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Outline

My thesis is in the context of quantum optimal control, applied to quantum
many-body systems. In particular, we consider quantum spin systems with long-
range interactions.

The problem of quantum optimal control can be formulated in a concise way:
consider a quantum system (few- or many-body) with HamiltonianH, in an initial
state |ψ0〉, and suppose that we want to evolve it to the target state |ψtar〉. In order
to do so, we couple the system to one or more time-dependent external fields Γj(t),
which enter in the Hamiltonian as an interaction term: H ′(t) = H + V

(
{Γj(t)}

)
.

The goal is to find the functional form of the control fields, so that the system
evolves to the target state |ψtar〉 at some finite time t = T , or asymptotically as
t→∞.

In most cases it is not feasible to exactly reach the target state, so the
problem is recast into the extremization of a figure of merit M, encoding some
relevant information about the target state.

The ability to prepare quantum systems in a desired state is of primary
importance for many tasks, such as to realize quantum gates, perform quantum
information or communication protocols, or to control the initial condition of an
experiment.

Recent years have witnessed a formidable progress in the experimental real-
ization of artificial controllable quantum systems, with a decisive role played by
ultracold atoms and cavity/circuit QED. Alongside with an enhanced theoretical
understanding of quantum physics, in particular quantum computation and in-
formation [1], this paves the way to the realization of quantum technologies, such
as quantum simulators and quantum computers.

Beside the intrinsic scientific and technological interest of artificial quantum
systems, these serve as unprecedented tools to simulate condensed matter physics
in a highly-controlled setup, and to unveil unexplored features of nature, for
instance engineering novel phases of matter.

In a nutshell, on one side quantum simulators gave access to direct experi-
mental investigation of quantum many-body dynamics in a controlled and tunable
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way; on the other side, the characterization and control of quantum dynamics is
crucial in any realistic implementation of quantum technologies, for instance in
the transfer of quantum information.

It is meaningful to mention that control theory is a wide and fast-growing
mathematical field, whose scope and questions are not necessarily related to
(quantum) physics. Nevertheless, several concepts and methods of control the-
ory have been borrowed and further developed in diverse areas of classical and
quantum physics.

Only recently, however, has control theory been applied to quantum many-
body systems. In fact, while a plethora of methods exist to study control prob-
lems, only few of them are powerful and versatile enough to cope with their
complexity.

After this short introduction, my thesis is organized as follows.

1. In the first chapter we formulate the quantum optimal control problem for a
generic Hamiltonian. Moreover, we review a successful algorithm to control
quantum many-body systems.

2. In the second chapter we introduce the Lipkin-Meshkov-Glick (LMG) model,
which is a paradigmatic system with long-range interactions. We explain
how, in the thermodynamic limit, it can be mapped to a classical Hamilto-
nian with one collective degree of freedom.

3. In the third chapter we address the optimal control problem for the LMG
model in the thermodynamic limit. We give a possible analytical solution
and we study the problem with a complementary numerical approach. We
find a minimal time below which the target state cannot be reached.

4. In the fourth chapter we review the time-dependent spin-wave expansion, a
recently developed method, useful to assess the impact of small perturba-
tions on both equilibrium and dynamical properties of the LMG model [2],
[3].

5. In the fifth chapter we study the robustness of the optimal (or sub-optimal)
protocols to quantum fluctuations, which are described in terms of the spin-
wave expansion.

6. Finally, in the sixth chapter, we suggest some possible directions for further
investigation.

The main original contributions of the thesis are in the third and in the fifth
chapters.
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The part dedicated to the spin-wave theory is somewhat detailed, and it
contains a few additions with respect to the original works. Hopefully, it could
serve as an introductive pedagogical exposition, useful for further studies and
developments.
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Notation and conventions

For the sake of clarity, notation and conventions are explained when intro-
duced in the text. Here we only state the following, which are adopted throughout
the thesis.

• As customary, we set ~ = 1. Accordingly, time is measured in inverse units
of energy.

• We shall always assume our system to be at zero absolute temperature T = 0

(unless otherwise stated). This implies that equilibrium is a synonym for
ground state.

• The identity symbol is a ≡ b.

• The expression a := b means that a is defined in terms of b.

• Generic vectors are usually denoted as (~a,~b, . . . ). The only exception are
vectors identifying direct space and Fourier space lattice sites, which are
indicated in boldface (r,k, . . . ), since they mostly compare as subscripts.



Chapter 1

Quantum optimal control

In this chapter we explain the quantum optimal control scenario, briefly
formulated in the outline. In section 1.2 we review a successful numerical method
to control quantum many-body systems, which is also a valid tool for optimal
control problems arising in different contexts.

1.1 Formulation of the problem

Consider a quantum system with Hamiltonian H, acting on a finite dimen-
sional Hilbert space CN . Suppose at time t = 0 the system is prepared in a pure
state |ψ0〉, and that we aim to drive it to a target state |ψtar〉 in some time T .

Normally, the deterministic time evolution generated by H does not evolve
|ψ0〉 in |ψtar〉 for any value of T . The strategy to gain control over quantum
dynamics is to couple the system to one or more external control fields Γj(t),
whose time dependence is experimentally tunable. The complete Hamiltonian
now reads

H ′(t) = H + V
(
{Γj(t)}

)
, (1.1)

where V describes the coupling of the system to the control fields. In addition,
some experimental constraints are often present on the latters, and can usually
be expressed in the form Cα({Γj}) = 0.

As already mentioned in the introduction, complete control on a quantum
system can only be achieved in idealized cases, so the control problem is reformu-
lated as the minimization of a proper figure of merit (or cost function)M, that
embodies the desired properties of |ψtar〉.

The target time T can either be set to a fixed value, or be an additional
parameter to be chosen in order to minimize M; in this thesis we shall always
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consider it to be fixed1. Importantly, the whole evolution should be performed
faster than the system’s decoherence time, due to the always present interactions
with the environment.

On the other hand, it is quite natural to ask whether the control problem
could be solved for arbitrary short times T . The answer is generally negative,
and is deeply connected to the existence of quantum speed limits, which set a
minimal time TQSL for the evolution of a quantum system in its Hilbert space
[4]. The value of TQSL depends on the initial and target states, as well as on the
nature of the driving fields. The important relation between quantum optimal
control and quantum speed limits was firstly discussed in [5].

The problem of quantum optimal control is thus well defined: one should
solve the Schrödinger equation

i
d

dt
|ψ(t)〉 = H ′(t) |ψ(t)〉 (1.2)

with the initial condition |ψ0〉 and concurrently minimize the cost function M,
while satisfying possible constraints on the driving fields Cα({Γj}) = 0. From a
mathematical standpoint, this amounts to a functional minimization ofM with
respect to the set of control fields Γj(t).

In most typical cases, this figure of merit only depends on the set of driving
fields through the final state |ψT 〉, reached at the end of the evolution (see the
following examples). The specific choice of T is physically crucial, both to avoid
decoherence effects and to satisfy the bounds of quantum speed limits.

In order to be more concrete and gain some physical insight, let us mention
a few common situations.

1. If the target state is known with certainty, one usually tries to minimize
the infidelity between the final state and the target. For pure states this is
given by

M(T ) ≡ I(T ) = 1− |〈ψtar|ψ(T )〉|2 ≡ 1− |〈ψtar|U(T )ψ0〉|2, (1.3)

indicating with U(t) the time-evolution operator generated by H ′(t).

2. The target is quite often the ground state of some problem Hamiltonian Hp,
sometimes coinciding with the final-time Hamiltonian H ′(T ). If the ground
state is unknown, the cost function is given by the average energy

M(T ) ≡ Ep(T ) = 〈ψ(T )|Hp|ψ(T )〉 . (1.4)
1 This is the common choice in quantum control, in particular for quantum many-body

systems. We remark that considering T as an additional parameter would make the problem
significantly, and often unnecessarily, more complex.
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If, on the contrary, the ground state is known, also the final infidelity can
be a valid choice forM(T ).

In a more general framework, the figure of merit could be some property that
different states can satisfy: for instance in a bipartite (or multipartite) system,
one could set as a target the production of maximally entangled (or factorized)
states. Even more generally, one could try to model the system’s interactions
with the environment and use as a figure of merit the Von Neumann entropy, or
the purity, of the final marginal state of the system.

As customary in Physics, with high generality come important practical
issues. In this respect, we mention that the forward problem of calculating the
evolution of a quantum system initialized in |ψ0〉, under assigned control fields
Γj(t), is linear in the initial state. In contrast, the inverse problem of finding the
control fields Γj(t) to approach a target state |ψtar〉 is highly nonlinear, since the
final state |ψ(T )〉 depends on the whole functional form of the fields, usually in
a very intricate way.

Despite these difficulties, quantum optimal control has found application
in a number of physical problems; a non-exhaustive list includes rotational, vi-
brational, and electronic excitation in molecules, atomic physics and solid-state
electron dynamics [6]. Properly tailored laser pulses or low-frequency electric or
magnetic fields are usually the driving fields exploited for achieving control over
those systems.

As already anticipated in the introduction, quantum many-body systems
complexity hinders a straightforward application of most control methods. How-
ever, in recent years remarkable progress has been made in this direction, and
some effective methods to control many-body systems have been proposed. In
the following section we give a concise review of one possible approach.

1.2 The CRAB algorithm

In this section we describe a simple but effective strategy, known as Chopped
RAndom Basis (CRAB) technique, developed in [7]. This method has been effec-
tively used to control the dynamics of quantum many-body systems in a number
of interesting problems, see for instance [8], [9].

The versatility of the CRAB method comes from recasting the intricate
mathematical problem of a functional minimization into a multi-variable function
minimization, to be performed in a subspace of the initial functional space, and
which can be worked out numerically with suitable methods.

The starting point is a guess solution Γ 0
j (t) for the control fields, motivated
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by plausible arguments or physical intuition about the concrete problem. Cus-
tomary choices are linear or exponential ramps. One then looks for the best
possible correction, expanded in a truncated functional basis.

In concrete, the usual choice is a multiplicative correction of the form

Γj(t) = Γ 0
j (t) cj(t), (1.5)

where the functions cj(t) are expanded in a truncated Fourier space as

cj(t) = b(t)

1 +

Nj∑
k=1

Ak sin(ωkt) +Bk cos(ωkt)

 , (1.6)

with b(t) enforcing boundary conditions on the control fields (if necessary).
In the previous expression, Nj is the number of harmonics exploited to ex-

pand the correction cj(t), {Ak, Bk} is the set of expansion coefficients, and ωk the
corresponding frequencies.

The problem is thus reduced to the minimization of a multi-variable cost
functionM({Ak, Bk}), whereas the frequencies ωk are fixed before the minimiza-
tion.

Beside truncating the functional basis, the other prescription of the CRAB
algorithm is to randomize the parameters labeling the basis functions; for the
Fourier basis this can be done by choosing ωk = 2πk(1 + rk)/T , with rk random
numbers uniformly distributed in [0, 1].

One should note that the randomization breaks the orthonormality of the
basis function, but this is of no concern since the basis has already been trun-
cated. However, it is natural to ask why such a strategy should be adopted.
The underlying motivation is that it permits to enlarge the subspace of functions
explored by the algorithm, without any additional free parameter.

In other terms, instead of running the minimization algorithm n times start-
ing from different initial points {Ak, Bk}Nk=1 and for some fixed values of ωk, it is
generally more effective to run it n times from the same initial point, but with
different randomized frequencies ωk [7].

Nevertheless, the randomization is by no means a compulsory ingredient: if
there is some physical motivation for the choice of frequencies, or for a sufficiently
simple problem, one can simply set the ωk to fixed values.

Let us give some final remarks on the CRAB algorithm.

1. The choice of a truncated Fourier basis is usually made, mainly due to the
possible physical interpretation of the frequencies ωk. However, also other
function bases may be considered.
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2. The minimization problem of the multivariable functionM(Ak, Bk) can in
principle be arbitrarily hard to solve, and in general the solution could be
only a local minimum (corresponding to sub-optimal driving fields). Di-
rect search methods2 are usually a safe and effective choice, since they can
perform well also in the case of complicate optimization landscapes.

In conclusion, let us point out that in this framework the problem of local
minima is not necessarily relevant. In fact, one has already restricted an infinite
dimensional functional space to a finite dimensional subspace, which depends
on the arbitrary choice of the basis, on the truncation and on the (possible)
randomization.

The honest admission here is that in this framework the optimality of the
solution for the driving fields Γj(t) is to be intended in a broad generalized sense,
as a possibly sub-optimal solution in a restricted research space. On the other
hand, this approach simplifies a problem that would otherwise be intractable, and
is one of few effective tools to control many body-quantum systems.

The success of the CRAB optimization is due to its straightforward adapt-
ability to different situations; for example different figures of merit and constraints
can be easily considered without any major modification to the algorithm.

In this respect, let us note that there is nothing inherently quantum about
CRAB, which can be equally well adopted for classical control problems.

2Direct search methods are a class of heuristic optimization methods, whose implementation
does not require the evaluation of gradients. As a result, they can be used also for cost functions
that are not continuous or differentiable in the set of free parameters.



Chapter 2

The Lipkin-Meshkov-Glick (LMG)
model

In this chapter we review the Lipkin-Meshkov-Glick model, introduced a
few decades ago in the context of nuclear physics [10]. After a brief introduction
to quantum spin lattice models in section 2.1, we describe in detail the thermo-
dynamic limit of the LMG model in section 2.2, showing explicitly how it can
be mapped to a classical Hamiltonian system with one degree of freedom. This
result is exploited in order to study the equilibrium and dynamical properties of
the LMG model in the thermodynamic limit, in section 2.3.

2.1 Introduction to the model

In this thesis we refer to a general class of models with quantum s-spins on
a lattice, subject to ferromagnetic interactions and coupled to a possibly time-
dependent transverse magnetic field. The Hamiltonian reads

H = −
∑
r,r′

J|r−r′| σ
x
rσ

x
r′ − g(t)

∑
r

σzr , (2.1)

where the sums run over the lattice sites {r} and we defined the normalized spin
operators σαr = Sαr /s, along the α = x, y, z direction. These operators represent
a straightforward generalization of the standard Pauli matrices for s = 1/2. We
shall consider ferromagnetic couplings Jr depending only on the distance r =

|r− r′| between two sites.
Note that in the absence of an external field, i.e. if g(t) = 0, the Hamiltonian

(2.1) is immediately diagonalizable in the basis of eigenvectors of the operators
{σxr}, and no interesting quantum effects are expected, since all operators in it
commute. In the opposite limit where the ferromagnetic coupling Jr is negligible,
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for instance in the case of a very strong constant field g, the Hamiltonian (2.1)
reduces to the trivial problem of a collection of localized spins in an external
magnetic field.

The many-body Hamiltonian (2.1) in its full generality is an extremely com-
plex non-integrable system. However, there are some qualitative features that
are worth mentioning, which hold true for general ferromagnetic interactions Jr
(short- or long-range) [11].

In the first place, the system in the thermodynamic limit (N → ∞) is ex-
pected to have an equilibrium (zero-temperature) quantum phase transition at a
finite g = gcr. For g > gcr the system is expected to be in an unique paramag-
netic ground state, with vanishing order parameter 〈σx〉 = 0, while for g < gcr
there are two degenerate ferromagnetic ground states with finite magnetization
〈σx〉± = ±m 6= 0. The latters are characterized by the breaking of the Z2-
symmetry of the Hamiltonian, which is σxr → −σxr , σyr → −σyr , σzr → σzr .

Solving for the spectrum of a generic instance of the Hamiltonian (2.1), with
a constant external field g, is already a formidable numerical task (especially in
dimensionality d > 1, or even for long d = 1 spin chains). Exact solutions exist,
but are limited to simple (yet non-trivial) classes of systems.

In light of this, it is manifestly inconceivable to exactly control numerically
(with a classical computer) a generic quantum many-body system’s dynamics
with Hamiltonian (2.1) by manipulating a time-dependent g(t), so as to drive the
system to a target state |ψtar〉 in a fixed time T .

Therefore, we firstly focus on one of the simplest instances of this class of
models, by choosing Jr = λ/N , corresponding to the fully-connected transverse
field Ising magnet

H = − λ
N

N∑
i,j=1

σxi σ
x
j − g

N∑
i=1

σzi , (2.2)

where each of the N spins interacts with all the others with the same ferromag-
netic coupling strength, λ/N > 01. The 1/N scaling of the ferromagnetic coupling
is necessary in order to make the energy extensive in the thermodynamic limit.
The Z2 symmetry of the model Hamiltonian in Eq. (2.2) now reads σxi → −σxi ,
σyi → −σ

y
i , σzi → σzi , and is spontaneously broken for small values of the exter-

nal field g, corresponding to a ferromagnetic phase, as described in the following
section.

This model is equivalent to the Lipkin-Meshkov-Glick (LMG) model. As
1 Note that also unphysical self-interactions are present in the model, precisely the terms

corresponding to i = j in the first sum. This is not of much concern, since self-interaction terms
are negligible, if compared to the i 6= j terms, in the thermodynamic limit N →∞.



2.1. Introduction to the model 8

already mentioned, in the context of statistical physics, it mainly serves as a sim-
ple but non-trivial framework in order to study long-range interactions physics
[12]. Obviously, the LMG model is not supposed to accurately describe by it-
self any realistic condensed matter system. Interestingly, however, some direct
experimental realizations of the LMG model have recently been proposed. A
remarkable implementation was realized in circuit QED, with an array of super-
conducting qubits2 coupled to a quantized cavity mode that serves as a “quantum
bus”, inducing the long-range interactions between the qubits [13].

In order to study the LMG model (2.2) it is convenient to introduce the
Fourier components operators, defined as

σ̃αk =
N∑
j=1

e−ikjσαj , (2.3)

where k varies over the reciprocal lattice sites k = 2πn/N for n = −N/2 +

1, . . . , N/2.3 These Fourier operators are completely delocalized with respect to
the lattice sites, but often convenient to study lattice models. The LMG model
Hamiltonian in Eq. (2.2) can be immediately rewritten as

H = − λ
N

(σ̃xk=0)
2 − g σ̃zk=0, (2.4)

which depends only on the total spin components σ̃αk=0 =
∑N

i=1 σ
α
i (Fourier com-

ponents with zero momentum k = 0). All the other operators σ̃αk 6=0, which de-
scribe the spatial fluctuations of the spins in Fourier space, do not contribute to
its dynamical properties.

The full Hilbert space has dimension (2s + 1)N , but the Hamiltonian H

commutes with the total spin operator
∣∣ ~J ∣∣2 = s2

∣∣~̃σk=0

∣∣2, so it can be diago-
nalized separately in each sector of fixed total spin magnitude j(j + 1), where
j = 0, 1, . . . , Ns or j = 1/2, 3/2, . . . , Ns (depending on Ns being integer or half
integer respectively). The dynamics of the LMG model is therefore constrained
to the (2j + 1)-dimensional subspace generated by the states {|j, jz〉}, where j is
the conserved total angular momentum and −j ≤ jz ≤ j are the possible pro-
jections along the z-axis. This is an enormous simplification, since the relevant
subspace dimension scales at most linearly with the number of spins N , rather
than exponentially.

In the particular case of s = 1/2, an additional symmetry prevents the
dynamical coupling of states having a different parity in the number of spins

2A major advantage of considering superconducting qubits, rather than ultracold atoms, is
the absence of particle motion.

3The Fourier operators {σ̃αk } are defined as a unitary transformation (after normalization)
applied to the set of {σαj } [compare with the inverse transformation in Eq. (4.37)].
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pointing in the magnetic field direction, since the Hamiltonian commutes with
the product of Pauli matrices

∏
j σ

z
j .

It can be shown that the ground state of the Hamiltonian belongs to the
subspace with maximal total spin, corresponding to the quantum number j = Ns.

The LMGmodel with Hamiltonian (2.4) exhibits a remarkably simple behav-
ior if we consider the thermodynamic limit N →∞, as can be better understood
introducing the rescaled operators (α = x, y, z)

Sα :=
σ̃αk=0

N
≡ Jα

Ns
, (2.5)

and focusing on the reduced Hamiltonian

H :=
H

N
= −λ (Sx)2 − g Sz. (2.6)

In this limit, the equilibrium (ground state) and dynamical properties of the LMG
model become essentially classical.

This fact can be understood by considering the commutation relations of
the operators Sα: [

Sα,Sβ
]

=
1

Ns
iεαβγSγ, (2.7)

which imply that the effective Planck’s constant ~eff := 1/(Ns) vanishes for N →
∞. This observation formally means that the thermodynamic limit of the system
coincides with its semiclassical limit, which can be carried out as an expansion
in powers of ~eff of the Schrödinger equation.

In the thermodynamic limit the spectrum of
∣∣ ~S∣∣ becomes dense in the in-

terval [0, 1], independently on Ns being integer or half integer. In fact, the
eigenvalues of the operator

∣∣ ~S ∣∣ can be expanded to the first order in ~eff yielding√
j(j + 1)

Ns
= ρ+

~eff
2

+O(~2eff), (2.8)

with
ρ :=

j

Ns
(2.9)

becoming a continuous variable in [0, 1] in the thermodynamic limit.
If we ignore all corrections in ~eff, considering the plain thermodynamic limit

N → ∞, the intuition may suggest that the system is completely described by
the classical reduced Hamiltonian

Hcl(~s) = −λ(sx)2 − gsz, (2.10)
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where ~s is now a classical (continuous) spin, its phase space being the surface of
a sphere of fixed radius 0 < ρ ≤ 14. This intuition is indeed correct: both the
ground state and the off-equilibrium coherent quantum dynamics of the LMG
model (as N →∞) are described by the classical Hamiltonian in Eq. (2.10).

Since this is a central result for the following chapters of the thesis, we will
analyze it in more detail in the following section.

2.2 LMG model in the thermodynamic limit

In the last section we anticipated that the LMG model in the N →∞ limit
is described by the classical Hamiltonian in Eq. (2.10). This statement can be
rephrased in more formal terms, as follows.

Regarding the equilibrium properties (at T = 0) of the system, the ground
state expectation values 〈Sα〉 are given by the minimum point of Hcl on the
sphere with radius ρ = 1, with vanishingly small quantum fluctuations around
this average.

In the context of quantum control we are particularly interested in the off-
equilibrium dynamics of the model. Assuming the initial condition to be a spin
coherent state in the maximal spin sector j = Ns, it can be proven that the off-
equilibrium coherent quantum dynamics of the averages 〈Sα(t)〉, possibly driven
by a time-dependent field g(t), is given by the corresponding classical trajectory
on the sphere.

These classical trajectories are governed by Hcl in Eq. (2.10), via the equa-
tions of motion

ṡα = {sα,Hcl}, (2.11)

where the spin Poisson brackets are defined as {sα, sβ} := εαβγsγ and time is
rescaled by the single quantum spin value s5.

There is a number of different ways to understand these concepts, at various
levels of mathematical rigor and technical complexity, see e.g. [14] and references
therein.

Probably the most direct way to obtain these results is to write down the
4 As stated above, the ground state belongs to the maximal total spin sector, which is

identified with ρ = 1 in the thermodynamic limit.
5From here onwards, time is always intended to be rescaled as t′ = t/s.
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Heisenberg equations of motion for the Heisenberg operators S αH , which read
Ṡ xH = g S yH
Ṡ yH = −g S xH + λ(S xHS zH + S zHS xH)

Ṡ zH = −λ(S xHS
y
H + S yHS xH),

(2.12)

where time is rescaled as mentioned above. These equations yield an exact de-
scription of the quantum dynamics for any value of N.

However, in the limit N →∞, the commutators for Sα, written in Eq. (2.7),
are O(~eff) and can therefore be neglected. By making use of this observation
and considering the expectation values in some state, we obtain

d
dt
〈Sx〉 = g 〈Sy〉

d
dt
〈Sy〉 = −g 〈Sx〉+ 2λ 〈SxSz〉

d
dt
〈Sz〉 = −2λ 〈SxSy〉 ,

(2.13)

where we neglected O(~eff) corrections due to operator ordering. If we further
neglect correlations as in 〈SαSβ〉 ≈ 〈Sα〉 〈Sβ〉, which corresponds to a mean-field
approximation, we end up with

d
dt
〈Sx〉 = g 〈Sy〉

d
dt
〈Sy〉 = −g 〈Sx〉+ 2λ 〈Sx〉 〈Sz〉

d
dt
〈Sz〉 = −2λ 〈Sx〉 〈Sy〉 .

(2.14)

These equations coincide with the classical equations of motion [see Eq. (2.11)],
upon substitution of the quantum averages with the classical spin components,
i.e. 〈Sα〉 → sα. This is verified explicitly in the following section.

It should be noted that, while the approximation of neglecting operator
ordering is under control in the thermodynamic limit, for a generic time-evolving
state the approximation 〈SαSβ〉 ≈ 〈Sα〉 〈Sβ〉 is not valid.

However, this approximation is correct for a spin coherent state, up toO(~eff)

corrections. Spin coherent states are briefly reviewed in appendix A, and in
particular Eq. (A.9) proves the previous statement6.

In fact, as mentioned in the beginning of this section, the classical Hamilto-
nian describes the coherent quantum evolution of an initial spin coherent state; it
does not describe the generic incoherent evolution of any initial quantum state.

Spin coherent states have a well defined semiclassical limit7, since they can
be mapped to phase space points with vanishingly small spin fluctuations. In

6We are considering the maximal spin sector j = Ns, therefore the neglected terms in
Eq. (A.9) are O(~eff).

7Recall that the semiclassical limit coincides with the thermodynamic limit, for the LMG
model.
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fact, by recalling the definition of Sα in Eq. (2.5), the property of coherent states
in Eq. (A.5) can be rewritten as

〈θ, φ|Sx|θ, φ〉 = sin θ cosφ

〈θ, φ|Sy|θ, φ〉 = sin θ sinφ

〈θ, φ|Sz|θ, φ〉 = cos θ.

(2.15)

Moreover, spin fluctuations in transverse directions vanish as

(∆J̃x)2 = (∆J̃y)2 =
1

2Ns
= O(~eff), (2.16)

where J̃x and J̃y are spin projections on an orthonormal basis in the plane or-
thogonal to ~n = (sin θ cosφ, sin θ sinφ, cos θ) [compare with Eq (A.8)].

In the thermodynamic limit, transverse spin fluctuations are identically zero,
thus the system’s dynamics remains coherent at all times and is fully described
by Eq. (2.14). If we consider large but finite values of N , i.e. we include finite-size
effects, the initial coherent state is described as a localized wave packet with center
in 〈θ, φ| ~S|θ, φ〉 and isotropic transverse spreading given by Eq. (2.16). Moreover,
as briefly mentioned in appendix A, in the large N limit spin coherent states
become equivalent to harmonic oscillator coherent states.

In the case of large but finite N , the initial coherent state first undergo a
coherent dynamics, described by the evolution of its averages, behaving as a well-
defined wave packet. However, this picture holds only up to some characteristic
time scale, which diverges with the system size; after this time the coherent wave
packet delocalizes and its evolution is no more captured by Eq. (2.14).

In appendix A we mention that for the Zeeman Hamiltonian, coherent states
evolve coherently at all times, for any finite N ; the Zeeman Hamiltonian, which
describes simple spin precession, corresponds to the limit λ = 0 of the LMG
model. In the general case, in the presence of a competition between ferromag-
netic ordering and the external field, decoherence effects are to be expected, as
finite size corrections.

The time for which the semiclassical picture breaks down is usually called
the Ehrenfest time tEhr, and it is defined as the time scale at which the wave
packet spreading becomes of O(1).

The Ehrenfest time is shown to depend on the qualitative features of the
classical dynamics of 〈 ~S 〉 → ~s : It can be shown with general arguments [15]
that, for regular dynamics in integrable systems, tEhr ∼ ~−1/2eff ∼

√
N . In the case

of chaotic or unstable dynamics (e.g. on a separatrix of the classical phase space),
spreading is predicted to occur at shorter time scales, of order tEhr ∼ logN .

In the following, we shall consider only coherent dynamics of the initial spin
coherent state. This is clearly related to the choice of the target time T for the
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optimal control, or equivalently to the choice of the system size N : we will assume
such values to satisfy the condition

T � tEhr. (2.17)

Up to this point, we proved the initial statement regarding coherent quantum
dynamics. Let us now briefly motivate the analogous statement, concerning the
ground state properties of the LMG model in the thermodynamic limit. A natural
question that arises is whether, in the large N limit, the ground state of the LMG
model can be approximately described with a localized spin coherent state.

The problem is somewhat subtle, as it was recently pointed out in [16], with
remarkable clarity. The reason is that the Z2 symmetry of the Hamiltonian, which
is invariant under σxi → −σxi , σ

y
i → −σ

y
i , σzi → σzi , implies that, for any finite

value of N , exact eigenstates of the Hamiltonian should be invariant under this
transformation. In particular, any exact eigenstate must satisfy the condition

〈Sx〉 = 〈Sy〉 = 0. (2.18)

However, the only spin coherent state with this property is clearly the highest
weight state |j, jz = j〉. This is in fact the ground state for strong values of the
external field g, i.e. in the symmetric phase.

Spontaneous symmetry breaking occurs rigorously only in the thermody-
namic limit, implying that any localized spin coherent state, which does not
satisfy Eq. (2.18), does not yield, in principle, a valid description of the ground
state for finite N .

However, one can prove that, for large values of N , a mean-field variational
approach restricted to the spin coherent state system gives an approximate de-
scription for the ground state, which is correct up to O(~eff). Let us briefly sketch
this procedure.

Following the general variational approach scheme, one tries to minimize the
variational energy

Evar = 〈θ, φ|H|θ, φ〉 , (2.19)

with the reduced Hamiltonian H defined in Eq. (2.6). The free parameters for
the minimization are given by the angles θ, φ that characterize a spin coherent
state.

The fact that spin coherent states represent a reasonable ansatz for mean-
field states, can be better appreciated in the case of N spins s = 1/2, where
the usual expression for spin coherent states [see Eq. (A.1)] can be equivalently
rewritten as

|θ, φ〉 =
N⊗
j=1

cos
θ

2
|↑〉j + sin

θ

2
eiφ |↓〉j , (2.20)
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where the kets |↑〉j and |↓〉j are the eigenstates of operator σzj with eigenvalues
+1,−1 respectively. In light of the previous expression, it appears that a spin
coherent state is composed of the tensor product of N single qubit states, all
with the same orientation in the Bloch sphere. Since all the single spins 1/2 are
pointing in the same direction, this is a valid choice for a mean-field state.

The variational energy in Eq. (2.19) is readily evaluated by making use of
Eqs. (A.5) and (A.9)

Evar = −λ 〈Sx〉2 − g 〈Sz〉+O(~eff). (2.21)

It is then clear that the solution to the variational problem is found with a
minimization of the classical Hamiltonian in Eq. (2.10) in classical phase space.

The previous argument formalizes the intuitive idea that, while true spon-
taneous symmetry breaking formally occurs only in the thermodynamic limit, in
the case of large but finite N there should exist some localized states, with van-
ishingly small energy above the exact symmetric ground state. These states do
not respect the Z2 symmetry, and reduce to the symmetry-broken ground states
of the ferromagnetic phase when N →∞.

Remarkably, in reference [16], it is shown that a tiny perturbation or fluc-
tuation (which is finite instead of infinitesimal) can break the symmetry of the
exact ground state for finite large values of N , and map it to a localized state,
which is close to the corresponding mean-field coherent state.

2.3 The equivalent classical model

Relying on the results presented in the previous section, we now describe
the ground state and off-equilibrium dynamical properties of the LMG model
in the thermodynamic limit, by studying the equivalent classical system with
Hamiltonian (2.10).

2.3.1 Equilibrium properties and equilibrium critical point

In the following, we analyze the equilibrium properties of the classical system
described by the Hamiltonian

Hcl(~s ) = −λ(sx)2 − gsz, (2.22)

with constant external field g. As illustrated in the previous section, the clas-
sical minimum will yield the ground state properties of the LMG model in the
thermodynamic limit.
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Figure 2.1: Equilibrium order parameter 〈Sx〉 → sx of the LMG model in
the thermodynamic limit, as a function of the constant positive field g (ρ = 1).
Only the positive magnetization branch is shown. The critical exponent is
1/2, corresponding to a square root singularity at the quantum critical point
gcr = 2λ.

The minimization of Hcl has to be carried out over the phase space, which,
as already mentioned, is a sphere of (fixed) radius ρ.

The classical minimum is easily found with an unconstrained minimization
in the usual spherical coordinates θ and φ, and the result depends qualitatively
on |g| being larger or smaller than a critical value gcr = 2λρ.

If |g| > gcr the minimum point is ~s = sgn(g)ρ (0, 0, 1), with (negative) energy
E> = −|g|ρ and zero magnetization sx, corresponding to the paramagnetic phase
of the quantum many-body LMG model in the thermodynamic limit.

In contrast, for |g| < gcr, the paramagnetic minimum becomes an unstable
saddle point and bifurcates into two degenerate minima corresponding to the fer-
romagnetic phase. As could be predicted from symmetry arguments, this minima
lie in the xz-plane and have opposite finite values of the magnetization: precisely
they are located in (θ∗, 0), (θ∗, π) with

cos(θ∗) =
g

gcr
. (2.23)

Accordingly, the value of the magnetization is

sx = ±ρ sin θ∗ = ±ρ
√

1− (g/gcr)2, (2.24)

[see Fig. 2.1], while sy = 0, sz = ρ (g/gcr) and the two minima have the same
energy

E< = −λρ2 − g2

4λ
. (2.25)
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Figure 2.2: Double-well classical energy landscape in the half-plane sy ≡ 0,
sz > 0, where the two symmetric ferromagnetic minima [given by Eq. (2.23)]
are located if 0 < g < gcr. In the thermodynamic limit, the depth of the two
wells diverges proportionally to N . This implies that the quantum tunneling of
a coherent localized wave packet from one well to the other is suppressed. Finite
size quantum tunneling effects occur over an exponentially long time scale, and
can be safely ignored in our framework. We remark that the coherent dynamics
of the system is not confined in this half-plane.

As explained in the previous section, the mean field ground state is a spin
coherent state in the maximal total spin sector (i.e. for ρ = 1), which is charac-
terized by the classical minimum angles (θ∗, φ∗),

Finally, a schematic physical picture of the ferromagnetic phase is given in
Fig. 2.2.

2.3.2 Dynamical properties

We now turn to the classical dynamics generated by the Hamiltonian (2.22),
which is governed by the equations of motion

ṡα = {sα,Hcl(~s )} , (2.26)

where the curly braces indicate Poisson brackets.
As promised in the previous section, we verify explicitly that upon the sub-

stitution 〈Sα〉 → sα, they coincide with the equations (2.14), which describe the
coherent evolution of localized wave packets.

The classical equations can be recast into an explicit form exploiting the
standard Poisson brackets of a classical spin{

sα, sβ
}

= εαβγsγ, (2.27)
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and the following general property, valid for any (analytic) function of the spin
components:

{f(~s ), g(~s )} =
∑

α,β=x,y,z

∂f

∂sα
∂f

∂sβ
{
sα, sβ

}
=

∑
α,β=x,y,z

∂f

∂sα
∂f

∂sβ
εαβγsγ. (2.28)

The equation above, in the particular case f(~s ) = sα and g(~s ) = H(~s ), yields
the generic equations of motion for a classical spin

ṡα = εαβγ
∂H

∂sβ
sγ, (2.29)

which may be rewritten in a compact vector notatation

~̇s = ∇H × ~s . (2.30)

In the specific case of the Hamiltonian in Eq. (2.22), the result is the following
system of coupled non-linear ODEs

ṡx = gsy

ṡy = −gsx + 2λsxsz

ṡz = −2λsxsy,

(2.31)

which are indeed identical to those in Eq. (2.14).
While a direct numerical solution of these equations is straightforward, it is

convenient to exploit the two evident constants of motion, precisely the total spin
(sx)2 + (sy)2 + (sz)2 = ρ2 and the energy (the Hamiltonian is time-independent).
Therefore, the system can actually be integrated analytically.

As a first step, it is convenient to describe the system with a pair of canonical
coordinates Q and P , satisfying canonical Poisson brackets {Q,P} = 1. This can
be done by identifying P := sz with the canonical momentum and Q := φ with the
conjugated coordinate. In fact, one can always rewrite the other spin components
as {

sx =
√
ρ2 − P 2 cosQ

sy =
√
ρ2 − P 2 sinQ,

(2.32)

in terms of the coordinates −1 ≤ P ≤ 1 and Q ∈ R, which enters in the equations
only modulo 2π. The fact that the latters are actually canonical variables is
easily checked with a direct calculation, using the definition of the azimuth angle
Q = arctan (sy/sx) + c, where c is a constant equal to 0 in the first quadrant,
equal to π in the second and third quadrants and equal to 2π in the fourth8.
Regardless of the constant, one can verify that

{Q,P} =
∂Q

∂sy
sx − ∂Q

∂sx
sy = 1. (2.33)

8We assumed that 0 ≤ Q < 2π, and the standard range (−π/2, π/2) for the arctan(·).
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The Hamiltonian in Eq. (2.22) can be expressed in terms of these canonical
variables as9

Hcl(s
z, φ) = −λ(ρ2 − (sz)2) cos2 φ− gsz, (2.34)

which is the Hamiltonian of a dynamical system with one degree of freedom
(P ≡ sz, Q ≡ φ), just not in the usual form of a quadratic kinetic term plus a
potential depending on Q. The equations of motion are now canonical Hamilton
equations and read {

ṡz = −2λ(ρ2 − (sz)2) cosφ sinφ

φ̇ = 2λsz cos2 φ− g.
(2.35)

Let us now take advantage of the time-translational invariance and write down
the energy conservation

Hcl(s
z, φ) = −λ(ρ2 − (sz)2) cos2 φ− gsz ≡ E . (2.36)

One thus obtains an explicit expression for

sz(φ) =
g ± [g2 + 4λ2ρ2 cos4 φ+ 4λ E cos2 φ]

1/2

2λ cos2 φ
, (2.37)

along a generic solution of the equations of motion (2.35). By substitution of this
result in the second Hamilton equation, one finds a closed differential equation

φ̇ = ±
[
g2 + 4λ2ρ2 cos4 φ+ 4λ E cos2 φ

]1/2
, (2.38)

which is formally solved by separation of variables as∫
dφ

[g2 + 4λ2ρ2 cos4 φ+ 4λ E cos2 φ]1/2
= ±

∫ t

0

dt′. (2.39)

The integral at the l.h.s. of the previous equation can be recast into the standard
form ∫

du

[au4 + bu2 + c]1/2
, (2.40)

where we used the substitution u = tanφ and defined the constants
a = g2

b = 2g2 + 4λ E
c = g2 + 4λ2ρ2 + 4λ E .

(2.41)

9Having well understood that sz, φ are conjugated canonical variables, we drop the notation
with P,Q, in order to avoid later confusion with canonical coordinates describing quantum
fluctuations.
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(a) Ferromagnetic portrait for sz > 0. (b) Ferromagnetic portrait for sz < 0.

Figure 2.3: Schematic phase portrait of the ferromagnetic behavior, in the
hemispheres sz > 0 and sz < 0 viewed from the north and south poles respec-
tively. In the left panel the separatrix is shown (dotted line) and the stable
equilibrium points (energy minima) are represented with a black dot. In both
panels darker colors indicate lower energy.

This integral can be solved in terms of a Jacobi elliptic function [17].
However, the exact solution is quite unpractical and unnecessary for our

scopes. A better physical insight is given by a qualitative study of the constant
energy trajectories defined analytically in Eq. (2.37), while for the actual motion
we can resort to a trivial numerical integration of Eq. (2.38), with suitable initial
conditions.

A qualitative analysis of the energy contours is more natural using the Carte-
sian coordinates sα rather than the canonical variables, so let us refer to the initial
Hamiltonian in Eq. (2.22).

As a preliminary observation, note that the Hamilton equations in (2.35)
are invariant under the inversion of the field g → −g, if one also reflects the
conjugated coordinates sz → −sz and φ→ −φ. This implies that the dynamical
properties for a given value of the field g0, or for −g0, are the same up to these
reflections. We shall thus focus on g > 0, and treat separately the hemispheres
sz > 0 and sz < 0 for graphical convenience.

The phase portrait for the ferromagnetic behavior of our classical system is
reported in Fig. 2.3. The most interesting features are displayed in the hemisphere
sz > 0. Firstly, the ferromagnetic energy minima are represented with a black dot,
while the other unstable equilibrium points are the saddle point ~s = (0, 0, ρ) and
the opposite maximum point ~s = (0, 0,−ρ). Qualitatively different trajectories
are set apart by the separatrix (dotted line), which passes through the saddle
point in ~s = (0, 0, ρ) and therefore has energy E = −gρ. The separatrix is actually
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(a) Paramagnetic portrait for sz > 0. (b) Paramagnetic portrait for sz < 0.

Figure 2.4: Schematic phase portrait of the paramagnetic behavior, in the
hemispheres sz > 0 and sz < 0 viewed from the north and south poles re-
spectively. In the left panel the stable equilibrium point (energy minimum)
is represented with a black dot. In both panels darker colors indicate lower
energy.

composed of three independent solutions of the Hamilton equations, including the
saddle point itself, reachable only in the infinite time limit.

One can get a qualitative picture thanks to the color scale in figure: contour
plots progressively further from the minima and approaching the maximum ~s =

(0, 0,−ρ) correspond to higher values of energy, as evidenced by lighter colors.
The phase portrait for the paramagnetic behavior is shown in Fig. 2.4. The

point ~s = (0, 0, ρ) is now the energy minimum, while the energy maximum is still
in ~s = (0, 0,−ρ). The solutions are all qualitatively the same, reminiscent of the
simple spin precession around the z-axis characterizing the motion in the limit
g � λ.

Let us remark for the sake of completeness that the energy in the hemisphere
sz > 0 is negative definite, therefore all the contours entering in this region
certainly correspond to negative energies, while in the other hemisphere sz < 0

also null or positive energy solutions are present. However, in this framework
there is not any physical meaning in the energy sign, and one can freely translate
the energy of an additive constant.

In conclusion, it is instructive to point out the dynamics for the simple limit
cases |g| � λ and |g| � λ, which are better understood looking back at the
equations for sα in Eqs. (2.31). In the first limit sz becomes a constant of motion
and, as already mentioned, the system precedes around the z-axis with angular
frequency equal to g, independently from the initial condition. Precisely, it is
easy to check that the rotation is CW for g > 0 and CCW for g < 0 (looking
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from the positive direction of sz).
In the second limit sx becomes a constant of motion and the ferromagnetic

solutions tend to occupy all the phase portrait describing precession around the
x-axis with angular frequency 2λ|sx|. The paramagnetic solutions are shrinked
in a phase space region with vanishing area, corresponding to the infinite-period
orbit for sx = 0.

Accordingly with the simplicity of the motion, in these limit cases the inte-
gral in Eq. (2.40) assumes an elementary form and can be readily evaluated in
terms of inverse trigonometric functions.

2.3.3 Dynamical critical point

In this section we concisely review a possible definition of dynamical phase
transition and outline the dynamical critical properties of our model, which are
of some interest for the later discussion, regarding control of the LMG dynamics.

Dynamical phase transitions in fully-connected models were extensively stud-
ied in [14], while some significant insight beyond mean field was recently presented
in [2], [3].

Let us generalize the previous Hamiltonian by considering time-dependent
external fields

Hcl(~s ) = −λ(sx)2 − g(t)sz. (2.42)

The standard definition of non-equilibrium order parameter is given by

sx = lim
T→∞

1

T

∫ T

0

dt sx(t), (2.43)

which is the infinite-time average of the magnetization. In the case of a system
at equilibrium, this non-equilibrium order parameter reduces to the usual time-
independent magnetization.

One can identify a parametric family of protocols to drive the system out
of an equilibrium initial condition, which is accomplished by varying in time an
external field g(t), with the expression of the field depending on a set of free
parameters.

If, by slowly varying one of these free parameters, one observes a singularity
in the non-equilibrium order parameter, then the point of singularity is referred
to as a dynamical critical point and the system is said to undergo a dynamical
phase transition10.

10 As for the usual equilibrium phase transitions, the proper definition of critical point and
different phases is valid only in the thermodynamic limit. Consequently, the classical description
of the LMG model is accurate and decoherence effects are suppressed at all times.
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An example of dynamical criticality in the LMG model is observed with the
following protocol. Suppose that the system is prepared at time t = 0 in one of
the ferromagnetic minima of the Hamiltonian in Eq. (2.42), with a transverse field
g0 such that |g0| < gcr ≡ 2λρ. At t = 0, the system is driven out of equilibrium
by a quantum quench, consisting in an external field sudden variation from the
initial value g0 to the final value g, with the transient being much shorter than the
typical timescale of the system’s dynamics. The subsequent dynamics is generated
by the post-quench Hamiltonian Hcl(g), with the initial condition given by the
equilibrium ferromagnetic state of the pre-quench Hamiltonian Hcl(g0).

In this case, the only free parameter is the post-quench value of the field
g. By a direct analysis of the post-quench Hamiltonian’s phase portrait, one can
prove that, depending on the value of g, the dynamics occurs in qualitatively
different trajectories.

If the post-quench value of the field g satisfies the inequality

−1

2

(
gcr − g0

)
< g <

1

2

(
gcr + g0

)
, (2.44)

the system’s dynamics is constrained in the starting ferromagnetic sector of the
post-quench Hamiltonian and the spin will precede around the corresponding min-
imum, as in the low-energy trajectories in the left panel of Fig.2.3. This behavior
corresponds to the dynamical ferromagnetic phase, since the non-equilibrium or-
der parameter is finite.

If on the contrary g lies outside the above interval, the system moves on a
trajectory encompassing the whole phase space, and (for |g| < gcr) encircling both
the ferromagnetic minima of the post-quench Hamiltonian. This corresponds to
a dynamical paramagnetic phase, characterized by a vanishing non-equilibrium
order parameter.

Finally, in the limit cases where
g = gdyn :=

1

2

(
gcr + g0

)
, or

g = g̃dyn := −1

2

(
gcr − g0

) (2.45)

the system moves on the classical separatrix of the post-quench Hamiltonian,
located in the upper or lower hemisphere respectively. The period of the orbit
diverges exponentially as g → g−dyn or g → g̃+dyn, and the corresponding equilibrium
point is only approached in the infinite-time limit.

A graphical interpretation of these different dynamical phases is given in
Fig. 2.5, where for definiteness we consider pre and post-quench values of the
external field such that 0 ≤ g0 < g < gcr.
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Figure 2.5: Classical energy landscapes in the half-plane sy ≡ 0, sz > 0, as
a function of the magnetization sx. The energy landscape of the pre-quench
Hamiltonian Hcl(g0) (with 0 < g0 < gcr) is represented with a black solid line,
with the system lying in a ferromagnetic minimum. The energy landscape of
the post-quench Hamiltonian is displayed in a green, red or blue dashed line
corresponding to increasing values of g. For a shallow quench g0 < g < gdyn
(green) the system is in the dynamical ferromagnetic phase, while for a deep
quench gdyn < g < gcr (blue) the system is in the dynamical paramagnetic
phase, with an orbit encircling the two post-quench minima. In the limit case
g = gdyn (red), the system moves on a branch of the separatrix, with diverging
period.

In conclusion, the two dynamical critical points gdyn and g̃dyn separate a
dynamical ferromagnetic phase with σx 6= 0, from a dynamical paramagnetic
phase with σx = 0. In the latter, the symmetry is dynamically restored at the
level of infinite-time averages. It is possible to prove with an explicit calculation
that the non-equilibrium order parameter vanishes with a logarithmic singularity
at the dynamical critical points, and the same type of singularity is found for the
frequency of the classical orbits [3].

We remark that the equilibrium criticality and the dynamical criticality are
two entirely different phenomena, with different scaling properties.



Chapter 3

Optimal control for the LMG model
in the thermodynamic limit

After formulating the control problem for the LMG model in the thermo-
dynamic limit in section 3.1, we describe a possible analytical solution in section
3.2 and illustrate a complementary numerical approach in section 3.3.

Numerical methods and direct experimental simulation are the usual ways
of addressing optimal control problems for quantum systems, since analytical
solutions are hardly ever feasible.

As already mentioned in the outline, only few numerical techniques of con-
trol theory are powerful and versatile enough to cope with quantum many-body
systems complexity. Regarding the LMG model for finite values of N , optimal
control methods [18], adiabatic evolution [19] and hybrid strategies [20] have been
applied.

3.1 Formulation of the control problem

In this section we address the task of controlling the dynamics of the LMG
model in the thermodynamic limit, by manipulating a time dependent transverse
external field. We recall the classical Hamiltonian in canonical coordinates, given
by1

Hcl(t) = −λ(1− (sz)2) cos2 φ− g(t)sz. (3.1)

In the presence of a time-dependent driving field, the energy is not conserved and
thus the classical model loses its integrability.

In light of the discussion in section 2.2, the classical equations of motion
generated by Hcl(t) describe the quantum coherent dynamics of the initial spin-

1 Throughout this section we shall always consider the maximal total spin sector, i.e. ρ=1.
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coherent state. In the case of large but finite values of N , the initial state de-
localizes on a characteristic time scale tEhr, which diverges with the system size.
As already pointed out in the previous section, we will always assume

T � tEhr, (3.2)

which allows us to neglect such decoherence effects.
The generic scenario of optimal control, in our framework, translates to:

Given the initial coherent state of the system and a target coherent state (repre-
sented by points in the phase space, with vanishing spin fluctuations), determine
the optimal (or a sub-optimal) protocol g(t) to “reach” the target state in a fixed
time T 2.

Thanks to the condition in Eq. (3.2), the final state |ψ(T )〉 is still described
(to a good degree of approximation, for large but finite N) by a coherent state
|~n(T )〉 = |θ(T ), φ(T )〉. Therefore, the fidelity with the target state is given by
Eq. (A.4) and reads

F (~n(T ), ~ntar) = |〈~ntar|~n(T )〉|2 =

(
1 + ~ntar · ~n(T )

2

)2Ns

. (3.3)

Accordingly, a reasonable choice for the figure of meritM, which we shall try to
minimize, is given by the non-negative quantity

η := 1− ~ntar · ~n(T ). (3.4)

Clearly, the minimization of η is equivalent to the maximization of the fidelity;
moreover, if η � 1, one has the relation

η ≈ 1

Ns

∣∣ logF (~ntar, ~n(T ))
∣∣. (3.5)

We stress that the control problem formulated here is classical and consists
in the control of the Hamilton equations{

ṡz = −2λ(1− (sz)2) cosφ sinφ

φ̇ = 2λsz cos2 φ− g(t),
(3.6)

in the classical phase space.
For the sake of definiteness, we set the initial value of the external field

g(0) = 0, so that the two symmetry-broken fully-polarized states along the x-
direction correspond to the mean-field ferromagnetic ground states of the initial-
time Hamiltonian Hcl(0). Let us choose as initial condition for the dynamics

2We remark that the value of T is set a priori, and is not a free parameter of the protocol.
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the spin coherent ground state with positive magnetization, given by |~n0〉 =

|θ0 = π/2, φ0 = 0〉.
The target coherent state could in principle correspond to a generic point in

the classical phase space. However, having fixed the x-axis by the ferromagnetic
interactions, we assume to be able to set the direction of the transverse field
in the ortoghonal plane. In this way we can always choose the direction of the
external field, let it be z, such that the initial and final conditions both belong
to the plane sy ≡ 0.

The target state is then given by |~ntar〉 = |θtar, 0〉 or |~ntar〉 = |θtar, π〉, depend-
ing on whether the corresponding point in phase space was initially placed in the
sx > 0 or sx < 0 hemisphere respectively. Let us now consider the first setting,
with the initial state |~n0〉 = |θ0 = π/2, 0〉 and the target state |~ntar〉 = |θtar, 0〉
both lying on the φ ≡ 0 curve.

In addition, we choose the final value of the driving field such that the
target coherent state corresponds to a mean-field ferromagnetic ground state of
the final time Hamiltonian. This is accomplished by choosing g(T ) = 2λ cos θtar
[see Eq. (2.23)].

Before addressing the optimal control task, a few preliminary observations
can be made, in order to gain some intuition and concurrently simplify the prob-
lem. In the first place, the points ~s = (0, 0,±1) are stationary solutions of the
Eqs. (2.31). From the uniqueness of the solution of (sufficiently good) differential
equations with assigned initial conditions, it follows that it is impossible to find
a protocol to exactly reach these points in a finite time.

This could be expected on physical grounds, since ~s = (0, 0,±1) correspond
to the LMG paramagnetic ground state in the thermodynamic limit, for g > gcr
and g < −gcr respectively, while our initial condition is the ferromagnetic ground
state for g = 0. If one tries to dynamically connect the ground states of different
phases, the dynamics is severely perturbed at the quantum critical point, usually
preventing the possibility of reaching the target state without the creation of
defects. In the thermodynamic limit, the ferromagnetic and paramagnetic ground
states are exactly mapped to phase space points, which accordingly cannot be
easily connected with a finite-time protocol.

A second observation, relevant for the solution of the control problem, con-
sists in a simple relation between the sign of ṡz and the value of φ. Precisely,
from the first equation it immediately follows that ṡz > 0 iff sin(2φ) < 0, which
is verified in the second and fourth quadrants; on the contrary ṡz < 0 in the
first and third quadrants. In light of this argument and for the initial condition
|~n0〉 = |θ0 = π/2, 0〉, we expect the optimal solution to be entirely located in the
first or fourth quadrant for sztar ≡ cos θtar < 0 or sztar ≡ cos θtar > 0 respectively.
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However, as already noticed in section 2.3, the Hamilton equations (here with
a time-dependent driving field, see Eqs. (3.6)) are invariant under the inversion of
the field g(t) → −g(t) and concurrent reflections of the conjugated coordinates:
sz → −sz and φ → −φ. In light of this, we shall always consider sztar > 0, since
any result can be immediately translated to −sztar, upon these reflections.

In addition, it is reasonable to ask whether the target spin coherent state
could be reached in arbitrarily short times, by choosing an adequate protocol g(t).
It turns out that this is not the case, and there exist a minimum time Tmin below
which the the problem of control certainly does not admit an exact solution. This
can be proven by the following simple argument.

Let us focus again on the first Hamilton equation in (3.6), which implies

|ṡz| = λ(1− (sz)2)|sin 2φ| ≤ λ, (3.7)

where the last inequality follows from |sin 2φ| ≤ 1 and |sz| ≤ 1. Accordingly, one
has ∣∣∣ ∫ T

0

dt ṡz
∣∣∣ ≤ ∫ T

0

dt|ṡz| =≤ λT, (3.8)

yielding

T ≥ |s
z
tar|
λ
≡ |cos θtar|

λ
. (3.9)

While this is only a lower bound on the true value of Tmin, it turns out to be
an accurate estimate of the latter. In fact, one can calculate explicitly the exact
value of Tmin, as we will show in section 3.3, relying on some intuition gained
from numerically optimized protocols.

3.2 Double-quench protocol

In the specific case of the LMG model in the thermodynamic limit, an an-
alytical solution to the control problem is possible at the level of the equivalent
classical system, relying on the knowledge of the phase portrait for any given
value of g.

The ferromagnetic phase portrait, qualitatively displayed in Fig. 3.1, sug-
gests that it might be possible to choose a constant value of g = g̃, such that the
initial point and the target point both lie on the same contour. If this was the
case, an exact solution would be given by a double-quench protocol, consisting
on two successive instantaneous quenches. The first one is at time t = 0, from
g(0) = 0 to g̃, starting the evolution of the system along the contour connecting
the initial condition to the target state; the second quench is at time t = τ/2,
where τ is the classical period of the selected trajectory, from the value g̃ to
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Figure 3.1: Schematic 3D representation of the phase portrait for the ferro-
magnetic phase, which suggests a possible analytical solution to the optimal
control problem for the LMG model in the thermodynamic limit.

g(T ) = 2λsztar. The effect of the latter is to stop the dynamics at the target state,
which is a minimum point of the final-time Hamiltonian Hcl(T ).

In the following we will show that such a g̃ exists for any target point,
calculate its value as a function of sztar and evaluate the classical period of the
corresponding trajectory. We remark that this solution is valid in principle for
every T ≥ τ/2, since the second quench stops the dynamics at the target point,
but it is clearly not valid for shorter target times T < τ/2. However, we anticipate
that non-ideality effects arise due to the infinite steepness of the quenches, as well
as if finite size effects are taken into account (this is described at the end of this
section).

From the analytical expression of the contours in Eq. (2.37), one finds that
the two points with φ = 0 lying on the contour with energy E are given by

sz =
g ± [g2 + 4λ2 + 4λ E ]

1/2

2λ
. (3.10)

By requiring one of these two points to be the initial condition of a fully-polarized
state along x, one has E = −λ and finds

sz = 0,
g

λ
. (3.11)

This straightforward argument shows that for any target point (sztar ≡ cos θtar, 0),
one can simply choose g̃ = λsztar, finding an exact solution of the control problem.
As a useful check, the value g̃ obviously verifies the condition in Eq. (2.44) for
g0 = 0, which characterizes the dynamical ferromagnetic phase.
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Figure 3.2: The contour connecting the initial condition with the target state
sztar = 0.9 (both are indicated with open symbols). The latters and the turning
points (see text) divide the classical orbit in four equally lasting parts. Only
the left half of the orbit, lying in the fourth quadrant (φ < 0), is relevant for
our control problem.

The period τ of classical oscillations for a closed trajectory can be evaluated
as

τ =

∫
contour

dφ

φ̇(φ)
(3.12)

with φ̇(φ) given by Eq. (2.38). An example is displayed in Fig.3.2, where the
orbit is divided in four parts by the initial and target states (indicated with open
symbols) and by the two turning points ±φE (full circles), such that φ̇(±φE) = 0.
The red arrow indicates the direction of the motion, which is clockwise, accord-
ingly with our previous observation on the relation between the sign of ṡz and
the value of φ.

By choosing the appropriate sign for φ̇(φ), one easily checks that all the four
parts in which the orbit is divided require an equal time to be covered. This leads
to

τ = 4

∫ φE

0

dφ

[g2 + 4λ2ρ2 cos4 φ+ 4λ E cos2 φ]1/2
(3.13)

Moreover, an explicit calculation for the turning points yields

φE = arccos

[√
1

2λ

(
− E +

√
E2 − g2

)]
, (3.14)
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Figure 3.3: Approximate double-quench protocol for sztar = 0.95 and T =

3.5 τ , in the case a = b = 10. The initial and target points are marked with
a red dot. Thanks to the steepness of the two ramps, closely resembling two
ideal quenches, the system is effectively stopped at the target point. The final
error is η ≈ 2× 10−4.

valid only in the ferromagnetic phase |g| < gcr and for ferromagnetic orbits, which
correspond to contours of energy E , lying inside the range between the minimum
and separatrix energies

−λ− g2

4λ
≤ E ≤ −|g|. (3.15)

The corresponding value for sz is easily checked to be

szE =
g

−E +
√
E2 − g2

. (3.16)

The integral in Eq. (3.13), with the expression for φE calculated in Eq. (3.14),
can be evaluated numerically. One correctly verifies that T = τ/2 always satisfies
the lower bound in Eq. (3.9).

Let us conclude this section with two remarks. As already noted, this double-
quench protocol yields an exact mathematical solution to the optimal control
problem in the thermodynamic limit, which is valid only for target times T ≥ τ/2,
leaving open the problem for Tmin ≤ T < τ/2. Moreover, this protocol is rather
idealized, since it requires two instantaneous quenches, while any experimental
realization would obviously imply non-instantaneous ramps, characterized by a
finite transient.

In particular, any realistic implementation of the protocol would not drive
the system to the exact target state at the exact time τ/2, and therefore the
second quench would not exactly stop the system’s dynamics at the target point.
As a consequence, for values of T significantly larger than τ/2, the later evolution
from t = τ/2 to t = T could result in a severe loss of control on the final state.

A possible solution to study numerically these non-idealities is to approxi-
mate the double-quench protocol with a regular function, depending on two free
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Figure 3.4: Approximate double-quench protocol for sztar = 0.95 and T =

3.5 τ , in the case a = b = 3. The initial and target points are marked with a
red dot. Note that the ramps are not steep enough, thus the protocol fails to
stop the dynamics at the target point. This causes a complete loss of control
over the system’s dynamics for τ/2 < t < T , and consequently over the final
error η.

parameters that can be tuned as to vary the steepness of the two ramps. A con-
venient approximation for the two quenches at t = 0 and t = τ/2 is given in
terms of hyperbolic tangents

g(t) = g̃ tanh(a t) + θ
(
t− τ

2

)
(g(T )− g̃) tanh

[
b
(
t− τ

2

)]
, (3.17)

where by increasing the values of a and b one has steeper ramps, recovering the
ideal double-quench protocol in the limit a, b� 1.

This non-ideality is particularly evident when the target point is close to the
point ~s = (0, 0, 1), as shown in Fig. 3.3 and 3.4. In both cases, we set sztar = 0.95

and T = 3.5 τ ; while in the first figure the ramps’ steepness is set to a = b = 10,
closely resembling the ideal double-quench protocol, in the second one we set it
to a = b = 3. In numerical simulations we always set λ = 1, so that energies are
measured in units of λ and the rescaled time t′ = t/s in units of λ−1.3

As displayed in the figures, in the first case the dynamics is effectively
stopped by the second quench, resulting in a small4 error of η ≈ 2× 10−4. In
contrast, in the second case the quench does not stop the dynamics, but on the
contrary it makes the system evolve on a paramagnetic orbit. This clearly results
in a complete loss of control over the final error η.

Another source of non-ideality arises when, instead of the rigorous thermo-
dynamic limit, we consider large but finite values of N . In this case, the target
state is an approximate mean-field ground state for the final-time Hamiltonian:

3As stated in the short section about notation and conventions, we always set ~ = 1.
4 We recall that the radius of the sphere is ρ = 1.
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even if it was reached with unit fidelity at time t = τ/2, the system would then
undergo a further evolution until time t = T .

In light of the above discussion, the ideal double-quench protocol can be
regarded as a stable solution only for times T >∼ τ/2, in order to avoid later loss
of control on the system, due to non-ideal ramps or finite size effects.

3.3 Numerical minimization

In this section we describe a complementary numerical approach to the op-
timal control task, which was formulated in section 3.1.

The minimization of the figure of merit in Eq. (3.4) is formally a functional
minimization with respect to g(t): even in this simplified classical setting, this is
a non-trivial mathematical problem. However, we are not interested in a detailed
mathematical analysis, and we use a version of the CRAB algorithm, previously
described in chapter 1.

In our case the only driving field is g(t), so we should start from an ansatz
solution g0(t), and then apply a correction of the form

g(t) = g0(t) c(t), (3.18)

with the function c(t) expanded in a truncated Fourier space as

c(t) = b(t)

[
1 +

N∑
k=1

Ak sin(ωkt) +Bk cos(ωkt)

]
, (3.19)

where the function b(t) enforces the boundary conditions g(0) = 0 and g(T ) =

2λsztar previously discussed.
We remark that {Ak, Bk} is the set of free parameters, while ωk are the cor-

responding frequencies, whose values are fixed before the minimization. One can
either choose ωk = 2πk/T for each call of the minimization routine, or randomize
the frequencies as ωk = 2πk(1 + rk)/T , with rk random numbers uniformly dis-
tributed in [0, 1]. In our case, as explained below, randomization is not necessary
and we shall consider the standard harmonics. Moreover, we can simplify the
standard expression in Eq. (3.19) as

c(t) =

[
1 +

N∑
k=1

Ak sin(ωkt)

]
, (3.20)

which already satisfies the boundary conditions.
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The Hamilton equations in Eq. (3.6) can be formally rewritten as{
ṡz = −2λ(1− (sz)2) cosφ sinφ

φ̇ = 2λsz cos2 φ− g
(
{Ak, Bk}; t

)
,

(3.21)

and should be solved as a function of the free parameters {Ak, Bk}. In particular,
one is interested in the final point reached at t = T , in order to minimize the
figure of merit

η({Ak, Bk}) = 1− ~ntar · ~n({Ak, Bk};T ). (3.22)

As mentioned in chapter 1, it is convenient to adopt a direct search heuris-
tic as the minimization routine. In particular, we use an algorithm known as
Differential Evolution which, among other advantages, is self-organizing and re-
quires very little input from the user [21]. Moreover, while its implementation is
straightforward and requires only few lines of code, it has been shown to have
comparable performances to other acclaimed direct search methods.

As a preliminary remark, in order to ease the comparison between the an-
alytical double-quench protocol and the numerical approach discussed here, we
find it natural to rescale the target time T in units of τ , where τ is the period of
the orbit that connects the initial point with the target.

Regarding the ansatz solution, a reasonable choice is a linear ramp interpo-
lating the two boundary conditions above, which is simply given by

g0(t) = 2λsztar
t

T
. (3.23)

We observe that the linear ramp reduces to an adiabatic driving in the limit
T � 1/λ. Consequently, for long times T , it can work reasonably well without
any correction c(t); on the contrary, one expects it to yield a poor solution for
short values of T , thus requiring a proper correcting term. This is indeed the case,
as we exemplify in Fig. 3.5, where we set sztar = 0.9 (corresponding to τ ≈ 4.56)
and we compare T/τ = 1, 3 and 30.

Remarkably, if one tries to evaluate a proper correction in terms of the
function c(t) defined in Eq. (3.20), then faces a problem similar to statistical
overfitting for values T/τ >∼ 1.

In fact, even restricting to the subspace spanned by only few free parameters
{Ak}, there is in general a number of different solutions, which correspond to final
values of η compatible with zero: an illustrative example is shown in Fig. 3.6 and
in Fig. 3.7. In both cases we set sztar = 0.9, T/τ = 3 and the minimization is done
with respect to the free parameters {Ak}4k=1. The only difference between the
two figures is the value of a random seed, which is necessary for the minimization
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(a) T/τ = 1 (b) T/τ = 3 (c) T/τ = 30

Figure 3.5: Comparison of classical trajectories, where the driving field g(t)

is given by the ansatz solution in Eq. (3.23). We set sztar = 0.9 and compare
different values of T/τ = 1, 3 and 30 from the left to right panel. The initial
and target states are denoted with red points. In the left panel, the linear
ramp is qualitatively not a good solution, with η ≈ 0.03. In the middle panel
we have η ≈ 9× 10−4, while in the right panel the final error is η ≈ 5× 10−5.
In the latter case, the trajectory closely resembles an adiabatic driving.

routine. The final value of η, for both optimized protocols, is almost zero (see
figures).

This hints that, if one enlarges the search space by adding more harmonics,
or by randomizing the frequencies, the number of valid solutions can increase
significantly.

The picture emerging from an accurate numerical analysis, carried out for
different values of sztar and of T/τ >∼ 1, is that there is a plethora of possible
sub-optimal solutions corresponding to values of η compatible with zero. Which
solution is actually found depends on the specific parameterization of g(t) (for
instance on the selected harmonics), on the initial condition for the minimization
routine, on the random seed . . .

In brief, the optimization landscape has several local minima corresponding
to final values of η close to zero. This leads to the conclusion that, for T/τ >∼ 1,
the optimization problem is utterly easy and any reasonable parametrization,
combined with an efficient minimization algorithm, yields a valid solution.

This fact is related to the assumption of thermodynamic limit, which allows
us to minimize only the distance between the centers of localized wave-packets,
irrespectively of their (vanishing) spread and shape. In this respect, let us mention
that in the proper thermodynamic limit the fidelity in Eq. (3.3) reduces to

F (~n(T ), ~ntar) = δ
(2)
~n(T ), ~ntar

. (3.24)

In the case of large but finite values of N , given that the condition η � 1
Ns

is
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Figure 3.6: Classical trajectory and optimized driving for sztar = 0.9 and
T/τ = 3, determined numerically by minimizing Eq. (5.6) with respect to the
set of free parameters {Ak}4k=1. The coordinate sz(t) increases monotonically
in [0, T ], and the final error is compatible with zero (of the order of η ≈
1× 10−8).

fulfilled, one has
F (~ntar, ~n(T )) ≈ 1−Ns η. (3.25)

However, this estimate of the fidelity relies on the assumption that decoherence
effects as well as wave-packet squeezing can be neglected.

Despite the large number of valid solutions, one could be interested in defin-
ing a proper criterion of “simplicity” of the latters, the reason being that a driving
such as the one in Fig. 3.7 is clearly inconvenient for any realistic implementation.
A first possibility could be solving the optimal control problem together with the
condition sin(2φ) < 0 or sin(2φ) > 0, which corresponds to ṡz > 0 and ṡz < 0

respectively, depending on sztar being positive or negative.
However, solving Eqs. (3.21) as function of the free parameters and together

with this constraint is quite intricate.
An easier approach is to think of a generalized ansatz solution, depending

on few free parameters, which yields reasonably simple drivings and in particular
reduces to the adiabatic protocol in the limit T � 1/λ.

It turns out that a valid trial solution is given by

gtr(a, t0; t) = α + β tanh
[
a(t− t0)

]
, (3.26)

where a and t0 are free parameters, while the coefficients α and β are fixed in
order to satisfy the usual boundary conditions, and are given by

α =
2λsztar tanh(a t0)

tanh(a t0) + tanh[a (T − t0)]

β =
2λsztar

tanh(a t0) + tanh[a (T − t0)]
.

(3.27)
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Figure 3.7: The same as in Fig. 3.6, where the only difference is the choice
of the random seed required by the minimization algorithm. In this case, the
coordinate sz(t) does not increase monotonically in [0, T ]. Even though the
error is, also in this case, compatible with zero (η ≈ 7× 10−10), this is clearly
an inconvenient solution for any realistic setting.

Obviously, there is some reasoning behind this trial solution, which we now shortly
outline. The underlying idea is that a simple generalization of the linear ramp
consists in a ramp of tunable steepness a, with starting time t0, which is precisely
described by Eq. (3.26). We note that gtr(a, t0; t) is an even function of a, so
that we can restrict the search space to (a, t0) ∈ [0, amax]× [0, T ], where amax is
a cutoff value.

In the limit a � 1 one finds an instantaneous quench at time t0, while for
t0 = 0 and a → 0+ one recovers the linear ramp interpolating the boundary
conditions, and thus in particular the adiabatic solution for large values of T .

A systematic study for different values of sztar and T/τ >∼ 1 shows that this
ansatz solution (or some straightforward generalizations, for instance including
more than one ramp) are sufficient to obtain values of η compatible with zero.
In addition, the simplicity of the parameterization guarantees to find trajectories
such that sz(t) increases (or decreases) monotonically in [0, T ]. An example of this
optimized trial solution with the corresponding trajectory is shown in Fig. 3.8.

Let us remark that the ansatz solution in Eq. (3.26) could be easily gener-
alized, for instance by subdividing it in more ramps at different times t0, t1, . . .
and with different steepness a0, a1, . . ., resulting in more free parameters for the
minimization.

As already stated, the minimization problem is trivial for T/τ >∼ 1, in the
sense that not only an (idealized) analytical solution exists (see section 3.2), but
also the optimization problem can easily be solved numerically by choosing a
reasonable parameterization for g(t).

The situation changes dramatically for T/τ < 0.5: not only the analytical
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Figure 3.8: An example of the trial solution defined in Eq. (3.26), optimized
with respect to a, t0. We set sztar = 0.9 and of T/τ = 3, for comparison with
Fig. 3.6 and Fig. 3.7. The error is still compatible with zero (η ≈ 2× 10−9),
but the corresponding trajectory is simpler, in particular characterized by a
monotonic sz(t) in [0, T ].

solution is no longer valid, but also finding a good numerical solution becomes
a non-trivial task5. A simple parametrization, like the one in Eq. (3.26), does
not generally provide a valid solution anymore, so we actually exploit the CRAB
technique; we use a correction in the form of Eq. (3.20), with the linear ramp
ansatz in Eq. (3.23).

In order to get a qualitative idea of the CRAB algorithm convergence, in
Fig. 3.9 we show the optimized g(t) for sztar = 0.9 and T/τ = 0.4: from the left
to the right panel we consider n = 0, 2, 4 harmonics added to the linear ramp.
Moreover, in Fig. 3.10 we show the case n = 6, with the corresponding optimized
driving.

In contrast with the previously considered case of T/τ >∼ 1, now the opti-
mized solution with respect to a given set of parameters is unique, in the sense
that it does not depend on the choice of the initial condition for the minimization
routine, neither on the random seed. Moreover, qualitatively similar solutions are
usually found if different parameterizations are chosen.

Interestingly, the classical trajectory shown in Fig. 3.10 may suggest that in
order to speed up the evolution, it is convenient to “move away from the φ = 0

meridian and then come back to it”. This intuition is correct, and gives some
insight in order to determine the exact value of Tmin, as anticipated in section
3.1. As a preliminary step, let us rewrite the Hamilton equations (3.6) as{

ṡz = −λ(1− (sz)2) sin 2φ

φ̇ = λsz(1 + cos 2φ)− g(t).
(3.28)

5The region 0.5 < T/τ < 1 is characterized by a crossover between the two regions.
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(a) n = 0 (b) n = 2 (c) n = 4

Figure 3.9: Comparison of classical trajectories, for sztar = 0.9 and T/τ = 0.4.
In the left panel we show the trajectory corresponding to the linear ansatz,
which clearly fails in reaching the target state. In the central and right panel
n = 2, 4 harmonics are added respectively, but the subspace of protocols
spanned by these parameterizations is not sufficiently large, in order to ob-
tain values of η compatible with zero.

Figure 3.10: Classical trajectory for n = 6 harmonics and the corresponding
optimized driving. Six harmonics are enough to obtain a final error compatible
with zero (η ≈ 2× 10−8).

As noted in section 2.3, in the limit |g| � λ, the system precedes around the
sz axis with angular frequency ω = |g| (thus with vanishing period in the large
|g| limit), and the rotation is CW (CCW) for g > 0 (g < 0).

In addition, the first Hamilton equation above suggests that in order to
maximize the value of ṡz, one would like to have φ(t) ≡ −π/4 (for positive values
of sztar)6. The second equation shows that φ̇ = 0 iff g(t) = λsz(t)(1 + cos 2φ(t)),
which for φ(t) ≡ −π/4 reduces to g(t) = λsz(t).

If one combines these two observations, then realizes that there exists a
unique ideal protocol, which drives the system to the target state in the fastest
way possible. By determining this protocol, we will concurrently find the exact

6All the forthcoming treatment holds also for sztar < 0, simply by inverting the driving field
and by applying reflections on the conjugated coordinates, as stated in section 3.1.
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value of Tmin.
Let us consider the driving

g̃(t) =


g0, for 0 < t ≤ t0

λsz(t), for t0 < t ≤ t0 + t1

−g0, for t0 + t1 < t ≤ 2t0 + t1,

(3.29)

where g0 � λ is a strong positive field. This driving protocol first rotates the
system (CW) from the initial state to (sz = 0, φ = −π/4) in a time t0 = π/4g0,
which can be made arbitrarily small by choosing a large value of g0. Then the
system is driven along the meridian φ = −π/4 up to (sztar, φ = −π/4) in a time
t1, and is finally rotated back (CCW) to the target state in a time t0.

Clearly, one still has to determine both sz(t) and the value of t1, which can
be done by solving the first Hamilton equation with φ(t) ≡ −π/4:

ṡz = λ(1− (sz)2). (3.30)

This is readily done by variable separation as∫ sz

0

dz

λ(1− z2)
=

∫ t

0

dt′, (3.31)

which yields

t =
1

2λ
log

1 + sz

1− sz
, (3.32)

and finally, with a trivial inversion,

sz(t) = tanh(λt). (3.33)

By imposing sz = sztar in Eq. (3.32), one also determines the value of t1,
which is given by

t1 =
1

2λ
log

1 + sztar
1− sztar

. (3.34)

As already noticed, the value of t0 can be made arbitrarily small, so we conclude
that the shortest time possible to reach the target state is

Tmin = t1 =
1

2λ
log

1 + sztar
1− sztar

. (3.35)

This is accomplished with the driving

g̃(t) =


g0, for 0 < t ≤ t0

λ tanh[λ(t− t0)], for t0 < t ≤ t0 + t1

−g0, for t0 + t1 < t ≤ 2t0 + t1,

(3.36)
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Figure 3.11: Classical trajectory corresponding to the ideal protocol defined
in Eq. (3.36) in the limit g0 → ∞. In this limit, the time t0 necessary for
the initial and final rotations vanishes, while the central part of the driving is
shown in the right panel.

with g0 →∞ and thus for vanishing t0 . The classical trajectory corresponding to
this protocol is shown in Fig. 3.11, together with the central part of the driving,
for t ∈ (t0, t0 + t1].

Looking back at Fig. 3.10, one clearly recognizes the qualitative features of
the ideal trajectory shown in Fig. 3.11.

In conclusion, we plot in Fig. 3.12 the exact value of Tmin as a function of
sztar, together with the estimate given in section 3.1 [see Eq. (3.9)].
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Figure 3.12

Figure 3.13: Minimum time Tmin that is necessary to reach the target state,
which is given by Eq. (3.35), together with the linear estimate of Eq. (3.9).
Clearly, the exact result is a stronger lower bound for T . In the limit of
sztar → 0 the two values coincide, while the exact Tmin diverges logarithmically
for sztar → ±1.



Chapter 4

Perturbation of the LMG model

In this chapter we aim to understand the impact of small perturbations on
the LMG model Hamiltonian in Eq. (2.2). This is crucial, considering that the
fully-connected Ising model is not usually sufficient to describe realistic features
of quantum many-body systems with long-range interactions.

We describe perturbations in the form of additional spatially-decaying lon-
gitudinal interactions,

H = − λ
N

∑
r,r′

σxrσ
x
r′ − g

∑
r

σzr −
∑
r,r′

J|r−r′|σ
x
rσ

x
r′ , (4.1)

where r runs over a generic d-dimensional lattice sites. The coupling Jr decays
to zero, upon increasing the geometrical distance r = |r− r′|, and can represent
short-range as well as long-range perturbations.

In order to study the physics of the perturbed LMG model in Eq. (4.1), we
will use a time-dependent spin-wave theory, recently introduced in [2], [3].

In section 4.1 we review the Holstein–Primakoff transformation, which is
used to determine the spectrum of lowest excitations for the LMG model in
section 4.2. This is relevant in order to fix the notation and to introduce some
basic concepts, which are necessary for the description of the spin-wave theory
in section 4.3. Some derivations regarding spin-wave theory are discussed in
appendix B.

In sections 4.4 and 4.5 we study the impact of perturbations on the equilib-
rium and dynamical properties of the LMG model.

Finally, in section 4.6, we go back to the unperturbed LMG model and
specialize our general results for that case. In this way, we highlight the uniformity
of formalism and methods with the most general case of non-zero perturbations.
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4.1 Holstein–Primakoff transformation

The Holstein–Primakoff transformation is an exact mapping from boson cre-
ation and annihilation operators to angular momentum operators. Beside the in-
trinsic interest of such mapping, it is useful to generate approximate calculation
schemes.

Let us introduce generic angular momentum operators Jα, satisfying the
usual commutation relations [

Jα, Jβ
]

= iεαβγJγ. (4.2)

We fix the quantum number j, which determines the eigenvalue j(j + 1)

of the total angular momentum operator J2, and focus our attention on the
(2j + 1)-dimensional Hilbert subspace, spanned by the eigenstates {|j, jz〉} for
jz = −j, . . . , j.

The physical intuition behind the Holstein–Primakoff transformation is to
map the fully-polarized state |j, jz = j〉 to the vacuum bosonic state |0〉 for a set
of boson operators a, a†, with

[
a, a†

]
= 1.

States with lower z-projection of angular momentum are mapped to excited
states of the bosonic field in the following way:

|j, jz = j − n〉 → |n〉 ≡ 1√
n!

(a†)n |0〉 , (4.3)

so that each boson excitation corresponds to a lowering of the eigenvalue of Jz

by one (in units of ~).
We are now led to rewrite the angular momentum operators Jα as functions

J̃α(a, a†) of the boson operators, in such a way that the action of this new oper-
ators on |n〉 be the same as the action of Jα on the state |j, jz = j − n〉. This is
straightforward for the z-projection of the angular momentum:

Jz → J̃z := j − a†a = j − n̂, (4.4)

where n̂ is the number operator counting bosonic excitations.
To work out analogous expressions for the operators Jx, Jy it is first conve-

nient to introduce the linear combinations J± = Jx ± iJy, which act as raising
and lowering operators with respect to the spectrum of Jz, without affecting the
spectrum of J2. As known from the angular momentum theory:

J± |j, jz〉 =
√
j(j + 1)− jz(jz ± 1) |j, jz ± 1〉 (4.5)

Considering jz = j − n as in Eq. (4.3), it is rather easy to show that the correct
identifications in the above mentioned sense are{

J+ → J̃+ :=
√

2j − a†a a
J− → J̃− := a†

√
2j − a†a,

(4.6)
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which immediately yield the correct expression for J̃x and J̃y.
A doubt might arise, since the dimension of the angular momentum sub-

space with fixed j is finite and equal to 2j + 1, while the boson operators act
on an infinite-dimensional Fock space. In fact, the effectiveness of the Holstein–
Primakoff transformation resides precisely in a mathematically consistent trun-
cation of the infinite-dimensional Fock space, to a finite-dimensional subspace of
dimension 2j + 1.

This can be checked immediately since for n = 0

J+ |j, jz = j〉 = 0→ J̃+ |n = 0〉 = 0 (4.7)

and for n = 2j

J− |j, jz = −j〉 = 0→ J̃− |n = 2j〉 = 0. (4.8)

It is also easily verified a posteriori that the new operators J̃α satisfy the
correct angular momentum commutation relations. Consequently, the operators
J̃α identify completely with the operators Jα, and there is no need to maintain a
distinct notation anymore.

The Holstein–Primakoff transformation is particularly useful if j � 1, so
that the square roots can be expanded as Taylor series in the parameter 1/

√
j.

We shall consider only the leading order in this expansion, which amounts to the
subsequent approximation:{

J+ =
√

2j a+O(1/
√
j) ≈

√
2j a

J− =
√

2j a† +O(1/
√
j) ≈

√
2j a†.

(4.9)

To the same degree of approximation one can write{
Jx ≈

√
j(a+ a†)/

√
2 ≡
√
j q

Jy ≈ i
√
j(a† − a)/

√
2 ≡
√
j p

, (4.10)

where the operators q and p, defined in terms of the boson operators, satisfy the
canonical commutation relation [q, p] = i.

However, this approximation should be handled with care. In fact, now the
Hilbert space is not correctly truncated anymore. This is evident by substituting
the approximate expressions in Eq. (4.9) in place of J̃± in Eq. (4.7) and in Eq. (4.8)
respectively. The first one is still valid, but the second one does not hold anymore.

This is related to the physical meaning of this approximation, which is ac-
tually an harmonic approximation, where the raising and lowering angular mo-
mentum operators J± are simply identified with the annihilation and creation
operators respectively. While the lowering operator does annihilate the vacuum



4.2. Lowest excitations of the LMG model 45

state |0〉, there is no reason why the creation operator should annihilate the ex-
cited state |n = 2j〉. Since j is large by hypothesis, this fact is not a problem if
we limit to the description of lowest excitations of the bosonic field.

In conclusion, we remark that Eq. (4.4) still holds exactly, and can be rewrit-
ten in terms of the operators q and p as

Jz = j − a†a = j − q2 + p2 − 1

2
, (4.11)

where n̂ := q2+p2−1
2

is the familiar expression for the number operator in terms of
canonical operators.

4.2 Lowest excitations of the LMG model

In this section we will use the Holstein–Primakoff transformation in order
to describe the spectrum of the lowest excitations above the ground state, for
the LMG model in the large N limit. This is an interesting application of the
formalism described in the previous section, and we can also introduce some
notation that will be adopted for the spin-wave theory.

Let us focus on the rescaled LMG Hamiltonian in Eq. (2.6), which we rewrite
here for convenience:

H :=
H

N
= −λ (Sx)2 − g Sz. (4.12)

The lowest excitations above the ground state physically account for the quantum
fluctuations of the collective degree of freedom ~S around its average value. These
excitations are finite-size corrections to the thermodynamic limit, or equivalently
semiclassical corrections to the classical limit1.

In more detail, the description of the lowest harmonic excitations above
the ground state corresponds to the leading order O(~eff) of the semiclassical
expansion, as we now show explicitly. Let us consider a large but finite number of
spins N , alias a small but finite value of ~eff. Since

∣∣ ~J ∣∣2 is a constant of motion,
we refer to a sector with fixed (extensive) value of the total spin magnitude,
identified by the quantum number

j ≡ Nsρ, (4.13)

see definition (2.9).
1We highlighted in section 2.3 that the thermodynamic limit of the LMG model corresponds

to its classical limit. In an analogous fashion, first order finite-size corrections correspond to
first order quantum correction.
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We begin with the paramagnetic phase g > gcr, in which the non-degenerate
ground state is a fully-polarized state along z. Since the collective degree of
freedom is aligned in the z-direction, we can straightforwardly apply the Holstein–
Primakoff transformation.

The value of j is extensive in N and we are only interested in the lowest ex-
citations, we can use the harmonic approximation in Eq. (4.10) and in Eq. (4.11).
From the definition of the collective degree of freedom ~S in Eq. (2.5), the harmonic
Holstein–Primakoff approximation reads

Sx ≈ (
√
ρ/
√
Ns) q̃0 =

√
ρ ~eff q̃0

Sy ≈ (
√
ρ/
√
Ns) p̃0 =

√
ρ ~eff p̃0

Sz = ρ− (q̃20 + p̃20 − 1)/(2Ns) = ρ− ~eff n̂0,

(4.14)

where the operators q̃0, p̃0 describe fluctuations of the collective k = 0 mode away
from the z-axis, in directions x and y respectively2.

By substitution of these approximate expressions in the Hamiltonian in
Eq. (4.12), one finds

H = −λρ~eff q̃20 − gρ+ g~eff (q̃20 + p̃20 − 1)/2 +O(~2eff), (4.15)

By exploiting the transformation
q̃0 =

(
g

g − gcr

)1/4
b†0 + b0√

2

p̃0 = i

(
g

g − gcr

)−1/4
b†0 − b0√

2
,

(4.16)

the Hamiltonian in Eq. (4.15) is readily rewritten in the standard form

H> ≈ −g
(
ρ+

~eff
2

)
+ ~eff ω>

(
m̂0 +

1

2

)
, (4.17)

where we defined the number operator m̂0 := b†0b0, ω> :=
√
g(g − gcr) and ne-

glected higher order corrections.
The first term represents the classical ground state energy with first order

corrections, while the second one is the quadratic Hamiltonian, describing har-
monic excitations above the paramagnetic ground state. The latter term includes
a zero point energy contribution, which takes into account the energy increase

2We adopt here the tilde symbol, for consistency with the more general notation that will be
later introduced in chapter 4, where we shall expand in quantum fluctuations also the modes
k 6= 0.
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due to quantum fluctuations of the collective spin around the classical minimum
configuration.

We note that in the vacuum state of the oscillator, the first order semiclas-
sical correction lowers the classical energy minimum, since

E0> =
E0
>

N
= −gρ+

~eff
2

(ω> − g) +O(~2eff), (4.18)

where the second term is evidently negative.
It is crucial not to confuse the number operator n̂0 = (q̃20 + p̃20− 1)/2, which

counts the number of zero-mode excitations of the collective spin, with the number
operator m̂0 = b†0b0, which we have just introduced to count the number of lowest
harmonic excitations above the paramagnetic ground state. In this respect, let
us note that in the ground state of the Hamiltonian in Eq. (4.15), one clearly has
〈m̂0〉 = 0, while it is not difficult to show that

〈n̂0〉 =
1

4

(
g

g − gcr

)1/2
[

1−
(

g

g − gcr

)−1/2]2
. (4.19)

The average value of collective spin excitations in the paramagnetic ground state
thus depends on the value of the external field g > gcr. In particular, for strong
fields g � gcr one has 〈n̂0〉 ≈ 0, while in the limit g → g+cr, the average number
of excitations diverges with exponent 1/2:

〈n̂0〉 ∼
1

4

(
g

g − gcr

)1/2

. (4.20)

Remarkably, this invalidates the Holstein–Primakoff harmonic approximation at
the quantum critical point gcr.

We now examine the ferromagnetic phase g < gcr, in which the ground state
is two-fold degenerate, corresponding to the minima of the classical Hamiltonian
for (θ∗, 0) and (θ∗, π), with θ∗ defined in Eq. (2.23). The spectra of lowest exci-
tations above the ferromagnetic ground states are identical by symmetry, so we
can restrict to the minimum occurring in (θ∗, 0).

The Holstein–Primakoff transformation and the subsequent harmonic ap-
proximation can be generalized for a collective degree of freedom pointing in
arbitrary direction in space. While conceptually this is just an obvious general-
ization, technically it requires some manipulations, which we now explain.

As a first step, we introduce a rotated reference frame R with Z-direction
aligned with the average collective degree of freedom 〈 ~S〉. The new frame com-
ponents (X̂, Ŷ , Ẑ) are parametrized as follows in the original reference frame
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(x̂, ŷ, ẑ):

X̂ ≡

cos θ cosφ

cos θ sinφ

− sin θ

 , Ŷ ≡

− sinφ

cosφ

0

 , Ẑ ≡

sin θ cosφ

sin θ sinφ

cos θ

 , (4.21)

where θ and φ are the familiar polar angles in the original frame. We decompose
the operator ~S on the basis corresponding to R as

~S = X̂ SX + Ŷ SY + Ẑ SZ , (4.22)

and accordingly we rewrite the rescaled Hamiltonian (4.12) as

H = −λ[(X̂ · x̂)SX + (Ŷ · x̂)SY + (Ẑ · x̂)SZ ]2

−g[(X̂ · ẑ)SX + (Ŷ · ẑ)SY + (Ẑ · ẑ)SZ ].
(4.23)

In the rotated frame R, we can now resort to the standard Holstein–Primakoff
transformation used before, which we immediately write in the harmonic approx-
imation: 

SX ≈ (
√
ρ/
√
Ns) q̃0 =

√
ρ ~eff q̃0

SY ≈ (
√
ρ/
√
Ns) p̃0 =

√
ρ ~eff p̃0

SZ = ρ− (q̃20 + p̃20 − 1)/(2Ns) = ρ− ~eff n̂0.

(4.24)

If we now substitute the polar coordinates (θ∗, 0) of the classical minimum in
Eq. (4.21), we find

X̂ ≡

 cos θ∗

0

− sin θ∗

 , Ŷ ≡

0

1

0

 , Ẑ ≡

sin θ∗

0

cos θ∗

 , (4.25)

which finally implies

H = −λ
[

cos(θ∗)
√
ρ ~eff q̃0 + ρ sin(θ∗)− sin(θ∗)~eff(q̃20 + p̃20 − 1)/2

]2
−g
[
− sin(θ∗)

√
ρ ~eff q̃0 + ρ cos(θ∗)− cos(θ∗)~eff(q̃20 + p̃20 − 1)/2

]
.

(4.26)

In order to obtain an harmonic approximation, it is sufficient to retain terms of
O(~eff) in the previous expression; with the transformation

q̃0 =

(
g2cr

g2cr − g2

)1/4
b†0 + b0√

2

p̃0 = i

(
g2cr

g2cr − g2

)−1/4
b†0 − b0√

2
,

(4.27)
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one finds
H< ≈ −

(
g2

4λ
+ λρ2 + λρ~eff

)
+ ~eff ω<

(
m̂0 +

1

2

)
, (4.28)

where m̂0 := b†0b0, ω< :=
√

(g2cr − g2) and we neglected higher order corrections.
In analogy with the previous case, the first term is the classical ground state
energy with first order correction, while the second one is the quantum harmonic
oscillator Hamiltonian, including a zero point energy contribution. Similarly to
the paramagnetic phase, also in the ferromagnetic case the first order semiclassical
correction lowers the classical energy minimum, since

E0< =
E0
<

N
= −gρ+

~eff
2

(ω< − gcr) +O(~2eff), (4.29)

where the second term is evidently negative.
The same warning about the different meaning of the number operators

n̂0 = (q̃20 + p̃20−1)/2 and m̂0 = b†0b0 is still valid. Also in the ferromagnetic ground
state one obviously has 〈m̂0〉 = 0, while it can be shown that

〈n̂0〉 =
1

4

gcr√
g2cr − g2

[
1−

√
g2cr − g2
gcr

]2
. (4.30)

The average value of collective spin excitations depends on the external field
g < gcr. In particular, for weak fields g � gcr one has 〈n̂0〉 ≈ 0, while in the limit
g → g−cr, the average number of excitations diverges with exponent 1/2:

〈n̂0〉 ∼
1

4

[
gcr

2(gcr − g)

]1/2
. (4.31)

Again, the Holstein–Primakoff harmonic approximation is not valid at the quan-
tum critical point gcr.

This is related to the fact that the energy gap (above the ground state) of
the zero mode excitations closes at the critical point, with a critical exponent 1/2

as g → g±cr (see Fig. 4.1).
As a final remark, we mention that it is actually possible to include in this

description also modes with k 6= 0, or spin waves. A thorough discussion of spin
waves is given in the next section: we now anticipate that spin waves can be
treated as free bosonic excitations, in the limit of small perturbations from a
fully-polarized state.

However, in the unperturbed LMG model, spin waves do not alter the dy-
namics, as previously shown in Eq. (2.4). It thus suffices for now to anticipate
one reasonable result, proved in the next section: If we define the total occu-
pation number of spin waves as Nsw :=

∑
k 6=0 n̂k (where n̂k is the occupation
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Figure 4.1: Frequency ω<,> (or energy, since we fixed ~ = 1) of lowest har-
monic excitations above the ground state, for g < gcr and g > gcr respectively.
In both cases, approaching the critical point the gap closes with a square root
singularity.

number operator of mode k), then the maximal value of total spin magnitude
equals

∣∣ ~J ∣∣2 = j(j + 1), with j = Ns−Nsw
3.

Accordingly, the maximal value of ρ is now reduced to

ρ = 1−Nsw/(Ns), (4.32)

which can be substituted in Eqs. (4.17) and (4.28), yielding the complete spectrum
of lowest excitations of the LMG model in the large N limit:

H> ≈ −g + ~eff
ω> − g

2
+ ~eff (ω>m̂0 + gNsw)

H< ≈ −
(
g2

4λ
+ λ

)
+ ~eff

ω< − 2λ

2
+ ~eff (ω<m̂0 + 2λNsw) ,

(4.33)

valid for g > gcr and g < gcr respectively with gcr = 2λ(1 − Nsw/(Ns)).4. The
previous result in Eq. (4.33) is accurate at first order in the spin-wave density
Nsw/(Ns).

Let us make two noteworthy observations on the above result. In the first
place, all the spin-wave excitations have a finite gap g/s or 2λ/s5, therefore they
are not excited at zero temperature. In the second place, spin waves exhibit a
flat dispersion relation, independent of the wavevector: this is a characterizing
feature of fully-connected models, which in no way can carry information on
spatial scales, or equivalently on finite wavelengths. In other words, you may not
observe wave-like phenomena in a model without spatial dimensions.

3 In brief, spin waves lower the total spin magnitude, while zero mode excitations do not.
4 In these expressions ω> and ω< are intended to be evaluated for ρ = 1 (i.e. for gcr = 2λ).
5 We remark that H = NH and ~eff = 1/(Ns).
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Relying on the spin waves description in terms of free bosonic excitations,
one can straightforwardly take into account small temperature effects. In the
ferromagnetic phase, the average number of k-mode excitations at a given tem-
perature T is

〈nk〉 =
1

e
2λ/s
T − 1

(4.34)

with zero chemical potential and kB ≡ 1. This is accurate only for temperatures
T � 2λ/s, since a temperature of the order of the gap would result in a severe
disturbance and break the validity of the spin-wave approximation. Thanks to
Eq. (4.32), one finds the statistical thermal correction to the total spin magnitude

ρ(T ) = 1− 1

s

1

e
2λ/s
T − 1

. (4.35)

The same results hold true for the paramagnetic phase, by replacing the ferro-
magnetic gap 2λ/s with the paramagnetic gap g/s.

4.3 Spin-wave theory

As sketched at the beginning of this chapter, we aim to account for the
effect of perturbations on the infinite-range LMG model, which are described as
additional spatially-decaying interactions in Eq. (4.1).

We remark that the LMG model is defined on a fully-connected graph, with-
out any spatial dimension; on the contrary we are now introducing a lattice di-
mensionality by choosing the specific form of Jr. For simplicity, we shall focus on
the one-dimensional case and choose periodic boundary conditions. Accordingly,
we obtain the Hamiltonian

H = − λ
N

N∑
i,j=1

σxi σ
x
j − g

N∑
i=1

σzi −
1

2

∑
i,j

J(i−j)σ
x
i σ

x
j , (4.36)

where we denoted by i, j = 1, . . . , N the lattice sites and multiplied the second
sum for one half, in order to count only once each pair interaction6. However, we
remark that the spin-wave formalism introduced in the following can be extended
for any lattice dimensionality.

In analogy to the previous section, it is convenient to rewrite the Hamiltonian
(4.36) in terms of the Fourier components operators defined in Eq. (2.3). This is

6 If one wants to exclude unphysical self-interaction terms in the last sum, then can simply
set J0 = 0. However, as already noticed for the plain LMG model, self-interactions become
negligible in the large N limit.
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accomplished by substitution in Eq. (4.36) of the inverse Fourier transforms

σαj =
1

N

∑
k

eikjσ̃αk , (4.37)

where the sum is over the values k = 2πn/N for n = −N/2 + 1, . . . , N/2.
The result is given by

H = − λ̄
N

(σ̃xk=0)
2 − g σ̃zk=0 −

1

N

∑
k 6=0

J̃k σ̃
x
k σ̃

x
−k, (4.38)

where J̃k :=
∑N

r=0 e
−ikrJr, λ̄ := λ+ J̃0 and J̃k = J̃−k are real coefficients7.

It is crucial to observe that the perturbation couples all the Fourier com-
ponents with k 6= 0 to the collective degree of freedom ~S := ~̃σ0/N defined in
(2.5), implying that the dynamics of the system now depends on the whole set of
Fourier operators.

Heuristically, when the coefficients J̃k 6=0 are sufficiently small, the perturba-
tion on both equilibrium and dynamical properties of the LMG model is expected
to be small. In the following, we will treat the integrability-breaking terms per-
turbatively, in a quadratic approximation, which is the backbone of the spin-wave
theory. Despite its perturbative nature, a noteworthy feature of the latter is that,
within its framework, one can always check a posteriori the validity of the ap-
proximation by measuring the spin wave-density ε, as will be rigorously explained
in the following.

Technically, this quadratic approximation is a non-trivial task, which re-
lies on the Holstein–Primakoff harmonic approximation, depicted in section 4.1,
performed with respect to the direction of the average collective spin 〈~S 〉.

Let us start by describing this approach for equilibrium. It is convenient to
adopt the rotated reference frame R, previously defined in Eq. (4.21), where the
Z-direction is aligned with the equilibrium average of the collective spin 〈~S 〉. We
decompose the single spins on the basis of R as

~σj = X̂ σXj + Ŷ σYj + Ẑ σZj . (4.39)

7The Fourier transform of a real even function J(i−j) ≡ Jr is a real even function J̃k.
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Accordingly, the Hamiltonian (4.38) can be rewritten as

H =
H

N
= −λ̄

[(
X̂ · x̂

) σ̃X0
N

+
(
Ŷ · x̂

) σ̃Y0
N

+
(
Ẑ · x̂

) σ̃Z0
N

]2
− g

[(
X̂ · ẑ

) σ̃X0
N

+(
Ŷ · ẑ

) σ̃Y0
N

+
(
Ẑ · ẑ

) σ̃Z0
N

]
−
∑
k 6=0

J̃k

[(
X̂ · x̂

) σ̃Xk
N

+
(
Ŷ · x̂

) σ̃Yk
N

+
(
Ẑ · x̂

) σ̃Zk
N

]
·

[(
X̂ · x̂

) σ̃X−k
N

+
(
Ŷ · x̂

) σ̃Y−k
N

+
(
Ẑ · x̂

) σ̃Z−k
N

]
,

(4.40)
in terms of the Fourier transforms σ̃X,Y,Zk of σX,Y,Zj , defined as in Eq. (2.3). The
first two terms correspond to the usual LMG Hamiltonian in the new rotated
frame.

In order to carry out the approximation, we introduce the spin-wave canon-
ical variables via the Holstein–Primakoff transformation, which is now applied to
each spin s and expanded to lowest order in 1/

√
s:

σXj =
qj√
s

+ . . . ,

σYj =
pj√
s

+ . . . ,

σZj = 1− nj
s
≡ 1−

q2j + p2j − 1

2s
,

(4.41)

with qj and pj conjugate canonical variables that represent small deviations of
the spin away from the Ẑ-axis, along the directions X̂ and Ŷ respectively.

Accordingly, after introducing the coordinates q̃k = N−1/2
∑

j e
−ikjqj and

p̃k = N−1/2
∑

j e
−ikjpj in Fourier space, we get

σ̃Xk
N

=
q̃k√
Ns

+ . . . ,

σ̃Yk
N

=
p̃k√
Ns

+ . . . ,

σ̃Zk
N

=δk,0 −
∑
k′

q̃k′ q̃k−k′ + p̃k′ p̃k−k′ − δk,0
2Ns

.

(4.42)

Even though Eqs. (4.41) are formally identical to the harmonic approxi-
mation introduced in Eqs. (4.10) and (4.11), it does not appear to be a valid
expansion, since the condition 1/

√
s� 1 is not fulfilled8.

This objection is indeed correct and sets the limit of validity for the spin-
wave theory, which holds only in the subspace of the total Hilbert space with

8 In fact, one often has s = 1/2, implying that 1/
√
s =
√

2, which is not any smaller than
one. Even for bigger values of s, the condition 1/

√
s� 1 is not satisfied.
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small number of spin excitations, with respect to the fully-polarized state in Z-
direction. However, this space is not easily described in the basis of single spin
operators, but is clearly visualized in Fourier space.

In Appendix B, we describe in detail the spin-wave theory in Fourier space,
and we rederive Eq. (4.42) on somewhat more solid bases. In particular, we prove
that the operators [q̃k, p̃k′ ] = i δk,−k′ are a set of canonical operators (including the
peculiar case of k = 0); moreover, the number operators associated to spin-wave
excitations (k 6= 0) or zero-mode collective excitations are shown to be given by

nk =
1

2
(q̃kq̃−k + p̃kp̃−k − 1) , (4.43)

for the case of a 1d-lattice.
We can now proceed to rewrite our model Hamiltonian (4.40) by substitution

of the approximation in Eq. (4.42). The result is given by

H = H0 + U2 + U3 + U4, (4.44)

where the k = 0 contribution is

H0 =− λ̄
(
Ẑ · x̂

)2
[1− ~eff(n0 +Nsw)]2 − g

(
Ẑ · ẑ

)
(1− ~eff(n0 +Nsw))

− 2λ̄ ~1/2eff

(
Ẑ · x̂

)
(1− ~effNsw)

[(
X̂ · x̂

)
q̃0 +

(
Ŷ · x̂

)
p̃0

]
+ ~3/2eff λ̄

(
Ẑ · x̂

) [(
X̂ · x̂

)
(n0q̃0 + q̃0n0) +

(
Ŷ · x̂

)
(n0p̃0 + p̃0n0)

]
− g ~1/2eff

[(
X̂ · ẑ

)
q̃0 +

(
Ŷ · ẑ

)
p̃0

]
− λ̄ ~eff

[(
X̂ · x̂

)2
q̃20 +

(
Ŷ · x̂

)2
p̃20 + 2

(
X̂ · x̂

)(
Ŷ · x̂

) q̃0p̃0 + p̃0q̃0
2

]
,

(4.45)

while the k 6= 0 contribution from the perturbation is split into three terms, with
Uj including all the terms of j-th order in the spin-wave canonical operators. We
note that the term in the third line of H0 takes care of the non-zero commutation
relations between n0 and q̃0, p̃0.
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The explicit form of the operators Uj is given by

U2 = −~eff
∑
k 6=0

J̃k

[(
X̂ · x̂

)2
q̃kq̃−k +

(
Ŷ · x̂

)2
p̃kp̃−k + 2

(
X̂ · x̂

)(
Ŷ · x̂

) q̃kp̃−k + p̃kq̃−k
2

]
U3 = ~3/2eff

∑
k 6=0

J̃k

(
Ẑ · x̂

)
×

×

{(
X̂ · x̂

)[
q̃k
∑
k′

q̃k′ q̃−k−k′ + p̃k′ p̃−k−k′

2
+
∑
k′

q̃k′ q̃k−k′ + p̃k′ p̃k−k′

2
q̃−k

]
+

+
(
Ŷ · x̂

)[
p̃k
∑
k′

q̃k′ q̃−k−k′ + p̃k′ p̃−k−k′

2
+
∑
k′

q̃k′ q̃k−k′ + p̃k′ p̃k−k′

2
p̃−k

]}

U4 = −~2eff
∑
k 6=0

J̃k

(
Ẑ · x̂

)2∑
k′

q̃k′ q̃k−k′ + p̃k′ p̃k−k′

2

∑
k′′

q̃k′′ q̃−k−k′′ + p̃k′′ p̃−k−k′′

2
.

(4.46)

We remark that the Hamiltonian in Eq. (4.44) is a good approximation of the ex-
act Hamiltonian in Eq. (4.38), only in the Hilbert space sector with the majority
of spins aligned along the Z-direction, or equivalently in the limit of small exci-
tations density n0 + Nsw ≈ Nsw � Ns, as stated in Eq. (B.28). This treatment
is clearly valid for all possible orientations of the Z-direction9.

The next step consists in the actual quadratic expansion, which amounts
to the lowest non-trivial order of approximation. The physical idea is that we
will consider spin waves as free bosonic excitations, which interact only with the
collective k = 0 mode. We shall therefore neglect interactions among the spin
waves, and study in this limit the impact of quantum fluctuations on the LMG
equilibrium and dynamical properties.

Accordingly, the Hamiltonian in Eq. (4.44) is simplified as described in the
following lines. Let us preliminarily notice that each term of j-th order in the
canonical operators multiplies a factor (~ j/2eff ).

We will keep all terms up to quadratic order in the canonical operators, or
equivalently up to (∝ ~ eff), which are some contributions from H0 and the whole
U2. On the contrary, we shall neglect all quartic terms (∝ ~2eff), which come from
the first line of H0 and the whole U4. Regarding the cubic part (∝ ~3/2eff ), the
only relevant terms involve one zero-momentum operator and two operators with
opposite momenta (k,−k), which may be interpreted as describing the interaction
between a zero mode excitation and a pair of spin waves with opposite momenta.

Let us first apply this approximation to H0: we neglect the quartic terms in
the first line and the third line altogether, which is of cubic order in the zero-mode

9 The Z-direction is defined in terms of the rotation angles θ and φ, as in Eq. (4.21). For
now, these are free parameters that will be fixed in the next sections.
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operators. Rearranging the terms one finds

H0 =− λ̄
(
Ẑ · x̂

)2
− g

(
Ẑ · ẑ

)
− 2 ~1/2eff λ̄

(
Ẑ · x̂

) [(
X̂ · x̂

)
q̃0 +

(
Ŷ · x̂

)
p̃0

]
− ~1/2eff g

[(
X̂ · ẑ

)
q̃0 +

(
Ŷ · ẑ

)
p̃0

]
+ ~eff(n0 +Nsw)

[
2λ̄
(
Ẑ · x̂

)2
+ g

(
Ẑ · ẑ

)]
− ~eff λ̄

[(
X̂ · x̂

)2
q̃20 +

(
Ŷ · x̂

)2
p̃20 + 2

(
X̂ · x̂

)(
Ŷ · x̂

) q̃0p̃0 + p̃0q̃0
2

]
+ 2~3/2eff λ̄

(
Ẑ · x̂

)
Nsw

[(
X̂ · x̂

)
q̃0 +

(
Ŷ · x̂

)
p̃0

]
.

(4.47)

One might notice that the term in the third line above is in the same form as
those in U2, and therefore can be included in that sum by redefining J̃k as

J̃ ′k =

{
J̃k, for k 6= 0

λ̄ = λ+ J̃0, for k = 0
(4.48)

and letting the sum run over all k, included k = 0. In order to simplify the
notation, we shall drop the prime symbol from now on.

Moreover, by applying the same approximation to U3, one is left with only
the subsequent terms

+ 2~3/2eff

(
Ẑ · x̂

)
q̃0
∑
k 6=0

J̃k

[(
X̂ · x̂

)
q̃kq̃−k +

(
Ŷ · x̂

) q̃kp̃−k + p̃kq̃−k
2

]
+ 2~3/2eff

(
Ẑ · x̂

)
p̃0
∑
k 6=0

J̃k

[(
Ŷ · x̂

)
p̃kp̃−k +

(
X̂ · x̂

) q̃kp̃−k + p̃kq̃−k
2

] (4.49)

We can finally sum up all terms and obtain

H =− λ̄
(
Ẑ · x̂

)2
− g

(
Ẑ · ẑ

)
+ ~eff(n0 +Nsw)

[
2λ̄
(
Ẑ · x̂

)2
+ g

(
Ẑ · ẑ

)]
− ~eff

∑
k

J̃k

[(
X̂ · x̂

)2
q̃kq̃−k +

(
Ŷ · x̂

)2
p̃kp̃−k + 2

(
X̂ · x̂

)(
Ŷ · x̂

) q̃kp̃−k + p̃kq̃−k
2

]
− 2 ~1/2eff λ̄

(
Ẑ · x̂

) [(
X̂ · x̂

)
q̃0 +

(
Ŷ · x̂

)
p̃0

]
− ~1/2eff g

[(
X̂ · ẑ

)
q̃0 +

(
Ŷ · ẑ

)
p̃0

]
+ 2~3/2eff λ̄

(
Ẑ · x̂

)
Nsw

[(
X̂ · x̂

)
q̃0 +

(
Ŷ · x̂

)
p̃0

]
+ 2~3/2eff

(
Ẑ · x̂

)
q̃0
∑
k 6=0

J̃k

[(
X̂ · x̂

)
q̃kq̃−k +

(
Ŷ · x̂

) q̃kp̃−k + p̃kq̃−k
2

]
+ 2~3/2eff

(
Ẑ · x̂

)
p̃0
∑
k 6=0

J̃k

[(
Ŷ · x̂

)
p̃kp̃−k +

(
X̂ · x̂

) q̃kp̃−k + p̃kq̃−k
2

]
.

(4.50)
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It is convenient for our further analysis to rearrange the terms as follows

H =− λ̄
(
Ẑ · x̂

)2
− g

(
Ẑ · ẑ

)
+ ~eff(n0 +Nsw)

[
2λ̄
(
Ẑ · x̂

)2
+ g

(
Ẑ · ẑ

)]
− ~eff

∑
k

J̃k

[(
X̂ · x̂

)2
q̃kq̃−k +

(
Ŷ · x̂

)2
p̃kp̃−k + 2

(
X̂ · x̂

)(
Ŷ · x̂

) q̃kp̃−k + p̃kq̃−k
2

]

+ ~1/2eff q̃0

{
− 2λ̄ (1− ~effNsw) (Ẑ · x̂)(X̂ · x̂)− g(X̂ · ẑ)

+ 2(Ẑ · x̂)~eff
∑
k 6=0

J̃k

[
(X̂ · x̂) q̃kq̃−k + (Ŷ · x̂)

q̃kp̃−k + p̃kq̃−k
2

]}

+ ~1/2eff p̃0

{
− 2λ̄ (1− ~effNsw) (Ẑ · x̂)(Ŷ · x̂)− g(Ŷ · ẑ)

+ 2(Ẑ · x̂)~eff
∑
k 6=0

J̃k

[
(Ŷ · x̂) p̃kp̃−k + (X̂ · x̂)

q̃kp̃−k + p̃kq̃−k
2

]}
,

(4.51)

where one easily recognizes the classical energy (first and second terms), the
quadratic contributions (third and fourth terms) and the remaining cubic part,
describing the interaction between the collective degree of freedom and the spin-
wave excitations. The various scalar products between versors can be expressed
in terms of the rotation angles θ and φ, by exploiting the definition in Eq. (4.21).
Therefore, the Hamiltonian depends parametrically on these angles, which define
the Z-direction of the frame R.

The Hamiltonian in Eq. (4.51) is our starting point for describing the impact
of small perturbations on the equilibrium and out of equilibrium physics of the
LMG model.

4.4 Equilibrium of perturbed LMG model

In this section we address the description of the impact of perturbations on
the LMG ground state, expecting only small corrections for small values of J̃k 6=0.

The Hamiltonian in Eq. (4.51) describes quantum fluctuations at the quadratic
order, and its validity is restricted to the Hilbert space sector with small density
of excitations, see Eq. (B.28).

One could in principle calculate its ground state, evaluate the ground state
averages of the collective degree of freedom 〈~̃σ0〉 as a function of θ and φ, and
then determine a posteriori the angles θ and φ such that 〈~̃σ0〉 aligns with Z. The



4.4. Equilibrium of perturbed LMG model 58

Eq. (4.42) for k = 0 shows that it is equivalent to requiring

〈q̃0〉 = 〈p̃0〉 = 0. (4.52)

Exact eigenstates of a quantum Hamiltonian are stationary states, so these
averages would not evolve in time, yielding the correct equilibrium description of
quantum fluctuations at the quadratic order.

However, the Hamiltonian of Eq. (4.51) is cubic and this prevents us from
an exact solution. It is therefore convenient to describe its ground state in the
Gaussian approximation.

A generic Gaussian state is uniquely determined by the averages of the
canonical operators and two points equal-time correlation functions. In contrast
with the exact framework, averages in an approximate ground state do generally
evolve in time. In order for this Gaussian state to be a meaningful description
of the perturbed ground state, we thus have to require this set of averages and
correlation functions to be constant in time. This can be done by fixing the value
of the angles θ and φ, as we now show explicitly.

The evolution of an observable in the Heisenberg representation is given by
the well-known Heisenberg equation, which for the operators q̃k and p̃k is10

i
d

dt
q̃k = [q̃k, NH]

i
d

dt
p̃k = [p̃k, NH] ,

(4.53)

valid for both k 6= 0 and k = 0. Given the canonical commutation relations in
Eq. (B.14), one finds

s
d

dt
q̃k =(2λ̄ sin2 θ cos2 φ+ g cos θ − 2J̃k sin2 φ)p̃k

+ 2J̃k cos θ sinφ cosφ q̃k + δk,0 b̂

s
d

dt
p̃k =− (2λ̄ sin2 θ cos2 φ+ g cos θ − 2J̃k cos2 θ cos2 φ)q̃k

− 2J̃k cos θ sinφ cosφ p̃k − δk,0 â,

(4.54)

where the operators â and b̂ are nothing but the first and second curly braces of
Eq. (4.51) respectively11. Consistently with the approximation of non-interacting
spin waves, the equations for the canonical spin-wave operators (k 6= 0) are
derived neglecting non-linear contributions. On the contrary, the equations for

10 We recall that H = H/N is the energy per spin.
11 We remark with the notation that â and b̂ are operators, depending on the spin-wave

canonical operators (with k 6= 0).
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the collective mode canonical operators (k = 0) also include terms describing the
interaction with spin-wave modes.

We can now derive the evolution laws for the parameters characterizing the
Gaussian state, which are the mean values 〈q̃k(t)〉 and 〈p̃k(t)〉 and the equal-time
correlation functions

∆qq
k (t) :=

〈
q̃k(t)q̃−k(t)

〉
,

∆pp
k (t) :=

〈
p̃k(t)p̃−k(t)

〉
,

∆qp
k (t) :=

1

2

〈
q̃k(t)p̃−k(t) + p̃k(t)q̃−k(t)

〉
.

(4.55)

The correlation functions involving different pairs of canonical operators are as-
sumed to be identically zero at all times.

The equations for the averages are simply given by

s
d

dt
〈q̃k〉 =(2λ̄ sin2 θ cos2 φ+ g cos θ − 2J̃k sin2 φ) 〈p̃k〉

+ 2J̃k cos θ sinφ cosφ 〈q̃k〉+ δk,0 〈b̂〉

s
d

dt
〈p̃k〉 =− (2λ̄ sin2 θ cos2 φ+ g cos θ − 2J̃k cos2 θ cos2 φ) 〈q̃k〉

− 2J̃k cos θ sinφ cosφ 〈p̃k〉 − δk,0 〈â〉 .

(4.56)

We note that the quantum mean values for k 6= 0 follow the classical equations
of motion12, while the zero mode averages have a more complex evolution, since
〈â〉 and 〈b̂〉 depend on the equal-time correlation functions defined above. An
explicit calculation in fact yields

〈â〉 =− 2λ̄

(
1− ~eff

∑
k 6=0

∆qq
k + ∆pp

k − 1

2

)
sin θ cos θ cos2 φ

+ g sin θ + 2 sin θ cosφ ~eff
∑
k 6=0

J̃k (cos θ cosφ∆qq
k − sinφ∆qp

k )

〈b̂〉 =2λ̄

(
1− ~eff

∑
k 6=0

∆qq
k + ∆pp

k − 1

2

)
sin θ sinφ cosφ

+ 2 sin θ cosφ ~eff
∑
k 6=0

J̃k (− sinφ∆pp
k + cos θ cosφ∆qp

k ) .

(4.57)

12 This is an immediate consequence of the Ehrenfest theorem and the linearity of Heisenberg
equations.
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The equations for the equal-time correlation functions are

s
d

dt
∆qq
k =4J̃k cos θ sinφ cosφ∆qq

k

+ 2(2λ̄ sin2 θ cos2 φ+ g cos θ − 2J̃k sin2 φ)∆qp
k + 2δk,0 〈q̃0b̂〉

s
d

dt
∆pp
k =− 4J̃k cos θ sinφ cosφ∆pp

k

− 2(2λ̄ sin2 θ cos2 φ+ g cos θ − 2J̃k cos2 θ cos2 φ)∆qp
k − 2δk,0 〈p̃0â〉

s
d

dt
∆qp
k =− (2λ̄ sin2 θ cos2 φ+ g cos θ − 2J̃k cos2 θ cos2 φ)∆qq

k

+ (2λ̄ sin2 θ cos2 φ+ g cos θ − 2J̃k sin2 φ)∆pp
k + δk,0(〈p̃0b̂〉 − 〈q̃0â〉).

(4.58)
Let us start by examining the equations above for the spin-wave canonical

operators (k 6= 0), looking for a stationary solution. The equations for the mean
values (4.56) with initial condition 〈q̃k(0)〉 = 〈p̃k(0)〉 = 0 yield as (unique) solution
that these initial conditions do not evolve in time

〈q̃k(t)〉 = 〈p̃k(t)〉 ≡ 0. (4.59)

The equations for the correlation functions (4.58) are actually not independent,
since the subsequent exact property of Gaussian states holds at all times

4 (∆qp)2 = 4∆qq∆pp − 1, (4.60)

implying that we can focus on the equations for ∆qq
k and ∆pp

k only.
At this point it is convenient to observe that the collective spin 〈~̃σ0〉 at

equilibrium lies in the xz-plane, since the Hamiltonian does not contain interac-
tions along the y-direction. This symmetry argument immediately implies that
φ∗ = 0 or π. We thus have to look for a stationary solution of the simplified
equations for k 6= 0

s
d

dt
∆qq
k = + 2(2λ̄ sin2 θ + g cos θ)∆qp

k

s
d

dt
∆pp
k =− 2(2λ̄ sin2 θ + g cos θ − 2J̃k cos2 θ)∆qp

k ,

(4.61)

with the constraint in Eq. (4.60). It is apparent that if we choose any initial
condition such that ∆qp

k (0) = 0, the (unique) solution is stationary{
∆qq
k (t) ≡ ∆qq

k (0)

∆pp
k (t) ≡ ∆pp

k (0),
(4.62)

and consequently also 〈â〉 and 〈b̂〉 are time independent real constants.
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We now move to the equations for collective mode (k = 0) averages. Taking
into account the above symmetry argument they reduce to

s
d

dt
〈q̃0〉 =(2λ̄ sin2 θ + g cos θ) 〈p̃0〉+ 〈b̂〉

s
d

dt
〈p̃0〉 =− (2λ̄ sin2 θ + g cos θ − 2J̃ ′0 cos2 θ) 〈q̃0〉 − 〈â〉 .

(4.63)

In light of Eq. (4.52), the initial conditions 〈q̃0(0)〉 = 〈p̃0(0)〉 = 0 guarantee
that the spin-wave approximation is valid, and must hold at any time. This is
verified if and only if the Eqs. (4.63) are homogeneous, so that the constants 〈â〉
and 〈b̂〉 must be zero. These constants are now given by

〈â〉 =− 2λ̄

(
1− ~eff

∑
k 6=0

∆qq
k + ∆pp

k − 1

2

)
sin θ cos θ + g sin θ + 2 sin θ~eff

∑
k 6=0

J̃k cos θ∆qq
k

!
= 0

〈b̂〉 = 2 sin θ~eff
∑
k 6=0

J̃k cos θ∆qp
k

!
= 0.

(4.64)

The second condition is already satisfied, while the first one yields an equation
of state for the angle θ.

We are only left to requiring the stationarity of the collective mode corre-
lation functions. This is immediate, since thanks to Wick theorem the following
correlation functions are zero:

〈q̃0â〉 = 〈q̃0b̂〉 = 〈p̃0â〉 = 〈p̃0b̂〉 = 0. (4.65)

This means that the Eq. (4.61) holds for k = 0 as well, so that it is enough to
choose ∆qp

0 (0) = 0 in order to have a stationary solution{
∆qq

0 (t) ≡ ∆qq
0 (0)

∆pp
0 (t) ≡ ∆pp

0 (0).
(4.66)

We finally arrived to the conclusion that any Gaussian state with zero av-
erages 〈q̃k〉 = 〈p̃k〉 = 0 and zero equal-time correlation functions ∆qp

k = 0 is
stationary if one fixes φ = φ∗ = 0 or π and θ = θ∗ given by the solution of the
equation of state in Eq. (4.64).

This statement clarifies that one still has the freedom of choosing the N
values of ∆qq

k , while the remaining ∆pp
k are fixed by the constraints in Eq. (4.60).

It is natural to fix these parameters with a variational approach, by minimizing
the energy average 〈H〉, with the Hamiltonian H given in Eq. (4.51). In light of
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Eq. (4.65), this is equivalent to finding the ground state of the quadratic part of
this Hamiltonian, which can be written as

Hquad = −λ̄ sin2 θ − g cos θ + ~eff
∑
k

hk, (4.67)

where hk has the form

hk = αk
q̃kq̃−k

2
+ β

p̃kp̃−k − 1

2
, (4.68)

with coefficients given by{
αk = 2λ̄ sin2 θ + g cos θ − 2J̃k cos2 θ

β = 2λ̄ sin2 θ + g cos θ.
(4.69)

We notice that hk = h−k (since the coefficient J̃k are even in k) and clearly
[hk, hk′ ] = 0.

It can be checked that the transformation13
q̃k =

(
β

αk

)1/4 b†−k + bk√
2

p̃k = i

(
αk
β

)1/4 b†−k − bk√
2

.

(4.70)

diagonalizes the Hamiltonian hk yielding

hk =
√
αkβ

(
mk +

1

2

)
, (4.71)

with14

mk :=
1

2

(
b†kbk + b†−kb−k

)
. (4.72)

The quadratic Hamiltonian in Eq. (4.67) can thus be rewritten as

Hquad = −λ̄ sin2 θ − g cos θ + ~eff
∑
k

ωk − ω
(0)
k

2
+ ~eff

∑
k

ωkmk, (4.73)

with the definitions

ωk :=
√
αkβ =

√
(2λ̄ sin2 θ + g cos θ − 2J̃k cos2 θ)(2λ̄ sin2 θ + g cos θ) (4.74)

13 This is a simple generalization of the transformation in Eq. (B.13), which regards both the
spin-wave and zero-mode excitations.

14 The operators mk give the number of excitations of the Hamiltonian hk in Eq. (4.68), and
should not be confused with the number operators nk [see Eq (4.43)], which count the number
of spin-wave or collective excitations of the mode k. This is the same warning as in section 4.2,
in a more general setting where also spin-wave modes (k 6= 0) are included.
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and
ω
(0)
k ≡ ω(0) := 2λ̄ sin2 θ + g cos θ. (4.75)

The equation (4.74) gives the spin-wave dispersion relation, which depends para-
metrically on the angle θ and is an even function of k.

In the limit where J̃k 6=0 = 0, one recovers the LMG model, with J̃0 = λ.
The spin-wave modes (k 6= 0) dispersion relation flattens and coincides with the
frequency in Eq. (4.75), while for the collective mode one has

ω0 =
√

(2λ sin2 θ + g cos θ − 2λ cos2 θ)(2λ sin2 θ + g cos θ) =
√

(ω(0) − 2λ cos2 θ)ω(0).

(4.76)
As a useful check, we verify that in this limit one recovers the quantum harmonic
oscillator Hamiltonian describing lowest excitations above the LMG ground state,
see Eq (4.33).15.

The ground state of the quadratic Hamiltonian is labeled by eigenvalues
mk = 0 for all k. This correctly implies the ground state expectation values{

〈q̃k〉 = 0

〈p̃k〉 = 0
(4.77)

and the correlation functions

〈q̃kq̃−k〉 =
1

2

ω(0)

ωk

〈p̃kp̃−k〉 =
1

2

ωk
ω(0)

〈 q̃kp̃−k + p̃kq̃−k
2

〉 = 0,

(4.78)

which satisfy the necessary conditions for stationarity ∆qp
k = 0 and further deter-

mine uniquely our Gaussian state.
The last remaining task that completes our discussion is to find the solution

θ∗ of the equation of state, which now reads

sin θ∗

[
−2λ̄(1−ε) cos θ∗+g+cos θ∗ ~eff

∑
k 6=0

J̃k

√
2λ̄ sin2 θ∗ + g cos θ∗

2λ̄ sin2 θ∗ + g cos θ∗ − 2J̃k cos2 θ∗

]
= 0,

(4.79)
where we defined the total spin depletion

ε =
〈Nsw〉
Ns

∣∣∣
θ=θ∗

. (4.80)

15This is easily done by imposing θ = 0 for the paramagnetic phase and cos θ∗ = g/gcr for the
ferromagnetic phase. Moreover, in this case the operators mk 6=0 do coincide with the number
operators that count the spin wave excitations, since αk 6=0 = β.
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This quantity is easily evaluated exploiting the correlation functions in Eq. (4.78):

ε =
〈Nsw〉
Ns

=
~eff
2

∑
k 6=0

(
1

2

ω(0)

ωk
+

1

2

ωk
ω(0)
− 1

)
θ=θ∗

(4.81)

and from Eq. (B.27) follows an explicit expression for the total spin value∣∣∣ 〈~̃σk=0

〉 ∣∣∣
N

= 1− 〈Nsw〉
Ns

≡ 1− ε. (4.82)

We correctly obtained ε ≥ 0 and we also note that ε = O(J̃2
k 6=0), precisely

ε = ~eff
(

cos2 θ

2ω(0)(θ)

)2

θ=θ∗

∑
k 6=0

[
J̃2
k +O(J̃3

k )
]
. (4.83)

Let us now address the last task of solving the equation of state (4.79) and
thus determine θ∗. One immediately notices that θ∗ = 0 is always a solution, and
in general another solution can be evaluated by imposing the vanishing of the term
in square brackets. Since all of our treatment is valid for small perturbations of
the LMG model, these two solutions are readily recognized as the paramagnetic
and ferromagnetic ground states in the presence of quantum fluctuations.

As expected due to the symmetry of the problem, the paramagnetic equilib-
rium state is still characterized by a collective degree of freedom pointing in the
θ∗ = 0 direction and the ferromagnetic equilibrium state is still characterized by
two degenerate solutions for φ = φ∗ = 0 or π and θ = θ∗. However, the equilib-
rium value of θ∗ in the ferromagnetic phase is modified by the perturbation.

Also the equilibrium quantum critical point gcr is shifted due to quantum
fluctuations and we can estimate this correction as follows. Firstly we compute
the variational energy of our Gaussian state as a function of θ (with fixed φ∗ =

0 or π), let us call it E(θ) := 〈H〉θ. One can check that it reads

E(θ) := 〈H〉θ = 〈Hquad〉θ = −λ̄ sin2 θ − g cos θ + ~eff
∑
k 6=0

ωk − ω(0)

2
. (4.84)

The critical point can be characterized as the value gcr such that for g > gcr
the paramagnetic solution θ∗ = 0 is a minimum of E(θ), while for g < gcr it is
an unstable stationary point. An expansion of E(θ) to the quadratic order in a
neighborhood of θ∗ = 0 yields

E(θ) =
θ→0
− g +

1

Ns

∑
k 6=0

1

2

(√
g(g − 2J̃k)− g

)
+

{
g − 2λ̄+

1

Ns

∑
k 6=0

[
√
g(g − 2J̃k)

1

2

(
2λ̄− g/2 + 2J̃k

g − 2J̃k
+

2λ̄− g/2
g

)
−
(

2λ̄− g/2
)]}

θ2

2
+O(θ4).

(4.85)
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The vanishing linear term indicates that θ∗ = 0 is indeed a stationary point for
the variational energy, but it is a minimum if and only if g > gcr, where

gcr := 2λ̄− 1

Ns

∑
k 6=0

[√
g(g − 2J̃k)

1

2

(
2λ̄− g/2 + 2J̃k

g − 2J̃k
+

2λ̄− g/2
g

)
−
(

2λ̄−g/2
)]

(4.86)
is itself a function of g. An exact solution of this implicit equation is clearly
unfeasible, but it can be addressed perturbatively. This is done by expanding the
r.h.s. at order n in the small parameters J̃k 6=0, and by substituting in its expression
the old value of g determined at the step n − 1. The first two iterations of this
perturbative expansion yield the mean-field result

g(0)cr = 2λ̄ (4.87)

and the quadratic correction

g(2)cr = 2λ̄

{
1− 5

16

1

Ns

∑
k 6=0

(
J̃k
λ̄

)2
}

+O(J̃3
k 6=0). (4.88)

The effect of the perturbation is to lower the value of g(0)cr and therefore to destabi-
lize the ordered ferromagnetic phase. This could be predicted relying on physical
intuition.

In order to check the validity of the results above and to gain some physical
insight, let us consider a few simple limit cases. In the mean-field limit J̃k 6=0 = 0,
our results must coincide with the unperturbed LMG model. Consistently, the
critical point is gcr = 2λ and the spin-wave band ωk = ω(0) is flat, implying ε = 0.
The equation of state gives back cos θ∗ = g/gcr in the ferromagnetic phase, and
obviously θ∗ = 0 in the paramagnetic phase, retrieving the LMG equilibrium
properties.

As soon as a spatially-decaying interaction J̃k 6=0 6= 0 is turned on, quantum
fluctuations affect the equilibrium state both in the paramagnetic and ferromag-
netic phases. The value of gcr is lowered by quantum fluctuations as depicted
above. In the paramagnetic phase (g > gcr) the ground state is still in θ∗ = 0

as in the mean-field case, but the total spin magnitude is lowered by ε > 0. The
spin-wave dispersion relation is

ωk,> =

√
g(g − 2J̃k) (4.89)

and in the limit of g →∞ we get ωk,> → ω(0) = g and therefore ε→ 0, implying
that no spin-wave excitations are present for large values of the external field g.

In the ferromagnetic phase (g < gcr) the value of θ∗ is fixed by the equation
of state. In the limit of g → 0 the Hamiltonian Eq. (4.36) is diagonalizable in the
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basis of {σxj } and no significant quantum features are present (all operators in
it commute). The system is expected to exhibit full ferromagnetic ordering with
θ∗ = π/2 and also in this limit the band flattens, as both ωk,< and ω(0) tend to
2λ̄. This implies that no spin-wave excitations are present for vanishing external
field g.

In contrast, spin waves are excited for finite values of g, in correspondence of
a competition between ferromagnetic ordering and the transverse field, in other
words in non-trivial cases where interesting quantum effects are present. The
spin-wave excitations are expected to be maximal at the equilibrium critical point
gcr = 2λ̄ −O(J̃2

k 6=0), where this competition is most intense. However, while the
zero-mode excitations are gapless at the quantum critical point, as shown in
section 4.2, finite k spin-wave excitations have a finite gap.

4.5 Dynamics of perturbed LMG model

The impact of small perturbations on the dynamical properties of the LMG
model can be assessed along the same lines of the previous section, with a suit-
able generalization of the same concepts to an evolving system. The spin-wave
expansion will be performed with respect to a time-dependent rotated frame R,
with the angles θ(t), φ(t) describing the evolution of the average collective spin
〈~̃σ0〉.

This generalization relies on the assumption of validity of the spin-wave
expansion for the initial condition at t = 0, and in the time interval relevant for
the dynamics. In other words, we assume that a small density of excitations is
produced during the dynamics, in the sense that the condition

n0 +Nsw

Ns
� 1 (4.90)

holds true not only for the initial state at t = 0, but also at subsequent times16.
The rotation of the fixed frame into the time dependent frame R is realized

by the unitary operator

V (θ(t), φ(t)) = eiφ s
∑
j σ

z
j eiθ s

∑
j σ

y
j , (4.91)

16 This is expected to be correct for a limited interval of time, which in general may depend
on the specific driving protocol g(t).
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which acts as a global rotation on the spins17:
V σxj V

† = X̂(t) · ~σj ≡ σXj

V σyjV
† = Ŷ (t) · ~σj ≡ σYj

V σzjV
† = Ẑ(t) · ~σj ≡ σZj ,

(4.92)

where we made explicit the parametric dependence on time of the R versors,
defined in Eq. (4.21).

The Heisenberg equations of motion for the operators σαj (α ∈ {X, Y, Z})
include an additional term, due to their parametric dependence on time18

d

dt
σαj =

1

i

[
σαj , H

]
+
∂σαj
∂t

, (4.93)

where the last term is the parametric time derivative. The latter term can be
readily rewritten as [

σαj , V V̇
†
]
, (4.94)

by noting that the unitarity of V implies V̇ V † + V V̇ † = 0. In conclusion, the
equations of motion read

d

dt
σαj =

1

i

[
σαj , H̃

]
, with H̃ := H + iV V̇ †, (4.95)

where H is the model Hamiltonian19. From a physical perspective, the last term
can be interpreted as the inertial force contribution in the mobile frame R, equal
to

iV V̇ † = −s ~ω(t) ·
N∑
j=1

~σj = −s ~ω(t) · ~̃σ0, (4.96)

where we introduced the vector ~ω = (ωX , ωY , ωZ), with components ωX =

− sin θ φ̇, ωY = θ̇, and ωZ = cos θ φ̇. Interestingly, if one describes the dy-
namics in the frame R, then observes an inertial force formally equivalent to an
additional time-dependent external field coupled to each spin.

We now introduce the same approximation detailed in the last section, thus
expanding to the quadratic order in spin-wave operators and retaining only the

17 The operator s σαj is the generator of rotations around the α-axis for the spin ~sj ≡ s ~σj , for
α = x, y, z. The operator above is then the composition of two CCW rotations: the first of an
angle θ around the y-axis and the second of an angle φ around the z-axis. These two rotations
in general do not commute.

18 All the operators are understood to be in the Heisenberg representation of the time evo-
lution.

19 These equations hold for any self-adjoint operator in the form V AV †, in particular for the
spin-wave canonical operators in the frame R (see below).
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interaction between spin waves and the collective total spin. In this framework,
the reduced HamiltonianH = H/N is still given by Eq. (4.51); with the additional
inertial contribution it reads

H̃ :=
H̃

N
=− λ̄

(
Ẑ · x̂

)2
− g

(
Ẑ · ẑ

)
− s cos θ φ̇

+ ~eff(n0 +Nsw)

[
2λ̄
(
Ẑ · x̂

)2
+ g

(
Ẑ · ẑ

)
+ s cos θ φ̇

]
− ~eff

∑
k

J̃k

[(
X̂ · x̂

)2
q̃kq̃−k +

(
Ŷ · x̂

)2
p̃kp̃−k + 2

(
X̂ · x̂

)(
Ŷ · x̂

) q̃kp̃−k + p̃kq̃−k
2

]

+ ~1/2eff q̃0

{
s sin θ φ̇− 2λ̄ (1− ~effNsw) (Ẑ · x̂)(X̂ · x̂)− g(X̂ · ẑ)

+ 2(Ẑ · x̂)~eff
∑
k 6=0

J̃k

[
(X̂ · x̂) q̃kq̃−k + (Ŷ · x̂)

q̃kp̃−k + p̃kq̃−k
2

]}

+ ~1/2eff p̃0

{
− sθ̇ − 2λ̄ (1− ~effNsw) (Ẑ · x̂)(Ŷ · x̂)− g(Ŷ · ẑ)

+ 2(Ẑ · x̂)~eff
∑
k 6=0

J̃k

[
(Ŷ · x̂) p̃kp̃−k + (X̂ · x̂)

q̃kp̃−k + p̃kq̃−k
2

]}
,

(4.97)

with time-dependent X̂(t), Ŷ (t), Ẑ(t), defined in terms of the angles θ(t) and
φ(t) as in Eq. (4.21).

Let us remark that all the steps that brought us to this Hamiltonian are still
valid, in particular the spin-wave approximation in Eq. (4.42), with the important
difference that the canonical operators q̃k, p̃k are now referred to the moving frame
R and depend parametrically on time. The correct Heisenberg equations for these
operators are then 

d

dt
q̃k =

1

i

[
q̃k, H̃

]
d

dt
p̃k =

1

i

[
p̃k, H̃

]
,

(4.98)

valid for both k 6= 0 and k = 0. In close analogy with the previous section, one
finds

s
d

dt
q̃k =(2λ̄ sin2 θ cos2 φ+ g cos θ − 2J̃k sin2 φ+ s cos θ φ̇)p̃k

+ 2J̃k cos θ sinφ cosφ q̃k + δk,0 b̂

s
d

dt
p̃k =− (2λ̄ sin2 θ cos2 φ+ g cos θ − 2J̃k cos2 θ cos2 φ+ s cos θ φ̇)q̃k

− 2J̃k cos θ sinφ cosφ p̃k − δk,0 â,

(4.99)
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where the operators â and b̂ indicate the first and second curly braces of Eq. (4.51)
respectively, and we neglected non-linear contributions to the evolution of canon-
ical spin-wave operators (k 6= 0). It is easy to check that Eq. (4.99) correctly
reduce to Eq. (4.54) in the specific case θ̇ = φ̇ = 0.

For the spin-wave expansion to be valid, the condition

〈q̃0(t)〉 = 〈p̃0(t)〉 = 0 (4.100)

must hold not only at the initial time t = 0, but also for the evolving system at t >
0. Namely, one must choose an initial condition such that 〈q̃0(0)〉 = 〈p̃0(0)〉 = 0,
and the equations for the mean values must admit as (unique) solution 〈q̃0(t)〉 ≡ 0

and 〈p̃0(t)〉 ≡ 0. These equations are clearly obtained by Eq. (4.99) by replacing
each operator with its mean value.

In complete analogy with the equilibrium treatment of the previous chapter,
this requires the averages of the curly braces to be zero. These conditions yield
a pair of classical evolution equations for θ(t) and φ(t)

s
d

dt
θ = + 2λ̄[1− ε(t)] sin θ cosφ sinφ− 2

(
~eff
∑
k 6=0

J̃k∆
pp
k (t)

)
sin θ cosφ sinφ

+ 2
(
~eff
∑
k 6=0

J̃k∆
qp
k (t)

)
cos θ sin θ cos2 φ,

s
d

dt
φ =− g + 2λ̄[1− ε(t)] cos θ cos2 φ− 2

(
~eff
∑
k 6=0

J̃k∆
qq
k (t)

)
cos θ cos2 φ

+ 2
(
~eff
∑
k 6=0

J̃k∆
qp
k (t)

)
sinφ cosφ,

(4.101)
which depend also on the spin-wave correlation functions defined in Eq. (4.55),
and on the non-equilibrium spin-wave density

ε(t) :=
1

Ns

∑
k 6=0

〈
nk(t)

〉
=

1

Ns

∑
k 6=0

∆qq
k (t) + ∆pp

k (t)− 1

2
. (4.102)

Also the Eqs. (4.101) correctly reduce to the equilibrium counterpart in Eqs. (4.57),
as long as θ̇ = φ̇ = 0.

We can now substitute the above expressions for θ̇ and φ̇ in Eq. (4.99) and
retain only linear terms in the spin-wave operators, finding

s
d

dt
q̃k = + 2λ̄ cos2 φ p̃k − 2J̃k sin2 φ p̃k + 2J̃k cos θ cosφ sinφ q̃k + δk,0 b̂,

s
d

dt
p̃k =− 2λ̄ cos2 φ q̃k + 2J̃k cos2 θ cos2 φ q̃k − 2J̃k cos θ cosφ sinφ p̃k − δk,0 â,

(4.103)
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which in turn yield the evolution equations for the mean values
s
d

dt
〈q̃k〉 = + 2λ̄ cos2 φ 〈p̃k〉 − 2J̃k sin2 φ 〈p̃k〉+ 2J̃k cos θ cosφ sinφ 〈q̃k〉 ,

s
d

dt
〈p̃k〉 =− 2λ̄ cos2 φ 〈q̃k〉+ 2J̃k cos2 θ cos2 φ 〈q̃k〉 − 2J̃k cos θ cosφ sinφ 〈p̃k〉

(4.104)
and for the equal-time correlation functions

s
d

dt
∆qq
k = 4J̃k cos θ cosφ sinφ∆qq

k + 4
(
λ̄ cos2 φ− J̃k sin2 φ

)
∆qp
k + 2δk,0 〈q̃0b̂〉 ,

s
d

dt
∆pp
k =− 4J̃k cos θ cosφ sinφ∆pp

k − 4
(
λ̄ cos2 φ− J̃k cos2 θ cos2 φ

)
∆qp
k − 2δk,0 〈p̃0â〉 ,

s
d

dt
∆qp
k =− 2

(
λ̄ cos2 φ− J̃k cos2 θ cos2 φ

)
∆qq
k + 2

(
λ̄ cos2 φ− J̃k sin2 φ

)
∆pp
k

+ δk,0(〈p̃0b̂〉 − 〈q̃0â〉).
(4.105)

The dynamical evolution of an initial Gaussian state is completely deter-
mined by Eq. (4.104) and Eq. (4.105), since the equations of motion are linear.
In addition, by choosing the initial state such that 〈q̃k(0)〉 = 〈p̃k(0)〉 = 0, the
averages remain zero at all times, so one can focus on the correlation functions
only. Again, the terms multiplying the Kronecker delta equal zero thanks to the
Wick theorem:

〈q̃0â〉 = 〈q̃0b̂〉 = 〈p̃0â〉 = 〈p̃0b̂〉 = 0. (4.106)

Finally, one has to take into account the constraints

4 (∆qp
k )2 = 4∆qq

k ∆pp
k − 1, (4.107)

which are an exact property of the evolving Gaussian state, and are thus satisfied
at all times and for all values of k.

In conclusion, the dynamics of the system at the Gaussian level is completely
specified by a set of 2N + 2 coupled equations of motion, with the first two in
Eq. (4.101) for the dynamics of the collective spin, and the other 2N equations
for the evolution of the correlation functions

s
d

dt
∆qq
k = 4J̃k cos θ cosφ sinφ∆qq

k + 4
(
λ̄ cos2 φ− J̃k sin2 φ

)
∆qp
k

s
d

dt
∆qp
k =− 2

(
λ̄ cos2 φ− J̃k cos2 θ cos2 φ

)
∆qq
k + 2

(
λ̄ cos2 φ− J̃k sin2 φ

)
∆pp
k ,

(4.108)
where ∆pp

k are expressed in terms of ∆qq
k and ∆qp

k thanks to Eq. (4.107).
In addition, one has to specify suitable initial conditions, which can corre-

spond to the Gaussian approximate ground state of the initial time Hamiltonian,
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thus relying on the results of the previous section. As soon as the external field
g(t) varies in time, the non-equilibrium dynamical evolution (at the Gaussian
level) of this initial state is described by the equations derived above.

The physical picture emerging from these equations is clear: the LMG dy-
namics for the collective degree of freedom 〈~̃σ0〉 is modified by the spin-wave exci-
tations, with corrections at linear order in the small parameters J̃k 6=0 [see Eq. (4.101)].
Concurrently, the motion of the collective degree of freedom described by θ(t) and
φ(t) drives the evolution of the spin-wave Gaussian state [see Eq. (4.108)].

The energy of the system is easily evaluated by averaging the Hamilto-
nian (written in the fixed frame as in Eq. (4.51)) over the equilibrium or non-
equilibrium Gaussian state. In light of the previous arguments, only the quadratic
part gives a non-zero contribution, which reads20

E

N
=− λ̄ρ2 sin2 θ cos2 φ− gρ cos θ + ~eff n0

(
2λ̄ sin2 θ cos2 φ+ g cos θ

)
− ~eff

∑
k

J̃k
(
cos2 θ cos2 φ∆qq

k + sin2 φ∆pp
k − 2 cos θ sinφ cosφ∆qp

k

)
,

(4.109)

where the first two terms are the (reduced) classical energy of the collective degree
of freedom, and ρ = 1− ε. In the absence of an external driving, i.e. for constant
g, the energy is conserved up to order O(ε2): the inexact conservation of energy
is an expected consequence of the approximations introduced, in particular of the
approximate description for the ground state. In the case of a time dependent
driving field g(t), the angles θ and φ, as well as ρ, n0 and the two-points correla-
tion functions are all time dependent functions, and the energy is obviously not
conserved anymore.

As a final remark, we note that the evolution does not conserve the average
occupation number of each spin-wave mode 〈nk 6=0〉, except for the limit case
J̃k 6=0 = 0, where we retrieve the unperturbed LMG model.

In the next section, we concisely specialize our general results for the unper-
turbed LMG model. While this section could have been placed before the generic
discussion on spin waves, we decided to postpone it, in order to remark that it
relies on the same formal expansion adopted for the general case, applied only to
the collective mode k = 0.

20This expression is correct up to order O(ε2).
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4.6 “Spin-wave” expansion for the unperturbed LMG
model

In the case of vanishing perturbations, i.e. for J̃k 6=0 = 0, one retrieves the
plain LMG model, and the Hamiltonian in Eq. (4.97) reduces to a systematic
expansion of the exact LMG Hamiltonian, which is performed in the rotating
frame R.

This expansion is carried out in the operators q̃0 and p̃0, describing collective
spin fluctuations along X̂(t) and Ŷ (t) respectively; the latters are the transverse
directions with respect to Ẑ(t), which is self-consistently aligned with the average
total spin 〈~̃σ0〉.

The reduced Hamiltonian now reads

H = Hcl + ~1/2eff Hlin + ~effHquad +O(~3/2eff ), (4.110)

where21

Hcl =− λ sin2 θ cos2 φ− g cos θ − cos θ φ̇

Hlin = q̃0
[

sin θ φ̇− 2λ(1− ε) sin θ cos2 φ cos θ + g sin θ
]
+

p̃0
[
− θ̇ + 2λ(1− ε) sin θ sinφ cosφ

]
Hquad =

[
2λ sin2 θ cos2 φ+ g cos θ + cos θ φ̇

](
n0 +Nsw

)
− λ
[

cos2 θ cos2 φ q̃20 + sin2 φ p̃20 − 2 cos θ sinφ cosφ
q̃0p̃0 + p̃0q̃0

2

]
.

(4.111)
For the LMG model, one clearly has ε̇(t) ≡ ~effṄsw(t) = 0, and thus the

equations of motion for the collective spin [see Eq. (4.101)] reduce to the usual
Hamilton equations in Eq. (2.35), which describe the LMG dynamics in the ther-
modynamic limit. On the same footing as the general discussion in the previous
section, these equations are easily found by imposing the linear term Hlin to
vanish. By writing ρ = 1− ε = const, one finds{

θ̇ = λρ sin θ sin 2φ

φ̇ = −g + λρ cos θ(1 + cos 2φ),
(4.112)

which are easily checked to be equivalent to Eq. (2.35).
21We rescale time as t′ = t/s, for consistency with the treatise of the classical model, see

section 2.1 onwards.
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Moreover, if one substitutes the classical equations back in Eq. (4.111), then
finds

Hcl =− λ cos2 φ(1 + cos2 θ)

Hquad =

(
λ sin2 θ

1 + cos 2φ

2

)
q̃20 + λ cos 2φ p̃20 + λ cos θ sin 2φ

q̃0p̃0 + p̃0q̃0
2

+ λ(1 + cos 2φ)(1 + cos2 θ)Nsw.
(4.113)

In light of the discussion in section 2.2, we know that, for large but finite
values of N , Eqs. (4.112) approximately describe the evolution of spin coherent
states, at the level of total spin averages [see Eq. (2.15)]. As noted above, this
description completely neglects decoherence effects taking place at the Ehrenfest
time tEhr.

However, while at the Ehrenfest time scale the wave-packet semiclassical
picture completely breaks down22, one could think of giving a better description
of the short-time coherent evolution of the initial state.

The first non-trivial order of approximation consists in describing the quan-
tum state as a Gaussian wave packet, i.e. to treat quantum fluctuations of the
collective mode k = 0 at the quadratic order23. As depicted above for the general
case of non-zero perturbations, this approximate description of both equilibrium
and dynamics is yielded by the Hamiltonian in Eq. (4.110), truncated at the
quadratic order.

We discussed thoroughly in the last sections that, as soon as non-zero pertur-
bations are included, also quantum fluctuations for k 6= 0 spin-wave modes enter
in the dynamical evolution of the system. In this respect, let us mention that
it is somewhat improper to refer to collective mode excitations as “spin-waves”,
since they correspond to infinite wave-length and do not carry any information
on spatial scales24.

The Gaussian wave-packet evolution in the rotating frame R, is determined
22In fact, by definition of the Ehrenfest time, wave-packet spreading becomes O(1).
23As mentioned in appendix A, it can be proven formally that a spin-coherent state reduces

to an harmonic oscillator coherent state, for large values of N .
24In fact, zero-mode excitations enter in the dynamical evolution of the fully-connected LMG

model, where no spatial scales exist.



4.6. “Spin-wave” expansion for the unperturbed LMG model 74

univocally by the dynamical equations25 for two-points correlation functions
d

dt
∆qq

0 = 4λ cos θ cosφ sinφ∆qq
0 + 4

(
λ cos2 φ− λ sin2 φ

)
∆qp

0

d

dt
∆qp

0 =− 2
(
λ cos2 φ− λ cos2 θ cos2 φ

)
∆qq

0 + 2
(
λ cos2 φ− λ sin2 φ

)
∆pp

0 ,

(4.114)
which may be rewritten as

d

dt
∆qq

0 = 2λ cos θ sin 2φ∆qq
0 + 4λ cos 2φ∆qp

0

d

dt
∆qp

0 =− λ sin2 θ(1 + cos 2φ) ∆qq
0 + 2λ cos 2φ∆pp

0 ,

(4.115)

with ∆pp
0 expressed in terms of ∆qq

0 and ∆qp
0 as

∆pp
0 =

1

∆qq
0

(
1

4
+ (∆qp

0 )2
)
. (4.116)

Note that the dynamical evolution for the zero-mode correlation functions
depends on the classical trajectory (θ(t), φ(t)), which is in turn determined by the
initial condition and by the value of g, or more generally by the time-dependent
driving g(t). However, there is no feedback effect from the zero-mode fluctuations
on the collective classical dynamics, at this level of approximation.

As a substantial improvement, in comparison with the fully-classical treatise
(which is exact only in the thermodynamic limit), Eqs. (4.115) describe not only
the displacement of the initial localized wave-packet, but also squeezing effects.

One can define the collective spin squeezing as the minimal transverse vari-
ance of collective spin fluctuations [22]

ξ2 :=
min|û|=1, û⊥Ẑ(t)

〈(
û · ~J

)2 〉
j/2

. (4.117)

The latter expression can be rewritten in the maximal spin sector (j = Ns) in
terms of the collective degree of freedom ~S, defined in Eq. (2.5), as

ξ2 := 2Nsmin|û|=1, û⊥Ẑ(t)

〈(
û · ~S

)2 〉
. (4.118)

This quantity formalizes the intuitive idea of a deformation of the inital spin
coherent state, which generally occurs during the dynamics. It follows from the
definition in Eq. (4.117) that ξ = 1 only for the spin coherent state26 given by
|Ẑ(t)〉 ≡ |θ(t), φ(t)〉.

25These equations are a specific case of Eqs. (4.108), with J̃k 6=0 = 0 and J̃0 ≡ λ̄ = λ.
26Compare with Eq. (A.8).
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Remarkably, one can prove that the collective spin squeezing ξ2 can be writ-
ten as [23]

ξ2(t) = 1 + 2 〈n0(t)〉 − 2
√
〈n0(t)〉

(
1 + 〈n0(t)〉

)
, (4.119)

where 〈n0(t)〉 is the average number of zero-mode collective excitations

〈n0(t)〉 =
∆qq

0 (t) + ∆pp
0 (t)− 1

2
. (4.120)

This result holds in the large-N limit, so that we are actually dealing with stan-
dard squeezed states of the harmonic oscillator, with canonical operators q̃0, p̃0.

It is not difficult to check that, in the limit 〈n0〉 � 1, one has

ξ2 = 1− 2
√
〈n0〉+O

(
〈n0〉

)
, (4.121)

retrieving the spin coherent state in direction Ẑ(t) for 〈n0〉 = 0. In the opposite
limit 〈n0〉 � 1, one finds

ξ2 =
1

4 〈n0〉
+O

[(
1

〈n0〉

)2
]
. (4.122)

More precisely, this is the limit where 〈n0〉 <∼ N ,27 therefore massively squeezed
states have

ξ ≈ 1√
N
. (4.123)

As a conclusive remark, we mention that, thanks to the integrability of the
LMG model, one can also resort to exact diagonalization techniques, in order
to find an exact numerical description of the dynamics. In contrast, as soon
as integrability-breaking finite-range interactions are introduced (alias as soon
as J̃k 6=0 6= 0), exact diagonalization techniques can be adopted only for small
chains, typically up to N = 16 spins, since the Hilbert space dimension increases
exponentially as (2s+ 1)N .

27Note that N � 1, as usual.



Chapter 5

Robustness of optimal protocols to
quantum fluctuations

In this chapter we aim to understand the effects of quantum fluctuations on
the optimal (or sub-optimal) dynamics. More precisely, let us consider the opti-
mized protocols determined in chapter 3, for the LMG model in the thermody-
namic limit. Upon the introduction of weak integrability-breaking perturbations
[as in the Hamiltonian in Eq. (4.36)], which are treated at the quadratic order in
quantum fluctuations [as in Eq. (4.97)], it is quite natural to address the following
questions:

• How is it possible to quantify the effects of the perturbation on the optimal
dynamics?

• Are these effects less or more significant, depending on the specific choice
for the target state?

In order to answer to these questions, we first reformulate them more pre-
cisely, in section 5.1. Finally, in section 5.2, we introduce a specific expression for
the perturbation and discuss the results.

5.1 Optimal control in the presence of quantum
fluctuations

In this section, for the sake of clarity, we will explain in more detail our
purpose. The equations of motion for the average total spin 〈 ~S〉 (parametrized
by the angles θ(t), φ(t)) are given by Eq. (4.101), and include the quantum
feedback from the spin-wave two-points correlation functions {∆qq

k ,∆
qp
k ,∆

pp
k }k 6=0.
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The time evolution of the latters, as explained in the previous section, is
self-consistently determined by the evolution of the collective degree of freedom,
through Eq. (4.108), where use has been made of the Gaussian constraint in
Eq. (4.107). We remark here that the equations for the two independent cor-
relation functions of each mode k are not directly coupled to the corresponding
equations for other modes (k′ 6= k). However, these equations are all coupled to
the ones for θ(t) and φ(t).

In addition, the fluctuations for the collective mode (k = 0) are described
by the two-points correlation functions {∆qq

0 ,∆
qp
0 ,∆

pp
0 }, which yield no feedback

on the collective average dynamics; their evolution is governed by Eq. (4.115),
with the usual Gaussian constraint. These equations are in fact decoupled from
all the others, at the present level of approximation.

In close analogy with the previous chapters, we will consider as initial con-
dition the fully-polarized state along the x-direction, which is the spin coherent
state |θ0 = π/2, φ0 = 0〉. In the Gaussian approximation, this state is mapped to
a coherent Gaussian wave-packet, with{

∆qq
k (0) = 1/2

∆qp
k (0) = 0

(5.1)

for all k (included k = 0).
This localized wave-packet is the (approximate) ground state of the Hamil-

tonian in Eq. (4.51) for g = 0, as detailed in section 4.4. Note that Eqs. (5.1)
immediately imply that no spin waves are excited in the initial state, i.e. ε(0) = 0,
and similarly that 〈n0(0)〉 = 0. In addition, we choose a target state of the same
form as in chapter 3, which is a spin coherent state in direction |θtar, φtar = 0〉.

We then select an optimal (or sub-optimal) protocol gopt(t), determined for
the LMG model in the thermodynamic limit [see sections 3.2 and 3.3] which, if
substituted in place of g in Eq. (4.101), drives the perturbed system’s dynamics
in the time interval t ∈ [0, T ].

As mentioned above, we are interested in quantifying the effects of the per-
turbation on the optimal dynamics.

We consider the integrability-breaking terms such as “quantum noise”, which
in principle can prevent our system from reaching the target state at time T .
In this framework, even though we have a specific model for the noise (which
corresponds to a specific form of J̃k 6=0), we are not interested in controlling the
perturbed dynamics. As anticipated, we are rather interested in assessing the
impact of perturbations on the optimized dynamics, which has been previously
determined for the unperturbed LMG model.

A reasonable quantity that describes the effects of pertubations on the op-
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timal dynamics is the time-averaged spin-wave density, which reads

ε̄ =
1

T

∫ T

0

dt ε(t). (5.2)

In the unperturbed LMG model, by choosing as initial condition the spin
coherent state |θ0 = π/2, φ0 = 0〉 (or any other state in the maximal total spin
sector), one has ε(t) ≡ 0, due to the total spin conservation. As soon as weak
integrability-breaking terms are introduced, not only spin-wave excitations de-
crease the total spin value, but they also give a quantum feedback on the evolution
of the average total spin 〈 ~S〉 [see Eqs. (4.101)].

Remarkably, in the presence of non-zero perturbation, it is easy to check
that ε̄ = 0 iff ∆qq

k (t) = ∆pp
k (t) ≡ 1/2 and thus ∆qp

k (t) ≡ 0. In this limit case1,
Eqs. (4.101) reduce to the classical Hamilton equations (4.112) with ρ = 1.

In conclusion, let us highlight that quantum noise is here described as an
additional term in the Hamiltonian, whose effects on the unperturbed optimal
dynamics are studied in a fully-quantum (although approximate) description.
This is a radically different description of noise from stochastic classical noise,
which is used for instance in Langevin equations.

5.2 Nearest-neighbor perturbation

In order to study numerically the impact of quantum fluctuations on the
optimized dynamics, we first need to choose a specific form for the integrability-
breaking perturbation J|i−j|, leading to a specific expression for the exact Hamil-
tonian in Fourier space

H = − λ̄
N

(σ̃xk=0)
2 − g σ̃zk=0 −

1

N

∑
k 6=0

J̃k σ̃
x
k σ̃

x
−k, (5.3)

and its quadratic expansion in Eq. (4.51).
We will consider a system where nearest-neighbor interaction is added to

the infinite-range interaction of the LMG model, described by the Hamiltonian

H = − λ
N

N∑
i,j=1

σxi σ
x
j − g

N∑
i=1

σzi − J
∑
i

σxi σ
x
i+1, (5.4)

on a 1d lattice with periodic boundary conditions. The parameter J controls
the strength of the perturbation. By exploiting the parity of the perturbation

1This condition is not verified for any non-trivial dynamics, but it serves as a plausible
argument, in order to justify the choice of ε̄ for quantifying noise effects on the optimal dynamics.
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coefficients J|i−j|, one easily evaluates J̃k = J cos k, which is correctly checked to
be an even and real function, defined for the reciprocal lattice sites k = 2πn/N for
n = −N/2+1, . . . , N/2. Consistently with the notation introduced in Eq. (4.48),
we redefine

J̃ ′k =

{
J̃k, for k 6= 0

λ̄ = λ+ J̃0 = λ+ J, for k = 0,
(5.5)

and immediately drop the prime to simplify the notation. Accordingly, we shall
measure energy in units of J̃0 ≡ λ̄, while the rescaled time t′ = t/s is measured
in inverse units of energy.

Let us now present some relevant results, which may also hint possible di-
rections for further investigation.

In numerical simulations we fix N = 100, and we choose the initial and
target states as discussed in section 5.1.

As a preliminary comment, we remark that our analysis is restricted to
perturbation intensity values J/λ̄ such that the spin-wave expansion is a valid
approximation (i.e. the condition in Eq. (4.90) is fulfilled at all times). This
corresponds to total spin values ρ(t) = 1 − ε(t) close to maximal, and to the
physical intuition that the large majority of spins is aligned to the direction
Ẑ(t) :=

(
θ(t), φ(t)

)
during the dynamical evolution, with small excitations density

production for the collective (k = 0) and spin-wave (k 6= 0) modes.
In this regime, it is meaningful to compare the unperturbed optimal tra-

jectory for the LMG model, driven by the optimized protocol gopt(t), with the
corresponding one for the perturbed system2. Moreover, a reasonable choice for
the figure of meritM is still provided by the non-negative quantity

η := 1− ~ntar · ~n(T ). (5.6)

where |~ntar〉 = |θtar, 0〉 is the usual target coherent state, while the final versor
~n(T ) =

(
θ(T ), φ(T )

)
yields information only on the final direction of the average

total spin 〈 ~S〉, but it does not provide any description of the two-points corre-
lation functions characterizing the final Gaussian state. Consequently, another
complementary figure of merit is represented by the final spin depletion ε(T ).

As anticipated above, for assigned values of sztar and T/τ ,3 let us select
an optimized protocol gopt(t), with the corresponding optimal dynamics for the

2Note that, if one represents the evolution of the perturbed model in the classical phase
space, the dynamics is not constrained anymore on a sphere of fixed radius, since ρ(t) is not
constant in time.

3We apply here the same conventions as in chapter 3: in particular, the target fully-polarized
state is characterized by the point sztar = cos θtar, and the period τ refers to the ferromagnetic
orbit connecting the initial and the target state.
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unperturbed LMG model.
We now provide an answer to the first question that was raised at the be-

ginning of this chapter: Thanks to the formalism introduced in chapter 4, we can
actually determine numerically the dynamics of the perturbed system, under the
driving gopt(t).

In particular, it is interesting to quantify the impact of the perturbation
on the optimal trajectory, as a function of perturbation intensity J/λ̄. In fact,
this is a relevant problem for realistic implementations of controlled quantum
systems, where typically some additional perturbation cannot be ruled out. The
only hypothesis here, is that one is able to provide a reasonable description of
this additional perturbing term in the Hamiltonian, or “quantum noise”.

In this respect, let us mention that, while a nearest-neighbor perturbation
might be a reasonable guess under some experimental conditions, the spin-wave
formalism can equally well describe any short- or long-range perturbation, for
instance power law decaying interactions. The only difference is the explicit
expression for the coefficients J̃k, which enter in our description.

Clearly, for small enough values of J/λ̄, one expects the trajectory of the
perturbed system to be qualitatively similar to the unperturbed trajectory; on the
contrary, for larger values of J/λ̄, there should be a more significant modification
of the optimal dynamics.

As an illustrative example, in Figs. 5.1 and 5.2, we show the impact of quan-
tum fluctuations on the double-quench protocol and on a numerically optimized
protocol, respectively. We set sztar = 0.95 and T/τ = 0.5, drawing the optimal
trajectory (for the unperturbed LMG model) with a red line, and the perturbed
dynamics with a thick blue line. As usual, the initial and target states are marked
with red points.

In this fashion, one could carry out a systematic quantitative study, and
determine the maximum value of J/λ̄ that can be tolerated, in order to reach
some target state with a certain accuracy.

Firstly, one would need a more refined definition for the figure of merit
M, for instance by evaluating the fidelity between the displaced squeezed final
state |ψ(T )〉 and the target coherent state. This would require some non-trivial
manipulations, since these Gaussian states are defined in the rotating frame R,
therefore it is not immediately obvious how to evaluate their overlap. We leave
this problem open for future investigation.

In addition, with this proper redefinition for the figure of merit, one could
study whether some specific form for the optimal (or sub-optimal) protocol gopt(t)
is systematically more robust with respect to the introduction of quantum noise,
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(a) J/λ̄ = 0.2 (b) J/λ̄ = 0.5

Figure 5.1: Impact of quantum fluctuations on the double-quench protocol,
with target point sztar = 0.95 and T/τ = 0.5. The optimal trajectory is drawn
in red, while the perturbed one is in blue. In the left panel we set J/λ̄ = 0.2,
finding ε̄ ≈ 6.8× 10−3. The perturbed orbit is qualitatively unaltered and
covers the optimal trajectory, which is hardly visible. The corresponding values
for the figures of merit are η ≈ 7.8× 10−4 and ε(T ) ≈ 1.8× 10−2.
In the right panel we set J/λ̄ = 0.5, finding ε̄ ≈ 3.9× 10−2: the perturbed
orbit is qualitatively different from the original one. In this case, spin-wave
excitations yield a significantly larger disturbance on the optimal dynamics,
with η ≈ 2.1× 10−2 and ε(T ) ≈ 1.1× 10−1.

and how this possibly depends on the choice for the target state and the final
time T .

We can finally address the second question that was posed at the beginning
of this chapter. Physical intuition may suggest that, for target states progressively
closer to the paramagnetic ground state4, the perturbing effects on the optimal
dynamics might become more relevant. This is indeed the case, as shown in
Fig. 5.3, where we plot the averaged spin-wave density production ε̄ as a function
of sztar, for T/τ = 0.55. Note the linear scale on the x axis and the logarithmic
scale on the y axis.

4The paramagnetic ground state, as explained in chapter 2, is obviously given by the fully-
polarized state along z.

5We checked that this result does not depend on the specific choice for T/τ .
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(a) J/λ̄ = 0.2 (b) J/λ̄ = 0.5

Figure 5.2: The same as in Fig. 5.1, for a numerically optimized protocol.
We used the CRAB algorithm, with the first n = 4 harmonics of Eq. (3.20),
and the linear ramp ansatz in Eq. (3.23). In the left panel we set J/λ̄ = 0.2,
finding ε̄ ≈ 7.3× 10−3. In close analogy with the left panel of Fig. 5.1, the
perturbed dynamics covers almost exactly the optimal trajectory, and we get
η ≈ 1.3× 10−4, ε(T ) ≈ 3.2× 10−2. In contrast, in the right panel, we set
J/λ̄ = 0.5 and obtain ε̄ ≈ 4.4× 10−2. In the latter case, spin-wave excitations
alter more significantly the dynamics and we obtain η ≈ 7.2× 10−3, ε(T ) ≈
1.9× 10−1.

Figure 5.3: Lin-log plot of the averaged spin-wave density production ε̄ as a
function of sztar, for T/τ = 0.5, both for the double-quench protocol (left panel)
and for a numerically optimized protocol (right panel). The latter is obtained
with CRAB, in the same way as in Fig. 5.2. In both cases, we clearly observe
an overall increase of ε̄ with sztar, although it is not perfectly monotonic in the
right panel.



Chapter 6

Conclusions

In this thesis we firstly considered the quantum optimal control problem for
the LMG model in the thermodynamic limit. Moreover, we described the effects
of a finite-range integrability-breaking perturbation, by using a time-dependent
spin-wave expansion with respect to the direction of the average total spin 〈 ~S〉.

The main results of this thesis are derived in chapters 3 and 5.
In chapter 3, we characterized different optimal (or sub-optimal) protocols,

in order to drive the LMG model to a target state, in a fixed time T . We exploited
both analytical methods (based on the knowledge of the classical phase portrait)
and numerical methods, in particular the CRAB technique. We showed that the
number of solutions critically depend on the value of T , and, remarkably, we
determined a lower bound Tmin below which the target state cannot be reached
exactly.

In chapter 5, we described the effects of “quantum noise”, i.e. weak addi-
tional short-range perturbations, on the optimal dynamics. We provided some
qualitative results, and a possible framework for more systematic studies of the
impact of quantum fluctuations on the optimal dynamics.

This thesis could lead to a number of further investigations. For example, for
the unperturbed LMG model, one could think of controlling explicitly not only
the coherent quantum evolution of the average total spin, but also the collective
spin squeezing [see Eq. (4.119)]. In fact, one could be interested in minimizing
the final squeezing of the Gaussian wave-packet, in order to maximize the overlap
with the target coherent state. This approach could yield refined versions of the
optimal protocols, if compared with those determined by controlling only the
classical collective dynamics, as in chapter 3.

In addition, it could be interesting to substitute these optimized drivings in
the fullly-quantum Schrödinger equation, so as to compare the final fidelity with
the one obtained with different quantum control methods. In fact, we remark
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that exact numerical diagonalization is an easy task for the LMG model, since it
can be performed in the maximal total spin sector, with dimension O(N).

I think that these optimized protocols, determined at the level of the Gaus-
sian approximation, could yield good values for the final fidelity, or at least rep-
resent a convenient starting point for more refined optimizations.

Finally, at the end of chapter 5, we suggested some possible directions for
a more quantitative analysis on the impact of quantum fluctuations on optimal
dynamics.

More in general, I suspect that phase space methods could be an ideal, al-
though rarely explored, playground in order to study quantum optimal control.
In particular, it could be interesting to recast the quantum optimal control prob-
lem at the level of Wigner functions, where some insightful approximations can
then be introduced, such as the TWA.

As a final comment, it is quite certain that quantum optimal control will
take full advantage of the machine learning “revolution”. In particular, reinforce-
ment learning methods [24] will probably represent unmatched techniques for
determining optimal protocols, as well as for providing heuristic insight on the
physics of quantum many-body systems.



Appendix A

A short review on spin coherent
states

The scope of this short appendix is to give a concise operative review on
spin coherent states. The subject of generalized coherent states is an extremely
interesting field, with far-reaching applications in diverse domains of physics and
mathematics.

In the following, we will just outline some results that are of interest for
the present thesis, avoiding technical details and demonstrations. The interested
reader is referred to excellent books, such as [25] and [26].

As a first step, we give the definition of spin coherent states. Let us consider
the spin operator ~J and refer to a subspace of fixed total spin, labeled by the
quantum number j.

A spin coherent state system is generated by a family of unitary transfor-
mations from an appropriate reference state

|~n〉 ≡ |θ, φ〉 := U(θ, φ) |ψ0〉 , (A.1)

where the versor ~n = (sin θ cosφ, sin θ sinφ, cos θ) selects a direction in space
by usual spherical coordinates, and U(θ, φ) = exp

(
iθ ~m · ~J

)
, with the versor

~m = (sinφ,− cosφ, 0) being orthogonal to both ~n and the reference north pole
versor ~n0 = (0, 0, 1).

The usual choice for the reference state is one of the two states |ψ0〉 =

|j, jz = ±j〉, since it yields a spin coherent system of states with smallest possible
dispersion for the total spin operator | ~J |2,

(∆| ~J |)2 ≡
∑

α=x,y,z

(∆Jα)2 = j. (A.2)

Heuristically, this is the preferable choice for the reference state, since the gener-
ated spin coherent states resemble classical states, as closely as possible.
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For the sake of definiteness, we choose |ψ0〉 = |j, jz = j〉. Note that also
the highest and lowest weight states |±~n0〉 = |j, jz = ±j〉 belong to the coherent
states system, even though the above definition for the versor ~m is not valid for
θ = 0, π.

The above definition for coherent states in Eq (A.1) can be expressed in
words as: One starts from the highest weight state |ψ0〉 = |j, jz = j〉 and applies
a rotation of angle θ around a properly defined axis ~m, which rotates the initial
coherent state to the generic coherent state |θ, φ〉. We remark that this rotation
in spin space can be visualized as a common rotation of 3d vectors in Euclidean
space.

We now summarize some relevant properties of spin coherent states, referring
to the literature for explicit proofs and for a more in depth analysis of the topic.

1. A spin coherent states system is a over-complete set of states, and the
resolution of identity can be written as an integral over the unit sphere S2

2j + 1

4

∫
S2

d2n |~n〉 〈~n| = 1. (A.3)

2. It follows that two generic spin coherent states are not orthogonal, as can
be checked by evaluating their fidelity1

F (~n, ~m) = |〈~n|~m〉|2 =

(
1 + ~n · ~m

2

)2j

. (A.4)

3. The spin projections averages have an evident geometrical meaning

〈~n | ~J |~n 〉 = j ~n, (A.5)

and in particular one has

~n · ~J |~n〉 = j |~n〉 . (A.6)

4. The highest weight state |~n〉 = |j, jz = j〉 minimizes the product of spin
fluctuations in orthogonal directions, in the sense that the Heisenberg un-
certainty relation

(∆Jx)2(∆Jy)2 ≤ 1

4
〈Jz〉2 (A.7)

is satisfied as an equality. This is easily proven since 〈Jx〉 = 〈Jy〉 = 0 from
the previous property, while obviously 〈Jz〉 = j, and one can easily check

1 The exact phase of the overlap between two coherent states can be evaluated explicitly, and
it is found to be related to a semiclassical quantization of the sphere. For details, see reference
[25].
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that (∆Jx)2 = (∆Jy)2 = j/2. The same property applies to a generic spin
coherent state |~n〉, upon suitable rotations of the spin operators, i.e. by
substitution of Jα with J̃α := U(θ, φ)Jα U †(θ, φ), and reads

(∆J̃x)2(∆J̃y)2 =
1

4
〈J̃z〉2 =

j2

4
. (A.8)

5. A remarkable expression for correlation functions of two operators in a
(spin) coherent state is given in reference [27]. It is written as a systematic
expansion in powers of the quantum parameter 1/j (or equivalently ~ for
standard coherent states), involving only single-operator averages in the
coherent state. For our purposes it is enough to retain that

〈JαJβ〉 = 〈Jα〉 〈Jβ〉+O
(

1

j

)
. (A.9)

Spin coherent states, in close analogy with coherent states of the harmonic
oscillator2, have an important role in semiclassical physics. It is a well-known
fact that oscillator coherent states closely mimick the classical evolution for an
harmonic oscillator Hamiltonian.

An analogous result holds for spin coherent states [27], if we consider the
Zeeman Hamiltonian, which describes the coupling of the spin to an external
magnetic field

HZ = − ~J · ~h. (A.10)

Skipping technical details, this result is quite natural, since the time evolution
generated by the Zeeman Hamiltonian is a rotation around the axis defined by
the magnetic field ~h. Consequently, the initial coherent state is rotated, without
the occurrence of decoherence effects. Let us point out the analogy between this
Hamiltonian and the harmonic oscillator Hamiltonian, having both of them an
equidistant energy spectrum.

In conclusion, we mention that in the large N limit, spin coherent states
reduce to harmonic oscillator coherent states [25], as can be formally proved
by using the Holstain–Primakoff mapping in the harmonic approximation, see
Eq. (4.9).

2These states were studied by Schrödinger in the first years after the advent of quantum
mechanics, so they are often referred to as standard coherent states.



Appendix B

Spin-wave theory in Fourier space

In the present appendix we would like to analyze in more detail the spin-
wave theory and remark its generality. In order to do so, we consider a generic
d-dimensional lattice model with spin operators sαr , where α = x, y, z refers to a
fixed reference frame.

The main physical insight to develop the spin-wave theory is that we aim to
describe only small perturbations above a fully-polarized (ground) state, say in
the z-direction.

It is convenient to focus on the single-spin raising and lowering operators
s±r := sxr ± isyr. The following manipulations hold true for any lattice site, so we
drop the label r and lower the component index, in order to simplify the notation.

It is immediate to verify the operator identity1

ŝ−ŝ+ = ŝ2 − ŝ2z − ŝz, (B.1)

which leads to the following identity for the eigenvalues in their common basis of
eigenstates

λsz = (s− sz)(s+ sz + 1), (B.2)

where we denote with λsz the eigenvalues of the operator ŝ−ŝ+.
First of all, we remind that the operators sx, sy can be trivially rewritten

in terms of s±, just exploiting the definition of the latters. One could wish to
rewrite also the operator sz as a simple function of s±. Heuristically, this could
simplify the description of the problem, but the actual reason why one would like
to achieve this will become clear in the following. For the sake of clarity, we first
prepone the solution of this problem.

In fact, if we try to rewrite sz as a simple function of s±, we soon encounter
some difficulties: if one solves the Eq. (B.1) for sz, then finds two solutions

1 Here we highlight that these are operators, by adopting the “hat” notation, in order to
avoid confusion with the corresponding eigenvalues.
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involving a square root. The exact representation of the operator sz in terms of
s± is consequently far from simple and inconvenient.

However, if we want to describe small perturbations away from the fully-
polarized state, it might be tempting to write in some sense that sz ≈ s� 1. If
this were so, the previous equation for the eigenvalues would simplify to

λsz ≈ 2s(s− sz). (B.3)

It would now be trivial to solve it for sz, and to obtain via spectral decomposition
a simple approximated expression for the operator sz in terms of s±, which reads

ŝz ≈ s1− ŝ−ŝ+
2s

. (B.4)

The problem is that the argument leading to this approximation sounds like a
poor excuse, as vividly stated in [28]. In fact, the single spin value in each
site is always O(1), often equal to 1/2, meaning that the statement s � 1 is
unacceptable.

The real justification behind the success of formula (B.3) is that it is actually
exact for sz = s and sz = s− 1. This is easily checked, and further implies that
Eq. (B.4) is an operator identity for s = 1/2.

More in general, this sets a natural limit for the validity of the spin-wave
theory: we are neglecting the possibility of multiple individual spin excitations at
the same site, which is in manifest agreement with our initial physical idea. The
previous statement can be rephrased more formally, by saying that Eq. (B.4) is
exact if we truncate the Hilbert space of each spin to sz = s, s− 1.

The next step of spin-wave theory is more conveniently carried out in Fourier
space. Focusing again on raising and lowering operators, we define their Fourier
transforms as

S̃ ±k =
1√
N

∑
r

e−ik·rs±r , (B.5)

where k varies over the sites of the reciprocal lattice, defined symmetrically with
respect to the origin k = 02. This is convenient, since we remark that the adjoint
of S̃ +

k is the operator S̃ −−k.
It is trivial to verify that for every choice of k and k′[

S̃ +
k , S̃

+
k′

]
=
[
S̃ −k , S̃

−
k′

]
= 0. (B.6)

The other relevant commutation relations are also easily calculated, but give a
rather cumbersome result[

S̃ +
k , S̃

−
k′

]
=

2

N

∑
r

e−i(k+k′)·rs zr. (B.7)

2 This assures that for every site k of the reciprocal lattice, also −k belongs to it.
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Therefore, using Fourier transforms as such does not simplify the original lattice
model by any mean; however, it is now easier to make physically meaningful
approximations. If all the values of s zr were equal, then the r.h.s. of Eq. (B.7)
would always be zero but for k = −k′. As already stated, we are considering
small deviations from a fully-polarized state in z-direction, i.e. one has s zr = s

for the overwhelming majority of lattice sites r. If k 6= −k′ the commutator is
therefore of O(1/N) and can be neglected for large N . In conclusion, we can
write to a good approximation[

S̃ +
k , S̃

−
k′

]
= 2s δk,−k′ . (B.8)

The commutation relations of Eq. (B.6) and Eq. (B.8) resemble those of a set of
bosons. We rename these operators to use the familiar notation for annihilation
and creation operators 

ak :=
S̃ +

k√
2s

a†k :=
S̃ −−k√

2s
.

(B.9)

With the previous definition we conclude that the pairs of operators { ak, a†k }k
define a set of boson operators, including the particular case where k = 0.

We now want to rewrite the Fourier transform components

S̃ α
k =

1√
N

∑
r

e−ik·rsαr (B.10)

in the framework of the spin-wave approximation. This can be done immediately
for S̃ x

k and S̃ y
k, given the usual expressions for the operators sxr , s yr in terms of

the raising and lowering operators s±r :

S̃ x
k =

1

2
(S̃ +

k + S̃ −k ) =
√
sq̃k (B.11)

S̃ y
k =

1

2i
(S̃ +

k − S̃
−
k ) =

√
sp̃k, (B.12)

where we defined the operators
q̃k =

a†−k + ak√
2

p̃k = i
a†−k − ak√

2
.

(B.13)

Thanks to the boson commutation relations, it immediately follows that the oper-
ators { q̃k, p̃−k }k are pairs of canonical operators for every choice of k (included
k = 0):

[q̃k, p̃k′ ] = i δk,−k′ . (B.14)
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However, it is important to observe that these operators are not hermitian, since
q̃ †k = q̃−k and p̃ †k = p̃−k.

We wish we could rewrite also the operators S̃ z
k in terms of these canonical

operators in a straightforward way. This reduces to rewriting sz as a simple
function of s±, the problem that we tackled in the beginning of the section. As
promised, it is now apparent the advantage of this procedure, since it allows us to
rewrite all the operators in terms of the conjugated variables { q̃k, p̃−k }k. We now
make use of the Eq. (B.4), which implies the following (approximated) expression

S̃ z
k = s

√
Nδk,0 −

1√
N

∑
r

e−ik·r
s−r s

+
r

2s
. (B.15)

By using the inverse of Eq. (B.5) and introducing the canonical operators in the
expression above, one can check that

S̃ z
k = s

√
Nδk,0 −

∑
k′

q̃k′ q̃k−k′ + p̃k′ p̃k−k′ − δk,0
2
√
N

. (B.16)

It might seem natural to define the number operators in the usual way

nk := a†kak ≡
S̃ −−kS̃

+
k

2s
, (B.17)

but their expression in canonical coordinates

nk =
1

2
[q̃kq̃−k + p̃kp̃−k + i (q̃−kp̃k − p̃−kq̃k)] (B.18)

would not be the usual simple expression for boson number operators.
Since the modes k and −k are coupled3, it is appropriate to define the

number operators as

nk :=
1

2

(
a†kak + a†−ka−k

)
≡
S̃ −−kS̃

+
k + S̃ −k S̃

+
−k

4s
. (B.19)

With this definition the usual expression holds

nk =
1

2
(q̃kq̃−k + p̃kp̃−k − 1) , (B.20)

moreover it is evident that nk = n−k. The physical meaning of this definition is
that the operator nk +n−k = 2nk correctly counts the excitations of the coupled
modes k and −k. From now on we shall always refer to the definition of nk given
in Eq. (B.19).

3 Meaning that the operators with labels k and −k have non zero commutation relations.
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We also define the total number of spin-wave excitations as

Nsw :=
∑
k 6=0

nk, (B.21)

while we remark that n0 is the number of excitations of the collective degree of
freedom.

In conclusion, we managed to rewrite the Fourier operators S̃ α
k in terms of

the set of conjugated operators { q̃k, p̃−k }k, building on the physical assumption
of describing a state close to the fully-polarized state along the z-direction. The
result is given by

S̃ x
k =
√
sq̃k

S̃ y
k =
√
sp̃k

S̃ z
k = s

√
Nδk,0 −

∑
k′

q̃k′ q̃k−k′ + p̃k′ p̃k−k′ − δk,0
2
√
N

.

(B.22)

We remark that this result relies on two approximations, precisely on the expres-
sion of sz in terms of s± in Eq. (B.4) and on the approximate commutators in
Eq. (B.8). The spin-wave theory is thus valid only if s zr = s for the majority of
the sites and for big sizes N of the lattice.

Before concluding this section, it is extremely interesting to rewrite the total
spin operator

∣∣ ~J ∣∣2 and its projection along the z-direction Jz in terms of the spin-
wave operators4. The equations Eq. (B.22) for k = 0 immediately imply

J x
0 =
√
Nsq̃0

J y
0 =
√
Nsp̃0

J z
0 = Ns−

∑
k

nk = Ns− n0 −Nsw

(B.23)

IfNsw = 0, these equations for the collective spin reduce to the Holstein–Primakoff
approximation in Eq. (4.14)5.

The result for J z
0 shows that both the spin waves and the excitations of the

collective degree of freedom can lower the z-projection of the total spin. The
total spin operator

∣∣ ~J ∣∣2 can be written as:

∣∣ ~J ∣∣2 = Ns(2n0 + 1) +

[
Ns−

∑
k

nk

]2
=

= (Ns)2 + n2
0 − 2(Ns− n0)

∑
k 6=0

nk +

(∑
k 6=0

nk

)2

+Ns

(B.24)

4 Consistently with the definition adopted in previous chapters, we define the total spin
operators as Jα =

∑
r s

α
r .

5 The only difference being that here we consider only the maximum total spin sector ρ = 1.
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Since Ns � n0 and Ns � 1, to a very good approximation one can ignore all
the terms containing n0 in the last equation and also add 1 to Ns in the third
term, obtaining:

∣∣ ~J ∣∣2 ≈ (Ns)2 − 2(Ns+ 1)
∑
k 6=0

nk +

(∑
k 6=0

nk

)2

+Ns. (B.25)

The last line can eventually be rewritten as6∣∣ ~J ∣∣2 = j(j + 1), (B.26)

where
j = Ns−

∑
k 6=0

nk = Ns−Nsw. (B.27)

It is crucial to observe that the spin-wave excitations lower the value of the
total spin

∣∣ ~J ∣∣2, which is not a constant of motion anymore if Nsw 6= 0. This
is a major difference from the unperturbed LMG model (which is recovered for
Nsw = 0). On the other hand, the zero mode excitations do not lower the total
spin magnitude.

In light of Eq. (B.23), the physical idea of describing small deviations from
a fully-polarized state in z-direction can be reformulated as follows: the spin-
wave approximation is valid only in the sector of the total Hilbert space in which
J z
0 ≈ Ns, or equivalently for states with small excitations density7

〈n0〉+ 〈Nsw〉
Ns

≈ 〈Nsw〉
Ns

� 1. (B.28)

This condition clearly implies through Eq. (B.27) that j ≈ Ns.

Final remarks and possible improvements

It was already pointed out above that the whole spin-wave theory, and in
particular the results in Eq. (B.22), rely on two approximations only: the ex-
pression of sz in terms of s± in Eq. (B.4) and the approximate commutators in
Eq. (B.8). The first approximation is indeed exact for s = 1/2, which is often the
case of interest. Therefore, if one wanted to go beyond the spin-wave theory, then
would probably have to think of a better approximation for the commutators in
Eq. (B.7), with respect to the one of bosons in Eq. (B.8).

6 We now write it as an equality, forgetting about the subextensive term that we dropped.
7 The approximation holds only if the zero mode excitations 〈n 0〉 are small compared to the

total spin-wave excitations 〈Nsw〉.



94

Another possible direction for working out a better approximation could be
to systematically expand Eq. (4.42) to higher orders, so as to rewrite the model
Hamiltonian expanded at n-th order in the canonical operators.

A successful treatment could allow to give a more general description of
these quantum spin models, valid in a larger subspace of the total Hilbert space,
and thus with broader applicability.
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