such that aN ∼ N and bN ∼ N . This effect is present also for very
small magnetic field, even though I(x) is more and more asymmetrical around
x = ftyp as we decrease h. This observation brings to a natural question, which
for now remains open: can this effect be exploited to obtain insights on the very
large fluctuations - that is how are they suppressed with the system size? And
what is the corresponding (finite) rate function?
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Figure 2.7: Rate function of the free energy for the (p = 3)-spin at β = 3, for
different values of the external magnetic field. The infinite branch of the rate
functions in Fig. 2.5 is replaced by a curve gradually less steep as the magnetic
field is increased.
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Chapter 3

In practice: from mean-field
to Euclidean problems

From now on we will deal with a very specific class of COPs, the so-called
Euclidean problems. The main characteristics of these problems are:

• an instance is specified by giving the positions of a certain number of
points in a subspace (often compact) of Rd;

• the cost function depends on the distances between pairs of these points;

• each of these problems allows for a natural definition in terms of a problem
on a graph.

We will deal with certain specific problems, that is the matching and assignment
problem, the traveling salesman problem and the 2-factor problem.
In all these cases, the RCOP version of these problems will be defined by consid-
ering an hypercube of side 1 and a certain factorized probability density for the
point positions, that will then be IID random variables. Therefore the quantity
of interest, which is in our case the cost of the solution, will be averaged over
the point positions.
All these problems can be also studied in the so-called mean-field approxima-
tion, where instead of throwing the points according to a probability density
and computing the distances, one directly chooses a probability density for the
distances. If this probability density is factorized, each distance is a IID random
variable and in this way we are neglecting correlations among distances. Notice
that, on the opposite, these correlations emerge from the Euclidean structure
of the space when we compute distances after having thrown the points, even if
they are chosen in a IID way.

Often we will refer to these mean-field results to make a comparison with
our finite-dimensional results, and also because under the mean-field approx-
imation the replica method can be (most of the times) carried out to obtain
the quantity of interest. On the other hand, in genuine Euclidean problems the
emergence of the aforementioned correlations prevents us to successfully apply
replica methods. To overcome this technical issue, we will deal with problems
in low number of dimensions d (d = 1 and, when possible, d = 2) since they are
simpler, and we will focus on the search for a way to obtain the average cost of
the solution without using the replica method.

43
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3.1 Euclidean problems in low dimension

3.1.1 A very quick introduction to graph terminology

Here we introduce the key concepts about graphs that we will use profusely in
the following.
Let us start with the definition of a graph: given a set A of labels (typically
A = N), a graph G is specified by two sets, the vertex set V ⊂ A and the edge
set E ⊂ A×A×· · ·×A = Aℓ and we say that G = (V,E), the element of V are
the vertices or nodes of G and the elements of E are the edges or links of G.
Multilinks (or multiple edges) are two or more edges connecting the same points.
A self-loop is an edge in which the same point appears more than once. A graph
without multilinks and self-loops is called simple graph. From now on, we will
consider always simple graphs with E ⊂ A×A (that is, ℓ = 2).
A graph is said to be undirected if the following holds: given an edge (i, j) ∈ E,
then (j, i) ∈ E (or, alternatively, the edges are unorderd pairs of vertices). As
a further restriction, we will deal only with undirected graphs.
It is customary to represent G as a collection of points, which correspond to the
vertices, and lines, which correspond to the edges, such that between vertices
vi and vj there is a line if and only if (vi, vj) ∈ E.

We will say that a graph is weighted if there is a weight wij ∈ R associated
to each link ϵij = (i, j).
Two vertices are said to be adjacent if there is a link connecting them. Given a
vertex i we say that the neighborhood of i, which we will denote as ∂i, is the set
of all vertices adjacent to i. Given a vertex i, the number of vertices adjacent
to him |∂i| is said to be its degree.
We introduce the adjacency matrix A of a graph:

Aij =

{
1 if (i, j) ∈ E;

0 otherwise.
(3.1)

Notice that for undirected graphs, A is symmetric. We define the Laplacian
matrix L of a graph:

Lij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− 1 if i ̸= j, (i, j) ∈ E;∑
j,j ̸=i

1 if i = j;

0 if i ̸= j, (i, j) /∈ E.

(3.2)

When the graphs are weighted, we define the weighted adjacency matrix as

Aij =

{
wij if (i, j) ∈ E;

0 otherwise
(3.3)

and the weighted Laplacian matrix as

Lij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− wij if i ̸= j, (i, j) ∈ E;∑
j,j ̸=i

wij if i = j;

0 if i ̸= j, (i, j) /∈ E.

(3.4)
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where wij is the weight associated to the edge (i, j).

Another useful concept is the walk, that is an alternating series of vertices
and edges such that two consecutive vertices are linked by the interleaving edge.
Pictorially, this is actually a “walk” on the graphical representation of a graph.
When the vertices and edges are all different, the walk is called path. A graph
is connected if there is a path connecting each pair of vertices, and it is said to
be disconnected otherwise. The length of a path is its number of vertices, and
the distance between two vertices is the length of the shortest path connecting
them. If such a path does not exist, we say that the distance is infinite. A walk
or path is closed if the starting vertex is the same of the ending one. A closed
path is called cycle or loop. There are two special kinds of cycles: the Eulerian
cycle is such that it passes through each edge of the graph, the Hamiltonian
cycle is such that it passes through each vertex of the graph. If a graph does
not contain any cycle, it is called forest. If it is also connected, it is called tree.

There are some classes of graphs which one encounters particularly often,
because of their regularity properties (see Fig. 3.1):

• the k-regular graphs is such that for each v ∈ V , we have |∂V | = k, that
is each vertex has degree k;

• a complete graph is such that for each pair of vertices i, j ∈ V , (i, j) ∈ E,
that is each pair of vertices are connected by an edge; in particular, a
complete graph with N vertices is N -regular and we will use for it the
symbol KN ;

• a graph G = (V,E) is p-partite if we can partition V in p non-empty
subsets such that there are no edges of G connecting vertices which belong
to the same subset; we will consider in the following only the case p = 2:
in this case we say that the graph is bipartite;

• a graph G = (V,E) which is bipartite in such a way that each subset
of vertices has the same number of vertices (|V1| = |V2| = |V |/2) and
such that each vertex of a subset is connected with all the vertices of all
the other subsets is called complete bipartite; in particular, a complete
bipartite graph with 2N vertices is N -regular and and we will use for it
the symbol KN,N .

A subgraph G′ = (V ′, E′) of the graph G = (V,E) is such that V ′ ⊂ V
and E′ ⊂ E. A spanning subgraph or factor is a subgraph such that V ′ = V .
A k-factor is a factor that is k-regular. In particular, 1-factors are also called
(perfect) matchings1, or assignments when the graph is bipartite. 2-factors are
called loop coverings. Finally, whenever a spanning subgraph is a tree, it is
called spanning tree.

Finally, for completeness, we add that sometimes the disorder in COPs de-
fined over graphs is introduced directly at the graph level with the concept
of random graphs, that is a probability distribution over a set of graphs with
certain properties. The most used random graphs are:

11-regular subgraph which are not spanning are sometimes called matchings, and the word
“perfect” is used if the subgraph is spanning; however, since we will only use this second case,
we will from now on drop the adjective “perfect”.
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(a) Example of a 3-regular graph. (b) Graphic representation of KN

with N=12.

(c) Graphic representation of
KN,N with N=6.

Figure 3.1: Examples of several classes of graphs.

• k-regular random graphs - a graph is randomly chosen among all those
with N vertices which are k regulars. Therefore, each graph has the same
probability of being generated.

• Erdös-Rényi graphs - given a set ofN vertices, each possible link is realized
with fixed probability p.

• Barabási-Albert graphs (also known as preferential attachment graphs) -
one vertex at a time is added to the graph; if there are other vertices in
the graph, the probability that the new one has a link with the already
present vertex v is kv/N where kv is the degree of v and N =

∑
v kv is

the normalization constant.

3.1.2 Why one dimension?

A Euclidean problem can be seen as a problem on a weighted graph, which typ-
ically is complete or complete bipartite. Indeed, an instance of such a problem
is specified when the positions of all the involved points are given, and the cost
function depends on the distances between pairs of these points. Therefore we
can restate the problem on a graph as follows: each point chosen in the Eu-
clidean space corresponds to a vertex of the graph and the weight of the link
connecting two points is its distance computed in the Euclidean d-dimensional
space. For this reason we say that the graph is embedded in the Euclidean d-
dimensional space. In the next sections, we will see how the cost function of
Euclidean problems has often a very simple interpretation when the problem is
casted in graph language.
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From the next Section, we will start our analysis by considering problems
on a graph embedded in one dimension. Now, the problems we will encounter
are known to be in the P complexity class as long as they are in one dimension,
so why do we are so interested in them?
The first reason is that interesting phenomena, such as non-self-averaging solu-
tion costs, can appear also in one dimension (as we will see later). The second
is that the one-dimensional case is much simpler than the higher-dimensional
one, and can lead to insight useful for the latter.

Let us now go through our general strategy to address one-dimensional
RCOPs. Our aim is to compute the cost of the solution, averaged over the
disorder (that is, over the ensemble of instances defined by probability density
for the point positions).
The first step consists in finding the structure of the solution of our problem. In-
deed in one dimension (and, unfortunately, only in one!) we can sort the points
according to their position, so that if we have the positions x1 < · · · < xN for N
points, we say that that the first point is the one in x1, the second is the one in
x2 and so on. Therefore, the point are ranked according to their position. We
will see that often the solution is given in terms of this point rank, rather them
the point specific positions. This will allow us to find the configuration which
minimizes the cost, and then to reach our goal it will be enough to average the
cost of this configuration over the point positions.
However, as we will see, for some problems the optimal configuration does de-
pend on the specific point positions (and not only on their rank) even in one
dimension. In these cases we will still be able to work out bounds for the cost,
by carefully analyzing the full set of possible solutions.

We will also see how this one-dimensional approach to Euclidean RCOPs
will help us to make exact predictions for the limiting (in the large problem
size) behavior of the average cost, even for some problems which are NP-hard
(in two or more dimensions).

3.2 Matching problem

3.2.1 An easy problem?

We start by the most general definition of the problem, which is the following:
consider a weighted graph G = (V,E), we being the weight of the edge e ∈
E. Let us denote by M of matchings of this graph. To each matching M =
(V,EM ) ∈ M we associate a cost

CM =
∑
e∈EM

we. (3.5)

The matching problem consists in deciding whether M = ∅ or not, and if
M ̸= ∅ then the weighted matching problem consists in finding the matching
with the minimum cost. Notice that we can easily recast the matching problem
as a weighted matching problem as follows: given G = (V,E) with N vertices,
build a weighted complete graph KN , where the weight of a link e is 0 if e ∈ E,
1 if e /∈ E. Now solve the weighted matching problem on this weighted complete
graph, and if the solution cost is 0 then G has at least one matching, if the cost
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is greater than 0 then G does not have matchings.
Therefore from now on we will only consider the weighted matching prob-
lem, which we will simply call matching problem. This problem, even in this
very general graph setting, is in the P complexity class thanks to the work
of Kuhn [Kuh55], who discovered a polynomial algorithm called Hungarian al-
gorithm, and several other works [Edm65, MV80, EK03, LP09] in which that
algorithm is extended and made faster.
From this point on, we will only consider matchings on complete graphs K2N

and on complete bipartite graphs KN,N . Notice that usually, when the graph is
bipartite, the matching problem is called assignment problem.
Let us come back to the question of the problem complexity, and consider more
closely the matching problem on complete graphs. The graph K2N has always

(2N − 1)!! =

N−1∏
k=0

(2N − 1− 2k) =

∏2N
k=0(2N − k)∏N−1
k=0 (2N − 2k)

=
(2N)!

2kN !
∼

√
2eN(log(2N)+1)

(3.6)
perfect matchings, where in the last step we used the Stirling approximation for
the factorial for large N ,

N ! ∼
√
2πN

(
N

e

)N
. (3.7)

This is of course an enormous number which makes brute force approaches
immediately unusable. Similarly, a bipartite graph KN,N has

N ! ∼
√
2πN

(
N

e

)N
=

√
2πeN(logN−1)+ 1

2 logN (3.8)

assignments.

According to our discussion in Sec. 2.2, we can write down a spin Hamiltonian
for this problem as follows: given a graph G = (V,E) (which we restrict to be
complete or complete bipartite), we associate a binary variable to each edge
of the graph, and xij = 1 (or 0) if the edge (i, j) is present (or not) in the
configuration (set of edges) x. The cost function is

C(x) =
1

2

∑
(i,j)∈E

wijxij . (3.9)

where the factor 1/2 is present because if (i, j) ∈ E, also (j, i) ∈ E. We also
need to require that x is a matching, that is∑

j∈∂i
xij = 1 (3.10)

for each i.
We can proceed in two ways:

• we can add these constraints in a hard manner, that is by restricting
the configuration space to those states for which Eq. (3.10) is satisfied
(constraints of this kind are ofter referred to as hard constraints);
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• we can modify the cost function so that at least the minimum-energy
configuration satisfies Eq. (3.10), for example by using

Csoft(x) =
1

2

∑
(i,j)∈E

wijxij + λ

⎛⎝∑
j∈∂i

xij − 1

⎞⎠2

, (3.11)

where λ is a free parameter to be chosen sufficiently large (constraints of
this kind are ofter referred to as soft constraints).

In this Chapter we will always impose hard constraints, but in the next Chapter
we will see that, to overcome some technical problems, sometimes it is necessary
to use the soft variant.
At this point, to obtain a genuine spin Hamiltonian, we should do the change
of variables

xij =
σij + 1

2
, (3.12)

so that to the binary variable xij = {1, 0} we associate a spin variable σij =
{1,−1}. The resulting Hamiltonian is

H(σ) =
1

4

∑
(i,j)∈E

wijσij + C, (3.13)

where C =
∑
w w/2. As we can see, the Hamiltonian of this problem is trivial,

and all the non-trivial part comes from the constraint term, which in terms of
the new spin variables is ∑

j∈∂i
σij = 2 + C ′, (3.14)

where C ′ = N − 1 for G = KN and C ′ = N for G = KN,N and is the number of
vertices adjacent to each vertex. By using either hard or soft constraints, one
can check that the problem Hamiltonian is frustrated (in the sense discussed
in Sec. 2.4). Therefore, even if we know that an algorithm which solves the
problem in polynomial time does exist, the energy landscape is far from being
trivial for a generic choice of the weights wij .

3.2.2 Mean field version

We introduce the disorder in the matching/assignment problem to treat it as
a RCOP. In the mean field case, we do it by choosing a probability density
function for the weights wij so that they are IID random variables.
The focus of this work is the Euclidean version of several problems, where the
weights are correlated, but before than considering that more complicated case,
we will very quickly review the mean field case following the original paper
by Mézard and Parisi [MP85] (the interested readers can find the details of the
computations in that paper, but also in one of these PhD theses [Sic16, Mal19]).
For the weights, we consider the probability density

p(w) = θ(w)e−w. (3.15)
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We can write the partition function for the complete graph K2N using Eqs. (3.9)
and (3.10) as

Z =

⎛⎜⎜⎝ 2N∏
i,j=1
i<j

∑
xij=0,1

⎞⎟⎟⎠ e−β
∑

i<j wijxij

⎡⎣2N∏
i=1

δ

⎛⎝∑
j,j ̸=i

xij , 1

⎞⎠⎤⎦ , (3.16)

where we have written the Kronecker delta as δ(a, b) instead of δa,b for notational
convenience. By using the integral representation of the δ we can sum over the
binary variables and obtain (remember that xij = xji)

Z =

[
2N∏
i=1

dλi
2π

eiλi

]∏
i<j

(
1 + e−βwij−i(λi+λj)

)
, (3.17)

which is the starting point for a replica computation of the free energy at zero
temperature with quenched disorder, which coincide with the average cost of
the solution. The computation is far from trivial, but it is similar conceptually
(even though there are some technical differences) to the one we performed for
the p-spin spherical model in Sec. 2.4.1. A remarkable difference is that this
time a RS ansätz is enough to solve the problem. The result is

lim
β→∞

lim
N→∞

− 1

β
logZ =

π2

12
, (3.18)

that is, for the average cost of the solution we have

EN ∼ π2

12
(3.19)

for N ≫ 1. This same approach can be used for the assignment on the complete
bipartite graph KN,N and the result has a factor 2 of difference:

E
(bip)
N ∼ π2

6
. (3.20)

At this point, one can wonder if there is a simple way to guess the fact that
the cost of the solution is (on average) of order 1 for N → ∞, and if there
is a simple way to explain this factor 2 of difference. To answer that, notice
that, even though wi = 1, the minimum among n IID random variables can be
computed by obtaining the cumulative:

P (minwi ≥ x) =

n∏
i=1

P (wi ≥ x) = e−nx. (3.21)

From this, we can obtain

p(minwi) = − ∂

∂x
P (minwi ≥ x) = ne−nx (3.22)

and so, on average,

minwi = N

∫ ∞

0

dxx e−nx =
1

n
. (3.23)
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Therefore, one can reasonably expect that, if we need to find the matching of
minimum cost of K2N , each of the N edges chosen in that matching will be have
a cost close to the minimum of a set of 2N−1 ∼ 2N IID random variables drawn
from the probability given in Eq. (3.15), so 1/(2N). Since we have N edges in
the cost function, if each edge of the matching were independent from the others,
the total cost would have been ∼ 1/2. However, there are the constraints, that
prevent a matching from being composed only of minimum cost links, and the
extra cost due to this fact raises the total cost to π2/12 ≃ 0.82. A similar
argument can be used for the bipartite matching, and in this case one has that
again the matching is composed by N edges, but each edge now has to be chosen
among N IID random variables with probability Eq. (3.15), and this gives the
factor 2 of difference.

3.2.3 Going in one dimension

Assignment problem on complete bipartite graphs

In this section we will focus on the Euclidean matching problem, beyond the
mean field approximation. Therefore, let us state the problem in the Euclidean
setting, starting from the assignment: consider two sets of points in Rd labeled
by their coordinates, R = {r1, . . . , rN} (red points) and B = {b1, . . . , bN} (blue
points). We want to match each red point to one and only one blue point such
that a certain function of the distances between matched points is minimized.
Since we can connect the blue points only to the red points and vice versa, the
problem can be seen as a matching on a bipartite complete graph KN,N . Now,
each choice of a matching corresponds to a permutation of N objects, π ∈ S(N),
and vice versa. The cost function assigns a cost to each permutation as follows:

E
(p)
N [π] =

∑
i

⏐⏐ri − bπ(i)
⏐⏐p , (3.24)

where p ∈ R is a parameter. We will focus here on the p > 1 case. The points
p = 1 and p = 0 are special points where there can be many solutions [BCS14],
but apart from that they share the properties about the typical cost with, re-
spectively, the p > 1 and p < 0 case. For a study on the properties of this
problem with p < 0, see [CDS17], while some properties regarding the region
0 < p < 1 are given in [CDES19].

In this problem, the disorder is introduced at the level of point positions:
here we will consider the case when the coordinates of each point is an IID ran-
dom variable, distributed with a flat probability density on the interval [0,1].
For this problem, there is no way to proceed directly with the plain replica
method, due to the fact that now, even though the point positions are uncorre-
lated, their distances (which are the relevant variables in the cost function) are.
One can try to take into account the Euclidean correlations as corrections to
the mean field case [MP88, LPS17], but here we will follow another path (which
has been presented in [CGMM19]).
We will use the fact that for p > 1 the optimal solution is the identity permuta-
tion once both sets of points have been ordered [McC99, BCS14]. The proof of
this is obtained by noticing that once one knows what is the optimal solution
of the case N = 2 (so two blue and two red points), then the solution is found
by simply repeating this argument for each possible choice of two blue and two
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red points. It follows that, in these cases, the optimal cost is

E
(p)
N =

N∑
i=1

|ri − bi|p. (3.25)

Now we need to average over the disorder. To do that, we will use the Selberg
integrals [Sel44]

Sn(α, β, γ) :=

(
n∏
i=1

∫ 1

0

dxi x
α−1
i (1− xi)

β−1

)
|∆(x)|2γ

=

n∏
j=1

Γ(α+ (j − 1)γ)Γ(β + (j − 1)γ)Γ(1 + jγ)

Γ(α+ β + (n+ j − 2)γ)Γ(1 + γ)

(3.26)

where
∆(x) :=

∏
1≤i<j≤n

(xi − xj) (3.27)

with α, β, γ ∈ C and Re(α) > 0, Re(β) > 0, Re(γ) > min(1/n,Re(α)/(n −
1),Re(β)/(n−1)), see [AAR99, Chap. 8]. Selberg integrals are a generalization
of Euler Beta integrals, which are recovered by setting n = 1.

In Appendix C.1 we compute the probability that, once we have ordered our
points, the k-th point is in the interval [x, x + dx]. By using that result, given
in Eq. C.5, and the Selberg integral from Eq. (3.26)

S2

(
k,N − k + 1,

p

2

)
=

(
2∏
i=1

∫ 1

0

dxi x
k−1
i (1− xi)

N−k
)
|x2 − x1|p

=
Γ(k)Γ(N − k + 1)Γ

(
k + p

2

)
Γ
(
N − k + 1 + p

2

)
Γ(1 + p)

Γ
(
N + 1 + p

2

)
Γ(N + 1 + p)Γ

(
1 + p

2

) ,

(3.28)

we get that the average of the k-th contribution is given by

|rk − bk|p =
∫ 1

0

dx

∫ 1

0

dy Pk(x)Pk(y) |y − x|p

=

(
Γ(N + 1)

Γ(k) Γ(N − k + 1)

)2
(

2∏
i=1

∫ 1

0

dxi x
k−1
i (1− xi)

N−k
)
|x2 − x1|p

=

(
Γ(N + 1)

Γ(k) Γ(N − k + 1)

)2

S2

(
k,N − k + 1,

p

2

)
=

Γ2(N + 1)Γ
(
k + p

2

)
Γ
(
N − k + 1 + p

2

)
Γ(1 + p)

Γ(k)Γ(N − k + 1)Γ
(
N + 1 + p

2

)
Γ(N + 1 + p)Γ

(
1 + p

2

)
(3.29)

and therefore we get the exact result

E
(p)
N =

Γ2(N + 1)Γ(1 + p)

Γ
(
N + 1 + p

2

)
Γ(N + 1 + p)Γ

(
1 + p

2

) N∑
k=1

Γ
(
k + p

2

)
Γ
(
N − k + 1 + p

2

)
Γ(k)Γ(N − k + 1)

=
Γ
(
1 + p

2

)
p+ 1

N
Γ(N + 1)

Γ
(
N + 1 + p

2

) ,
(3.30)
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where we made repeated use of the duplication and Euler’s inversion formula
for Γ-functions

Γ(z)Γ

(
z +

1

2

)
= 21−2z

√
π Γ(2z) (3.31a)

Γ(1− z)Γ(z) =
π

sin(πz)
. (3.31b)

For large N we obtain, at the first order,

E
(p)
N ∼ Γ

(
1 + p

2

)
p+ 1

N1− p
2 . (3.32)

Matching problem on the complete graph

A similar technique can be carried out to compute the cost of the matching
problem on the complete graph K2N . Indeed, again by studying the case N = 4,
it can be shown that the optimal solution for p > 1 consists always in, once we
have sorted the point such that x1 ≤ · · · ≤ x2N , matching x1 with x2, x3 with
x4 and so on. Therefore the optimal cost is

E
(p)
N =

N∑
i=1

(x2i − x2i−1)
p. (3.33)

To compute the average cost, it is convenient to define the variables φi = xi+1−
xi. The cost of the solution in this new variables reads

E
(p)
N =

N∑
i=1

φp2i−1 (3.34)

Since the 2N points are uniformly chosen in the unit interval and then ordered,
their joint distribution is

p(x1, . . . , x2N ) = (2N)!

2N∏
i=0

θ(xi+1 − xi), (3.35)

with x0 = 0 and x2N+1 = 1. Therefore, the probability distribution function of
the φi variables is

p(φ1, . . . , φ2N ) = (2N)! δ

(
2N∑
i=1

φi, 1

)
2N∏
i=0

θ(φi). (3.36)

From this we can compute the marginal probability of the k-th spacing φk,
which is

p(1)(φk) = (2N)!

⎡⎢⎣ 2N∏
a=0
a ̸=k

∫ ∞

0

dφa

⎤⎥⎦ δ( 2N∑
i=1

φi, 1

)

= (2N)! i2N lim
ϵ→0+

∫ ∞

−∞

dλ

2π

e−iλ(1−φk)

(λ+ iϵ)2N

=

{
2N (1− φk)

2N−1 if 0 < φk < 1;

0 otherwise

(3.37)
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where we inserted a small imaginary part at the denominator in the second
step to be able to use the residue method to perform the integral. Notice that
the result does not depend on k and, by exploiting the Euler Beta integral
(Eq. (3.26) with n = 1), we get

φpk =

∫
dφk p

(1)(φk)φ
p
k =

Γ(2N + 1)Γ(1 + p)

Γ(2N + 1 + p)
. (3.38)

Therefore we finally obtain

E
(p)
N = N

Γ(2N + 1)Γ(1 + p)

Γ(2N + 1 + p)
. (3.39)

For large N we obtain, at the first order,

E
(p)
N ∼ Γ(p+ 1)

2p
N1−p. (3.40)

3.2.4 Assignment in two dimensions and beyond

We have seen how to exploit properties of the solution structure to compute the
average cost of the matching problem solution in one spatial dimension, for both
the complete and complete bipartite version of the problem. However, we just
scratched the surface: there are many known results, and many open questions
about this fascinating COP. We will mention some of them here.

First of all, the scaling in N for N → ∞ of the average solution cost is
known for all number of dimension d. In particular, for the Euclidean matching
problem on the complete graph KN embedded in d dimensions, where the cost
of a link is the distance between points to the p ≥ 1, we have

E
(p)
N ∼ A

(p)
d N1−p/d (3.41)

These scalings can be obtained by a qualitative reasoning, such as the fact that
if there are N points in a volume V = 1, then the distance between two first
neighbors is ∼ N−1/d and therefore the cost of that link is ∼ Np/d and we have
N of these links. A formal proof of Eq. (3.41) is given in [Ste97, Yuk06]. As we
have seen, when d = 1 we have

A
(p)
1 =

Γ(p+ 1)

2p
, (3.42)

and we are actually able to compute the average cost for each finite N . It is
known that the first correction, in every d, scales as O(N−p/d) [HBM98], as we
can again check in one dimension by starting from Eq. (3.39). The exact value

of the constant A
(p)
d is not known for d > 1.

For the assignment problem on the complete bipartite graph KN,N , in d
dimensions with the parameter p ≥ 1 we know that [Tal92, AKT84]:

E
(p)
N ∼

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
B

(p)
1 N1−p/2 d = 1;

B
(p)
2 N

(
log(N)

N

)p/2
d = 2;

B
(p)
d N1−p/d d > 2.

(3.43)
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The scaling differences between the bipartite problem and the one with a single
kind of points are due, intuitively, to the fact that in the former case if we con-
sider the problem restricted to a small region of space we can have fluctuations
of the relative density of points of one kind with respect to those of the other
kind. Clearly, this is not possible when there is a single kind of points. This
fact, in turn, implies the presence of longer links even at a “microscopical” level,
giving rise to the different behavior between this two versions of the matching
problem. However, this difference is less and less important as we go in higher
number of dimensions.
When p = 2, additional results are known [CLPS14] for the case with periodic
boundary conditions (so that the points are chosen on a d-dimensional torus):

E
(p)
N ∼

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1

3
+O(1/N) d = 1;

log(N)

2π
+O(1) d = 2;

N1−p/d
(
B

(p)
d +

ζ(1)

2π2
N2/d−1

)
d > 2,

(3.44)

where ζ(x) is the Epstein ζ function. Notice that in d > 2 only the coefficient
of the first correction is analytically known, while the leading-term coefficient is
not. The result in d = 2, p = 2 has been extended to the case of open boundary
condition [CS15, AST19], and the asymptotic result given in Eq. (3.44) is proven
to be correct also in this case.
As for the problem on the complete graph, in d = 1 Eq. (3.30) gives the cost
and all the corrections for each value of p. For the case with p ̸= 2 and d > 1

neither the coefficient B
(p)
2 nor the scaling of the corrections in N is known.

Several other results are known about the self-averaging property of the
solution cost:

• for the matching problem (on complete graph), it has been proven [Ste97,
Yuk06] that the cost is self averaging in any number of dimension d;

• for the assignment problem (on complete bipartite graph), in d = 1 one
can check that the cost is not self-averaging with methods similar to those
used in Sec. 3.2.3 (see [CDS17]), while for d > 2 it is known that the cost
is self-averaging [HBM98]; in d = 2, this question is still open.

3.3 Traveling salesman problem

In this section we will analyze an archetypal combinatorial optimization prob-
lems, which has been fueling a considerable amount of research, from its formal-
ization to the present day. Given N cities and N(N−1)/2 values that represent
the cost paid for traveling between all pairs of them, the traveling salesman
problem (TSP) consists in finding the tour that visits all the cities and finally
comes back to the starting point with the least total cost to be paid for the
journey. The first formalization of the TSP can be probably traced back to the
Austrian mathematician Karl Menger, in the 1930s [Men32]. As it belongs to
the class of NP-complete problems, see Karp and Steele in [LSKL85], one of the
reason for studying the TSP is that it could shed light on the famous P vs NP
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problem discussed in Sec. 2.3. Many problems in various fields of science (com-
puter science, operational research, genetics, engineering, electronics and so on)
and in everyday life (lacing shoes, Google maps queries, food deliveries and so
on) can be mapped on a TSP or a variation of it, see for example Ref. [Rei94,
Chap. 3] for a non-exhaustive list. Interestingly, the complexity of the TSP
seems to remain high even if we try to modify the problem. For example, the
Euclidean TSP, where the costs to travel from cities are the Euclidean distances
between them, remains NP-complete [Pap77]. The bipartite TSP, where the
cities are divided in two sub-sets and the tour has to alternate between them,
is NP-complete too, as its Euclidean counterpart.
The traveling salesman problem is one of the most studied combinatorial opti-
mization problems, because of the simplicity in its statement and the difficulty
of its solution. In this section, after defining the problem explicitly, we review
the most recent works regarding the average cost of the solutions in one and
two dimensions [CDGGM18, CCDGM18, CGMV19].

3.3.1 Traveling on graphs

In a generic graph, the determination of the existence of an Hamiltonian cy-
cle is an NP-complete problem (see Johnson and Papadimitriou in [LSKL85]).
However, here we will deal with complete graphs KN , where at least one Hamil-
tonian cycle exists for N > 2, and bipartite complete graphs KN,N , where at
least an Hamiltonian cycle exits for N > 1.
Let us denote by H the set of Hamiltonian cycles of the graph G. Let us suppose
now that a weight we > 0 is assigned to each edge e ∈ E of the graph G. We
can associate to each Hamiltonian cycle h ∈ H a total cost

E(h) :=
∑
e∈h

we. (3.45)

In the (weighted) Hamiltonian cycle problem we search for the Hamiltonian
cycle h ∈ H such that the total cost in Eq. (3.45) is minimized, i.e., the optimal
Hamiltonian cycle h∗ ∈ H is such that

E(h∗) = min
h∈H

E(h) . (3.46)

When the N vertices of KN are seen as cities and the weight for each edge
is the cost paid to cover the route distance between the cities, the search for
h∗ is called the traveling salesman problem (TSP). For example, consider when
the graph KN is embedded in Rd, that is for each i ∈ [N ] = {1, 2, . . . , N} we
associate a point xi ∈ Rd, and for e = (i, j) with i, j ∈ [N ] we introduce a weight
which is a function of the Euclidean distance we = |xi − xj |p with p ∈ R, as
we did previously for the matching problem. When p = 1, we obtain the usual
Euclidean TSP. Analogously for the bipartite graph KN,N we will have two sets
of points in Rd, that is the red {ri}i∈[N ] and the blue {bi}i∈[N ] points and the
edges connect red with blue points with a cost

we = |ri − bj |p . (3.47)

When p = 1, we obtain the usual bipartite Euclidean TSP.
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Also this COP can be promoted to be a RCOP in many ways, and the sim-
plest correspond to the mean-field case: the randomness is introduced by consid-
ering the weights we independent and identically distributed random variables,
thus neglecting any correlation due to the Euclidean structure of the space. In
this case the problem is called random TSP and has been extensively studied by
disordered system techniques such as replica and cavity methods [VM84, Orl85,
Sou86, MP86a, MP86b, KM89, RRG14] and by a rigorous approach [Was10].
In the random Euclidean TSP [BHH59, Ste81, KS85, PM96, CBB+97], instead,
the point positions are generated at random as IID random variables, and as a
consequence the weights will be correlated. Also in this case we are interested
in finding the average optimal cost

E = E(h∗) , (3.48)

and its statistical properties.

3.3.2 TSP on bipartite complete graphs

Hamiltonian cycles and permutations

We shall now restrict to the complete bipartite graph KN,N . Before turning to
the computation of the average cost of the TSP solution in one dimension, let
us discuss some general properties, valid in every dimension number, and the
relationship between the TSP on bipartite graphs and the assignment problem
discussed before.
Let SN be the group of permutation of N elements. For each σ, π ∈ SN , the
sequence of edges for i ∈ [N ]

e2i−1 =(rσ(i), bπ(i))

e2i =(bπ(i), rσ(i+1))
(3.49)

where σ(N+1) must be identified with σ(1), defines a Hamiltonian cycle. More
properly, it defines a Hamiltonian cycle with starting vertex r1 = rσ(1) with a
particular orientation, that is

h[(σ, π)] := (r1bπ(1)rσ(2)bπ(2) · · · rσ(N)bπ(N)) = (r1C) , (3.50)

where C is an open walk which visits once all the blue points and all the red
points with the exception of r1. Let C−1 be the open walk in opposite direc-
tion. This defines a new, dual, couple of permutations which generate the same
Hamiltonian cycle

h[(σ, π)⋆] := (C−1r1) = (r1C
−1) = h[(σ, π)] , (3.51)

since the cycle (r1C
−1) is the same as (r1C) (traveled in the opposite direction).

By definition

h[(σ, π)⋆] = (r1bπ(N)rσ(N)bπ(N−1)rσ(N−1) · · · bπ(2)rσ(2)bπ(1)) . (3.52)

Let us introduce the cyclic permutation τ ∈ SN , which performs a left rotation,
and the inversion I ∈ SN . That is τ(i) = i + 1 for i ∈ [N − 1] with τ(N) =
1 and I(i) = N + 1 − i. In the following we will denote a permutation by
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using the second row in the usual two-row notation, that is, for example τ =
(2, 3, · · · , N, 1) and I = (N,N − 1, . . . , 1). Then

h[(σ, π)⋆] = h[(σ ◦ τ ◦ I, π ◦ I)] . (3.53)

There are N ! (N − 1)!/2 Hamiltonian cycles for KN,N . Indeed the couples of
permutations are (N !)2 but we have to divide them by 2N because of the N
different starting points and the two directions in which the cycle can be trav-
eled.

From Eq. (3.49) and weights of the form given in Eq. (3.47), we get an
expression for the total cost

E[h[(σ, π)]] =
∑
i∈[N ]

[
|rσ(i) − bπ(i)|p + |rσ◦τ(i) − bπ(i)|p

]
. (3.54)

Now we can re-shuffle the sums and we get

E[h[(σ, π)]] =
∑
i∈[N ]

|ri − bπ◦σ−1(i)|p +
∑
i∈[N ]

|ri − bπ◦τ−1◦σ−1(i)|p

= E[m(π ◦ σ−1)] + E[m(π ◦ τ−1 ◦ σ−1)]

(3.55)

where E[m(λ)] is the total cost of the assignment m in KN,N associated to the
permutation λ ∈ SN . The duality transformation given in Eq. (3.53), inter-
changes the two matchings because

µ1 := π ◦ σ−1 → π ◦ I ◦ I ◦ τ−1 ◦ σ−1 = π ◦ τ−1 ◦ σ−1 (3.56a)

µ2 := π ◦ τ−1 ◦ σ−1 → π ◦ I ◦ τ−1 ◦ I ◦ τ−1 ◦ σ−1 = π ◦ σ−1 (3.56b)

where we used
I ◦ τ−1 ◦ I = τ. (3.57)

The two matchings corresponding to the two permutations µ1 and µ2 have no
edges in common and therefore each vertex will appear twice in the union of
their edges. Remark also that

µ2 = µ1 ◦ σ ◦ τ−1 ◦ σ−1 (3.58)

which means that µ1 and µ2 are related by a permutation which has to be,
as it is τ−1, a unique cycle of length N . It follows that, if h∗ is the optimal
Hamiltonian cycle and m∗ is the optimal assignment,

E[h∗] ≥ 2E[m∗] . (3.59)

Traveling on a line... and tying shoelaces!

Here we shall focus on the one-dimensional case, where both red and blue points
are chosen uniformly in the unit interval [0, 1]. Remember that, as seen in
Sec. 3.2.3, given two sets of sorted points in increasing order, the optimal as-
signment is defined by the identity permutation I = (1, 2, . . . , N). We will com-
pute the average cost of the solution of the TSP on bipartite complete graphs,
similarly to what we have done with the matching problem: as first step we will
obtain the general structure of the solution, and as second step we will use this
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r1 r2 r3 r4

b1 b2 b3 b4

Figure 3.2: The optimal Hamiltonian cycle h̃ for N = 4 blue and red points
chosen in the unit interval and sorted in increasing order.

information to perform the average over the disorder.
From now on, we will assume p > 1 and that both red and blue points are
ordered, i.e. r1 ≤ · · · ≤ rN and b1 ≤ · · · ≤ bN . Let

σ̃(i) =

{
2i− 1 i ≤ (N + 1)/2

2N − 2i+ 2 i > (N + 1)/2
(3.60)

and

π̃(i) = σ̃ ◦ I(i) = σ̃(N + 1− i) =

{
2i i < (N + 1)/2

2N − 2i+ 1 i ≥ (N + 1)/2
(3.61)

the couple (σ̃, π̃) will define a Hamiltonian cycle h̃ ∈ H. More precisely, accord-
ing to the correspondence given in Eq. (3.49), it contains the edges for even N ,

ẽ2i−1 =

{
(r2i−1, b2i) i ≤ N/2

(r2N−2i+2, b2N−2i+1) i > N/2
(3.62a)

ẽ2i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(b2i, r2i+1) i < N/2

(bN , rN ) i = N/2

(b2N−2i+1, r2N−2i) N/2 < i < N

(b1, r1) i = N

(3.62b)

while for N odd

ẽ2i−1 =

⎧⎪⎨⎪⎩
(r2i−1, b2i) i < (N − 1)/2

(rN , bN ) i = (N − 1)/2

(r2N−2i+2, b2N−2i+1) i > (N − 1)/2

(3.63a)

ẽ2i =

⎧⎪⎨⎪⎩
(b2i, r2i+1) i < (N − 1)/2

(b2N−2i+1, r2N−2i) (N − 1)/2 < i < N

(b1, r1) i = N .

(3.63b)

The cycle h̃ is the analogous of the criss-cross solution introduced by Hal-
ton [Hal95] (see Fig. 3.2). In his work, Halton studied the optimal way to tie a
shoe. This problem can be seen as a peculiar instance of a 2-dimensional bipar-
tite Euclidean TSP with the parameter which tunes the cost p = 1. One year
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later, Misiurewicz [Mis96] generalized Halton’s result giving the least restric-
tive requests on the 2-dimensional TSP instance to have the criss-cross cycle as
solution. Other generalizations of these works have been investigated in more
recent papers [Pol02, GT17]. In Appendix C.2.1 we prove that for a convex and
increasing cost function the optimal Hamiltonian cycle is provided by h̃.

Statistical properties of the solution cost

Similarly to the assignment problem, we can exploit a generalization of the
Selberg integral given in Eq. (3.26) (see [AAR99, Sec. 8.3]),

Bn(j, k;α, β, γ) :=

(
n∏
i=1

∫ 1

0

dxi x
α−1
i (1− xi)

β−1

)(
j∏
s=1

xs

)⎛⎝ j+k∏
s=j+1

(1− xs)

⎞⎠|∆(x)|2γ

= Sn(α, β, γ)

∏j
i=1[α+ (n− i)γ]

∏k
i=1[β + (n− i)γ]∏j+k

i=1 [α+ β + (2n− 1− i)γ]
,

(3.64)

to compute the average solution cost for each N . By using Eq. (3.64) and the
probability that given N ordered points on a line the k-th is in [x, x + dx],
Eq. (C.5), we obtain:

B2

(
1, 1; k,N − k,

p

2

)
=

=

∫ 1

0

dx1

∫ 1

0

dx2 x
k−1
1 xk2 (1− x1)

N−k(1− x2)
N−k−1 |x1 − x2|p

=

(
k + p

2

) (
N − k + p

2

)
(N + p)

(
N + p

2

) S2

(
k,N − k,

p

2

)
=

Γ(k)Γ(N − k) Γ(p+ 1)Γ
(
k + p

2 + 1
)
Γ
(
N − k + p

2 + 1
)

Γ(N + p+ 1)Γ
(
N + p

2 + 1
)
Γ
(
1 + p

2

) .

(3.65)

Therefor we get

|bk+1 − rk|p = |rk+1 − bk|p =
∫ 1

0

dx

∫ 1

0

dy Pk(x)Pk+1(y) |x− y|p

=
Γ2(N + 1)

Γ(k) Γ(N − k) Γ(k + 1)Γ(N − k + 1)
×

×
∫ 1

0

dx dy xk−1 yk(1− x)N−k(1− y)N−k−1 |x− y|p

=
Γ2(N + 1)

Γ(k) Γ(N − k) Γ(k + 1)Γ(N − k + 1)
B2

(
1, 1; k,N − k,

p

2

)
=

Γ2(N + 1)Γ(p+ 1)Γ
(
k + p

2 + 1
)
Γ
(
N − k + p

2 + 1
)

Γ(k + 1)Γ(N − k + 1)Γ(N + p+ 1)Γ
(
N + p

2 + 1
)
Γ
(
1 + p

2

) .
(3.66)

from which we obtain

N−1∑
k=1

|bk+1 − rk|p = 2Γ(N+1)Γ(1+p)

(
(N + p+ 1)Γ(p2 )

4(p+ 1)Γ(p) Γ(N + 1 + p
2 )

− 1

Γ(N + 1 + p)

)
.

(3.67)
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Figure 3.3: Numerical results for E
(2)
N for several values of N . The continuous

line represents the exact prediction given in Eq. (3.69) and the dashed line gives
the value for infinitely large N . For every N we have used 104 instances. In the

inset we show the numerical results for the variance of the cost E
(2)
N obtained

using the exact solution provided by Eq. (3.60) and Eq. (3.61). The dashed line
represents the theoretical large N asymptotic value. Error bars are also plotted
but they are smaller than the mark size.

In addition

|r1 − b1|p = |rN − bN |p = N2

∫ 1

0

dx dy (xy)N−1 |x− y|p

= N2S2

(
N, 1,

p

2

)
=

N Γ(N + 1)Γ(p+ 1)(
N + p

2

)
Γ(N + p+ 1)

.

(3.68)

Finally, the average optimal cost for every N and every p > 1 is

E
(p)
N = 2

(
|r1 − b1|p +

N−1∑
k=1

|bk+1 − rk|p
)

= 2Γ(N + 1)

[
(N + p+ 1)Γ

(
1 + p

2

)
(p+ 1)Γ

(
N + 1 + p

2

) − 2Γ(p+ 1)

(2N + p) Γ(N + p)

]
.

(3.69)

Notice that, for large N ,

lim
N→∞

Np/2−1E
(p)
N = 2

Γ
(
p
2 + 1

)
p+ 1

, (3.70)

which is twice the cost of the assignment problem in the limit of large N ,
Eq. (3.32). The case p = 2 of Eq. (3.69) is confronted with numerical simulation
in Fig. 3.3.
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Finally, we can compute in the thermodynamical limit the variance of the
solution cost, to check if this quantity is self-averaging or not. Given two se-
quences of N points randomly chosen on the segment [0, 1], the probability for
the difference φk in the position between the (k + 1)-th and the k-th points is

Pr [φk ∈ dφ] = k(k + 1)

(
N

k

)(
N

k + 1

)
dφk∫

dx dy δ(φk − y + x)xk−1 yk (1− x)N−k(1− y)N−k−1

(3.71)

Proceeding as in the case of the assignment discussed in [BCS14, CS14], one
can show that these random variables φk converge (in a weak sense specified
by Donsker’s theorem) to φ(s), which is a difference of two Brownian bridge
processes [CDS17].
One can write the re-scaled average optimal cost as

Ep ≡ lim
N→∞

N
p
2−1E

(p)
N . (3.72)

By starting at finite N with the representation given in Eq. (3.71), the large N
limit can be obtained by setting k = Ns+ 1

2 and introducing the variables ξ, η
and ϕ such that

x = s+
ξ√
N
, y = s+

η√
N
, φk =

ϕ(s)√
N
, (3.73)

in such a way that s is kept fixed when N → +∞. We obtain, at the leading
order,

Pr [ϕ(s) ∈ dϕ] = dϕ

∫∫
δ (ϕ− (η − ξ))

exp
(
− ξ2+η2

2s(1−s)

)
2πs(1− s)

dξ dη

=
1√

4πs(1− s)
exp

{
− 1

4s(1− s)
ϕ2

}
dϕ.

(3.74)

Similarly, see for example [CS14, Appendix A], it can be derived that the joint
probability distribution pt,s(x, y) for ϕ(s) is (for t < s) a bivariate Gaussian
distribution

pt,s(x, y) = δ(ϕ(t)− x) δ(ϕ(s)− y) =
e−

x2

4t −
(x−y)2

4(s−t)
− y2

4(1−s)

4π
√
t(s− t)(1− s)

. (3.75)

This allows to compute, for a generic p > 1, the average of the square of the
re-scaled optimal cost

E2
p = 4

∫ 1

0

dt

∫ 1

0

ds |ϕ(s)|p |ϕ(t)|p, (3.76)

which is 4 times the corresponding one of a bipartite matching problem. In
the case p = 2, the average in Eq. (3.76) can be evaluated by using the Wick
theorem for expectation values in a Gaussian distribution

E2
2 = 4

∫ 1

0

ds

∫ s

0

dt

∫ ∞

−∞
dx dy pt,s(x, y)x

2y2 =
4

5
, (3.77)
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and therefore

E2
2 − E2

2
=

16

45
= 0.35̄. (3.78)

This result is in agreement with the numerical simulations (see inset of Fig. 3.3)
and proves that the re-scaled optimal cost is not a self-averaging quantity.

3.3.3 TSP on complete graphs

Analogously to our previous analysis of the TSP on complete bipartite graphs,
we can address the complete graph case. We will be able to study the problem
not only in the p > 1 case, but also in the 0 < p < 1 and p < 0 cases.
However, as we will see, this last case is particularly tricky and we will not be
able to univocally determine the structure of the solution. Nonetheless, we will
overcome the difficulty and obtain an upper and lower bound for the average
cost, which become strict in the large-N limit.

Optimal cycles on the complete graph

We shall consider the complete graph KN with N vertices, that is with vertex set
V = [N ] := {1, . . . , N}. This graph has (N − 1)!/2 Hamiltonian cycles. Indeed,
each permutation π in the symmetric group of N elements, π ∈ SN , defines an
Hamiltonian cycle on KN . The sequence of points (π(1), π(2), . . . , π(N), π(1))
defines a closed walk with starting point π(1), but the same walk is achieved
by choosing any other vertex as starting point and also by following the walk
in the opposite order, that is, (π(1), π(N), . . . , π(2), π(1)). As the cardinality of
SN is N ! we get that the number of Hamiltonian cycles in KN is N !/(2N).

In this section, we characterize the optimal Hamiltonian cycles for different
values of the parameter p used in the cost function. Notice that p = 0 and p = 1
are degenerate cases, in which the optimal tour can be found easily by looking,
for example, at the 0 < p < 1 case.

The p > 1 case We start by proving the shape of the optimal cycle when
p > 1, for every realization of the disorder. Let us suppose, now, to have N
points R = {ri}i=1,...,N in the interval [0, 1]. As usual we will assume that the
points are ordered, i.e. r1 ≤ · · · ≤ rN . Let us define the following Hamiltonian
cycle

h∗ = h[σ̃] = (rσ̃(1), rσ̃(2), . . . , rσ̃(N), rσ̃(1)) (3.79)

with σ̃ defined as in Eq. (3.60). In Appendix C.2.2 we prove that the Hamilto-
nian cycle which provides the optimal cost is h∗.
The main ideas behind the proof is that we can introduce a complete bipartite
graph in such a way that a solution of the bipartite matching problem on it
is a solution of our original problem, with the same cost. Therefore, using the
results known for the bipartite problem, we can prove the optimality of h∗.
A graphical representation of the optimal cycle for p > 1 and N = 6 is given in
Fig. 3.4, left panel.

The 0 < p < 1 case Given an ordered sequence R = {ri}i=1,...,N of N points
in the interval [0, 1], with r1 ≤ · · · ≤ rN , if 0 < p < 1 and if

h∗ = h[1] = (r1(1), r1(2), . . . , r1(N), r1(1)) (3.80)
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r1 r2 r3 r4 r5 r6
r1 r2 r3 r4 r5 r6

Figure 3.4: Optimal solutions for N = 6, for the p > 1 (left) and 0 < p < 1
(right) cases. Notice how, in the 0 < p < 1 case, when all the arcs are drawn
in the upper half-plane above the points than there is no crossing between the
arcs.

where 1 is the identity permutation, i.e.:

1(j) = j (3.81)

then the Hamiltonian cycle which provides the optimal cost is h∗.
The idea behind this result is that we can define a crossing in the cycle as
follows: let {ri}i=1,...,N be the set of points, labeled in ordered fashion; consider
two links (ri, rj) and (rk, rℓ) with i < j and k < ℓ; a crossing between them
occurs if i < k < j < ℓ or k < i < ℓ < j. This corresponds graphically to a
crossing of lines if we draw all the links as, for example, semicircles in the upper
half-plane. In the following, however, we will not use semicircles in our figures
to improve clarity (we still draw them in such a way that we do not introduce
extra-crossings between links other than those defined above). An example of
crossing is in the following figure

r1 r2 r3 r4

where we have not drawn the arcs which close the cycle to emphasize the cross-
ing. Now, as shown in [BCS14], if we are able to swap two crossing arcs with
two non-crossing ones, the difference between the cost of the original cycle and
the new one simply consists in the difference between a crossing matching and
a non-crossing one, that is positive when 0 < p < 1. Therefore the proof of the
optimality of the cycle in Eq. (3.80), which is given in Appendix C.2.2, consists
in showing how to remove a crossing (without breaking the cycle into multiple
ones) and in proving that h∗ is the only Hamiltonian cycle without crossings
(see Fig. 3.4, right panel).

The p < 0 case Here we study the properties of the solution for p < 0.
Our analysis is based, again, on the properties of the p < 0 optimal matching
solution. In [CDS17] it is shown that the optimal matching solution maximizes
the total number of crossings, since the cost difference of a non-crossing and a
crossing matching is always positive for p < 0. This means that the optimal
matching solution of 2N points on an interval is given by connecting the i-th
point to the (i+N)-th one with i = 1, . . . , N ; in this way every edge crosses the
remaining N−1. Similarly to the 0 < p < 1 case, suppose now to have a generic
oriented Hamiltonian cycle and draw the connections between the vertices in the
upper half plain (as before, eliminating all the crossings which depend on the
way we draw the arcs). Suppose it is possible to identify a matching that is non-
crossing, then the possible situations are the following two (we draw only the
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points and arcs involved in the non-crossing matching): In Appendix C.2.2, we

r1 r2 r3 r4

r1 r2 r3 r4

discuss the move that allows to replace non-crossing matchings by crossing ones,
in such a way that the cycle that contains the matching remains an Hamiltonian
cycle. This move is such that the cost of the new configuration is lower than
the cost of the old one, since the cost gain is the difference between the costs of
a non-crossing and a crossing matching, which is always positive for p < 0.

In this manner the proof for p < 0 goes on the same line of 0 < p < 1,
but instead of finding the cycle with no crossings, now we look for the one or
ones that maximize them. However, as we will see in the following, one must
distinguish between the N odd and even case. In fact, in the N odd case, only
one cycle maximizes the total number of crossings, i.e. we have only one possible
solution. In the N even case, on the contrary, the number of Hamiltonian cycles
that maximize the total number of crossings are N

2 .

The p < 0 case: N odd Given an ordered sequence R = {ri}i=1,...,N of
N points, with N odd, in the interval [0, 1], with r1 ≤ · · · ≤ rN , consider the
permutation σ defined as:

σ(i) =

⎧⎪⎨⎪⎩
1 for i = 1
N−i+3

2 for even i >1
2N−i+3

2 for odd i >1

(3.82)

This permutation defines the following Hamiltonian cycle:

h∗ := h[σ] = (rσ(1), rσ(2), . . . , rσ(N)). (3.83)

The Hamiltonian cycle which provides the optimal cost is h∗.
The proof consist in showing that the only Hamiltonian cycle with the maximum
number of crossings is h∗. As we discuss in Appendix C.2.2, the maximum
possible number of crossings an edge can have is N − 3. The Hamiltonian cycle
under exam has N(N − 3)/2 crossings, i.e. every edge in h∗ has the maximum
possible number of crossings. Indeed, the vertex a is connected with the vertices
a + N−1

2 (mod N) and a + N+1
2 (mod N). The edge (a, a + N−1

2 (mod N))

has 2N−3
2 = N − 3 crossings due to the N−3

2 vertices a + 1 (mod N), a + 2

(mod N), . . . , a + N−1
2 − 1 (mod N) that contribute with 2 edges each. This

holds also for the edge (a, a + N+1
2 (mod N)) and for each a ∈ [N ]. As shown

in Appendix C.2.2 there is only one cycle with this number of crossings.

An example of an Hamiltonian cycle discussed here is given in Fig. 3.5.
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r1 r2
r3

r4 r5

Figure 3.5: This is the optimal TSP and 2-factor problem solution for N = 5,
in the p < 0 case. Notice that there are no couples of edges which do not cross
and which can be changed in a crossing couple.

r1 r2 r3 r4

r1 r2 r3 r4

Figure 3.6: The two possible optimal Hamiltonian cycles for p < 0, N = 4. For
each specific instance one of them has a lower cost than the other, but differently
from all the other cases (p > 0 or N odd) the optimal cycle is not the same for
each disorder instance.

The p < 0 case: N even In this situation, differently from the above case, the
solution is not the same irrespectively of the disorder instance. More specifically,
there is a set of possible solutions, and at a given instance the optimal is the
one among that set with the lowest cost. We will show how these solutions can
be found and how they are related.
Given the usual sequence of points R = {ri}i=1,...,N of N points, with N even,
in the interval [0, 1], with r1 ≤ · · · ≤ rN , if p < 0, consider the permutation σ
such that:

σ(i) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 for i = 1
N
2 − i+ 3 for even i ≤ N

2 + 1

N − i+ 3 for odd i ≤ N
2 + 1

i− N
2 for even i > N

2 + 1

i for odd i > N
2 + 1

(3.84)

Given τ ∈ SN defined by τ(i) = i+ 1 for i ∈ [N − 1] and τ(N) = 1, we call
Σ the set of permutations σk, k = 1, ..., N defined as:

σk(i) = τk(σ(i)) (3.85)

where τk = τ ◦τk−1. The optimal Hamiltonian cycle is one of the cycles defined
as

h∗k := h[σk] = (rσk(1), rσk(2), . . . , rσk(N)). (3.86)

An example with N = 4 points is shown in Fig. 3.6. In Appendix C.2.3 the
2-factor (or loop covering) with minimum cost is obtained. The idea for the
proof of the TSP is to show how to join the loops in the optimal way in order
to obtain the optimal TSP. The complete proof of the optimality of one among
the cycles in Eq. 3.86 is given in Appendix C.2.3.
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Figure 3.7: Rescaled average optimal cost for p = 2, 1, 0.5 (from top to bottom).

Statistic properties of the solution cost

Now we can use the insight on the solutions just obtained to compute typical
properties of the optimal cost for various values of p.

In Appendix C.1 we computed the probability of finding the l-th point in
[x, x + dx], Eq. (C.5), and the probability pl,l+k(x, y) dx dy of finding the l-th
point in [x, x + dx] and the s-th point in [y, y + dy], Eq. (C.6). From these
equations, it follows that∫

dx dy (y − x)α pl, l+k(x, y) =
Γ(N + 1)Γ(k + α)

Γ(N + α+ 1)Γ(k)
(3.87)

independently from l, and, therefore, in the case p > 1 we obtain

EN [h∗] = [(N − 2)(p+ 1) + 2]
Γ(N + 1)Γ(p+ 1)

Γ(N + p+ 1)
(3.88)

and in particular for p = 2

EN [h∗] =
2 (3N − 4)

(N + 1)(N + 2)
, (3.89)

and for p = 1 we get

EN [h∗] =
2 (N − 1)

N + 1
. (3.90)

In the same way one can evaluate the average optimal cost when 0 < p < 1,
obtaining

EN [h∗] =
Γ(N + 1)

Γ(N + p+ 1)

[
(N − 1) Γ(p+ 1) +

Γ(N + p− 1)

Γ(N − 1)

]
(3.91)

which coincides at p = 1 with Eq. (3.90) and, at p = 0, provides EN [h∗] = N .
For large N , we get

lim
N→∞

Np−1EN [h∗] =

{
Γ(p+ 2) for p ≥ 1

Γ(p+ 1) for 0 < p < 1 .
(3.92)
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Figure 3.8: Rescaled average optimal cost in the p = −1 case. The red points
and line are respectively the result of a numerical simulation and the theoretical
prediction in the odd N case. The blue line is the 2 times the theoretic value of
the optimal matching. The orange lines (from top to bottom) are the average
costs EN [h1] and EN [h2] defined in Eqs. (3.95) and (3.96) respectively. The
dashed black line is the large N limit of all the curves.

The asymptotic cost for large N and p > 1 is 2(p+1) times the average optimal
cost of the matching problem on the complete graph KN given in Eq. (3.40)
(notice that in Eq. (3.40) the cost is normalized with N and the number of
points is 2N , differently from what we do here). This factor 2(p+1) is another
difference with respect to the bipartite case, where we have seen that the cost of
the TSP is twice the cost of the assignment problem for large N , independently
of p.

For p < 0 and N odd we have only one possible solution, so that the average
optimal cost is

EN [h∗] =
Γ(N + 1)

2Γ(N + p+ 1)

[
(N − 1)

Γ
(
N+1
2 + p

)
Γ
(
N+1
2

) + (N + 1)
Γ
(
N−1
2 + p

)
Γ
(
N−1
2

) ]
.

(3.93)

For large N it behaves as

lim
N→∞

EN [h∗]
N

=
1

2p
, (3.94)

which coincides with the scaling derived before for p = 0. Note that for large
N the average optimal cost of the TSP problem is two times the one of the
corresponding matching problem for p < 0 [CDS17].

For N even, instead, there are N/2 possible solutions. One can see N/2− 1
of these share the same average energy, since they have the same number of links
with the same k of Eq. (3.87). These solutions have 2 links with k = N/2, N/2
links with k = N/2+1 and N/2− 2 links with k = N/2+1. We denote this set
of configurations with h1 (although they are many different configurations, we
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use only the label h1 to stress that all of them share the same average optimal
cost) and its average cost is

EN [h1] =
Γ(N + 1)

Γ(N + p+ 1)

[
N

2

Γ
(
N
2 + p− 1

)
Γ
(
N
2 − 1

)
+

(
N

2
− 2

)
Γ
(
N
2 + p+ 1

)
Γ
(
N
2 + 1

) + 2
Γ
(
N
2 + p

)
Γ
(
N
2

) ]
.

(3.95)

The other possible solution, that we denote with h2 has 2 links with k = N/2−1,
N/2 links with k = N/2+1 and N/2−1 links with k = N/2+1 and its average
cost is

EN [h2] =
Γ(N + 1)

Γ(N + p+ 1)

[(
N

2
− 1

)
Γ
(
N
2 + p− 1

)
Γ
(
N
2 − 1

)
+

(
N

2
− 1

)
Γ
(
N
2 + p+ 1

)
Γ
(
N
2 + 1

) + 2
Γ
(
N
2 + p

)
Γ
(
N
2

) ]
.

(3.96)

In Fig. 3.7 we plot the analytical results for p = 0.5, 1, 2 and in Fig. 3.8
we compare analytical and numerical results for p = −1. In particular, since
EN [h1] > EN [h2], EN [h2] provides our best upper bound for the average optimal
cost of the p = −1, N even case. The numerical results have been obtained by
solving 104 TSP instances using its linear programming representation.

Now we investigate whether the optimal cost is a self-averaging quantity.
We collect in Appendix C.2.4 all the technical details concerning the evaluation
of the second moment of the optimal cost distribution E2

N , which has been
computed for all number of points N and, for simplicity, in the case p > 1 and
it is given in Eq. (C.42). In the large N limit it goes like

lim
N→∞

N2(p−1)E2
N [h∗] = Γ2(p+ 2) (3.97)

i.e. tends to the square of the rescaled average optimal cost. This proves that
the cost is a self-averaging quantity. Using Eq. (C.42) together with Eq. (3.88)
one gets the variance of the optimal cost. In particular for p = 2 we get

σ2
EN

=
4(N(5N(N + 13) + 66)− 288)

(N + 1)2(N + 2)2(N + 3)(N + 4)
, (3.98)

which goes to zero as σ2
EN

≃ 20/N3.

3.3.4 The bipartite traveling salesman problem in two di-
mensions

We have seen that in one dimension the cost of the solution of the bipartite
TSP is twice that the cost of the assignment problem. This actually holds also
in two dimensions, where the bipartite TSP is a genuine NP-hard problem.
I.e. for any given choice of the positions of the points, in the asymptotic limit
of large N , the cost of the bipartite TSP converges to twice the cost of the
assignment. However, this claim is non-trivial and it requires several results
introduced previously, together with a scaling argument which we present in this
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section. This is another noticeable example where information about average
properties of the solution of a hard COP can be obtained even in more than one
dimension and in the presence of Euclidean correlations.

Scaling argument

Given an instance of N blue and N red point positions, let us consider the
optimal assignment µ∗ on them. Let us now consider N points which are taken
between the red an blue point of each edge in µ∗ and call T ∗ the optimal
“monopartite” TSP solution on these points. For simplicity, as these N points
we take the blue points.

We shall use T ∗ to provide an ordering among the red and blue points.
Given two consecutive points in T ∗, for example b1 and b2, let us denote by
(r1, b1) and (r2, b2) the two edges in µ∗ involving the blue points b1 and b2 and
let us consider also the new edge (r1, b2). We have seen that, in the asymptotic
limit of large N , the typical distance between two matched points in µ∗ scales
as (logN/N)1/2 (see Sec. 3.2) while the typical distance between two points
matched in the monopartite case scales only as 1/N1/2 [BHH59], that is (for all
points but a fraction which goes to zero with N)

w(b1,r1) =

(
α11

logN

N

) p
2

,

w(b2,r1) =

[
β22

1

N
+ α11

logN

N
− γ

√
logN

N

] p
2

.

(3.99)

where (α11 logN/N)1/2 is the length of the edge (r1, b1) of µ
∗, (β22/N)1/2 is the

length of the edge (b1, b2) of T ∗ and γ = 2
√
α11β22 cos θ, where θ is the angle

between the edges (r1, b1) of µ
∗ and (b1, b2) of T ∗.

This means that, typically, the difference in cost

∆E = w(b2,r1) − w(b1,r1) ∼
(logN)

p−1
2

N
p
2

(3.100)

is small as compared to the typical cost (logN/N)
p
2 of one edge in the bipartite

case. To obtain a valid TSP solution, which we call hA, we add to the edges
µ∗ = {(r1, b1), . . . , (rN , bN )} the edges {(r1, b2), . . . , (rN−1, bN ), (rN , b1)}, see
Fig. 3.9.

Of course hA is not, in general, the optimal solution of the TSP. However,
because of Eq. (3.59), we have that

E[hA] ≥ E[h∗] ≥ 2E[µ⋆] (3.101)

and we have shown that, for large N , E[hA] goes to 2E[µ⋆] and therefore also
E[h∗] must behave in the same way. Notice also that our argument is purely
local and therefore it does not depend in any way on the type of boundary
conditions adopted, therefore it holds for both open and periodic boundary
conditions.

An analogous construction can be used in any number of dimensions. How-
ever, the success of the procedure lies in the fact that the typical distance
between two points in µ∗ goes to zero slower than the typical distance between
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r1 r2

r3r4

b1 b2

b3b4

Figure 3.9: The optimal assignment µ∗ is given by the orange edges
{(r1, b1), (r2, b2), (r3, b3), (r4, b4)}. The monopartite TSP (gray dashed edges)
among blue points provides the necessary ordering. In order to obtain the TSP
b1, r1, b2, r2, b3, r3, b4, r4, b1 in the bipartite graph we have to add the green edges
{((r1, b2), (r2, b3), (r3, b4), (r4, b1)}.

two consecutive points in the monopartite TSP. This is true only in one and
two dimensions, and as we have already said, it is related to the importance of
fluctuations in the number of points of different kinds in a small volume.

This approach allowed us to find also an approximated solution of the TSP
which improves as N → ∞. However, this approximation requires the solution
of a monopartite TSP on N/2 points, corroborating the fact that the bipartite
TSP is a hard problem (from the point of view of complexity theory).
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Figure 3.10: Numerical results for p = 1 (left panel) and p = 2 (right panel)
for the TSP (red points, top), the 2-factor, which is defined in Sec. 3.4 (green
points, middle), and 2 times the assignment problem (blue points, bottom) in
the open boundary condition case. Continuous lines are numerical fit to the
data.

Numerical results

We confirm our theoretical predictions performing numerical simulations on
both assignment and bipartite TSP. We have considered the case of open bound-
ary conditions.

For what concerns the assignment problem, we have implemented an in-
house solver based on the LEMON optimization library [DJK11], which is based
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p = 1 a1 a2 a3
TSP 0.717(2) 1.32(1) −0.513(1)
Assignment 0.714(2) 1.17(2) −0.77(2)

p = 2 a1 a2 a3
TSP 0.321(5) 1.603(2) −0.428(6)
Assignment 0.31831 1.502(2) −1.05(1)

Table 3.1: Comparison between fit factors in assignment and TSP, for p = 1, 2.
We have doubled the factors for the assignment to verify our hypothesis. For
p = 2, we have reported the theoretical value of a1 which is 1/π.

on the Edmonds’ blossom algorithm [Edm65]. In the case of the TSP, the most
efficient way to tackle the problem numerically is to exploit its linear or integer
programming formulation.

To validate our argument, we solved for the assignment problem (with p =
1, 2) 105 independent instances for 2 ≤ N ≤ 125, 104 independent instances for
150 ≤ N ≤ 500, and 103 independent instances for 600 ≤ N ≤ 1000. In the TSP
case, the computational cost is dramatically larger; for this reason the maximum
number of points we were able to achieve with a good numerical precision using
integer programming was N = 300, also reducing the total number of instances.

An estimate of the asymptotic average optimal cost and finite size corrections
has been obtained using the fitting function for p = 1

f (p=1)(N) =
√
N logN

(
a1 +

a2
logN

+
a3

log2N

)
(3.102)

while, for p = 2

f (p=2)(N) = logN

(
a1 +

a2
logN

+
a3

log2N

)
. (3.103)

These are the first 3 terms of the asymptotic behavior of the cost of the as-
signment problem [AKT84, CLPS14]. Parameters a2 and a3 for p = 2 were
obtained fixing a1 to 1/π. In Fig. 3.10 we plot the data and fit in the case of
open boundary conditions. Results are reported in Table 3.1.

To better confirm the behavior of the average optimal cost of the TSP, we
also performed some numerical simulations using a much more efficient solver,
that is the Concorde TSP solver [ABCC06], which is based on an implementation
of the Branch-and-cut algorithm proposed by Padberg and Rinaldi [PR91]. The
results for the leading term of the asymptotic average optimal cost are confirmed
while a small systematic error due to the integer implementation of the solver
is observed in the finite size corrections.

These numerical checks, together with our scaling argument, demonstrate
that, as already obtained in one dimension,

lim
N→∞

E[h∗]

E[µ∗]
= 2 . (3.104)

This implies, for the special case p = 2, by using the second line of Eq. (3.44), an

exact, analytical result: limN→∞(E[h∗]/ logN) = 1/π. In general, the evalua-
tion of the large N value of the cost of solutions of the bipartite TSP is reduced
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to the solution of the matching problem with the same number of points, which
requires only polynomial time. This seems to be a peculiar feature of the bi-
partite problem: the “monopartite” TSP cannot be approached in a similar
way.

3.3.5 Other known results

There are many other very interesting research papers about the TSP. Here we
limit ourselves to report some results regarding the average of the solution cost
in higher dimension.

As for the matching case, the mean field version of the problem can be
studied with replica methods [MP86a] and the so-called cavity method [KM89].
When the graph is complete and the links weights are IID random variables
distributed according to the law

ρ(ℓ) ∼
ℓ→0

ℓr

r!
(3.105)

where r is a parameter (notice that the behavior of the distribution far from
ℓ = 0 is irrelevant), we have that, for large N ,

E
(r)
N ∼ N1−1/(r+1)Lr, (3.106)

where Lr can be computed numerically up to the desired precision. Notice that
there result are, as in the matching case, obtained by using a RS ansätz (or
the analogous hypothesis for the cavity method) and are confirmed by extensive
numerical simulations (thus certifying the exactness of the RS ansätz for this
problem).

Another famous result (which is actually one of the first about the RCOP
version of the TSP) due to Beardwood, Halton and Hammersley [BHH59] is
about euclidean TSP in d > 1 when the points are chosen with flat distribution
in a volume V , and the cost function is the total length of the tour (that is
p = 1). In that case, we have, for large N

EN ∼ CdN
1−1/dV 1/d. (3.107)

where the constant Cd is unknown analytically and has been estimated, up to
a certain precision, for several number of dimensions by solving numerically the
TSP and averaging the cost of the solution.

3.4 Between matching and TSP: 2-factor prob-
lem

3.4.1 Meet the 2-factor problem

In this Section we will deal with the 2-factor problem which consists, given an
undirected graph, in finding a spanning subgraph that contains only disjoint
cycles (that is, a 2-factor). For this reason this problem is also called loop
covering of a graph.
The 2-factor problem can be seen as a relaxation of the TSP, in which one has
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the additional constraint that there must be a unique cycle. We mention that
also this problem can be studied using replica (and cavity) methods in the mean
field case: one finds that, for large number of points, its average optimal cost is
the same of that of the TSP.

In the following we will study the 2-factor problem in one dimension and in
two dimensions, both on the complete bipartite graph and, only in one dimen-
sion, on the complete graph. The disorder in this problem will be introduced
by drawing the points independently from the uniform distribution over the
compact interval [0, 1] or over the square [0, 1] × [0, 1], as we did for the other
random Euclidean COPs studied. As in the previous investigations, the weights
on the edges are chosen as the Euclidean distance between the corresponding
points on the interval or square, to the p.

This problem can be seen as an intermediate problem between the assign-
ment (or matching) and the TSP: indeed, in the former case we search for the
minimum-cost 1-factor of a graph, while in the latter we are interested in the
minimum-cost N -factor if the graph has N vertices.
Nonetheless, when tackled in one dimension for p > 1, we will see that there is
an important difference between the 2-factor and the other studied problems:
while almost for every instance of the problem there is only one solution, by
looking at the whole ensemble of instances it appears an exponential number of
possible solutions scaling as pN , where p is the plastic constant (see Appendix
C.3.3). This is in contrast with the matching and TSP cases, where we have
seen that, for p > 1, for every realization of the disorder the configuration that
solves the problem is always the same. Moreover, also for p < 0, when for the
TSP in the complete graph there are more than one possible optimal tour, they
are N different possibilities (when the graph has 2N vertices), while for the
2-factor we have an exponential number (in N) of them.

Let us start by defining formally the problem. Consider a graph G and the
set of 2-factors of this graph, M2. Suppose now that a weight we > 0 is assigned
to each edge e ∈ E of the graph G. We can associate to each 2-factor ν ∈ M2 a
total cost

E(ν) :=
∑
e∈ν

we . (3.108)

In the (weighted) 2-factor problem we search for the 2-factor ν∗ ∈ M2 such that
the total cost in Eq. (3.108) is minimized, that is

E(ν∗) = min
ν∈M2

E(ν) . (3.109)

If H is the set of Hamiltonian cycles for the graph G, of course H ⊂ M2 and
therefore if h∗ is the optimal Hamiltonian cycle, we have

E[h∗] ≥ E[ν∗] , (3.110)

which is a relation between the cost of the solution of the 2-factor problem and
the TSP on the same graph.

From now on we specialize to the Euclidean version of the problem, and so
when the graph is complete or complete bipartite and is embedded in [0, 1]d ⊂
Rd. For the complete case G = KN at each vertex i ∈ [N ] = {1, 2, . . . , N} we
associate a point xi ∈ [0, 1]d, and for each e = (i, j) with i, j ∈ [N ] we introduce
a cost which is a function of their Euclidean distance

we = |xi − xj |p (3.111)
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with p ∈ R. Analogously for the complete bipartite graph KN,N , we have two
sets of points in [0, 1]d, that is, say, the red {ri}i∈[N ] and the blue {bi}i∈[N ]

points, and the edges connect red points with blue points with a cost

we = |ri − bj |p . (3.112)

For a discussion on this problem on an arbitrary graph G, see [BBCZ11] and
references therein.

Let us now focus on the case of complete bipartite graph KN,N , where each
cycle in a 2-factor must have an even length. Let SN be the symmetric group
of order N and consider two permutations σ, π ∈ SN . If for every i ∈ [N ] we
have that σ(i) ̸= π(i), then the two permutations define the 2-factor ν(σ, π)
with edges

e2i−1 := (ri, bσ(i)) (3.113)

e2i := (ri, bπ(i)) (3.114)

for i ∈ [N ]. And, vice versa, for any 2-factor ν there is a couple of permutations
σ, π ∈ SN , such that for every i ∈ [N ] we have that σ(i) ̸= π(i).

It will have total cost

E[ν(σ, π)] =
∑
i∈[N ]

[
|ri − bσ(i)|p + |ri − bπ(i)|p

]
. (3.115)

By construction, if we denote by µ[σ] the matching associated to the permuta-
tion σ and by

E[µ(σ)] :=
∑
i∈[N ]

|ri − bσ(i)|p (3.116)

its cost, we soon have that

E[ν(σ, π)] = E[µ(σ)] + E[µ(π)] (3.117)

and we recover that
E[ν∗] ≥ 2E[µ∗], (3.118)

i.e. the cost of the optimal 2-factor is necessarily greater or equal to twice the
optimal 1-factor. Together with inequality (3.110), which is valid for any graph,
we obtain that

E[h∗] ≥ E[ν∗] ≥ 2E[µ∗] . (3.119)

Previously in this Chapter we have seen that in the limit of infinitely large N ,
in one dimension and with p > 1, the average cost of the optimal Hamiltonian
cycle is equal to twice the average cost of the optimal matching (1-factor). We
conclude that the average cost of the 2-factor must be the same. Moreover, since
inequality (3.119) holds also in 2 dimensions, also in that case the cost of the
2-factor problem has the same limit, for large N of that obtained for assignment
and bipartite TSP (see Fig. 3.10).

In the following we will denote with E
(p)
N,N [ν∗] the average optimal cost of the

2-factor problem on the complete bipartite graph. Its scaling for large N will
be the same of the TSP and the matching problem, that is the limit

lim
N→∞

E
(p)
N,N [ν∗]

N1−p/2 = E
(p)
B , (3.120)
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is finite.
On the complete graph KN inequality (3.118) does not hold, since a general

2-factor configuration cannot always be written as a sum of two disjoint match-
ings, due to the presence of odd-length loops. Every 2-factor configuration on
the complete graph can be determined by only one permutation π, satisfying
π(i) ̸= i and π(π(i)) ̸= i for every i ∈ [N ]. The cost can be written as

E[ν(π)] =
∑
i∈[N ]

|xi − xπ(i)|p . (3.121)

The two constraints on π assure that the permutation does not contain fixed

points and cycles of length 2. In the following we will denote with E
(p)
N [ν∗]

the average optimal cost of the 2-factor problem on the complete graph. Even
though inequality (3.118) does not hold, we expect that for large N , the average
optimal cost scales in the same way as the TSP and the matching problem, i.e.
as

lim
N→∞

E
(p)
N [ν∗]

N1−p = E
(p)
M . (3.122)

Later we will give numerical evidence for this scaling.

3.4.2 2-factor in one dimension on complete bipartite graphs

Here we will consider the case p > 1, that is the weight associated to an edge
is a convex and increasing function of the Euclidean distance between its two
vertices. This section is taken from [CGM18]. Let us now look for the optimal
solutions for the 2-factor.

The possible solutions for N = 6 and are represented schematically in
Fig. 3.11a. For N = 7 there are three solutions and so on.

The first observation that we can do is that in any optimal 2-factor ν∗ all
the loops must be in the shoelace configuration, that is the one that we found
for the TSP.
Indeed in each loop there is the same number of red and blue points and the
result we proved for the one dimensional bipartite TSP shows indeed that the
shoelace loop is always optimal (when the number of loops used has to be one).

Moreover, in any optimal 2-factor ν∗ there are no loops with more than 3 red
points. Indeed, as soon as the number of red points (and therefore blue points)
in a loop is larger than 3, a more convenient 2-factor is obtained by considering
a 2-factor with two loops. In fact, as can be seen in Fig. 3.12a, the cost gain is
exactly equal to the difference between an ordered and an unordered matching
which we know is always negative for p > 1.

From these two considerations, it follows that in any optimal bipartite 2-
factor ν∗ there are only shoelaces loops with 2 or 3 red points.
The reason why there is not a solution which is always the optimal indepen-
dently on the point positions is that two different 2-factors in this class are
not comparable, that is all of them can be optimal in particular instances. For
example, the possible solutions for N = 6 and are represented schematically in
Fig. 3.11a. For N = 7 there are three solutions and so on.

But how many of these possible solutions there are? At given number N
of both red and blue points there are at most Pad(N − 2) optimal 2-factor ν∗.
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Pad(N) is the N -th Padovan number, see Appendix C.3, where it is also shown
that for large N

Pad(N) ∼ pN (3.123)

with p the plastic number (see Appendix C.3.3 for a discussion on this constant).

Actually, for values of N which we could explore numerically, we saw that
all Pad(N − 2) possible solutions appear as optimal solutions in the ensemble
of instances.

r1 r2 r3 r4 r5 r6

b1 b2 b3 b4 b5 b6

r1 r2 r3 r4 r5 r6

b1 b2 b3 b4 b5 b6

(a) Two instances whose optimal solutions
are the two possible ν∗ for N = 6 on the
complete bipartite graph KN,N . For each in-
stance the blue and red points are chosen in
the unit interval and sorted in increasing or-
der, then plotted on parallel lines to improve
visualization.

x1 x2 x3 x4 x5 x6 x7

x1 x2 x3 x4 x5 x6 x7

(b) Two instances whose optimal solutions
are the two possible ν∗ for N = 7 on the com-
plete graph KN . For each instance the points
are chosen in the unit interval and sorted in
increasing order.

Figure 3.11: Optimal solutions for small N cases.

r1 r2 rk rk+1 rN−1 rN

b1 b2 bk bk+1 bN−1 bN

y
r1 r2 rk−1 rk rk+1 rk+2 rN−1 rN

b1 b2 bk−1 bk bk+1 bk+2 bN−1 bN

(a) KN,N case

x1 x2 x3 xk xk+1 xk+2 xk+3 xN−2 xN−1 xN

y

x1 x2 x3 xk xk+1 xk+2 xk+3 xN−2 xN−1 xN

(b) KN case

Figure 3.12: Result of one cut of the shoelace in two smaller ones for both the
complete bipartite and complete graph cases. The cost gained is exactly the
difference between an unordered matching and an ordered one.
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Cost for finite N

We have already seen that Eq. (3.119) guarantees that in the large N limit the
average solution cost of the 2-factor problem is the same of the bipartite TSP
(with the same N).

Figure 3.13: Graphical representation of the cutting operation which brings
from the optimal TSP cycle (top) to a possible optimal solution of the 2-factor
problem (bottom). Here we have represented the N = 4 case, where the cutting
operation is unique. Notice that blue and red points are chosen on a inter-
val, but here they are represented equispaced on two parallel lines to improve
visualization.

We have proved that, for every value of N , the optimal 2-factor solution is
always composed by an union of shoelaces loops with only two or three points of
each color. As a consequence of this fact, differently from the assignment and the
TSP cases, different instances of the disorder can have different spanning sub-
graphs that minimize the cost function. In particular these spanning subgraphs
can always be obtained by “cutting” the optimal TSP cycle (see Fig. 3.13) in a
way which depends on the specific instance. This “instance dependence” makes
the computation of the average optimal cost particularly difficult. However,
Eq. (3.119) guarantees that the average optimal cost of the 2-factor problem
is bounded from above by the TSP average optimal cost and from below by
twice the assignment average optimal cost. Since in the large N limit these two
quantities coincide, one obtains immediately the large N limit of the average
optimal cost of the 2-factor problem. Unfortunately, this approach is not useful
for a finite-size system. But we can use Selberg integrals to obtain an upper
bound: indeed we can compute the average cost obtained by “cutting” the TSP
optimal cycle in specific ways. When we cut at the k-position the optimal TSP
into two different cycles we gain an average cost

E
(p)
k = |bk+1 − rk|p + |rk+1 − bk|p − |bk+1 − rk+1|p − |bk − rk|p . (3.124)

By using Eq. (C.5) and the generalized Selberg integral given in Eq. (3.64), we
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obtain

|bk − rk|p − |bk+1 − rk|p =

=
Γ2(N + 1)Γ(p+ 1)Γ

(
k + p

2

)
Γ
(
N − k + p

2 + 1
)
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Γ
(
p
2 + 1
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2
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]
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2
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) ,
(3.125)

and similarly

|bk+1 − rk+1|p − |rk+1 − bk|p =

=
Γ2(N + 1)Γ(p+ 1)Γ
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k + p

2 + 1
)
Γ
(
N − k + p

2

)
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) .
(3.126)

Their sum is

E
(p)
k =

p

2

Γ2(N + 1)Γ(p+ 1)Γ
(
k + p

2

)
Γ
(
N − k + p

2

)
Γ(k + 1)Γ(N − k + 1)Γ(N + p) Γ

(
N + p

2 + 1
)
Γ
(
p
2 + 1

) , (3.127)

For p = 2 this quantity is

E
(2)
k =

2

(N + 1)2
. (3.128)

Since this quantity does not depends on k, for p = 2 the best upper bound for
the average optimal cost is given by summing the maximum number of cuts
that can be done on the optimal TSP cycle. Therefore for N even the 2-factor
with lowest average energy is ν(2,2,...,2) and then

E
(2)
N,N [ν(2,2,...,2)] =

2

3

N2 + 4N − 3

(N + 1)2
− N − 2

(N + 1)2
=

1

3

N(2N + 5)

(N + 1)2
, (3.129)

is an upper bound for the optimal average cost since, even though this configu-
ration has the minimum average cost, for every fixed instance of disorder there
can be another one which is optimal. For N odd, one of the 2-factors with
lowest average energy is ν(2,2,...,2,3) and

E
(2)
N,N [ν(2,2,...,2,3)] =

2

3

N2 + 4N − 3

(N + 1)2
− N − 3

(N + 1)2
=

1

3

2N2 + 5N + 3

(N + 1)2
. (3.130)

Therefore that essentially the upper bound for the optimal average cost for even
and odd large N is the same. For p = 2, these bounds are compared with the
results of numerical simulations in Fig. 3.15a.

For p ̸= 2, Ek depends on k. In particular, for 1 < p < 2 the cut near to 0
and 1 are (on average) more convenient than those near the center. For p > 2
the reverse is true (see Fig. 3.14). For p ̸= 2, however, this sum does not give a
simple formula.
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Figure 3.14: Plot of E
(p)
k given in Eq. (3.127) for various values of p: the green

line is calculated with p = 2.1, the orange with p = 2 and the blue one with
p = 1.9; in all cases we take N = 100.

3.4.3 2-factor in one dimension on complete graphs

Finally, we analyze here the 2-factor problem in one dimension on complete
graphs, in the p > 1 case. The possible solutions for the 2-factor on complete
graph can be constructed by cutting in a similar way the corresponding TSP
solution into smaller loops as can be seen pictorially in Fig. 3.12b. Note that
one cannot have a loop with two points. Analogously to the bipartite case we
have analyzed before, each loop that form the 2-factor configuration must be a
shoelace. However the length of allowed loops will be different, since one cannot
cut, on a complete graph, a TSP of 4 and 5 points in two smaller sub-tours.
Therefore, on the complete graph, in the optimal 2-factor ν∗ there are only loops
with 3, 4 or 5 points.

In Fig. 3.12b we represent the two solutions when N = 7. In Appendix C.3
we prove that, similarly to the bipartite case, the number of 2-factor solutions
is at most gN on the complete graph, which for large N grows according to

gN ∼ pN . (3.131)

Also in this case we verified numerically, for accessible N , that the set of possible
solutions that we have identified is actually realized by some instance of the
problem.

Using these informations on the shape of the solution, we turn to the eval-
uation of bounds on its cost. Let us first evaluate the cost gain when we cut
a TSP solution cycle in two “shoelaces” (we keep using here the word shoelace
to indicate the cycle which is the solution to the TSP on the complete graph)
sub-cycles. For p > 1 the cost gain doing one cut can be written as

(xk+1 − xk)
p
+ (xk+3 − xk+2)

p − (xk+3 − xk+1)
p − (xk+2 − xk)

p

= −2 pΓ(N + 1)Γ(p+ 1)

Γ(N + p+ 1)
.

(3.132)



3.4. BETWEEN MATCHING AND TSP: 2-FACTOR PROBLEM 81

0 10 20 30 40 50 60 70 80 90 100

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

2/3 −→

N

E
(2

)
N
,N

(a) KN,N case with p = 2. The orange line
is the cost of the TSP given in Eq. (3.69) for
p = 2; the green lines are, from above, the
cost of the optimal fixed 2-factor ν(2,2,...,2,3)
given in Eq. (3.130) and ν(2,2,...,2) given in
Eq. (3.129). The dashed black line is the
asymptotic value 2

3
and the blue continu-

ous one is twice the cost of the optimal 1-
matching 2

3
N

N+1
. Red points are the results

of a 2-factor numerical simulation, in which
we have averaged over 107 instances.

0 10 20 30 40 50 60 70 80 90 100

2

3

4

5

N

N
E

(2
)

N

(b) KN case with p = 2. Here the average
cost is rescaled with N . The orange line is
the cost of the TSP given in Eq. (3.88) for
p = 2. The green lines are from above the
cost of the fixed 2-factor ν(3,3,...,3,5) given in
Eq. (3.136), ν(3,3,...,4) given in Eq. (3.135)
and ν(3,3,...,3) given in Eq. (3.134). Red
points are the results of a numerical simu-
lation for the 2-factor, in which we have av-
eraged over 105 instances for N ≤ 30, 104 for
30 < N ≤ 50 and 103 for N > 50.

Figure 3.15: Average optimal costs for various N and for p = 2.

For example for N = 6 (in which the solution is unique since 6 can be written
as a sum of 3, 4 and 5 in an unique way as 3+3) and p = 2 we have

E
(2)
6 =

1

2
− 1

7
=

5

14
. (3.133)

If N is multiple of 3, the lowest 2-factor is, on average, the one with the largest
number of cuts i.e. ν(3,3,...,3). The number of cuts is (N − 3)/3 so that the
average cost of this configuration is

E
(p)
N [ν(3,3,...,3)] = N

(p
3
+ 1
) Γ(N + 1)Γ(p+ 1)

Γ(N + p+ 1)
. (3.134)

Instead if N can be written as a multiple of 3 plus 1, the minimum average
energy configuration is ν(3,3,...,3,4), which has (N − 4)/3 cuts and

E
(p)
N [ν(3,3,...,4)] =

[
N
(p
3
+ 1
)
+

2

3
p

]
Γ(N + 1)Γ(p+ 1)

Γ(N + p+ 1)
. (3.135)

The last possibility is when N is a multiple of 3 plus 2, so the minimum average
energy configuration is ν(3,3,...,3,5), with (N − 4)/3 cuts and

E
(p)
N [ν(3,3,...,5)] =

[
N
(p
3
+ 1
)
+

4

3
p

]
Γ(N + 1)Γ(p+ 1)

Γ(N + p+ 1)
. (3.136)

In the limit of large N all those three upper bounds behave in the same way.
For example

lim
N→∞

E
(p)
N [ν(3,3,...,3)] = N1−p

(
1 +

p

3

)
Γ(p+ 1) . (3.137)
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Note that the scaling of those upper bounds for large N is the same of those of
matching and TSP. For p = 2, these bounds are compared with the results of
numerical simulations in Fig. 3.15b.



Chapter 4

Quantum point of view

In this Chapter we will deal with another field which lies between physics and
computer science: quantum computing. Quantum computers have been consid-
ered for the first time by Feynmann to simulate quantum systems (or, better,
physical systems in which quantum effects are relevant). We, on the other hand,
will focus on the possibility of using quantum computers to solve hard combina-
torial optimization problems. After the important works by Shor and Grover,
many concepts about quantum algorithms to solve COPs have been understood,
and we will discuss some of them. We will then specialize in the so called quan-
tum adiabatic algorithm, in the form of the simulated annealing, which is usable
today in the largest chip that performs computations using quantum effects,
i.e. the D-Wave machine. Finally, we will briefly comment on a recent and
promising approach to approximate (and sometimes also solve) COPs in gate
models, the famous quantum approximate optimization algorithm.

4.1 Quantum computation for combinatorial op-
timization problems

The study of quantum computation is flourishing in these recent years for two
main reasons: the discovery of powerful quantum algorithms (Shor [Sho99] and
Grover [Gro97]) in the late 90s, and the advent of real computers able to exploit
quantum effects during the computation.
As a consequence, there are many good books ([NC00, RP11, KLM+07, Mer07])
and reviews (for example, [Aha99]) where a complete introduction to the subject
can be found. Here we will focus on quantum algorithms for COPs, disregarding
completely other fundamental topics as, for example, quantum error correction
and fault-tolerant quantum computation.

4.1.1 Gate model of quantum computing

The basic building block of classical computation is the bit, which can be in
state 0 or 1. The quantum version of that is the qubit, which is a two level
system. Therefore its general state is

|q⟩ = a |0⟩+ b |1⟩ , (4.1)

83
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where a and b are complex numbers we require |a|2 + |b|2 = 1, so that the state
is normalized. We represent

|0⟩ =
(
1
0

)
and |1⟩ =

(
0
1

)
(4.2)

and we will refer to this as the computational basis. When we have N qubits,
the computational basis is the set of states

|q1⟩ ⊗ |q2⟩ ⊗ · · · ⊗ |qN ⟩ , (4.3)

for each choice of qi ∈ {0, 1}. Therefore the Hilbert space describing the state
of a N qubit system is 2N dimensional.

Let us now come back for a moment to the classical world: if we have a
system of N bits, we have 2N possible states of our system. Let us see the state

of our system (computer) as a basis vector of the 2N -dimensional space C2N ,

|s⟩ =

⎛⎜⎝ b1
...
b2N

⎞⎟⎠ , (4.4)

where only one bit bi is 1, and all the other are 0 (we use the braket formalism
also for this representation of classical states). For example, we have for a
two-bit system

|00⟩ =

⎛⎜⎜⎝
0
0
0
1

⎞⎟⎟⎠ , |01⟩ =

⎛⎜⎜⎝
0
0
1
0

⎞⎟⎟⎠ , |10⟩ =

⎛⎜⎜⎝
0
1
0
0

⎞⎟⎟⎠ , |11⟩ =

⎛⎜⎜⎝
1
0
0
0

⎞⎟⎟⎠ . (4.5)

Therefore, it seems that quantum computers could be more powerful of classical
computers simply because we can store much more information in N qubits
than in N bits, since in the former case the system can be in any of the linear
combinations (with unit ℓ2 norm) of the 2N basis vectors, while in the latter it
lives inside the basis.
However, this is not the end of the story: a deterministic program for a classical
computer, in this formalism, can be seen as a matrix which is applied to |s⟩ and
modify the state of the system. For example, if we have a two-bit system and
we want to have assign 1 to the second bit, we apply the matrix

M =

⎛⎜⎜⎝
1 1 0 0
0 0 0 0
0 0 1 1
0 0 0 0

⎞⎟⎟⎠ , (4.6)

so that

M |00⟩ = |01⟩ , M |01⟩ = |01⟩ , M |10⟩ = |11⟩ , M |11⟩ = |11⟩ . (4.7)

In general, a computation will be a matrix with elementsMij ∈ {0, 1} such that∑
iMij = 1 for each j, since this condition correspond to the fact that we want

our matrix to map one basis state in another basis state.
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Nonetheless, we can do something closer to quantum computing. For exam-
ple, we could have in our code instructions like “with probability 1/2, assign 1
to the second bit”. This kind of instructions, which are not deterministic, are
captured by using stochastic matrices, that is with elements

∑
jMi,j = 1 but

now with the only restriction that Mij ≥ 0. For our case:

Ms =

⎛⎜⎜⎝
1 1/2 0 0
0 1/2 0 0
0 0 1 1/2
0 0 0 1/2

⎞⎟⎟⎠ , (4.8)

and now we have, for example,

Ms |00⟩ =

⎛⎜⎜⎝
0
0
1/2
1/2

⎞⎟⎟⎠ =
1

2
|00⟩+ 1

2
|01⟩ . (4.9)

This result has to be interpreted as follows: “if we use the computer program
Ms with input state |00⟩, with 1/2 or probability the output state will be |00⟩
and with 1/2 it will be |01⟩”.
And this is very close to the meaning of a quantum state for a qubit: if the
state is

|q⟩ = 1√
2
|0⟩+ 1√

2
|1⟩ , (4.10)

and we measure the qubit in the computational basis, we have 1/2 of probability
of obtaining 0 and 1/2 of obtaining 1.

Therefore, if we allow for “stochastic” instructions in our code, we can really
have “superpositions” of basis states of the form given in Eq. (4.4), provided
that their coefficients are positive and sum to 1:

|s⟩ =
2N∑
i=1

ai |si⟩ , (4.11)

where the |si⟩ are the basis states given in Eq. (4.4),
∑
i ai = 1 and ai ≥ 0.

Let us now turn to the standard gate model of quantum computation. Sim-
ilarly to the stochastic classical computation case, we have a state of N qubits

|q⟩ =
2N∑
i=1

ai |qi⟩ , (4.12)

where the states are as in the classical case, but now ai are complex numbers such
that

∑
i |ai|

2
= 1. Given a state, the computation is done by multiplying the

state for a unitary matrix U and then measuring the state in the computational
basis.
Notice that, physically, this means that the initial state |q0⟩ of the system is
evolved with the Hamiltonian H such that

Texp

(
− i

~

∫ t1

t0

dtH(t)

)
|q0⟩ = U |q0⟩ . (4.13)
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4.1.2 Quantum versus Classical: the story of interference
and entanglement

As we have seen, there are two main differences between stochastic classical and
quantum computation: in the first case the “amplitudes” of each basis state are
positive quantities which sum to 1 (so they are probabilities). In the second
case, the amplitudes are complex numbers and their modulus squared sum to 1.
In fact, it turns out that the power of quantum computing is not due to the fact
that amplitudes are complex numbers, but rather to the (less stringent) fact
that they can assume negative values [BV97]. The reason is that with negative
amplitudes we can create interference phenomena to decrease the probability of
unwanted output states and increase that of the solution to our problem.
Let us deepen this intuition with a practical example: consider a system of 2
qubits. We need to define two (actually very important) gates: the Hadamard
gate H, that is defined by

H |0⟩ = |0⟩+ |1⟩√
2

= |+⟩ , H |1⟩ = |0⟩ − |1⟩√
2

= |−⟩ , (4.14)

and therefore in the representation used in Eq. (4.2), we have:

H =
1√
2

(
1 1
1 −1

)
. (4.15)

The other gate we need is a two-qubit one, the CNOT gate defined by

Cnot = |0⟩ ⟨0| ⊗ I+ |1⟩ ⟨1| ⊗X, (4.16)

where I is the identity 2× 2 matrix and X is the Pauli matrix

X =

(
0 1
1 0

)
. (4.17)

The Hadamard gate H is such that a qubit in the state |0⟩ or |1⟩ has equal
probability to be measured in |0⟩ or |1⟩ after H is applied. In this sense, the
application of H has a similarity with the classic operation of randomly flipping
a bit (to some extent!).
Also the Cnot gate has a simple actions on the computational basis states: if
the first qubit is |0⟩, it does nothing; if the first qubit is |1⟩, the second qubit is
flipped.
Now consider the state |01⟩ and apply firstly H to both qubits

|01⟩ → H ⊗H |01⟩ = |+−⟩ = |00⟩ − |01⟩+ |10⟩ − |11⟩√
2

(4.18)

and then the Cnot gate

|−+⟩ → Cnot |−+⟩ = |00⟩ − |01⟩+ |11⟩ − |10⟩√
2

= |−−⟩ (4.19)

and, finally, again the H gate to the second qubit

|−−⟩ → I⊗H |−−⟩ = |−1⟩ = |01⟩ − |11⟩√
2

. (4.20)
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Figure 4.1: Paths of amplitude if we apply H ⊗H, then Cnot, then I⊗H to the
initial state |01⟩ In this case, when more than one line originates from the same
state, the probability is equally divide; if more than one line ends on the same
state, the probability is summed; if a line is red, the amplitude is negative.

Therefore, after the process, we have equal probability to be in the states |11⟩
and |01⟩. If we try to replicate classically this short algorithm, we can try to
do the following: take the two bits in |01⟩, and randomly flips them. Notice
that if we make our measurements here, the results of the classical and quantum
systems are indistinguishable. Then, we ask a friend of ours to look the first
bit and change the second if it is 1, otherwise do nothing. Again, at this point
there has been no interference of probabilities and we could not distinguish the
qubits and the bits systems: each possible outcome is equally probable. Finally,
randomly flip the second bit again. Clearly, after the first step, each outcome has
the same probability classically, in sharp contrast with (4.20): in the quantum
system, the probability of the outcomes |10⟩ and |00⟩ is zero! In Fig. 4.1 there
is a graphical representation of the situation.

Another important difference between the classical and quantum case, is the
entanglement. A two-qubit state is said to be entangled if it cannot be written
as tensor product of two single-qubit states1. A famous entangled two-qubit
state is

|ψ⟩ = |00⟩+ |11⟩√
2

. (4.21)

The question is: are there any differences between this state and a classical state
of two strongly correlated qubits? Consider that two qubits are in the state |ψ⟩.
These two qubits are bring far away, and then one of them is measured (in the
computational basis) and suppose that the outcome is 0: instantaneously we
know that, whenever the other will be measured, the outcome will be again 0.
This is not necessarily a quantum effect: suppose that your cousin randomly

1multiple-qubit states can be entangled or not depending on the tensor decomposition
under consideration: for example, the state (|0000⟩+ |1111⟩+ |0101⟩+ |1010⟩)/2 is entangled
in the sense that cannot be written as single-qubit tensor product, but it is un-entangled in
the sense that it can be written as tensor product of two two-qubit states.



88 CHAPTER 4. QUANTUM POINT OF VIEW

writes a 0 or a 1 on a paper and prepares two identical copies of that. Then she
sends one copy to you and one to your brother into an envelope. When you will
look at your paper, you will immediately know the content of the other envelope.
So what is the point in quantum entanglement? The best explanation requires
another ingredient: non-commuting observables. Actually, we need two sets of
two non-commuting single-qubit observables: let us consider those associated
to the Pauli matrix X and the Pauli matrix Z,

Z =

(
1 0
0 −1

)
, (4.22)

and those associated with Hadamard gate H and with H ′ defined as

H ′ = XHX =
1√
2

(
−1 1
1 1

)
. (4.23)

Equipped with the ability to measure these observables, let us take two qubits
in the state |ψ⟩ and give one of them to Mario and one of them to Luigi2.
Now, Mario can measure his qubit, let us say the first one, with the observables
associated to X and Z. Therefore, if he measures on his qubit the observable
associated to X, his expected outcome is

⟨X ⊗ I⟩ = ⟨ψ|X ⊗ I |ψ⟩ , (4.24)

and similarly for Z. An analogous situation holds for Luigi, with H and H ′

instead of X and Z. Now, let us suppose that Mario and Luigi randomly choose
which measurement they do.

There are 4 possible different situations, and the expected values of the
measurements are

⟨Z ⊗H⟩ = −⟨Z ⊗H ′⟩ = ⟨X ⊗H⟩ = ⟨X ⊗H ′⟩ = 1√
2
. (4.25)

Therefore, if we take the quantity

W = Z ⊗H − Z ⊗H ′ +X ⊗H +X ⊗H ′, (4.26)

we expect that
⟨W ⟩ = 2

√
2. (4.27)

But here is the best part: we ask Mario and Luigi to go very far away,
like a light-year or so. Then we hypothesize that whatever Mario does with
his qubit, it will not change in any way Luigi’s qubit (this is called locality
hypothesis). Moreover, we assume that Mario’s qubit does have a value for
the measurement of both X and Z, and analogously for Luigi’s qubit (this is
the realistic hypothesis.) Let us elaborate a little about that: classically we
could have non-commutating observables, in the sense that some measurements
can interfere with others, and so the order in which we perform measurements
matters. But if we have two devices which do those measurements, we (in the
classical point of view) do not doubt that the system does have at any moment
certain values that we could measure. We are doing exactly that hypothesis

2the usual names for these two guys are Alice and Bob.
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here: Mario’s qubit has a certain value for the measure related to X, say xM ,
and another value for Z, say zM . The problem is that we do not know that
values, because both xM and zM can be -1 or 1 with probability 1/2 because
the initial state is |ψ⟩ (a completely analogous situation holds for Luigi’s qubit).
But under these hypothesis, we can write

W = zMhL − zMh
′
L + xMhL + xMh

′
L = zM (hL − h′L) + xM (hL + h′L). (4.28)

Now, remember that all these quantities can be only -1 or 1. Therefore if
hL = h′L we have W = 2xM , otherwise W = 2zM . As a consequence, we obtain
a form of the so-called Bell inequalities:

|W | ≤ 2, (4.29)

which contradicts Eq. (4.27). This “paradox” has been noticed for the first
time by Einstein, Podolsky and Rosen [EPR35], but today many experiments
have confirmed that the inequality in (4.29) is violated: our reality is not local
and realistic. Moreover, this explains the difference between entanglement and
classical correlation: for entangled qubits Eq. (4.27) holds, while the reason-
ing which brought us to the inequality in (4.29) is correct if we have classical
correlated variables.

It has been showed that for an algorithm working with pure states, entan-
glement among a number of qubit which scale as O(N) (N being the input
size) is necessary for that algorithm not to be efficiently simulated by classical
computers [JL03]. However, even though entanglement and interference are two
important resources which are not available to classical computers, the power
of quantum computation has more subtle origins which are not completely un-
derstood today [RP11, Section 13.9].

4.1.3 An example: Grover algorithm

Grover algorithm is an excellent example of the power of quantum computing
at work. We can state the problem as follows. We are given a oracle f such that
f(i) ∈ {0, 1} for each i ∈ {1, . . . , N} = [N ]. We do not know anything about
the internal structure of the oracle, that is we have no idea of what the oracle
is actually computing. The only thing we know is that one among the set of
possible inputs, k ∈ [N ], is such that f(k) = 1 and f(i) = 0 for i ̸= k. Our aim
is to find k.
Now, classically the only way to proceed is to try all the possible inputs: on
average, we will need N/2 queries to the oracle (i.e. applications of f), and N−1
queries in the worst-case.
Let us now start with the quantum algorithm. We have two registers, one
can be in any state |i⟩ where i ∈ [N ] (therefore, it can be represented by
logN qubits) and the other is an additional qubit in state |q⟩. Therefore the
state of the whole system is |i⟩ ⊗ |q⟩. Let us suppose that the oracle works
as follows: it is implemented by a unitary Uf such that, for |q⟩ = |0⟩ or |1⟩,
Uf |i⟩⊗ |q⟩ = |i⟩⊗ |q ⊕ f(i)⟩, where ⊕ denotes addition modulo 2. Equivalently,
we can see that

Uf |i⟩ ⊗ |q⟩ =
{
|i⟩ ⊗X |q⟩ if i = k;

|i⟩ ⊗ |q⟩ if i ̸= k.
(4.30)
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In other words, Uf |i⟩ ⊗ |q⟩ = |i⟩ ⊗ Xf(i) |q⟩. Therefore the oracle flips the
qubit in the second register if in the first one there is the value k such that
f(k) = 1, otherwise it left the qubit untouched (this reasoning is valid for the
qubit in computational basis states). Now, we prepare the first register in the
superposed state

|ψ⟩ = 1√
N

N∑
j=1

|j⟩ (4.31)

and the qubit in the second register in the state |−⟩. When we apply the oracle
to the system, we obtain

Uf |ψ−⟩ = 1√
N

∑
j ̸=k

|j−⟩ − 1√
N

|k−⟩ = U ⊗ I |ψ−⟩ , (4.32)

where the operator U is defined by

U = I− 2 |k⟩ ⟨k| . (4.33)

Since the second qubit is left untouched by the application of Uf , we will stop
writing him down (the remaining part of the algorithm works on the first reg-
ister). However, keep in mind that each time we apply U , we are querying the
oracle once.
We also need another operator, the diffusion operator D, defined as

D = 2 |ψ⟩ ⟨ψ| − I, (4.34)

where |ψ⟩ is given in Eq. (4.31). This operator is unitary (it can be written
as −eiπ|ψ⟩⟨ψ|) and can be efficiently implemented in ∼ logN elementary gates
(see, for example, [RP11, Section 9.1.3]).
A great simplification for the analysis of Grover algorithm comes from the fact
that the only operators involved are those in Eq. (4.33) and in Eq. (4.34). Since
these operators can be written in terms of the projector on |ψ⟩ and on |k⟩ (and
identities), we can restrict our analysis to the two-dimensional space spanned
by these two vectors. In this space, a basis is composed by the two vectors
{|k⟩ , |ν⟩}, where

|ν⟩ = 1√
N − 1

∑
j ̸=k

|j⟩ . (4.35)

We represent

|k⟩ =
(
0
1

)
|ν⟩ =

(
1
0

)
(4.36)

and we have

DU =

(
cos θ − sin θ
sin θ cos θ

)
, (4.37)

where cos θ = 1 − 2/N and since cos θ ∼ 1 − θ2/2 for small θ, we obtain θ ∼
2/
√
N . Therefore the application of the operator DU corresponds to a rotation

of an angle θ.
Now, we start from the state |ψ⟩, which is close to |ν⟩ for large N . The state |i⟩
is orthogonal to |ν⟩, so their relative angle is π/2. Therefore we need to apply
the operator DU for

t =
π/2

θ
∼ π

4

√
N (4.38)



4.2. QUANTUM ADIABATIC ALGORITHM 91

times to rotate the initial state to the target state.
After this operation, the probability of obtaining k with a measure is⏐⏐⟨k| (DU)t |ψ⟩

⏐⏐ ≥ cos2 θ ∼ 1. (4.39)

Since each usage of the operator U corresponds to a query to the oracle, we are
doing π/4

√
N queries for large N , which is much less than in the classical case.

Finally, we note that this algorithm is optimal, in the sense that it has been
proved that π/4

√
N is the minimum number of queries to the oracle to solve

the problem, independently of the algorithm [BBBV97, BBHT98, Zal99].

4.2 Quantum Adiabatic Algorithm

The gate model of quantum computing is not the only model possible. Actu-
ally, there are many others and in this section we will focus on the quantum
adiabatic computation model. Its introduction dates back to the works of Apol-
loni [ACdF89], and at the beginning it was called quantum annealing. The
original idea was to design an algorithm similar to the simulated annealing one,
but able to exploit quantum, rather then thermal, fluctuations to escape local
minima.
Only later, when experiments with quantum systems able to physically imple-
ment quantum annealing [BBF+99] started to appear, the quantum annealing
(or adiabatic) algorithm (QAA) becomes something which required a dedicated
(quantum) device [FGGS00]. Up to that point, the Hamiltonians used to evolve
the quantum systems were composed of non-positive off-diagonal entries in the
computational basis (stoquastic Hamiltonians), but it turned out that if we al-
low the system to evolve with non-stoquastic Hamiltonians, then the QAA is as
general as the gate model (that is, each gate-model algorithm can be re-casted
as a QAA with a polynomial overhead) [AvDK+07].
Today the interest in QAA is still very high, mainly because the hope that this
model of computation can provide speedup to solve NP-hard combinatorial op-
timization problems. To this end, some devices are available to test QAA, the
most famous of them being the D-Wave system: their latest architecture, called
Pegasus, has more than 5000 qubit arranged in a topology which allows each of
them to be connected with 15 others.

In this section we will review the quantum adiabatic theorems which are the
theoretical backbone of QAA, and we will see QAA at work with the Grover
problem. After that we will discuss one of the many unsolved problems regarding
QAA (and, more specifically, implementation on real-world devices) which is
called parameter setting problem [DGRM].

4.2.1 Why it could work... and why not

The QAA consists in the following: consider a starting Hamiltonian, H0, which
is easy to implement and with a known ground state easy to prepare as well.
Now encode the solution of a COP in the ground state of another Hamiltonian
H1 and define the Hamiltonian

H(s) = A(s)H0 +B(s)H1 (4.40)
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so that A(0) = 1, B(0) = 0, A(1) = 0 and B(1) = 1. Now prepare a system in
the ground state of H0 and let it evolve with H(s), changing s from 0 to 1. The
functions A and B are called schedule, and we are guaranteed that the system
will always remain in the instantaneous ground state of H(s) provided that the
change of H is “slow enough”. Therefore at the end of the evolution the system
will be in the ground state of H1 and a measurement will give as outcome the
result of our original problem. But how slow is “slow enough”? The answer is
in the adiabatic theorem, that we now state (in its simpler form, a nice review
of the various versions can be found in [AL18]).

Consider a Hamiltonian Htf (t) which depends on time and on the parameter
tf , such that Htf (stf ) = H(s) with s ∈ [0, 1]. Basically this is equivalent to the
requirement that once the Hamiltonian Htf (t) depends on time only through
the form s = t/tf , which is the case for the QAA. Now, consider the set of
eigenstates |ϵj(s)⟩ with j ∈ {0, 1, . . . } such that

H(s) |ϵj(s)⟩ = ϵj(s) |ϵj(s)⟩ , (4.41)

and the values ϵj(s) are ordered in increasing order. Therefore |ϵ0(s)⟩ is the
instantaneous ground state. Now, the adiabatic theorem [Ami09] states that, if
the system is prepared in the state |ϵj(0)⟩ at s = 0, it will remain in the same
instantaneous eigenstate provided that

1

tf
max
s∈[0,1]

|⟨ϵi(s)| ∂sH(s) |ϵj(s)⟩|
|ϵi(s)− ϵj(s)|2

≪ 1 (4.42)

for each i ̸= j. Since one is typically interested in the ground state we can set
i = 0. Moreover, notice that we can always bound the numerator from above
with 1, therefore we are guaranteed to stay in the ground state if tf∆

2 ≫ 1,
where

∆ = min
s∈[0,1]

(ϵ1(s)− ϵ0(s)) (4.43)

is usually called spectral gap (or simply gap). In conclusion, the adiabatic the-
orem suggests us to choose tf = η∆−2, with η ≫ 1. Notice that the typical
situation is that ∆ depends on the problem size N , as we will see in the follow-
ing. Since η has to be large but we can fix it such that it will not depend on N ,
the complexity of the QAA is entirely given by the dependence on N of ∆.

4.2.2 A solvable case: Grover again

The adiabatic version of Grover’s algorithm has a nice story: it has been pro-
posed as one of the first example of application of QAA [FGGS00], but the
result was disappointing. Indeed, no speedup with respect to the classical case
was found. Only later, Roland and Cerf [RC02] understood how to recover the
Grover speedup in the adiabatic setting. Here we review their results.

As in the standard Grover case, we have N states |i⟩ and a marked state
|m⟩ which we do not know a priori, and we want to find. We use as initial state
the uniform superposition

|ψ⟩ = 1

N

∑
i

|i⟩ . (4.44)

The Hamiltonian that we use to evolve the system is

H(s) = (1− a(s))H0 + a(s)H1, (4.45)
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with
H0 = I− |ψ⟩ ⟨ψ| (4.46)

and
H1 = I− |k⟩ ⟨k| . (4.47)

Notice that |ψ⟩ is the ground state of H0 with eigenvalue 0, and |k⟩ is the ground
state of H1, again with eigenvalue 0. For this problem the schedule is completely
determined by the choice of a.
Now we need to evaluate the eigensystem of H(s) in order to choose a proper
schedule s = s(t). Notice that we start from the state |ψ⟩ and therefore, since the
Hamiltonian only depends on projectors on |ψ⟩, |k⟩ and identities, the evolution
remains in the subspace spanned by |ψ⟩ and |k⟩. A basis of this space is {|k⟩,|ν⟩},
where

|ν⟩ = 1√
N − 1

∑
j ̸=k

|j⟩ . (4.48)

In this subspace, where the non-trivial evolution of the initial state happens, we
use

⟨ν|ψ⟩ =
√
1− 1

N
, ⟨k|ψ⟩ = 1√

N
, ⟨k|ν⟩ = 0 (4.49)

and we obtain

⟨k|H0 |k⟩ = 1− 1

N
, ⟨k|H0 |ν⟩ = ⟨ν|H0 |k⟩ = − 1√

N

√
1− 1

N
, ⟨ν|H0 |ν⟩ =

1

N
,

⟨k|H1 |k⟩ = 0, ⟨k|H1 |ν⟩ = ⟨ν|H1 |k⟩ = 0, ⟨ν|H1 |ν⟩ = 1.

(4.50)

At this point, we compute the eigenvalues of the matrix H(s) restricted to this
2-dimensional space (the other eigenvalue is 1, with degeneracy N − 2) and we
obtain

ϵ0(s) =
1

2
−
√
1− 4

(
1− 1

N

)
a(1− a)

ϵ1(s) =
1

2
+

√
1− 4

(
1− 1

N

)
a(1− a).

(4.51)

Therefore we have, for the instantaneous gap:

g(s) = ϵ1(s)− ϵ0(s) =

√
1− 4

(
1− 1

N

)
a(1− a). (4.52)

In conclusion, the minimum gap is obtained at a = 1/2 (see inset of Fig. 4.2).
If we take a = s (linear schedule), we obtain that the minimum gap is

∆ = g(1/2) =
1√
N

(4.53)

and therefore, by using Eq. (4.42) and |⟨ϵ0(s)| ∂sH(s) |ϵ1(s)⟩| ≤ 1, we have

N

tf
≪ 1 (4.54)
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and so we need tf ≫ N (notice that this means tf = ηN with η some small, N-
independent parameter). This disappointing result can be improved by a more
careful choice of the schedule a(s). Indeed, let us consider again Eq. (4.42). In
this case, we have

1

tf
max
s∈[0,1]

⏐⏐⏐⏐dads
⏐⏐⏐⏐ |⟨ϵ1(s)| ∂aH(a) |ϵ0(s)⟩|

g(s)2
≪ 1. (4.55)

Therefore, we can require that, for each s ∈ [0, 1],

1

tf

⏐⏐⏐⏐dads
⏐⏐⏐⏐ 1

g(s)2
= η, (4.56)

where η ≪ 1 is a small parameter. We obtain the differential equation for a(s),

da

ds
= tfη

(
1− 4

(
1− 1

N

)
a(1− a)

)
, (4.57)

with the initial condition a(0) = 0 and tf has to be chosen such that a(1) = 1.
The result of Eq. (4.57) for a(s) is plotted in Fig. 4.2, while for tf we obtain

tf =
π

2ϵ

√
N. (4.58)
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Figure 4.2: Plot of the solution of Eq. (4.57), with N = 64 and tf ϵ =
√
Nπ/2.

As we can see, a(s) changes faster when s is close to 0 or 1, that is (see inset)
when the gap is large, and it changes more slowly when s is closer to 0.5, that
is to the minimum gap.

This example is instructive and allows us to see an important point: the
Hamiltonian can be changed quickly when the gap is large, but the annealing
schedule has to slow down where the gap is small. Unfortunately, the compu-
tation of the gap is extremely difficult in most cases of interest, and therefore
some more heuristic treatment is usually applied.
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4.2.3 The parameter setting problem

Since its introduction, the QAA has been thoroughly studied to understand
whether it can be useful to tackle computationally hard problems faster than
classical algorithms [FGGS00, KN98]. The usual comparison is with the classi-
cal Simulated Annealing (SA) algorithm and its variants, such as the Parallel
Tempering (PT). The general idea at the heart of the hoped success of QAA is
that quantum fluctuations could be more effective then thermal ones in explor-
ing rough energy landscapes (even though there are also other possible kind of
advantages of quantum algorithms over classical ones [BZ18]). This intuition
has been built mostly by using very simple toy-models, such as the highly sym-
metric Hamming weight problem [FGG02, MAL16] or oracular problems (as
the Grover problem analyzed in Sec. 4.2.2), but conceptual arguments proving
any kind of quantum speedup for real-world problems lack to date, despite the
significant efforts made [DBI+16, MZW+16].
The recent appearance of quantum annealers of relevant size, such as the D-
Wave 2000Q, which allows to control about 2000 physical qubits, provided a
more pragmatic road: we are now in the exciting position of doing some actual
experiments using these annealers to solve certain COPs, and then compare the
performances with those of classical solvers.
However, many practical issues appear in this case, most of which are related to
the fundamental question “how can we do a fair comparison?” [RWJ+14, MK18].
It has been soon understood that one needs to carefully choose the problems
to be solved. The first step is to consider COPs that admit a rewriting as
Quadratic Unconstrained Binary Optimization (QUBO) problems, that is, in
the same spirit of Sec. 2.2.3, as

H0 =
∑
i,j

Ji,jxixj +
∑
i

hixi, (4.59)

where xi ∈ {0, 1} and the values of the couplers Ji,j and those of the local fields
hi are used to specify the problem and the instance.
However, this is not enough: to exploit in the best way possible the effect of
quantum fluctuations, one has to consider problems with a sufficiently complex
energy landscape. Often this is achieved by studying problems whose thermo-
dynamics presents a spin glass phase at low temperature. Unfortunately, the
present architecture of qubit interactions in the D-Wave system does not allow
to have this kind of difficult problems [KHA14] without an extra step, that is the
embedding of a different interaction graph into the D-Wave qubit interaction
graph (which is called Chimera graph for the D-Wave machines up to 2000Q).
To do that, we need to introduce an extra term in the QUBO Hamiltonian,
which embodies some constraints needed to embed the graph [Cho08, Cho11].
Moreover, there are many other COPs whose QUBO formulation itself requires
a hard-constraint term, such as the traveling salesman problem, the match-
ing problem, the knapsack problem, the 1-in-3 satisfiability problem and many
others [Luc14]. In all these cases, one has an Hamiltonian of the form

H(λ) = HP + λHC , (4.60)

where HP is the problem Hamiltonian, which is written in QUBO form and HC

is the Hamiltonian, written again in QUBO form, which ensures the constraints
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by giving a penalty in energy to the configurations which break one or more of
them.

Here we address the problem of choosing the value of the parameter λ. An
easy recipe for this choice does not exists: indeed λ has to be large enough so
that the ground state of our problem (which is the state we are after) has no
broken constraint, but it has been argued theoretically [Cho08] and observed
experimentally [VMK+15] that a small value provides better performances.

Optimal choice of parameters: framework

Consider a COP defined by a cost function E : Ω → R, where Ω is a discrete
set. We will refer to this problem as the “logical” problem. Consider now
that this problem admits a QUBO version. This means that we also have
another, “embedded”, Hamiltonian HP : {0, 1}N = B → R (N is the number of
binary variables that we need to encode the problem) and an invertible function
φ : Ω → S ⊆ B such that HP (φ(σ)) = E(σ) for each σ ∈ Ω. Now consider the
case S ⊂ B: HP will give an energy also to elements of the boolean hypercube in
B \ S = Sc, which do not correspond to acceptable configurations of the logical
problem.

As an example, let us consider again the matching problem introduced in
Sec. 3.2: given a graph G = (V,L) and a weight wℓ ≥ 0 associated to each edge
ℓ ∈ L, let us call A the set of all matchings. To obtain the QUBO form of this
problem, we assign to each edge ℓ a binary variable xℓ which is 1 or 0 if the
edge is used or not in the configuration x. As we have seen in Sec. 3.2, if we
want a Hamiltonian in QUBO form, we need to introduce a soft constraint and
we obtain

Hλ(x) = HP + λHC =
∑
ℓ∈L

wℓxℓ + λ
∑
ν∈V

(
1−

∑
ℓ∈∂ν

xℓ

)2

, (4.61)

where the quadratic term, provided that λ is large enough, enforces the fact
that (at least in the ground state) each point has to be connected to exactly
one another point.

Let us define

Egs = min
σ∈Ω

E(σ), Egs(λ) = min
x∈B

Hλ(x). (4.62)

The “minimum” value of the parameter, λ⋆, is the smallest λ ∈ R+ such that

Egs = Egs(λ). (4.63)

We define the “optimal” value for the parameter λ, for a fixed heuristic
algorithm, as the one such that the time-to-solution (TTS) (see Appendix D.1,
for a definition of TTS) of this algorithm is minimized. Therefore the optimal
parameter depends in general on the algorithm we are going to use. However,
if we focus on annealing algorithms with local moves, it is possible to build
some intuition that the optimal parameter is (at least close to) the minimum
parameter. Indeed, this kind of heuristic algorithms are used to explore complex
energy landscapes and the idea behind classical/quantum annealing is roughly
to exploit thermal/quantum fluctuations to overcome the energy barriers which
separate low-energy configurations, so that we can explore these configurations
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and pick the optimal one.
Now consider the case in which the barrier to overcome is given by the HC term
in Eq. (4.61), that is because of a penalty term: if the coupling term is lowered,
the height of the barrier is lowered so the annealing can proceed faster. This
happens, for example, when the Hamming distance between couples of allowed
configurations is always larger than 1 (if the algorithm only performs single
spin flips): in this case the algorithm has to overcome a barrier given by the
penalty term each time it changes the system configuration from one in S to
another in S, passing through Sc. An explicit example of this is the matching
problem: indeed if the system is in an allowed configuration, the closest allowed
configuration is at distance 4 and it corresponds to the swap of two matched
points. Moreover, it is easy to check that this is again the case for many other
combinatorial optimization problems relevant for both practical and theoretical
analyses.

In Appendix D.2, we investigate the effect of changing λ with a toy model
example, where all the computations can be done analytically. In the following,
on the other hand, we will firstly provide and discuss an algorithm to find the
minimum value of λ (in some cases), and we will apply it to study the effect of
the choice of λ for a specific combinatorial optimization problem.

Optimal choice of parameters: an algorithm

The usual strategy to obtain a good constraint term HC is to find some set of
constraints that the binary variables have to respect to be mapped in a logical
configuration by φ−1. Then HC is implemented such that it increases if the
number of broken constraints increases, and is zero if no constraint is broken.
For example, for the matching problem we have that given a vertex ν, only
one among the edges in ∂ν has to be used. So we have one constraint for each
point, and the term that we inserted in Eq. (4.61) is positively correlated to the
number of broken constraints.

We denote with E
(k)
0 the minimum over the set of configurations x with

k broken constraints of HP (x). So, for example, Egs = E
(0)
0 . Therefore, the

minimum parameter λ⋆ is the smallest possible such that

E
(0)
0 < kλ+ E

(k)
0 , (4.64)

for k = 1, . . . ,M , where M is the maximum number of constraints that can be
broken in a single configuration. Therefore we have

λ⋆ > max
k∈{1,2,...,N}

E
(0)
0 − E

(k)
0

2k
= max
k∈{1,2,...,N}

λk, (4.65)

where λk = (E
(0)
0 − E

(k)
0 )/(2k).

This inequality cannot be used efficiently to obtain λ⋆ as it is: the computation
of each λk could be even more difficult than solving the original problem. On the
other hand, one can obtain an approximation of each λk: to do this, one needs

to approximate E
(0)
0 from above and E

(k)
0 from below. But also in this case, one

still needs to compute all the M different λk’s, and for most of the interesting
problems M scales with the system size N . This happens, for example, for our
working example, the matching problem, where the number of constraints is the
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number of vertices to be matched. To worsen the situation, the computation

of E
(k)
0 requires the minimization of the energy over all the possible ways of

breaking k constraints, and this number can grow exponentially in N (as it
happens, for example, for the matching problem). However, if we can prove
that

λ1 ≥ λ2 ≥ · · · ≥ λN (4.66)

then λ⋆ can easily be found by estimating λ1 and taking the smallest value such
that

λ⋆ > λ1. (4.67)

Let us give some qualitative arguments to understand why Eq. (4.66) is a rea-
sonable expectation. We have that λk ≥ λk+1 if and only if

E
(0)
0 − E

(1)
0 + E

(1)
0 + · · · − E

(k−1)
0 + E

(k−1)
0 − E

(k)
0

≥ k (E
(k)
0 − E

(k+1)
0 ).

(4.68)

If we prove that

E
(n−1)
0 − E

(n)
0 ≥ E

(n)
0 − E

(n+1)
0 , (4.69)

for each n = 0, 1, . . . , N , then inequality (4.68) immediately follows (this is a
sufficient but not necessary condition). This condition is nothing but the fact
that the maximum gain in energy that we can obtain by breaking the n-th
constraint is lower than the one that we obtain by breaking the (n+ 1)-th, for
each value of n.
Actually the inequality given in (4.66) is satisfied for some problems, but not for
all of them. In particular, it depends on both HP and HC and in Appendix D.3
we show a specific problem and a specific choice of HC for which this condition
does not hold. We will see that for the matching problem defined as in Eq. (4.61)
this conditions is satisfied. Finally, notice that there are other algorithms that
can be used to find the minimum parameter λ⋆: when the algorithm we discuss
here is not applicable, these methods can be an alternative strategy. However,
as we discuss in Appendix D.4 using the example of the matching problem, the
differences in performances among these methods can be quite relevant.

An explicit example: the matching problem

As we already discussed, the matching problem is in the P complexity class.
However it is empirically known that for many problems in the P class, heuristic
algorithms such as SA still need an exponential time to find the exact solution.
When this problem is written in QUBO form it is one of the simplest possible
constrained problems: quadratic terms are in the penalty term only, and the
problem is trivial without it. On the top of that, we have seen that the struc-
ture of the physical energy landscape, that is logical configurations separated by
non-logical ones, is common to many other problems. Therefore the matching
problem is an ideal starting point to study the effects of the choice of the penalty
term coupling parameter.
Another, more practical, reason to choose this problem is that, since it is poly-
nomial, we can compute λ1 (as defined in Eq. (4.65)) in polynomial time, and
we will see that for the QUBO form that we will use for this problem, con-
dition (4.66) holds. Therefore we can in polynomial time find the minimum
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parameter, and test in a realistic problem if that is the optimal value. Notice
that we will actually use the exact solution of the problem to obtain the mini-
mum parameter, since our objective is to understand the effect of the choice of
the parameter rather than providing an algorithm to find the minimum parame-
ter itself. Nonetheless, for more interesting (NP-hard) problems one cannot use
the solution of the problem, but, as we have discussed previously, approximate
solutions together with our technique could be used to obtain good values for
the parameter.

Let A be the set of all the possible matchings for our problem graph G =
(V,L). We define

EN = min
σ∈A

(Eσ), (4.70)

where 2N = |V | is a measure of the problem size.

To discuss the inequality (4.69) in this case, we need to analyze how E
(k)
0

is obtained. Firstly, notice that constraints are always broken in pairs. Now
consider a configuration with 2k broken constraints, with k > 0. Suppose that
we can find a point x which is endpoint of m > 1 edges. Now consider the
configuration obtained by removing m − 1 links which have x as endpoint: as
it is clear from Eq. (4.61), we will have a lower cost given by the penalty term
of Hλ, and a lower cost given by the weight term. Therefore, the way to break
2k constraints which minimizes Hλ is obtained by configurations which have
2k points which are not matched with any other point, that is by ignoring 2k
points of the initial set of 2N points in the matching. Therefore we introduce
the symbol

EN−k = E
(k)
0 , (4.71)

where we dropped the subscript 0 to shorten the notation and we stress the

fact that we can interpret E
(k)
0 as the optimal matching when we can ignore 2k

points. Notice that EN = EN . The inequality that we want to prove is then

En+1 − En ≥ En − En−1, (4.72)

for each n = 0, 1, . . . , N . The proof is rather technical and is given in full details
in Appendix D.5. Here we only sketch its structure and the main ideas behind
it:

• we prove that if a point is ignored when 2k constraint can be broken, it
will also be ignored when 2(k + 1) can be broken (“stability” property);

• using the previous fact, we can prove Eq. (4.72) (“order” property).

Both the points are proven by building sub-optimal matchings by using pieces
of the solutions with cost En+1 and En−1 and using the fact that the solutions
with costs En+1, En−1 and En are optimal.

Numerical results for the matching problem

The aim of this section is to numerically study the relevance of the choice of the
parameter value in terms of performances for the matching problem, where the
minimum parameter can be found in polynomial time. This will also allow us
to discuss our qualitative picture introduced previously, at least for this specific
example. We used an exact, polynomial-time, solver to compute the energy
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of the optimal solution, both when no constraints are broken (to obtain EN )
and when one constraint is broken (we broke it in every possible way, and the
minimum of the energies obtained is EN−1). Here, with one broken constraint we
mean that we are ignoring 2 points to be matched, as discussed in the previous
section. Therefore we can break a constraint in N(N − 1) ways, where N is the
number of points, and so the procedure to find the minimum parameter is still
polynomial. Once we obtained the minimum parameter, we run the classical
and quantum algorithms using that value and values at a fixed distance from it.
We then computed the time to solution, which is used throughout this section
as measure of performance.
Let us give now some details about our numerical analysis: we considered the
matching problem on a specific graph, which is a 2-dimentional regular lattice
of vertices, where each vertex has 4 edges which connect the vertex with its
nearest neighbors (the vertices on the boundaries have less edges because we
used open boundary conditions). We used this specific graph because in this
case the problem of the minor embedding in the D-Wave 2000Q hardware graph
(the Chimera graph) is moderate, so we can focus on the effects caused by the
change of the penalty term of the matching problem, neglecting the fact that also
the penalty term of the minor embedding problem plays a role in determining
the performances. The weights of the edges are randomly extracted among the
set of integers {0, 8, 16}. We need to use multiples of 8 to have integers number
after the re-writing of the problem in terms of QUBO form and then again in
Ising variables (which is the form of input Hamiltonian used in both out parallel
tempering algorithm and the D-Wave 2000Q). We decided to use only integers
and such a small set to avoid precision problems, which are particularly severe
in noisy devices such as the D-Wave 2000Q. Then, for each system size analyzed,
the parameter λ is chosen as λ = λ⋆ + 2δ, where δ ∈ {−2,−1, 0, 1, 2, 3}. We
did not consider a finer grid of values for δ because our computations are done
with finite precision, and too close values of δ would be indistinguishable. In
Fig. 4.3 we present histograms of the values of λ⋆ obtained for system at various
sizes. A first important consequence of this plot is that the value of λ⋆ is not a
self-averaging quantity (at least not for the system sizes explored here). On the
opposite, the variance of λ⋆ we obtained is increasing with the system size.

Classical heuristic algorithm We used the Parallel Tempering (PT) algo-
rithm included in the NASA’s Unified Framework for Optimization (UFO). We
analyzed systems with sizes up to 484 points (that is, a lattice with 22 points
of side length) that means, because of our QUBO embedding, about 900 binary
variables. To choose the temperatures for the PT we considered the energy
scale given by the penalty term parameter, and we multiplied it for two con-
stants (one for the lowest and one for the highest temperatures) which are found
by maximizing the number of times that the PT algorithm finds either the GS
or a forbidden configuration with lower energy than the GS, with δ = 0. This
is done to have the cleanest possible values of TTS close to δ = 0, and we have
checked that the qualitative picture (regarding the TTS scaling with δ) does
not change when varying the temperatures. To obtain the TTS we proceeded
as follows: we randomly generated 500 instances, and run the PT 500 times for
each instance. For N = 400 and N = 484, the number of different instances is
reduced to 250. When the PT algorithm succeeded in finding a good solution,
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Figure 4.3: Histograms of the minimum coupling parameter obtained for 500
different instances of the matching problem, for system sizes of 100, 256 and
400. The optimal parameters are always multiple of 4 because of our initial
choice of link weights.

we recorded the time used; when it failed in the time given, or it found a solution
with energy lower than the GS (because of broken constraints), we recorded a
failure and so “infinite” time to find the solution. We do that because once the
system is trapped in a local minimum of the energy landscape, to escape from
that it will require (typically) much more time than that allowed to each run of
the algorithm. Using the data collected in this way, we can compute the TTS,
and the results are shown in Figs. 4.4 and 4.5, as functions respectively of δ at
fixed N and of N at fixed δ.

Let us now comment the results obtained: from Fig. 4.4 we can see how, as
intuitively predicted, the use of parameters close to the minimum results in faster
annealing. This effect is more important as N increase. The 50-percentile shows
that, at N = 484, the maximum system size analyzed here, the optimal choice
is δ = −1. Notice that we do not plot δ = −2 in Fig. 4.4 because at all system
sizes considered here, at least one percentile of the TTS exceeded the maximum
allowed (which was 1020 µs). The reason is that in that case many instances
are never solved by the algorithm. On the contrary, for the largest system sizes
δ = −1 also maximized the number of instances where the algorithm found the
solution at least once. Therefore it seems that, for large N , the use of values
of the parameter slightly lower that the minimum is preferred, at least for this
problem. This is investigated in more details in Fig. 4.4, where the 50-percentile
of the TTS is fitted with a function of the form AeBN . The obtained value of
B are in Table 4.1 and show that a moderate exponential speedup in TTS can
be obtained using δ = −1 and that δ = 0 gives a small exponential speedup
against δ = 1, which in turn gives a small exponential speedup against δ = 2
and so on. Another very important consideration is that in Fig. 4.4 we do not
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Figure 4.4: Time-to-solutions for the matching problem, shown at fixed N as
function of the distance from the optimal parameter. The solid lines connect
points computed using the 50-percentile of instances, the dashed lines corre-
sponds to the 35-percentile (below solid lines) and 65 percentile (above solid
lines).

have plotted points corresponding to at least one percentile lines exceeding the
maximum limit of 1020 µs. This is the reason why the curves become shorter as
N increases. This means that outside an “acceptable interval” of values around
λ⋆ the performance of the PT algorithm rapidly spoils, and most of the instances
are never solved. Moreover, this interval becomes smaller and smaller as the
system size increases. This means that to use the PT algorithm we need to be
more and more precise in finding λ⋆ and that this parameter has to be found
with a pre-processing applied to each instance since, as discussed previously,
even at large system size it depends on the specific instance.

δ B
-1 (1.3± 0.2) · 10−2

0 (1.72± 0.02) · 10−2

1 (2.6± 0.1) · 10−2

2 (3.01± 0.01) · 10−2

Table 4.1: Fitting parameter B for fit equation AeBx for values value of δ. The
fitted data and the fitting curves are those used in Fig. 4.5.

Quantum heuristic algorithm The quantum computations are performed
using the D-Wave 2000Q quantum annealer. In particular, we have embedded
the problem in the Chimera graph, so that the logic Ising variables are mapped
to ferromagnetic chains of length 4 after the minor embedding, except the Ising
variables on the boundaries of the square lattice which correspond to shorter
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Figure 4.5: Time-to-solutions for the matching problem, shown at fixed N as
function of the distance from the optimal parameter. The solid lines connect
points computed using the 50-percentile of instances, the shaded areas corre-
sponds to the 35-percentile (below) and 65-percentile (above), the dashed lines
are the best fit of the form AeBN .

chains. Then we run the QAA for system of side sizes N = 16, 36, 64. Larger
systems up to N = 256 (that is, a lattice with 16 points of side length) are
in principle possible for the D-Wave 2000Q chip, but they resulted in too few
solved instances. Notice that an instance at N = 64 is a matching of 64 logical
points, which corresponds, after the QUBO and the minor embedding, to a
problem of ∼ 500 qubits. Indeed, the starting graph that we have chosen for
the matching problem is such that each vertex can be mapped in a 8-qubit unit
cell of the Chimera graph, and to do that each binary variable is mapped in a
4-qubit ferromagnetic chain. Notice that the chain lengths are independent on
N . We used a majority voting technique to correct chains broken at the end
of the annealing (when there is no majority, the chain is randomly corrected).
We set the annealing parameters (annealing time and ferromagnetic coupling
for the embedded chains) such that the average number of successful annealings
is maximized (we noticed that these settings do not depend in a relevant way
on the value of δ that we use to build the instances).

To obtain the TTS, we generated 100 random instances as discussed in the
previous section, and each instance is submitted for 104 runs of the D-Wave
2000Q. The relevant parameter is then the probability of finding the GS for a
fixed instance, which is averaged over the instances and plotted in Fig. 4.6.
From these probabilities one can obtain easily the TTS, which we show in Fig.
4.7 to ease the comparison with the classical case. Notice that in this case the
curves correspond to percentiles, while in Fig. 4.6 we have plotted averages and
standard deviations as errors.

Unfortunately, due to the small system size that we can analyze in this case,
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Figure 4.6: Average probability of finding the solution for the matching problem,
shown at fixed N as function of the distance from the optimal parameter. Each
point is obtained averaging on 100 different instances, and the probability is
computed running the annealing 104 times. These results are obtained using
the D-Wave 2000Q quantum annealer hosted at NASA Ames Research Center.

we cannot obtain firm conclusions. However, it seems reasonable to expect
that the same problems observed in the classical case can be repeated here: in
particular it is still true that a choice of δ = −1 is a particularly bad for small
N , but this choice improves (i. e. it is less worse) as N increases. On the other
hand, up to the size N = 8 the choice of a δ > 0 is the optimal, even so a too big
value start spoiling the performances. Moreover, as can be seen more explicitly
in Fig. 4.6, it is still true that for larger system size the choice of the parameter
λ becomes more relevant in terms of performances.

An interesting question is why the quantum annealer is not able to solve
problem of size N = 100 or larger. We think that the precision problems have a
role, but another reason could be also the structure of the embedded (QUBO)
energy landscape itself: in particular, we think that the fact that logical states
are always separated by not-acceptable states might be a severe obstacle for
quantum annealers. Notice that this is true also for each problem which is
embedded in the hardware graph in such a way that each QUBO binary variable
is now a chain of qubits. However in this case one can use majority voting or
other methods to correct configurations with this constraint broken. In our
case (as in other many interesting problems) a simple correction as the majority
voting does not exist, so if this is the reason for the failure of the quantum
annealer on this problem, other ways to enforce constraints have to be designed
to solve this kind of problems.
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Figure 4.7: Time-to-solutions for the matching problem, shown at fixed N as
function of the distance from the optimal parameter. These results are obtained
starting from the same data set used for Fig. 4.6. The solid lines connect points
computed using the 50-percentile of instances, the dashed lines corresponds to
the 35-percentile (below solid lines) and 65 percentile (above solid lines). These
results are obtained using the D-Wave 2000Q quantum annealer hosted at NASA
Ames Research Center.
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4.3 Quantum Approximate Optimization Algo-
rithm

As a final section, we mention here briefly a relatively new algorithm to tackle
COPs with gate-based quantum computers.

We start from the following question: how can we “practically” implement
QAA on a gate-based quantum computer? Suppose we are able to apply the
following gates

D(β) = eiβH0 (4.73)

and

U(γ) = eiγH1 (4.74)

for generic values of β and γ, where H0 and H1 are those used in Eq. (4.40).
Therefore we can apply the Suzuki-Trotter formula,

eX+Y = lim
m→∞

(
eX/meX/m

)m
, (4.75)

so that we write our evolution as3

Texp

[
− i

~

∫ 1

0

dt (A(t)H0 +B(t)H1)

]
= lim
m→∞

(
Texp

[
− i

~
H0

∫ 1

0

dt
A(t)

m

]
Texp

[
− i

~
H1

∫ 1

0

dt
B(t)

m

])m
.

(4.76)

Therefore, to implement our QAA, we simply need to use alternatively the
gates D(γ) and U(β), with very small parameters β and γ, many times. After
applying p times each gate, we obtain the state

|β,γ⟩ = D(βp)U(γp) · · ·D(β1)U(γ1) |ψ⟩ (4.77)

where |ψ⟩ is our initial state, which, according to the QAA, has to be the ground
state of H0. Now, the intuition behind QAOA is the following [FGG14a]: give
up the idea of sending p → ∞ and choose freely the sets {β1, . . . , βp} and
{γ1, . . . , γp}. Notice that at this point we are far from the adiabatic situation
(where p → ∞ and βi, γi are small). Therefore we can choose the parameters
such that

E(β,γ) = |⟨β,γ|H1 |β,γ⟩|2 (4.78)

is maximized. Once the parameters are chosen, we can prepare the state by
applying our sequence of gates and then measure the state in the computational
basis: we are not guaranteed that the final state will be the ground state of our
system (unless we have taken p = ∞), but because of our choice of the parame-
ters we will end up in a low energy state with high probability. This algorithm,
in a slightly generalized form that we will introduce in the remaining part of
this section, is called quantum approximate optimization algorithm (QAOA).
Since all the difficulty is in choosing the 2p parameters β and γ, and we accept
to be also very far from the adiabatic limit, usually the initial state is chosen

3notice that the Suzuki-Trotter formula can be immediately generalized to time-ordered
integrals.
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to be the uniform superposition of all the states in the computational basis,
independently from the Hamiltonian H0. In particular, a typical choice is

|ψ⟩ =
N⨂
i=1

|+⟩ (4.79)

as initial state and
H0 =

∑
i

Xi (4.80)

where Xi is the Pauli matrix X acting on the i-th spin. As H1, the Hamiltonian
of the COP one wants to solve is used. Notice again that this algorithm is very
general, but for fixed p no guarantees that the system ends up in the solution
of the problem can be given. For this reason, this algorithm is mainly (but not
only, see [FH16, WHT16, JRW17]) used for approximation purposes.

The operator D defined in Eq. (4.73) is often called mixing operator, while
U given in Eq. (4.74) is called phase operator. There is a lively line of research
about the performances of QAOA, encouraged several findings:

• in [FGG14b], QAOA with p = 1 is proved to be the best algorithm known
to find approximate solutions for a particular COP, the so-called E2Lin2.
Notice that shortly after that work, a new classical algorithm which cur-
rently holds the record for this specific problem has been found [BMO+15].
However, this proved the power of QAOA as an approximation algorithm;

• under complexity theory assumptions which are generally believed to be
true (in the same sense that P is believed to be different from NP), it
can be proved [FH16] that the output of a QAOA with p ≥ 1 cannot be
efficiently sampled with a classical algorithm;

• the Grover problem is simple enough to allow for an analytical treatment
up to 1 ≪ p ≪ N and it has been found [JRW17] that a periodic choice
of the parameters β and γ gives a quasi-optimal algorithm (that is, the
algorithm requires α log(N) queries to the oracle for large N , but α is
higher than that of the Grover algorithm).

The interest in low-p QAOA algorithms is also motivated by the recent avail-
ability of general-purpose gate-based quantum computers. Indeed shallow cir-
cuits as those needed to implement this kind of algorithms should be supported
by devices available in the near future.
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Chapter 5

Conclusions

5.1 A summary of our results

In this thesis we reviewed many recent results in the realm of combinatorial
optimization problems, mainly from the point of view of statistical mechanics.
This perspective allowed us to compute the average value of the solution cost
in random versions of many COPs, even in the presence of Euclidean correla-
tions. Several original results stemmed during the research we have performed
to complete this work:

• we computed the average optimal length of the solution of the TSP in one
dimension in complete bipartite [CDGGM18] and complete [CGMV19]
graphs;

• we analyzed a problem with an exponential number of possible solution
even in one dimension, the 2-factor problem, and we have been able to
provide also in this case bounds on its average solution cost [CGM18];

• we discovered a novel application of the famous Selberg integrals to RCOPs,
which allowed us to give (in some cases) exact prediction for finite N
[CGMM19];

• we extended our techniques and, thanks to a smart scaling argument, we
have been able to compute the average optimal tour length for the NP-hard
bipartite TSP and for the bipartite 2-factor problem in two dimensions
[CCDGM18].

Other relevant results originated during this work have been obtained by
leaving behind the study of averaged quantities, and focusing on the statistics
of large (and very large) fluctuation, in the context of the p-spin spherical model,
where we have proved that diverse and interesting regimes of large deviations
are tuned by turning on and off an external magnetic field [PDGR19].

Finally, we have discussed the possibility of using quantum computing to
solve combinatorial optimization problems. The analysis of the various possible
strategy to do that, and more specifically of the quantum annealing algorithm,
has led to interesting findings about how to set the parameters of heuristic algo-
rithms, which could be useful also for classical algorithms as simulated annealing
and parallel tempering [DGRM].

109



110 CHAPTER 5. CONCLUSIONS

5.2 Future directions

As usually in Science, solving old problems has, as a side effect, the challenging
result of opening new questions.

Here we comment upon some possible paths that could start from this work
and would (possibly) lead to further understanding of the statistical physics of
combinatorial optimization problems with correlations:

• Euclidean correlations have been successfully incorporated in the realm
of random matrices, with the introduction of Euclidean Random Matrices
[MPZ99, AOI10, GS13]; several COPs can be rewritten as the computation
of some property (for example, the determinant or the permanent) of a
matrix, and therefore the random version of the problem is connected to
the random matrix theory. Then we could devise a way to exploit the
powerful and well-developed formalism of random matrix theory to tackle
the computation of average properties of the solutions of combinatorial
optimization problems;

• we have discussed here mainly Euclidean correlations. However, these are
only one of the many kinds of correlations which in many cases occur in
COPs. For example, the structure of real-world data used as input for
many tasks, such as classification and feature extraction, is far from triv-
ial and some efforts have been spent to explore the nature and the effect
of these correlations [GMKZ19, EGR19, RLG19]. In the same spirit, we
could try to use the techniques developed in this work to deal with other
kinds of correlations than the Euclidean ones, and to understand more
deeply how correlations affect the “difficulty” of combinatorial optimiza-
tion problems.

Our work on large deviations introduces new questions as well. One in
particular, which deserves further investigations, regards the application of the
magnetic field to obtain (analytically or numerically) the power of N (some
measure of the system size) in the exponential suppression of fluctuation. This
is relevant for each problem where we find non-standard large deviation scalings
with N , and would head towards a quite “general” method to compute this
scaling.

Finally, much work has been done and much more remains to be done to
really understand the potential of quantum computers to solve combinatorial
optimization problems. While the investigations done here on the parameter
setting for the quantum annealing algorithm can be considered a (small) step
in that direction, it would be extremely interesting to be able to address the
question of the effects of choosing different parameters in QAOA-type algorithms
to solve, or approximate, combinatorial optimization problems.



Appendix A

Volume and surface of a
sphere

Consider a N dimensional sphere of radius R. Its volume is given by

VN =

∫ ∞

−∞
dx1 · · ·

∫ ∞

−∞
dxN θ

(
R2 −

∑
i

x2i

)
= ΩN

∫ R

0

dr rN−1 =
ΩNR

N

N
,

(A.1)
where ΩN is the surface area of the unit-radius sphere in N dimensions (that is,
the integral of all the N − 1 angular variables in Eq. (A.1)). The value of ΩN
can be computed with the following trick: consider the integral∫ ∞

−∞
dx1 · · ·

∫ ∞

−∞
dxN e

−∑
i x

2
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(∫ ∞
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= πN/2. (A.2)

But we can also use spherical coordinates and write∫ ∞

−∞
dx1 · · ·

∫ ∞

−∞
dxN e
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2
i = ΩN
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. (A.3)

Therefore

ΩN =
2πN/2

Γ
(
N
2

) (A.4)

and

VN =
2πN/2

N

RN

Γ
(
N
2

) . (A.5)

Finally, as one can check from Eq. (A.1) (remembering that, in distributinal
sense, ∂

∂xθ(x − x0) = δ(x − x0)), we obtain the surface of a N dimensional
sphere of radius R as derivative of its volume:

SN =
∂

∂R
VN = 2πN/2

RN−1

Γ
(
N
2

) . (A.6)
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Appendix B

Calculations for the p-spin
spherical model

B.1 The replicated partition function

The averaged replicated partition function of the p-spin spherical model is

Zn =

∫
DJ

∫
Dσ exp

⎡⎣β n∑
a=1

∑
i1<···<ip

Ji1···ipσ
a
i1 · · ·σaip

⎤⎦ , (B.1)

where ∫
DJ =

∏
i1<···<ip

∫ ∞

−∞
dJi1···ip p(Ji1···ip) (B.2)

and ∫
Dσ =

∫ ∞

−∞

n∏
a=1

(
N∏
i=1

dσai δ

(
N −

∑
i

σai

))
. (B.3)

Notice that, as discussed in the main text, we are considering an integer number
of replicas n ≥ 1. We now integrate over the disorder and, exploiting again
Eq. (2.23) we get

Zn =

∫
Dσ

∏
i1<···<ip

exp

⎡⎣β2

4
N1−pp!

n∑
a,b=1

σai1σ
b
i1 · · ·σaipσbip
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∼
∫
Dσ exp

⎡⎣β2

4
N1−p

n∑
a,b=1

(
N∑
i=1

σai σ
b
i

)p⎤⎦ .
(B.4)

Now we introduce the “overlap”1 between the replicas a and b

Qab =
1

N

∑
i

σai σ
b
i , (B.5)

1this name comes from the analogous step in problems with binary spin, where this quantity
actually is a simple function of the number of spins pointing in the same directions in the
replicas a and b
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which, simply by looking at the final form of Eq. (B.4), emerges as relevant
variable. Clearly Qab is a symmetric n × n matrix, and we have Qaa = 1 for
each a because of the spherical constraint. In order to rewrite our partition
function in term of this new variable, we use the identity

1 = Nn(n−1)/2

∫ ∏
a<b

dQab δ

(
NQab −

∑
i

σai σ
b
i

)
(B.6)

which we actually rewrite, using that (in distributional sense)

δ(x− x0) =

∫ ∞

−∞

dk

2π
eik(x−x0), (B.7)

as
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(B.8)
As a last step, we write the spherical constraint as
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and obtain
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(B.10)

where Qaa = 1 (it is not an integration variable), we have written explicitly the
integrations ranges to stress that we made change of variables to remove the
factors i from the exponents, and we dropped all the pre-factors, since they will
not play a role in the final free entropy because they do not scale exponentially
in N . The integration over the spin variables can now be performed by using
that ∫ ( N∏

i=1

dxi

)
e−

1
2

∑
i,j xiAijxj =

√
(2π)N

detA
, (B.11)

and we finally obtain Eqs. (2.28) and (2.29) of the main text.

B.2 1RSB free energy

Given the 1RSB ansätz forQ, Eq. (2.55), to obtain the free energy in terms of the
variational parameters q0, q1,m we need to compute 1

n

∑
a,bQ

p
ab and

1
n log detQ,
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and take the limit of small n.
About the first part, we have that Q has n entries equal to 1 on the diagonal,
m(m− 1) entries equal to q1 for each block for a total of n(m− 1) entries equal
to q1, and the remaining n2 − nm entries equal to q0, therefore

2:

1

n

∑
a,b

Qpab = 1 + (m− 1)qp1 + (n−m)qp0 ∼ 1 + (m− 1)qp1 +mqp0 . (B.12)

The second piece is slightly more tricky: one has to first notice that [E,C] = 0,
so a single orthogonal matrix such that both E and C are diagonalized exists.
Now, notice that (1/m)E and (1/n)C are both projector. (1/m)E projects on
the subspace of Rn generated by vectors with the first, second and so on groups
of m components equal, (1/n)C on the subspace generated by the constant
vector. This observation makes clear that the eigenvalues of C are n with
degeneracy 1 and 0 with degeneracy n − 1, while E has 1 eigenvalue equal to
m and m− 1 eigenvalues equal to 0 for each block. Finally, since the constant
vector is eigenvector of both E and C with eigenvalues m and n respectively, we
have that the matrix Q has, as eigenvalues:

• 1−q1+(q1−q0)m+q0n with degeneracy 1, corresponding to the non-null
eigenvalue of C;

• 1− q1 + (q1 − q0)m with degeneracy n/m− 1, corresponding to the other
n/m− 1 non-null eigenvalues of E;

• 1− q1 with degeneracy n− n/m, corresponding to the null eigenvalues of
both C and E.

Therefore we have

1

n
log detQ =

m− 1

m
log(1− q1) +

1

m
log(m(q1 − q0) + 1− q1)+

+
1

n
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m− 1

m
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1
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[
log

(
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nq0
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∼m− 1

m
log(1− q1) +

1

m
log(m(q1 − q0) + 1− q1)+

+
q0

m(q1 − q0) + 1− q1
.

(B.13)

Using Eqs. (B.12) and (B.13) in Eq. (2.34), we obtain Eq. (2.56).

B.3 Rammal construction

In this appendix we report the details of the geometrical construction reproduc-
ing the solution for the SCGF obtained with a 1RSB ansatz with q0 = 0. The

2 this is another weird thing of the replica trick: we are sending n to zero, but we are also
supposing 0 < m < n and we do not want to send m to zero. Actually, the correct thing to
do is to suppose that when n → 0 we obtain for m the relations 0 ≤ m ≤ 1.
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following observations are traced back to Rammal’s work [Ram81] and can be
found in [Kon83] (similar considerations in [OK04, NH08, NH09]). We repro-
duce here the reasoning not only as an historical curiosity: first of all, we see it
as an enlightening approach to the problem of the continuation of the replicated
partition function to real number of replicas, particularly suitable for a finite k
analysis. Moreover, we note that this interpretation, whenever it works, gives a
flavor of “uniqueness” (though not in a strict mathematical sense) to the result-
ing solution, being based only on the properties of convexity and extremality
that the SCGF ψ(k) must have. In this respect, a generalization of this result
would be of great interest in order to better understand the necessity of Parisi
hierarchical RSB procedure, which has been dubbed as “magic” even in rela-
tively recent works, like [Dot11]; however, a true geometrical interpretation of
the full machinery of RSB, beyond the simple case considered here, still lacks.
Finally, in the context of this paper we are able to show a case where the con-
struction gives the correct answer (the p-spin spherical model at zero external
magnetic field) and a case where it fails (when the field is switched on).

The explicit evaluation of the SCGF ψ(k) is performed within replica theory:
an ansätz is imposed on the form of the replica overlap matrix, the number
of replicas k is then continued from integer to real values, the corresponding
G(k) is evaluated with the saddle-point method for large N and finally a check
is performed a posteriori to verify its validity. In the SK model, the system
originally considered by Rammal, at low temperatures the replica symmetric
ansätz, which still gives the correct values of the positive integer momenta of
the partition function, fails to produce a sensible solution for the SCGF at k < 1,
in at least three way:

• it becomes unstable under variations around the saddle point (de Almeida-
Thouless instability [dAT78]) below k = kdAT;

• it produces a G(k) that is non-concave (and so a non-convex ψ(k)) around
k = kconv, meaning that G′′(k) changes sign at kconv;

• it produces a G(k)/k that loses monotonicity a k = km.

In the SK model kdAT is the largest (kdAT > km > kconv), and so it is the first
problem one encounters in extrapolating the RS solution from integer values of k.
However, from the point of view of convexity and monotonicity alone, Rammal
proposed to build a marginally monotone G(k)/k in a minimal way, starting
from the RS and simply keeping it constant below km at the value G(km)/km.
While the resulting function is not the correct one for the SK model, which
needs a full RSB analysis to be solved, surprisingly enough for the spherical p-
spin in zero magnetic field this approach reproduces the solution obtained with
a 1RSB ansatz with q0 = 0 (see Fig. 2.4). Notice that in the present model the
RS solution suffers from the same inconsistencies as in the SK model, but now
km is the largest of the three problematic points.

To convince the reader that the two approaches are actually equivalent we
prove, as final part of this appendix, that without an external magnetic field the
1RSB solution of the spherical p-spin and the Rammal construction coincide.
In order to obtain this result, we have to prove that:

• the 1RSB solution for G(k)/k becomes a constant below k = kc, which is
defined as the point where the RS and 1RSB ansätze branch out, as we
did in the main text;
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• this constant is the same as the one in the Rammal construction, that is
G(km)/km;

• the points kc and km are the same.

As kc is the point where the RS solution is not optimal anymore, for k < kc we
have q̄0 = 0, as discussed in [CS92]. Let us now consider Eq. (2.86) with q0 = 0:
differentiating with respect to q1 and m and setting the results equal to 0 we
get the equations for q̄1 and m̄, which read⎧⎪⎪⎨⎪⎪⎩

µ q̄p−2
1 − 1

(1− q̄1)(1− (1− m̄)q̄1)
= 0

µ

2
m̄2q̄p1 − 1

2
log

(
1 +

m̄ q̄1
1− q̄1

)
+
m̄

2

q̄1
1− (1− m̄)q̄1

= 0

(B.14)

where µ = p(βJ)2/2. These equations can be solved numerically (as we did to
obtain the plots in the main text), but to show our point here we do not really
need the explicit solution. Indeed it is enough to notice that m̄ and q̄1 do not
depend on k and therefore g(k; 0, q̄1, m̄)/k is a constant. Then, we need to check
that it is the same constant as the one obtained by Rammal. Again starting
from Eq. (2.86), by putting q1 = q0 = q we obtain the RS solution, which is

g0(k; q) =− (βJ)2

4
[k + k(k − 1)qp]− k − 1

2
log(1− q)

− 1

2
log [1− (1− k)q]− ks(∞).

(B.15)

In this case, extremizing with respect to q, we have an equation which gives the
RS solution on the saddle point, q̄. To find km, we then require ∂

∂kg0/k = 0.
The two resulting equations are:⎧⎪⎪⎨⎪⎪⎩

µ q̄p−2 − 1

(1− q̄) [1− (1− km)q̄]
= 0

µ

2
k2mq̄

p − 1

2
log

(
1 +

km q̄

1− q̄

)
+
km
2

q̄

1− (1− km)q̄
= 0

(B.16)

that are exactly Eqs. (B.14) with km instead of m̄ and q̄ instead of q̄1. Therefore
km = m̄ and q̄ = q̄1 and one can check that

g(k; 0, q̄, km)

k
=
g0(km, q)

km
. (B.17)

It only remains to prove that kc and km, which in general can be different points,
are actually the same. As the 1RSB ansatz gives the correct solution for the
present model, the corresponding SCGF must be convex and thus, in particular,
continuous. The only way to obtain a continuous function which is equal to the
RS one above kc and to the Rammal’s constant below, is to take kc = km, and
so the two functions coincide everywhere.

B.4 1RSB with magnetic field

To obtain (2.90), the starting point is the p-spin Hamiltonian with magnetic
field

H = −
∑

i1<i2<···<ip
Ji1···ipσi1 · · ·σip − h

∑
i

σi. (B.18)
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In the presence of a magnetic field, one can perform the average over the disorder
and proceed exactly as discussed in equation exactly as as discussed in this
Appendix for the case h = 0. The only difference is that in Eq. (B.10), the
Gaussian integral on the spin degrees of freedom has a linear term. Using the
Gaussian integral∫ ( N∏

i=1

dxi

)
e−

1
2

∑
i,j xiAijxj+

∑
i bixi =

√
(2π)N

detA
e

1
2

∑
i,j biAijbj , (B.19)

and taking also the extra term into account, we obtain

Zk = ekN log(2π)/2

∫
DQDλe−NS(Q,λ), (B.20)

as Eq. (2.28), with

S(q,λ) = −β
2

4

k∑
a,b=1

Qpab −
1

2

k∑
a,b=1

λabQab

+
1

2
log det (λ)− (βh)2

2

k∑
a,b=1

(
λ−1

)
ab
. (B.21)

Derivation with respect to λaβ leads to the following saddle-point equations:

Qab −
(
λ−1

)
ab

− (βh)2
k∑

γ,δ=1

(
λ−1

)
γa

(
λ−1

)
bδ

= 0 , (B.22)

where we have used the identity:

∂
(
λ−1

)
γδ

∂λab
= −

(
λ−1

)
γa

(
λ−1

)
bδ
. (B.23)

Equations (B.22) are solved via successive contractions of the replica indices:
a double summation over a, b leads to an equation for the scalar

∑
ab

(
λ−1

)
ab

with solutions:

k∑
a,b=1

(
λ−1

)
ab

=
−1±

√
1 + 4(βh)2Qs
2(βh)2

≡ l±(Qs) , Qs =
∑
ab

Qab . (B.24)

Similarly a single contraction gives (remember that λ, and so also its inverse, is
symmetric):

∑
a

(
λ−1

)
ab

=

∑
aQab

1 + (βh)2l±(Qs)
=

Qr
1 + (βh)2l±(Qs)

, (B.25)

where we defined Qr =
∑
aQab and finally

(
λ−1

)
ab

= Qab −
(βh)2

∑
γ Qγa

∑
δ Qδb

[1 + (βh)2 l±(Qs)]
2 . (B.26)
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To find which of the signs of l± is the right one, we can consider the limit k → 0
of this result. We obtain that

Qs → 0 , Qr → 1 + (m− 1)q1 −mq0 , l±(Qs) → l±(0) =

{
−1/(βh)2 ,

0 .

(B.27)
The only finite limit is for q̂−, for which, in the k → 0 limit, we recover the
result of [CS92].

Given the 1RSB ansatz Eq. (2.55), Qab has k elements 1 on the diagonal,
m(m−1)k/m elements q1 in the diagonal blocks, the remaining k2−k−k(m−1)
elements q0, so

Qs = k + k(m− 1)q1 + k(k −m)q0 (B.28)

Every row (column) contains the same elements, so

Qr = 1 + (m− 1)q1 + (k −m)q0 ∀ a . (B.29)

In this way, we arrive at the solution of the saddle-point equations for λ:(
λ−1

)
ab

= Qab − q̂− . (B.30)

where we have defined

q̂− =
(βh)2Q2

r

[1 + (βh)2l−(Qs)]
2 . (B.31)

The structure of the matrix λ−1 is therefore the same as the one of Q, with a
constant added to each entry. Thus, the entries of λ−1 can be written as

λ−1 = (1− q1) I+ (q1 − q0)E+ (q0 − q̂−)C. (B.32)

Thanks to this equation, we can compute one of the terms containing λ in
Eq.(B.21):∑

ab

(λ−1)ab = k(1− q1) + km(q1 − q0) + (q0 − q̂−)k
2 = k(η2 − kq̂−). (B.33)

Exploiting the fact that E/m and C/k are projectors, and using that E ·C =
C ·E = mC, one can check that the inverse of a matrix with the 1RSB structure
is again a matrix with the same structure. In particular, we obtain:

λ =
1

η0
I+

q0 − q1
η0η1

E+
q̂− − q0

η1 (η2 − kq̂−)
C (B.34)

where η0 = 1− q1, η1 = 1− (1−m)q1−mq0 and η2 = 1− (1−m)q1− (m−k)q0
are the three different eigenvalues of Q. Then, as we have done for Q, we can
compute the eigenvalues of λ:

κ0 = 1/η0 deg. = k(m− 1)/m ,

κ1 = 1/η1 deg. = k/m− 1 ,

κ2 = 1/ (η2 − kq̂−) deg. = 1 .

(B.35)

Using the eigenvalues, we can easily compute, as we did for the h = 0 case, the
term log det(λ).
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The last step is to evaluate the trace appearing in Eq. (B.21), by using again
the properties of the matrices λ and Q:

Tr (λ ·Q) = k

(
1 +

q̂−
η2 − kq̂−

)
. (B.36)

Now we have all the ingredients to write Eq. (2.90), which has the expected
limit for k → 0.



Appendix C

Supplemental material to
Chapter 3

C.1 Order statistics

In this section we collect some techniques useful to perform averages on N
random points uniformly distributed on a segment of length L. As first step,
we notice that, if f(x1, . . . , xN ) is a symmetric function of its arguments∫ L

0

dx1 · · ·
∫ L

0

dxN f(x1, . . . , xN )

= N !

∫ x2

0

dx1

∫ x3

x1

dx2 · · ·
∫ xN

xN−2

dxN−1

∫ L

xN−1

dxN f(x1, . . . , xN ),

(C.1)

because of the symmetry of f . Therefore, we can use this result as follows∫ x2

0

dx1 · · ·
∫ xk

xk−2

dxk−1 =
1

(k − 1)!

∫ xk

0

dx1 · · ·
∫ xk

0

dxk−1 =
xk−1
k

(k − 1)!
(C.2)

and, similarly,∫ xℓ+2

xℓ

dxℓ+1 · · ·
∫ L

xN−1

dxN =
1

(N − ℓ)!

∫ L

xℓ

dxℓ+1 · · ·
∫ L

xN−1

dxN =
(L− xℓ)

N−ℓ

(N − ℓ)!

(C.3)
or, more generally∫ xm+1

a

dxm · · ·
∫ b

xm+t−1

dxm+t =
(b− a)t+1

(t+ 1)!
. (C.4)

From this we can compute several useful quantities. For example, givenN points
randomly chosen in the interval [0, 1] and labeled such that they are ordered,
{x1 . . . , xN}, the probability that the k-th point is in the interval [x, x+ dx] is
given by the probability that k − 1 positions are smaller than xk and N − k
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positions are larger than xk, then

Pk(x) dx = N !

∫ x2

0

dx1 · · ·
∫ xk

xk−2

dxk−1 dx

∫ xk+1

xk

dxk+1 · · ·
∫ 1

xN−1

dxN

=
Γ(N + 1)

Γ(k) Γ(N − k + 1)
xk−1(1− x)N−kdx.

(C.5)

In a similar way, the probability that the k-th point is in [x, x+dx] and the ℓ-th
is in [y, y + dy] is (k < ℓ and so x < y)

Pk,ℓ(x, y) dx dy = N !

∫ x2

0

dx1 · · ·
∫ xk

xk−2

dxk−1 dx

∫ xk+1

xk

dxk+1 · · ·

· · ·
∫ xℓ

xℓ−2

dxℓ−1 dy

∫ xℓ+2

xℓ

dxℓ+1 · · ·
∫ 1

xN−1

dxN

=
Γ(N + 1)

Γ(k)Γ(ℓ− k) Γ(N − ℓ+ 1)
xk(y − x)ℓ−k−1(1− y)N−ℓ

(C.6)

C.2 Proofs for the traveling salesman problems

C.2.1 Optimal cycle on the complete bipartite graph

Consider the tour h̃ given by the Eqs. (3.62) for N even and Eqs. (3.63) for
N odd. We will prove now that this cycle is optimal. To do this, we will
suggest two moves that lower the energy of a tour and showing that the only
Hamiltonian cycle that cannot be modified by these moves is h̃.

We shall make use of the following moves in the ensemble of Hamiltonian
cycles. Given i, j ∈ [N ] with j > i we can partition each cycle as

h[(σ, π)] = (C1rσ(i)bπ(i)C2bπ(j)rσ(j+1)C3), (C.7)

where the Ci are open paths in the cycle, and we can define the operator Rij
that exchanges two blue points bπ(i) and bπ(j) and reverses the path between
them as

h[Rij(σ, π)] := (C1rσ(i)[bπ(i)C2bπ(j)]
−1rσ(j+1)C3)

= (C1rσ(i)bπ(j)C
−1
2 bπ(i)rσ(j+1)C3) .

(C.8)

Analogously by writing

h[(σ, π)] = (C1bπ(i−1)rσ(i)C2rσ(j)bπ(j)C3) (C.9)

we can define the corresponding operator Sij that exchanges two red points rσ(i)
and rσ(j) and reverses the path between them

h[Sij(σ, π)] := (C1bπ(i−1)[rσ(i)C2rσ(j)]
−1bπ(j)C3)

= (C1bπ(i−1)rσ(j)C
−1
2 rσ(i)bπ(j)C3) .

(C.10)

Two couples of points (rσ(k), rσ(l)) and (bπ(j), bπ(i)) have the same orientation
if (rσ(k) − rσ(l))(bπ(j) − bπ(i)) > 0. Remark that as we have ordered both
set of points this means also that (σ(k), σ(l)) and (π(j), π(i)) have the same
orientation.

Then
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Lemma 1. Let E[(σ, π)] be the cost defined in Eq. (3.54). Then E[Rij(σ, π)]−
E[(σ, π)] > 0 if the couples (rσ(j+1), rσ(i)) and (bπ(j), bπ(i)) have the same orien-
tation and E[Sij(σ, π)]−E[(σ, π)] > 0 if the couples (rσ(j), rσ(i)) and (bπ(j), bπ(i−1))
have the same orientation.

Proof.

E[Rij(σ, π)]− E[(σ, π)] = w(rσ(i),bπ(j)) + w(bπ(i),rσ(j+1))

− w(rσ(i),bπ(i)) − w(bπ(j),rσ(j+1))

(C.11)

and this is the difference between two matchings which is positive if the couples
(rσ(j+1), rσ(i)) and (bπ(j), bπ(i)) have the same orientation (as shown in [McC99,
CLPS14] for a weight which is an increasing convex function of the Euclidean
distance). The remaining part of the proof is analogous.

Lemma 2. The only couples of permutations (σ, π) with σ(1) = 1 such that both
(σ(j+1), σ(i)) have the same orientation as (π(j), π(i)) and (π(j), π(i−1)) and
(σ(j), σ(i)), for each i, j ∈ [N ] are (σ̃, π̃) and its dual (σ̃, π̃)⋆.

Proof. We have to start our Hamiltonian cycle from rσ(1) = r1. Next we look
at π(N), if we assume now that π(N) > 1, there will be a j such that our cycle
would have the form (r1C1rσ(j)b1C2bπ(N)), if we assume j > 1 then (1, σ(j))
and (π(N), 1) have opposite orientation, so that necessarily π(N) = 1. In the
case j = 1 our Hamiltonian cycle is of the form (r1b1C), that is (b1Cr1), and
this is exactly of the other form if we exchange red and blue points. We assume
that it is of the form (r1Cb1); the other form would give, at the end of the proof,
(σ̃, π̃)⋆.
Now we shall proceed by induction. Assume that our Hamiltonian cycle is of the
form (r1b2r3 · · ·xkCyk · · · b3r2b1) with k < N , where xk and yk are, respectively,
a red point and a blue point when k is odd and viceversa when k is even. Then
yk+1 and xk+1 must be in the walk C. If yk+1 it is not the point on the right of xk
the cycle has the form (r1b2r3 · · ·xkysC1yk+1xl · · · yk · · · b3r2b1) but then (xl, xk)
and (yk+1, ys) have opposite orientation, which is impossible, so that s = k+1,
that is the point on the right of xk. Where is xk+1? If it is not the point on the
left of yk the cycle has the form (r1b2r3 · · ·xkyk+1 · · · ylxk+1C1xs · · · yk · · · b3r2b1),
but then (xs, xk+1) and (yk, yl) have opposite orientation, which is impossible,
so that s = k + 1, that is the point on the left of yk. We have now shown that
the cycle has the form (r1b2r3 · · · yk+1Cxk+1 · · · b3r2b1) and can proceed until
C is empty.

Now that we have understood what is the optimal Hamiltonian cycle, we
can look in more details at what are the two matchings which enter in the
decomposition we used in Eq. (3.55). As π̃ = σ̃ ◦ I we have that

I = σ̃−1 ◦ π̃ = π̃−1 ◦ σ̃. (C.12)

As a consequence both permutations associated to the matchings appearing
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inEq. (3.55) for the optimal Hamiltonian cycle are involutions:

µ̃1 ≡ π̃ ◦ σ̃−1 = σ̃ ◦ I ◦ σ̃−1 = σ̃ ◦ π̃−1

=
[
π̃ ◦ σ̃−1

]−1 (C.13a)

µ̃2 ≡ π̃ ◦ τ−1 ◦ σ̃−1 = σ̃ ◦ I ◦ τ−1 ◦ I ◦ π̃−1

=
[
π̃ ◦ τ−1 ◦ σ̃−1

]−1
,

(C.13b)

where we used Eq. (3.57). This implies that those two permutations have at
most cycles of period two, a fact which reflects a symmetry by exchange of red
and blue points.

When N is odd it happens that

I ◦ σ̃ ◦ I = σ̃ ◦ τ−N−1
2 , (C.14)

so that

I ◦ π̃ ◦ I = I ◦ σ̃ ◦ I ◦ I = σ̃ ◦ τ−N−1
2 ◦ I

= π̃ ◦ I ◦ τ−N−1
2 ◦ I = π̃ ◦ τ N−1

2 .
(C.15)

It follows that the two permutations in Eq. (C.13a) and Eq. (C.13b) are conju-
gate by I

I ◦ π̃ ◦ τ−1 ◦ σ̃−1 ◦ I = π̃ ◦ τ N−1
2 ◦ τ ◦ τ N−1

2 ◦ σ̃−1 = π̃ ◦ σ̃−1 (C.16)

so that, in this case, they have exactly the same numbers of cycles of order 2.
Indeed we have

µ̃1 =(2, 1, 4, 3, 6, . . . , N − 1, N − 2, N) (C.17a)

µ̃2 =(1, 3, 2, 5, 4, . . . N,N − 1) (C.17b)

and they have N−1
2 cycles of order 2 and 1 fixed point. See Fig. C.1 for the case

N = 5.
In the case of even N the two permutations have not the same number of

cycles of order 2, indeed one has no fixed point and the other has two of them.
More explicitly

µ̃1 =(2, 1, 4, 3, 6, . . . , N,N − 1) (C.18a)

µ̃2 =(1, 3, 2, 5, 4, . . . N − 1, N − 2, N) (C.18b)

See Fig. C.2 for the case N = 4.

C.2.2 Optimal cycle on the complete graph: proofs

Proof of the optimal cycle for p > 1

Consider a σ ∈ SN with σ(1) = 1. Taking σ(1) = 1 corresponds to the irrelevant
choice of the starting point of the cycle. Let us introduce now a new set of
ordered points B := {bj}j=1,...,N ⊂ [0, 1] such that

bi =

{
r1 for i = 1

ri−1 otherwise
(C.19)
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r1 r2 r3 r4 r5

b1 b2 b3 b4 b5

r1 r2 r3 r4 r5

b1 b2 b3 b4 b5

Figure C.1: Decomposition of the optimal Hamiltonian cycle h̃ for N = 5 in
two disjoint matchings µ̃2 and µ̃1.

r1 r2 r3 r4

b1 b2 b3 b4

r1 r2 r3 r4

b1 b2 b3 b4

Figure C.2: Decomposition of the optimal Hamiltonian cycle h̃ for N = 4 in he
two disjoint matchings µ̃2 and µ̃1.
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and consider the Hamiltonian cycle on the complete bipartite graph with vertex
sets R and B

h[(σ, πσ)] := (r1, bπσ(1), rσ(2), bπσ(2), . . . , rσ(N), bπσ(N), rσ(1)) (C.20)

so that

πσ(i) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2 for i = 1

σ(i) + 1 for i < k

σ(i+ 1) + 1 for i ≥ k

1 for i = N

(C.21)

where k is such that σ(k) = N . We have therefore

(bπσ(1), bπσ(2), . . . , bπσ(k−1), bπσ(k), . . . , bπσ(N−1), bπσ(N))

= (r1, rσ(2), . . . , rσ(k−1), rσ(k+1), . . . , rσ(N), r1).
(C.22)

In other words we are introducing a set of blue points such that we can find
a bipartite Hamiltonian tour which only use link available in our “monopar-
tite” problem and has the same cost of σ. Therefore, by construction (using
Eq. (C.22)):

EN (h[σ]) = EN (h[(σ, πσ)]) ≥ EN (h[(σ̃, π̃)])

= EN (h[(σ̃, πσ̃)]) = EN (h[σ̃]),
(C.23)

where the fact that π̃ = πσ̃ can be checked using Eqs. (3.60) and (3.61) and
(C.21).

Proof of the optimal cycle for 0 < p < 1

As first step, we enunciate and demonstrate two lemmas that will be useful for
the proof. The first one will help us in understand how to remove two crossing
arcs without breaking the TSP cycle into multiple ones. The second one, instead
will prove that removing a crossing between two arcs will always lower the total
number of crossing in the TSP cycle.

Lemma 3. Given an Hamiltonian cycle with its edges drawn as arcs in the upper
half-plane, let us consider two of the arcs that cannot be drawn without crossing
each other. Then, this crossing can be removed only in one way without splitting
the original cycle into two disjoint cycles; moreover, this new configuration has
a lower cost than the original one.

Proof. Let us consider a generic oriented Hamiltonian cycle and let us suppose
it contains a matching as in figure:

r1 r2 r3 r4

There are two possible orientations for the matching that correspond to this two
oriented Hamiltonian cycles:

1. (C1r1r3C2r2r4C3) ,
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2. (C1r1r3C2r4r2C3) ,

where C1, C2 and C3 are paths (possibly visiting other points of our set). The
other possibilities are the dual of this two, and thus they are equivalent. In both
cases, a priori, there are two choices to replace this crossing matching (r1, r3),
(r2, r4) with a non-crossing one: (r1, r2), (r3, r4) or (r1, r4), (r2, r3). We now
show, for the two possible prototypes of Hamiltonian cycles, which is the right
choice for the non-crossing matching, giving a general rule. Let us consider case
1: here, if we replace the crossing matching with (r1, r4), (r2, r3), the cycle will
split; in fact we would have two cycles: (C1r1r4C3) and (r3C2r2). Instead, if
we use the other non-crossing matching, we would have: (C1r1r2[C2]

−1r3r4C3).
This way we have removed the crossing without splitting the cycle. Let us
consider now case 2: in this situation, using (r1, r4), (r2, r3) as the new matching,
we would have: (C1r1r4[C2]

−1r3r2C3); the other matching, on the contrary,
gives: (C1r1r2C3) and (r3C2r4).

The general rule is the following: given the oriented matching, consider the
four oriented lines going inward and outward the node. Then, the right choice
for the non-crossing matching is obtained joining the two couples of lines with
opposite orientation.

Since the difference between the cost of the original cycle and the new one
simply consists in the difference between a crossing matching and a non-crossing
one, this is positive when 0 < p < 1, as shown in [BCS14].

Now we deal with the second point: given an Hamiltonian cycle, in general
it is not obvious that replacing non-crossing arcs with a crossing one, the total
number of intersections increases. Indeed there could be the chance that one
or more crossings are removed in the operation of substituting the matching we
are interested in. Notice that two arcs forms a matching of 4 points. Therefore,
from now on, we will use expressions like “crossing matching” (“non-crossing
matching”) and “two crossing arcs” (“two non-crossing arcs”) indifferently. We
now show that it holds the following

Lemma 4. Given an Hamiltonian cycle with a matching that is non-crossing,
if it is replaced by a crossing one, the total number of intersections always in-
creases. Vice versa, if a crossing matching is replaced by a non-crossing one,
the total number of crossings always decreases.

Proof. This is a topological property we will prove for cases. To best visualize
crossings, we change the graphical way we use to represent the complete graph
that underlies the problem: now the nodes are organized along a circle, in such a
way that they are ordered clockwise (or, equivalently, anti-clockwise) according
to the natural ordering given by the positions on the segment [0, 1]. Links
between points here are represented as straight lines. It is easy to see that a
crossing as defined in Sec. 3.3.3 corresponds to, in this picture, a crossing of
lines. All the possibilities are displayed in Fig. C.3, where we have represented
with red lines the edges involved in the matching, while the other lines span all
the possible topological configurations.

Now we can prove that the cycle h∗ given in Eq. (3.80) is the optimal one:



128 APPENDIX C. SUPPLEMENTAL MATERIAL TO CHAPTER 3

Figure C.3: Replacing a non-crossing matching with a crossing one in an Hamil-
tonian cycle always increase the number of crossings. Here we list all the possible
topological configurations one can have.

Proof. Consider a generic Hamiltonian cycle and draw the connections between
the points in the upper half-plane. Suppose to have an Hamiltonian cycle where
there are, let us say, n intersections between edges. Thanks to Lemma 3, we can
swap two crossing arcs with a non-crossing one without splitting the Hamiltonian
cycle. As shown in Lemma 4, this operation lowers always the total number of
crossings between the edges, and the cost of the new cycle is smaller than the
cost of the starting one. Iterating this procedure, it follows that one can find a
cycle with no crossings. Now we prove that there are no other cycles out of h∗

and its dual with no crossings. This can be easily seen, since h∗ is the only cycle
that visits all the points, starting from the first, in order. This means that all
the other cycles do not visit the points in order and, thus, they have a crossing,
due to the fact that the point that is not visited in a first time, must be visited
next, creating a crossing.

Proof of the optimal cycle for p < 0, odd N

To complete the proof given in the main text, we need to discuss two points.
Firstly, we address which is the correct move that swap a non-crossing matching
with a crossing one; thanks to Lemma 4, by performing such a move one always
increases the total number of crossings. Secondly we prove that there is only
one Hamiltonian cycle to which this move cannot be applied (and so it is the
optimal solution).

We start with the first point: consider an Hamiltonian cycle with a matching
that is non-crossing, then the possible situations are the following two:

r1 r2 r3 r4

r1 r2 r3 r4

For the first case there are two possible independent orientations:

1. (r1r4C2r2r3C3) ,

2. (r1r4C2r3r2C3) .
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If we try to cross the matchings in the first cycle, we obtain (r1r3C3)(r2[C2]
−1r4),

and this is not anymore an Hamiltonian cycle. On the other hand, in the sec-
ond cycle, the non-crossing matching can be replaced by a crossing one without
breaking the cycle: (r1r3[C2]

−1r4r2C3). For the second case the possible orien-
tations are:

1. (r1r2C2r4r3C3) ,

2. (r1r2C2r3r4C3) .

By means of the same procedure used in the first case, one finds that the non-
crossing matching in the second cycle can be replaced by a crossing one without
splitting the cycle, while in the first case the cycle is divided by this operation.

The last step is the proof that the Hamiltonian cycle given in Eq. (3.83) has
the maximum number of crossings.

Let us consider an Hamiltonian cycle h[σ] =
(
rσ(1), . . . , rσ(N)

)
on the com-

plete graph KN . We now want to evaluate what is the maximum number of
crossings an edge can have depending on the permutation σ. Consider the edge
connecting two vertices rσ(i) and rσ(i+1): obviously both the edges (rσ(i−1), rσ(i))
and (rσ(i+1), rσ(i+2)) share a common vertex with (rσ(i), rσ(i+1)), therefore they
can never cross it. So, if we have N vertices, each edge has N − 3 other edges
that can cross it. Let us denote with N [σ(i)] the number of edges that cross
the edge (rσ(i), rσ(i+1)) and let us define the sets:

Aj :=

{
{rk}k=σ(i)+1 (mod N),...,σ(i+1)−1(mod N) for j = 1

{rk}k=σ(i+1)+1(mod N),...,σ(i)−1(mod N) for j = 2
(C.24)

These two sets contain the points between rσ(i) and rσ(i+1). In particular, the
maximum number of crossings an edge can have is given by:

max(N [σ(i)]) =

{
2minj |Aj | for |A1| ≠ |A2|
2|A1| − 1 for |A1| = |A2|

(C.25)

This is easily seen, since the maximum number of crossings an edge can have
is obtained when all the points belonging to the smaller between A1 and A2

contributes with two crossings. This cannot happen when the cardinality of A1

and A2 is the same because at least one of the edges departing from the nodes in
A1 for example, must be connected to one of the ends of the edge (rσ(i), rσ(i+1)),
in order to have an Hamiltonian cycle. Note that this case, i.e. |A1| = |A2| can
happen only if N is even.

Consider the particular case such that σ(i) = a and σ(i + 1) = a + N−1
2

(mod N) or σ(i + 1) = a + N+1
2 (mod N). Then (C.25) in this cases is ex-

actly equal to N − 3, which means that the edges (ra, ra+N−1
2 (mod N)) and

(ra, ra+N+1
2 (mod N)) can have the maximum number of crossings if the right

configuration is chosen.
Moreover, if there is a cycle such that every edge has N − 3 crossings, such a
cycle is unique, because the only way of obtaining it is connecting the vertex ra
with ra+N−1

2 (mod N) and ra+N+1
2 (mod N),∀a.
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C.2.3 Optimal TSP and 2-factor for p < 0 and N even

We start considering here the 2-factor problem (see Sec. 3.4 for a definition) for
p < 0 in the even-N case. We will use the shape of its solution to prove that
one among the cycles given in Eq. (3.86) is the solution of the TSP.

In the following we will say that, given a permutation σ ∈ SN , the edge
(rσ(i), rσ(i+1)) has length L ∈ N if:

L = L(i) := min
j

|Aj(i)| (C.26)

where Aj(i) was defined in Eq. (C.24).

N is a multiple of 4

Let us consider the sequence of points R = {ri}i=1,...,N of N points, with N a
multiple of 4, in the interval [0, 1], with r1 ≤ · · · ≤ rN , consider the permutations
σj , j = 1, 2 defined by the following cyclic decomposition:

σ1 = (r1, rN
2 +1, r2, rN

2 +2) . . . (ra, ra+N
2
, ra+1, ra+N

2 +1) . . . (rN
2 −1, rN−1, rN

2
, rN )

(C.27a)

σ2 = (r1, rN
2 +1, rN , rN

2
) . . . (ra, ra+N

2
, ra−1, ra+N

2 −1) . . . (rN
2 −1, rN−1, rN

2 −2, rN−2)

(C.27b)

for integer a = 1, . . . , N2 − 1. Defined h∗1 := h[σ1] and h
∗
2 := h[σ2], it holds the

following:

Proposition C.2.1. h∗1 and h∗2 are the 2-factors that contain the maximum
number of crossings between the arcs.

Proof. An edge can be involved, at most, in N − 3 crossing matchings. In the
even N case, this number is achieved by the edges of the form (ra, ra+N

2 (mod N)),

i.e. by the edges of length N
2 − 1. There can be at most N

2 edges of this form

in a 2-factor. Thus, in order to maximize the number of crossings, the other N
2

edges must be of the form (ra, ra+N
2 +1 (mod N)) or (ra, ra+N

2 −1 (mod N)), i.e. of

length N
2 − 2. It is immediate to verify that both h∗1 and h∗2 have this property;

we have to prove they are the only ones with this property.
Consider, then, to have already fixed the N

2 edges (ra, ra+N
2 (mod N)),∀a ∈ [N ].

Suppose to have fixed also the edge (r1, rN
2
) (the other chance is to fix the edge

(r1, rN
2 +2): this brings to the other 2-factor). Consider now the point rN

2 +1:

suppose it is not connected to the point rN , but to the point r2, i.e., it has a
different edge from the cycle h∗2. We now show that this implies it is not possible
to construct all the remaining edges of length N

2 −2. Consider, indeed, of having
fixed the edges (r1, rN

2
) and (r2, rN

2 +1) and focus on the vertex rN
2 +2: in order

to have an edge of length N
2 − 2, this vertex must be connected either with r1

or with r3, but r1 already has two edges, thus, necessarily, there must be the
edge (rN

2 +2, r3). By the same reasoning, there must be the edges (rN
2 +3, r4),

(rN
2 +4, r5), . . . , (rN−2, rN

2 −1). Proceeding this way, we have constructed N − 1

edges; the remaining one is uniquely determined, and it is (rN−1, rN ), which
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has null length.
Therefore the edge (r2, rN

2 +1) cannot be present in the optimal 2-factor and so,

necessarily, there is the edge (rN
2 +1, rN ); this creates the cycle (r1, rN

2
, rN , rN

2 +1).

Proceeding the same way on the set of the remaining vertices {r2, r3, . . . , rN
2 −1, rN

2 +2, . . . , rN−1},
one finds that the only way of obtaining N

2 edges of length N
2 − 1 and N

2 edges

of length N
2 − 2 is generating the loop coverings of the graph h∗1 or h∗2.

Proposition C.2.1, together with the fact that the optimal 2-factor has the
maximum number of crossing matchings, guarantees that the optimal 2-factor
is either h∗1 or h∗2.

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10

(a) One of the optimal 2-factor solutions
for N = 10 and p < 0; the others are ob-
tainable cyclically permuting this configu-
ration

r1

r2

r3r4

r5

r6

r7

r8 r9

r10

(b) The same optimal 2-factor solution,
but represented on a circle, where the sym-
metries of the solutions are more easily
seen

Figure C.4

N is not a multiple of 4

Let us consider the usual sequence R = {ri}i=1,...,N of N points, with even N
but not a multiple of 4, in the interval [0, 1], with r1 ≤ · · · ≤ rN , consider the
permutation π defined by the following cyclic decomposition:

π = (r1, rN
2
, rN , rN

2 +1, r2, rN
2 +2)(r3, rN

2 +3, r4, rN
2 +4) . . . (rN

2 −2, rN−1, rN
2 −1, rN−2)

(C.28)

Defined
πk(i) := π(i) + k (mod N), k ∈ [0, N − 1] (C.29)

and
h∗k := h[πk] (C.30)

the following proposition holds:

Proposition C.2.2. h∗k are the 2-factors that contain the maximum number of
crossings between the arcs.

Proof. Also in this case the observations done in the proof of Proposition C.2.1
holds. Thus, in order to maximize the number of crossing matchings, one con-
siders, as in the previous case, the N

2 edges of length N
2 − 1, i.e. of the form

(ra, ra+N
2 (mod N)), and then tries to construct the remaining N

2 edges of length
N
2 − 2, likewise the previous case. Again, if one fixes the edge (r1, rN

2
), the

edge (r2, rN
2 +1) cannot be present, by the same reasoning done in the proof of
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Proposition B.1. The fact that, in this case, N is not a multiple of 4 makes it
impossible to have a 2-factor formed by 4-vertices loops, as in the previous case.
The first consequence is that, given N

2 edges of length N
2 −1, it is not possible to

have N
2 edges of length N

2 − 2. In order to find the maximum-crossing solution,
one has the following options:

• to take a 2-factor with N
2 edges of length N

2 −1, N2 −1 edges of length N
2 −2

and one edge of length N
2 −2: in this case the theoretical maximum number

of crossing matchings is N(N−3)
2 +(N2 −1)(N −4)+N −6 = N2− 7N

2 −2;

• to take a 2-factor with N
2 − 1 edges of length N

2 − 1, N2 +1 edges of length
N
2 −2: in this case the theoretical maximum number of crossing matchings

is (N2 − 1)(N − 3) + (N2 + 1)(N − 4) = N2 − 7N
2 − 1.

Clearly the second option is better, at least in principle, than the first one.
The cycles h∗k belong to the second case and saturate the number of crossing
matchings. Suppose, then, to be in this case. Let us fix the N

2 −1 edges of length
N
2 −1; this operation leaves two vertices without any edge, and this vertices are of
the form ra, ra+N

2 (mod N), a ∈ [1, N ] (this is the motivation for the degeneracy

of solutions). By the reasoning done above, the edges that link this vertices
must be of length N

2 − 2, and so they are uniquely determined. They form the
6-points loop (ra, ra−1+N

2 (mod N), rN−1+a (mod N), ra+N
2 (mod N), ra+1 (mod N),

ra+1+N
2 (mod N)). The remaining N − 6 points, since 4|(N − 6), by the same

reasoning done in the proof of Proposition C.2.1, necessarily form the N−6
4

4-points loops given by the permutations (C.29).

Proposition C.2.2, together with the fact that the optimal 2-factor has the
maximum number of crossing matchings, guarantees that the optimal 2-factor
is such that h∗ ∈ {h∗k}Nk=1.

Proof of the optimal cycles for p < 0, odd N

Proof. Let us begin from the permutations that define the optimal solutions
for the 2-factor, that is those given in Eqs. C.27 if is N a multiple of 4 and in
Eq. C.28 otherwise. In both cases, the optimal solution is formed only by edges
of length N

2 − 1 and of length N
2 − 2. Since the optimal 2-factor is not a TSP,

in order to obtain an Hamiltonian cycle from the 2-factor solution, couples of
crossing edges need to became non-crossing, where one of the two edges belongs
to one loop of the covering and the other to another loop. Now we show that
the optimal way of joining the loops is replacing two edges of length N

2 −1 with

other two of length N
2 − 2. Let us consider two adjacent 4-vertices loops, i.e.

two loops of the form:

(ra, ra+N
2
, ra+1, ra+N

2 +1), (ra+2, ra+2+N
2
, ra+3, ra+N

2 +3) (C.31)

and let us analyze the possible cases:

1. to remove two edges of length N
2 − 2, that can be replaced in two ways:

• either with an edge of length N
2 − 2 and one of length N

2 − 4; in this
case the maximum number of crossings decreases by 4;
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• or with two edges of length N
2 −3; also in this situation the maximum

number of crossings decreases by 4.

2. to remove one edge of length N
2 − 2 and one of length N

2 − 1, and also this
operation can be done in two ways:

• either with an edge of length N
2 − 2 and one of length N

2 − 3; in this
case the maximum number of crossings decreases by 3;

• or with an edge of length N
2 − 3 and one of length N

2 − 4; in this
situation the maximum number of crossings decreases by 7.

3. the last chance is to remove two edges of length N
2 − 1, and also this can

be done in two ways:

• either with two edges of length N
2 − 3; here the maximum number of

crossings decreases by 6;

• or with two edges of length N
2 − 2; in this situation the maximum

number of crossings decreases by 2. This happens when we sub-
stitute two adjacent edges of length N

2 − 1, that is, edges of the
form (ra, rN

2 +a (mod N)) and (ra+1, rN
2 +a+1 (mod N)), with the non-

crossing edges (ra, rN
2 +a+1 (mod N)) and (ra+1, rN

2 +a (mod N))

The last possibility is the optimal one, since our purpose is to find the TSP
with the maximum number of crossings, in order to conclude it has the lower
cost. Notice that the cases discussed above holds also for the 6-vertices loop and
an adjacent 4-vertices loop when N is not a multiple of 4. We have considered
here adjacent loops because, if they were not adjacent, then the difference in
maximum crossings would have been even bigger.
Now we have a constructive pattern for building the optimal TSP. Let us call
O the operation described in the second point of (3). Then, starting from the
optimal 2-factor solution, if it is formed by n points, O has to be applied N

4 − 1

times if N is a multiple of 4 and N−6
4 times otherwise. In both cases it is easily

seen that O always leaves two adjacent edges of length N
2 − 1 invariant, while

all the others have length N
2 −2. The multiplicity of solutions is given by the N

2

ways one can choose the two adjacent edges of length N
2 − 1. In particular, the

Hamiltonian cycles h∗k saturates the maximum number of crossings that can be
done, i.e., every time that O is applied, exactly 2 crossings are lost.
We have proved, then, that h∗k are the Hamiltonian cycles with the maximum
number of crossings. Now we prove that any other Hamiltonian cycle has a
lower number of crossings. Indeed any other Hamiltonian cycle must have

• either every edge of length N
2 − 2;

• or at least one edge of length less than or equal to N
2 − 3.

This is easily seen, since it is not possible to build an Hamiltonian cycle with
more than two edges or only one edge of length N

2 −1 and all the others of length
N
2 −2. It is also impossible to build an Hamiltonian cycle with two non-adjacent

edges of length N
2 −1 and all the others of length N

2 −2: the proof is immediate.
Consider then the two cases presented above: in the first case the cycle (let us
call it H) is clearly not optimal, since it differs from h∗k,∀k by a matching that
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is crossing in h∗k and non-crossing in H. Let us consider, then, the second case
and suppose the shortest edge, let us call it b, has length N

2 − 3: the following
reasoning equally holds if the considered edge is shorter. The shortest edge
creates two subsets of vertices: in fact, called x and y the vertices of the edge
considered and supposing x < y, there are the subsets defined by:

A = {r ∈ V : x < r < y} (C.32)

B = {r ∈ V : r < x ∨ r > y} (C.33)

Suppose, for simplicity, that |A| < |B|: then, necessarily |A| = N
2 − 3 and

|B| = N
2 + 1. As an immediate consequence, there is a vertex in B whose

edges have both vertices in |B|. As a consequence, fixed an orientation on the
cycle, one of this two edges and b are obviously non-crossing and, moreover,
have the right relative orientation so that they can be replaced by two crossing
edges without splitting the Hamiltonian cycle. Therefore also in this case the
Hamiltonian cycle considered is not optimal.

C.2.4 Second moment of the optimal cost distribution on
the complete graph

Here we compute the second moment of the optimal cost distribution. We will
restrict for simplicity to the p > 1 case, where

EN [h∗] = |r2 − r1|p + |rN − rN−1|p +
N−2∑
i=1

|ri+2 − ri|p . (C.34)

We begin by writing the probability distribution for N ordered points

ρN (r1, . . . , rN ) = N !

N∏
i=0

θ(ri+1 − ri) (C.35)

where we have defined r0 ≡ 0 and rN+1 ≡ 1. The joint probability distribution
of their spacings

ϕi ≡ ri+1 − ri , (C.36)

is, therefore

ρN (ϕ0, . . . , ϕN ) = N ! δ

[
N∑
i=0

ϕi = 1

]
N∏
i=0

θ(ϕi) . (C.37)

If {i1, i2, . . . , ik} is a generic subset of k different indices in {0, 1, . . . , N}, we
soon get the marginal distributions

ρ
(k)
N (ϕi1 , . . . , ϕik) =

N !

(N − k)!

(
1−

k∑
n=1

ϕin

)N−k

θ

(
1−

k∑
n=1

ϕin

)
k∏

n=1

θ(ϕin) .

(C.38)
Developing the square of Eq. (C.34) one obtains N2 terms, each one describing
a particular configuration of two arcs connecting some points on the line. We
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will denote by χ1 and χ2 the length of these arcs; they can only be expressed as
a sum of 2 spacings or simply as one spacing. Because the distribution (C.38)
is independent of i1, . . . , ik, these terms can be grouped together on the base
of their topology on the line with a given multiplicity. All these terms have a
weight that can be written as∫ 1

0

dχ1 dχ2 χ
p
1 χ

p
2 ρ(χ1, χ2) (C.39)

where ρ is a joint distribution of χ1 and χ2. Depending on the term in the square
of Eq. (C.34) one is taking into account, the distribution ρ takes different forms,
but it can always be expressed as in function of the distribution Eq. (C.38). As
an example, we show how to calculate |r3 − r1|p|r4 − r2|p. In this case ρ(χ1, χ2)
takes the form

ρ(χ1, χ2) =

∫
dϕ1 dϕ2 dϕ3 ρ

(3)
N (ϕ1, ϕ2, ϕ3)δ (χ1 − ϕ1 − ϕ2) δ (χ2 − ϕ2 − ϕ3)

= N(N − 1)
[
(1− χ1)

N−2θ(χ1)θ(χ2 − χ1)θ(1− χ2)

+ (1− χ2)
N−2θ(χ2)θ(χ1 − χ2)θ(1− χ1)

−(1− χ1 − χ2)
N−2θ(χ1)θ(χ2)θ(1− χ1 − χ2)

]
, (C.40)

that, plugged into Eq. (C.39) gives

|r3 − r1|p|r4 − r2|p =
Γ(N + 1)

[
Γ(2p+ 3)− Γ(p+ 2)2

]
(p+ 1)2Γ(N + 2p+ 1)

. (C.41)

All the other terms contained can be calculated the same way; in particular there
are 7 different topological configurations that contribute. After having counted
how many times each configuration appears in (EN [h∗])2, the final expression
that one gets is

(EN [h∗])2 =
Γ(N + 1)

Γ(N + 2p+ 1)

[
4(N − 3)Γ(p+ 2)Γ(p+ 1)

+
(
(N − 4)(N − 3)(p+ 1)2 − 2N + 8

)
Γ(p+ 1)2+

+
[N(2p+ 1)(p+ 5)− 4p(p+ 5)− 8] Γ(2p+ 1)

(p+ 1)

]
. (C.42)

C.3 2-factor problem and the plastic constant

C.3.1 The Padovan numbers

According to the discussion in Sec. 3.4, in the optimal 2-factor configuration of
the complete bipartite graph there are only loops of length 2 and 3. Here we
will count the number of possible optimal solutions for each value of N . Let
fN be the number of ways in which the integer N can be written as a sum in
which the addenda are only 2 and 3. For example, f4 = 1 because N = 4 can
be written only as 2+ 2, but f5 = 2 because N = 5 can be written as 2+ 3 and
3 + 2. We simply get the recursion relation

fN = fN−2 + fN−3 (C.43)
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with the initial conditions f2 = f3 = f4 = 1. The N -th Padovan number
Pad(N) is defined as fN+2. Therefore it satisfies the same recursion relation
Eq. (C.43) but with the initial conditions Pad(0) = Pad(1) = Pad(2) = 1.

A generic solution of Eq. (C.43) can be written in terms of the roots of the
equation

x3 = x+ 1 . (C.44)

There is one real root

p =
(9 +

√
69)

1
3 + (9−

√
69)

1
3

2
1
3 3

2
3

≈ 1.324717957244746 . . . (C.45)

known as the plastic constant and two complex conjugates roots

z± =
(−1± i

√
3)(9 +

√
69)

1
3 + (−1∓ i

√
3)(9−

√
69)

1
3

2
4
3 3

2
3

≈ −0.662359 . . . ± i 0.56228 . . .

(C.46)

of modulus less than unity. Therefore

Pad(N) = a pN + b zN+ + b∗ zN− (C.47)

and by imposing the initial conditions we get

Pad(N) =
(z+ − 1)(z− − 1)

(p− z+)(p− z−)
pN+

(p− 1)(z− − 1)

(z+ − p)(z+ − z−)
zN++

(p− 1)(z+ − 1)

(z− − p)(z− − z+)
zN− .

(C.48)
For large N we get

Pad(N) ∼ λ pN (C.49)

with λ ≈ 0.722124 . . . the real solution of the cubic equation

23 t3 − 23 t2 + 6 t− 1 = 0 . (C.50)

In Fig. C.5 we plot the Padovan sequence for a range of values of N and its
asymptotic expression.
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Figure C.5: Padovan numbers and their asymptotic expansion.
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There is a relation between the Padovan numbers and the Binomial coeffi-
cients. If we consider k addenda equal to 3 and s addenda equal to 2, there are(
k+s
k

)
=
(
k+s
s

)
possible different orderings. If we fix N = 3 k + 2 s we easily get

that

Pad(N − 2) =
∑
k≥0

∑
s≥0

δN,3 k+2 s

(
k + s

k

)
=
∑
m≥0

∑
k≥0

δN,k+2m

(
m

k

)
. (C.51)

C.3.2 The recursion on the complete graph

A recursion relation analogous to Eq. (C.43) can be derived for the number of
possible solution of the 2-factor problem on the complete graph KN . Let gN be
the number of ways in which the integer N can be expressed as a sum of 3, 4
and 5. Then gN satisfies the recursion relation given by

gN = gN−3 + gN−4 + gN−5 , (C.52)

with the initial conditions g3 = g4 = g5 = g6 = 1 and g7 = 2. The solution of
this recursion relation can be written in function of the roots of the 5-th order
polynomial

x5 − x2 − x− 1 = 0 . (C.53)

This polynomial can be written as (x2+1)(x3−x− 1) = 0. Therefore the roots
will be the same of the complete bipartite case (p, and z±) and in addition

y± = ±i . (C.54)

gN can be written as

gN = α1p
N + α2z

N
+ + α3z

N
− + α4y

N
+ + α5y

N
− , (C.55)

where the constants α1, α2, α3, α4, and α5 are fixed by the initial conditions
g3 = g4 = g5 = g6 = 1 and g7 = 2. When N is large the dominant contribution
comes from the plastic constant

gN ≃ α1p
N . (C.56)

with α1 ≈ 0.262126...

C.3.3 The plastic constant

In 1928, shortly after abandoning his architectural studies and becoming a
novice monk of the Benedictine Order, Hans van der Laan discovered a new,
unique system of architectural proportions. Its construction is completely based
on a single irrational value which he called the plastic number (also known as
the plastic constant) [MS12]. This number was originally studied in 1924 by
a French engineer, G. Cordonnier, when he was just 17 years old, calling it
”radiant number”. However, Hans van der Laan was the first who explained
how it relates to the human perception of differences in size between three-
dimensional objects and demonstrated his discovery in (architectural) design.
His main premise was that the plastic number ratio is truly aesthetic in the
original Greek sense, i.e. that its concern is not beauty but clarity of percep-
tion [Pad02]. The word plastic was not intended, therefore, to refer to a specific
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substance, but rather in its adjectival sense, meaning something that can be
given a three-dimensional shape [Pad02]. The golden ratio or divine proportion

φ =
1 +

√
5

2
≈ 1.6180339887 , (C.57)

which is a solution of the equation

x2 = x+ 1 , (C.58)

has been studied by Euclid, for example for its appearance in the regular pen-
tagon, and has been used to analyze the most aestetich proportions in the arts.
For example, the golden rectangle, of size (a + b) × a which may be cut into a
square of size a × a and a smaller rectangle of size b × a with the same aspect
ratio

a+ b

a
=
a

b
= φ . (C.59)

This amounts to the subdivision of the interval AB of length a+ b into AC of
length a and BC of length b. By fixing a+ b = 1 we get

1

a
=

a

1− a
= φ , (C.60)

which implies that φ is the solution of Eq. (C.58). The segments AC and BC,
of length, respectively 1

φ2 (φ, 1) are sides of a golden rectangle.
But the golden ratio fails to generate harmonious relations within and be-

tween three-dimensional objects. Van der Laan therefore elevates definition of
the golden rectangle in terms of space dimension. Van der Laan breaks segment
AB in a similar manner, but in three parts. If C and D are points of subdivision,
plastic number p is defined with

AB

AD
=
AD

BC
=
BC

AC
=
AC

CD
=
CD

BD
= p (C.61)

and by fixing AB = 1, from AC = 1−BC, BD = 1−AD we get

p3 = p+ 1 . (C.62)

The segments AC, CD and BD, of length, respectively, 1
(p+1)p2 (p

2, p, 1) can be

interpreted as sides of a cuboid analogous to the golden rectangle.



Appendix D

Supplemental material to
Chapter 4

D.1 Time-to-solution

The time to solution (TTS) is a widely accepted empiric measure of algorithmic
performances. It is defined as the time needed to solve an instance of a problem
with high probability (here we take the 99%). In particular, given the probability
p(t) of solving the instance in time t, the TTS is given by

TTS(t) = t
log(0.01)

log(1− p(t))
. (D.1)

One is usually interested in the minimum TTS, given by

TTS = min
t

TTS(t). (D.2)

When we want to test our algorithm on a set of instances I and a probability
distribution p is defined on such a set, the measure of performance can be the
average

⟨TTS⟩ =
∑
I∈I

p(I) TTSI , (D.3)

where TTSI is the TTS for the instance I. This average is typically computed as
an empirical average on a large number of instances generated with probability
p. For some problems and some algorithms, there are instances that are never
solved for reasonable running time. What TTS should one use in Eq. (D.3)
for them? To avoid this problem, it is often used, instead of the average TTS,
the 50-percentile of the TTSs computed for a large set of instance. Typically
(and this is the approach used throughout Sec. 4.2.3) this 50-percentile is shown
together with the 35-percentile and 65-percentile.

D.2 Hamming weight example

Here we analyze in detail the annealing (both classical and quantum) of a toy
problem, to give a concrete example of the effect of choosing the penalty-term

139
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parameter. Consider a cost function defined on x ∈ {1, 0}N with the symmetry
E(x) = E(σ(x)) for each σ ∈ SN permutation of N objects. This kind of cost
functions characterize the so-called Hamming weight problems, since the only
thing they can depend on is the Hamming weight (i.e. number of 1) of the
configurations.
These problems have been extensively used to explore the properties of thermal
and quantum annealing, mainly because of their simplicity: their high level
of symmetry often allows for exact computations, and the specific form of the
cost function can be chosen such that the required annealing time is either
polynomial or exponential (or even exponential for classical thermal annealing
and polynomial for the quantum version).
Here we introduce a constrained version of the problem, with cost function

E(x) =
1

N
(W (x)−N/3)2, (D.4)

where W (x) is the Hamming weight of the configuration x. The normalization
is chosen to make the cost function an extensive quantity. Indeed, if we define
the intensive Hamming weight as w(x) =W (x)/N , we have the density-of-cost
function

e(x) = E(x)/N = (w(x)− 1/3)2. (D.5)

Let us suppose that we have the following constraint: only configurations with
density of cost in [0, 1/4]∪ [1/2, 1] are acceptable. To implement this constraint,
we consider the penalty term (that we write directly as function of the intensive
Hamming weight w)

p(w) =

{ (
1− 4

(
w − 1

4

)) (
w − 1

4

)
− 4

(
w − 1

4

) (
w − 1

2

)
if w ∈

[
1
4 ,

1
2

]
,

0 otherwise,
(D.6)

where the non-zero term is simply a linear interpolation between x−1/4 (linear
cost increasing as we break the constraint of having x > 1/4) and −x + 1/2
(linear cost increasing as we break the constraint of having x < 1/2). This is
one of the many possible choices of a suitable penalty term for this problem.
Therefore the total cost function to minimize is

etot(w;λ) = e(w) + λ p(w), (D.7)

and our goal is to find the minimum and the optimum value of λ. Notice that
this cost function is not given as a local Hamiltonian, and in particular it is
not in QUBO form; this is not relevant for our discussion here, since we are
only interested in understanding in a simple example the role of the coupling
parameter for the penalty term.
One can consider both SA and QAA to solve this problem: in both case, as
shown in Appendix D.2, if a too high penalty term λ is chosen the system
remains trapped an exponentially long time in a local minimum.

D.2.1 Classical annealing

In the simulated annealing algorithm, the probability of a configuration is its
free energy F (W ;λ), defined at temperature β by

exp (−βF (W ;λ)) =

(
N

W

)
exp (−βEtot(λ)) . (D.8)
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Expanding the binomial for large N , and keeping only the dominant term, we
obtain the following density of free energy

f(w, λ) =
1

β
[(1− w) log(1− w) + w logw] + etot(w;λ). (D.9)

Fig. D.1 shows the different shapes of the free energy density, varying λ and
β. Notice that the probability of configurations which are not corresponding to
the minimum of Eq. (D.9) is ∼ exp(−N∆), where ∆ is the free energy density
of such configurations minus the minimum free energy density. Therefore the
(local) SA algorithm takes exponential time to leave the minimum of f , and for
λ too large (such as λ = 1 in Fig. D.1) at β ≃ 5.9 the SA needs exponential
time to pass from the minimum at larger w to the one at smaller w, which will
become the global minimum. If a lower λ is chosen, such as λ = 1/12 (which is
the minimum), the previous situation never happens, consisting in an annealing
that can proceed in polynomial time. Notice that if λ is further decreased the
final minimum will be in the forbidden interval, and again we will need to wait
an exponential time to reach the minimum acceptable configuration (because it
is not a local minimum anymore).

D.2.2 Quantum annealing

For the quantum case, we will consider the following annealing procedure:

• the quantum problem Hamiltonian is defined by its action on the compu-
tational basis, thus starting from Eq. (D.7);

• the quantum driving term of the Hamiltonian (the one which provides
quantum fluctuations) is

∑
i σ

x
i , so the system is initialized in the ground

state of this term and the problem Hamiltonian is slowly turned on, while
this driving term is slowly turned off.

Because of the symmetry of the problem, we can define a semi-classical
potential and suppose that its minimum describes the instantaneous ground
state of the system during the quantum annealing schedule. The idea is that,
because we initialize the system in the factorized superposition state

|+⟩N = ⊗i
|0⟩i + |1⟩i√

2
(D.10)

and the Hamiltonian is symmetric with respect to qubit permutations, we sup-
pose that all the evolution takes place in the subspace of the Hilbert space
spanned by symmetric factorized states of the form1

|θ⟩ =
⨂

i=1,...,N

(cos θ |0⟩+ sin θ |1⟩) . (D.11)

The semi-classical potential we use is ⟨θ|Htot |θ⟩, with

Htot = s(H0 + λHP )− (1− s)
∑
i

σxi , (D.12)

1notice that there are also other possible states, which are entangled; however, this form
of quasi-classical potential has been profitably used in many examples (see [MAL16]), so we
use it also here.
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where s = s(t) is the parameter which defines the annealing schedule, with
s(0) = 0, s(T ) = 1 and T is the total annealing time; H0 and HP are defined
by their action on the computational basis. Therefore, one has

⟨θ|H0 |θ⟩ =
∑
a,b

⟨θ|a⟩ ⟨b|θ⟩ ⟨a|H0 |b⟩

=

N∑
W=0

(
N

W

)
(sin2 θ)W (cos2 θ)N−W

(
1

N

(
W − N

3

)2
)

= N

(
sin2 θ − 1

3

)
.

(D.13)

Notice that one can naturally introduce the “Hamming-weight operator” as∑
i
1+σz

i

2 and

⟨θ|
∑
i

1 + σzi
2

|θ⟩ = N sin2 θ, (D.14)

therefore the semi-classical potential is identical to the classical one, where the
Hamming weight becomes the expectation value of the Hamming-weight oper-
ator. It is slightly more tricky to deal with the penalty term (we need to take
into account also sub-leading terms of the Stirling approximation):

⟨θ|HP |θ⟩ =
N/2∑

W=N/4

(
N

W

)
(sin2 θ)W (cos2 θ)N−WNp(w)

∼ N3/2

∫ 1
2

1
4

dw e−Ng(w,θ)
p(w)√
w(1− w)

,

(D.15)

where

g(w, θ) = w log
(
w/ sin2 θ

)
+ (1− w) log

(
(1− w)/ cos2 θ

)
. (D.16)

Now the integral in Eq. (D.15) is done by saddle-point method, where the so-
lution of the saddle point equations is (using the fact that 1/4 ≤ w ≤ 1/2)

w =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1

1 + cot(θ)
2

π

6
≤ θ ≤ π

4
or

3π

4
≤ θ ≤ π

6
,

1/4 0 < θ <
π

6
or

π

6
< θ < π,

1/2
π

4
< θ <

3π

4
.

(D.17)

Notice that when w = 1/4 or w = 1/2 the value of Eq. (D.15) is exponentially
suppressed. However, g(1/(1 + cot(θ), θ) = 0, therefore we have

⟨θ|HP |θ⟩ ∼

⎧⎨⎩N
√
2π cos(2θ) (1− 2 cos(2θ))

π

6
≤ θ ≤ π

4
or

3π

4
≤ θ ≤ π

6
,

0 otherwise.
(D.18)

The last term, that is the one which provides quantum fluctuation, is

⟨θ|
∑
i

σxi |θ⟩ = N sin(2θ). (D.19)

Putting all the terms together one can easily see that considerations analogue
to those done for the classical case hold also here.
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D.3 Failure of our method for an instance of the
minor embedding problem

The results obtained for the matching problem raise the question if a similar
analysis can be extended to all constrained problems. However, this is not the
case. Remember that Eq. (4.65) can be used to obtain efficiently an estimate
for the minimum parameter if the chain of inequalities (4.66) is true (this is a
necessary but not sufficient condition: we also need to be able to approximate
or solve efficiently the problem under analysis). But there are problems, such
as the minor embedding problem, where these inequalities are false.
To show that, we briefly introduce the minor embedding problem in the for-
mulation that is relevant for us. Then we will choose a specific instance of the
problem where one can explicitly see that the inequalities (4.66) are false.

When a problem is written in QUBO form, an underlying weighted graph
can be defined looking at the couplings Ji,j in the Hamiltonian: each qubit is
associated to a vertex of the graph, and an edge of the graph is present between
qubits i and j if Ji,j ̸= 0. This graph is of great importance, because in real
quantum annealing devices there is an effective hardware graph with qubits
as vertices, and qubits can interact only if they correspond to two connected
vertices in this hardware graph. If the former graph (“problem graph”) and
the latter (“hardware graph”) are different, an extra-step is need: the minor
embedding. In the minor embedding problem, we have a QUBO problem defined
on a graph G and we want to embed G in another graph (which is typically a
fixed hardware graph) U , such that we have a QUBO problem on the graph U
whose ground state corresponds through a known map to the ground state of
our original problem. To do so we define a function φ : u→ g, where g and u are
the vertices of respectively G and U , such that if we contract all those vertices in
u which are sent by φ to the same vertex in g, we obtain from the graph U the
graph G. In other words, the function φ defines subsets of u which correspond
to the same vertex in g. These subsets of spins are often called “chains”. Then
the hardware graph U can be used for the QAA, with problem Hamiltonian

H ′ = H + J
∑
i,j∈u

φ(i)=φ(j)

σiσj , (D.20)

whereH is the Hamiltonian of the original problem, where the interaction among
two vertices a and b connected in the graph G is now between two qubits of u,
k and ℓ, which are connected in u and such that φ(k) = a and φ(ℓ) = b.
The minor embedding problem in general consists in finding a suitable function
φ. Here we take another point of view: given a suitable φ, we are interested
in finding the minimum value for the parameter J in Eq. (D.20). The term
with coupling J is a kind of penalty term, whose contribution is minimum when
all the spins inside the same chain have equal sign. Notice that only in this
situation is possible to go back from the solution of the problem on the hardware
graph to the original graph G. Therefore the search for the ground state of H ′

is a constrained problem, where the only acceptable configurations are those
with chains composed of spins with the same sign. This is the problem we are
interested in, and that we would like to address with the technique developed
in Sec. 4.2.3 and used for the matching problem.
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Let us consider a specific (and trivial) example in which the order condition
given in (4.66) is not respected. The starting problem graph and the hardware
graph are those given in Fig. D.2, where the couplings in the starting problems
are ±1: the black continuous edges corresponds to −1 (ferromagnetic) inter-
actions and the dashed edge correspond to +1 (antiferromagnetic) interaction.
Here a constraint breaking is a “kink” (two consecutive spins with different sign)
in the chain with wavy links, and the analogous of Eq. (4.65) is

λ > max
k∈{1,2}

E0 − Ek
k

= max
k∈{1,2}

λk, (D.21)

where now Ek is the energy of the problem on the graph without wavy lines,
when k kinks are permitted on the wavy lines. Therefore it is easy to check that
λ1 = 0 and λ2 = 1/2, therefore λ2 > λ1 and the inequality given in (4.66) is not
fulfilled.

This allows us to observe that there are problems (as the matching prob-
lems) in which the order relation (4.66) holds and our method can be efficiently
use to estimate the minimum parameter, while in other problems (such as the
minor embedding problem) this is not true. This brings in turn an interesting
consequence: whatever method one wants to use to decide the value of the pa-
rameter, a value that prevents the breaking of (only) one constraint is in general
a too weak condition. Indeed, one has to prevent the breaking of any number
of constraints.

D.4 Other methods to find the minimum penalty
term weight

To the best of our knowledge, there are two ways to choose parameters for
penalty terms: one is the “trial-and-error” method, the other is the one de-
scribed by Choi in [Cho08]. The first method consists basically in trying many
different values and solving the problem with these values to see if the con-
straints are broken in the ground state. A limitation of this method is that,
even if the problem can be solved efficiently (which is not the case for hard
computational problems of relevant size), one cannot be sure to have found the
real minimum parameter if the number of attempts with different parameters
is small. On the other hand, the strength of this method is that it can be run
using the same heuristic algorithm used to solve the problem (so there is no
need in principle for additional problem-dependent algorithms). However, espe-
cially for large size instances of hard problems, since the heuristic method fails
often, to have a reasonable precision on the parameter the algorithms has to be
run many times, so it becomes more and more inefficient as the system size in-
creases. Moreover, as we have discussed in the main text, for many constrained
problems it is reasonable to expect that even a small error in the parameter
setting cause a slowdown which is more and more relevant as the system size
increases.

The second method consists in pre-processing the instance and choosing a
penalty-term weight high enough to ensure the constraints. We will not review
that method in general, but we will discuss how to apply it to the matching
problem in the next section. Here we will only highlight the main differences
with our method:
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• it is built to work with the minor embedding problem, but the same idea
can easily be applied to other problems; however, always in [Cho08] the
author refines the method in a way that only applies to the minor embed-
ding problem, so we will not discuss that refinement here;

• it has a different parameter for each constraint of the problem, and these
parameters are individually tuned;

• it uses no information about the solution (even approximate) of the in-
stance.

To conclude, this method could be applied to problems where the algorithm
we described in Sec. 4.2.3 fails (that is, when condition (4.66) is not true or
the problem cannot be approximated in an acceptable way), but the results are
often quite far from the real minimum value of the parameters.

Choi’s method applied to the matching problem

Another interesting feature of the matching problem is that here we can quantify
the how good the Choi’s upper bound for the minimum parameters is. Choi’s
method can be applied to Hamiltonians of the form

H = H0 +
∑
i

µiH
(i)
P , (D.22)

where H
(i)
P enforces the local i-th constraint. The method consists in choosing

the values of the µi singularly, in such a way that the i-th constraint is never
broken, irrespectively of the solution of the specific instance. More concretely,
for the matching problem one would have the following term to ensure that one
and only one edge connects the vertex ν to another vertex:

H
(ν)
P =

(
1−

∑
e∈∂ν

xe

)2

(D.23)

and to be sure that independently on the solution of the instance this constraint
is not broken, one has to choose a value for µν such that

µν > max
e∈∂ν

we/2, (D.24)

where the factor 1/2 is because we have a contribution from two of penalty
terms each time we break a constraint.
Consider now a specific example: the Euclidean matching in one dimension.
In this case, for each instance 2N points are randomly thrown on a segment
of length 1. The graph of the problem is a complete graph where each vertex
corresponds to a point on the segment, and the link weights are the distances
on the segment between the two points which correspond to the link endpoints.
Since each vertex corresponds to a point in one dimension, we can order the
points and it can be seen that the distance between the first and last point on
the typical instance is going to 1 with N . Therefore

⟨µi⟩ ∼ max

(
i

2N + 1
, 1− i

2N + 1

)
, (D.25)
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where λi is the coupling for the i−th point once points have been ordered and
the angled brackets denotes average on the disorder. Summing all the λis we
obtain

⟨
∑
i

µi⟩ ∼ N

∫ 1/2

0

dx (1− x) +

∫ 1

1/2

dxx =
3N

4
. (D.26)

On the opposite, the minimum parameter given by Eq. (4.67) is going to

zero with N . Indeed for this very simple problem ⟨E(0)
0 ⟩ = O(1) (that is, of the

same order of the length of the segment) and by removing a couple of points
we cannot change this limiting behavior, therefore limN→∞ λ1 = 0 and so the
sum of N of those parameters is scaling differently from Eq. (D.26), and it is
definitely lower than that. In particular, from numerical simulations we see that
the minimum parameter λ1 = O(1/N), therefore the sum of N of these gives a
constant, rather than going to infinity.

D.5 Proof of the inequality (4.72) for the match-
ing problem

In this appendix we give the full proof of (4.69) for the matching problem. We
will use the notation introduced in Sec. 4.2.3. As first step, we introduce the
concept of signed path, which will be of used many times in the proof. Then we
will proceed with the actual proof.

Definition: signed paths. Consider an instance of the problem, that is a
given weighted graph with 2N vertexes. Take m ̸= ℓ ≤ N and consider Eℓ and
Em. In general, since ℓ ̸= m, the matchings of which Eℓ and Em are the costs
(with a slight abuse of notation, from now on we will simply say “the matchings
Eℓ and Em”) can be done over two completely different sets of points. Indeed, if
for example we have m = ℓ−1, in Em we are using 2 points less than those used
in Eℓ. But this does not necessarily mean that some of the points which are
used in Eℓ are used also in Em, so the matching Em can be completely different
from Eℓ. Take a vertex used in Eℓ but not in Em, x. Consider the path on the
instance graph which starts in x and which is built by using links alternatively
of Eℓ and Em. Let us call y = y(x) the ending vertex of this path. We define
the “signed path” Pℓ,m(x, y) as the weight of that path, which is obtained by
summing the weight of each edge of the path used in Em and by subtracting the
weight of each edge of the path used in Eℓ.

Proof, part I: stability. Let us denote with {x} the set of vertexes used in
En, with {y} those used in En+1 but not in En and with {z} those used in En but
not in En+1. We prove that {z} = ∅, using a reductio ad absurdum. To do so,
we take one among the z’s, z⋆, and build the signed path Pn+1,n(z⋆, w), where
w is the point from which we cannot proceed further with the path. Notice that
by construction w can only be another point of {z} or one of {y}. These two
cases require separate discussions.
Case 1: consider that Pn+1,n(z⋆, w) = Pn+1,n(z⋆, y), with y = y(z⋆) ∈ {y}.
Since Pn+1,n(z⋆, y) starts with a link of En and the last link is of En+1, it has
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the same number of links of both the matchings. Moreover,

En − Pn+1,n(z⋆, y) (D.27)

is again an acceptable matching of 2n points (although not the same points used
in En), so it has to be greater than or equal to En because En is the optimal
matching of 2n points. So we have Pn+1,n(z⋆, y) ≥ 0. On the other side, also

En+1 + Pn+1,n(z⋆, y) (D.28)

is an acceptable matching of 2(n+ 1) points, which similarly leads to
Pn+1,n(z⋆, y) ≤ 0. Therefore we have Pn+1,n(z⋆, y) = 0, which is the absurdum.
Notice that actually we can have paths equal to zero and so {z} ≠ ∅ if there are
“compatible sub-matchings” with the same cost. However this kind of degener-
acy can be easily taken into account with a slight modification of our arguments
(for simplicity we will consider here the non-degenerate case only).

Case 2: now we consider Pn+1,n(z⋆, w) = Pn+1,n(z⋆, z
′), with z′ = z′(z⋆) ∈

{z}. Take y1 ∈ {y} such that the signed path P̃n,n+1(y1, y2) ends in y2 ∈ {y}.
A such point y1 have to exist: indeed, a path starting from y ∈ {y} can only
end in another point of {y} or a point of {z}. However, since En+1 has two
points more than En, the set {y} has two more point that the set {z}, so at
least one of the paths starting from points in {y} has to finish in {y}. As in the
case 1, Pn+1,n(z⋆, z

′)− P̃n,n+1(y1, y2) has the same number of links of both the
matchings and

En − Pn+1,n(z⋆, z
′) + P̃n,n+1(y1, y2) (D.29)

and
En+1 + Pn+1,n(z⋆, z

′)− P̃n,n+1(y1, y2) (D.30)

are acceptable matchings of, respectively, n and n + 1 points. So the proof
proceeds as the previous case.

Proof, part II: order. We want to prove Equation (4.72). Let us denote
with {x1, x2, x3, x4} the four points of En+1 which are not used in En−1. Let
xi be such that Pn−1,n+1(xi, xj), that is the ending point of the signed path
starting in xi is xj . Two such points xi and xj have to exist for definition of
path and because of the stability property (the path starting in xi cannot end
somewhere else than in another of the x’s). Then

En+1 − Pn−1,n+1(xi, xj) ≥ En, (D.31)

because this is an acceptable matching of n points and En is the optimal among
these matchings. But also

En−1 + Pn−1,n+1(xi, xj) ≥ En, (D.32)

because this is an acceptable matching of n points and En is the optimal among
these matchings. Therefore equation (4.72) follows.
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Figure D.1: Free energy landscape for the Hamming weight problem defined in
Sec. 4.2.3, for various values of inverse temperature β and of the penalty term
parameter λ. In particular, the second column shows to the temperature in
which the role of the local and global minimum is exchanged, and the second
row shows what happens if we use the minimum value for λ. Notice that there
is no local minimum in this last case.

Figure D.2: Example of minor embedding: on the left there is the problem
graph, on the right the hardware graph. Each vertex is a spin, the black con-
tinuous edges are ferromagnetic couplings, the black dashed edge is a antiferro-
magnetic couplings and the red wavy edges are the couplings used for the minor
embedding. Therefore the blue spin in the problem graph corresponds to the
three blue spins in the hardware graph.
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