
Università degli Studi di Milano

Facoltà di Scienze Matematiche, Fisiche e Naturali

Corso di Laurea Magistrale in Fisica

Non-equilibrium relaxation for

Driven Lattice Gases

Relatore: Prof. Sergio Caracciolo

Correlatore: Dott. Andrea Sportiello

Tesi di Laurea di

Valerio Volpati

matricola 771455

Codice PACS: 5.70.Jk, 64.60.-i

Anno Accademico 2010-2011





Contents

Introduction 1

1 The Model 4

1.1 Ising Lattice Gas . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Driven Lattice Gas . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Critical dynamics 12

2.1 Dynamical �eld theory . . . . . . . . . . . . . . . . . . . . . . 13
2.2 JSLC theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Is the current a relevant parameter? . . . . . . . . . . . . . . . 21

3 Finite-size scaling 23

3.1 Isotropic �nite-size scaling . . . . . . . . . . . . . . . . . . . . 23
3.2 Anisotropic �nite-size scaling . . . . . . . . . . . . . . . . . . 27
3.3 FSS for the DLG model . . . . . . . . . . . . . . . . . . . . . 27

4 Short-time scaling 30

4.1 Model A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Scaling Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Short-time scaling for the DLG 37

5.1 Phenomenological scaling . . . . . . . . . . . . . . . . . . . . . 38
5.2 Short-time scaling and �eld theory . . . . . . . . . . . . . . . 52

I



Conclusions 55

Bibliography 57

II



Introduction

According to the atomic hypothesis, matter consists of atoms or molecules

that move according to the laws of classical or quantum mechanics. This dy-

namical description of the macroscopic world turns out to be impossible, due

to the very large number of degrees of freedom of any macroscopic system.

Fortunately, at the beginning of the 20th century, a fundamental set of ideas

emerged and became what now is called Statistical Mechanics. Statistical

Mechanics provides a method for relating the microscopic properties of indi-

vidual atoms and molecules to the properties of macroscopic systems. In the

framework given by Gibbs, Statistical Mechanics states that the probability

distribution P (S) of a macroscopic state S at the equilibrium, is given, in

terms of the Hamiltonian of the system H(S), by P (S) ∝ e−βH(S). For the

non-equilibrium systems a general approach, similar to equilibrium Statisti-

cal Mechanics is still missing. The concept of equilibrium is intended to be,

following Richard P. Feynman, when all the fast things have happened but the

slow things have not. The main reason for studying non-equilibrium systems

is that most systems found in nature aren't in thermodynamic equilibrium.

These non-equilibrium systems can be divided into two big classes, those

with a slow dynamics which, prevents them to relax in an observable time,

and those with an external perturbation, which does not allow the system

to equilibrate with its environment. Often, the systems belonging to the

last class settle down in a Non Equilibrium Steady State, determined by the

dynamics of the system and whose probability distribution is a priori dif-

ferent from the Gibbs one. This prominent role played by the dynamics of

the system is a consequence of the fact that in non-equilibrium systems time

reversal is not a symmetry of the dynamics and this leads to a violation of
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the detailed balance condition.

The main di�culty in the description of non-equilibrium phenomena,

compared to equilibirum ones, is that while the latter are described by av-

erages over well de�ned Gibbs ensebles, non-equilibrium systems don't have

universal and simple behaviour. Consequently, a reasonable approach con-

sists in investigating systems which are, just as the Ising model for equi-

librium critical phenomena, as simple as possible. The Driven Lattice Gas

(DLG) model, whose introduction was partially motivated by the physics

of solid electrolytes, is a straightforward generalization of the Ising model

that displays a non-equilibrium continuous phase transition, and that's why

it became one of the main benchmark for non-equilibium theories and �eld

theoretical approaches. It consists of an ordinary Ising lattice gas, where the

transition rates for the jumps to nearest neighbours empty sites are spec-

i�ed not only by the internal energy, but also by an external driving �eld

that biases the jumping rates in a particular direction. A very interesting

aspect of this model is that it displays a second-order phase transition at

a �nite temperature Tc. For T > Tc the system lies in a disordered phase,

with short ranged correlations, while for T < Tc the system separates into

two co-existing phases of particle-rich and hole-rich regions. Many studies

have focused on the DLG, using both continuous �eld theories and numer-

ical simulations, but after many e�orts, the universality class of the DLG,

and therefore also its critical exponents, remain a debated issue. Janssen,

Schmittmann, Leung and Cardy (JSLC) developed a �eld theory that de-

scribes the critical behaviour of the DLG, but some discrepancies beetween

the theory and the numerical simulations are still present. These ambiguities

in determining the critical exponents are mainly caused by some subleties in

implementing a proper anisotropic �nite-size scaling, and by the slowdown

of dynamics close to the critical point. This led Garrido, de los Santos and

Muñoz to propose an alternative �eld theory for the DLG, in particular when

the driving force is in�nite.

An interesting aspect of statistical systems with a continuous phase transi-

tion is that they exhibit a scale invariance even during their evolution toward

equilibrium or non-equilibrium steady states. Very intriguing is the fact that,
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surprisingly, this behaviour can be appreciated also in the short-time regime,

when the correlation length of the system ξ is still very small compared to its

equilibrium counterpart. The main advantage of this technique is that one

can measure the critical exponents using quite little computer resources.

In this work we tried to clarify some aspect about the short time be-

haviour of two variants of driven lattice gases, the in�nitely driven lattice

gas (IDLG) and the randomly driven lattice gas (RDLG)

This thesis is organised as follow:

• The �rst Chapter is a general introduction to the lattice gas models.

• The second Chapter is an introduction to dynamical �eld theory, with

a brief description of JSLC theory and RDLG theory, the theories that

are commonly believed to describe the critical behaviour of driven lat-

tice gas models.

• The third Chapter is about the �nite-size scaling, both for isotropic

and anisotropic systems.

• The fourth Chapter focuses on the short-time scaling.

• The �fth Chapter is about the short-time scaling for the DLG models.

It contains the simulations we performed to verify the scaling hyphote-

sis for these models.



Chapter 1

The Model

One of the simplest models which describe a system reaching a Non Equi-

librium Steady State, is the model introduced at the beginning of the eighties

by Katz, Lebowitz and Spohn [9]. This model, sometimes referred as KLS

or DLG, is a simple modi�cation of an Ising model on a periodic lattice with

Kawasaki dynamics [6]. The particles jump rates to nearest neighbour empty

sites are not only speci�ed by the variation of the energy of the system, but

there is an uniform driving �eld which biases the jump in a speci�c direction.

1.1 Ising Lattice Gas

An Ising lattice gas is a model of classical particles moving on a d-

dimensional hypercubic lattice Λ ⊂ Zd, in which at most one particle may

occupy each site. A con�guration of the system C is speci�ed by the occu-

pation number n~x of each site of the lattice, then n~x ∈ {0, 1}, ~x ∈ Λ and

C ∈ C(Λ) = {0, 1}Λ. Clearly, instead of the occupation number, one can use

the spin variables: φ~x ∈ {−1, 1}, with φ~x = 2n~x−1. We are interested in the

dynamics of such a system that keep �xed the total number of particles, or,

in the spin language, �xed magnetization. In particular, we are interested in

half �lled lattices, i.e. with density

ρ =
1

Λ

∑
~x∈Λ

n~x =
1

2
. (1.1)

4



CHAPTER 1. THE MODEL 5

We assume that the internal energy of such a system is the classic Ising

Hamiltonian:

H = −4J
∑
<~x,~y>

n~xn~y, (1.2)

where the sum runs over all the lattice nearest-neighbours sites and the cou-

pling constant J may be either positive (ferromagnetic models) or negative

(antiferromagnetic ones). In the following, we will be interested in attractive

models and we will set, without loss of generality, J = 1. The model pre-

sented here has the same equilibrium distribution and critical properties of

the Ising model and so, for d ≥ 2, we expect a second order phase transition

occurring for a critical temperature Tc. In particular, in the case d = 2,

Tc = 2/ log(1 +
√
(2)), known as the Onsager temperature.

Given a con�guration C, and two nearest neighbours sites ~x and ~y, we

will denote by C~x~y the con�guration obtained by C exchanging the occupa-

tion numbers of the sites ~x and ~y. The dynamics of the system (Kawasaki

dynamics [6]) is constituted by a succession of moves of this type, so that

the total number of particles, or the particle density (1.1), remains �xed.

The following Master Equation describes this Markov Process in the phase

space C(Λ)

∂tP (C, t) =
∑

C′∈C(Λ)

{W (C ′ → C)P (C ′, t)−W (C → C ′)P (C, t)}, (1.3)

where P (C, t) is the probability that the con�guration of the system is C at

time t, and W (C → C ′) is the transition rate from the con�guration C to

another con�guration C ′. The transition W (C → C ′) in non zero only if C

and C ′ are connected by a spin exchange C~x~y. If the dynamics is irreducible,

i.e. any con�guration C ′ can be reached starting from any con�guration C,

then there is a unique stationary solution P s(C, t) such that ∂tP
s(C, t) = 0.

If the system is symmetric under time reversal, i.e. the time reversed

trajectory in the con�guration space has the same probability to be realized,

then the following equation holds

W (C → C ′)P s(C) = W (C ′ → C)P s(C ′), (1.4)
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for every con�gurations C and C ′ in the con�guration space. This equation

is the so called detailed balance condition for the stationary distribution P s.

If this equation is satis�ed, then each term in the right hand side of the

Master Equation (1.3) vanishes and P s is in fact stationary, but not all the

stationary measures satisfy detailed balance. Hence, it's easy to understand

that the stationary solution P s(C, t) is the usual equilibrium distribution

function e−βH(C), if the rates are chosen according to

W (C → C ′)

W (C ′ → C)
= e−β(H(C′)−H(C)). (1.5)

One may thus choose rates of the form

W (C → C ′) = w(β∆H), (1.6)

with an appropriate w such that

w(−x) = w(x)ex. (1.7)

Di�erent dynamics correspond to di�erent choices of the function w(x), but

the equilibrium distribution is indipendent from this choice. As we will see

later, this is not true for non-equilibrium system, where the dynamics play

a more fundamental role because it's not known any a priori probability

distribution for the stationary state.

1.2 Driven Lattice Gas

A driven lattice gas is a generalization of the model previously introduced,

in which we introduce an uniform electric �eld pointing in a particular di-

rection of the lattice. It will biases the transition rates favouring the jumps

along the �eld and unfavouring the jumps opposite to the �eld, while the

jumps in the other directions remain una�ected. This is done adding a term

to the rate W so that equation (1.6) becomes

W (C → C ′) = w(β(∆H + lE), (1.8)
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where l is −1(0, 1) for jumps against (transversal , along) the �eld. If we

consider periodic boundary conditions this �eld cannot be treated adding a

global potential term in the Hamiltonian and the system reaches a stationary

state which is not in thermal equilibrium. We can explicitly see that this

dymanics violates the detailed balance condition (1.4). A direct method to

verify if a given dynamical system displays detailed balance is to consider if

it's full�lled the following condition:

W (C1 → C2)W (C2 → C3)...W (Cn → C1) =

W (C2 → C1)W (C3 → C2)...W (C1 → Cn), (1.9)

for all possible cycles {C1, ..., Cn}. This condition is proven to be equivalent

to the detailed balance condition (1.4). Suppose now we have a con�guration

of the system where a single particle is isolated from all the other particles.

This particle could make a cycle in the direction of the �eld with a non-

zero probability p, while the probability for the particle to accomplish the

backward cycle is in general less than p (zero in the limit of in�nite driven

�eld). This example explicitly proves that DLG dynamics violates detailed

balance.

For half �lled lattices, the system shows a continuous phase transition

located at a temperature Tc(E). Surprisingly Tc(E) increases with E and

saturates to a �nite value Tc(∞) ' 1, 4Tc(0), where Tc(0) is the Onsager

temperature.

In the following, we will be mainly interested in two special cases of the

DLGmodel previously exposed, the IDLG (In�nitely Driven Lattice Gas) and

the RDLG (Randomly Driven Lattice Gas). The IDLG is obtained making

the formal limit E → ∞, so that we assign probability 1(0) for jumps along

(opposite to) the �eld. Instead, in the RDLG the �eld is always in�nite but

it is no more deterministically known but, chosen a direction for the �eld, it

points with probability 1/2 to the right and with probability 1/2 to the left.
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1.3 Symmetries

In determining the critical properties of a system, a decisive role is played

by the symmetry properties. For the DLG (and also for the in�nite �eld

version), with the �eld pointing in the x direction, the transition rates (1.8)

are invariant under any pair of the following transformation:

ni → 1− ni, E → −E, and x→ −x. (1.10)

We will refer at these properties, respectively, as charge coniugation (C), �eld

re�ection (R) and parity (P).

By contrast, for a RDLG, the randomness of E means that both C and P

are separately preserved, as in the Ising model. An obvious consequence of

this fact is that for a RDLG any equal-time correlation with an odd number of

spin must vanish [12]. We should remark that, below criticality, the situation

is more complex because, for both the IDLG and the RDLG, the formation

of the strip spontaneously breaks the symmetry of both C and traslation.

Hence, the di�erence beetween the two models is more clear for T > Tc

where the simmetries remains unbroken.

1.4 Observables

Considering a lattice gas de�ned on a two dimensional lattice Λ = Lx×Ly,

we assign to each site of the lattice an occupation number variable n~x or,

equivalently, a spin variable, φ~x = 2n~x − 1. Let's consider now the Fourier

Transform:

φ(~k) =
∑
~x∈Λ

ei
~k·~xφ~x. (1.11)

On a �nite lattice, ~k can assume only the values:

~kn,m =
(2π
Lx

n,
2π

Ly

m
)
, (1.12)
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Figure 1.1: Relaxation towards the equilibrium ordered phase for a 64x64 ising lattice
gas, from left to right.

with n ∈ (0, Lx) and m ∈ (0, Ly). We are interested in half-�lled lattice

which corresponds to zero magnetization:∑
~x∈Λ

φ~x = 0, (1.13)

i.e. φ(~k0,0) = 0.

When we consider the driven lattice gas, we add E along the x direction,

so we have Lx = L‖ and Ly = L⊥. In all the observed simulation, the ordered

phase consists in a single strip parallel to the direction of the �eld, so the

maximum of φ(~k) is for ~k0,1. A order parameter can then be de�ned as:

m(Lx, Ly) =
1

Λ
〈| φ(~k0,1) |〉. (1.14)

An alternative choice for the order parameter is the one introduced by Albano

and Saracco [28], de�ned as the excess density in the direction parallel to the

applied �eld:

OP (Lx, Ly) =
∑

x∈(0,Lx)

〈 ∣∣∣ ∑
y∈(0,Ly)

φ~x

∣∣∣ 〉. (1.15)

During the relaxation towards the ordered phase, the system shows a metastable

phase of multi-stripped ordering, as shown in Figure 1.2. The main di�er-

ence beetween the two previously introduced order parameters is that, while

m detect mainly the onset of the single-strip ordering, OP is independent to

which phase is the system in.

An immediate result, very common in the realm of non-equilibrium phe-
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Figure 1.2: Relaxation towards the stationary ordered phase for a 64x64 driven lattice
gas, from left to right. The ordered phase consist in a single strip parallel to the driven
�eld E.

nomena, is that the system display long range correlations. If we consider

the two-point function:

G(~x− ~y, Lx, Ly) = 〈n~xn~y〉, (1.16)

In the disordered phase, when ~x is taken in the subspace transverse to the

electric �eld, at large distances G shows a power law behaviour

G(~x, Lx, Ly) ∼ | x |−d . (1.17)

where d is the dimension of the system. We mention that the onset of these

long range correlations is a typical feature of many non-equilibrium systems,

and an explanation for this behaviour may be found in Section 2.2. In mo-

mentum space the static structure factor, i.e. the Fourier Transform of the

two-point function, has the expression

G̃(~k, Lx, Ly) =
1

Λ
〈| φ(~k) |2〉. (1.18)

Following the same considerations as for m, G̃ assumes its maximum for ~k0,1,

then it's natural to de�ne the transverse susceptibility as

χ(Lx, Ly) = G̃(~k0,1, Lx, Ly). (1.19)

Another quantity of great interest is the correlation length. Usually, correla-
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tion length is de�ned, for in�nite volume systems, as the parameter that rules

the long distance exponential decay of the two-point function, or, similarly,

the small momenta behaviour of the static structure factor. In this context,

this is troublesome because of the onset of these long range correlations, that

result in a discontinuity of the static structure factor for ~k = 0. Moreover,

it is not positive de�nite because of negative correlations in the transverse

direction. Furthermore, in �nite systems, there is no a priori unique way

to de�ne a �nite volume correlation length with the correct in�nite volume

limit. In [22], it's shown that

ξ(Lx, Ly) =
1

2

√
1

sin2(3π/Ly)− sin2(π/Ly)

( G̃(~k0,1, Lx, Ly)

G̃(~k0,3, Lx, Ly)
− 1

)
(1.20)

is a good de�nition for a transverse correlation length with a correct �nite-size

scaling, i.e. with regular �nite-size scaling functions and correct anomalous

behaviour above the upper critical dimension. The basic observations is

that in the DLG the in�nite volume wall-wall two-point function decays

exponentially.

We also de�ne an important parameter, the Binder parameter:

g(Lx, Ly) = 2− 〈 | φ(~k0,1) |4 〉
〈 | φ(~k0,1) |2 〉2

(1.21)

In the high temperature phase, the stationary state is expected to have a

Gaussian distribution, so that 〈 | φ(~k0,1) |4 〉 = 2〈 | φ(~k0,1) |2 〉2 and g(Lx, Ly) ∼
0. By contrast, at low temperature when the ordered phase is formed, we

expect 〈 | φ(~k0,1) |n 〉 ∼ 〈 | φ(~k0,1) | 〉n and g(Lx, Ly) ∼ 1.



Chapter 2

Critical dynamics

For every lattice model displaying a second order phase transition, in the

neighborhood of the critical point, we can limit ourselves to consider slowly

varying observables. At criticality, the lattice spacing a becomes negligible

compared to the typical length scale of the physics involved (the correla-

tion length ξ), hence the limit T → Tc is intimately connected to the limit

a → 0 [2]. In this way, it's possible to give a description of the system

in term of di�erent variables, hereafter called mesoscopic variables, de�ned

on a continuum spacetime. In principle, the dynamics of these variables

is obtained from the dynamics of the lattice model (1.3) throught a coarse

graining process. Because of the di�culty of performing a rigorous coarse

graining procedure [4], usually one postulates a dynamical equation, in the

form of a Langevin equation for the coarse grained degrees of freedom, that

keeps into account all the symmetries of the initial lattice model. Within this

broad constraints, one could think that an in�nite set of di�erent possible

coarse grained Langevin equation could give us an in�nite set of di�erent

predictions. However, for what concern the behaviour near the critical point,

universality tells us that more or less any equation of motion should lead

to the same universal properties. We know that this statement is rigorously

proven only for equilibrium critical phenomena, by means of the Renormal-

ization Group (RG) approach, while to what extent universality applies in

the context of dynamical critical phenomena is still unclear.

12
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2.1 Dynamical �eld theory

In principle, the laws of classical or quantum mechanics, should describe

the dynamics for all the possible observables of a physical system. But these

laws are time reversal invariant, and it's not easy to understand how the

dissipative processes, characteristic of macroscopic systems at �nite temper-

atures, appear in this context. Our ignorance about the detailed origin of this

mechanism is usually hidden in the coarse graining process, that transforms

a deterministic equation in a stochastic equation. The Langevin equation is

one of the most simple type of stochastic equation. After a coarse graining

process, a physical system is described in terms of a reduced set of discrete

variables ~q, and the Langevin equation reads

d

dt
qi(t) = −1

2
Fi(~q(t)) + ζi(t), (2.1)

where F is an external deterministic force, while ζ is a noise which models the

microscopic degrees of freedom eliminated after that a proper coarse graining

procedure has been performed. This noise can be de�ned by a probability

distribution [dP (ζ)] and we shall specialize to what is usually called Gaussian

white noise:

[dP (ζ)] = [dζ] exp
(
− 1

2σ

∫
ζ2i (t)dt

)
. (2.2)

Alternatively, the Gaussian white noise can be characterized by the �rst and

the second moments

〈ζi(t)〉 = 0, 〈ζi(t)ζj(t′)〉 = σδijδ(t− t′). (2.3)

Given the initial condition ~q(t0) = ~q0, the Langevin equation generates a time

dependent probability distribution P (~q, t) for ~q(t), whose dynamics can be

described in terms of the Fokker-Plank equation associated to the Langevin

equation (2.1)
d

dt
P (~q, t) =

1

2

∂

∂qi

(
σ
∂P

∂qi
+ Fi(~q)P

)
. (2.4)
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The deterministic force F is usually assumed to origin from an Hamiltonian,

so that

Fi(~q) =
δH[q]

δqi
. (2.5)

In this section, we would like to generalise these facts to the case when,

instead of a discrete set of variables ~q(t), we have a scalar �eld φ(x, t). Gener-

alization where the order parameter φ(x, t) is a vector �eld is straightforward,

but the choice of restricting to simpler scalar �elds, for spin models, is proven

to be su�cient. The simplest model where the dynamics is expressed in terms

of a �eld stochastic Langevin equation, is the so called Model A:

∂tφ(x, t) = −λδH[φ]

δφ
+ ζ(x, t). (2.6)

where the Hamiltonian H[φ] is the usual Landau-Ginzburg

H[φ] =

∫
ddx
{1
2
(∇φ)2 + τ

2
φ2 +

g

4!
φ4
}

(2.7)

and ζ(x, t) is a white noise

〈ζi(x, t)〉 = 0, 〈ζi(x, t)ζj(x′, t′)〉 = Nijδ(t− t′)δ(x− x′). (2.8)

When the above dynamics is intended to describe critical �uctuations around

thermal equilibrium, Nij must be chosen such that the �uctuation-dissipation

theorem (FDT) is satis�ed, i.e.

Nij = 2λkBTδij (2.9)

Model A describes for example the critical dynamics of a kinetic spin model

on the lattice.

The expectation value of a generic observable O[φ] over all possible real-
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ization of the noise ζ can be written as

〈O〉 =
∫

[dζ]O[φζ ]P [ζ] =

∫
[dφ]O[φ]

{∫
[dζ]δ(φ− φζ)P [ζ]

}
, (2.10)

where P [ζ] is the Gaussian probability distribution of the noise and φζ is the

solution of equation (2.6) for a given realization of the noise ζ. We use

δ(φ− φζ) = δ(∂tφ+ λ
δH[φ]

δφ
− ζ) det

[
∂t + λ

δ2H

δφ2

]
(2.11)

and we express the delta function as an exponential, using the auxiliary

Martin-Siggia-Rose �eld φ̃ [5] :

δ(ψ) =

∫
[dφ̃] exp

{∫
dt ddx φ̃(x, t)ψ(x, t)

}
. (2.12)

Hence, the average over the noise can be computed as

〈O〉 =
∫
[dφ dφ̃]O[φ] e−J [φ,φ̃] (2.13)

in terms of the dynamical functional

J [φ, φ̃] =

∫ ∞

0

dt

∫
ddx
{
φ̃
[
φ̇+ λ(τ −∇)φ+

λg

6
φ3
]
− λφ̃2

}
. (2.14)

Up to now, we didn't mention the initial conditions φ(x, t0), because usually

one is not interested in the in�uence of them, and so specify them in the

in�nite past, assume that the dynamics is ergodic, whence the equilibrium

values of any observable become indipendent of φ(x, t0). Later, when we will

be interested in the short time dynamics of these models, we will see how the

initial condition will enter in this context.

In some cases Model A is not suited to describe the dynamics of a physical

system. When the order parameter is conserved, for instance when the order

parameter is related to the density of particles as in a gas model, or for the

critical behaviour of spin models with spin-exchange sampling, one expect

the Langevin equation to have the form of a continuity equation, because of
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the conservation of the order parameter

d

dt

∫
dxφ(x, t) = 0. (2.15)

The simplest model where this conservation law is implemented is known as

Model B, whose Langevin equation is

∂tφ(x, t) +∇ · ~J(x, t) = 0, (2.16)

where
~J(x, t) = −λ∇ δH[φ]

δφ(x, t)
+ ~Jζ(x, t). (2.17)

A classi�cation of these dynamical universality classes, named with cap-

ital letters from A to J, has been done in the early seventies and is reviewed

in the classical paper by Hohenberg and Halperin [1].

2.2 JSLC theory

A �eld theory for the driven lattice gas has been proposed indipendenlty

by Jannsenn and Schmittmann, and by Leung and Cardy, in 1986 [10] [11],

and it gives exact predictions for critical exponents for 2 < d < dc = 5. We

will sketch here the main result of the theory, for more details we refer to the

review book written by Zia and Schmittmann [8]. This theory is a proper

modi�cation of Model B. The presence of the electric �eld ~E will generate an

additional contribution ~jE to the current ~J , whose form is postulated to be

the simplest form consistent with the simmetries of the lattice model (1.10).

Moreover, ~jE must vanish if no particle or no holes are present locally, so we

take it to be proportional to ρ(1− ρ). The simplest form consistent with the

above constraint is

~jE = 4ρ(1− ρ)~E = (1− φ2)~E (2.18)
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where ~E is a coarse grained odd function of the electric �eld ~E. The presence

of this current doesn't mean simply that we have to add a term like

∇ ·~jE = E∂2φ (2.19)

in (2.16-2.17), because we expect this new term to generate anisotropies in

(2.16-2.17) and to describe a non-equilibrium critical dynamics. This term is

then expected to violate the �uctuation dissipation relations (2.9). We then

will have couplings associated with longitudinal gradients di�erent from those

describing transverse gradients.

The resulting Langevin equation is, denoting transverse gradients by ~∇
and longitudinal ones by ∂

∂

∂t
φ(~x, t) = λ

(
(τ⊥ −∇2)∇2φ+ (τ‖ − α‖∂

2)∂2φ− 2α×∂
2∇2φ+ (2.20)

+
u

3!
(∇2φ3 + κ∂2φ3) + E∂φ2

)
− (~∇ · ~ξ + ∂ζ),

where we have divided the noise current, expected to be anisotropic, previ-

ously indicated as ~Jζ , in the longitudinal and transverse components, ζ and
~ξ. Therefore (2.8) can be rewritten as

〈~∇ · ~ξ(~x, t) ~∇′ · ~ξ′(~x′, t′)〉 = n⊥(−∇2)δ(~x− ~x′)δ(t− t′) (2.21)

and

〈∂ζ(~x, t) ∂ζ(~x′, t′)〉 = n‖(−∂2)δ(~x− ~x′)δ(t− t′). (2.22)

For an anisotropic system at the equilibrium, it can be shown that the FDT

theorem (2.9) becomes τ⊥/τ‖ = n⊥/n‖ but, with the electric �eld E, we

expect
τ⊥
τ‖

6= n⊥

n‖
. (2.23)

We will see that one of the �rst consequences of these equations is the onset

of long range correlations, speci�c of non-equilibrium systems. For temper-

atures far above Tc, a good approximation for the Langevin equation (2.20)
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is given by the linearized version

∂

∂t
φ(~x, t) = λ

(
(τ⊥ − α⊥∇2)∇2φ+ (τ‖ − α‖∂

2)∂2φ− (2.24)

2α×∂
2∇2φ

)
− (~∇ · ~ξ + ∂ζ).

De�ning φ(~x, t) =
∫
ei(

~k·~x+ωt)φ(~k, ω), the solution to (2.24) is simply

φ(~k, ω) =
[
iω + Λ(~k)

]−1

(−i)
[
~k⊥ · ~ξ + k‖ζ

]
(2.25)

where

Λ(~k) = λ
[
τ⊥k

2
⊥ + τ‖k

2
‖ + (α⊥k

4
⊥ + 2α×k

2
‖k

2
⊥ + α‖k

4
‖)
]
. (2.26)

Since the noise has zero mean, we obtain 〈φ〉 as expected. Furthermore, using

(2.21) and (2.22) we obtain the full dynamic structure factor

G̃(~k, ω) = 〈φ(~k, ω)φ(−~k,−ω)〉 =
~k · N · ~k

ω2 + Λ2(~k)
(2.27)

where N is the diagonal noise matrix, i.e.

~k · N · ~k = n⊥k
2
⊥ + n‖k

2
‖. (2.28)

Integrating over ω, we obtain the static structure factor:

G̃(~k) =
~k · N · ~k
2Λ(~k)

. (2.29)

Writing 2Λ(~k) = ~k · D · ~k +O(k4), where D is the di�usion matrix, i.e.

~k · D · ~k = 2λ(τ⊥k
2
⊥ + τ‖k

2
‖). (2.30)

Therefore, for small ~k, the static structur factor is

G̃(~k) →
~k · N · ~k
~k · D · ~k

. (2.31)
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The FDT theorem N ∝ D is not expected to hold for non-equilibrium system,

hence G̃ has a discontinuity singularity for ~k = 0. This singularity translates

into a power law decay for the equal-time two-point function in the real space;

we have

G(~x) = 〈φ(~x, 0)φ(~0, 0)〉 =
∫
ei
~k·~xG̃(~k). (2.32)

The large distance behaviour of G is controlled by the small momenta be-

haviour of G̃, so we can use the expression (2.31). Since D is a positive and

diagonal matrix, we can perform a change of variables de�ning ~k′ = D1/2 · ~k
and ~x′ = D−1/2 · ~x so that the previous equation reads

G(~x′) ∼ ~∇′ ·M · ~∇′
∫
ei

~k′·~x′

k′2
= ~∇′ ·M · ~∇′ (x′)2−d, (2.33)

where the matrix M is M = D−1/2ND1/2. For equilibrium systems M is

expected to be proportional to the identity matrix. This proportionality

is expected to fail for our non-equilibrium system, hence we can extract a

non-trivial traceless part of M, which we call M̄. Thus we �nd for large x′

G(x′) ∼
~r′ · M̄ · ~r′
r′d+2

, (2.34)

which is the announced power law decay.

Let's return now to the analysis of the complete Langevin equation (2.20).

Using the formalism outlined in the previous section for Model A, we can

write down a dynamical generating functional for this theory, that reads

J [φ, φ̃] =

∫
ddx dt λ

{
φ̃
[
λ−1∂t +∇2(∇2 − τ)− τ‖∂

2
]
φ+ E(∂φ̃)φ2 + φ̃∇2φ̃

}
,

(2.35)

neglecting irrelevant terms. In particular, the operator associated to the

coupling ∂2φ3 in the Langevin equation (2.20), turns out to be dangerously

irrelevant.

By means of standar RG techniques, renormalized expressions for re-

sponse and correlation functions, and critical exponents were exactly com-

puted in generic dimension d, for 2 < d < 5. An important feature of
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this theory is that it re�ects the strong anisotropy characteristic of the DLG

model, i.e. one �nds di�erent critical exponents for the longitudinal and for

the trasversal directions. For instance, from this �eld-theoretical model we

can extract a scaling relation for the dynamical structure factor

G̃(k‖, ~k⊥, t, τ) = µ−2+η G̃(k‖/µ
1+∆, ~k⊥/µ, tµ

z, τ/µ1/ν), (2.36)

where, apart from the usual critical exponents and the dynamical exponent

z, we have to introduce one more exponent, called anosotropy exponent,

denoted by ∆. Assuming µ = τ ν , the longitudinal and transverse momenta

scale with di�erent exponents

~k⊥ ∼ τ ν , k‖ ∼ τ ν(1+∆). (2.37)

Thus, in the scaling form (2.36), two di�erent correlation lengths emerge

from the small momenta behaviour, and so we have two di�erent critical

exponents ν

ν⊥ = ν, ν‖ = ν(1 + ∆) (2.38)

Similarly, by setting µ = t−1/z one gets

~k⊥ ∼ τ−1/z, k‖ ∼ τ−(1+∆)/z, (2.39)

thus two di�erents dynamical critical exponents emerge for the transverse

and longitudinal direction

z⊥ = z, z‖ = z/(1 + ∆) (2.40)

The η exponent is derived from the scaling form of the static structure factor

(t = 0) at criticality (τ = 0)

G̃(k‖, ~k⊥) = k−2+η⊥
⊥ Σ⊥(k‖/k

1+∆
⊥ ) = k

−2+η‖
‖ Σ‖(k⊥/k

1/(1+∆)
‖ ) (2.41)

one gets

η⊥ = η, η‖ =
η + 2∆

1 +∆
(2.42)
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Finally, the γ exponent controlling the critical behaviour of susceptibility.

De�ning transverse and longitudinal susceptibility as

χ⊥(τ) = G̃(k‖ = 0, ~k⊥ → 0, t = 0, τ), χ‖(τ) = G̃(k‖ → 0, ~k⊥ = 0, t = 0, τ),

(2.43)

we can also de�ne the γ exponents as

γ⊥ = γ‖ = ν(2− η) = γ. (2.44)

We note that η and γ may also be de�ned from the space dependent de�nition

of the two-point function. At variance with the isotropic case, the η−like and
γ−like exponents so obtained di�er from the ones previously de�ned, because

anisotropy enters into the intergation measure when performing the Fourier

Transform.

2.3 Is the current a relevant parameter?

Despite the fact that JSLC theory provides exact predictions for the crit-

ical exponents, and several computer simulations provided good support to

this �eld-theoretical prediction, still some discrepancies remained when the

driving �eld is in�nite [13]. This leads Garrido, de los Santos and Muñoz,

to propose an alternative �eld theory [14],[15],[16]. Following their analysis,

they suggested that the in�nitely driven lattice gas (IDLG) should not be-

have as predicted by JSLC but should rather belong to the universality class

of the randomly driven lattice gas (RDLG). Because this theory is commonly

believed to describe the critical behaviour of the RDLG lattice model, in lit-

erature it is referred as RDLG theory. We point out that this choice might

be misleading, because the same name is used for both the lattice model and

the continuum �eld theory. We point out that the RDLG theory is expected

to be appropriate to describe also the critical properties of a Ising lattice gas

under two temperatures, in which particle hops in the parallel direction are

coupled to a di�erent temperature bath than in the transverse direction.

In their paper, Garrido, de los Santos and Muñoz suggested that the dis-
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Figure 2.1: Critical exponents for JSLC and RDLG theory, from [30]

crepancy in the value of the exponent β is due to the fact that when the �eld

is in�nite, the anisotropy, and not the current, becomes the basic ingredient

controlling the critical behaviour. They suggested that the coe�cient of the

nonlinear term ∂φ2 should vanish in the limit of in�nite driving �eld, and so

should not appear in the �nal Langevin equation that should be:

∂

∂t
φ(~x, t) = λ

(
(τ⊥ −∇2)∇2φ+ (τ‖ − α‖∂

2)∂2φ− 2α×∂
2∇2φ+ (2.45)

+
u

3!
(∇2φ3 + κ∂2φ3)

)
− (~∇ · ~ξ + ∂ζ).

This theory has been estensively studied in [17], its critical dimension is

dc = 3 (instead dc = 5 for the JSLC theory) and the critical exponents are

known up to two loops perturbatively in ε = 3 − d. The resulting critical

exponents, for both JSLC and RDLG theory, are listed in Figure 2.1, for

generic d dimesional system, and speci�cally for d = 2.



Chapter 3

Finite-size scaling

Continuous phase transitions are characterized by a non-analytic be-

haviour of the observables at the critical point. Of course, these non-analyticies

are observed only in the in�nite volume limit. However, even large but �nite

systems show an universal behaviour called Finite-size scaling (FSS). The

FSS, formulated for the �rst time by Fisher [18], is a powerful method to �nd

the values for the critical exponents and the transition temperature, by ob-

serving how measured observables vary for di�erent lattice sizes. To compare

numerical results (obtained in a �nite system) with theoretical predictions

(observed only in the thermodynamic limit), FSS analysis is of fundamental

importance.

3.1 Isotropic �nite-size scaling

For systems displaying a second order phase transitions, there are observ-

ables O which, in the in�nite volume limit, behave as

〈O〉∞ ∼ |τ |−xO , for τ → 0, (3.1)

where τ = (T −Tc)/Tc is the reduced temperature. An important observable

that display this diverging behaviour is the correlation length

ξ ∼ |τ |−ν . (3.2)

23
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In a �nite system, for instance a 2−dimensional lattice L × L, the �nite

volume mean values OL = 〈O〉L are analytic functions of τ . This analytic

dependence on control parameters implies that the interchange of the in�nite

volume limit with the limit τ → 0 is in general not permitted:

lim
τ→0

lim
L→∞

OL(τ) 6= lim
L→∞

lim
τ→0

OL(τ), (3.3)

However, for large L, the FSS theory predicts that, when the limit is taken

such that τ → 0, L → ∞, keeping τL1/ν constant, for these mean values

holds a scaling behaviour of the form [19]

OL ∼ LxO/ν F1,O(τ
−ν/L), (3.4)

where the function F1,O is �nite, non-vanishing in zero and tends to zero

when is argument approach ∞ as

F1,O(z) ∼ | z |−xO for z → ∞. (3.5)

The equation (3.4) can be rewritten in terms of the correlation length ξ, in

order to avoid the knowledge of the critical temperature Tc,

OL ∼ LxO/ν F2,O

(
ξ(τ)

L

)
(3.6)

where F2,O is �nite for z → ∞ and

F2,O(z) ∼ |z|xO/ν for z → 0. (3.7)

Equation (3.6) indicates that the only relevant length scale is given by the

correlation length ξ, so it's natural to expect that in FSS for a system with

length scale L only the ratio ξ/L is relevant. This equation can be used,

in a numerical simulation, for the determination of the critical temperature.

Considering an observable as the Binder's cumulant gL(τ), for which xg = 0,

at the critical point it will be independent from L. Collecting data taken

from lattices with di�erent sizes, and plotting them as a function of the
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temperature T , in the point corresponing to T = Tc all the curves cross each

other. Similarly, once Tc has been determined, one may determine ν using

ξL/L and then all the others critical exponents may be derived with the same

technique.

From equation (3.6) we can derive a general relation for the ratio of OL

at two di�erent sizes L and αL. We obtain

OαL(τ)

OL(τ)
= FO

(
α,
ξL(τ)

L

)
(3.8)

where ξL(τ) can be obtained by inverting ξL = LF2,ξ(ξ/L).

De�ning z = ξL/L, the function FO(α, z) is universal and is directly accessible

numerically, for instance by Monte Carlo simulations, because all quantities

appearing in (3.8) are directly measurable and the precise knowledge of the

critical temperature is not necessary. Therefore, using this equations we can

have an improved method for the determination of the critical exponents [20].

Varying τ in a �xed geometry, z = ξL/L varies beetween 0 and the critical

value z∗ de�ned by

z∗ = F2,ξ(∞). (3.9)

For ordinary phase transitions z∗ turns out to be �nite, at the critical point

τ = 0 we have

OL(τ = 0) ∝ LxO/ν . (3.10)

Then

FO(z
∗) =

OαL(τ = 0)

OL(τ = 0)
= αxO/ν . (3.11)

The previous equation, once it has been found the values of z∗ and ν, can be

used to determine any critical exponent xO, just by inverting it

xO
ν

=
logFO(z

∗)

logα
. (3.12)

For the determination of z∗, we procede as follow: we measure the �nite

volume correlation length ξL(T ) for several values of the temperature T and
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we determine Fξ by means of equation (3.8):

ξαL(T )

ξL(T )
= Fξ(ξL(T )/L), (3.13)

�tting the data of the left hand side as a function of ξL(T )/L gives us an

estimate of the function Fξ. Then the value of z∗ can be derived from

α = Fξ(z
∗), (3.14)

which follows directly from (3.8) and (3.10). To determine the ν exponent

we note that, from equation (3.4), we can expand the functions zL = ξL/L

around τ = 0 and we have

zL = z∗ + F ′
1,ξ(0) · (τL1/ν) +O((τL1/ν)2). (3.15)

Hence we have

zαL
zL

= 1 +
F ′
1,ξ(0)

z∗
(α1/ν − 1)(τL1/ν) + +O((τL1/ν)2). (3.16)

The two previous equations imply that

d

dzL

zαL
zL

∣∣∣∣
zL=z∗

=
α1/ν − 1

z∗
, (3.17)

and then, using α = Fξ(z
∗),

z
d

dz
logFξ(z)

∣∣∣∣
z=z∗

= α1/ν − 1. (3.18)

Therefore, the value of ν can be recovered only by means of the FSS function

Fξ.
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3.2 Anisotropic �nite-size scaling

In strongly anisotropic systems it happens that the correlations length

diverges at the critical point with di�erent ν exponents, so that we should

clarify how to manage the two correlation length ξ‖, ξ⊥. In the speci�c case of

the DLG, both the continuum �eld theory introduced in the previous Chapter

predict the presence of an anisotropy exponent ∆. Following the approach of

[21], we will assume that all the observables have a correct FSS limit taking

both the longitudinal size L‖ and the transverse one L⊥ to in�nity keeping

�xed both combinations τL
1/ν‖
‖ and τL

1/ν⊥
⊥ , and therefore also the anisotropic

aspect ratio S∆

S∆ =
L

1/(1+∆)
‖

L⊥
. (3.19)

Hence, the FSS equations (3.4) and (3.6) can be rewritten

OL⊥ ∼ L
xO/ν⊥
⊥ F1,O(τ

−ν⊥/L⊥) ∼ L
xO/ν⊥
⊥ F2,O(ξ⊥/L⊥) (3.20)

Similarly, the equation (3.8) can be cast in the form

OαL⊥(τ, S∆)

OL⊥(τ, S∆)
= FO

(
α,
ξ⊥,L⊥(τ)

L⊥
, S∆

)
. (3.21)

We mention here that, because the FSS limit must be taken at �xed S∆, a

de�ciency of any numerical simulation is that the exponent ∆ has to be �xed

since the beginning of the analisys.

3.3 FSS for the DLG model

A detailed study of the FSS for the DLG have been done by S. Carac-

ciolo, A. Gambassi, M. Gubinelli and A. Pelissetto [23] at the beginning of

this century, whose results con�rmed the Gaussian nature of the transverse

�uctuations, in according with the JSLC theory. For the JSLC theory, we
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can compute exactly the two-point function (see Section 5.2):

G̃⊥(k) =
1

k2 + τ ′
, (3.22)

where τ ′ is the �eld theory "bare mass" and not the reduced temperature τ .

However, we expect τ ′ = bτ +O(τ 2) for τ → 0 where b is a positive constant.

Moreover, equation (3.22) refers to the mesoscopic �eld φ(x, t) but for the

lattice function we are interested in, we expect in the scaling limit τ → 0,

k → 0 with k2/τ �xed

G̃⊥,latt(k) =
Z

k2 + τ ′
, (3.23)

where Z is another positive constant and the momentum k is quantized.

Using the previous expression and the de�nition (1.20) we �nd

ξ⊥,L⊥(τ)

L⊥
=
[
(2π)2 + bτL2

⊥
]−1/2

. (3.24)

This expression is expected to be valid in the FSS limit, hence for τ → 0,

L‖, L⊥ → ∞ with τL2
⊥, and keeping S∆ constant. Thus we can express the

previous equation also in the form

1

|ξ⊥,L⊥(τ)|2
=

1

ξ∞(τ)2
+

4π2

L2
⊥
, (3.25)

where we can see the �nite volume corrections to the correlation length.

Moreover we can compute the scaling function Fξ(α, z, S∆) de�ned in equa-

tion (3.21). We obtain

Fξ(α, z, S∆) =
[
1− (1− α−2)(2π)2z2

]−1/2
, (3.26)

from which, using the implicit de�nition Fξ(α, z
∗, S∆) = α we can see

z∗ =
1

2π
. (3.27)

In references ([23]) a numerical check of these theoretical predictions han

been carried out, �nding a good agreement with the fact that the critical
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behaviour of transverse �uctuations in the DLG is Gaussian, as predicted

by JSLC theory. Furthermore, using the method sketched in the previous

section, the disputed β exponent is calculated, giving a value β ∼ 1/2, in

accordance with JSLC theory.

We give a �nal comment on the order parameter m de�ned in (1.14). In

JSLC theory the �rst transverse mode of the Fourier Transform φ(~k0,1) is

expected to have a Gaussian distribution

N exp

(
−|φ(~k0,1)|2

L‖L⊥χ⊥

)
d[φ(~k0,1)]d[φ

∗(~k0,1)], (3.28)

where N is some normalization factor. The mean value m = 〈φ(~k0,1)〉 can be

computed with the result

m2 =
π

4

χ⊥

L‖L⊥
. (3.29)



Chapter 4

Short-time scaling

Understanding the non-equilibrium properties of physical systems is cur-

rently one of the most challenging problems in statistical physics. In recent

times, particular interest has been devoted in the study of the universal be-

haviour for the dynamics of systems relaxing at criticality. It's pretty known

that, for dynamic systems in the long time regime, where the equilibrium is

almost reached, one �nds a dynamical scaling form. Due to critical slowing

down, however, numerical study of critical dynamics is very di�cult, such

that even for the simple two-dimensional Ising model the dynamic exponent

z has not yet rigorously been determined.

More recently, it has been argued that universal scaling behaviour already

emerges in the short time regime of the relaxation process, even though the

correlation length ξ is still very short compared with the system size. This

fact has been �rst showed to be true for Model A by Janssen, Schaub and

Schmittmann [24], and then applied to some extent for equilibrium models.

The advantages of this technique are easy to understand, mainly very short

simulation are needed to obtain critical exponents, while equilibrium (or

steady-state) or longer-time methods are usually very demanding in computer

time. In some system, like Model A, there is also the presence of a new

indipendent exponent.

When a system is prepared at high temperature, and then allowed to re-

lax at criticality, for (microscopically) short times after the start of the relax-

30
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ation, the behaviour is governed by non-universal microscopic processes and

the physics of the system can be described only on the basis of a microscopic

theory. Later, the system display an intermediate stage of the relaxation

process, termed "critical initial slip", which eventually crosses over to the

long-time time behaviour. The main feature of the critical initial slip is that

display universal behaviour.

If Janssen, Schaub and Schmittmann in their seminal work [24] laid the

foundations for the theoretical study of the early stages of the relaxation

process, much more theoretical and numerical work has been performed since

then [25]. Furthermore, it has been shown that the same set of ideas can be

applied for a dynamical study of the long-time regime, in order to understand

and describe the critical ageing [26]. In particular, the method has been

extended to systems not yet rigorously treated theoretically, such as non-

equilibrium phase transitions.

We revise these aspect in this Chapter and then, in the next Chapter

we will see how this approach has been applied for the case of driven lattice

gases.

4.1 Model A

Consider an Ising model at a temperature T � Tc. Being far away

from criticality, all correlations will be short-ranged. With a non-zero initial

magnetization and quenching the system rapidly to a temperature T ∼ Tc,

the process will display a critical initial slip, when the magnetization will

increase with a power law behaviour m ∼ tθ
′
. Later, the system enters

in a transition regime, that is not well understood. After that, we �nd

the long-time scaling regime, where the magnetization decreases to zero (its

equilibrium value), characterised by the power law m ∼ t−β/νz. When we

are at the critical temperature, such a regime of nonlinear relaxation would

extend for every arbitrary big time t, thanks to the critical slowing down.

This qualitative picture is summarized in Figure 4.1.

The short-time scaling behaviour for the order parameter, as well as anal-

ogous scaling behaviour for the dynamic susceptibility and the order parame-
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Figure 4.1: Qualitative time dependence of the magnetization M(t) at criticality (τ =
0), from [24].

ter correlation function, can be understood in the framework of dynamic �eld

theory. The dynamics of the �uctuation of the local magnetization φ(x, t)

can be expressed in the form of the Langevin equation (2.6) of Model A:

∂tφ(x, t) = −λδH[φ]

δφ
+ ζ(x, t), (4.1)

As seen in Section 2.1, the average over the noise can be computed as

〈O〉 =
∫

[dφ dφ̃] O[φ] e−J [φ,φ̃] (4.2)

in terms of the dynamical funcional

J [φ, φ̃] =

∫ ∞

0

dt

∫
ddx
{
φ̃
[
φ̇+ λ(τ −∇)φ+

λg

6
φ3
]
− λφ̃2

}
. (4.3)

This weigh functional exp{−J [φ, φ̃]} can be interpreted as a path probability

density for the time and space dependent path {φ(x, t), φ̃(x, t)}. Hence, it is
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a functional of the initial con�guration at t = 0, φ(x, t = 0) = φ0(x). If we

want to study the short-time behaviour of the dynamics we can't ignore this

initial condition. Hence, in addition to averaging with respect to exp{−J},
we also average over φ0(x) with a probability distribution exp(−H0[φ0]) with

H0[φ0] =

∫
ddx
[τ0
2
(φ0(x)− a(x))

]
. (4.4)

This speci�es a macroscopically prepared initial state a(x) with correlations

〈[φ0(x)− a(x)][φ0(x
′)− a(x′)]〉 = 1

τ0
δ(x− x′), (4.5)

where the average is computed with respect to the probability distribution

speci�ed by H0. Thus, in the following, all the dynamical response and

correlation functions can be obtained from the functional

J [φ, φ̃, φ0] = J [φ, φ̃] +H0[φ0] (4.6)

Using standar dimensional analysis, if µ is an external momentum scale,

τ0 ∼ µ2. Therefore, the �xed point value for τ0 correspond to τ0 = ±∞
or τ0 = 0 [24]. Since τ0 = 0 and −∞ yield non-normalizable probability

distribution functions, the �xed point of physical interest will be τ0 = ∞.

Hence, corrections due to �nite value of τ0 will be irrelevant in the RG sense,

thus we can set τ−1
0 = 0 from the beginning of the calculation.

Using standard RG techinques [24], the response and correlations func-

tions may be obtained by a perturbative expansion of the weight exp{−J [φ, φ̃, φ0]}
about its Gaussian part, in terms of the coupling g. Even if a complete de-

scription of the renormalization procedure is beyond the scope of this section,

we mention here that the breaking of time translation invariance, which re-

�ects the presence of a time surface t = 0, does not allow the factorization of

the connected correlation functions in terms of one-particle irreducible ones

(1 PI), making necessary a perturbative computations in terms of connected

functions only.

The main results are the following:
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The correlation fuction

Cq(t, t
′) = 〈φ(q, t)φ(−q, t′)〉 (4.7)

for t′ → 0 is given by

Cq(t, t
′) = q−2+η

( t
t′

)θ−1

fC(qξ, q
zt) (4.8)

and the magnetization

M(t) =

∫
dx 〈φ(x, t)〉, (4.9)

at criticality, for t→ 0 is

M(t) =M(0)tθ
′
fM(tθ

′+β/νzM(0)) (4.10)

where

fM(x) ∼

{
1 if x→ 0

1/x if x→ ∞ ,
(4.11)

and

θ′ = θ + (2− z − η)/z (4.12)

Finally, the same analysis can be carried out also for Model B dynamics.

One �nds that all the correlation and response function are convergent in the

short-time limit, hence the theory becomes trivial, in the sense that no new

exponent can be found in this limit

4.2 Scaling Forms

The results obtained by Janssenn, Schaub and Schmittmann for the order

parameter (4.10),(4.11) are usually written using a scaling form:

M(t, τ,M0) = b−β/νfM(b−zt, b1/ντ, bx0M0), (4.13)
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where the parameter b represents a spatial rescaling factor. Here β, ν are

the well known static critical exponents, z is the dynamic exponent and x0

is the scaling dimension of the initial magnetization M0. If we set b = t1/z,

the main t−dependence on the right is cancelled and the previous equation

becomes, at criticality (τ = 0)

M(t, τ,M0) = t−β/νzfM(1, 0, tx0/zM0), (4.14)

This scaling form reproduces the results (4.10),(4.11), with θ′ = (x0−β/ν)/z
assuming that fM at criticality is a regular function in its third argument

fM(1, 0, y) ∼ y (4.15)

for short times and small initial magnetization. For almost all the statistical

systems studied up to now, the exponent θ′ is positive, i.e. the magnetization

undergoes a critical intial increase. Furthermore, fM is supposed to approach

a constant value for large times, losing its dependence from the initial mag-

netization. Hence, for longer times we get the usual critical decrease

M(t) ∼ tβ/νz. (4.16)

An extension to �nite system have been proposed:

M(t, τ, L,M0) = b−β/νfM(b−zt, b1/ντ, b−1L, bx0M0). (4.17)

In this generalization, when setting b = t1/z, the same argument is expected

to be valid. And it's expected to be valid even when we are close to criticality

(τ ∼ 0), but not necessary at criticality. Indeed, in the short time regime,

the time dependent correlation length ξ(t) ∼ t1/z is expected to be small with

respect to both the equilibrium correlation length ξeq ∼ τ−ν and the size of

the system L, so that we expect t−1/zL� 1 and t−1/zτ−ν � 1.

Note that, in order to observe this initial increase in the magnetization

M(t), a small but non-zero value for M0 is needed, because the magnetiza-

tion is antysimmetric under re�ections of M0, i.e M(t,M0) = −M(t,−M0),
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implying that M(t, 0) = 0 for all t. When we attempt to generalize a scaling

form such as (4.17) for di�erent order parameters and for di�erent systems,

the same argument is valid for all the order parameters that have this prop-

erty.

Other observables that display a power law behaviour at short times are the

moments of the magnetization M (k), for which we can write an analogous

scaling form [3]

M (k)(t, τ, L,M0) = b−kβ/νfM(b−zt, b1/ντ, b−1L, bx0M0). (4.18)

Using more than a scaling form for di�erent moments of the magnetization

can be useful for a cross-check test on the critical exponents.

Up to now a completely disordered initial state has been considered as

starting point of the relaxation process, i.e. a state with very hight temper-

ature. Another interesting possibility is starting from a completely ordered

state, and suddently heat up the system to the critical temperature. Starting

from equation (4.14) and setting b = t1/z, if we assume that we can drop the

dependence from M0 we see that for short times the magnetization decays

by a power law M(t) ∼ t−β/νz.

Another interesting aspect is the extent to which one can use the short

time approximation. The determination of the crossover time is troublesome,

because the previous approximations can break up for di�erent time scales,

which can be determined from the relations M0t
x0/z ∼ 1, ξ(t) ∼ L or ξ(t) ∼

ξeq. A possible generalization is [27]:

M (k)(t, τ, L,M0) = b−kβ/νfM(b−zt, b1/ντ, b−1L, φ(b,M0)), (4.19)

where the scaling behaviour of the initial magnetization M0 is speci�ed by

the universal funciton φ(b,M0). In the limit M0 → 0, φ(b,M0) tends to

the simple form bx0M0 used in the previous equations, but pretend also to

describe the crossover behaviour beetween the short time regime and the long

time one.



Chapter 5

Short-time scaling for the DLG

We studied the critical relaxation for the DLG in two dimensions by

Monte Carlo simulations. Our aim is to check the validity of some proposed

scaling forms for the order parameters of this model (1.14) and (1.15) in the

present literature [28] [30]. We use the dynamics discussed in Sect. 1.2, with

Metropolis rates, i.e.

w(x) = min (1, e−x). (5.1)

Simulations were permformed at in�nite driving �eld E, i.e. forward (back-

ward) jumps in the direction of the �eld are always accepted (rejected). We

studied the relaxation process both keeping �xed the direction of the �eld

(IDLG) and with a random �eld (RDLG). In all cases the density ρ is 1/2

while time t is measured in units of Monte Carlo time steps (mcs) involving

L‖ × L⊥ proposed moves. The initial con�guration is generated in a dis-

ordered state, but �xing the row magnetization to zero. Then the system

is allowed to evolve for a time t̄ that is very short compared to the time

required for the equilibration. Hence, this protocol is repeated N times in

order to obtain an averaged time evolution for the order parameters. In our

simulations, we set t̄ = 1000 mcs and N = 10000. The computational time

requested for this simulations was always less than 24 hours, even for the

biggest lattices considered (682, 40), on the average computers of the local

computer lab. This time is vey small compared to the time necessary for

the study of the steady state properties, which su�ers from a strong critical

37
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slowing down since the dynamical exponent of these models is pretty big

z = 4.

5.1 Phenomenological scaling

In the previous Chapter we've seen how scaling laws for the temporal

evolution of the various observables are generally assumed. We expect that a

generalization is possible for the driven lattice gas. For a generical observable

O, we expect a scaling form

O(t, τ, L‖, L⊥,m0) = bγO/ν⊥fO(b
−z⊥t, b1/ν⊥τ, b−ν‖/ν⊥L‖, b

−1L⊥, b
x0M0) (5.2)

where the anisotropy nature of the DLG has been taken into account. Here

M0 is the initial value of some order parameter for the DLG, such as (1.14)

or (1.15). We note here that these order parameter, unlike the magnetiza-

tion for the Ising model, are not antysimmetric with respect to their initial

value M0, so we can set M0 = 0 from the beginning. This condition can

be ensured for both the order parameters, preparing the system �xing the

row magnetization at zero, such that all transversal quantities vanish at zero

time. The big advantage of this procedure, known as sharp preparation, is

that we can signi�cantly improve the scale invariance of our results, but still

having statistically independent initial con�gurations. In fact, since the or-

der parameters (1.14) and (1.15) contain absolute values in their de�nitions,

their mean value for completely disordered state is di�erent from zero, and it

is size dependent. Therefore, merely generating random initial con�guration,

is not appropriate for observing a scale invariance in the evolution of these

observables.

Specializing to the case τ = 0, we set b = L⊥

O(t, 0, L‖, L⊥, 0) = L
γO/ν⊥
⊥ fO(L

−z⊥
⊥ t, 0, L

−ν‖/ν⊥
⊥ L‖, 1, 0). (5.3)
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Figure 5.1: Critical exponents for JSLC and RDLG theory, from [30]. This is the same
�gure as Figure 2.1, reported here for the readers convenience.

This scaling form depends on L‖ only through the anisotropic ratio

S∆ =
L
ν⊥/ν‖
‖

L⊥
=
L
1/(1+∆)
‖

L⊥
, (5.4)

hence we can write

O(t, L‖, L⊥) = L
γO/ν⊥
⊥ FO(L

−z⊥
⊥ t, S∆). (5.5)

For an order parameter M(t, L‖, L⊥)

M(t, L‖, L⊥) = L
−β/ν⊥
⊥ FM(L−z⊥

⊥ t, S∆). (5.6)

Firstly, this scaling form can be proven with no assumption on the form of

the function FM . With �xed S∆, we can eliminate one variable beetween L‖

and L⊥ and the previous scaling form reads

M(t, L‖) = L
−β/ν‖
‖ FM(L

−z‖
‖ t). (5.7)
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or, equivalently

M(t, L⊥) = L
−β/ν⊥
⊥ F̃M(L−z⊥

⊥ t). (5.8)

We present here our Monte Carlo simulation results, employing di�erent

lattices geometries. We performed simulations on lattices with �xed S∆ with

∆ = 1: (414, 36), (512, 40), (620, 44) for which S1 ' 0.32 and simulations on

lattices with �xed S∆ with ∆ = 2: (374, 36), (512, 40) (682, 44), for which

S2 ' 0.008. We took particulare care in considering only lattices with even

L‖ so that we can initialize the system �xing the row magnetization at zero.

We attempted to scale the data via equation (5.7) using both JSLC and

RDLG exponent values, using for JSLC exponents the exact values z‖ = 4
3

and β/ν‖ = 1
3
, while for RDLG theory the two-loops values z‖ ∼ 2 and

β/ν‖ ∼ 0.252, see Figure 5.1. As already pointed out in [28] the scaling

of the Albano-Saracco order parameter OP turns out to be independent

from the anisotropic exponent ∆ used in the simulation. At variance with

the results obtained in [28], we found a good data collapse for both the

continuum �eld theory, see Figure (5.2) and Figure (5.3). By contrast, the

Leung order parameter m proves to be ∆-dependent. In [30], Daquila and

Tauber showed how a superior data collapse is obtained using the exponents

of JSLC theory, but they used only anisotropic lattices with ∆ = 2. On the

contrary, simulations performed using lattices with∆ = 1 provide exactly the

opposite result, giving a good data collapse with the RDLG theory exponents,

see Figure 5.4 and Figure 5.5 . All these results turn out to be indipendent

from the simulation performed using either IDLG model or RDLG model.

We can push a little further our analysis on the scaling form (5.6) by

making some assumption on the scaling function FM . For short time we

expect a regime where, for a generic order parameter M , the scaling relation

(5.6) reads:

M(t, L‖, L⊥) ∼ L
−β/ν⊥
⊥

( t

Lz⊥
⊥

)x
Sy
∆. (5.9)

Particular attention should be paid to the fact that M depends on three

parameters, t , L‖ and L⊥. If we �x the dependence of M(t, L‖, L⊥) from

two of them, the �eld theory will automatically �x the dependence from the

third one. For both the order parameters m and OP , phenomenologically we
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Figure 5.2: Log-log plot of the order parameter OP for the IDLG model, according
to equation (5.7). Here L stands for L‖. A good data collapse, not depending from
the anisotropic aspect ratio S∆, is obtained for both the JSLC (upper panel) and the
RDLG exponents (bottom panel)

.
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Figure 5.3: Log-log plot of the order parameter OP for the RDLG model, according
to equation (5.7). Here L stands for L‖. A good data collapse, not depending from
the anisotropic aspect ratio S∆, is obtained for both the JSLC (upper panel) and the
RDLG exponents (bottom panel)
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Figure 5.4: Log-log plot of the order parameter m for the IDLG model, according to
equation (5.7). Here L stands for L‖. For these geometries, with ∆ = 2 a superior data
collapse is obtained with the JSLC exponents (upper panel) than with RDLG exponents
(bottom panel)
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equation (5.7). Here L stands for L‖. For these geometries, with ∆ = 1 a superior
data collapse is obtained with the RDLG exponents (bottom panel) than with JSLC
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can assume a dependence from L‖ of the form L
−1/2
‖ . In equation (5.9) the

dependence L‖ is contained only in the anisotropic aspect ratio S∆, hence it

must be

y = −(1 + ∆)

2
. (5.10)

Therefore we have

M(t, L‖, L⊥) ∼
L

1
2
(1+∆− 2β

ν⊥
)

⊥

L
1/2
‖

( t

Lz⊥
⊥

)x
, (5.11)

for both order parameters OP and m. Similarly, from the simulations we

see that the order parameter OP does not depend form L⊥. Therefore, from

equation (5.11) it must be

x =
1

2z⊥

[
1 + ∆− 2β

ν⊥

]
=

1

2z‖

[
1− 2β

ν‖

]
. (5.12)

We can see that, using both the JSLC exponents and the RDLG exponents,

it turns out that

x =
1

8
(5.13)

and so for OP we can write a scaling law

OP (t, L‖) ∼ L
−1/2
‖ t1/8, (5.14)

which is valid independently from the geometries of the lattice. With our

simulations, we �nd a good agreement with the scaling law (5.14) as shown in

Figure 5.6. In ref. [28] the same equation is derived in a di�erent way, apart

from the fact that they do not take properly into account the anisotropic

nature of the DLG, assuming z = z⊥ = z‖ as pointed out in [29] . The

dependence from L
1/2
‖ is explained from the presence of density �uctuation

along the rows when the lattice is �lled at random. We point out that this

argument is misleading, because we obtain the same dependence with a sharp

preparation, i.e. with no �uctuation in the initial value of OP . Moreover

they �nd the dependence from t1/2 using a regularity assumption on the space

dependence of their scaling function. We'll see later in this Section how this
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assumption can easily leads to wrong results.

Similarly, we proceeded for the Leung order parameter m (1.14). Phe-

nomenologically we see that the time dependence of this order parameter

during its evolution process is m ∼
√
t so that in equation (5.11) it must be

x = 1/2. (5.15)

Surprisingly, also in this case both the JSLC �eld theory and RDLG �eld

theory leads to a single scaling function for m that is expected to be valid

for lattices of any geometry

m(t, L‖, L⊥) ∼
√

t

L‖L
3
⊥
. (5.16)

In Figure 5.7 and Figure 5.8 it's shown an excellent agreement between this

scaling law and the simulation data for all the considered lattices. For sim-

ulation with �xed ∆ = 2, we see that equation (5.16) reads

m(t, L‖) ∼ L−1
‖ t1/2 (5.17)

In [30], Daquila and Tauber obtain the same equation assuming the regularity

of the scaling function FM in their scaling relation

m(t, L‖) = t−β/ν‖z‖FM(t1/z‖L−1
‖ ). (5.18)

Hence they get

m(t, L‖) ∼ L−1
‖ tx, , with x = (1− β/ν‖)/z‖. (5.19)

Therefore, using JSLC exponents they have x = 1
2
while using RDLG expo-

nents they expect x ∼ 0.37. Hence, �nding experimental results in according

to ours, they conclude that the DLG model is adequately described by the

JSLC theory and not by the RDLG theory. Unfortunately, also the simula-

tion performed with the RDLG lattice model, yelds a good data collapse with

the scaling (5.16) and (5.17), as is shown in Figure 5.8, hence the derivation
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contained in [30] is misleading.

Finally, we attempted to verify these scaling laws also for the ordinary

Ising lattice gas. In this case, to de�ne a order parameter is troublesome,

because the ordered phase doesn't have the strip form of the DLG. This

is the reason why most of the studies on the dynamical aspects of the Ising

lattice gas focus on di�erent observables [31]. However, since we are studying

an equilibrium model, we can change the boundary conditions. Fixing the

boundary condition such that the lattice sites of the �rst row are in contact

with a bath of positive-valued spins, and the lattice sites of the last row are

in contact with a bath of negative-valued spins, keeping periodic boundary

conditions for the left and right boundaries, the system quenches in a phase

with a single horizontal strip. Thus we can use the order parameters m and

OP of the DLG also for the equilibrium Ising lattice gas. Since we found that

the scaling law (5.14) and (5.16) describes accurately both the IDLG model

and the RDLG model, which are supposed to belong to di�erent universality

classes, we tried to �gure out if they were valid also for the Ising model. In

the isotropic case we can set L‖ = L⊥ = L, then (5.14) and (5.16) become

OP (t, L) = L−1/2t1/8 (5.20)

and

m(t, L) = L−2t1/2. (5.21)

The �rst of these equation, when compared to the numerical results, turns out

to be incorrect. Conversely, the second one turns out to be consistent with

the simulations, see Figure 5.9. Multiplying both sides of the last equation

by L1/8 we get

m(t, L)L1/8 = L−15/8t1/2 =
(
L−15/4t

)
, (5.22)

which is consistent with the scaling form 5.7, with the Ising exponents β/ν =

1/8 and the dynamical exponent z = 15/4.
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Figure 5.6: Log-log plot of the order parameter OP , for the IDLG model, here L
stands for L‖. Indipendently from the anisotropic aspect ratio S∆ we �nd a good data
collapse, in accordance with the scaling assumption (5.14).
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for L‖ and Ly stands for L⊥. Indipendently from the anisotropic aspect ratio S∆ we
�nd a good data collapse, in accordance with the scaling assumption (5.16).
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Figure 5.8: Log-log plot of the order parameter m, for the RDLG model, here Lx
stands for L‖ and Ly stands for L⊥. Indipendently from the anisotropic aspect ratio
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Figure 5.9: Plots for the OP and m order parameter for the Ising model with Kawasaki
dynamics. The �rst of these plots doesn't show a good data collapse, in contrast with
equation (5.20). Instead, the second plot provides a good evidence for the validity of
equation (5.21).
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5.2 Short-time scaling and �eld theory

In this section we will show how, one of the main result of the previous

section, equation (5.16), which describe the short-time evolution of the order

parameter m, can be derived in the framework of JSLC theory. The dynam-

ical functional generator for the JSLC theory, neglecting the dangerously

irrelevant operator is

J [φ, φ̃] = λ

∫
dt ddx φ̃[λ−1∂t+∇2(∇2−τ)−τ‖∂2]φ+E(∂φ̃)φ2+φ̃∇2φ̃. (5.23)

If we are interested only in transverse observables, we can look only at the

transverse theory, that can be obtained setting k‖ = 0. Because every non-

perpendicular term has a k‖ leg attached, we obtain the following functional

for the transverse theory

J [φ, φ̃] = λ

∫
dt ddx φ̃[λ−1∂t +∇2(∇2 − τ)]φ+ φ̃∇2φ̃. (5.24)

Therefore, we note the transverse Gaussian part of the JSLC theory is the

same than the transverse Gaussian part of Model B. An average is needed

also on initial conditions, so the dynamical generating functional of connected

functions is

W [h, h̃] =

∫
[φ, iφ̃] exp

{
−J [φ, φ̃]−H0[φ0] +

∫ ∞

0

dt

∫
ddxhφ+ h̃φ̃

}
(5.25)

This functional integralW [h, h̃] can be easily calculated, expanding it around

the solutions of the variational equations:

[−∂t + k2(k2 + τ)] φ̃c(k, t) = h(k, t) (5.26)

[∂t + k2(k2 + τ)]φc(k, t)− 2k2λφ̃c(k, t) = h̃(k, t)

with initial conditions

φ̃(k, t = ∞) = 0 (5.27)

φ(k, t = 0)− a(k) = τ−1
0 φ̃(k, 0).
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The general solutions for these equation is

φ̃c(k, t) =

∫ ∞

0

dt′ e−λk2(k2+τ)(t′−t)h(k, t′) (5.28)

φc(k, t) =

∫ ∞

0

dt′
[
e−λk2(k2+τ)(t′−t)h̃(k, t′) +

+
e−λk2(k2+τ)|t′−t| − (1− τ−1

0 (k2 + τ))e−λk2(k2+τ)(t′+t)

k2 + τ

]
+ (5.29)

+a(k)e−λk2(k2+τ)t.

Then we obtain

W [h, h̃] =
1

2

∫ ∞

0

dt

∫
ddx h(x, t)φc(x, t) + h̃(x, t)φ̃c(x, t) + a(x)δ(t)φ̃c(x, t).

(5.30)

Hence, the functional generator for connected functions can be expressed in

terms of the propagator G(k, t, t′) and the correlator C(k, t, t′)

G(k, t, t′) = θ(t− t′)eλk
2(k2+τ)(t−t′) (5.31)

and

C(k, t, t′) =
eλk

2(k2+τ)|t−t′| − (1− τ−1
0 (k2 + τ))eλk

2(k2+τ)(t−t′)

k2 + τ
, (5.32)

as

W [h, h̃] =
(
h,Gh̃+

1

2
Ch
)
+

∫ ∞

0

dt

∫
ddk h(−k, t)G(k, t, 0)a(k). (5.33)

Here, we have introduced a short hand notation for integration over k and t.

In principle, we expect the JSLC theory to derive from a coarse-graining of

the master equation of a lattice model. Therefore we assume that the static

structure factor G̃, intended as a measurable observable of the DLG lattice

model, may be

G̃(k, k‖ = 0, t, t′) = 〈φ(−k, t′)φ(k, t)〉lattice = Z C(k, t, t′), (5.34)
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where Z is a positive constant. In particular, we will be interested in the

equal time dynamical structure factor, so we are interested in the equal time

correlation function C(k, t, t). This expression can be simpli�ed assuming for

τ0 its �xed point value, so τ−1
0 = 0

G̃(k, k‖ = 0, t) = Z
1− e−2λk2(k2+τ)t

k2 + τ
. (5.35)

We note that this equation, for large t, reduces to the well-known transverse

structure factor, used in Section 3.3:

G̃(k, k‖ = 0) = Z
1

k2 + τ
. (5.36)

Of course, on a �nite lattice with periodic boundary conditions, the momen-

tum k is quantized, so we have k = 2π
L
n, with n integer. Hence

G̃

(
2π

L
n, k‖ = 0, t

)
= Z L21− e−2λ4π2n2(4π2n2+L2τ) t

L4

4π2n2 + τL2
. (5.37)

Therefore, in the short-time regime we have

G̃

(
2π

L
n, k‖ = 0, t

)
∼ 2λZ

t

L2
4π2n2, (5.38)

which turns out to be independent from τ .

The susceptibility, being the �rst transversal mode of the static structure

factor is

χ = G̃

(
2π

L
, k‖ = 0, t

)
∼ 2λZ

t

L2
4π2. (5.39)

Therefore, using equation (3.29) we have

m2 =
π

4

χ

L‖L⊥
= 2λZ

π3

L‖L
3
⊥
t (5.40)

which is exactly the scaling observed for this order parameter, as shown in

the previous Section.



Conclusions

The aim of this work was the study of the critical properties of the Driven

Lattice Gas. In particular we focused on the dynamical properties of the

critical relaxation processes.

We studied the short-time behaviour of the order parameter m and OP ,

de�ned in (1.14) (1.15). The main virtue of this method is that short-time

MC simulations do not su�er the problem of critical slowing down, and thus

using this method shorter simulations are necessary. [25]. Our results extend

previous studies of these quantities [28] [30]; in particular we found two

scaling laws for these order parameters valid for lattices of any geometries:

m(t, L‖, L⊥) ∼
√

t

L‖L
3
⊥

and OP (t, L‖) ∼ L
−1/2
‖ t1/8.

Furthermore, all the results we found concerning the short-time behaviour

of these order parameters turn out to be valid both for the IDLG and the

RDLG lattice models.

Even though other authors [28] [30] state that they were able to discern

which is the correct �eld theory that describes the critical behaviour of the

IDLG, we point out that unfortunately these results aren't strong enough to

distinguish which one is the correct theory. Furthermore, we found that the

�rst of the previous equations, describes the critical behaviour of the order

parameter m also for an Ising lattice gas with Kawasaki dynamics, proving

to be very general. Hence, in Section 5.2 we showed how this equation can be

derived in the framework of JSLC theory, or more generally in the framework

of any theory which is Gaussian in its transverse part. This may be a hint of
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the fact that, in the short-time limit in 2d, the critical behaviour is the same

for all these universality classes, regardless of higher order couplings.

The present results and methods could be extended and developed in sev-

eral directions. In particular, for systems in d > 2 dimensions, the methods

outlined in Section 5.1 are expected to give di�erent predictions, using the

JSLC theory rather than the RDLG theory. In [32] Lee and Okabe performed

a similar analysis using the Binder parameter instead of the order parame-

ter. This allows the determination of the dynamic critical exponent z alone,

hence it may be an additional independent test for these scaling hyphotesis.
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Riassunto

La Meccanica Statistica fornisce un insieme di metodi per collegare le

proprietà dei singoli atomi e molecole alle proprietà dei sistemi macroscopici

che essi compongono. Ad esempio, la Meccanica Statistica a�erma che la

distribuzione di probabilità P (S) di uno stato macroscopico S all'equilibrio

con un termostato a temperatura T , è data, in termini della Hamiltoniana

microscopica H(S) del sistema, da P (S) ∝ e
− 1

kBT
H(S)

.

Per i sistemi fuori equilibrio un approccio generale, simile a quello della

Meccanica Statistica di equilibrio, non è ancora disponibile. Data la man-

canza di un contesto generale in cui studiare tali sistemi, un approccio ra-

gionevole è quello di studiare modelli che siano il più semplici possibili. Di

particolare interesse sono quei sistemi soggetti ad una perturbazione esterna,

che non permette al sistema di equilibrarsi con l'ambiente circostante. Spesso,

questi sistemi evolvono verso uno stato stazionario di non equilibrio, la cui

distribuzione di probabilità è diversa da quella di Gibbs e solo in pochissimi

casi è calcolabile esattamente. Il Driven Lattice Gas (DLG), essendo una

semplice generalizzazione del modello di Ising, è diventato uno dei modelli

più studiati in questo ambito, sia attraverso simulazioni numeriche che at-

traverso teorie di campo. Esso consiste in un ordinario gas su reticolo di Ising

con un campo forzante uniforme, il quale modi�ca il tasso dei salti delle par-

ticelle lungo una determinata direzione. Caratteristica molto interessante di

tale modello è che esso mostra una transizione di fase ad una certa tempe-

ratura �nita Tc, sopra la quale il sistema appare disordinato e sotto la quale
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invece il sistema si segrega in due fasi particelle/vuoto. Dopo molti anni

dalla sua introduzione, quale sia la classe di universalità del DLG è tuttora

una questione aperta. Janssen, Schmittmann, Leung e Cardy (JSLC) hanno

sviluppato una teoria di campo che cattura le caratteristiche principali della

transizione di fase del DLG. Siccome però rimangono delle discrepanze tra gli

esponenti critici misurati dalle simulazioni numeriche e quelli predetti dalla

teoria JSLC, Garrido, de los Santos e Muñoz hanno previsto che il DLG nel

limite di forzante in�nita non sia correttamente descritto dalla teoria JSLC,

ma da un'altra teoria (RDLG).

Un aspetto molto interessante dei sistemi statistici sul punto critico è

che essi mostrano un'invarianza di scala anche durante il processo di rilassa-

mento verso lo stato stazionario. Sorprendentemente, questo comportamento

è apprezzabile anche nei primi istanti dell'evoluzione, quando la lunghezza di

correlazione del sistema ξ è ancora molto piccola. Questo fenomeno è noto

in letteratura sotto il nome di short-time scaling. Il principale vantaggio del

short-time scaling è che permette di ottenere informazioni sugli esponenti

critici di un modello attraverso simulazioni molto più brevi.

In questa tesi sono state analizzate diverse ipotesi di scaling relative

all'andamento di diversi parametri d'ordine nei primi istanti di evoluzione

per diverse varianti del DLG: per mezzo di una simulazione Monte Carlo,

il sistema viene inizializzato casualmente e successivamente lasciato rilassare

verso lo stato stazionario di non equilibrio. Questa procedura, ripetuta molte

volte, permette di ricavare l'andamento medio di diverse osservabili del sis-

tema. L'invarianza di scala che mostra quest'andamento permette di ricavare

informazioni sugli esponenti critici del modello.


