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Abstract

Since the pioneering works of Fermi, Pasta, Ulam and Tsingou [1], it is known

that the presence of non-linearities contrasts equipartition of excitation energy.

Instead, Many-Body localization provides a generic mechanism for the failure

of thermalization in many-body quantum systems, despite the presence of non-

linear interactions that tend to thermalize the system.

It has been recently demonstrated [2] that classical models described by a Non-

Linear Schrödinger Equation on a lattice (DNLSE) display a localized phase.

This localization phenomenon manifests itself as a condensation of a finite frac-

tion of the energy on few lattice sites, giving rise to localized excitations, called

breathers. This phase is described by non-Gibbs states, which means that stan-

dard statistical mechanics is no more valid: the equivalence between statistical

ensembles does not hold.

This thesis work has a dual purpose: the first one is to investigate the pres-

ence of non-Gibbs states in the Josephson Junction Array model [3] with peri-

odic boundary conditions. This system is described by equations similar to the

DNLSE and is currently of interest due to its possible applications in the fields

of metrology and quantum information. Our second aim is that of investigat-

ing the persistence of such localized phase also in the quantum regime of the

DNLSE, i.e. in the Bose-Hubbard model, and if such localization phenomenon

in the quantum regime is stronger or weaker compared to the classical case.

These purposes are pursued using both analytical and numerical techniques:

in particular, a novel geometrical picture representing the phase space of our

systems is introduced. This allowed us also to develop a stochastic numeri-

cal model adapt for the study of the DNLSE both in its classical and quantum

regimes.
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“Most people who haven’t been trained in physics probably think of what
physicists do as a question of incredibly complicated calculations, but that’s not

really the essence of it. The essence of it is that physics is about concepts, wanting
to understand the concepts, the principles by which the world works."

Edward Witten
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1 | Introduction

1.1 Anderson and Many-Body Localization

Experimental progress of the last few years has enabled the realization of iso-

lated quantum many-body systems that evolve under their intrinsic dynamics.

There are many examples of such systems, as trapped ions, ultracold atoms in

optical lattices as well as nuclear and electron spin associated with impurity

atoms in diamond. One may wonder if there are conditions under which these

systems fail to thermalize, that is, even at long times, the conventional equilib-

rium configuration is not reached. In statistical mechanics, the mechanism for

thermalization, as well as the approach to to thermal equilibrium in different

systems, are issues of central importance.

Commonly, dynamics leads to thermalization: this happens in ergodic sys-

tems, where different degrees of freedom can exchange energy and information.

Consequently, these systems effectively reach a state of thermal equilibrium,

even if, as a whole, they remain in a pure quantum state. Quantum statistical

mechanics governs the stationary states in such systems. While it is known that

there exist different regimes of thermalization, it is of particular interest to find

systems that do not reach thermal equilibrium (see Fig. (1.1)). In this case, ini-

tial state information is still contained in the final state of the system; the initial

state governs, therefore, the dynamics at long times and the steady state. The

essence of ergodic dynamics is that the system as a whole acts a thermal reser-

voir for its subsystems, provided that these are small enough. Consequently,

thermalization requires that different parts of ergodic systems exchange energy

and particles, and thus thermal systems must be conducting. Insulating systems,

therefore, naturally break ergodicity. The celebrated Anderson Localization is

a well-studied example of insulating behaviour in non-interacting disordered

1
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systems.

Figure 1.1: Interacting particles are initially prepared in a state with non-uniform den-
sity. After unitary evolution, the thermalizing system reaches the state where all lattice
sites are equally populated, with uniform density profile (at the top). The many-body
localized state, instead, retains memory of the initial state even at infinite time (bottom)

In the seminal paper [4], Anderson analysed the problem of the propagation

of a quantum particle in a disordered potential under unitary evolution (see [5]

for a review). The essence of Anderson localization is that a disordered poten-

tial can drastically change the nature of single-particle eigenstates in a regular

lattice. Instead of propagating Bloch states, similar to plane waves, in fact, wave

functions become localized in some region of space, decaying exponentially far

away from that region. To better understand how this can happen, consider the

Hamiltonian (see also Fig. (1.2)):

H := −g

∑
〈ij〉

c†icj + c
†
jci

+
∑
i

εic
†
ici (1.1)

on a d-dimensional lattice. The operators (c†i , ci) are the fermionic creation

and annihilation operators, g > 0 is the hopping amplitude and εi are the on-

site energies, that are independent and identically distributed random variables

uniformly chosen in [−W/2,W/2], where W is the amplitude of the disorder.
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Figure 1.2: Anderson model for the localization transition

Consider, for simplicity, the strong disorder case, in which the variance of

the random potential, W, is much larger than the tunnelling between neigh-

bouring sites of the lattice, g. In this limit, it is impossible to have resonant

transitions between neighbouring sites, and the same holds for sites separated

by long distances. The tunnelling process between two sites at distance of ∼ n

lattice sites apart, indeed, typically occurs as a n-th level perturbation theory

phenomenon, and it is suppressed as tn ∼ (g/W)n. On the other hand, the typ-

ical energy difference between two sites, δn, decays only algebraically with the

distance, δn ∼ W/nd. This naive argument explains why long-range hopping

processes are off-resonant and the wave functions are localized in the strong

disorder limit. This means that Anderson localization leads to the absence of

diffusion, suppressing transport (see Fig. (1.3)).

(a)

(b)

Figure 1.3: Fig. (1.3a): in a clean crystal, eigenstates are Bloch waves extended through
the sample. For. (1.3b): with sufficiently strong disorder there is a vanishing probability
for a particle to make a resonant transition between two spatially separated sites.

In order to make the above argument more quantitative, we may look at

the diffusion coefficient D for the motion on the lattice. For simplicity, let us

consider first the two opposite regimes of disorder-free and infinite disorder
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systems:

• Disorder-free (W = 0): in this situation, the eigenfunctions of the Hamil-

tonian , that is translationally invariant, are plane waves; in the thermo-

dynamic limit the center of the wave packet remains at xt = 0 while the

mean-square displacement diverges balistically as ∆x2
t = 2dg2t2;

• Infinite disorder case (g/W = 0): in this limit the problem is trivial , since

the density of states remains discrete distribution corresponding to a pure

point spectrum ρ(j,E) = δ(E− εj) for every value of L.

The interesting question is about what happens in between, that is, for finite

and non-vanishing disorder. From a classical perspective, the motion of the

particle leads to diffusive motion with ∆x2
t ' Dt for times t much larger than

the typical time τ between scattering over impurities. Using the semi-classical

approximation, it is possible to show that the diffusion coefficient D should

depend on the disorder W as:

D ∼
g3

W2 (1.2)

This means that localization should appear only in the infinite disorder limit,

as, in the semi-classical case, the diffusion coefficient never vanishes for finite

values of W. However Anderson, in his work [4] predicted that the diffusion

coefficient might vanish for a sufficiently strong but finite disorder W >WC: in

this localized phase ∆x2
t remains finite for all t. (see Fig (1.4)).

Figure 1.4: The diffusion coefficient of a quantum particle in a disordered potential
vanishes with probability 1 for a finite value of the disorder strength.

The Many-Body and the Anderson localization problems are closely related;
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in particular, we can obtain the defining Hamiltonian for the first by adding to

the Anderson Hamiltonian Eq. (1.1) a two-body local interaction potential:

H := −g

∑
〈ij〉

c†icj + c
†
jci

+
∑
i

εic
†
ici +

1
2
λ

ν

∑
ij

c†ic
†
ju(i− j)cjci (1.3)

where u(i− j) is a short-ranged interaction kernel. As we mentioned previously,

the Hamiltonian Eq. (1.3) displays many-body localization if the system does

not thermalize under its own unitary dynamics when starting form a generic

many-body state |ψ〉. In general, we say that a many-body system thermalizes

if and only if the following relation holds:

lim
t→∞ lim

L→∞ 〈ψ(t)|OA |ψ(t)〉 = lim
L→∞ Tr

(
OA

e−β(H−µN)

Z

)
(1.4)

In the non-interacting case (λ = 0) thermalization breaks down, as we pointed

out. However, in general, one may expect that interacting many-body systems

do thermalize. A characterization for non-thermalization can be given by con-

sidering the eigenstates of the many-body Hamiltonian: qualitatively, if these

eigenstates are weak deformations of the non-interacting eigenstates, we say

that thermalization breaks down. This statement is the content of the ETH

(eigenstates thermalization hypothesis): it consists in assuming that generic

Hamiltonians are thermal if typical eigenstates |ψµ〉 are thermal, in the sense

of Eq. (1.4). Notice, for instance, that the ETH is only a sufficient condition for

thermalization: it is not true, indeed, for many-body Anderson localized sys-

tems (see [6] for example). It is evident that many-body localization is a highly

non-trivial problem and there is not a general technique to solve it.

1.2 Non-linear systems

In the previous section we have seen that disordered quantum system may dis-

play localization phenomena: however, there are other systems that can present

the same feature. In particular, non-linear systems can provide it.

A system is non-linear if its output is not proportional to the input. Mathe-

matically, the signature of a non-linear system is the breakdown of the super-

position principle, which states that the sum of two solutions of the equations
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describing the system is again a solution. Consequently, in non-linear systems

the physical behaviour of the whole is more than the sum of its parts.

The non-linearity of a system makes it highly non-trivial and its analysis diffi-

cult. As an example, consider that:

• In a non-linear system a small disturbance, such as a little modification

of the initial conditions, can lead to a big difference in the behaviour of

the system at a later time. This could make the behaviour of a non-linear

system very complex, as happens for chaos.

• When the equations describing the non-linear system are known, the break-

down of the superposition principle makes the Fourier transform tech-

nique inapplicable. Moreover, there is not another systematic method in

solving non-linear equations.

• In many cases such equations are not even known, as in many complex

and economic systems.

It is clear, then, that the use of computers is unavoidable in the study of non-

linear systems. Indeed, the birth of non-linear science dates back to 1953 when

E. Fermi, J. Pasta, S.Ulam and M.Tsingou (FPUT) conducted numerical experi-

ments on the MANIAC computer of a vibrating string subject to quadratic and

cubic forces [1]. The aim of Fermi was to simulate the one-dimensional ana-

logue of atoms in a crystals: a long chain (i.e. a discrete set) of particles linked

by springs obeying Hooke’s law with a weak non-linear correction. Since then,

non-linear dynamics has emerged in a wide variety of models appropriate for

describing important physical systems. Among them there are: the Ginzburg-

Landau theory of superconductivity, with the non-linearity given by the powers

of the order parameter in the expression for the free energy; the order param-

eter description of superfluidity, that yields to the Gross-Pitaevskii; the soli-

ton solutions to the Korteweg - de Vries equations (the continuum limit of the

FPUT problem) and the consequent widespread applications of the Non-Linear

Schrödinger Equation.

In particular, the Discrete Non-Linear Schrödinger Equation (DNLSE) (see

Eq. (2.1) and Eq. (2.3) ) is one of the most fundamental non-linear lattice

dynamical models. Its importance is mainly due to two important facts. On

the one hand, the DNLSE can be obtained by discretizing its famous and in-

tegrable continuum counterpart, namely the non-linear Schrödinger Equation
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(NLSE)(see [7]), that is the relevant model for describing the self-focusing

and collapse of Langmuir waves in plasma physics [8], the freak waves in the

ocean [9] and also the electric field in optical fibers ([10] for example). On the

other hand, the DNLSE is by itself a model of particular interest for a variety of

systems it can describe.

The first set of experimental survey that gave rise to an intense interest in the

DNLSEs was in the area of non-linear optics. In this research field, a multi-

plicity of phenomena such as discrete diffraction, Peierls barriers, diffraction

management and gap solitons were observed experimentally([11], [12], [13]).

This gave rise to a tremendous increase also on the theoretical side of studies

inspecting such discrete media.

Another area where the DNLSE gives accurate predictions, even though it is not

the prototypical model, is in the non-linear localized modes in optically induced

lattices in photorefractive media. The possibility of the presence of non-linear

waves and solitons in periodic, mainly two-dimensional, lattices was first pre-

dicted in [14] and then experimentally realized (in [15] for example). Since

then, an explosive growth in this area took place and an ever-growing set of

structures has been predicted and obtained experimentally in lattices induced

with self-focusing non-linearities.

Another completely different physical setting where the DNLSE is a relevant

tool is that of atomic physics; in particular the most recently discovered state

of matter, Bose-Einstein condensates (BEC), may be trapped in a periodic op-

tical lattice [16]. Analysing a BEC distributed in the minima of the potential

generated by the optical lattice, assuming that particles on different minima

interact weakly due to tunnelling, and taking into account the two-body scat-

tering effect, on can arrive at the DNLSE. It is also possible to obtain it from the

Gross-Pitaevskii equation for a BEC in a periodic potential.

1.3 Outline

Recently, the presence of a high-energy phase characterized by the condensation

of energy in the form of breathers in non-linear systems has attracted the atten-

tion of many scholars. As we will discuss more in detail in the following chapter,

it has been found (see, [2] and [17] for example) that the Discrete Non-Linear

Schrödinger Equation displays a phase characterized by the non-equivalence

between microcanonical and canonical ensembles, thus yielding to non-Gibbs
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states and negative temperatures. Moreover, it has been claimed in [3] that

a model closely related to the DNLSE, the Josephson Junction Array model,

presents a similar phase in the quantum regime and that such phenomenon

may possibly survive in the classical limit.

After this Introduction, the thesis is organized as follows:

• In Chapter 2 we introduce the DNLSE and JJA models, reviewing their

known properties and showing, in particular, how to identify the presence

of a phase described by non-Gibbs states from the computation of the

partition function.

• In Chapter 3 we use the partition-function approach to prove that the

JJA does not display a localized phase in the classical limit. Moreover, a

geometric construction is introduced for the study of the phase-space of

our systems: it will allow us to have a clearer view on the localization

transition in the DNLSE and on the absence of transition in the JJA.

• In Chapter 4 we quantize the DNLSE and we address the question of de-

termining whether the localized phase survives also in the quantum limit.

• In Chapter 5 we introduce a simplified computational model for the study

of the DNLSE both in its classical and quantum versions, based on a

stochastic evolution rather than the Hamilton equations of motions.

• In Chapter 6 we give the conclusions, summarizing the results obtained

and suggesting some possible directions for further investigations.



2 | A review of the most re-

cent results

In this section we will give a review the one-dimensional DNLSE model pre-

sented in [2], performing the main mathematical steps needed to understand

the reasoning and the fundamental results obtained, and then introduce the

Josephson Junction Array model.

2.1 Non-Gibbs states and Ergodicity Breaking

In a macroscopic system characterized by the presence of only one conserved

quantity (i.e. the energy E), thanks to the equivalence between statistical en-

sembles, the canonical distribution function enables us to map any value of the

average energy density e = E/N (with N being the number of lattice sites) to a

positive value of the inverse temperature β of the canonical distribution. Notice

that this fact holds independently of whether the microcanonical dynamic is er-

godic or not. Of course, this statement is correct if the equivalence of ensembles

holds.

Things change if there is a second conserved quantity, as happens in the

Discrete Non-Linear Schrodinger Equation (see Sec. (2.2)). Indeed, it has been

shown in [18] that an approach based on the canonical ensemble yields to neg-

ative temperature phase at high energies, which contradicts the existence of a

Gibbsian measure, as we stated above. This means that, in such regime, the

equivalence between ensembles is no more valid, and the thermodynamics of

this model is well-defined only in the microcanonical ensemble. As shown in [2]

and as we will resume in Sec. (2.2), the non-equivalence between statistical en-

9
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sembles can be understood as a consequence of the non-analytic structure of the

microcanonical partition function in the high-energy phase, that does not allow

us to perform the inverse Laplace transform, which is the mean for connecting

the different ensembles. Therefore, the microcanonical dynamics at equilibrium

(if existent) is defined by two densities e = E/N and a = A/N, where A is the

second conserved quantity. In the thermodynamic limit N→ ∞ it can be found

(see Sec. (2.2)) that the Gibbs grand-canonical formalism can be applied to the

microcanonical dynamics only for energy densities e 6 2a2, referring to the

hamiltonian Eq. (2.1). However, the microcanonical dynamics can address also

states with e > 2a2.

It has also been addressed the question of whether the non-Gibbs phase of

the DNLSE is ergodic or not. It has been shown in [19] that the dynamic stays

ergodic, even though the relaxation times rapidly grow in the deep non-Gibbs

phase; this turns the system into a dynamical glass, which can be treated as

non-ergodic for any practical purpose. Microscopically, the motivation for this

slow dynamics is due to the presence of long-lived discrete breathers that, in the

high-energy limit, where the system is almost integrable, have a low probability

of resonant interactions with the nearest neighbours.

2.2 The classical Discrete Non-Linear Schrodinger

Equation

The Discrete Non-Linear Schrodinger Equation (DNLSE) model consists of

a complex scalar field zj defined on a one-dimensional lattice with periodic

boundary conditions made of N sites, described by the Hamiltonian:

H =

N∑
j=1

(z∗j zj+1 + zjz
∗
j+1) +

N∑
j=1

|zj|
4 (2.1)

The canonical variables are qj ≡ zj and pj ≡ −iz∗j with c.c.r. {qj,pj} = δij. The

dynamics of the system is thus governed by the equations of motion:

q̇j =
∂H

∂pj
(2.2)

iżj = −(zj+1 + zj−1) − 2|zj|2zj (2.3)
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These equations of motion conserve not only the total energy but also the quan-

tity:

A ≡
N∑
j=1

|zj|
2 (2.4)

(a sort of squared norm of the “wave function") because of the quantum origin

of the problem. A can also be intended as the total number of particle of the

problem. The overall scenario is described in the phase diagram Fig. (2.1),

where a = A/N and e = E/N. There is a region contained between the the

Figure 2.1: Equilibrium phase diagram in the plane (a = A/N, e = E/N) for the DNLSE

zero temperature line (β = +∞) and the infinite temperature line (β = 0)

where the dynamics is controlled by standard thermodynamics evolution, while

above the β = 0 line, in any finite lattice, the dynamics is characterized by the

birth of long-living localized non-linear excitations.

The Hamiltonian Eq. (2.1) can be rewritten in a different form, by means of the

following change of variables:

zj =
√
Aje

iφj (2.5)

yielding the Hamiltonian:

H =
∑
j

2
√
AjAj+1 cos (φj − φj+1) +

∑
j

A2
j (2.6)

In order to quantify what we have just described, we have to compute the mi-

crocanonical entropy of the DNLSE Hamiltonian Eq. (2.1) for fixed values of E

and A near the β = 0 line. In general we can write:

SN(A,E) = logΩO
N(A,E) (2.7)
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where, having set the Boltzmann constant kB to unity, the microcanonical par-

tition function is:

ΩO
N(A,E) =

∫ N∏
j=1

dR(zj)dI(zj)δ

A−

N∑
j=1

|zj|
2

 ·

· δ

(
E−

[
N∑
i=1

(z∗izi+1 + ziz
∗
i+1) +

N∑
i=1

|zi|
4

])
(2.8)

where, from now on, we will call dµ(zj) ≡ dR(zj)dI(zj). Let us fix the specific

energy to the value e = E/N and choose a rescaling of the variables zj so that

the total local energy is always of order O(1), and thus we use ẑj := zj/e1/4. In

terms of these new variables the Hamiltonian is:

H =
√
e

N∑
j=1

(ẑ∗j ẑj+1 + ẑjẑ
∗
j+1) + e

N∑
j=1

|ẑj|
4 (2.9)

It is evident, then, that in the large-e limit the hopping term is sub-leading

w.r.t. the local non-linear quartic self-interaction term, and thus we will neglect

it. This is meaningful since we are interested in the limit of large temperature

(near the β = 0 line). In this region we are also in the high-energy limit and

thus, if we ideally fix the energy per site, is evident that the hooping term is

negligible w.r.t. the other term. It can be shown that this approximation is exact

in the thermodynamic limit. Therefore the partition function can be written in

this approximation as:

ΩN(A,E) =
∫ N∏

j=1

dµ(zj) δ

A−

N∑
j=1

|zj|
2

 δ(E−

N∑
i=1

|zi|
4

)
(2.10)

2.2.1 The microcanonical partition function

Now we analyze the explicit calculations of the partition function ΩN(A,E)

using a large deviation technique.

In order to compute ΩN(A,E) it is convenient to express the variables in their

polar form zj = ρje
iφj , and performing a trivial integration over the agular
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variable, obtaining:

ΩN(A,E) = (2π)N
∫∞

0

 N∏
j=1

dρj ρj

 δ
A−

N∑
j=1

ρ2
j

 δ(E−

N∑
i=1

ρ4
j

)
(2.11)

In order to resolve the constraint over A we perform a Laplace transform:

Ω̃N(λ,E) =
∫∞

0
dA e−λAΩN(A,E) =

= (2π)N
∫∞

0

 N∏
j=1

dρj ρj

 e−λ
∑N

j=1 ρ
2
j δ

(
E−

N∑
i=1

ρ4
j

) (2.12)

Now we can re-obtain the partition function inverting the Laplace transform:

ΩN(A,E) =
1

2πi

∫λ0+i∞
λ0−i∞ dλ eλA Ω̃N(λ,E) (2.13)

where λ0 must be such that the integration contour lies in the domain of conver-

gence of Ω̃N(λ,E) (we will be more specific about this later). Let us introduce

a further change of variables ρ4
j = εj, yielding:

Ω̃N(λ,E) =
(π

2

)N ∫∞
0

N∏
j=1

dεj√
εj
e−

∑N
i=1

√
εiδ

(
E−

N∑
i=1

εi

)
=

=
(π
λ

)N
ZN(λ,E)

(2.14)

where

ZN(λ,E) =
∫∞

0

N∏
j=1

dεj fλ(εj) δ

(
E−

N∑
i=1

εi

)
(2.15)

and fλ(εj) is a normalized distribution function given by:

fλ(ε) = θ(ε)
λ

2
√
ε
e−λ

√
ε (2.16)

From Eq. (2.15) it is evident that the calculation of ZN(λ,E) coincides with

the computation of the probability distribution for N independent and identi-

cally distributed random variables (εi) described by the probability distribution

fλ(εi) with the global constraint
∑N

i=1 εi = E. As it is shown in Appendix (C),

global constraints, as the one for the total energy, given on the sum of random
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variables, give rise to condensation phenomena when the individual probability

fulfils the bounds:

exp(−ε) < fλ(ε) <
1
ε2 (2.17)

as shown in Eq. (C.8). According to Eq. (2.16), this is exactly the case of the par-

tition function Eq. (2.15). Following the argument presented in Appendix (C),

it is easily found that the condensation phenomenon occurs when the total en-

ergy E overtakes a threshold value Eth that is equal to the average total energy,

i.e.:

E > Eth = N〈ε〉 (2.18)

where the average 〈 〉 is taken over the distribution fλ(ε). In the localized

phase it is more convenient for the system to condensate the excess energy

∆E = E− Eth in a finite region of the lattice.

We can easily calculate the first two momenta and the variance of the probability

distribution Eq. (2.16).:

〈ε〉 = 2
λ2 (2.19)

〈ε2〉 = 24
λ4 (2.20)

σ2 = 〈ε2〉− 〈ε〉2 =
20
λ4 (2.21)

2.2.2 Analytic properties of the partition function

We want now to proceed with the calculation of the partition function; in order

to do this, we perform its Laplace transform with respect to E, introducing β as

the conjugate variable. In general β ∈ C:

Z̃N : =

∫∞
0
dE e−βE ZN =

∫∞
0
dε1 . . .dεn e−

∑N
j=1 εj

N∏
j=1

fλ(εj) =

=

[∫∞
0
dε e−βε fλ(ε)

]N
=: eN log[z(λ,β)]

(2.22)

where we have defined:

z(λ,β) =
∫∞

0
dε e−βε fλ(ε) =

√
π
λ

2
√
β

exp
(
λ2

4β

)
Erfc

(
λ

2
√
β

)
(2.23)
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and

Erfc
(

λ

2
√
β

)
=

2√
π

∫∞
λ/(2

√
β)

e−t2
dt (2.24)

is the complementary error function defined in the complex β-plane, with a

brunch cut on the negative real semiaxis. Eq. (2.23) can be easily derived using

the definition of fλ(ε).

We can recover the original partition function by performing the inverse Laplace

transform of Z̃N(λ,β):

ZN(λ,β) =
∫β0+i∞
β0−i∞ dβ exp [βE+N log[z(λ,β)]] (2.25)

Form the theory of Laplace transform, we know that β0 ∈ R and moreover it

must be located at the right of all the singularities. Since z(λ,β) has a brunch

cut for β < 0, then β0 > 0. We are performing the integral of an exponential

function, so we would like to use the saddle-point method; if the saddle-point

equation:
E

N
= −

1
z(λ,β)

∂z(λ,β)
∂β

(2.26)

has a real and positive solution, we can use this solution as β0. In this case β0

can be interpreted as a negative temperature and the value of the integral can

be approximated as:

ZN ∼ exp [β0E+N log[z(λ,β0)]] (2.27)

In the model we are studying, i.e. in the DNLSE, when E < Eth, there exist a real

positive solution to Eq. (2.26) and thus the partition function can be calculated

using the saddle-point method; the integration contour is represented by the

blue dashed line in Fig. (2.2).
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Figure 2.2: Analytic structure of the function z(β, λ) in the complex β plane, λ is fixed
to a real positive value. The wiggle line is the brunch cut on the real negative axis,
while the dashed blue line is the Bromwich contour for the calculation of the partition
function Z(λ,E) when E < Eth, with β0 indicating the location of the saddle-point. The
continuous red line is the Bromwich contour for the calculation of the partition function
Z(λ,E) when E > Eth, β0 is the new saddle-point.

Conversely, for E > Eth there is no positive real solution to Eq. (2.26)

and thus the Bromwich integral as to be performed using another technique

(see [20]). For E & Eth, the new saddle point would be close to the origin and

we can choose the Bromwich contour to be the one represented by the red line

in Fig. (2.2). Moreover, we will have to expand the integrand near the origin

in order to find the scaling properties of ZN via integration. In other words, we

are choosing β0 = 0 and we will perform the integral expanding its argument

near the origin, where there will be a non-analytic contribution because of the

branch cut (the calculation is explained in Sec. (2.2.3)).

If we want to evaluate ZN(λ,β) at the energy scale ∆E = E− Eth ∼ Nγ, we

have to retain the the leading terms only up to a given order in the expansion

of z(λ,β). For example, if one sets γ = 1/2 (Gaussian regime), by expanding

z(λ,β) near β = 0 only the terms up to order β ∼ −1/2 are needed; in this case
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one obtains:

ZN =
1

σ
√

2πN
exp

[
−
(E− Eth)

2

2σ2N

]
(2.28)

which is obvious because of the Central Limit Theorem.

On the other hand, if we want to study the case γ = 1, called the extreme large
deviation regime, we have to keep, in the expansion of z(λ,β), the terms up to

order β ∼ 1/N, and one obtains:

ZN ∼ exp
(
−
√
E− Eth

)
(2.29)

As we will discuss later, the Gaussian regime corresponds to a delocalized phase,

while the extreme large deviation regime corresponds to a localized phase. If we

want to understand if the transition between these two phases occurs as a real

thermodynamic phase transition, we should study the intermediate matching
regime, that we can heuristically identify by:

(E− Eth)
2

2σ2N
∼
√
E− Eth (2.30)

and the intermediate scale is therefore:

E− Eth ∼ N2/3 (2.31)

2.2.3 Matching regime: the non-analytic contribution

As we announced in the previous subsection, we are interested in studying the

matching regime of the partition function: in this situation we can perform

the integration using the expansion of z(λ,β) near the origin, as we discussed

previously.

Since for E > Eth the saddle point Eq. (2.26) has no real solution, we have to

analytically continue z(λ,β) in the complex β plane and perform the expansion

near β = 0 separately along the upper and lower brunch cut, thus for R(β) < 0:

lim
δ→0

z(λ,β+ iδ) = z(λ,β+ i0)

lim
δ→0

z(λ,β− iδ) = z(λ,β− i0)
(2.32)
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The expansion of z(λ,β) near β = 0 has to be carried out carefully: the branch-

cut of z is due to Erfc
(

λ
2
√
β

)
, whose expansion is given by:

Erfc
(
a√
x

)
=

1
a
e−a2/x

√
x√
π

[
1 −

x

2a2 +
3x2

4a4 + . . .
]
+ (−1)b(arg(x)+π)/2πc+1 + 1

(2.33)

where arg(·) is the complex argument function and the expansion is done around

x = 0. In our case it assumes the form:

Erfc
(

λ

2
√
β

)
=

2
λ
e−λ2/4β

√
β√
π

[
1 −

2β
λ2 + 12

β2

λ4 + . . .
]
+(−1)b(arg(β)+π)/2πc+1+1

(2.34)

Since we are interested in performing the integral Eq. (2.25) with β0 = 0 from

−i∞ to +i∞, we have that arg(β− i0−) = −π+ ε and arg(β+ i0+) = −π− ε.

Therefore we get:

z(λ,β+ i0+) =
√
π
λ

2
√
β
eλ

2/4β
[

2
λ
e−λ2/4β

√
β√
π

(
1 − β〈ε〉+ β2

2
〈ε2〉+ . . .

)
+ 1
]

z(λ,β+ i0−) =
√
π
λ

2
√
β
eλ

2/4β
[

2
λ
e−λ2/4β

√
β√
π

(
1 − β〈ε〉+ β2

2
〈ε2〉+ . . .

)]
(2.35)

and thus:

z(λ,β+ i0+) = 1 − 〈ε〉β+
β2

2
〈ε2〉+ O(β3) +

√
2π
β〈ε〉

exp
(
λ2

4β

)
z(λ,β+ i0−) = 1 − 〈ε〉β+

β2

2
〈ε2〉+ O(β3)

(2.36)

Observe that, since R(β) < 0, the exponential term in z(λ,β+ i0+) is exponen-

tially suppressed.

With this expansion, we can now compute the partition function:

ZN(λ,E) = I(+)(λ,E) + I(−)(λ,E) (2.37)
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where

I(+)(λ,E) =
∫
Γ(+)

dβ

2πi
exp

[
β(E− Eth) +

N

2
σ2β2 +NO(β2) +N

√
2π
β〈ε〉

exp
(

1
2〈ε〉β

)]

I(−)(λ,E) =
∫
Γ(−)

dβ

2πi
exp

[
β(E− Eth) +

N

2
σ2β2 +NO(β2)

]
(2.38)

Using a scaling ansatz for β in the matching regime, i.e. β → β/N1/3, we can

write the partition function as:

ZN =
1

σ
√

2πN
e−N1/3 ζ2

2σ2 + C(λ, ζ) (2.39)

where ζ = E−Eth

N2/3 and

C(λ, ζ) = N

√
2π
〈ε〉

∫
Γ(+)

dβ

2πi
1√
N1/3β

eN
1/3Fζ(λ,β) (2.40)

with

Fζ(λ,β) = βζ+
1
2
σ2β2 +

1
2〈ε〉β

(2.41)

The integral in Eq. (2.40) can be performed by means of the saddle point

method, yielding:∫
Γ(+)

dβ

2πi
1√
N1/3β

eN
1/3Fζ(λ,β) ≈ e−N1/3χ(ζ) (2.42)

where χ(ζ) has the following asymptotic behaviours:

χ(ζ) =


3
2

(
σ
〈ε〉

)2/3
ζ→ ζl√

2
〈ε〉

√
ζ− σ2

4ζ〈ε〉 + O
(

1
ζ3/2

)
ζ� 1

(2.43)

and where ζl is the spinodal point for the localized phase, given by:

ζl =
3
2

(
σ4

〈ε〉

)1/3

(2.44)
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Now we can write the microcanonical partition function as:

ΩN(A, ζ) =
eN logπ

2πi

∫λ0+i∞
λ0−i∞ dλeN

[aλ−logλ]
[
e−N1/3χ(ζ) + e−N1/3ζ2/2σ2

]
(2.45)

In the thermodynamic limit, the leading contribution is clearly given by the term

N [aλ− log λ] which determines the value of the saddle point solution λ0:

∂

∂λ
[aλ− log λ] = 0 =⇒ λ0 = 1/a (2.46)

and thus:

ΩN(A, ζ) ≈ eN[1+log(πa)]
[
e−N1/3χ(ζ) + e−N1/3ζ2/2σ2

]
(2.47)

where σ2 = 20a4 and:

〈ε〉 = 2a2 (2.48)

that is the condition identifying the β = 0 line.

From this we can determine the microcanonical entropy at leading and sub-

leading order:

SN(A, ζ) = N [1 + log(πa)] −N1/3Ψ(ζ) (2.49)

where the leading term:

Sbackground
N (a) = N [1 + log(πa)] ≡ Nsbackground(a) (2.50)

represents the background entropy and it clearly is an extensive quantity. In-

stead, the function Ψ(ζ) is defined as:

Ψ(ζ) = inf
ζ
{χ(ζ), ζ2/(2σ2)} (2.51)

This allows us to identify the matching regime easily, since it is clearly given by

the value ζc of ζ that satisfies the relation:

χ(ζc) = ζ
2
c/(2σ

2) (2.52)
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2.3 The Josephson Junction Array

The DNLSE model (with periodic boundary conditions) can be used to describe

a physical system composed of a closed chain of Josephson junctions (JJA). A

Josephson Junction is basically formed by two superconducting materials sep-

arated by a thin metal or insulating barrier. A current can flow thanks to the

tunnelling effect of the Cooper pairs through the barrier.

Figure 2.3: Schematic experimental Josephson-Junction array setup in a form of a closed
loop.

As we will soon show, varying the thickness of the barrier and the quantity

of charge stored in each superconductor, the whole JJA may behave (according

to [3]) like an overall superconductor, a metal (ergodic and non-ergodic) or an

insulator.

The Hamiltonian that describes the JJA is:

H =

n∑
i=1

[
1
2
ECq

2
i + EJ (1 − cos (φi − φi+1))

]
(2.53)

where qi and φi are canonically conjugate variables: the q’s represent the

charges located in each superconductor, while the φi’s represent the phases

of the superconducting islands. As we will show in Sec. (3), the Hamiltonians

Eq. (2.53) and Eq. (2.1) are very similar up to a change of variables.

In [3], a qualitative description of the phase diagram for the model Eq. (2.53) is

given; the behavior of the system is governed by the reciprocal values of EC and
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EJ and by the magnitude of the q’s. In particular, the ground state (zero temper-

ature) of the model is governed by the ratio of the Josephson (EJ) and charging

(EC) energies; for EJ/EC < η the system is an insulator and for EJ/EC > η the

system is a superconductor. The quantum transition point is given by η ≈ 0.63,

and it belongs to the Kosterlitz-Thouless universality class (being a zero-T 1D

quantum phase transition, equivalent to a classical thermal 2D phase transition)

If we now go to small but finite temperature, then the system exhibits a metallic

behaviour, with finite conductivity. If the temperature is raised to T > EJ, the

system is in a phase usually called bad metal, since it has the metallic property

of conductance growing with temperature, but its resistance can be arbitrarily

high; in this phase the system shows non-ergodic properties . If, instead, the

temperature overcomes the critical value TC ≈ E2
J/EC, the system undergoes a

transition in a Many-Body Localized phase.

The qualitative explanation for this behaviour is the following: in a highly ex-

cited state U � EJ and the leading contribution os given by ECq2 ∼ U � EJ.

Therefore, the value of the charges |qi| and charge difference between neigh-

bouring sites δq = qi − qi+1 are of the order q ∼ δq ∼
√
U/EC. The energy

cost for a transfer of a unit charge between two neighbouring sites is then given

by δE ∼ ECq; this is a large quantity if the charge difference is big, i.e. when

one of the two sites contains a breather. As a consequence, the charge transfer

between a breather and a background site is strongly suppressed, and thus the

breather survives for long times.

However, the results presented in [3] are almost qualitative and the numer-

ical simulations performed are not sufficiently accurate to confirm the presence

of a phase transition in the classical case in the thermodynamic limit.



3 | A closer look at the JJA

and the DNLSE

In this section we will point out the connection between the models Eq. (2.1)

and Eq. (2.53) and we will investigate the solutions of the equations of motion

(E.o.M.) for the JJA model.

In order to show the connection between the two models, let us begin with the

Hamiltonian Eq. (2.1) and make the following change of variables:

zi(t) =
√
qi(t)e

iφ(t) (3.1)

Since, as we pointed out in Sec. (2), zi and −iz∗i are canonically conjugate

variables, is then easy to show that also qi and φi are canonically conjugate.

We can thus substitute Eq. (3.1) into Eq. (2.1) to obtain:

H =

N∑
i=1

2t
√
qiqi+1 cos (φi − φi+1) + EC

N∑
i=1

q2
i (3.2)

Comparing Eq. (3.2) and Eq, (2.53), we then see clearly the similarity between

the two models of interest; the only difference at the Hamiltonian level between

the two is that, in the JJA model, the hopping term does not have the prefactor
√
qiqi+1: in the limit of high energy per site this difference is not important,

since the leading contribution will be given by the charging term. However,

because of Eq. (3.1), in the DNLSE the qi’s are positive variables, while in the

JJA they can also be negative.

23
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We can simply derive the equations of motion for the Hamiltonian Eq. (2.53):

q̇i = −
∂H

∂φi
= −t (sin (φi − φi+1) − sin(φi−1 − φi)) (3.3)

and

φ̇i =
∂H

∂qi
= ECqi (3.4)

3.1 Classical Lagrangian for the DNLSE

It may be useful to write also the Lagrangian of the DNLSE. Remind that the

equations of motion are given by:

i∂tψj + (ψj+i +ψj−1) + 2|ψj|
2ψj = 0 j = 1, . . . ,N (3.5)

with the usual periodic boundary conditions. These equations of motion are the

Euler-Lagrange equations of the following Lagrangian:

L =

N∑
j=1

[
i

2

(
ψ∗

j∂tψj −ψj∂tψ
∗
j

)
+
(
ψjψ

∗
j+i +ψj+iψ

∗
j

)
+ |ψj|

4
]

(3.6)

It is straightforward to verify that:

∂L

∂ψ∗
j

=
i

2
∂tψj +ψj+i +ψj−1 + 2|ψj|

2ψj

∂t
∂L

∂∂tψ
∗
j

= −
i

2
∂tψj

(3.7)

thus yielding Eq. (3.5). We can now perform the usual change of variables:

ψj =
√
Aje

iφj (3.8)

where both Aj and φj are functions of time. Notice that the second and third

terms in the Lagrangian form the Hamiltonian Eq. (2.1), for which we already

have the expression in polar coordinates (see Eq. (2.6)). We only have to com-
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pute the first term:

i

2

(
ψ∗

j∂tψj −ψj∂tψ
∗
j

)
=

=
i

2

(√
Aje

−iφj∂t

[√
Aje

iφj

]
−
√
Aje

iφj∂t

[√
Aje

−iφj

])
=

=−Aj∂tφj

(3.9)

Thus we can rewrite the Lagrangian as:

L =

N∑
j=1

[
−Aj∂tφj + 2

√
AjAj+1 cos (φj − φj+1) +A

2
j

]
(3.10)

From this expression we can clearly see the Legendre transform structure that

connects Hamiltonian and Lagrangian.

3.2 Inverse participation ratio

In order to investigate whether there is a localization phenomenon during the

time evolution of the equations of motion, we introduce the inverse participation
ratio, defined in the following way:

Y2 ≡

(∑N
i=1 q

2
i

)2

∑N
i=1 q

4
i

(3.11)

This quantity can be used as an order parameter for the localized phase: indeed,

if every site has energy of order O(1), then Y2 ∼ N; if, instead, there is a breather

of size O(N) and the background is of order O(1), then Y2 ∼ 1, as one can easily

see from the definition.
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Figure 3.1: The plot of the inverse participation ratio for the JJ array model with EJ = 4,
EC = 1 and N = 16. The plot has been done using a symplectic algorithm , so that
energy conservation is insured. The equations of motions have been solved numerically
up to tmax = 100000. Time is displayed on the horizontal axis. As initial condition, we
randomly set the background charges, using the flat distribution between 0 and 1, and
then we add two equidistant breathers whose charge is equal to the number of sites. The
growth of the IPR with time means that the two breathers are vanishing, and thus the
system is thermalizing

3.3 The JJA grand-canonical partition function

As shown in [18], from the grand-canonical partition function it is possible to

identify, in the parameter space, the line β = 0, that separates the ergodic from

the non-ergodic phases. Moreover, by means of the inverse Laplace transform,

we can find the microcanonical partition function from the grand canonical one.

In the case of the DNLSE (Eq. (2.1)) the grand-canonical partition function

cannot be performed exactly, but in the case of the JJ array it can, because of

the domain of the variables qk’s, qk ∈ [−∞,+∞], ∀k. Consider the general

expression:

ΩN(β, λ) =
∫∞
−∞

∫2π

0

∏
k

dqkdφk exp [−β(H + µA)] (3.12)
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where µ is the chemical potential and we have defined λ := βµ. The angular

integral can be performed quite easily:

∫2π

0

∏
k

dφk exp

[
βEJ

∑
i

cos (φi+1 − φi)

]
= (2π)N IN0 (βEJ) (3.13)

where I0 is the modified Bessel function defined as:

I0(x) =
1
π

∫π
0
ex cosθdθ for <(x) > 0 (3.14)

Thus we have

ΩN(β, λ) = (2π)NIN0 (βEJ)

∫∞
−∞

∏
k

dqk exp

−β∑
j

EC
q2
j

2
− βµ

∑
j

qj


(3.15)

that is easily done yielding:

ΩN(β, λ) =

[
2(π)3/2I0(βEJ)

√
2
βEC

e
βµ2
2EC

]N
(3.16)

In order to find the microcanonical partition function, we have to compute

two inverse Laplace transforms, namely:

ZN(E,A) =
1

2πi

∫β0+i∞
β0−i∞

1
2πi

∫λ0+i∞
λ0−i∞ dβ dλ eλAeβEΩN(β, λ) (3.17)

Since we are interested in the high energy limit of this expression, we can ne-

glect the hopping term in the Hamiltonian, thus giving the partition function:

ΩN(β, λ) =
(

2π
λ

)N [√
2π

λ√
βEC

e
λ2

2ECβ

]N
= exp [N log (z(β, λ))]

(3.18)

where

z(β, λ) =
(2π)3/2
√
βEC

e
λ2

2ECβ (3.19)

We can now perform, firstly, the Laplace transform with respect to β. Notice

that, for large q’s, the integral in Eq. (3.18) is dominated by the term propor-

tional to β (remind that βµ = λ); therefore there may convergence problems
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depending on the sign of β, the sign of λ is irrelevant for the analytic properties.

As pointed out in [2], the Bromwich integral can be performed by means of a

saddle point approximation, where β0 in Eq. (3.17) has to be the real positive

solution of the saddle point equation:

E

N
= −

1
z(β, λ)

∂z(β, λ)
∂β

(3.20)

If such a real positive solution exists, then β0 can be regarded as the inverse

temperature of the system and we can write:

ΩN(E, λ) ≈ exp [β0E+N log (z(β0, λ))] (3.21)

If, instead, such real positive solution does not exist, then one has to solve the

saddle point integral more carefully, as shown in [2]. In our case, however, we

find that Eq. (3.20) reduces to the simple equation:

β2 −
N

2E
β−

Nλ2

2EEC
= 0 (3.22)

that always has two real solutions and one of them is always positive:

β0 =

N
2E +

√
N2

4E2 + 2 Nλ2

EEC

2
(3.23)

Therefore we can conclude that the negative temperature states that are present

in the DNLSE do not appear here, because the now the charges can be negative

(this corresponds to Cooper pairs holes).

Notice that this result ensures that the Josephson Junction Array model do not

present a localization phenomenon analogous to the DNLSE one, contrarily to

what has been claimed in [3], at least at the classical level. Recently, also Flach

et al. in [21], have found, analysing the ergodization time TE, that the concept

of ergodicity is preserved in the JJA model and statistical physics continues to

work. The ergodization time TE is related to the properties of the statistics of

charge fluctuation times: even if TE grows anomalously fast reaching the in-

tegrable limit EJ → 0, the dynamics stays ergodic and TE is finite. Moreover,

in [22], the authors have been able to conclude that the JJA model does not

present a Gibbs - non-Gibbs transition line (β = 0 line) also at the quantum

level, because of the possibility for the q’s to take all integer values.
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3.4 Geometric construction

The same result can be seen in an alternative way, using a geometric construc-

tion.

If we consider the full DNLSE Hamiltonian Eq. (2.1), we see from the expres-

sion for the microcanonical partition function (see Eq. (2.11)) that the allowed

values of the charges, in the high energy limit, must satisfy two constraints,

namely
∑N

i=1 ρ
2
i = A and

∑N
i=1 ρ

4
i = E. By means of the trivial change of vari-

ables xi ≡ ρ2
i , we see that the quantities {xi}i=1,...,N are positive and moreover

they have to belong to the intersection between the standard N − 1-simplex

∆N−1 and the N− 1-sphere SN−1, respectively described by the equations:

N∑
i=1

xi = A , xi > 0 ∀ i

N∑
i=1

x2
i = E

(3.24)

Notice that, in this picture, the number of dimensions of the embedding space

for ∆N−1 and SN−1 is equal to the size of the lattice of the model. The set de-

scribed by Eqs. (3.24) can be easily visualized in the N = 2 and N = 3 case

(see Fig. (3.2a) and Fig. (3.2b) respectively). It is clear that, varying the value

of the total energy keeping the amplitude fixed, the intersection between ∆N−1

and SN−1 can be connected (i.e. a circle on the simplex) or not connected,

forming three distinct arcs in the N = 3 case, as in Fig. (3.2b). In the latter

case, one of three sites has much more energy than the other two and thus it

can be interpreted as a breather. We have to notice, however, that the con-

straint
∑N

i=1 ρ
4
i = E represents energy conservation only if the hopping term

is not present, i.e. in the high energy limit, where the transition to negative

temperatures occurs.

Things become more complicated in higher dimensions; indeed, N = 3 has

to be regarded as a particular case, since the intersection between ∆2 and S2 be-

comes a disconnected manifold when the hypersphere is tangent to the bound-

ary of the simplex. This is not true in higher dimensions. Let us consider, for
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Figure 3.2: Intersection between the sphere SN−1 and the standard simplex ∆N−1 for
N = 2 (Fig. (3.2a)) and N = 3 (Fig. (3.2b)). In Fig. (3.2a) the intersection between
the circle and the segment is already disconnected. In Fig. (3.2b), instead, the transi-
tion point is represented; for larger values of the radius of the sphere, the intersection
becomes disconnected.

instance, the N = 4 case: in order to visualize the situation we consider the

hypervolume contained between the hypersphere S3 and the simplex ∆3 and

we then project it on the hyperplane orthogonal to one of the basis vector of R4.

We obtain the relevant cases depicted in Fig. (3.3) and Fig. (3.4).

In particular, in Fig. (3.3) it is shown the case in which the hypersphere is

cut by the boundary of the simplex ∂∆4, but, differently from the N = 3 case,

this is not enough to guarantee that the available surface for the variables is

disconnected: this happens in Fig. (3.4). It is quite easy to determine analyt-

ically the relation that A and E must satisfy in order to realize the conditions

represented in Fig. (3.3) (condition 1.) and Fig. (3.4) (condition 2.). This can

be done in the following way:

1. We have to determine the relation between e and a2 so that the hyper-

sphere is tangent to the boundary of the simplex. This is achieved by set-

ting equal to zero one of the q’s and, by symmetry, setting the remaining

N− 1 equal to each other, that is:

E = (N− 1)x2

A = (N− 1)x
(3.25)
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Figure 3.3: Projection on R3 of the 2-dimensional surface embedded in R4 that repre-
sents the intersection between SN−3 and ∆N−3. The orange part represents the surface
that can be visited by the variables of the problem, while the blue part the one that can-
not be visited (is the surface that is cut by ∂∆4). Notice that, in this case, the orange
part is connected. The intersection between hypersphere and simplex is non-trivial for
e > 4/3a3.

Figure 3.4: The same geometric construction represented in Fig. (3.3) but for a larger
value of E; in particular the value of E has been tuned to the minimum value for which
the available surface for the variables is disconnected.

that yields to:

e =
N

N− 1
a2 (3.26)

This relation is indeed verified in the cases plotted in Fig. (3.2) and Fig. (3.3).

2. Now we have to determine the relation that relates e to a2 for which the
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intersection between hypersphere and simplex is not connected. This can

be done by imposing thatN−2 of the q’s vanish and, by symmetry, setting

equal to each other the remaining two (this is a naive argument, the proof

will be given below):

E = 2x2

A = 2x
(3.27)

and thus:

e =
N

2
a2 (3.28)

With the help of Mathematica this has been verified for N = 3, 4, 5.

Notice how Eq. (3.26) and Eq. (3.28) coincide for N = 3 as we described

earlier. Notice also that for N = 4 this reduces to e = 2a2, which is the

condition for negative temperature states in the DNLSE; this is only an

accident and this identification is only true for N = 4.

The results just presented and motivated quite naively have been demonstrated by
a group of mathematicians of the ICTP -The Abdus Salam International Centre for
Theoretical Physics, led by prof. Claudio Arezzo. We discussed with him our prob-
lem and he recently announced us to have a complete proof. Unfortunately a paper
has not yet been published, but it is in preparation.

Therefore we have learned that the casesN = 3 andN = 4 are geometrically

peculiar and in general the three phenomena:

• hypersphere tangent to the boundary of the simplex;

• β = 0-line, identifying the transition line for non-Gibbs states;

• disconnection of the intersection between hypersphere and simplex

are distinct. As a consequence, the localization transition described in [2] does

not happen when the intersection becomes disconnected, but for smaller values

of e. Let us consider, then, the case 2a2 < e < N/2a2; even though the inter-

section is classically connected, the dynamics of the system takes an enormous

amount of time to visit a region different from the initial state one. This is due

to the fact that the path connecting two such regions represents an entropic

barrier for the classical motion. This means that, even if there are classical tra-

jectories connecting two such regions, their number is strongly suppressed with
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respect to the number of classical trajectories that remain in the same region.

The name “entropic" here refers to the fact that the number of ways for passing

between two regions is very small, even though different form zero. Indeed, the

multi-breather states that are observed in the DNLSE last for long-times (usually

referred to as “astronomical times") but they can eventually move.

The presence of the entropic barrier is, however, due to the boundaries of the

simplex: if, instead of a simplex, we would have a hyperplane, cases 1. and 2.

would never happen and, consequently, there would be no entropic barrier. This

is the case of the JJ array model: in fact, as we already mentioned earlier, it has

an important difference with respect to the DNLSE: the charges are allowed to

assume negative values, because of the possibility of having Cooper pairs holes

in the superconductor. This drastically changes the geometric construction we

have just described, since now the surface that represents the conservation of

the amplitude A is not a (standard) simplex, but a hyperplane. Accordingly, the

intersection between this hyperplane and the hypersphere is always connected,

and thus there is no negative temperature phase, as we pointed out computing

the partition function, because of the absence of entropic barriers.

This can be seen in Fig. (3.5): in this plot we show the value of the charges

of a 3-site JJA system during time evolution: it is interesting to notice that,

with the initial conditions used, the DNLSE would be localised. This can be

seen in Fig. (3.6a): the area between the couples of arcs is the available surface

to the charges, that are also bonded to stay on the simplex. Therefore if the

initial condition sets the initial value of the charges to a point in the upper

sector, during time evolution the charges remain in that sector. The situation is

different in the JJA case (see Fig. (3.6b)).
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Figure 3.5: Plot of the values of the charges q1(t), q2(t), q3(t) during time evolution.
The initial condition is given by the values q1(0) = 1

6 (2 −
√

2), q2(0) = 1
6 (2 −

√
2) and

q3(0) = 1
3 (1 +

√
2), EJ = 0.04, EC = 2 and tmax = 10000, which satisfies e > 3/2a2.

(a) (b)

Figure 3.6: Plot of the different bonds for the DNLSE (Fig. (3.6a)) and the JJA
(Fig. (3.6b)) models with the same initial conditions. It is clear that the DNLSE is lo-
calised in this case, while the JJA is not (here e > 3/2a2), as effectively results from the
simulation of the dynamics (see Fig. (3.5)).
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3.5 Upper and lower bounds to the total energy for

the DNLSE

For a fixed value of the total charge A =
∑

i qi and a given N, the range of the

possible values of the total energy E =
∑

i q
2
i is easily found by considering two

limiting cases:

• q1 = q2 = · · · = qN = A
N

gives the minimum value of the energy;

• qi = A and qj = 0 ∀ j 6= i gives the maximum value of the energy.

Using the construction presented in the previous section, we can give a simple

geometrical interpretation to these bounds. As before, we are still neglecting

the hopping contribution: the correction that takes it into account will be given

in the next section. The smallest value of the total energy is given by the radius

of the smallest hypersphere that has a non-empty intersection with the simplex.

This is obtained by setting the radius of the hypersphere equal to the distance

of the simplex from the origin:

dhyp(O) =
A√
N

≡
√
Emin =⇒ Emin =

A2

N
(3.29)

Obviously this coincides with the case in which we set all the charges equal, i.e.

at the centre of the simplex.

The maximum value is also easily found, since it is obtained when the vertices

of the simplex belong to the hypersphere, and thus:

Emax = A2 (3.30)

Therefore we have the condition:

A2

N
6 E 6 A2 (3.31)

in the limit of negligible hopping term. If we introduce the energy and ampli-

tude density e = E/N and a = A/N as in Sec. (2), we find the relation:

a2 6 e 6 a2N (3.32)



CHAPTER 3. A CLOSER LOOK AT THE JJA AND THE DNLSE 36

Notice that the β = 0 line, the critical line for the transition to the localized

phase, is identified by the equation:

e = 2a2 (3.33)

(see Eq. (2.48) or [23]) i.e. for specific energies very close to Emin/N in the

thermodynamic limit.

3.5.1 Modified lower bound with hopping contribution

In the previous sections we presented a geometric construction that allowed us

to visualize the parameter space of the DNLSE, but we did it in the limit of

high energy, i.e. for negligible hopping contribution. This is the relevant limit

that we are interested in for the DNLSE. However, we can extend the treatment

to the case of non-negligible hopping term, providing corrections to the total

energy. In particular, consider the Hamiltonian in Eq. (2.6): the hopping term

for E ∼ Emin can be at most |Hhopp| = 2A, when the charges are all equal to

A/N. Therefore:

Emin =
A2

N
− 2A =⇒ emin = a2 − 2a (3.34)

and this is the equation for the β = ∞ line in the phase diagram Fig. (2.1).

Notice that the upper bound is not modified, since it is obtained setting all the

charges equal to zero except for one, that is equal to A; in that case however,

the hopping term vanishes since there is the product of neighbouring charges

and at least one of them is always zero. In conclusion we have:

a2 − 2a 6 e 6 Na2 (3.35)

3.6 The particular case N = 3

Now we focus on the particular case of the DNLSE with N = 3 sites: this is an

interesting case since it allows us to visualize the values of the charges located

at each site and the time evolution of their values. We will study numerically

this case.

First we notice that the charges must satisfy both energy and amplitude con-

servation. We have already pointed out in Sec. (3.3) that, keeping the value
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of the total amplitude fixed and changing the total energy, there is a transition

when the intersection between the standard simplex and the sphere is no more

a connected line. In that case, however, we have not considered the hopping

term. If we want to investigate the time evolution of the charges, we obviously

have to keep it, and thus we will consider the following hamiltonian:

H =

3∑
k=1

(
1
2
ECqk(t)

2 + t
√
qk(t)qk+1(t) cos (φk(t) − φk+1(t))

)
(3.36)

Notice that this Hamiltonian coincides with Eq. (2.6) where we have introduced

the control parameters EC and t emulating the ones that are present in the JJ ar-

ray model. Even if the total amplitude is still conserved in this case, the charges

no more satisfy the equation E =
∑3

i=1 q
2
i , but the full energy conservation.

Therefore the allowed charges no more live on the line depicted in Fig. (3.2b).

We should consider, instead, the intersection between the simplex, where the

charges are always constrained to stay, with a (sort of) spherical shell with

mean squared radius given by the total energy, modified by a quantity given

by ±t
√
qk(t)qk+1(t). Different scenarios may appear if we vary the value of t

keeping the value of total energy fixed. For small values of t, localization will

persist, since in the worst case scenario, the hopping term can be at most equal

to ± tA; this is obtained maximizing both the absolute value of the cosine (i.e.

±1) and the value of
∑

i

√
qi(t)qi+1(t) (i.e. A), that is obtained when the three

charges describe the centre of the simplex. We can therefore find the value of t,

for given total energy E, for which there surely is localization. This is obtained

looking for the lowest value of t for which the sphere:

EC

2

3∑
k=1

q2
k = E− tA (3.37)

is tangent to the boundary of the simplex

3∑
k=1

qk = A (3.38)

This is given by the condition:√
2(E− tA)

EC
>

A√
2

(3.39)
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and thus:

t 6
E

A
−

AEC

4
(3.40)

Notice that this bound is not very accurate: we have approximated the hopping

term with its maximum value, that clearly cannot be reached in the case we are

investigating, i.e. when the charges are “isolated" in one corner of the simplex.

However, this allows us to conclude that there is localization, because we have

considered the worst case scenario.

If t is increased enough, the charge can move to other sectors of the simplex, but

still cannot visit the centre of the simplex. This can be done increasing further

the value of t. A plot of the possible outcomes is given in Fig. (3.7).

(a) (b) (c)

Figure 3.7: Plot of the value of the charges q1, q2 and q3 for different values of t. In
particular in Fig. (3.7a) t = 0.8, in Fig. (3.7b) t = 1 and in Fig. (3.7c) t = 1.5. The
initial conditions are q1(0) = 1

6 (2 −
√

2), q2(0) = 1
6 (2 −

√
2), q3(0) = 1

3 (1 +
√

2) and
EC = 10. The equations of motion have been solved numerically till tmax = 10000.



4 | Quantum DNLSE

In the previous sections we focused our attention on the Discrete Non-Linear

Schrödinger Equation, which is a classical model that presents a peculiar lo-

calization transition into a negative temperature phase characterized by non-

gibbsian states. In this section our aim is to quantize the DNLSE, that will give

us the Bose-Hubbard model, and show that the localization transition of the

DNLSE is present also in this context.

In order to quantize the DNLSE, we consider then the Hamiltonian of Eq. (2.1)

and we introduce the bosonic creation and annihilation operators ψi and ψ†
i

with commutation relations: [
ψi,ψ

†
j

]
= δij (4.1)

and
[ψi,ψj] = 0

[
ψ†

i ,ψ
†
j

]
= 0 (4.2)

Therefore the Hamiltonian becomes:

H =
t

2

N∑
i=1

(
ψ†

iψi+1 +ψ
†
i+1ψi

)
+
EC

2

N∑
i=1

ψ†
iψiψ

†
iψi + g

N∑
i=1

ψ†
iψi (4.3)

where the couplings t and EC have been introduced in analogy with the Joseph-

son Junction Array model.

The term proportional to g has been introduced because of the ambiguity in the

quantization of the quartic term: it can be defined indeed as
∑N

i=1ψ
†
iψiψ

†
iψi

or
∑N

i=1ψ
†
iψ

†
iψiψi and they differ by

∑N
i=1ψ

†
iψi. The g-term does not modify

39



CHAPTER 4. QUANTUM DNLSE 40

the properties of the Hamiltonian, however, since the total number operator:

A =

N∑
i=1

ψ†
iψi =

N∑
i=1

n̂i (4.4)

is still conserved, as one can easily verify performing the commutator between

H and A that gives:
[H,A] = 0 (4.5)

in virtue of the periodic boundary conditions. Notice that in Eq. (4.4) we have

introduced the quantity n̂i := ψ†
iψi, that is the number operator for the i-th

site.

4.1 Symmetries, basis vectors and Hilbert space

The Hamiltonian Eq. (4.3) has several symmetries. The first one is a U(1) global

gauge symmetry that acts as:

ψi → ψie
iθ

ψ†
i → ψ†

ie
−iθ

n̂i → n̂i

(4.6)

There is then the translation symmetry, that acts as:

ψi → ψi+1

ψ†
i → ψ†

i+1

(4.7)

The Hamiltonian is left invariant thanks to the periodic boundary conditions, as

one can readily verify. We can introduce the following operator:

K̂ ≡
N−1∑
q=0

(
2πq
N

)
b†qbq (4.8)

with the definition:

b†q ≡ 1√
N

N∑
j=1

ei(2πqj/N)ψ†
j (4.9)

The operator K̂ is the total quasi-momentum, while the operators b†i and bi
are, respectively, the creation and annihilation operators for the Bloch states. In
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terms of the operator K̂ we can express the action of the translations as:

e−iK̂ψie
iK̂ = ψi+1

e−iK̂ψ†
ie

iK̂ = ψ†
i+1

(4.10)

Therefore, the translation symmetry is associated with the conservation of the

total quasi-momentum K̂.

The third symmetry of the system is the reflection symmetry, that transforms

the creation and annihilation operators as:

ψi → ψN−i

ψ†
i → ψ†

N−i

(4.11)

Notice that the combination of translation and reflection symmetry gives the

dihedral group DihN, and thus the Hamiltonian Eq. (4.3) is invariant under the

group G:

G = U(1)⊗ DihN (4.12)

Let us focus now on the basis vectors for the Hilbert space of our model: we

can introduce the following operator: we can choose as a natural basis for our

model the occupation number basis {|n1, . . . ,nN〉}, that is defined as:

n̂i |n1, . . . ,nN〉 = ni |n1, . . . ,nN〉 (4.13)

and, as usual:

ψi |. . . ,ni, . . .〉 =
√
ni |. . . ,ni − 1, . . .〉

ψ†
i |. . . ,ni, . . .〉 =

√
ni + 1 |. . . ,ni + 1, . . .〉

(4.14)

For a given number of bosons n1 + . . .nN = Nb, the dimension of the Hilbert

space of the system H is easily obtained:

DH =

(
Nb +N− 1

Nb

)
=

(Nb +N− 1)!
Nb!(N− 1)!

(4.15)

that is the number of ways for arrangingNb objects inN places. In Appendix (D)

we show how we generated the basis elements in the algorithm used to study

the time evolution of a given initial condition.
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4.2 The Quantum dynamics

As we did for the classical case, we would like to study the dynamics governed

by the hamiltonian Eq. (4.3). The algorithm we use to this aim consists of a

base generator, based on the procedure explained in Appendix (D). After the

generation of the basis, we generate the Hamiltonian Eq. (4.3) by means of

the algorithm presented in Appendix (D). Once the Hamiltonian is obtained,

we solve numerically the time-dependent Shrödinger equation for a given ini-

tial condition. In particular, in order to compare the quantum results with the

classical ones, we will set analogous initial conditions.

4.2.1 The N = 3 case

As we did for the classical case, also for the quantum case we will focus on

the dynamics of a system described by the hamiltonian Eq. (4.3) on a 3-site

lattice with p.b.c. with a given number of bosons (that will not change since

the hamiltonian conserves the total number of particles). Let us remind that in

the classical case, when the value of t is sufficiently small, the dynamics is nec-

essarily localized, since a charge (i.e. particle) transfer between neighbouring

sites would require to overcame a “potential barrier" due to the conservation

of both energy and amplitude. In order to pass form a site to another, keeping

the total amplitude conserved, energy should not be conserved, allowing the

system to overcome the “potential barrier". However, in the quantum system,

even when we are in the regime where the classical dynamics is localized, we

expect to have charge transfer due to tunnelling effect. In order to look into this

phenomenon, we have to focus on the mean number of bosons per site during

time evolution, that is, we have to look, during the dynamics, to the quantity:

n(k, t) =
∑

n1,n2,n3
n1+n2+n3=Nb

p(n1,n2,n3; t) 〈n1,n2,n3| n̂k |n1,n2,n3〉 (4.16)

where n(k, t) is the mean number of bosons at site k at time t and p(n1,n2,n3; t)

is the probability that, a time t, the system is in the state |n1,n2,n3〉. The

probability p(n1,n2,n3; t) is obtained by the solution of the time-dependent

Shrödinger equation. In Appendix (D) we explain how to accomplish this goal

algorithmically. Notice that the quantity n(k, t) is the analogous of qk(t) in the

classical system. We can thus define the Inverse Participation Ratio also for the
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quantum case as:

Y2(t)
(Q) =

(∑N
k=1 n(k, t)2

)2

∑N
k=1 n(k, t)4

(4.17)

In order to better clarify the meaning of the Inverse Participation Ratio, we

show in Fig. 4.1 and Fig. 4.2 the IPR for a N = 3-site Bose-Hubbard model.

Form Fig. 4.1 it is evident that, at least for small values of N, the IPR can be

quasi-periodic in the quantum system. In Fig. 4.2 we show the value of IPR and

n(k, t) for k = 1, 2, 3: it is clear that, the IPR is maximum when all the sites

have the same mean occupation number. Conversely, the IPR is minimum when

the occupation of the sites is the most uneven possible.

0 500 1000 1500 2000
1.0

1.5

2.0

2.5

3.0

3.5

t

IP
R

Figure 4.1: Plot of the Inverse Participation Ratio as a function of time for a system of
Nb = 8 bosons andN = 3 sites, with initial configuration |6, 1, 1〉. The parameters in the
Hamiltonian are set equal to: EC = 2, t = 0.8 and the Schrödinger equation is solved till
tmax = 2000.
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Figure 4.2: Plot of the Inverse Participation Ratio (blue), n(1, t) (orange) and n(2, t) ≡
n(3, t) (red). The initial conditions and the parameters are the same of Fig. 4.1

It is natural to expect that the IPR period, that can be easily found from

Fig. 4.1, depends on the ratio t/EC and on the number of bosons on the lattice.

For instance, the bigger the ratio t/EC (or t with fixed EC) the smaller will

be the IPR period, as bosons can move more easily thanks to a bigger hopping

term. Instead, for larger values of Nb, we expect the IPR period to be larger,

since the energy differences between neighbouring sites can be larger and thus

off-resonance. In Fig. 4.3 we show the results of the numerical simulations

performed for different values of Nb; the IPR period has the features expected.

4.3 Quantum tunnelling

As we anticipated in the previous section, we expect that in the quantum regime

there is the possibility of charge transfer between disconnected sectors of the

space of variables because of quantum tunnelling. In order to be more quan-

titative, in this section we are interested in performing the amplitude for the

transport of charge between two neighbouring sites |Q, 0, 0, . . .〉 → |0,Q, 0, . . .〉.
To do this, we begin with the Hamiltonian Eq. (4.3) (we set g = 0, this makes
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Figure 4.3: Plot of the dependence of the IPR period on the value of t for different
values on Nb. We used the following initial conditions: Nb = 6 → |4, 1, 1〉,Nb = 7 →
|5, 1, 1〉,Nb = 8 → |6, 1, 1〉. In all cases we used EC = 2 and N = 3

no difference) and we perform the canonical change of variables:

ψi =
√
qie

iφi

ψ†
i = e

−iφi
√
qi

(4.18)

with:
[qi,φj] = iδij (4.19)

To simplify the analysis, let us consider the charge transfer involving only

two sites: in that case the Hamiltonian reduces to:

H = t(
√
q1e

i(φ1−φ2)
√
q2 + h.c.) +

EC

2
(q2

1 + q
2
2) (4.20)

This simplification is motivated by the fact that, in the full Hamiltonian, the

hopping term couples neighbouring sites; this means that, at least at leading

order in perturbation theory, the transfer of particles occurs between adjacent

sites. Moreover, we will perform a semi-classical calculation, and therefore we

can safely neglect the commutator contributions, yielding the effective Hamil-

tonian:

H(eff) = 2t
√
q1q2 cos(φ1 − φ2) +

EC

2

(
q2

1 + q
2
2

)
(4.21)
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We introduce now another set of canonically conjugate variables, defined as

follows:

φ+ = −
φ1 + φ2√

2
; φ− = −

φ1 − φ2√
2

q+ =
q1 + q2√

2
; q− =

q1 − q2√
2

(4.22)

that clearly satisfy the relation:

[φa,qb] = iδab (4.23)

with a,b = ±.Therefore the Hamiltonian becomes:

H(eff) = 2t

√
q2
+ − q2

−

2
cos(

√
2φ−) +

EC

2

(
q2
+ + q2

−

)
(4.24)

We immediately see that (as we already know) the total number of particles

q+ = Q√
2

(total charge) is conserved, since there is not the conjugate variable in

the Hamiltonian. In the following we will treat q− as the momentum and φ−

as the position. We are interested in finding the probability that, starting with

momentum q− = Q/
√

2, we end up with momentum q− = −Q/
√

2.

4.3.1 Classical trajectories

Before starting with the calculation of the quantum tunnelling coefficients, we

have to study the classical trajectories allowed in the reduced Hamiltonian we

are considering. To do so, let us rewrite the Hamiltonian Eq. (4.24) as:

H = t
√
Q2 − q2 cos(2φ) +

EC

4
q2 = t

√
Q2 − q2 cos(Φ) +

EC

4
q2 (4.25)

where:

q =
√

2q− , Q =
√

2q+ , φ = φ−/
√

2 , Φ = 2φ (4.26)

(q and φ are canonically conjugate variables). At the classical level it has a

peculiar property when the initial condition is set to be Q = q. The trajecto-

ries associated to the solution of the equations of motion for the Hamiltonian

Eq. (4.25) are given by the contour plot in Fig. (4.4), for different values of the

initial energy (i.e. different values of the initial conditions). The separatrix is
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(a) (b)

(c) (d)

Figure 4.4: The contour plot shows the trajectory associated to the Hamiltonian
Eq. (4.24). In red we have plotted the explicit solution to the equation of motion (the
one that follows the contour plot lines) and the solution to the equations of motion if we
invert the sign in front of the square root (see text).

the trajectory for which we pass from close to open orbits. The red lines are

obtained by solving for q, the momentum of our system, the equation:

E = t
√
Q2 − q2 cos(Φ) +

1
4
q2 (4.27)

where we set, for simplicity, EC = 1. However, we should be careful in solving

this equation; indeed we have:

t cos(Φ)
√
Q2 − q2 = E−

1
4
q2 (4.28)
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where, by definition, q < Q. This equation will lead to a second order equation,

that has two solutions in general. However, depending on the sign of cos(φ),

we will have to take only one of them:

for Φ ∈
[
−
π

2
,
π

2

]
→ q2 < 4E

for Φ ∈
[
−π,−

π

2

]
∧
[π

2
,π
]
→ q2 > 4E

(4.29)

This conditions select only one solution (namely the correct one). In Fig. (4.4)

the red line following the contour lines is the correct solution. The other red

line is the wrong solution, the one obtained by taking the wrong signs. We

plotted it anyway because it gains an important role when q = Q; this situation

is represented in Fig. (4.4d). As it is clear from the conditions Eq. (4.29), the

two solutions (the right and wrong one) meet atΦ = ±π/2. The angle between

the tangents at the intersection points become smaller as q approachesQ, being

zero for q = Q. At this point, it happens that the solution to the equations of

motion is no more unique: in fact, one of them is given by ordinary solution,

that now assumes the form:

q =

±Q if Φ ∈
[
−π,−π

2

]
∧
[
π
2 ,π

]
±
√
Q2 − 16t2 cos2(φ) if Φ ∈

[
−π

2 , π
2

] (4.30)

In addition, there is also another possible solution that conserves the energy

and that solves the equations of motion, that is:

q = ±Q ∀ Φ (4.31)

This is better shown in Fig. (4.5).
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Figure 4.5: Trajectories for initial condition q0 = Q

Therefore, for Φ ∈
[
−π

2 , π
2

]
also the “wrong" solution, the one that one

obtains by choosing the wrong signs, is correct. What happens is that the two

solutions to the equations of motion Eq. (4.30) constitute another separatrix of

the phase space of the system.

4.3.2 Quantum Tunnelling: the general case (Q� 1)

Having studied the classical trajectories of the Hamiltonian (4.25), we can now

proceed by studying the quantum tunnelling coefficients. As it is clear form

Eq. (4.23), in our system q represents the momentum and φ the position. Since

we would like to find the probability for the transition q → −q in classically

forbidden regions, we have to study the phenomenon of “reflection above a

barrier". The phenomenon we are interested in is represented in Fig. (4.6).
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Figure 4.6: The quantum tunnelling phenomenon described in this section represents
the transition q→ −q. Since q is the momentum of our system, we will have to calculate
the coefficient for the reflection above a barrier.

As we discuss in Appendix (E), the amplitude for this process is given by:

|R(E)|2 = exp
(
−

4
 h
=

∫z0

0
dz p(z)

)
(4.32)

where p(z) is the momentum of the system and z0 is such that p(z0) = 0.

Consider, then, the Hamiltonian Eq. (4.25) and the initial condition:

E =
q2

4
+ t
√
Q2 − q2 cos(2φ) ≡ X

4
(4.33)

and define:

X := hQ2 , cos(2φ) = Qκ (4.34)

then the expression for q as a function of κ is given by:

q = Q

√
h− 4κt

(
2κt+

√
1 − h+ 4t2κ2

)
(4.35)

In order to determine the reflection coefficient, we have to integrate over φ
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Eq. (4.35) from 0 to the value of φ such that q(φ0) = 0, i.e.:

q(κ0) = 0 =⇒ κ0 =
h

4t
(4.36)

Since we are interested in the quantum reflection above the barrier, the value

of φ0 corresponding to the value of κ0 given by Eq. (4.36) is pure imaginary.

Therefore we define:

2φ = iφ̂ =⇒ κ =
cosh(φ̂)
Q

(4.37)

We have to perform:

ω =

∫ φ̂0/2

0
dφ q(φ) (4.38)

Given that:

dκ =
1
Q

sinh
(
φ̂
)
dφ̂ =

1
Q

√
Q2κ2 − 1dφ̂ =

=

√
κ2 −

1
Q2dφ̂

(4.39)

Then we find:

ω =
i

2

∫ φ̂0

0
dφ̂ q =

∫h/4t

1/Q

dκ√
κ2 − 1

Q2

Q

√
h− 4κt

(
2κt+

√
1 − h+ 4t2κ2

)
(4.40)

Notice that the integral:∫κ0

a

dκ√
κ2 − a2

= <

∫κ0

0

dκ√
κ2 − a2

(4.41)

where a = 1/Q. Now we make the change of variables a = iā and thus:∫κ0

a

dκ√
κ2 − a2

= <

∫κ0

0

dκ√
κ2 + ā2

(4.42)

Then we have: ∫κ0

0

dκ√
κ2 + ā2

= log
(

2κ0

ā

)
+

(
ā

2κ0

)2

+ . . .∫κ0

0

κ dκ√
κ2 + ā2

= (κ0 − ā) +
ā2

2κ0
+ . . .

(4.43)
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Let us define:

f(κ) = Q

√
h− 4κt

(
2κt+

√
1 − h+ 4t2κ2

)
= Q

[
√
h− 2

√
1 − h

h
κ+ O(κ2)

]
(4.44)

Therefore we get:∫κ0

0
dκ

1√
κ2 + ā2

f(k) = f(0) log
(

2κ0

ā

)
+ f ′(0)(κ0 − ā) + O(ā2) (4.45)

from which:

ω =
Q

2

√
h log

(
2κ0

a

)
−
hQ

4t

√
1 − h

h
(4.46)

and thus, at leading order:

|R(E)|2 = e−4ω =

(
hQ

2t

)−2Q
√
h

=

(
2t

Q(2x− 1)2

)2Q|2x−1|

(4.47)

if we set as initial condition q = Q(2x − 1) and use Q � 1. Notice that the

reflection coefficient in Eq. (4.47) goes to zero, for large Q, faster than an ex-

ponential. This result qualitatively agrees with the ones found in Sec. (4.2.1),

since it justifies the fact that, with the same conditions, the quantum dynamics

is less localized than the classical one. This is a consequence of the tunnelling

property of quantum systems. Notice that this is the opposite of what happens in

systems that display Anderson or many-body localization (see [5]). As we men-

tioned in the Introduction (Sec. (1.1)), both Anderson and MB localization are

phenomena that occur in quantum systems, disappearing in the semi-classical

limit, and for strong enough disorder. The localization phenomenon that we are

considering in this work is completely different, since our system does not have

disorder and the classical case is “more localized" than the quantum one.

4.4 N = 2 quantum dynamics

In this section we want to relate the reflection coefficient obtained in the semi-

classical calculation performed in Sec. (4.3.2) with the time τ such that:

| 〈Qx,Q(1 − x)| e−iHτ |Q(1 − x),Qx〉 |2 ' 1 (4.48)
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that can be obtained from numerical simulations. In Fig. (4.7a) and Fig. (4.7b)

we show how the amplitude in Eq. (4.48) depends on t in two different cases.
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Figure 4.7: Plot of the amplitude | 〈Qx,Q(1 − x)| e−iHt |Q(1 − x),Qx〉 |2 as a function
of time with initial conditions t = 0.1, Q = 5,x = 1/5 in Fig. (4.7a) and t = 0.1,
Q = 4,x = 1/4 in Fig. (4.7b).

Since |R|2 is the probability of getting through the barrier (in momentum



CHAPTER 4. QUANTUM DNLSE 54

space) on a single collision with the wall, the number of collisions needed will

be of the order of |R|−2, thus one expects that:

τ ' ∆t(Q, t,EC)
|R|2

=⇒ τ|R|2 ' ∆t(Q, t,EC) (4.49)

where ∆t(Q, t,EC) is the proportionality constant between τ and 1/|R|2, that in

general can depend on Q, t and EC. Let us introduce the semiclassical time τsc
defined as:

τsc =
1
|R|2

(4.50)

since we expect that the time needed to go through the barrier (in momentum

space) is proportional to the number of collisions with the wall. One expects

that the behaviour of τ as a function of Q will be dominated by a contribution

Q logQ as happens for |R|2. Moreover the ∆t(Q, t,EC) dependence on Q, t and

EC can be inferred from the τ/τsc dependence on the same variables.

At the moment we have been able to obtain few useful data and this is due

to two issues: for small values of Q the semiclassical result is not reliable since

the system is near the inversion points of the potential, where the semiclassical

methods break down. On the other hand, for large value of Q the numerical

simulations of the quantum system require much more computational power

than the one used in obtaining the results presented.

4.4.1 Leading contribution to the tunnelling time τ

In this subsection we want to show that τ has the same leading contribution on

Q as the reflection coefficient 1/|R|2 found in Sec. (4.3.2).

Let us remind Eq. (4.47), that we now express in terms of τsc:

τsc =

(
Q(2x− 1)2

2t

)2Q|2x−1|

(4.51)

Remind also that x is the fraction of particles present in one of the two sites

in the initial condition. Since we will fit the numerical results obtained with
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Figure 4.8: Plot of tτ (in logarithmic scale) needed to obtain
| 〈Qx,Q(1 − x)| e−iHτ |Q(1 − x),Qx〉 |2 = 0.6 with x = 1/Q.

x = 1/Q, let us express log τsc with explicit Q dependence (for large Q):

log τsc = 2Q|2x− 1| log
(
Q(2x− 1)2)+ O(Q) =

= (2Q− 4) logQ+ 2(2Q− 4) log
(

1 −
2
Q

)
+ O(Q) =

= (2Q− 4) logQ+ 2(2Q− 4)
(
−

2
Q

+ O

(
1
Q2

))
+ O(Q) =

= (2Q− 4) logQ+ O(Q)

(4.52)

Therefore we fit the results reported in Fig. (4.8) with:

log τ = a(2Q− 4) logQ+ bQ+ c (4.53)

since, from Eq. (4.52), we expect that the leading contribution has such a de-

pendence. In particular, we should find a ' 1. In the following Table (4.1) we

show the results of the fits for different values of t.
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t Fit

0.1 3.75 − 1.35 Q+ 1.04 (2Q− 4) log(Q)

0.15 4.39 − 1.71 Q+ 1.04 (2Q− 4) log(Q)

0.2 5.68 − 2.16 Q+ 1.05 (2Q− 4) log(Q)

0.25 7.24 − 2.75 Q+ 1.13 (2Q− 4) log(Q)

0.3 3.97 − 1.77 Q+ 0.90 (2Q− 4) log(Q)

Table 4.1: Fit of log τ = a(2Q− 4) logQ+ bQ+ c for different values of t

Form the results of the fits we find that the coefficient a is given by:

a = 1.03 ± 0.08 (4.54)

that is compatible with the value given by the semiclassical method, that is:

asemiclassical = 1 (4.55)

Therefore the leading contribution given by the semiclassical approximation

correctly describes the quantum tunnelling phenomenon.

4.4.2 Inference of the Q and t dependence of τ/τsc

In the previous paragraph we have determined the leading contribution to the

tunnelling time, and we have confirmed that it coincides, at leading order, with

τsc, i.e. the tunnelling time calculated within the semi-classical method. Now

we want to find the corrections to the semi-classical tunnelling time: these

are found showing the dependence on Q and t of the ratio between the real

tunnelling time τ (of the numerical simulations) with the semi-classical one

τsc. The results are plotted in Fig. (4.9) and Fig. (4.10).

From Fig. (4.10) it is clear that there is an underlying law describing how

τ/τsc depends on Q and t. In particular, since the y-axis is plotted in loga-

rithmic scale, the Q-dependence is expected to be exponential. Notice that this

behaviour is sub-leading with respect to the Q log(Q) dependence present both

in τ and τsc (see Sec. (4.4.1)), which cancels considering the ratio τ/τsc. From

Fig. (4.9) and Fig. (4.10) we can easily guess that the dependence of τ/τsc on
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Figure 4.9: Plot of the product τ/τsc as a function of Q, with initial condition
(Q/3, 2Q/3), that is, x = 1/3. τ/τsc clearly depends both on Q and t, and the de-
pendence appears to be exponential; this means it is subleading with respect to the Q−Q

leading dependence of τsc.
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Figure 4.10: Plot of the product τ/τsc as a function of Q. In this plot we used (1,Q −
1) as initial condition, that is, x = 1/Q. The dashed lines are the fits of Eq. (4.56).
Notice that τ

τsc
is exponential in Q, which means that it is subleading with respect

to the factorial dependence Q−Q of τsc. Therefore, τ and τsc have the same leading
contribution.
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Q is linear; therefore we can do a fit with a linear law and we find:

log
(
τ

τsc

)
' a+ b ·Q (4.56)

t a b

0.1 12.21 -2.94

0.15 11.89 -2.60

0.2 11.61 -2.35

0.25 12.18 -2.29

0.3 12.11 -2.14

Table 4.2: Fit values of Eq. (4.56)

If we now exponentiate both sides of Eq. (4.56) we obtain a law of the form:

τ

τsc
∝ e−f(t)Q (4.57)

where the proportionality between the two sides is given by the exponential of

the coefficient a, while the coefficient b is replaced by a function of t, i.e. f(t),

to account for the residual dependence due to the hopping strength. A fit with

the values presented in Eq. (4.56) and Table (4.2) gives, for t < 1:

f(t) ' 2.09 +
0.09
t

(4.58)

Finally we find a law of the form:

τ

τsc
∝ e−2Q− Q

10t (4.59)

for small values of t.

In conclusion, in this Chapter we have addressed the quantum version of the

Discrete Non-Linear Schrödinger Equation, focusing, in particular, on quantum

tunnelling. We found that quantum effects reduce the localization phenomenon,

as particles can move in phase space even if it is not geometrically connected.

Moreover, even when phase space is geometrically connected, so there are clas-

sical trajectories connecting different pieces of phase space, quantum effects
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with its classically forbidden trajectories reduces the effect of entropic barrier,

weakening localization.



5 | A stochastic model for the

DNLSE

In the previous Chapters we have studied the DNLSE both in its classical and

quantum regimes. The numerical simulations performed in order to validate

the analytic results obtained have been done, so far, solving the full equations

of motion of the model. This has been done using symplectic integrators in

Mathematica, which are able to give a very precise numerical solution to the

equations of motion, but this is only feasible for small times and small sizes of

the lattice, at least on a standard computer.

Taking advantage of the geometric construction presented in Section (3.4)

and the tunnelling probabilities calculated in the previous Chapter (4), we now

introduce a simplified dynamical model for the DNLSE, both in the classical

and quantum regimes. This model, instead of using the full hamiltonian evolu-

tion, uses a random sequential update rule, that in the following we will denote

as “stochastic evolution". This type of update rule has already been used, for

example in [24] for studying similar classical models of mass transport. The

advantage of this approach is that the numerical simulations based on random

moves (e.g. Monte-Carlo steps) are much faster than numerical solvers for dif-

ferential equations. Since this new model still has to reproduce the DNLSE

phenomenology, the stochastic evolution has to conserve the quantities:

A =

N∑
i=1

qi E =

N∑
i=1

q2
i (5.1)

In order to do this, we will focus on small number of neighbouring sites and

update them according to a stochastic move that preserves the quantities in

Eq. (5.1). We may then consider two adjacent sites and modify them randomly

60
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so that:

qi(t)+qi+1(t) = qi(t+1)+qi+1(t+1) q2
i(t)+q

2
i+1(t) = q

2
i(t+1)+q2

i+1(t+1)

(5.2)

However this process is trivial, since the only possible move is to exchange

the values of qi and qi+1. The first non-trivial possibility is to consider three

neighbouring sites and proceed so that it holds:

qi−1(t) + qi(t) + qi+1(t) = qi−1(t+ 1) + qi(t+ 1) + qi+1(t+ 1) (5.3)

q2
i−1(t) + q

2
i(t) + q

2
i+1(t) = q

2
i−1(t+ 1) + q2

i(t+ 1) + q2
i+1(t+ 1) (5.4)

According to the different relative values of Eq. (5.3) and Eq. (5.4) there are

two possible scenarios, displayed in Fig. (5.1a) and Fig. (5.1b).

(a) (b)

Figure 5.1: The two different scenarios that conditions Eq. (5.3) and Eq. (5.4) can
generate.

The transition between the two possible cases, that is, between the circle and

the three disjoint arcs, occurs when
∑3

i=1 q
2
i = 1

2

(∑3
i=1 qi

)2
, or equivalently,

when E = 1
2A

2. The stochastic update goes as follows:

• If E 6 1
2A

2 we are in the case depicted in Fig. (5.1a) and the new qi’s are

chosen at random on the circle so that conditions Eq. (5.3) and Eq. (5.4)

are satisfied.

• If E > 1
2A

2 we are in the case depicted in Fig. (5.1b) and the new qi’s are

chosen at random on the same arc the initial charges belonged to. This
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way we still satisfy the conditions Eq. (5.3) and Eq. (5.4) and moreover

we take into account the fact that the hamiltonian dynamics of the classi-

cal DNLSE does not allow to jump between disconnected arcs, since they

represent disjoint sectors of phase space. This condition will be relaxed in

the quantum version of the stochastic model.

In order to accomplish this goal, we introduce the quantity:

~q(θ,E,A) =
A√
3
~v0 +

√
E−

A2

3
(~v1 cos θ+ ~v2 sin θ) (5.5)

where:

~v0 =

(
1√
3

,
1√
3

,
1√
3

)
~v1 =

(
−

1√
6

,−
1√
6

,
2√
6

)
~v2 =

(
1√
2

,−
1√
2

, 0
) (5.6)

The vector ~v0 identifies the centre of the triangle in Fig. (5.1a) and Fig. (5.1b),

while ~v1 and ~v2 are two orthonormal vectors that belong to the triangle. The

combination Eq. (5.5) allows us to describe any point on the triangle, being θ

the angle with respect to the upper vertex counted counter-clockwise.

The initial condition is extracted using the procedure described in Appendix (F),

that is, generating N exponentially distributed random variables normalized so

that the sum is fixed to the desired value. Moreover, one of the random vari-

ables can be setted by hand so that it reproduces the presence of a breather in

the initial state.

In the numerical simulations performed we will initialize the value of the charges

as follows:

qi(0) =

eyi if i = 1, . . . ,N− 1

QB if i = N
(5.7)

where yi are random variables extracted with flat distribution in [−3, 0] andQB

is setted by hand and represents the size of the breather introduced in the initial

conditions. Then the qi(0) are normalized so that their sum is fixed to:

N∑
i=1

qi(0) = Q (5.8)
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The simulations are performed varying the size of the initial breather, i.e. the

value of QB; as QB grows, the value of e/2a2 also grows.

5.1 Classical stochastic model results

In this paragraph we report the results of the numerical simulations performed

using the algorithm presented in the previous section. We are interested in

determining how the system evolves depending on the initial condition and in

particular on the size of the breather. An interesting quantity to determine is

the correlation function, defined as:

C(i)(τ) = 〈qi(t+ τ)qi(t)〉− 〈qi(t+ τ)〉〈qi(t)〉 =

=
1

T − τ

∫T−τ

0
dt qi(t)qi(t+ τ) −

1
(T − τ)2

∫T−τ

0
dt qi(t)

∫T−τ

0
dt ′ qi(t

′ + τ)

(5.9)

and then averaged over all sites:

C(τ) =
1
N

N∑
i=1

C(i)(τ) (5.10)

It will be interesting to determine whether the correlation functions have a

power-law or an exponential decay. Therefore, we will fit them using a fitting

function with both power-law and exponential contributions, that is:

C(τ) ∝ τ−θe−γτ (5.11)

Moreover, an overlap between these two behaviours may be a relevant sign for

a transition from localized to non-localized phases. This is qualitatively justified

by the fact that, in a non-localized phase, the correlation function is expected to

have an exponential decay. In the presence of a localized phase, however, the

correlation function is expected to have a weaker decay because of the presence

of the breather-like excitation. The correlation functions C(τ) obtained with the

numerical simulations are plotted in Fig. (5.2) and Fig. (5.3).
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Figure 5.2: Correlation function C(τ) for different sizes of the breather with N = 32,
Q = 20 ( h = 0).

Figure 5.3: Correlation function C(τ) for different sizes of the breather with N = 64,
Q = 30 ( h = 0).

For illustrative purpose, we present the result obtained when:

1. we have different runs of the numerical simulation keeping fixed the val-

ues of Q, N and QB. The results are reported in Fig. (5.4);
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2. we use the same initial condition, i.e., the qi(0) are the same for all the

simulations. The differences in the correlation functions are due to the

stochastic part of the algorithm. In Fig. (5.5) we report the results.

The difference between these two cases is that, in case (1.), the value of e/2a2

changes between two different runs of the simulation while in case (2.) the

value of e/2a2 is always the same having the same initial conditions.

For the case (1.) we performed ten runs and the mean value of e/2a2 registered

Figure 5.4: Correlation function C(τ) obtained setting Q = 30, N = 64 and QB = 3
( h = 0). The correlation functions obtained at each run are represented in blue, while
the mean value of C(τ) with the relative standard deviation is represented in red.

is: ( e

2a2

)
1
= 1.21 ± 0.10 (5.12)

For the case (2.) we have ( e

2a2

)
2
= 1.32 (5.13)

and in Fig. (5.5) we plot also the fitting line for the mean correlation function,

that has the expression:

log C̄(τ)fit, 50 = (0.11±0.06)− (0.00245±0.00006)τ−(0.617±0.014) log(τ)

(5.14)

The correlation function has been fitted with a weighted fit in the interval τ ∈
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Figure 5.5: Correlation function C(τ) obtained setting Q = 30, N = 64 ( h = 0) and fix-
ing the initial condition. The correlation functions obtained at each run are represented
in grey, while the mean value of C(τ) with the relative standard deviation is represented
in blue. The red and green dashed line are the fit curves for the mean correlation function
(see Eq. (5.14) and Eq. (5.15) respectively). In the inset we represent the correlation
function in a log-linear plot, where the exponential decay for large τ is evident.

[50, 400], in order to avoid the transient part for small values of τ. If we fit the

same correlation function, but τ ∈ [10, 400], we get:

log C̄(τ)fit, 10 = −(0.34±0.02)−(0.00289±0.00005)τ−(0.513±0.009) log(τ)

(5.15)

For both log C̄(τ)fit, 50 and log C̄(τ)fit, 10 we indicated the 95% confidence in-

tervals. Notice that for large values of τ the exponential contribution becomes

always more relevant: from the fit we can extrapolate that it will be the leading

contribution for τ ' 1200.

Therefore, from this paragraph we can conclude that the greater is the value

of QB the slower is the decay of the correlation function. Moreover, the cor-

relation function has a power-law decay for small values of τ and exponential

for large values of τ; as we already mentioned, this reflects the decay of the

breather-like excitation present in the initial condition.
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5.2 Quantum stochastic model results

In this section we report the results obtained with a modified version of the

stochastic model introduced in the previous section. In particular, in order to

account for the quantum nature of the system we want to simulate, we added a

random move on the triplet of Eq. (5.3) and Eq. (5.4). It consists of a random

permutation of the values of the q’s that happens with probability proportional

to exp[−A logA], with A =
∑3

i=1 qi. This choice is done having in mind the

Q dependence of the reflection coefficient (and tunnelling time) that we per-

formed in Sec. (4.3). Also in this case, we evaluated the correlation function

C(τ) defined in Eq. (5.10)

Figure 5.6: Correlation function C(τ) for the quantum stochastic model for different
sizes of the breather with N = 32, Q = 20 and  h = 1.
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Figure 5.7: Correlation function C(τ) for the quantum stochastic model for different
sizes of the breather with N = 64, Q = 30 and  h = 1.

5.2.1 Varying  h

We present here the result obtained by introducing a new parameter λ in the

probability for tunnelling in the quantum stochastic model, i.e., with probability

equal to p(λ) = e−λA logA and by varying it. This is equivalent to vary the

value of  h, that enters in the semiclassical probability as p = e−
1
 hA logA. In

Fig. (5.11) and Fig. (5.12) we report the results for λ = 0.1, that generates a

higher probability of tunnelling with respect to λ = 1. We can also focus on

a particular case (Q = 30, N = 64) as we did for the classical version and

we study in detail the correlation function for different values of  h, which is

equivalent to change the tunnelling probability in our model. The results are

plotted in Fig. (5.8).
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Figure 5.8: Correlation function C(τ) obtained setting Q = 30, N = 64 and fixing
the initial condition for different values of  h. For each value of  h we did six runs and
we represent here the mean value of C(τ) with the relative standard deviation. Yellow
→  h = 10, Orange →  h = 6, Red →  h = 3, Brown →  h = 2, Pink →  h = 1, Purple
→  h = 0.5, Blue →  h = 0 (classical model). In the inset we represent the correlation
function in a log-linear plot, where the exponential decay for large τ is evident.

The fits for the different values of  h are given by:

log C̄(τ)fit = κ− γτ− θ log(τ) (5.16)

 h κ γ θ

10 −(2.6 ± 1.2) 0.012 ± 0.002 0.4 ± 0.3

6 −(1.1 ± 0.5) 0.0052 ± 0.0008 0.88 ± 0.12

3 −(2.08 ± 0.12) 0.0042 ± 0.0002 0.51 ± 0.03

2 −(1.16 ± 0.05) 0.00159 ± 0.00009 0.656 ± 0.013

1 0.37 ± 0.09 0.00049 ± 0.00011 0.86 ± 0.02

0.5 −(0.02 ± 0.09) 0.00178 ± 0.00013 0.68 ± 0.02

0 −(0.34 ± 0.02) 0.00289 ± 0.00005 0.513 ± 0.009

Table 5.1: Fit coefficients for Eq. (5.16)

These fits have been done for τ ∈ [10, 400] and 95% confidence intervals.
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Referring to Eq. (5.11) we show in Fig. (5.9) and Fig. (5.10) the dependence of

γ and θ on  h for the fits of Eq. (5.16) and Table (5.1).

0 2 4 6 8 10

0.000

0.005

0.010

0.015

ℏ

γ

Figure 5.9: γ dependence on  h obtained for Eq. (5.16) (in red). The error bars are given
by the fits with 95% confidence intervals. In black we plot the value of γ obtained if the
fit in Eq. (5.16) is done without the parameter θ.

0 2 4 6 8 10

0.5

1.0

1.5

2.0

ℏ

θ

Figure 5.10: θ dependence on  h obtained for Eq. (5.16). The error bars are given by
the fits with 95% confidence intervals.In black we plot the value of θ obtained if the fit
in Eq. (5.16) is done without the parameter γ.
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Figure 5.11: Correlation function C(τ) for the quantum stochastic model for different
sizes of the breather with N = 32, Q = 20 and  h = 10.

Figure 5.12: Correlation function C(τ) for the quantum stochastic model for different
sizes of the breather with N = 64, Q = 30 and  h = 10.
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Figure 5.13: Plot of the behaviour of the mean value of the PR Y−1
2 as a function of e

2a2

for different values of  h for Q = 20, L = 32. The mean PR is obtained for a number of
steps equal to Nsteps = 5L · 103.
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Figure 5.14: Plot of the behaviour of the mean value of the PR Y−1
2 as a function of e

2a2

for different values of  h for Q = 30, L = 64. The mean PR is obtained for a number of
steps equal to Nsteps = L · 104.
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Figure 5.15: Plot of the behaviour of the mean value of the PR Y−1
2 as a function of e

2a2

for different values of  h for Q = 20, L = 32 (in blue, green and black) and for Q = 30,
L = 64 (in purple, orange and brown)

From this preliminary investigation it seems clear that, by increasing the

tunnelling probability, the breather can move more easily on the lattice: this can

be seen by comparing the correlation functions and observing that for  h = 10

it decays much faster than when  h = 1. However the size of the breather

does not change significantly varying  h, since from Fig. (5.13), Fig. (5.14) and

Fig. (5.15) we see that the dependence of the mean value of the Participation

Ratio (PR) as a function of e/2a2 is not affected significantly by the value of  h.

This means that the breather moves along the lattice as the systems evolves in

time, without changing its size.

5.3 Universality

In this section we would like to better investigate the behaviour of the corre-

lations functions: in particular we are interested in the crossover between the

power-law and the exponential decay that we found in the previous sections. In

order to point out the connection between these two regimes, we would like to

find an appropriate universal law:

C(τ) = A(QB)f

(
τ

τ(QB)

)
(5.17)
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that describes, for different values of QB, the correlation functions found pre-

viously. In particular, we are interested in the finding appropriate A(QB) and

τ(QB) such that all the correlation functions collapse in a unique curve. The

first, natural step is to rescale C(τ) so that all the curves have the same starting

point, so we will plot C(τ)/C(0). Then we choose proper values of τ(QB) to

obtain our purpose. We show the results in Fig. (5.16), Fig. (5.17), Fig. (5.18).

We have, therefore, found the appropriate values of τ(QB) for different values

Figure 5.16: Rescaled correlation function for the classical stochastic model with N =
64, Q = 30 ( h = 0).

of QB so that, keeping the correlation function for QB = 0 as reference, all the

others collapse on it. We can perform a fit of the universal correlation function

obtained for the different values of  h.

In Fig. (5.19) we show the values of τ(QB) used to obtain the appropriate

rescaling in Fig. (5.16), Fig. (5.17) and Fig. (5.18). Notice that the values of

τ(QB) decrease as  h increases (see below for details): in particular, for  h =

10, τ(QB) is almost independent of QB reflecting the fact that, having a high

tunnelling probability, the correlation function is insensible to the size of the

breather, at least for values of QB smaller than QB ∼ 10.

For completeness, let us fit the universal correlation functions we have just

found for different values of  h: we use the same fit form of Eq. (5.16). The

coefficients of the fitting functions are shown in Table (5.2). Notice that the co-

efficients presented in Table (5.2) seem to be in contradiction with the predicted

behaviour of γ and θ as  h varies: however, remember that the correlation func-
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Figure 5.17: Rescaled correlation function for the quantum stochastic model with N =
64, Q = 30 and  h = 1.

Figure 5.18: Rescaled correlation function for the quantum stochastic model with N =
64, Q = 30 and  h = 10.

tions that we are fitting are rescaled, both on the y- and the x-axis; therefore

the relation between the coefficients does not reflect the one we had already

found.

Now we can do the same also for the correlation functions obtained at fixed
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Figure 5.19: Values of τ(QB) used to obtain the rescaling of the correlation functions in
Fig. (5.16), Fig. (5.17), Fig. (5.18).

 h κ γ θ

0 −0.52 0.027 0.27
1 −0.66 0.024 0.36

10 −0.60 0.0094 0.64

Table 5.2: Fit coefficients for the correlation functions of Fig. (5.16), Fig. (5.17),
Fig. (5.18): the form of the fitting function is given by Eq. (5.16)

initial condition and varying  h, so that we can extract the dependence of τ on

the strength of the quantum effects. To do so, we take as reference Fig. (5.8),

that was obtained by fixing the initial condition with QB = 3 and varying  h. If

we operate a proper rescaling on the x-axis we get Fig. (5.20). Notice that in

Fig. (5.20) we have not rescaled C(τ) since all the curves have the same initial

condition. As we did previously, we now show in Fig. (5.21) the values of τ( h)

used to obtain the rescaling in Fig. (5.20).
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Figure 5.20: Rescaled correlation function for fixed initial condition and different values
of  h; Yellow →  h = 10, Orange →  h = 6, Red →  h = 3, Brown →  h = 2, Pink →  h = 1,
Purple →  h = 0.5, Blue →  h = 0 (classical model).
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Figure 5.21: Dependence of τ( h) on  h. The dashed red line is the fit given by Eq. (5.18)

For completeness, we also present a fit for the points in Fig. (5.21); it turns
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out that an exponential function is a good fitting line and we get:

τ( h) = 0.15 + 1.8 e− h (5.18)

5.3.1 Interpretation of the results

In the previous section we found that, after a proper rescaling, the correlation

functions collapse on a unique curve. The rescaling is done by normalizing C(τ)

with its value for τ = 0, that is C(τ)/C(0). Then we have rescaled τ, dividing it

by a proper function τ(QB,  h), which is proportional to the time after which the

correlation functions are dominated by an exponential decay and no more by a

power low decay. In other words, τ(QB,  h) is proportional to the time for which

the breather-like excitation is stable; for larger times the correlation function

has an exponential decay, which means that the excitation is no more stable and

localization is lost. The interesting feature we found is that τ(QB,  h) depends on

QB and  h as we have shown in Fig. (5.19) and Fig. (5.21). In particular, from

Fig. (5.19) we see that, for QB & 2 (that is, for QB a few time bigger than the

typical size of the charges ∼ Q/N ' 1/2 in our case) τ(QB,  h) is a monotonic

increasing function of QB for fixed  h. From Fig. (5.19) we may also expect

that, for fixed QB, τ(QB,  h) is a decreasing function of  h; this is investigated in

Fig. (5.21), where we can clearly see that τ(QB,  h) is a monotonic decreasing

function of  h for fixed QB.

These behaviours of τ(QB,  h) have a physical interpretation; the dependence

on QB is clear: for larger values of the size of the breather-like excitation in the

initial configuration, the ratio e/2a2 gets bigger and the system moves toward

a non-Gibbs state (negative temperature state).Consequently, the excitation is

more stable and much more off-resonance with its neighbouring charges, and

thus the characteristic time of decay increases (ergodization time).

The dependence on  h, instead, reflects the fact that, in the quantum regime,

thanks to the tunnelling effect, the breather-like excitation can move more freely

than in the classical regime. This means that there is a higher probability that

the excitation is resonant with its neighbours and thus it becomes unstable in a

smaller characteristic time with respect to the classical case.



6 | Conclusions and outlooks

In this thesis work we focused on the Discrete Non-Linear Schrödinger Equation,

both in its classical and quantum regimes. We also addressed the Josephson

Junction Array model, described by a modified version of the DNLSE hamilto-

nian. In particular, we were interested in the statistical mechanical properties

of such systems, since from few years it is known that they display a peculiar

phase characterized by localization and, maybe, ergodicity breaking.

Recent works (see [2] for example) showed that the DNLSE presents a localized

phase in the high energy regime, where the system is described by non-Gibbs

states. This seemed to yield also to the breakdown of ergodicity, even if in [19]

the authors give evidence for the absence of ergodicity breaking in correspon-

dence of the non-Gibbs transition line. Moreover, the JJA model seemed to

have the same phenomenology, but contradictory results were found in differ-

ent works (compare [3] and [21]).

In our work we have been able to compute the partition function of the JJA

model in the high energy limit, showing that there are no non-Gibbs states, as

the authors in [21] numerically showed. Furthermore, we introduced a geo-

metric picture for visualizing the variable-space of both the DNLSE and the JJA

systems. Using the properties of such construction, we have been able to show

that the non-Gibbs regime of the DNLES is not phase of broken ergodicity and

we confirmed that the JJA does not display a localized phase.

Subsequently, we addressed the quantum version of the DNLSE, with the pur-

pose of investigating the presence and the intensity of the localization present

in the classical regime also in the quantum case. To this aim we calculated the

tunnelling coefficients between different configurations of the system, showing

that the tunnelling probability decreases faster than an exponential as the en-

ergy of the involved sites grows. This means that the quantum regime presents

a weaker localization phenomenon compared to its classical analogue, but the

79
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difference becomes soon negligible as the size of the more energetic sites grows.

Finally, we used the knowledge gained in the study of the classical and quantum

system to build a stochastic-driven algorithm to simulate the DNLSE. Instead of

using the full equations of motion to study the dynamics, we introduced a ran-

dom move for the evolution of the system. This algorithm has been used to

study the correlation functions of the system in different regimes; they have

then been properly rescaled in order to obtain a unique curve. Studying the

rescaling coefficient we have been able to confirm numerically that the relax-

ation time of the excitations depends both on the size of the most energetic site

and on the intensity of the quantum effects. In particular, as the size of the site

becomes larger, also the “ergodization time" gets larger, while, for increasing

values of  h (i.e. going deep in the quantum regime) the “ergodization time"

becomes smaller, accounting for the higher mobility of the energy of each site

due to tunnelling.

The results obtained in this thesis work are both analytical and numerical,

and they allowed us to give a complete qualitative understanding of the high-

energy phase of our models and also quantitative results have been found. For

future investigations on the subject, it may be interesting to improve the numer-

ical simulations, performing extensive investigations of the DNLSE for larger

times in order to have a further confirm of our results. Moreover, also an ana-

lytic computation of the partition function of the Bose-Hubbard model could be

tried, at least in some proper approximation, to confirm our qualitative under-

standing and gain some further quantitative properties.
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A | Large Deviation Principle

We are interested in finding the probability distribution dN(z) of the variable

z :=
∑N

i=1 xi in the region where the probability of an event is very small,

i.e. we are interested in large deviations from the mean. Suppose that xi are

i.i.d. random variables with probability distribution P(xi). Our purpose is to

determine dN(z) in the large-N limit for large values of z. To be more specific,

we are interested in the probability of the event z = z̄, where z̄ = λN, for

N→ ∞. The probability for this event will be very small, thus we expect:

dN(z̄) ∼ eNS(λ) (A.1)

where S(λ) will be a decreasing function of λ. We have defined:

S(λ) ≡ lim
N→∞

log(dN(Nλ))

N
(A.2)

which is usually called “rate function". Let us determine it.

We introduce the Fourier transform of the probability distribution dN(z):

dN(z) =
1

2π

∫
dqe−izqd̃N(q) (A.3)

Since the random variables xi are i.i.d., then:

d̃N(q) = P̃(q)N = eN log P̃(q) (A.4)

Consequently we get:

dN(z) =
1

2π

∫
dqe−izqeN log P̃(q) (A.5)
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dN(z̄) =
1

2π

∫
dqeN[log P̃(q)−iλq] (A.6)

For large N, we can solve this integral applying the saddle-point method (see

Appendix (B)). In particular we have to identify the the value of q for which the

argument of the exponential is maximum. This is done solving the equation:

d log P̃(q)
dq

= iλ (A.7)

We call q̄(λ) the solution of Eq. (A.7), and thus we get:

dN(Nλ) ∝ eN[log P̃(q̄)−iλq̄(λ)] (A.8)

If the saddle-point Eq. (A.7) does not have solution, the probability distribution

dN(z) goes to zero faster than an exponential or is everywhere zero.
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B | Saddle Point Method

Here we give an heuristic derivation of the saddle-point method for evaluating

integrals of exponential functions, being very common in statistical physics. We

will focus, for simplicity, on the case of real functions. Consider the integral:

I(N) =

∫b
a

dx f(x)eNg(x) (B.1)

where f and g are two real functions and a < b. If g has a peaked maximum in

x0 ∈ (a, b), the integral is dominated by the value of the integrand at the point

where the maximum is located. Suppose we can expand g in series as:

g(x) = g(x0) −
|g ′′(x0)|

2
(x− x0)

2 + O((x− x0)
3) (B.2)

since we know that x0 is a maximum point for g. Let us perform the following

change of variables:

u :=

√
N|g ′′(x0)|

2
(x− x0) (B.3)

and thus obtaining:

I(N) = eNg(x0)

∫ub

ua

du

√
2

N|g ′′(x0)|
f

(
x0 + u

√
2

N|g ′′(x0)|

)
e−u2+R (B.4)

where R = O((x − x0)
3). We now take the limit N → ∞, use the expansion

f(x) = f(x0) + εf
′(x0) +

f′′(x0)
2 ε2 + O(ε3) and perform the Gaussian integral,
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obtaining:

I(N)
N→∞
= eNg(x0)

∫∞
−∞ du

√
2

N|g ′′(x0)|

(
f(x0)+

+ u

√
2

N|g ′′(x0)|
f ′(x0) +

f ′′(x0)

2
u2 2
N|g ′′(x0)|

+ O((u

√
2

N|g ′′(x0)|
)3)
)
e−u2

=

= eNg(x0)

(√
2π

N|g ′′(x0)|
f(x0) +

1
2
f ′′(x0)

√
2π

(N|g ′′(x0)|)3 + O(N(−5/2))

)
(B.5)

At first order we get the familiar expression:

I(N)
N→∞
= eNg(x0)f(x0)

√
2π

N|g ′′(x0)|
∝ eNg(x0)f(x0) (B.6)
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C | Condensation Phenomena

from the Large Deviation

Theory

In this section we are interested in showing how condensation phenomena oc-

cur in systems described by stochastic evolution: for this purpose we will focus

on Mass Transport problems ([20], [25]) that present the same features of our

problem. In particular, we will show how the condensation phenomena can be

explained simply studying the sum of i.i.d. random variables.

C.1 Zero Range Process

The Zero Range Process (ZRP) is the simplest analytically solvable model of mass

transport that exhibits a real-space condensation phenomenon in a certain range

of its parameters. For simplicity, we will consider the ZRP problem on a 1D lat-

tice with L sites; at any instant of time, each site of the lattice has a certain num-

ber of particles, say mi at site i, where mi > 0. A configuration of the system is

completely determined by the number of particles at all sites {m1, m2, . . . , mL}.

Suppose that, at the beginning, the total number of particles is M =
∑L

i=1mi

and that the subsequent dynamics will preserve the total number of particles,

or, equivalently, the density ρ =M/L. The evolution of the system is described

by the following continuous-time stochastic dynamics:

• in a small interval dt a single particle is transported from site i with mi

particles to site i+ 1 with probability U(mi)dt, provided mi > 1;

• nothing happens with probability 1 −U(mi)dt;
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and here U(m) is an arbitrary positive function with the condition U(0) = 0.

As the system evolves under this dynamics, the probability of a given configu-

ration P(m1, m2, . . . , mL, t) evolves in time and, when t→ ∞, it approaches a

time-independent stationary joint distribution P(m1, m2, . . . , mL). Since every

quantity of interest in the stationary state can, in principle, be computed by this

distribution, it is our quantity of interest. In the ZRP problem, this quantity can

be easily computed and assumes the simple factorized form:

P(m1, m2, . . . , mL) =
1
ZL
f(m1)f(m2) . . . f(mL) δ

(
L∑

i=1

mi −M

)
(C.1)

where the weight function f(m) is defined as

f(m) =


∏m

k=1
1

U(m) for m > 1

1 for m = 0
(C.2)

The delta function in Eq. (C.1) expresses the total mass conservation and ZL(M)

is a normalization that ensures that the total probability is unity and satisfies

ZL(M) =
∑
mi

L∏
i=1

f(mi) δ

(
L∑

i=1

mi −M

)
(C.3)

Notice the that Eq. (C.3) is identical to Eq. (2.15) and this is why we study ZRP

problem in order to show how condensation works also in the DNLSE. Finally,

we can obtain the single site mass distribution function as the marginal of the

joint distribution probability:

p(m) =
∑

m2,m3,...,mL

P(m,m2,m3, . . . ,mL) = f(m)
ZL−1(M−m)

ZL(M)
(C.4)

C.2 Condensation in models with factorisable steady

state

The factorization property Eq. (C.1) is quite general and is common to many

models of interest. What follows does not depend on the particular model un-

der scrutiny, but only on the form of the joint probability distribution. In partic-

ular, Eq. (C.1) allows us to find an easy criterion for a condensation transition
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working in the Gran Canonical ensemble (GCE). Within this framework, it can

be introduced a fugacity e−sm, where s is the negative of the chemical potential

associated with each site. This is equivalent to taking the Laplace transform of

Eq. (C.1) with respect to M (s is the Laplace variable), which allow us to per-

form the integration, replacing the delta function by e−s[m1+m2+···+mL]. Then s

is chosen such that the constraint M =
∑
mi is satisfied. We obtain:

P̃(m1, m2, . . . , mL) =
1
ZL
f(m1)e

−sm1f(m2)e
−sm2 . . . f(mL)e

−smL (C.5)

where P̃ is the Laplace transform of P. Now each site has a mass distribution

p(m) = f(m)e−sm, and thus the equation that fixes the value of s for a given

M = ρL is:

ρ = ρs ≡
∫∞

0 dm m f(m)e−sm∫∞
0 dm f(m)e−sm

(C.6)

The criterion for condensation can be derived by analysing the function ρ(s)

defined in Eq. (C.6). If, for a given ρ, it can be found a solution to the equa-

tion s = s∗ such that the single site mass distribution is normalizable, i.e.∫
dm p(m) =

∫
dm f(m) exp[−sm] is finite, then there is no condensation be-

cause, for all ρ, the single site mass distribution has an exponential tail and there

is no special site that needs to lodge extra mass. On the other hand, it may be

that, for some choices of f(m), as one increases ρ, there may be a critical value

ρC below which one finds a good solution s to Eq. (C.6), but such a solution no

more exist for ρ > ρC. This will signal the onset of a condensation because for

ρ > ρC , the system needs to break up into two parts: (a) a critical background,

consisting of (L− 1) sites with an average density which is critical (ρC) and (b)

a single condensate site which contains the additional mass (ρ− ρC)L.

As an example, consider f(m) that decays slower than an exponential, but faster

than 1/m2 for large m. Because f(m) decays slower than an exponential, the

possible solution s∗ of Eq. (C.6) can not be negative, in order that the single

site mass distribution p(m) = f(m)esm is normalizable (i.e.
∫
dm p(m)). Thus

the the minimum possible solution is s∗ = 0. As s → 0, the function ρ(s) in

Eq. (C.6) approaches a critical value,

ρC = ρ(s→ 0) =

∫∞
0 dm m f(m)∫∞

0 dm f(m)
(C.7)
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which is finite because we supposed that f(m) decays faster than 1/m2 for large

m. Therefore, as long as ρ < ρC, by solving Eq. (C.6) a positive solution s∗ can

be found and hence no condensation occurs. As ρ → ρC from below, s∗ → 0

from above. But for ρ > ρC , no positive solution s∗ to Eq. (C.6) can be found,

which signals the onset of a condensation transition.

A detailed analysis of Eq. (C.6) shows that, in order to have condensation, the

weight function f(m) must have a large m tail that lies above an exponential

but below 1/m2, i.e.

e−cm < f(m) <
1
m2 (C.8)

for large m, with some positive constant c > 0.

C.3 Interpretation as sum of Random Variables

We have just seen how the condensation phenomenon occurs studying the be-

havior of the density ρ. The same results can be obtained considering the prob-

ability distribution for the sum of i.i.d. random variables. First we note that, if

f(m) is normalized, then
∏L

i=1 f(mi) is the probability that the L random vari-

ables assume the valuesm1, m2, . . . , mL. Moreover we notice that the partition

function defined as:

ZL(M) =
∑
mi

L∏
i=1

f(mi) δ

(
L∑

i=1

mi −M

)
(C.9)

(Eq.(C.3)) is the probability that the sum of the random variables equals M.

Therefore, the problem of understanding the presence of condensation reduces

to studying the behavior of the largest of the L random variables.

Let us introduce the momenta of the distribution, defined as

µk =

∫∞
0
dm mk f(m) (C.10)

If the mean of the distribution µ1 exists and it happens that Lµ1 > M, we expect

that all the masses are of order O(1), while if Lµ1 < M then L− 1 masses are of

order O(1) and one is of order O(M). Thus we expect that, if f(m) ∼ m−γ with

γ > 2 there is condensation at the critical density ρC = µ1, exactly as we found

in Eq. (C.7) and Eq. (C.8).
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D | Generation of the basis el-

ements for the Quantum

DNLSE and the Hamilto-

nian

In Sec. (4) we introduced the quantum version of the DNLSE and we are inter-

ested in simulating the time evolution generated by the Hamiltonian Eq. (4.3).

We pointed out that a natural choice of basis is the occupation number one. In

order to generate all the basis element in the algorithm we have to find a way of

ordering the elements of the basis. This can be done using the lexicographic or-

der, as introduced in [26]. Given two different basis vectors |n1,n2, . . . ,nN〉 and

|n ′
1,n ′

2, . . . ,n ′
N〉 there must exist an index k ∈ [1,N − 1] such that ni = n ′

i for

1 6 i 6 k−1 and nk 6= n ′
k. Therefore, we will say that |n1,n2, . . . ,nk−1,nk, . . . ,nN〉

is superior (interior) to |n1,n2, . . . ,nk−1,n ′
k, . . . ,n ′

N〉 if nk > n
′
k (nk < n

′
k).

Starting from the vector |Nb, 0, . . . , 0〉 we can build up the whole basis by means

of the following procedure. Given the basis vector |n1,n2, . . . ,nN〉 with nN <

Nb (otherwise it is the last element of the basis), the next basis vector is ob-

tained with the following rule: suppose nk 6= 0 while ni = 0 ∀ k+1 6 i 6 N−1,

then the next basis vector |n ′
1,n ′

2, . . . ,n ′
N〉 is such that:

• n ′
i = ni ∀ 1 6 i 6 k− 1;

• n ′
k = nk − 1;

• n ′
k+1 = Nb −

∑k
i=1 n

′
i and n ′

i = 0 ∀ i > k+ 2.
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In order to implement the Hamiltonian in matrix form, we have to build

separately the interaction term and the hopping term. The first one is easy

since it is diagonal in the basis of the eigenstates of the number operators n̂i

(see code Listing (D.2)). The hopping term is instead more complicated, since it

is not diagonal in the basis of the eigenstates of the number operator. The code

shown in Listing (D.3) solves this problem; basically kineticPart[] removes all

the zero contribution to the hopping term. The function opADagAState[] finds

the components of ψ†
iψi+1 and opADagAValue[] calculates their coefficients.

The final Hamiltonian is a sparse matrix and this code uses this property to make

the calculations faster. This can be seen plotting the output of getMatrix[].

Listing D.1: Hamiltonian

1 getMatrix[basis_, couplingConst_] :=
2 With[{basisNumRange = Range@Length@basis},
3 SparseArray@
4 Join [ kineticPart [ basis , AssociationThread[ basis −> basisNumRange],
5 basisNumRange],
6 interactionPart [ basis , couplingConst, basisNumRange]]]

Listing D.2: Potential part

1 interactionPart [basis_, couplingConst_, basisNumRange_] :=
2 MapThread[{#1, #1} −> #2 &, {basisNumRange,
3 0.5∗couplingConst∗Sum[i∗i, {i , #}] & /@ basis}]

Listing D.3: Hopping part

1 kineticPart [basis_, positionMap_, basisNumRange_] :=
2 Catenate@MapThread[
3 kineticPartMapFunc]@{Apply[{positionMap[#1], #2} &,
4 DeleteCases[{_, 0.}] /@
5 Transpose[{opADagAState[basis], opADagAValue[basis]}, {3, 1,
6 2}], {2}], basisNumRange}
7 opADagAState[basis_] :=
8 With[{len = Length@First@basis},
9 Outer[Plus, basis , #, 1] &@

10 Catenate[
11 NestList [RotateRight, PadRight[#, len],
12 len − 1] & /@ {{1, −1}, {−1, 1}}]]
13 opADagAValue[basis_] :=
14 Sqrt[(#1 + 1.)∗#2] & @@@ (Join[#, Reverse[#, {2}]] &@
15 Partition [#, 2, 1, 1]) & /@ basis
16 kineticPartMapFunc[stateValuePairs_ ,
17 index_] := ({index, #1} −> #2) & @@@ stateValuePairs
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Figure D.1: A plot of the matrix form of the Hamiltonian produced by the code explained
above. In this case we set the number of bosonsNb = 10 and the number of sitesN = 10.
The dimension of the Hilbert space is therefore DH = 92378. The coloured squares are
the non-negative entries of the matrix, therefore it is evident that it is a sparse matrix.

In Sec. (4.2.1) we pointed out that, in order to study the dynamics of the 3-site

system, we have to look into the quantity n(k, t) defined in Eq. (4.16). To do this

in our algorithm, we remind that the Hamiltonian is computed associating to

each element of the basis |n1,n2,n3〉 a vector of the form (0, . . . , 0, 1, 0, . . . , 0)T .

For example, for N = 2 and Nb = 2 we have:

|2, 0, 0〉 → (1, 0, 0, 0, 0, 0)T

|1, 1, 0〉 → (0, 1, 0, 0, 0, 0)T

|1, 0, 1〉 → (0, 0, 1, 0, 0, 0)T

|0, 2, 0〉 → (0, 0, 0, 1, 0, 0)T

|0, 1, 1〉 → (0, 0, 0, 0, 1, 0)T

|0, 0, 2〉 → (0, 0, 0, 0, 0, 1)T

(D.1)
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Therefore, the result of the time evolution will be a normalized (the time evolu-

tion operator is unitary) linear superposition of vectors like (0, . . . , 0, 1, 0, . . . , 0)T ,

that is a result of the form

Φ(t) =

DH∑
i=1

αi(t)(0, . . . , 0, 1
i−th place

, 0, . . . , 0)T (D.2)

with
DH∑
i=1

|αi(t)|
2 = 1 (D.3)

and thus |αi(t)|
2 represents the probability that, at time t, the system is in the

state (0, . . . , 0, 1
i−th place

, 0, . . . , 0)T . Therefore the probability in Eq. (4.16) is:

p(n1,n2,n3; t) = |αi(t)|
2 (D.4)

where the relation (n1,n2,n3) ↔ i is given by the ordering of the basis vectors,

i.e. by associations as Eq. (D.1)
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E | Reflection above a barrier

Here we will derive the formula Eq. (4.32) used to find the probability for

charge transfer between two vertices of the simplex. This formula can be found

in the book of Landau and Lifschitz [27], even though we will use an alterna-

tive derivation (proposed in [28]) that is more intelligible and that yields to the

same result.

We will derive the formula Eq. (4.32) by transforming the problem of the

reflection above a barrier in coordinate space to a problem of barrier penetration

in momentum space. To this aim, we assume for simplicity that the potential is

a symmetric function V(x) = V(−x), so that Vmax = V(0) (as in our case). Let

us consider the classical motion of a particle in the inverted harmonic potential

(therefore V(0) = 0) and suppose that the particle is incident from the left with

E > 0. As x increases toward zero, p decreases and reaches its minimum p0 =√
2mE at x = 0. If it is transmitted, the momentum increases as it moves off

to the right. Therefore the momentum at the beginning was large and positive,

it became smaller while moving towards its minimum and then grew again to

positive values. This means that the particle has been reflected from a barrier in

momentum space located at p0. If, instead, the particle is reflected by the barrier

in coordinate space, it must make a transition to negative momentum −p0 and

then continue to ever more negative momentum. The values of momentum

between p0 and −p0 can not occur classically, and thus this transition occurs as

a “tunnelling" in momentum space.

In order to derive Eq. (4.32), we write the Schrodinger equation in momentum

space: (
p2

2m
+ V

(
i h
d

dp

))
Φ(p) = EΦ(p) (E.1)
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and suppose that the WKB approximation is valid. We can write then:

Φ(p) = exp
(
i
 h
σ(p) + O( h0

)
(E.2)

and substituting into Eq. (E.1) we get, at leading order in  h:

p2

2m
+ V (x(p)) = E (E.3)

where x(p) = −dσ
dp

. Solving for σ(p) we get:

σ(p) = −

∫p
dp ′V−1

(
E−

p ′2

2m

)
(E.4)

In the classically forbidden region of momentum space, −
√

2mE < p <
√

2mE,

the inverse function V−1(ξ) must be defined by analytic continuation from the

domain ξ < V0 where it is defined. Since the domain of V(x) is the whole real

axis, then the real part of V−1(ξ) vanishes when we are out of the classically

allowed region. This means that V−1 is always imaginary in the classically

forbidden region. Therefore, the probability of reflection above the barrier (in

coordinate space) is the probability of barrier penetration in momentum space,

that is obtained by integrating
∫
dpx(p) from −p0 to p0 and choosing the sign

of x(p) that corresponds to exponential suppression:

|R(E)|2 = exp
(
−

2
 h
=

∫p0

−p0

dp V−1
(
E−

p2

2m

))
(E.5)

In order to arrive at Eq. (4.32) we have to perform an integration by parts.

In particular, let us remind that, for a generic z complex variable, we have

p(z) =
√

2m(e− V(z)) and we define z0 as the value of z in the upper-half

z-plane for which p(z0) = 0. For a symmetric potential with maximum at x = 0,

z0 is on the imaginary z-axis and thus we set z0 = iy0. We observe that the

following integration by parts relation holds:∫y0

0
dy p(iy) = yp(iy)

∣∣∣∣y0

0
+

∫p0

0
dp y(p) (E.6)

The surface term vanishes because p(iy0) = 0, while p(0) is the classical mo-

mentum at y = 0, so p(y = 0) =
√

2mE = p0. The function y(p) is the

solution to Eq. (E.3) with x = iy: p2/2m + V(iy) = E which means that
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y = −iV−1(E − p2/2m). Using these facts and substituting into Eq. (E.5) we

find the desired result:

|R(E)|2 = exp
(
−

4
 h
=

∫y0

0
idy p(iy)

)
= exp

(
−

4
 h

∫y0

0
dy
√

2m(E− V(iy))

)
(E.7)

that is the desired expression.
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F | Microcanonical random vari-

ables

In this section we show that, if the random variables Ei’s are distributed with

p(Ei) = βe−βEi , then the variables xi = Ei∑N
i=1 Ei

are distributed with p̄(xi) =

Γ(N)δ(1 −
∑N

i=1 xi). This can be easily done by performing the mean value of

a function F = F
(
Ei

E

)
:

〈F〉 =
∫
dNE βNe−βEF

(
Ei

E

)
=

= βN

∫
dNE

∫∞
0
dξ δ

(
ξ−

N∑
i=1

Ei

)
e−βEF

(
Ei

E

)
=

= βN

∫∞
0
dξ ξN−1e−βξ

∫
dNx δ

(
1 −

N∑
i=1

xi

)
F(xi) =

= Γ(N)

∫
dNx δ

(
1 −

N∑
i=1

xi

)
F(xi)

(F.1)

as we wanted to show. Notice for instance that, if we choose F(xi) as the con-

stant function F(xi) = 1 we get the useful formula:

1
Γ(N)

=

∫
dNx δ

(
1 −

N∑
i=1

xi

)
(F.2)

F.1 An application

As an example, let us give a rough estimate for the probability of having two

breathers in a microcanonical configuration of variables, compared with the
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probability of having only one breather. We have just seen that microcanonical

variables are obtained via an exponential distribution. Suppose then to have

variables xi distributed as:

P(x) = e−x , x > 0 (F.3)

We wonder what is the probability for the sum of N such random variables, i.e.

what is the probability that their sum is equal to λN. This is easily obtained

performing:

PN(λ) =

∫ ∏
i=1,N

dxi δ

 ∑
i=1,N

xi −Nλ

 e−∑
i=1,N xi (F.4)

Using Eq. (F.2) this is easily done and we get:

PN(λ) =
(Nλ)N−1

(N− 1)!
e−Nλ (F.5)

Therefore, the probability of getting N − 1 variables of order O(1) and one

variable of order O(N) is given by Eq. (F.5) with λ ' 2, while the probability

of getting N − 2 variables of order O(1) and two variables of order O(N) is

obtained setting λ ′ ' 3. The second case is thus suppressed with respect to the

first by a factor e−N:

p(2 breathers) '
(
λ ′

λ

)N−1

p(1 breather)e−N(λ′−λ) (F.6)
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