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Abstract

This thesis work deals with the Travelling Salesman Problem. Many
versions of this problem have been defined through the years and many
authors and researchers were involved in its study, essentially for two reasons:
its intrinsic difficulty, since it is a NP − hard problem, and its infinitely
large applications. Essentially, given N cities and the distance between each
couple of them, one aims to find the shortest closed path that visits each city
only once. Here we focus on the one-dimensional Euclidean version of it. In
particular we obtain the exact optimal solutions for a class of cost functions.
Moreover, for another class of cost functions, the C-functions, we show that
the optimal solution always belongs to a subset, that we characterize, of all
the possible Hamiltonian cycles of the given graph.

The 2-factor problem is also considered; it consists in finding the minimum-
weight loop cover of an undirected graph. In particular, we consider this
problem on the complete graph embedded in a one dimensional interval and
we find the optimal 2-factor solution for a cost function belonging to the
C-function class.

Finally, we study the average cost of the optimal Travelling Salesman
Problem configuration in the limit of large number of points, showing the
connection of this average properties with the ones of previously combina-
torial optimization problems that have been studied.
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Chapter 1

Introduction

If a salesman, starting from his home city, is to visit exactly once each city
on a given list and then return home, it is plausible for him to select the
order in which he visits the cities so that the total cost paid in travelling his
tour is as small as possible. Let us assume he knows, for each pair of cities,
the cost that must be paid in going from one to the other. Then he has all
the data necessary to find the minimum, but it is by no means obvious how
to use these data in order to get the answer. The problem of finding the
optimal tour is known as the Travelling Salesman Problem.
The Travelling Salesman Problem, or TSP, is one of the most famous com-
binatorial optimization problems, because of the simplicity in its statement
and the difficulty in its solution. In this work we study the TSP in its one
dimensional version, i.e. supposing that all the cities lay on a line, introduc-
ing as the cost that must be paid in travelling from one city to the other a
function of the Euclidean distance between the two cities.
The thesis work is organized as follows. In chapter 1 we give a general
introduction to the problem, discussing its origins, briefly presenting some
recent developments and giving some necessary notions. In chapter 2 we
expose the problem we have considered and we give our solutions for the
studied cases. In this chapter we also give all the proofs of the presented
solutions. Moreover, we study the limit of large number of points and we
briefly show the results of the numerical simulations performed. In chapter
3 we give some conclusions. In appendices A and B we present two results.
The first regards a topological property of fundamental importance for the
proofs of our solutions, while the second is the solution we found to the
2-factor problem in a specific case and that we used to solve the TSP in the
same situation.
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1.1 Background history

The origin of the travelling salesman problem are unclear. The general form
of the TSP has been first studied by mathematicians during the 1930s in
Vienna and at Harvard, in particular by Karl Menger. In 1950s and 1960s
the problem became increasingly popular in scientific circles in Europe and
in the USA, especially when the problem has been expressed as an integer
linear program by G. Dantzig, D.R. Fulkerson and S.M. Johnson from the
RAND Corporation. They published in 1954 a description of a method for
solving the TSP and illustrated the power of this method by solving an
instance with 49 cities, an impressive size at that time. They created this
instance by picking one city from each of the 48 states in the U.S.A. (Alaska
and Hawaii became states only in 1959) and adding Washington, D.C.; the
costs of travel between these cities were defined by road distances. Over
the years, many TSP solutions arose, with an always increasing number of
instances. In 2006, William J. Cook and others computed an optimal tour
through an 85,900-city instance given by a microchip layout problem, cur-
rently the largest solved TSPLIB instance.

An innovative approach to the study of the TSP and, in general, to
combinatorial optimization problems, has been introduced by Marc Mezard
and Giorgio Parisi in 1986 when they understood that many methods and
concepts developed in the theory of spin-glasses could be applied in combi-
natorial optimization problems [13–17]. In the early 1980s has been realized
and demonstrated that the determination of the ground state of an infinite
range spin-glass is a NP-complete problem; therefore the techniques de-
veloped in the study of this particular branch of statistical mechanics, e.g.
the replica method and the cavity method, could be used to study other
NP-complete problems. In the theory of spin-glasses, the replica method
is used to have informations on the properties of the ground state of the
system even if they are not sufficient to determine the ground state (see
Section1.5); in other words, the replica method allows one to solve the spin-
glass model without having to compute the ground state. If the cost of the
TSP is thought as the energy, the ground state, i.e. the minimum energy
state, is the optimal solution of the problem. Mezard and Parisi in [14]
used the replica method to derive analytical estimates for thermodynamic
quantities, such as the length of the shortest path, for the TSP in which the
distances between the cities are independent random variables. The study
of the TSP with random weights can be seen as an infinite dimension version
of it.
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1.2 TSP and computational complexity

The computational complexity of a problem is a measure of the computa-
tional resources, typically time, required to solve the problem. Defined the
worst case time complexity T(n) as:

T (n) = max
|x|=n

t(x) (1.2.1)

where t(x) is the running time of the algorithm for input data x, let us
define:

• T (n) is of order at most g(n) and we write T (n) = O(g(n)) if there
exist positive constants c and n0 such that T (n) ≤ cg(n) for all n ≥ n0.

• T (n) is of order g(n) and we write T (n) = Θ(g(n)) if there exist
positive constants c1, c2 and n0 such that c1g(n) ≤ T (n) ≤ c2g(n) for
all n ≥ n0.

In computational complexity, all problems which can be solved by a
polynomial algorithm, i.e. an algorithm with time complexity Θ(nk) for
some k, are lumped together and called tractable. Problems which can only
be solved by algorithms with non-polynomial running time like Θ(2n) or
Θ(n!) are also lumped together and called intractable.
In order to give a precise definition of complexity classes it is needed to
consider decision problems, i.e. problems whose solution is either “yes” or
“no”. Every optimization problem can be turned into a decision problem
adding a bound B to the instance. In the case of the TSP this becomes:
given N cities, the set of distances between them and a number B ≥ 0, is
there a TSP solution such that the total cost needed to travel the tour is
smaller or equal to B?
Given this definition, we can now define the complexity classes of decision
problems:

Definition 1.2.1. A decision problem P is element of the class P if and
only if it can be solved by a polynomial time algorithm.

Definition 1.2.2. A decision problem P is element of the class NP if and
only if a solution can be verified to be correct in polynomial time.

Note that “NP” stands for polynomial non-deterministic algorithm, not
for non-polynomial, even though every known algorithm for a NP problem
solves the problem in exponential time.

An immediate consequence is that: P ⊆ NP . Let us give other two
definitions that allow to give a hierarchy in the NP:

Definition 1.2.3. We say a problem P1 is polynomially reducible to a prob-
lem P2 and we write P1 ≤ P2 if there exist a polynomial algorithm for P1

provided that there is a polynomial algorithm for P2.
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Definition 1.2.4. A problem P is NP- complete if P ∈ NP and Q ≤ P
for all Q ∈ NP.

Figure 1.1: The map of computational complexity

The class of NP-complete problems collects the hardest problems in
NP. The class NP not only contains a large number of problems with
important applications, but represent a real challenge: all problems in NP
still have a chance to be in P. A proof of non-existence of a polynomial
algorithm for a single problem from NP would establish that P 6= NP. As
long as such a proof is missing,

P
?
= NP (1.2.2)

represent the most famous open conjecture in theoretical computer science
and it is one of the seven Millennium Prize Problems stated by the Clay
Mathematics Institute in 2000.
We say that an optimization problem is NP-hard if its decision variant is
NP-complete. The decisional version of TSP is NP-complete and it has
been proved in [19] that the Euclidean TSP is a NP-complete problem,
even if its instances are restricted to be realizable by sets of points on the
Euclidean plane. The problems in the NP class are intractable unless some
mathematical insight provides us with a polynomial algorithm to avoid ex-
haustive search. Such an insight promotes a problem into the class P of
polynomially soluble problems.

1.3 Graph Theory and Combinatorial Optimiza-

tion Problems

In order to properly formulate the TSP, and, in general, a combinatorial op-
timization problem, some basic Graph Theory notions are needed. Thus, we
present, in this paragraph, the fundamental definitions that are indispens-
able for our purpose and how some of the most important combinatorial
optimization problems are defined in therms of graphs.
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Definition 1.3.1. A graph is an ordered pair G = {V, E}, where V is a
finite set of points, called vertices, and E is a collection of 2-element subsets
of V, called edges.

Usually, in a picture of a graph, vertices are represented by dots and
edges are represented by lines. A graph is said to be simple if it does not
contain loops and multiple edges, and it is said to be undirected if the couple
of vertices in an edge is not ordered.
If v and w are vertices of a graph G and e = {v, w} is an edge of G, we say
that e joins v and w, that v and w are extrema of e and that v and w are
adjacent. If the edge e is oriented from v to w we write e = (v, w), if it is
not oriented we write e = {v, w} = {w, v}.

Definition 1.3.2. A graph G′ = {V ′, E ′} is said to be a subgraph of G
(G′ ⊆ G) if V ′ ⊆ V and E ′ ⊆ E. In case V ′ = V the graph is said to be
spanning.

Definition 1.3.3. A graph G = {V, E} is said to be bipartite if the set V of
vertices can be bipartite in two disjoint subsets, V1 and V2 with V = V1∪V2,
and such that every edge in E has the form (v1, v2) or (v2, v1), where v1 ∈ V1
and v2 ∈ V2.

Definition 1.3.4. A graph is said to be complete if every two vertices are
adjacent. The N-vertices complete graph is denoted KN . A bipartite graph
is said to be complete if, for every couple of vertices v1 ∈ V1 and v2 ∈ V2
there exist an edge that joins them. The complete bipartite graph is denoted
KN,M , where N = |V1| and M = |V2|.

A walk ω of length |ω| = k ≥ 0 connecting v0 with vk in G is a sequence
(v0, e1, v1, . . . , ek, vk) such that all vi ∈ V, all ei ∈ E and vi−1, vi ∈ ei for
1 ≤ i ≤ k. A loop is a walk connecting the starting point v0 with itself.
A path in G is a walk in which v0, v1, . . . , vk are distinct vertices of G, and
e1, e2, . . . , ek are distinct edges of G. A cycle in G is such that:

• v0, v1, . . . , vk−1 are distinct vertices of G, and vk = v0;

• e1, e2, . . . , ek are distinct edges of G;

• k ≥ 2.

Definition 1.3.5. A graph G is said to be connected if every pair of vertices
in G can be connected by a walk.

Definition 1.3.6. A forest is a graph that contains no cycles. A tree is a
connected forest.
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Definition 1.3.7. Given a graph G = {V, E}, a matching M in G is a set
of pairwise non-adjacent edges, none of which are loops, i.e. no two edges
share a common vertex. A maximal matching is a matching M of a graph
G with the property that if any edge not inM is added toM, it is no longer
a matching. A perfect matching is a matching which matches all vertices of
the graph.

Using this definitions, we can now summarize the statements of the prin-
cipal Euclidean combinatorial optimization problems:

• Random Euclidean Matching Problem: given 2N random points
x1, . . . , x2N on a Euclidean domain and defined a weight wij = c(||xi−
xj ||) to the couple (xi, xj), the problem consists in finding the perfect
matching µ that minimizes the cost E(µ) =

∑

(xi,xj)∈µ
wij ;

• Random Euclidean Assignment Problem: given 2 sets of N ran-
dom points x1, . . . , xN , y1, . . . , yN on a Euclidean domain, define a
weight wij = c(||xi − yj ||) to the couple (xi, yj). In this case only
points of different sets can be coupled, thus the problem consists in
finding the permutation π ∈ SN such that the cost E(π) =

∑N
i=1wiπ(i)

is minimized;

• Euclidean 2-factor (or 2-matching): given a generic undirected
graph, a factor is a spanning subgraph, while a k-factor is a factor
k-regular, that is in which each vertex belongs exactly to k edges.
Let us suppose that a weight we = c(||xi − xj ||) is associated to the
edge e = (xi, xj) that belongs to the considered 2-factor ν. Then
the problem consists in finding the 2-factor that minimizes the cost
E(ν) =

∑

e∈ν wij ;

• Euclidean TSP: see Section 2.1.

1.4 Recent results

Encouraged by the infinite-dimension results, professor Caracciolo and his
PhD students started studying one dimensional versions of combinatorial
optimization problems like the assignment, the matching, the 2-factor and
the TSP, both in their complete and bipartite versions. The importance in
knowing the solutions to these versions of the problems is also due to the
fact that they help us understand what happens in higher dimensions, in
particular in two dimensions. Here we report a list of the results obtained:

• Euclidean matching problem: equivalence relations between the Eu-
clidean bipartite matching problem on the line and on the circle, com-
putation of the correlation function and optimal cost of the original
problem in the thermodynamic limit [4].
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• Euclidean bipartite matching problem: a scaling hypothesis has been
developed in collaboration with professor Parisi [7]: in particular it has
been proposed the asymptotic behaviour of the average optimal cost in
dimension d = 1, d = 2 and d > 2, verifying that in the limit d→∞ it
coincides with the subleading scaling of the random assignment prob-
lem. Then it has been computed the two-point correlation function for
spin configurations obtained by solving the Euclidean matching prob-
lem [2]. In particular, the optimal solution for both the assignment
problem and the matching problem in one dimension and for a large
class of cost functions has been found.

• Bipartite Euclidean TSP in one dimension: the optimal solution for
a convex and increasing cost function has been found, and the results
obtained have been compared with the assignment, showing that the
cost for the optimal TSP in not smaller than twice the cost in the
optimal assignment on the same set of points [6].

• Euclidean 2-matching in one dimension: it consists of finding the
minimum-weight loop cover of an undirected graph. It has been solved
for a convex cost function and both in its complete and bipartite ver-
sion [5].

• Bipartite TSP and 2-factor problem in two dimensions: in this case
the problems cited above are studied in two dimensions. In particular,
in [3], it is shown that the average optimal cost of the bipartite TSP in
two dimensions is simply related to the average cost of the assignment
problem. As a byproduct the authors show that the 2-factor problem
has the same average optimal cost.

1.5 The Replica Method and the TSP in Physics

Before discussing why the TSP has found a lot of interest in physics, let us
briefly review the replica method, that will be useful for our purpose.
In statistical physics one is interested in average properties of a given system.
In particular, in the canonical formalism the partition function is defined as:

Z(β) =
∑

µ∈M

e−βE(µ) (1.5.1)

where β is the inverse temperature of the system, µ is a particular con-
figuration in the set M of all the possible configurations and E(µ) is the
energy of the given configuration. If the partition function is given, for fixed
M, one is able to derive all the macroscopic quantities of interest, such as
the energy, given by:

E = −
∂ lnZ(β)

∂β
(1.5.2)
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However, in disordered systems, the setM of all the possible configurations
is an instance of the problem. Thus, if one is interested in averaging the
macroscopic properties also over all the possible instances, the following
quantity must be computed:

E = −
∂lnZ(β)

∂β
(1.5.3)

where • denotes the average over all instancesM.

The average in (1.5) is hard to be computed analytically and the it has
been approached using the replica method. It consists in expanding the
logarithm as:

xn = en lnx ≈ 1 + n lnx as n→ 0 (1.5.4)

Therefore:

lnx = lim
n→0

xn − 1

n
(1.5.5)

This way we can compute the average as:

lnZ(β) = lim
n→0

Z(β)n − 1

n
= lim

n→0

Z(β)n − 1

n
(1.5.6)

This procedure is physically equivalent to considering n copies, or replicas,
of the system and then average over it. In order to average over n copies
of the system, n has to be an integer; in the limit of Eq. (1.5), instead, n
is sent continuously to zero. This problem can be avoided considering an
analytic continuation of Z(β)n, where n is promoted to be a real number.

Parisi and Mezard understood [14] that this powerful procedure could
be used also in studying combinatorial optimization problems, in particular
TSP . In fact, if M is the set of all possible Hamiltonian cycles of a given
instance of the problem and E(µ) is the cost of the cycle µ ∈ M, then the
replica method makes it possible to find the average cost needed to perform
the journey.

The particular attention that the TSP, and in general combinatorial op-
timization problems, gained in the theoretical physics community in the last
decades has a double motivation.
Firstly, as we outline in Section1.1 and above in this paragraph, physicists
understood that many concepts and methods developed in statistical me-
chanics, in particular in the theory of spin glasses, could be applied in the
solution of this kind of problems, for example the replica method explained
in this section. This way, physicists faced problems reserved to mathemati-
cians and theoretical computer scientists in an innovative way that brought
to important results, not only analytical, but also computational. In fact,
the trick of mapping the optimization problem into a statistical system, were
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the energy replaces the cost, and then find the minimum of the energy low-
ering the temperature is commonly used in computational simulations.
While statistical physics provides methods indispensable to derive average
properties of combinatorial optimization problems’ solutions, on the other
side, the solutions, at fixed instance, to this kind of problems, as the one
presented in this thesis work, can be used the opposite way compared to the
replica method, i.e. to solve disordered systems problems. If a statistical
mechanics problem can be mapped into a combinatorial optimization one
whose solution in known, then also the physical problem can be solved.
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Chapter 2

ETSP in One Dimension

2.1 The problem

Given a generic (undirected) graph G = (V, E) and a cycle of length k in
G , the cycle is Hamiltonian when the visited vertices are all different and
the cardinality of the set of vertices |V| is exactly k for k > 2. In other
terms, a Hamiltonian cycle is a closed path visiting all the vertices in V only
once. The determination of the existence of an Hamiltonian cycle is an NP-
complete problem (see Johnson and Papadimitriou in [12]). A graph that
contains a Hamiltonian cycle is called a Hamiltonian graph. The complete
graph with N vertices KN is Hamiltonian for N > 2. The bipartite complete
graph with N +M vertices KN,M is Hamiltonian for M = N > 1.

Let us denote by H the set of Hamiltonian cycles of the graph G. Let
us suppose now that a weight we > 0 is assigned to each edge e ∈ E of the
graph G. We can associate to each Hamiltonian cycle h ∈ H a total cost

E(h) :=
∑

e∈h

we . (2.1.1)

In the (weighted) Hamiltonian cycle problem we search for the Hamiltonian
cycle h ∈ H such that the total cost in (2.1.1) is minimized, i.e., the optimal
Hamiltonian cycle h∗ ∈ H is such that

E(h∗) = min
h∈H

E(h) . (2.1.2)

When the N vertices of KN are seen as cities and the weight for each edge
is the cost paid to cover the route distance between the cities, the search
for h∗ is the travelling salesman problem. For example, consider when the
graph KN is embedded in R

d, that is for each i ∈ [N ] = {1, 2, . . . , N} we
associate a point xi ∈ R

d, and for e = (i, j) with i, j ∈ [N ] we introduce
a cost which is a function of their Euclidean distance we = |xi − xj |

p with
p ∈ R. When p = 1, we obtain the usual Euclidean TSP.
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The simplest way to introduce randomness in the problem is to consider
the weights we independent and identically distributed random variables.
In this case the problem is called random TSP and has been extensively
studied by disordered system techniques such as replica and cavity methods
[11, 14, 15, 18, 21, 22, 24] and by a rigorous approach [25]. In the random
Euclidean TSP [1, 9, 10, 20, 23], instead, the positions of the points are gen-
erated at random and as a consequence the weights will be correlated. The
typical properties of the optimal solution are of interest, and in particular
the average optimal cost

E := E(h∗) , (2.1.3)

where we have denoted by a bar the average over all possible realization of
the disorder.
In (2.1.1) the weight we is, in general, a function of the Euclidean distance
between two points and, in this work, we will use the function:

we = |xi − xj |
p ; p ∈ R. (2.1.4)

However, as it is shown in [4], the cost function in (2.1.4), when p < 0,
has the same matching properties of a class of functions usually called C-
functions:

Definition 2.1.1. We will say that a function f : [0, 1]→ R is a C-function
if, given 0 < z1 < z2 < 1, for any η ∈ (0, 1− z2), µ ∈ (z2, 1)

f(z2)− f(z1) ≤ f(η + z2)− f(η + z1) (2.1.5)

f(z2)− f(z1) ≤ f(µ− z2)− f(µ− z1) (2.1.6)

In case the cost is a C-function, the expression for the weigh in (2.1.1)
becomes:

we = f(|xi − xj |) (2.1.7)

where f is a C-function. This property will allow us to extend the results
obtained for the p < 0 case to the situation in which the cost is a general
C-function.

2.2 Hamiltonian cycles in the complete graph

In our problem, we shall consider the complete graph KN with N vertices,
that is with vertex set V = [N ] := {1, . . . , N}. A Hamiltonian cycle, as
explained in Sect.2.1, is a unique closed walk on the graph which visits
all the vertices. This graph has (N−1)!

2 Hamiltonian cycles. Indeed, each
permutation π in the symmetric group of N elements, π ∈ SN , defines a
Hamiltonian cycle on KN .
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The sequence of points (π(1), π(2), . . . , π(N), π(1)) defines a closed walk
with starting point π(1), but the same walk is achieved by choosing any
other vertex as starting point and the walk in the opposite order, that is,

(π(1), π(N), . . . , π(2), π(1)) (2.2.1)

corresponds to the same Hamiltonian cycle. As the cardinality of SN is N !
we get that the number of Hamiltonian cycles in KN is N !

2·N = (N−1)!
2 .

There is another way to associate permutations to Hamiltonian cycles.
Let πk := π ◦ πk−1 for integer k and π0 be the identity function. Of course
πN = π0, π ∈ SN . A permutation π ∈ SN is said to be k-cycle if it formed
by a unique cycle of length k and N − k fixed points. There are 1

k
(N)!

(N−k)! k-
cycle in SN . Let us consider now the orbit of the point j under the action of
π, that is the sequence of points (π0, π, π2, . . . , πN )(j), with j ∈ [N ]. This
sequence defines a Hamiltonian cycle if and only if the permutation π is a
N -cycle. If π is a N -cycle also π−1 is a N -cycle. It provides the same closed
walk in the opposite direction. As the cardinality of the N -cycles in SN is
(N − 1)! we get, once more, that the number of Hamiltonian cycles in KN

is (N−1)!
2 .

2.3 Optimal cycle for the bipartite complete graph,

p > 1

We will resume here, first, the results for the optimal Hamiltonian cycle that
have already been shown for the case of the bipartite graph KN,N embedded
on the interval Ω = [0, 1] ⊂ R.

Let us call R := {ri}i=1,...,N ⊂ Ω and B := {bj}j=1,...,N ⊂ Ω two sets
of points, both of cardinality N , in the interval Ω. All points are supposed
to be identically and independently distributed over Ω according to the flat
distribution.

Remember that the bipartite complete graph KN,N has the vertex set

with the same cardinality but N ! (N−1)!
2 Hamiltonian cycles. Indeed, given

two permutations σ, π ∈ Sn the sequence of points

h[(σ, π)] := (rσ(1), bπ(1), rσ(2), bπ(2), . . . , rσ(N), bπ(N),rσ(1)) (2.3.1)

defines a closed walk starting from σ(1) and therefore if we fix σ(1) = 1
this sequence and the sequence obtained by reversing the order define a
Hamiltonian cycles.

In [6] Caracciolo et al. proved that, if both red and blue points are
ordered, i.e. r1 ≤ · · · ≤ rN and b1 ≤ · · · ≤ bN the optimal cycle is defined
by h∗ = h̃ := h[(σ̃, π̃)] with

σ̃(i) :=

{

2i− 1 i ≤ (N + 1)/2

2N − 2i+ 2 i > (N + 1)/2
(2.3.2)
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Let us introduce now a new set of ordered points B := {bj}j=1,...,N ⊂ [0, 1]
such that

bi =

{

r1 for i = 1

ri−1 otherwise
(2.4.3)

and consider the Hamiltonian cycle on the complete bipartite graph with
vertex sets R and B

h[(σ, πσ)] := (r1, bπσ(1), rσ(2), bπσ(2), . . . , rσ(N), bπσ(N), rσ(1)) (2.4.4)

so that

πσ(i) =























2 for i = 1

σ(i) + 1 for i < k

σ(i+ 1) + 1 for i ≥ k

1 for i = N

(2.4.5)

where k is such that σ(k) = N . We have therefore

(bπσ(1), bπσ(2), . . . , bπσ(k−1), bπσ(k), . . . , bπσ(N−1), bπσ(N))

= (r1, rσ(2), . . . , rσ(k−1), rσ(k+1), . . . , rσ(N), r1)
(2.4.6)

The cost of this bipartite matching is:

E[h[(σ, πσ)]] = |r1 − bπσ(1)|
p + |rσ(2) − bπσ(1)|

p + |rN − bπσ(N)|
p

+|rσ(1) − bπσ(N)|
p +

N−1
∑

i=2,

[

|rσ(i) − bπσ(i)|
p + |rσ(i+1) − bπσ(i)|

p
]

.
(2.4.7)

By construction (using (2.4.6)):

EN (h[σ]) = EN (h[(σ, πσ)]) ≥ EN (h[(σ̃, π̃)]) = EN (h[(σ̃, πσ̃)]) = EN (h[σ̃]),
(2.4.8)

where the fact that π̃ = πσ̃ can be checked using (2.3.2) and (2.3.3) and
(2.4.5).

r1 r2 r3 r4 r5

Figure 2.2: The optimal Hamiltonian cycle for p > 1 for N = 5
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r1 r2 r3 r4 r5 r6 r7

Figure 2.3: The optimal Hamiltonian cycle for p > 1 for N = 7

r1 r2 r3 r4 r5 r6 r7 r8

Figure 2.4: The optimal Hamiltonian cycle for p > 1 for N = 8

2.5 The 0 < p < 1 case: optimal cycle

We now prove that, given an ordered sequence R = {ri}i=1,...,N of N points
in the interval [0, 1], with r1 ≤ · · · ≤ rN , if 0 < p < 1 and if

h∗ = h[1] = (r1(1), r1(2), . . . , r1(N), r1(1)) (2.5.1)

where 1 is the identity permutation, i.e.:

1(j) = j (2.5.2)

then

Proposition 2.5.1. The Hamiltonian cycle which provides the optimal cost
is h∗.

Of course we have:

h∗ = h[1] = (r1, r1(2), . . . , r1(N), r(1)) = (r1, r2, . . . , rN , r1) (2.5.3)

Before proving this result, we will enunciate and demonstrate a lemma we
will use in the proof of Proposition 5.1.

Lemma 1. Given a Hamiltonian cycle with the connection between the
points drown in the upper half-plain, let’s suppose that two of the connec-
tions are crossing in a node. Then, there exist only one way of replacing
this crossing matching with a non-crossing one without splitting the original
cycle into two 2-factors; moreover, this new configuration is less expensive
than the original one.

20



r1 r2 r3 r4

Figure 2.5: Crossing matching

Proof. Let’s consider a generic oriented Hamiltonian cycle and let’s suppose
it contains a matching as in Fig.2.5:

There are two possible orientations for the matching that correspond to
this two oriented Hamiltonian cycles:
1) (C1r1r3C2r2r4C3),
2) (C1r1r3C2r4r2C3)
(the other possibilities are the dual of this two, and thus they are equivalent).

In both cases, a priori, there are two choices to replace this crossing
matching (r1, r3), (r2, r4) with a non-crossing one: (r1, r2), (r3, r4) or (r1, r4),
(r2, r3). We now show, for the two possible prototypes of Hamiltonian cycles
which is the right choice for the non-crossing matching, giving a general rule.
Let’s consider case 1): here, if we replace the crossing matching with (r1, r4),
(r2, r3), the cycle will split; in fact we would have two cycles: (C1r1r4C3)
and (r3C2r2). Instead, if we use the other non-crossing matching, we would
have: (C1r1r2[C2]

−1r3r4C3). This way we have removed the node with-
out splitting the cycle. Let’s consider now case 2): in this situation, using
(r1, r4), (r2, r3) as the new matching, we would have: (C1r1r4[C2]

−1r3r2C3);
the other matching, on the contrary, gives: (C1r1r2C3) and (r3C2r4).
The general rule is the following: given the oriented matching, consider the
four oriented lines going inward and outward the node. Then, the right
choice for the non-crossing matching is obtained joining the two couples of
lines with opposite orientation.

Since the difference between the cost of the original graph and the new
one simply consists in the difference between a crossing matching and a
non-crossing on, this is positive when 0 < p < 1, as shown in [2].

Now we can prove Proposition 5.1:

Proof. Consider a generic Hamiltonian cycle and draw the connections be-
tween the points in the upper half-plain. Suppose to have a Hamiltonian
cycle where there are, let’s say, n intersections between arcs; thanks to
Lemma 1 and the result obtained in Appendix A, we can remove a crossing
matching with a non-crossing one without splitting the Hamiltonian cycle
and lowering the number of crossings between the arcs. Moreover, the cost
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of this cycle is smaller than the cost of the starting one. Iterating this pro-
cedure, it follows that one can find a cycle with no crossings. Evidently, if
the non-crossing cycle is unique, its cost is the lower possible.
Now we prove that there are no other cycles out of h∗ and its dual with no
crossings. This can be easily seen, since h∗ (and its dual) is the only cycle
that visits all the points, starting from the first, in order. This means that
all the other cycles do not visit the points in order and, thus, they have a
node, due to the fact that the point that is not visited in a first time, must
be visited next, creating a node.

r1 r2 r3 r4 r5

Figure 2.6: The optimal Hamiltonian cycle for 0 < p <> 1 for N = 5

r1 r2 r3 r4 r5 r6 r7

Figure 2.7: The optimal Hamiltonian cycle for 0 < p < 1 for N = 7

r1 r2 r3 r4 r5 r6 r7 r8

Figure 2.8: The optimal Hamiltonian cycle for 0 < p < 1 for N = 8
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2.6 The p < 0 case

In order to study the optimal cycle for p < 0, we first analyse the optimal
matching, following the procedure used in [2].

Optimal matching This analysis goes through a case study, that reduces,
thanks to the symmetries of the problem, to only three cases. We will denote
them using this pictorial representation: [◦ ◦ ••], [◦ • ◦•] and [◦ • •◦], where
the edges are supposed to link points of different colours, i.e., in [◦ ◦ ••]
the first point can be connected with the third one and the second with the
fourth, but also the first with the fourth and the second with the third. For
simplicity, let us say that • is a red point and ◦ is a blue point. In all the
cases we will set the first point in the origin, the distance between the first
and second point equal to 1, the distance between the second and third point
equal to x1 and the distance between the second and fourth point equal to
x2.

[◦ ◦ ••] case Let T1 be the cost of the matching in which the leftmost
blue point goes with the leftmost red one, i.e. the ordered matching, and
T2 the cost of the other possible matching. Since p < 0, let us define
q := |p| = −p, so that q > 0. Thus, the cost for the two possible matchings
in this configuration is given by:

T1 =
1

(1 + x1)q
+

1

xq2
(2.6.1)

T2 =
1

(1 + x2)q
+

1

xq1
(2.6.2)

Comparing the costs, is easy to see that T2 ≥ T1; in fact one has:

1

(1 + x1)q
+

1

xq2
≤

1

(1 + x2)q
+

1

xq1
=⇒

1

xq2
−

1

xq1
≤

1

(1 + x2)q
−

1

(1 + x1)q

(2.6.3)
which is always true since x2 ≥ x1 and 1/xq is a monotone function whose
second derivative is positive for every q > 0.

[◦ • ◦•] case In this situation, the cost for the two possible matchings
is given by:

T1 = 1 +
1

(x2 − x1)q
(2.6.4)

T2 =
1

xq1
+

1

(1 + x2)q
(2.6.5)
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This situation, in which both matchings are non-crossing, one finds that
there is not a unique solution, but it depends on the distribution of points;
explicitly, one should compare:

1−
1

(1 + x2)q
(2.6.6)

and
1

xq1
−

1

(x2 − x1)q
(2.6.7)

and it is immediate to see that any relation of order between the two ex-
pressions is true only in a range of values of x2.

[◦ • •◦] case In this configuration, the cost of the two different match-
ings is:

T1 = 1 +
1

(x2 − x1)q
(2.6.8)

T2 =
1

(1 + x1)q
+

1

xq2
(2.6.9)

In this case T1 ≥ T2, in fact:

1 +
1

(x2 − x1)q
≥

1

(1 + x1)q
+

1

xq2
=⇒

=⇒ 1−
1

(1 + x1)q
≥

1

xq2
−

1

(x2 − x1)q

(2.6.10)

which is always true since the left-hand side is always positive, while the
right-hand side is negative.

Conclusion For p < 0 the optimal matching is crossing

Suppose to have a generic oriented Hamiltonian cycle and draw the con-
nections between the vertices in the upper half plain. Suppose it is possible
to identify a matching that is non-crossing, then the possible situations are
the following:

r1 r2 r3 r4
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r1 r2 r3 r4

For the first case there are two possible independent orientations:
1) (r1r4C2r2r3C3)
2) (r1r4C2r3r2C3)
It is obvious to see that the matching in the first cycle, if replaced by a
crossing matching, would be: (r1r3C3)(r2[C2]

−1r4), and this is no more a
Hamiltonian cycle. On the other hand, in the second cycle, the non-crossing
matching can be replaced by a crossing one without breaking the cycle:
(r1r3[C2]

−1r4r2C3).

For the second case the possible orientations are:
1) (r1r2C2r4r3C3)
2) (r1r2C2r3r4C3)
By means of the same procedure used in the first case, one finds that the
non-crossing matching in the second cycle can be replaced by a crossing one
without splitting the cycle, while in the first case the cycle is divided by this
operation.

We have proven that is not always possible to replace a non-crossing
matching by a crossing one keeping unaltered the property of Hamiltonian
cycle, but, in any case, this move preserves the graph property of being a
2-factor. This move is such that the cost of the new graph is lower than the
cost of the old one: in fact, the cost difference between the two configura-
tions coincides with the cost difference between the two matchings, and we
have proved above that the crossing matching has a lower cost.

2.6.1 N odd case

Given an ordered sequence R = {ri}i=1,...,N of N points, with N odd, in
the interval [0, 1], with r1 ≤ · · · ≤ rN , if p < 0, consider the permutation σ
defined as:

σ(i) =











1 for i = 1
2N−i+3

2 for odd i>1
N−i+3

2 for even i>1

(2.6.11)

This permutation defines the following Hamiltonian cycle:

h∗ := h[σ] = (rσ(1), rσ(2), . . . , rσ(N)). (2.6.12)

Theorem 1. The Hamiltonian cycle which provides the optimal cost is h∗.
Moreover, h∗ provides the optimal 2-factor solution.
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Proof. Let us consider a graph G = (V, E), such that |V| = N , with N odd,
and a Hamiltonian cycle on it. Consider, in particular, the edge connecting
two vertices rσ(i) and rσ(i+1): obviously both the edges (rσ(i−1), rσ(i)) and
(rσ(i+1), rσ(i+2)) share a common vertex with (rσ(i), rσ(i+1)), therefore they
cannot, by definition, be part of a matching with (rσ(i), rσ(i+1)). So, if we
have N vertices, each edge has N − 3 other edges that can be part of the
same matching with it (obviously we don’t have to consider the edge itself
and the other two that share a vertex with him). Let us denote with N (σ(i))
the number of edges that cross the edge (rσ(i), rσ(i+1)) and let us define the
sets:

Aj :=

{

{rk}k=σ(i)+1 (mod N),...,σ(i+1)−1 (mod N) for j = 1

{rk}k=σ(i+1)+1 (mod N),...,σ(i)−1 (mod N) for j = 2
(2.6.13)

This two sets contain the points between rσ(i) and rσ(i+1).
In particular, the maximum number of crossings an edge can have is given
by:

max(N (σ(i))) =

{

2min{|Aj |, j = 1, 2} for |A1| 6= |A2|

2min{|Aj |, j = 1, 2} − 1 for |A1| = |A2|
(2.6.14)

This is easily seen, since the maximum number of crossings an edge can have
is obtained when all the points belonging to the smaller between A1 and A2

contributes with two crossings. This cannot happen when the cardinality
of A1 and A2 is the same. Consider the particular case such that σ(i) = a
and σ(i + 1) = a + N−1

2 (mod N) or σ(i + 1) = a + N+1
2 (mod N). Then

(2.6.14) in this cases is exactly equal to N − 3, which means that the edges
(ra, ra+N−1

2
(mod N)) and (ra, ra+N+1

2
(mod N)) can have the maximum num-

ber of crossings if the right configuration is chosen.
Clearly, if there is a 2-factor such that every edge has N − 3 crossings, such
a 2-factor is unique, because the only way of obtaining it is connecting the
vertex ra with ra+N−1

2
(mod N) and ra+N+1

2
(mod N), ∀a.

The Hamiltonian cycle h∗ has exactly N(N − 3)/2 crossings: in fact,
the vertex a is connected with the vertices a + N−1

2 mod N and a + N+1
2

mod N . The edge (a, a + N−1
2 mod N) has 2N−3

2 = N − 3 crossings due
to the N−3

2 vertices a + 1 mod N, a + 2 mod N, . . . , a + N−1
2 − 1 mod N

that contribute with 2 edges each. This holds also for the edge (a, a+ N+1
2

mod N) and for each a ∈ [1, N ]. Counting the total number of crossings
and noting that each one of them is counted twice, we obtain the result.

Therefore, h∗ is the only 2-factor, and, in particular, the only Hamilto-
nian cycle, such that the total number of crossings is saturated. This means
that any other 2-factor has, at least, one crossing less, and so it cannot
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be optimal, because the same 2-factor with the non-crossing edges replaced
with two crossing ones has a lower cost. This procedure cannot be applied
only to h∗, and so it is the optimal solution.

r1 r2

r3

r4 r5

Figure 2.9: The optimal Hamiltonian cycle for p < 0 for N = 5

r1 r2 r3

r4

r5 r6 r7

Figure 2.10: The optimal Hamiltonian cycle for p < 0 for N = 7

2.6.2 N even case

In this situation, differently from the above case, the solution in not unique.
We will show how these solutions can be found and how they are related.
In this section we will use the results obtained in Appendix B regarding the
Monopartite Euclidean 2-factor for p < 0
Given the usual sequence of points R = {ri}i=1,...,N of N points, with N
even, in the interval [0, 1], with r1 ≤ · · · ≤ rN , if p < 0, consider the
permutation σ such that:

σ(i) =































1 for i = 1
N
2 − i+ 3 for even i ≤ N

2 + 1

N − i+ 3 for odd i ≤ N
2 + 1

i− N
2 for even i > N

2 + 1

i for odd i > N
2 + 1

(2.6.15)
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This permutation generates the following connections between the ver-
tices:























1←→ N
2 + 1, N2 + 2

N
2 ←→ N,N − 1

i←→ N
2 + i− 1, N2 + i+ 1 for i 6= 1, N2 ,

N
2 + 1, N

σ(1) = 1

(2.6.16)

Given τ ∈ SN defined by τ(i) = i + 1 for i ∈ [1, N − 1] and τ(N) = 1, we
call Σ the set of permutations σk, k = 1, ..., N defined as:

σk(i) = τk(σ(i)) (2.6.17)

where τk = τ ◦ τk−1. Thus we have the following result:

Proposition 2.6.1. The set of Hamiltonian cycles that provides the optimal
cost is

h∗k := h[σk] = (rσk(1), rσk(2), . . . , rσk(N)). (2.6.18)

In Appendix B the optimal solution for the Euclidean 2-factor in ob-
tained. In particular, we show how the solution is composed of a loop-
covering of the graph. The idea for the proof of the TSP is to show how to
join the loops in the optimal way in order to obtain the optimal TSP.

Proof. Let us begin, then, from the permutations that define the optimal
solutions for the 2-factor:

• 4|N :

σ1 =(r1, rN
2
+1, r2, rN

2
+2) . . .

. . . (ra, ra+N
2
, ra+1, ra+N

2
+1) . . . (rN

2
−1, rN−1, rN

2
, rN )

(2.6.19)

σ2 =(r1, rN
2
+1, rN , rN

2
) . . .

. . . (ra, ra+N
2
, ra−1, ra+N

2
−1) . . . (rN

2
−1, rN−1, rN

2
−2, rN−2)

(2.6.20)

• 4 6 |N :

πk(i) := π(i) + k (mod N), k ∈ [0, N − 1] (2.6.21)

where

π =(r1, rN
2
, rN , rN

2
+1, r2, rN

2
+2)(r3, rN

2
+3, r4, rN

2
+4) . . .

. . . (rN
2
−2, rN−1, rN

2
−1, rN−2)

(2.6.22)
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In both cases, the optimal solution is formed only by edges of length N
2 − 1

and of length N
2 − 2. Since the optimal 2-factor is not a TSP, in order to

obtain a Hamiltonian cycle from the 2-factor solution, couples of crossing
edges need to became non-crossing, where one of the two edges belongs to
one loop of the covering and the other to another loop. Now we show that
the optimal way of joining the loops is replacing two edges of length N

2 − 1
with other two of length N

2 − 2.
Let us consider two adjacent 4-vertices loops, i.e. two loops of the form:

(ra, ra+N
2
, ra+1, ra+N

2
+1), (ra+2, ra+2+N

2
, ra+3, ra+N

2
+3) (2.6.23)

and let us analyse the possible cases:

1. to remove two edges of length N
2 − 2, that can be replaced in two way:

• either with an edge of length N
2 − 2 and one of length N

2 − 4; in
this case the maximum number of crossings decreases by 4;

• or with two edges of length N
2 − 3; also in this situation the

maximum number of crossings decreases by 4.

2. to remove one edge of length N
2 − 2 and one of length N

2 − 1, and also
this operation can be done in two ways:

• either with an edge of length N
2 − 2 and one of length N

2 − 3; in
this case the maximum number of crossings decreases by 3;

• or with an edge of length N
2 − 3 and one of length N

2 − 4; in this
situation the maximum number of crossings decreases by 7.

3. the last chance is to remove two edges of length N
2 − 1, and also this

can be done in two ways:

• either with two edges of length N
2 −3; here the maximum number

of crossings decreases by 6;

• or with two edges of length N
2 −2; in this situation the maximum

number of crossings decreases by 2. This happens when we sub-
stitute two adjacent edges of length N

2 − 1, that is, edges of the
form (ra, rN

2
+a) and (ra+1, rN

2
+a+1), with the non-crossing edges

(ra, rN
2
+a+1) and (ra+1, rN

2
+a)

It is then obvious that the last possibility is the optimal one, since our
purpose is to find the maximum-crossing TSP, in order to conclude it has
the lower cost. It is also obvious that the cases discussed above holds also
for the 6-vertices loop and an adjacent 4-vertices loop of the 4 6 |N case.
Moreover, we have considered here adjacent loops because, if the were not
adjacent, clearly, the difference in maximum crossings would have been even
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bigger.
Now we have a constructive pattern for building the optimal TSP. Let us call
O the operation described in the second point of (3). Then, starting from
the optimal 2-factor solution, if it is formed by n points, O has to be applied
n
4 − 1 times if 4|n and n−6

4 times if 4 6 |n. In both cases it is easily seen that
O always leaves two adjacent edges of length N

2 − 1 invariant, while all the
others have length N

2 − 2. The multiplicity of solutions is given by the N
2

ways one can choose the two adjacent edges of length N
2 − 1. In particular,

the Hamiltonian cycles h∗k saturates the maximum number of crossings that
can be done, i.e., every time that O is applied, exactly 2 crossings are lost.
We have proved, then, that h∗k are the Hamiltonian cycles with the maximum
number of crossings and, for fixed N , any other Hamiltonian cycle has a
lower number of crossings. This means that any other Hamiltonian cycle
must have

• either every edge of length N
2 − 2;

• or at least one edge of length less than or equal to N
2 − 3.

This is easily seen, since it is not possible to build a Hamiltonian cycle with
more than two edges or only one edge of length N

2 − 1 and all the others of
length N

2 − 2. It is also impossible to build a Hamiltonian cycle with two
non-adjacent edges of length N

2 − 1 and all the others of length N
2 − 2: the

proof is immediate.
Consider then the two cases presented above: in the first case the cycle (let
us call it H) is clearly not optimal, since it differs from h∗k, ∀k by a matching
that is crossing in h∗k and non-crossing in H. Let us consider, then, the
second case and suppose the shortest edge, let us call it b, has length N

2 − 3:
the following reasoning equally holds if the considered edge is shorter. The
shortest edge creates two subsets of vertices: in fact, called x and y the
vertices of the edge considered and supposing x < y, there are the subsets
defined by:

A = {r ∈ V : x < r < y} (2.6.24)

B = {r ∈ V : r < x ∨ r > y} (2.6.25)

Suppose, for simplicity, that |A| < |B|: then, necessarily |A| = N
2 − 3 and

|B| = N
2 + 1. As an immediate consequence, there is a vertex in B whose

edges have both vertices in |B|. As a consequence, fixed an orientation
on the cycle, one of this two edges and b are obviously non-crossing and,
moreover, have the right relative orientation so that they can be replaced by
two crossing edges without splitting the Hamiltonian cycle. Therefore also
in this case the Hamiltonian cycle considered is not optimal.

Since both in the N odd case and in the N even case the results obtained
only depend on the properties of the matching for p < 0, and since the
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r1 r2 r3 r4 r1 r2 r3 r4

Figure 2.11: The optimal Hamiltonian cycles for p < 0 and N = 4

r1 r2 r3 r4

(a) p < 0

r1 r2 r3 r4

(b) 0 < p < 1

r1 r2 r3 r4

(c) p > 0 and p < 0

Figure 2.12: Optimal Hamiltonian cycles for N = 4 and different p cases.
The cycles represented are all the 3 possible N = 4 Hamiltonian cycles for
N = 4.

weight we in (2.1.4) is a C − function for p < 0, our results for this case
are valid in general for a C − function cost. It holds, then:

Proposition 2.6.2. Given a cost function of the form:

E(h) =
∑

e∈h

we (2.6.26)

where

we = f(|xi − xj |) (2.6.27)

with f a C − function, the optimal cycle is given by (2.6.12) when N is
odd and by (2.6.18) when N is even.

2.7 Evaluation of the average costs

If we have N random points chosen with flat distribution in the interval [0, 1]
and we order them in increasing position, the probability for finding the l-th
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point in the interval [x, x+ dx] is given by the conditional probability:

pl(x) =

(

N

l

)

xl[1− x]N−l

(

l

1

)

dx

x
=

Γ(N + 1)

Γ(l) Γ(N − l + 1)
xl−1(1− x)N−l dx

(2.7.1)
where the therm

pl,1(x ∈ dx) =

(

N

l

)

xl[1− x]N−l (2.7.2)

represents the probability of having l points between 0 and x and the re-
maining ones between x and 1, while

pl,2(x ∈ dx) =

(

l

1

)

dx

x
(2.7.3)

is the conditional probability that one of the l points between 0 and x is
in the infinitesimal interval [x, x + dx]. Notice that the property of the
Γ-function Γ(n) = (n− 1)! has been used.

The probability for finding the l-th point in the interval [x, x+ dx] and
the s-th point in the interval [y, y + dy] is given, for s > l by

pl,s(x, y) =
Γ(N + 1)

Γ(l) Γ(s− l) Γ(N − s+ 1)
xl−1(y−x)s−l−1(1−y)N−s θ(y−x) dx dy

(2.7.4)
see for example [8, App. A]. The procedure for finding Eq.2.7.4 is analogous
to the one used for Eq.2.7.1.

It follows that the mean distance between point rl and point rl+k is given
by:

|rl+k − rl|α =

∫ 1

0
dx dy (y − x)α pl, l+k(x, y) =

Γ(N + 1)Γ(k + α)

Γ(N + α+ 1)Γ(k)
(2.7.5)

independently from l. Therefore, in the case p > 1 (see Sect.2.3), the optimal
solution for N points has N − 2 edges of the type (rk, rk+2) and two of the
type (rk, rk+1). Consequently, using Eq.2.7.5, the expression for the average
cost is:

EN [h∗] = (N − 2)
Γ(N + 1)Γ(p+ 2)

Γ(N + p+ 1)Γ(2)
+ 2

Γ(N + 1)Γ(p+ 1)

Γ(N + p+ 1)Γ(1)
=

= [(N − 2)(p+ 1) + 2]
Γ(N + 1)Γ(p+ 1)

Γ(N + p+ 1)

(2.7.6)

and in particular for p = 2

EN [h∗] =
2 (3N − 4)

(N + 1)(N + 2)
, (2.7.7)

and for p = 1 we get

EN [h∗] =
2 (N − 1)

N + 1
, (2.7.8)
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In the case 0 < p < 1, see Sect.2.5, the optimal solution has N − 1 edges of
the type (rk, rk+1) and the remaining one is (r1, rN ); therefore the average
cost is given by:

EN [h∗] = (N − 1)
Γ(p+ 1)Γ(N + 1)

Γ(N + p+ 1)Γ(1)
+

Γ(p+N − 1)Γ(N + 1)

Γ(N + p+ 1)Γ(N − 1)
=

=

[

(N − 1) Γ(p+ 1) +
Γ(N + p− 1)

Γ(N − 1)

]

Γ(N + 1)

Γ(N + p+ 1)

(2.7.9)

which coincides at p = 1 with (2.7.8) and, at p = 0, provides EN [h∗] = N .
For large N , we get

lim
N→∞

Np−1EN [h∗] =

{

Γ(p+ 2) for p ≥ 1

Γ(p+ 1) for 0 < p < 1 .
(2.7.10)

The asymptotic cost for large N and p > 1 is 2(p + 1) times the average
optimal cost of the complete matching problem [8]. For p < 0 and N odd
the average optimal cost is

EN [h∗] =

[

(N − 1)
Γ
(

N+1
2 + p

)

Γ
(

N+1
2

) + (N + 1)
Γ
(

N−1
2 + p

)

Γ
(

N−1
2

)

]

Γ(N + 1)

2Γ(N + p+ 1)

(2.7.11)
and for large N it behaves as

lim
N→∞

EN [h∗]

N
=

1

2p
, (2.7.12)

which coincides with the scaling derived before for p = 0. Note that for
large N the cost of the TSP problem is the same of the matching problem
for p < 0.

For N even, instead, there are N/2 possible solutions. One can see
N/2 − 1 of these share the same average energy, since they have the same
number of links with the same k of equation (2.7.5). These solutions, in
particular have 2 links with k = N/2, N/2 links with k = N/2 + 1 and
N/2− 2 links with k = N/2+1. We will call this configuration with h1 and
its average cost will be

EN [h1] =
Γ(N + 1)

Γ(N + p+ 1)

[

N

2

Γ
(

N
2 + p− 1

)

Γ
(

N
2 − 1

) +

+

(

N

2
− 2

)

Γ
(

N
2 + p+ 1

)

Γ
(

N
2 + 1

) + 2
Γ
(

N
2 + p

)

Γ
(

N
2

)

] (2.7.13)

The last possible solution, that we will call with h2 has 2 links with k =
N/2− 1, N/2 links with k = N/2 + 1 and N/2− 1 links with k = N/2 + 1
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Figure 2.13: Rescaled average optimal cost for various values of p > 0. The
points are the result of a numerical simulation whereas lines are theoretical
predictions.

and its average cost will be

EN [h2] =
Γ(N + 1)

Γ(N + p+ 1)

[

(

N

2
− 1

)

Γ
(

N
2 + p− 1

)

Γ
(

N
2 − 1

) +

+

(

N

2
− 1

)

Γ
(

N
2 + p+ 1

)

Γ
(

N
2 + 1

) + 2
Γ
(

N
2 + p

)

Γ
(

N
2

)

] (2.7.14)

2.7.1 General distribution of points

In this section we shall consider a more general distribution of points.
Let choose the points in the interval [0, 1] according to the distribution

ρ, which has no zero in the interval, and let

Φρ(x) =

∫ x

0
dt ρ(t) (2.7.15)

its cumulative, which is an increasing function with Φρ(0) = 0 and Φρ(1) = 1.
In this case, the probability for finding the l-th point in the interval

[x, x+ dx] and the s-th point in the interval [y, y+ dy] is given, for s > l by

pl,s(x, y) dΦρ(x) dΦρ(y) =
Γ(N + 1)

Γ(l) Γ(s− l) Γ(N − s+ 1)

Φl−1
ρ (x) [Φρ(y)− Φρ(x)]

s−l−1 [1− Φρ(y)]
N−s θ(y − x) dΦρ(x) dΦρ(y)

(2.7.16)
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Figure 2.14: Rescaled average optimal cost in the p = −1 case. The red
points and line are respectively the result of a numerical simulation and the
theoretical prediction in the odd N case. The blue line is the 2 times the
theoretic value of the optimal matching. The orange lines from the top the
average costs EN [h1] and EN [h2] defined in equation (2.7.13) and (2.7.14)
respectively. The dashed black line is the large N limit of all the curves.
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We have that, in the case p > 1

EN [h∗] =

=

∫

(y−x)p

[

p1,2(x, y) + pN−1,N (x, y) +
N−2
∑

l=1

pl,l+2(x, y)

]

dΦρ(x) dΦρ(y)

(2.7.17)

and

N−2
∑

l=1

pl,l+2(x, y) dΦρ(x) dΦρ(y) =
Γ(N + 1)

Γ(N − 2)
[1− Φρ(y) + Φρ(x)]

N−3

[Φρ(y)− Φρ(x)] θ(y − x) dΦρ(x) dΦρ(y) (2.7.18)

while

[p1,2(x, y) + pN−1,N (x, y)] dΦρ(x) dΦρ(y) =

=
Γ(N + 1)

Γ(N − 1)

{

[1− Φρ(y)]
N−2 +ΦN−2

ρ (x)
}

θ(y − x) dΦρ(x) dΦρ(y)

(2.7.19)

For large N we can make the approximation

EN [h∗] ≈ N3

∫

(y − x)p [1− Φρ(y) + Φρ(x)]
N

[Φρ(y)− Φρ(x)] θ(y − x) dΦρ(x) dΦρ(y) (2.7.20)

and we remark that the maximum of the contribution to the integral comes
from the region where Φρ(y) ≈ Φρ(x) and we make the change of variables

Φρ(y) = Φρ(x) +
ε

N
(2.7.21)

so that
y = Φ−1

ρ

[

Φρ(x) +
ε

N

]

≈ x+
ε

Nρ(x)
(2.7.22)

and we get

EN [h∗] ≈N3

∫

dΦρ(x)

∫ ∞

0

dε

N

[

ε

Nρ(x)

]p ε

N
e−ε = (2.7.23)

=
Γ(p+ 2)

Np−1

∫

dx ρ1−p(x) . (2.7.24)

When 0 < p < 1

EN [h∗] =

∫

(y−x)p

[

p1,N (x, y) +

N−1
∑

l=1

pl,l+1(x, y)

]

dΦρ(x) dΦρ(y) (2.7.25)
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and

N−1
∑

l=1

pl,l+1(x, y) dΦρ(x) dΦρ(y) =

= N (N − 1) [1− Φρ(y) + Φρ(x)]
N−2 θ(y − x) dΦρ(x) dΦρ(y) (2.7.26)

while

p1,N (x, y) dΦρ(x) dΦρ(y) =

= N (N − 1) [Φρ(y)− Φρ(x)]
N−2 θ(y − x) dΦρ(x) dΦρ(y) . (2.7.27)

For large N we can make the approximation

EN [h∗] ≈N2

∫

(y − x)p [1− Φρ(y) + Φρ(x)]
N θ(y − x) dΦρ(x) dΦρ(y) ≈

(2.7.28)

≈N2

∫

dΦρ(x)

∫ ∞

0

dε

N

[

ε

Nρ(x)

]p

e−ε = (2.7.29)

=
Γ(p+ 1)

Np−1

∫

dx ρ1−p(x) . (2.7.30)

Indeed the other term, for large N , gives a contribution

N2

∫

(y − x)p [Φρ(y)− Φρ(x)]
N θ(y − x) dΦρ(x) dΦρ(y) (2.7.31)

so that, we will set

Φρ(y) = 1−
ε

N
, Φρ(x) =

δ

N
, y − x ≈ 1 (2.7.32)

and therefore we get a contribution

∫ ∞

0
dε e−ε

∫ ∞

0
dδ e−δ = 1 (2.7.33)

which is of the same order of the other term only at p = 1.
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Chapter 3

Conclusions

3.1 Obtained results and perspectives

In this thesis work we have studied the Travelling Salesman Problem, in par-
ticular its one-dimensional version and, as cost function, we have considered
a function of the Euclidean distance between the points (see Eq. 2.1.4). The
main results we have obtained are the following: firstly, we derived the exact
optimal tour for p ≥ 0, described is Sect. 2.4 (p > 1) and 2.5 (0 < p < 1).

Secondly, also for p < 0 and odd N (see 2.6.1), we have found the exact
optimal solution, showing that it is also the 2-factor optimal solution for
p < 0. On the other hand, for p < 0 and even N (see 2.6.2), we have
been able to isolate a subset, that we have characterized, of all the possible
Hamiltonian cycles whose cardinality grows linearly with the number of
points and we have proved that the optimal solution is always contained
in this subset. Since, for p < 0, only the properties of the matching have
been used to demonstrate our results and since all C − functions have the
same matching properties, knowing that the cost function with p < 0 is a
C−function, then our results automatically hold for a generic C−function.

Thirdly, in App. B, we have described the solution of the 2-factor prob-
lem for p < 0 and even N . Also in this case, as for the TSP in the same
conditions, we have able to isolate the solution into a subset, that we have
characterized, of cardinality that grows linearly with the number of points.

To conclude, we have calculated the average cost of the TSP solutions,
supposing, firstly, that the points are included in the unit interval and dis-
tributed with the flat probability distribution, calculating the average opti-
mal cost in the large N limit for p > 0 and for p < 0 and odd N : in particular
we have shown that, in the large N limit and for p > 1, the average optimal
cost is 2(p + 1) times the average optimal cost of the matching problem,
while for p < 0 and odd N the cost obtained coincides with the matching
one. Then we computed the average cost for a generic distribution of points,
and, obviously, the results explicitly depend on the probability distribution.
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The work we have presented represents one of the remaining steps in one-
dimensional combinatorial optimization problems: since now, in fact, only
the matching problem has been analysed in the one-dimensional monopartite
version. The importance of the solutions found in this work lies in the fact
that, not only we give the scaling for quantities of interest, e.g. the average
optimal cost, but also the exact optimal solutions for the cost functions we
have considered.

The results obtained may be used to study combinatorial optimization
problems in higher dimensions, specially two, e.g. in [3].

3.2 Acknowledgements

This thesis work is the last step of a three-year journey: certainly it was
not easy, but, at the same time, it has been very challenging. First of all,
I have to thank my family for the opportunity they gave me and for their
support; in particular I thank my parents for their indispensable and never
commonplace advices and my brothers, with whom I’m spending beautiful
years.
I want to give particular thanks to my supervisor, professor Caracciolo: I
had the good fortune to follow his course in Quantum Mechanics and I am
honoured to have had the possibility of working with him.
I also want to thank my assistant supervisors, Andrea Di Gioacchino and
Enrico M. Malatesta, for the fruitful discussions we had about the problem
and for their patience in listening to my ideas.
A thank goes, as well, to my friends, inside and outside university, for the
good time spent together and the opinions shared about an infinite variety
of arguments.

I would also like to thank professor Giorgio Parisi and the organizers of
the conference “Disordered Serendipity: a glassy path to discovery” held in
Rome from September 19 to 22 and that I attended: it has been a precious
chance for meeting leading experts from all around the world in physics of
complex systems. I’m grateful to my supervisor, professor Caracciolo, for
having mentioned the results obtained in this thesis work in the talk he gave
during the conference.

40



Appendix A

A result about crossing

matchings

Given a Hamiltonian cycle, in general is not obvious that replacing a non-
crossing matching with a crossing one, the total number of intersections
increases: there could be the chance that one or more nodes are removed in
the operation of substituting the matching we are interested in. However,
we now show that holds the following

Proposition A.0.1. Given a generic graph with a matching that is non-
crossing, if it is replaced by a crossing one, the total number of intersections
always increases. Vice versa, if a crossing matching is replaced by a non-
crossing one, the total number of crossings always decreases.

Proof. This is a topological property we will demonstrate for cases, using
the representation on the circle in (A.1).
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Figure A.1: The proof of (A): from left to right the non-crossing red edges
are replaced with two crossing edges: the number of crossings always in-
creases. The opposite result is obtained simply inverting the arrows.
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Appendix B

The 2-factor solution for

p < 0 and even N

We study here the 2-factor solution for p < 0. The odd-N case has already
been solved with the TSP solution since, in that case, the optimal 2-factor
is the optimal TSP. We focus here to the even-N case.

Notation: given σ ∈ SN , we say the edge (rσ(i), rσ(i+1)) has length
L ∈ N if:

L = L(i) := min{|Aj(i)|, j = 1, 2} (B.0.1)

where

Aj(i) :=

{

{rk}k=σ(i)+1 (mod N),...,σ(i+1)−1 (mod N) for j = 1

{rk}k=σ(i+1)+1 (mod N),...,σ(i)−1 (mod N) for j = 2
(B.0.2)

The optimal solution for the 2-factor and even N is divided into two possible
cases, that are analysed in the following sections: in particular, we will study
the case in which N

2 is even, thus N = 4n, n ∈ N and the case in which N
2

is odd, thus N = 4n+ 2, n ∈ N.

B.1 N/2 is even

Let us consider the sequence of points R = {ri}i=1,...,N of N points, with
N a multiple of 4, in the interval [0, 1], with r1 ≤ · · · ≤ rN , consider the
permutations σj , j = 1, 2 defined by the following cyclic decomposition:

σ1 =(r1, rN
2
+1, r2, rN

2
+2) . . . (ra, ra+N

2
, ra+1, ra+N

2
+1) . . .

. . . (rN
2
−1, rN−1, rN

2
, rN )

(B.1.1)

σ2 =(r1, rN
2
+1, rN , rN

2
) . . . (ra, ra+N

2
, ra−1, ra+N

2
−1) . . .

. . . (rN
2
−1, rN−1, rN

2
−2, rN−2)

(B.1.2)
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for integer a ∈ [1, N2 − 1].
Defined h∗1 := h[σ1] and h∗2 := h[σ2], holds the following:

Proposition B.1.1. h∗1 and h∗2 are the 2-factors that contain the maximum
number of crossings between the arcs.

Proof. An edge can be involved, at most, in N − 3 crossing matchings.
In the even N case, this number is achieved by the edges of the form
(ra, ra+N

2
(mod N)), i.e. by the edges of length N

2 − 1. Obviously, there

can be at most N
2 edges of this form in a 2-factor. Thus, in order to

maximise the number of crossings, the other N
2 edges must be of the form

(ra, ra+N
2
+1 (mod N)) or (ra, ra+N

2
−1 (mod N)), i.e. of length

N
2 − 2. It is im-

mediate to verify that both h∗1 and h∗2 have this property; we have to prove
they are the only ones with this property.
Consider, then, to have already fixed the N

2 edges (ra, ra+N
2

(mod N))∀a ∈

[1, N ]. Suppose to have fixed also the edge (r1, rN
2
) (the other chance is to

fix the edge (r1, rN
2
+2): this brings to the other 2-factor). Consider now

the point rN
2
+1: suppose it is not connected to the point rN , but to the

point r2, i.e., it has a different edge from the cycle h∗2. We now show that
this implies it is not possible to construct all the remaining edges of length
N
2 − 2. Consider, indeed, of having fixed the edges (r1, rN

2
) and (r2, rN

2
+1)

and focus on the vertex rN
2
+2: in order to have an edge of length N

2 − 2,

this vertex must be connected either with r1 or with r3, but r1 already has
two edges, thus, necessarily, there must be the edge (r3, rN

2
+2). By the same

reasoning, there must be the edges (r4, rN
2
+3), (r5, rN

2
+4), . . . , (rN

2
−1, rN−2).

Proceeding this way, we have constructed N − 1 edges; the remaining one is
uniquely determined, and it is (rN−1, rN ), which has null length.
Therefore the edge (r2, rN

2
+1) cannot be present in the optimal 2-factor

and so, necessarily, there is the edge (rN
2
+1, rN ); this creates the cycle

(r1, rN
2
, rN , rN

2
+1). Proceeding the same way on the set of the remaining

vertices {r2, r3, . . . , rN
2
−1,

rN
2
+2, . . . , rN−1}, one finds that the only way of obtaining N

2 edges of length
N
2 − 1 and N

2 edges of length N
2 − 2 is generating the loop coverings of the

graph h∗1 or h∗2.

Proposition B.1.2. The 2-factor that provides the optimal cost is either
h∗1 or h∗2.

Proof. We have already proven that h∗1,2 are the 2-factors that have the
maximum number of crossing matchings and there are no others out of them;
then, automatically, the optimal solution is one of them, because any other
2-factor must have at least a non-crossing matching that can be replaced by
a crossing one, lowering the cost.
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Figure B.1: The optimal 2-factor solutions for N = 8 and p < 0

B.2 N/2 is odd

Let us consider the usual sequence R = {ri}i=1,...,N of N points, with even
N but not a multiple of 4, in the interval [0, 1], with r1 ≤ · · · ≤ rN , consider
the permutation π defined by the following cyclic decomposition:

π =(r1, rN
2
, rN , rN

2
+1, r2, rN

2
+2)(r3, rN

2
+3, r4, rN

2
+4) . . .

. . . (rN
2
−2, rN−1, rN

2
−1, rN−2)

(B.2.1)

Defined
πk(i) := π(i) + k (mod N), k ∈ [0, N − 1] (B.2.2)

and
h∗k := h[πk] (B.2.3)

the following proposition holds:

Proposition B.2.1. h∗k are the 2-factors that contain the maximum number
of crossings between the arcs.
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Proof. Also in this case the observations done in the proof of proposition
B.1 holds. Thus, in order to maximize the number of crossing matchings,
one considers, as in the previous case, the N

2 edges of length N
2 −1, i.e. of the

form (ra, ra+N
2

(mod N)), and then tries to construct the remaining N
2 edges

of length N
2 − 2, likewise the 4|N case. Again, if one fixes the edge (r1, rN

2
),

the edge (r2, rN
2
+1) cannot be present, by the same reasoning done in the

proof of Proposition B.1. The fact that, in this case, N is not a multiple
of 4 makes it impossible to have a 2-factor formed by 4-vertices loops, as in
the previous case. The first consequence is that, given N

2 edges of length
N
2 − 1, it is not possible to have N

2 edges of length N
2 − 2. In order to find

the maximum-crossing solution, one has the following options:

• to take a 2-factor with N
2 edges of length N

2 − 1, N
2 − 1 edges of length

N
2 − 2 and one edge of length N

2 − 2: in this case the theoretical

maximum number of crossing matchings is N(N−3)
2 +(N2 −1)(N −4)+

N − 6 = N2 − 7N
2 − 2;

• to take a 2-factor with N
2 − 1 edges of length N

2 − 1, N
2 + 1 edges of

length N
2 −2: in this case the theoretical maximum number of crossing

matchings is (N2 − 1)(N − 3) + (N2 + 1)(N − 4) = N2 − 7N
2 − 1.

Clearly the second option is better, at least in principle, than the first one.
The cycles h∗k belong to the second case and saturate the number of crossing
matchings. Suppose, then, to be in this case. Let us fix the N

2 − 1 edges of
length N

2 − 1; this operation leaves two vertices without any edge, and this
vertices are of the form ra, ra+N

2
(mod N), a ∈ [1, N ] (this is the motivation

for the degeneracy of solutions). By the reasoning done above, the edges
that link this vertices must be of length N

2 − 2, and so they are uniquely
determined. They form the 6-points loop:

(ra, ra−1+N
2

(mod N), rN−1+a (mod N), ra+N
2

(mod N),

ra+1 (mod N), ra+1+N
2

(mod N))
(B.2.4)

The remaining N − 6 points, since 4|(N − 6), by the same reasoning done in
the proof of Proposition B.1., necessarily form the N−6

4 4-points loops given
by the permutations (B.2.2)

Proposition B.2.2. The 2-factor h∗ that provides the optimal cost is such
that h∗ ∈ {h∗k}

N
k=1.

Proof. We have already proven that h∗k, k ∈ [1, N ] are the 2-factors that have
the maximum number of crossing matchings and there are no others out of
them; then, automatically, the optimal solution is one of them, because
any other 2-factor must have at least a non-crossing matching that can be
replaced by a crossing one, lowering the cost.
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Figure B.2: One of the optimal 2-factor solutions for N = 10 and p < 0; the
others are obtainable cyclically permuting this configuration

1
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34
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6
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8 9

10

Figure B.3: The same optimal 2-factor solution of B.2, but represented on
a circle, where the symmetries of the solutions are more easily seen
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[15] M. Mézard and G. Parisi. Mean-field equations for the matching and
the travelling salesman problems. Europhysics Letters, 2(12):913–918,
1986.
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