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Introduction

The Minimum Spanning Tree (MST) problem is an archetypal member of the
class of combinatorial optimization problems, a rather broad and interdisciplinary
field, its ideas stretching from theoretical computer science to statistical physics
throughout graph theory, the latter providing the ground basis for both exact re-
sults and construction of efficient algorithms. Combinatorial optimization may be
defined as the set of results and techniques used to find extrema of some function,
taking values only on a finite or at most countable set. In this setting, the MST
problem on a connected graph consists in finding the spanning acyclic subgraph
(tree) with the smallest total edge weight. Despite being simple in its formulation,
in practice this problem is quite difficult to handle, as it is clear if one considers
that on a graph with N vertices, all connected to each other, the number of dif-
ferent spanning trees is NN−2.

The first generally accepted algorithm for the solution of this problem was
published in 1926 by O. Borůvka [11] as a method for constructing an efficient
electricity network for the region of Moravia, in the Czech Republic. In that case,
the edge weights of the underlying graph were given as a first approximation by
the distances between different nodes of the network, so that the problem was
actually defined in a Euclidean domain. Since then, the MST problem has been
one of the most thoroughly studied problems of computational geometry. More-
over, it has found diverse applications in an outstanding number of fields, both
theoretical and practical, ranging from computer algorithms design to document
clusterings, from the analysis of gene expression data to the modeling of turbulent
flows, among many others.

In the MST problem solved by Borůvka, as in most cases of everyday interest,
the vertices of the graph are supposed assigned, and therefore the problem is fixed
in all its details: no disorder or randomness is present. However, we can consider
the problem under a different point of view, supposing for example that the edge
weights are random variables generated according to some probability distribution
density. These can be independent and identically distributed, or even correlated
if we consider the vertices of the graph as random points scattered in a Euclidean
domain, with the edge weights that become proportional to the distance between
them. In such versions of the problem, called random MST problem, the specific
solution of a given instance of an optimization problem is not of great interest,
and one is instead concerned with the average properties of the MST, possibly
depending on some parameters and on the way randomness is introduced in the
first place.

What we have described is clearly the typical playground of statistical physics,
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Introduction

which has developed through the years a plethora of techniques to obtain the av-
erage properties of systems with a huge number of degrees of freedom, even in the
presence of disorder. In fact, since the seminal work by Mézard and Parisi [25]
published in 1985 on the Euclidean matching problem, the methods of statistical
mechanics, and specifically of spin glasses, has proven extremely powerful to treat
random combinatorial optimization problems.

In this thesis we overview the main results concerning with the random MST
problem, and we present the results of our investigation on this subject, with the
material organized as follows.

In chapter 1 we introduce the basic concepts and definitions of graph theory,
together with a brief review of optimization theory. We then concentrate on the
MST, both describing its general properties and the main algorithms designed for
its search in a given graph. After that we focus on the contextualization of random
combinatorial optimization problems, making clear their profound connection to
the field of statistical physics, and we provide at the end a description of a relevant
technique used to treat both, namely the replica method.

In chapter 2 we start dealing with the main subject of the thesis in more detail,
considering the random MST problem with i.i.d. edge weights. After a review
of the existing literature, we derive the spanning trees generating polynomial for
a generic graph as a q → 0 limit of the q-state Potts model. We then rewrite
this quantity in an interesting way using the matrix-tree theorem and Grassmann
variables, and we use it as the starting point to set up a replica calculation for the
MST problem on the complete graph.

In chapter 3 we turn our attention to the random Euclidean MST problem,
where the underlying graph is embedded in a Euclidean domain. After an intro-
duction to the subject, considering edges weighted by a positive power of their
Euclidean length, we solve for the first time the one dimensional MST problem
on a bipartite graph, in which the vertices are divided in two different sets, pro-
viding an exact formula for the average cost. Finally, we perform a numerical
investigation in one and two dimensions to analyze the asymptotic behavior of the
MST average cost in the thermodynamic limit. This, together with our previous
solution, shows that the scaling behaviour does not change by passing from the
monopartite to the bipartite case, contrary to what happens in other combina-
torial optimization problems such as the Traveling Salesman Problem (TSP) and
the matching problem. This result represents the main contribution of this thesis
to the topic.
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Chapter 1

Graphs and optimization

The minimum spanning tree problem is an important combinatorial optimization
problem defined on a graph, so the first section is devoted to a short introduction to
the basic definitions and results of graph theory, referring mostly to the standard
textbook of Diestel [1]. We then turn our attention to optimization problems,
with a focus on the main subject of the thesis and the algorithms that solves
it. Finally, an interesting connection between random optimization problems and
the statistical mechanics of disordered systems is established. For this reason,
after a brief description of these two last topics, the chapter concludes with the
introduction of a relevant method used to treat both, namely the replica technique.

1.1 Graph theory basic definitions
A graph G = Graph(V ; E) is a couple of sets (V ; E), such that E ⊆ V × V , whose
elements are called vertices and edges respectively. The cardinality V = |V| of the
vertex set V is called order of G and we will always suppose that V ∈ N is finite,
unless otherwise stated.

In the present work an element e ∈ E can be uniquely identified by a pair of
vertices u, v ∈ V , i.e. we do not consider graphs containing multi-edges. If the
ordering does not matter we say that the graph is undirected, otherwise every edge
is thought to posses an initial vertex and a terminal vertex, and the graph is called
directed (or digraph). In the last case, an edge in which the initial vertex and the
terminal vertex coincides is called a loop (Fig. 1.1b).

Usually, one refers to the structure of a graph as a collection of incidence re-
lations, in fact given a vertex v and an edge e we say that v is incident with e if
v ∈ e, and we write e → v. The number of edges that are incident with a cer-
tain vertex v in an undirected graph is called the degree (or coordination number)
of v, and it is denoted by deg(v). Moreover we say that u, v ∈ V are adjacent if
(u, v) ∈ E , and we denote by ∂v the set of adjacent vertices to v. Finally, we define
the complete graph KV as the graph in which each of the V vertices is adjacent to
all the others (Fig. 1.2a).

Given two graphs G = Graph(V ; E) and G′ = Graph(V ′; E ′), if V ⊆ V ′ and
E ⊆ E ′ we say that G is a subgraph of G′ and G′ is a supergraph of G, in symbols
G ⊆ G′. Furthermore, if V = V ′ G is called a spanning subgraph of G′ (Fig. 1.1c).
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1. Graphs and optimization

(a) Example of path
(red) and cycle (blue)

(b) Directed graph with
a loop and a multi-edge

(c) Example of spanning
subgraph (bold), in this
case a tree

Figure 1.1: Examples of graphs

Let us observe that the set S of spanning subgraphs is in natural bijection with
the power set P(E) of E .

A path of length l in a graph G is a subgraph P ⊆ G such that VP = {v0, . . . , vl}
is a set of distinct vertices and the edge set is

EP = {(v0, v1), (v1, v2), . . . , (vl−1, vl)}. (1.1)

Any nontrivial path starting and finishing at the same vertex is called a cycle
(Fig. 1.1a). A graph G is said to be connected if, for any couple of vertices
u, v ∈ V , there exists a path in G linking them. Every graph can be expressed
as union of maximal connected subgraphs, called components. Given a connected
graph G = Graph(V ; E), the subset X ⊂ V ∪ E is said to be a separating set if
G′ = Graph(V \ X ; E \ X ) is not connected. Specifically, if X ⊂ E is an edges’
subset only we call it a cut, and if X contains only a single vertex this is called a
cutvertex. Similarly if X contains only one edge, we say that the selected edge is
a bridge.

A Hamiltonian path in an undirected or directed graph is a path that visits
each vertex exactly once. Specifically, if such a path is also a cycle it is called
Hamiltonian cycle. Analogous definitions hold when we consider paths and cycles
traversing all edges exactly once instead of vertices, in which case we refer to Eu-
lerian paths and Eulerian cycles respectively.

Given two graphs G = Graph(V ; E) and G′ = Graph(V ; E ′) with the same vertex
set V we define

G∆G′ := Graph(VG∆G′ ; E∆ E ′), (1.2)

where
E∆ E ′ := (E ∪ E ′) \ (E ∩ E ′) (1.3)

is the symmetric difference between the two edge sets and VG∆G′ is the set of the
vertices that are endpoints for the edges in E∆ E ′.

Let us consider now the set SG of the spanning subgraphs of a given graph
G = Graph(V ; E), which contains the set S E

G of Eulerian subgraphs. This space
has the peculiar property of being closed under the symmetric difference operation
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1.1 Graph theory basic definitions

(a) (b)

Figure 1.2: A complete graph KV with V = 8 (a) and a complete bipartite graph
KV,V with V = 4 (b).

∆, that is to say G1 ∈ S E
G , G2 ∈ S E

G =⇒ G1∆G2 ∈ S E
G . The dimension of

S E
G with respect to the operation ∆ is called cyclomatic number L of the graph

G, and it corresponds to the number of cycles in G that cannot be obtained by
other subgraphs through symmetric difference. These cycles are called independent
cycles and play the role of a basis in the space of Eulerian subgraphs.

Here it is worth mentioning the fundamental classic result of Euler (1752),
which relates the number of vertices, edges and independent cycles in a general
graph, which always sum up to a fixed number depending only on the space in
which the graph is embedded, and not on the graph itself [2].

Theorem 1.1.1 (Euler’s formula). Given a graph G with κ disconnected com-
ponents, V vertices and E edges, it holds

V + L = E + κ. (1.4)

This result can be applied easily to the case of planar graphs, i.e. graphs that can
be drawn on the surface of a sphere in such a way that no edge crossing occurs.
In fact, in this case the cyclomatic number is recovered in terms of the number of
faces F of the graph as L = F − 1.

If the vertex set of a graph G = Graph(V ; E) can be partitioned in k subsets,
called classes,

V =
k⋃
i=1

Vi, Vi ∩ Vj = ∅ for i 6= j,

in such a way that every edge in E connects vertices in different classes, we
say that G is k-partite (or multipartite in general) and we denote it as G =
Graph(V1, . . . ,Vk; E). Furthermore, such a graph is called complete and indicated
by KV1,...,Vk if taken any pair of vertices belonging to two different classes there
exists an edge connecting them. Note that a multipartite graph with k = 2 has
no odd cycles and it is referred to as a bipartite graph (Fig. 1.2b).
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1. Graphs and optimization

The incidence relations of a graph G = Graph(V ; E) are usually summarized in
the V × V adjacency matrix A := (aij)ij, defined as

aij =

{
1 if (vi, vj) ∈ E
0 otherwise (1.5)

If the graph is undirected the adjacency matrix is symmetric, therefore A has a
real spectrum, called the spectrum of G. Another fundamental matrix that can be
associated to a graph is the so called Laplacian matrix L := (Lij)ij, simply given
by

Lij = deg(vi) δij − aij. (1.6)

where δ is the Kronecker delta. Finally, a graph G is said to be weighted if there
is a function w : E → R that assigns to every edge e ∈ E a weight w(e). For a
given weighted graph we can easily introduce the weighted adjacency matrix as
W := (w(eij) aij)ij.

1.1.1 Trees and forests

In this subsection we introduce a particular class of graphs which will be used
extensively throughout the thesis. A connected graph without cycles is called a
tree, and a disjoint union of trees, i.e. a general acyclic graph, is called a forest.
The edges of a forest are usually referred to as branches, whereas the vertices with
degree one are called leaves (Fig. 1.3).

Theorem 1.1.2. The following assertions are equivalent for a graph T:

(i) T is a tree;

(ii) any two vertices of T are linked by a unique path in T;

(iii) T is minimally connected, i.e. the removal of any one edge disconnects the
graph;

(iv) T is maximally acyclic, i.e. adding an edge between any two non-adjacent
vertices forms a cycle.

It follows straightforwardly from the theorem above that every connected graph
contains a spanning tree, in fact by the equivalence of (i) and (iii) any minimally
connected spanning subgraph is a tree.

Corollary 1.1.3. A connected graph with V vertices is a tree iff it has V − 1
edges.

Proof. The vertices of a tree can always be enumerated, say as v1, . . . , vV , so that
every vi with i ≥ 2 has a unique neighbour in {v1, . . . , vi−1}. Induction on i shows
that the subgraph spanned by the first i vertices has i−1 edges, and for i = V this
proves the forward implication. Conversely, let G be any connected graph with V
vertices and V − 1 edges, and let G′ be a spanning tree in G. Since G′ has V − 1
edges by the first implication, it follows that G = G′.

6



1.2 Optimization problems

Figure 1.3: A forest composed by two trees, with leaves are colored in green.

Theorem 1.1.2 says that adding just one edge to a spanning tree will create a cycle,
which is called fundamental cycle. There is a one-to-one correspondence between
fundamental cycles and the E−V +1 edges not in the spanning tree: in particular
for any given spanning tree, the set of all E − V + 1 fundamental cycles forms a
cycle basis.

An important graph invariant is the number τ(G) of spanning trees of a con-
nected graph, also considered as the complexity of the graph, because it provides
a measure for the global reliability of a network. Its determination is a problem
of fundamental interest in mathematics and physics, first addressed by Kirchhoff
in his analysis of electric circuits [3]. His theorems provides a universal algorithm
for the computation of τ(G) in terms of the determinant of the Laplacian matrix
of the graph (1.6). In the case of a complete (bipartite) graph, τ(G) is given by
the simple following formula.

Theorem 1.1.4 (Cayley’s formula). The number of spanning trees of a com-
plete monopartite graph is

τ(KV ) = V V−2, (1.7)

while for a complete bipartite graph is

τ(KV,U) = V U−1UV−1. (1.8)

Note that the first formula provides in general the number of unlabelled span-
ning trees on V vertices. We will explicity derive this result from Kirchoff matrix-
tree theorem in Sect. 2.3, but several other interesting proofs exist, one of the
simplest and most elegant can be found e.g. in [4].

1.2 Optimization problems

Many problems of both practical and theoretical importance concern themselves
with the choice of a "best" configuration or set of parameters to achieve some
goal. They are referred to as optimization problems and a general definition for
them can be stated in the following form. An instance of an optimization problem
is a pair (F , C), where F is any set representing the domain of feasible solutions,
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1. Graphs and optimization

whereas C is the cost function

C : F −→ R. (1.9)

Usually, the target is to find the globally optimal solution, i.e. an element x0 ∈ F
such that

C[x0] = min
x∈F
C[x]. (1.10)

whose existence is a priori not guaranteed. For every optimization problem, one
can also formulate its so called decision versions. For instance, one can wonder if
the set

Sc = {x ∈ F : C[x] < c} (1.11)

is empty or not for a given constant c.
In the theory of computational complexity [5], each optimization problem is

classified according to the running time (number of computational operations)
and memory required to evaluate the decision problem or to find its solution. The
knowledge of the algorithmic complexity of a family of problems induces a hyer-
archy of classes, depending on the asymptotic resolution time for each problem.
For example, an algorithm is said to be polynomial if the running time is bounded
from above by a certain polynomial in the size of the input, and superpolynomial
otherwise. We say that an optimization problem belongs to the class P of polyno-
mial time problems if there exists a polynomial algorithm that solves it.

Another relevant class is the one of non-deterministic polynomial problems NP,
defined as the set of problems whose decision version can be solved in polynomial
time. Furthermore, given a complexity class of problems, one defines the subclass
of complete problems as the set of problems to which all the others can be re-
duced, up to a polynomial factor in the complexity. It is obvious that P ⊆ NP,
but it is one of the millennium problems proving whether the inclusion is tight or
not. If an NP-complete problem is found to be in P, it would follow that P = NP,
with striking consequences in the field of computer science because the NP class
contains a large number of problems, the archetypal of which will be introduced
in the next section.

1.2.1 Combinatorial optimization

In this work we concentrate on the so called combinatorial optimization, that deals
with optimization problems in which the cardinality of F is finite for all instances
|F| ∈ N. In this case the problem has always at least one feasible solution. How-
ever, in many cases the number of feasible solutions is extremely large, so they
cannot be faced with a brute-force approach.

To exemplify the aspects described above, let us introduce three classical com-
binatorial optimization problems: the Traveling Salesman Problem, the Matching
problem and the Minimum Spanning Tree problem.

Traveling Salesman Problem. The TSP is considered the archetypal problem
in combinatorial optimization [6]. In an instance of the TSP we are given a
generic connected graph G = Graph(V ; E) with a weight function w : E → R+ that
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1.2 Optimization problems

(a) (b) (c)

Figure 1.4: Examples of traveling salesman tour (c), perfect matching (a) and
spanning tree (b) on a complete graph KV with V = 8.

associates to each edge the cost w(e) paid to travel along it. Here the set of feasible
solutions F is composed by all possible Hamiltonian cycles h = Graph(Vh; Eh) on
the graph G, that is to say the closed paths traversing all vertices exactly once
(Fig. 1.4a). The cost function that one aims to minimize to find the cheapest tour
can be written as

C(TSP)[h] :=
∑
e∈Eh

w(e). (1.12)

The TSP belongs to the NP-complete computational complexity class, even when
the problem is defined on a bipartite graph, where the tour has to alternate be-
tween the two vertices’ subsets. Observe that in the complete monopartite case
G = KV one has |F | = (V−1)!

2
. It is therefore computationally unfeasible, even for

small values of V , to try to find the optimal solution with a direct inspection of
all possible values of the cost function.

Matching problems. We say that a subgraph M = Graph(VM; EM) of a given
graph G = Graph(V ; E) is a matching if no two edges in EM have a vertex in
common. Moreover when VM = V the matching is said to be perfect (Fig. 1.4b).
If we consider a weighted graph with weight function w : E → R+, the matching
problem consists in finding the perfect matching such that the cost functional

C(M)[M] =
∑
e∈EM

w(e) (1.13)

is minimized. When the matching problem is defined on a complete bipartite
graph KV,V it is called assignment problem and the number of feasible solutions is
|F | = V !. In fact, in this case one can number the vertices in the two different
classes as V = {v1, . . . , vV }, U = {u1, . . . , uV }. Assuming that the edge weights
are given by w : (vi, uj) 7→ wij, the cost of the optimal matching M0 becomes

C(M)[M0] = min
σ∈SV

V∑
i=1

wiσ(i), (1.14)

where SV is the group of permutations of V elements. Unlike the TSP, from the
computational point of view the matching problem can be solved with quite fast
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1. Graphs and optimization

algorithm, e.g. the Hungarian algorithm in the case of the assignment [7], which
belongs to the polynomial complexity class.

Minimum Spanning Tree Problem. Being the main topic of this dissertation,
we will devote the next two sections to a detailed description of the minimum
spanning tree problem, which we simply define here. We are given a connected
weighted graph G = Graph(V ; E) and the problem consists in finding the spanning
tree T that has the minimal total cost, defined as

C(MST) =
∑
e∈ET

w(e). (1.15)

From corollary 1.1.3 we know that the cardinality of the set of feasible solutions
is |F | = V V−2 in the case of the complete graph KV and |F | = V U−1UV−1 for
the bipartite case KV,U . The algorithms that find the MST of a given graph are all
polynomial in the running time (see Sect 1.2.3), so the problem is in the P class.
This is true for the related decision problems too, such as determining whether a
specific edge is in the MST or if the total weight exceeds a certain threshold c.

1.2.2 The Minimum Spanning Tree

The Minimum Spanning Tree problem is one of the most typical and well-known
problems of combinatorial optimization. Methods for its solution, though simple,
have generated important ideas of modern combinatorics and have played a cen-
tral role in the design of computer algorithms [8]. It is standard practice among
authors discussing the MST to refer to Kruskal (1956) [9] and Prim (1957) [10]
as the sources of the problem and its first efficient solutions, even though one can
find references in the literature as early as 1926 [11]. This makes the MST one of
the oldest and most thorougly studied problems in computational geometry.

In addition to its long-standing theoretical and algorithmic interest, the MST
is useful for many practical purposes because its search in a given network stems
in several optimization problems. For this reason, the MST is used in document
clustering [12], wireless network connectivity [13], analysis of gene expression data
[14], percolation analysis [15] and modeling of turbulent flows [16], among other
areas. Moreover, the MST is used in several exact and approximation algorithms
for other combinatorial optimization problems, such as the TSP and the matching
problem [17, 18]. Let us note that all the problems mentioned here are commonly
formulated in the Euclidean setting, so the graph G = Graph(V ; E) on which the
MST is originally defined is supposed to be embedded in a Euclidean domain
Ω ⊂ Rd, i.e. every v ∈ V corresponds to a d-dimensional vector.

We now proceed to state two simple properties of the MST, which allow one to
add or remove edges from consideration when searching for it in a given weighted
graph with weight function w : E → R+. They are intended as crucial for our
problem, because all algorithms in the literature have their roots in them in some
way. Firstly, let us observe that a sufficient (but not necessary) condition for the
MST to be unique is that all edge weights in the graph are distinct, i.e. for every
ei, ej ∈ E if i 6= j then w(ei) 6= w(ej).

10



1.2 Optimization problems

Figure 1.5: Example of Voronoi diagram (dashed) and its dual graph, the De-
launay triangulation (solid), for a given set of points on the plane.

Lemma 1.2.1 (cycle property). Consider any cycle C ⊆ G and an edge e ∈ EC
with maximal cost among all edges of C. Then e cannot belong to a MST of G.

Proof. Assume that e belongs to a MST T1 ⊂ G. Then deleting e will break T1 into
two subtrees, which can be reconnected considering the remainder of the cycle C.
Hence, there is an edge e′ ∈ EC with w(e′) < w(e) that forms a new tree T2 ⊂ G

with total cost smaller than that of T1.

Lemma 1.2.2 (cut property). Let X be a cut of the graph G and let e ∈ X be
a minimal-cost edge. Then e belongs to all MSTs of the graph G.

Proof. Suppose that there is a MST T not containing e. Adding e to T will produce
a cycle which crosses the cut once at e and crosses it back at another edge e′. If
we delete e′ we obtain a new spanning tree T′ with total edge weight smaller than
that of T.

In the Euclidean setting, the MST has another interesting property which finds
its application in algorithms design. To state it, we need to introduce some ele-
ments of computational geometry [19] first, focusing for the sake of simplicity on
the two dimensional case. Nonetheless, everything can be readily generalized to
higher dimensions.

Let P ⊂ R2 be a set of n points, called seeds. The Voronoi diagram of P is
the subdivision of the plane into n regions, one for each point in P , such that the
region of a site p ∈ P contains all points in the plane for which p is the closest
site. Furthermore, a triangulation of P is the partition of the smallest convex set
containing P (convex hull) into non intersecting triangles having vertices in P .
A frequently used point set triangulation is the so called Delaunay triangulation,
composed by the set of triangles that are circumscribed by a circle containing no
points in P . Working in two dimensions, it is clear from the definition that a
triangulation can be understood as a planar graph D = Graph(VD; ED) with set of
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1. Graphs and optimization

vertices VD = P . This observation allows us to say that, given a set of points P ,
its Delaunay triangulation is the dual graph of its Voronoi diagram (Fig. 1.5).
In practice, the former has a vertex for every Voronoi region, and it has an edge
between two vertices if the corresponding regions share a boundary.

As anticipated, given the above definitions we can now state the following result

Proposition 1.2.3. Consider a graph G = Graph(V ; E) with V ⊂ Rd and edge
weights given by ‖e‖p for all e ∈ E, where ‖·‖ represents the standard Euclidean
norm in Rd. Then the MST of G is a subgraph of the Delaunay triangulation of V.

1.2.3 Algorithms for the MST

All classical algorithms for the solution of the MST problem belong to the class
of so called greedy algorithms, i.e. they follow the problem solving heuristic of
making the local optimal choice at each stage, with the purpose of finding a global
optimum. They basically rely on lemma 1.2.2 to form cuts in the graph and add
the minimum weight edge across each at every stage. Examples of algorithms using
this rule are the already mentioned Kruskal’s [9] and Prim’s [10], which require
O(E log V ) and O(E + V log V ) time respectively on a graph with V vertices and
E edges.

It is worth noting that besides being effective in the direct solution of the
problem they are designed for, the algorithms can prove to be very helpful in
the theoretical analysis of general aspects of an optimization problem. We will
find examples of this in Sects. 2.1 and 3.3 in the case of Kruskal’s algorithm,
and that is the reason why we describe it here in detail. This also gives us the
occasion to show explicitly why the MST problem belongs to the P computational
complexity class. Given a connected weighted graph, Kruskal’s algorithm proceeds
as described by the following pseudocode (see Fig. 1.6 for a reference).

Algorithm 1 Kruskal’s algorithm
1: function KRUSKAL(Graph(V ; E))
2: F = Graph(V ; ∅)← starting forest with no edges
3: W ← set of the edges sorted in increasing order w.r.t. their weights
4: while W 6= ∅ do
5: Remove the edge (u, v) with minimum weight from W

6: if (u, v) connects two different trees of F then

7: F = F ∪ {(u, v)}

8: return F

Regarding the computational complexity of the above algorithm, the E edges
sorting procedure can be carried out in O(E logE) time using a simple compar-
ison algorithm: this allows step (3) to operate in O(1) time. We are then left
with O(V ) operations to perform (4), as in each iteration the algorithm finds the
components to which u and v belong, possibly joining them. This can be done in
O(V log V ) time by using any disjoint-set data structures, which tracks a set of
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1.2 Optimization problems

(a) (b)

(c) (d)

Figure 1.6: Example of MST construction (bold) as performed by Kruskal’s
algorithm on a given weighted graph (a). Starting from the smallest weight, an
edge is added to the MST if it does not form any cycles in the developing spanning
forest F (b), otherwise it is discarded (c). The algorithm stops when all edges have
been considered (d).

elements partitioned into non-overlapping subsets by means of pointers. Consid-
ering that E is at most O(V 2) in a simple graph, and that V = O(E), we finally
obtain the anticipated total running time O(E log V ).

In recent years new sophisticated algorithms have been developed for the MST
problem on general graphs. The fastest non-randomized comparison-based algo-
rithm with known complexity [20] has running time O(E α(E, V )), where α is
the classical functional inverse of Ackermann function. It grows extremely slowly
with its arguments, so that for practical purposes it may be considered a constant
smaller than 4, leading to an almost linear time algorithm.

All the cited general algorithms are insufficient for large, metric problems be-
cause they depend linearly on the number of edges E. The edge set of a graph
consists of all pair of points, therefore linear scaling in E means quadratic scaling
in the number of vertices V , which are usually the input data in the Euclidean
case. For this reason, most current Euclidean MST algorithms start by computing
a set of edges which can be shown to be a superset of the edge set of the MST.
For instance, in the two dimensional case a good choice is the Delaunay triangu-
lation, dual of the Voronoi diagram for the V points, which can be constructed in
O(V log V ) time [21]. Unfortunately, this bound worsens to O(V 2 log V ) in d ≥ 3,
because the edge set of the Delaunay triangulation happens to be the complete
graph. This problem has been partially overcome e.g. by the work of Agarwal et
al. [22], who related the running time of the minimum spanning tree problem in
Rd to the bichromatic closest pair problem, formulated as follows. Given a set of
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1. Graphs and optimization

N red and M blue points in Rd, find a couple such that the distance is minimum
among all red-blue pairs.

We end this section noting that all the algorithms described above are designed
to work on a monopartite graph. Very little literature exists on algorithms con-
structed specifically for the MST problem on multipartite graphs. A remarkable
example is the recent paper by Biniaz et al. [23], who obtained in two dimensions
the time complexity bound O(V log V log k) for the k-partite case with V total
vertices.

1.3 Random optimization problems: worst vs typ-
ical case

In Sect. 1.2.1 we introduced optimization problems defined on graphs, always
supposing that the parameters of the problems, e.g. the weights associated to the
edges of the graph, were assigned once and for all. Given an instance of such an
optimization problem, specific algorithms allow us to classify the problem accord-
ing to the computational resources (time and memory) required to solve it.

Note that the theory of computational complexity is based on a pessimistic
attitude: a problem’s tractability is defined depending on the worst possible in-
stance. Quite often this worst case scenario differs considerably from the typical
case, averaged over a reasonable ensemble of instances. A common observation is
that "hard" problems are typically "easy" to solve, and to get real hard instances
the parameters must be carefully tuned to certain critical values. Varying the
parameters across the critical region often leads to abrupt changes in complexity,
related to changes in the structure of the set of feasible solutions [24], very similar
to what happens with phase transitions in physical systems.

This arguments justifies the consideration of random instances of an optimiza-
tion problem, in order to study its general properties such as its complexity and its
solution in average, for large sizes of the input. A first kind of randomization for a
combinatorial optimization problem defined on a weighted graph G = Graph(V ; E)
can be performed on the graph itself. In the simplest case we can choose the
weights {w(e)}e∈E as independently and identically distributed random variables
with distribution density ρ(w). The distribution itself defines therefore an ensem-
ble of random instances and we ask for the typical properties such as the average
optimal cost, the optimal cost distribution, and so on, for a given ensemble in the
thermodynamic limit |V| → ∞.

It is easy to see in general that an optimization problem can be stated as a
physical problem. Indeed, the set of possible solutions can be interpreted as a
configuration space, and the cost can be chosen as the Hamiltonian of the system.
Thus, cost minimization turns into finding the ground state of the physical system,
when frozen at zero temperature. As we said above, the cost function depends
on a large number of parameters, and one is interested in the average case with
respect to a measure on the parameters space. Therefore, the corresponding phys-
ical system is a disordered system, and the probability measure over the disorder
corresponds to this measure over the parameters space, i.e. on the space of possi-
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1.3 Random optimization problems: worst vs typical case

ble instances of the random optimization problem.
Interestingly, this probabilistic approach to combinatorial optimization prob-

lems shed new light on their mathematical properties, and many results have been
obtained in recent years. Since the 1985 seminal work by Mézard and Parisi [25],
many techniques developed by physicists in the field of statistical physics started
to be used effectively on random optimization problems. For example, with a
method borrowed from spin glasses, namely the replica method (see Sect. 1.3.2),
the two authors analyzed the random bipartite matching problem (RBMP) with
i.i.d. edge weights [26]. In particular, they were able to obtain the average optimal
cost of the problem, defined in Eq. (1.14),

C(RBMP) = lim
N→∞

CM [M0] = ζ(2) =
π2

6
, (1.16)

where • denotes the average over the distribution of the weights and ζ(z) is the
Riemann zeta function. Remarkably, only 25 years later Aldous [27] confirmed the
obtained result by providing a rigorous mathematical treatmeant of the problem.

1.3.1 Statistical mechanics of disordered systems

As explained in the previous section, in random optimization problems we are
not interested on specific instances, but in the average properties of the problem,
possibly dependending on some parameters in the cost function and on the way we
introduce randomness in the problem itself. Over the years statistical physics has
developed a lot of techniques to deal with systems with a huge number of degrees
of freedom, even in the presence of disorder. For this reason, we will introduce here
the fundamental concepts of the statistical mechanichs of disordered systems.

Let us consider a graph G = Graph(V ; E), V = |V|, and suppose that we
assign to each node vi ∈ V an Ising spin variable σi ∈ {−1, 1} and to each
edge e ≡ (vi, vj) ∈ E an interaction energy −Jijσiσj, with Jij ∈ R ∀i, j. The
Hamiltonian functional of the system has the following form

HG[σ; J, h] := −
∑
〈ij〉

Jijσiσj − h
V∑
i=1

σi, (1.17)

with h ∈ R a fixed quantity, while the parameters J = {Jij}ij are independently
extracted from a certain probability distribution ρ(Jij), identical for all (vi, vj) ∈ E .
Here we assume that these random quantities are specified once and for all for each
instance, and therefore we say that the disorder is quenched. In other words, the
random parameters are supposed fixed on the time scale in which the degrees
of freedom σ := {σi}i=1,...,V of the system fluctuate. If the system is defined
on the hypercubic lattice in d dimensions the model is called Edwards-Anderson
model (EA-model) and it is an example of spin glass. Here we just mention that
spin glasses represent the reference frame in which physicists analyze the peculiar
effects of disorder on the behaviour of systems with a large number of degrees of
freedom, and their importance goes beyond the application to physical systems.
An interesting introduction to this argument can be found e.g. in [28, 29].
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1. Graphs and optimization

Figure 1.7: The simplest example of frustration

To each configuration σ = {σi}i we can associate a Boltzmann-Gibbs weight

µG[σ; J, β, h] :=
1

ZG[J, β, h]
e−βHG[σ;J,h] (1.18)

where β is the inverse temperature and with the normalization given by the par-
tition function of the system

ZG[J, β, h] :=
∑
σ

e−βHG[σ;J,h], (1.19)

which plays a central role in the computation of many physical quantities of in-
terest. Finally, given a function g := g(σ), we denote its expectation as

〈g〉J :=
∑
σ

g(σ)µG[σ; J, β, h]. (1.20)

Note that together with randomness, represented here by the fact that the
coupling constants are random variables taken with a certain distribution function,
a disordered system is characterized by the presence of frustration. Differently
from a standard ferromagnetic system, in a frustrated one it becomes impossible
to satisfy all the couplings at the same time. Formally a system is frustrated
if there exists a loop on which the product of the couplings is negative: what
happens is that if we fix an initial spin and try to chain-fix the others one at a
time to minimize the energy, we are bound to return to the initial spin and flip
it (Fig. 1.7). The energy landscape of frustrated systems is thus often non trivial
and it is not obvious what is the structure of the minimum energy configuration.

Thanks to the fact that the disorder is quenched, to evaluate a physical quantity
using the Hamiltonian of Eq. (1.17) it is appropriate to trace over the spin variables
first, with the interactions J = {Jij}ij fixed. For instance, the free energy of the
system is calculated as

FG[J, β, h] = − 1

β
log
∑
σ

e−βHG[σ;J,h]. (1.21)

The next step is to average over the distribution of J, i.e. over the disorder, and
this is done through the so called configurational average

FG[J, β, h] := − logZG[J, β, h]

β
= − 1

β

∏
〈ij〉

∫
ρ(Jij) dJij

 logZG[J, β, h]. (1.22)
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1.3 Random optimization problems: worst vs typical case

Differentiation of this averaged free energy by the external field h or the inverse
temperature β leads to the magnetization or the internal energy, respectively. Note
that in general we want that physical observables do not depend on the specific
realization of the system, and this is guaranteed by the following crucial property.
The free energy density fG = FG/V for a disordered system on a generic graph
G has vanishingly small deviations from its mean value fG in the thermodynamic
limit |V| → ∞ [29], i.e. fG is self-averaging

lim
|V|→∞

(fG − fG)2

fG
2 = 0. (1.23)

This means that for large systems the raw value fG for a given set of random pa-
rameters J agrees with its configurational average fG with probability 1. Therefore,
we can choose either of these quantities in actual calculations, with the second one
much easier to handle having no dependence on J even for finite-size systems.

1.3.2 The replica method

The dependence of logZG on the random variables J is very complicated and it is
not easy to compute its configurational average. Nonetheless, the manipulations
are greatly facilitated by the general relation

logZG = lim
n→0

Zn
G − 1

n
, (1.24)

One prepares n replicas of the original system, evaluates the configurational aver-
age of the product of their partition functions Zn

G , and then takes the limit n→ 0.
This technique, the replica method, is very useful because it is easier to evaluate
Zn
G than logZG.
Note that Eq. (1.24) is an identity valid in general, but to carry out the calcu-

lations one has to consider n as a positive integer. Only at the end the limit n→ 0
is performed as a sort of analitic continuation, and this is quite often the most
difficult point of the whole procedure in actual calculations. We will now conclude
this chapter showing how does the replica approach work in the simplest possible
case, namely the Sherrington-Kirkpatrick (SK) model. This task has been fulfilled
for the first time by Parisi and collaborators at the beginning of the 80’s, and since
then the model has become a prototype for mean-field disordered systems. For a
more extensive presentation, we refer the reader to [28, 30].

The Sherrington-Kirkpatrick model. The SK model represents the infinite
range version of the Edwards-Anderson model, i.e. the graph on which the Hamil-
tonian (1.17) is defined is the complete graph G ≡ KN . The interactions J = {Jij}ij
are quenched variables with Gaussian distribution function

ρ(Jij) =
1

J

√
N

2π
exp

{
− N

2J2

(
Jij −

J0

N

)2
}
, (1.25)

with the normalization for the mean and for the variance chosen to obtain extensive
quantities proportional to N in subsequent calculations.
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1. Graphs and optimization

According to the prescription of the replica method we have to compute the
configurational average of the n-th power of the partition function. It follows that

Zn =

∫ (∏
i<j

ρ(Jij) dJij

)
Tr exp

(
β
∑
i<j

Jij

n∑
a=1

σai σ
a
j + βh

N∑
i=1

n∑
a=1

σai

)

= exp
(
Nβ2J2n

4

)
Tr exp

β2J2

2N

∑
a<b

(∑
i

σai σ
b
i

)2

+

+
βJ0

2N

∑
a

(∑
i

σai

)2

+ βh
∑
i

∑
a

σai

 , (1.26)

where we have carried out the Gaussian integral over Jij independently for each
(ij), and we have rewritten the sums over i < j and a, b (namely the replica
indices). In order to linearize the exponent with respect to the spin variables, so
as to perform the trace operation, we introduce the auxiliary variables qab and ma

by means of an Hubbard-Stratonovich transformation. We thus arrive to

Zn = exp
(
Nβ2J2n

4

)∫ ∏
a<b

dqab

∫ ∏
a

dma

· exp

(
−Nβ

2J2

2

∑
a<b

q2
ab −

NβJ0

2

∑
a

m2
a +N logTr eL

)
, (1.27)

where
L = β2J2

∑
a<b

qabσ
aσb + β

∑
a

(J0ma + h)σa. (1.28)

Observe that Tr eL appears as a sort of partition function for a set of n coupled
spins, each one associated to one of the n replica indices.

The exponent of the above integral is proportional to N , so that it is possible
to evaluate the integral by steepest descent in the thermodynamic limit N →∞

Zn ≈ exp

(
−Nβ

2J2

2

∑
a<b

q2
ab −

NβJ0

2

∑
a

m2
a +N logTr eL +

Nβ2J2n

4

)

≈ 1 +Nn

(
−β

2J2

4n

∑
a6=b

q2
ab −

βJ0

2n

∑
a

m2
a +

1

n
logTr eL +

β2J2

4

)
, (1.29)

where in the last line we have taken the limit n → 0 with N kept very large but
finite. Note that the correct order for the two limits above should be N → ∞
after n → 0, but we took N → ∞ first so that the saddle point approximation
is applicable. This is importante to remark, since at an early stage of research it
was suspected that the problems arising in the replica method were due to this
apparently inappropriate exchange of limits. Nonetheless, this passage proved to
be correct in subsequent years, the source of trouble being elsewhere, as we will
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1.3 Random optimization problems: worst vs typical case

point out below.
The values of qab and ma in the above expression are those that satisfies the

extremality conditions, i.e.

qab =
1

β2J2

∂ logTr eL

∂qab
≡ 〈σaσb〉L (1.30a)

ma =
1

βJ0

∂ logTr eL

∂ma

≡ 〈σa〉L, (1.30b)

with 〈 · 〉L denoting the average by the weight eL. Remarkably, qab are not merely
a set of variables introduced for technical convenience, indeed they express a sort
of "average superposition" between replicas, being

qab =
〈
σai σ

b
i

〉
R
, (1.31)

where 〈•〉R is the average with respect to the replicated system, whose Hamiltonian
is

HR[{σa}a; J, h] :=
n∑
a=1

(
−
∑
i<j

Jijσ
a
i σ

a
j − h

N∑
i=1

σai

)
. (1.32)

In particular, the variables qab play the role of spin glass order parameters, while
m is the ordinary ferromagnetic order parameter according to (1.30b), and is the
value of ma when the latter is independent of a. If we suppose that all replicas
are equivalent (replica symmetric hypothesis) we have

qab =
〈
σai σ

b
i

〉
R

= 〈σai 〉R
〈
σbi
〉
R

= 〈σi〉2 = q, a 6= b. (1.33)

We expect that for β → 0 the spins are randomly oriented, and therefore q = 0,
whilst in the β →∞ limit q > 0, having 〈σi〉 6= 0 for each realization.

Proceeding with the computation in the replica symmetric hypothesis, with the
notation Dz := dz exp(−z2/2)/

√
2π and H̃(z) = J

√
qz + J0m+ h, one finds [30]

− βf =
β2J2

4
(1− q2)− βJ0m

2

2
+

∫
Dz log[2 cosh βH̃(z)], (1.34)

from which we obtain the following equations of state through the extremization
conditions

q =

∫
Dz tanh2 βH̃(z) (1.35a)

m =

∫
Dz tanh βH̃(z). (1.35b)

Even if the replica approach of the SK-model seems to give a complete solu-
tion, an anomalous behaviour emerges at low temperature. For instance, a direct
computation gives a negative value of the entropy density s

lim
β→∞

s = lim
β→∞

β2∂f

∂β
= − 1

2π
(1.36)
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1. Graphs and optimization

In particular, Almeida and Thouless [68] found that the replica symmetric solution
for the SK-model is not stable in the absence of an external field when β > 1/J .
Then, in 1980, Parisi [69] proposed a solution to the problem by showing that
a proper break of the replica symmetry was needed. Remarkably, only years
later this solution was proven with mathematical rigour [70, 71]. Despite being
extremely interesting, this argument goes beyond the purposes of this introduction,
thus we will not go any further, but the reader can find out more in the previosly
cited references.
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Chapter 2

The MST in the mean field
approximation

In this chapter we focus on the random MST problem with independent and
identically distributed edge weights, which can be regarded as a sort of mean
field approximation of the correlated case. After a brief review of the existing
literature on the topic, our attention turns to the well known q-state Potts model,
from which we derive as the q → 0 limit the spanning tree generating polynomial
of a general graph. With this quantity, properly rewritten in terms of a Berezin
integral defined on two sets of Grassmann variables thanks to the matrix-tree
theorem, in the last section we sketch a replica calculation for the purely random
MST problem on the complete graph.

2.1 ζ(3) limit for the random MST
The aim of the present section is to offer a survey of the existing literature concern-
ing the average cost of the random MST defined on a graph with independently
and identically distributed edge weights. The starting point is the fundamental
result obtained by Frieze in 1985 [31], which can be formulated as follows. Suppose
we are given a complete graph KN on N vertices in which the edge weights are
i.i.d. non-negative random variables. Assume also that their common cumulative
distribution function F is differentiable at zero, with D := F ′(0) > 0. Denoting
by W a random variable with this distribution, the following holds for the average
optimal cost CN := C [KN ] of the MST.

Theorem 2.1.1. If W has finite mean, then

lim
N→∞

CN =
ζ(3)

D
, ζ(3) =

∞∑
k=1

1

k3
= 1.202 . . . (2.1)

Moreover, if W has finite variance, then

lim
N→∞

Pr
(∣∣∣∣CN − ζ(3)

D

∣∣∣∣ > ε

)
= 0. (2.2)

A fact worth noting is that this theorem strongly relies on Kruskal’s algorithm
procedure. In fact, the author is able to find asymptotics bound for the total
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2. The MST in the mean field approximation

average MST cost by writing it in terms of the sequence of successive spanning
forests which originates as described in Sect. 1.2.3.

Frieze’s result can be generalized in two different ways. First it can be shown
[32] that the condition on the distribution function F ′(0) > 0 is sufficient for
convergence in probability, and no other smoothness or moment conditions are
required. Furthermore, Theorem 2.1.1 can be stated for graphs different from KN
[33]. For simplicity, let us consider the case where each edge weight is a uniform
random variable on [0, 1]. Then, e.g. for the complete q-partite graph (Kq)N with
q classes all of cardinality N , we have

lim
N→∞

C
[
(Kq)N

]
→ q

q − 1
ζ(3) (2.3)

We see that for a complete bipartite graph (q = 2), the difference to the monopar-
tite case is given simply by a factor 2, as it happens in the random matching
problem [26].

Note that for uniform distributed edge weights a central limit theorem can be
exhibited too for the average cost of the random MST [34, 35], i.e.

N
1
2

(
CN − ζ(3)

) d−→ N
(
0, σ2

)
. (2.4)

with the variance given by σ2 = 6ζ(4)− 4ζ(3).

With reference to Eq. (2.1) we have that in the large N limit CN = ζ(3) + o(1),
but ideally one would like to have an exact expansion for the average cost, as
it happens for the random assignment problem [36, 37]. For uniform weights on
[0, 1], Cooper and Frieze [38] went in this direction by improving the asymptotics
for the average cost of the MST to the secondary and tertiary terms

CN = ζ(3) +
c1

n
+
c2 + o(1)

n4/3
, (2.5)

where

c1 = −1− ζ(3)− 1

2

∫ ∞
0

log(1− (1 + x)e−x)dx (2.6a)

c2 =
2

3

∫ ∞
0

(
y−2ψ(y)e−y

2/24 − y−2 −
√
π

8
y−1 − 1

2

)
y−1/3dy (2.6b)

In the last expression, ψ is defined as the moment generating function of the
random variable Bex

ψ(t) = exp (tBex), (2.7)

with Bex =
∫ 1

0
Bex(s) ds representing the area under a normalized Brownian ex-

cursion (see [39] for a review on the topic). A numerical investigation performed
by the authors yielded c1 > 0, so for (very) large N (see Fig. 2.1a) we expect to
find CN > ζ(3).

Remarkably, Eq. (2.5) refuted Steele’s conjecture [40] of the average cost in-
creasing monotonically with N , based on its exact computation for N ≤ 8. This
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2.1 ζ(3) limit for the random MST

(a)

(b)

Figure 2.1: Numerical simulations for the average optimal cost of the MST with
i.i.d. weights generated in the interval [0, 1] with uniform distribution (a) and
exponential distribution ρ(w) = e−w (b). The dashed line represents the ζ(3)
limit, while the solid blue line represents the data fit with Eq. (2.5) (c1 = 0.2709,
c2 = −2.4751). For each N , CN is obtained by averaging over n = 2 · 104 (a) and
n = 3 · 104 (b) instances.
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2. The MST in the mean field approximation

result was carried out exploiting a very interesting formula involving the so called
Tutte polynomial T (G;x, y), which in general contains a lot of information about a
graph G = Graph(V ; E) (it has been widely studied in the context of the algebraic
properties of graphs, see e.g. [41]).

To define this polynomial, one needs to go outside the familiar class of simple
graphs, taking into account loops or multi-edges too. Much of the usefulness of
the Tutte polynomial comes from its relation to the so called rank function, which
measures how much a graph is connected. Given an edge subset A ⊆ E the rank
r(A) of A is defined by

r(A) = |V| − k(A), (2.8)

with k(A) number of connected components of the graph G′ = Graph(V ;A). The
Tutte polynomial of the graph G is then the two-variables polynomial defined as

T (G;x, y) =
∑
A⊆E

(x− 1)r(E)−r(A)(y − 1)|A|−r(A). (2.9)

By making use of it, one can find the following interesting result valid for any finite
number N of vertices of the graph G, contrary to all the previous statements. Here
we report a generalization [42] of the original theorem proved by Steele

Theorem 2.1.2. If G = Graph(V ; E) is a simple, finite and connected graph and
its edge weights We are positive random variables for all e ∈ E, all with the same
distribution F (x) = Pr(We ≤ x), then

C[G] =

∫ ∞
0

1− F (t)

F (t)

Tx(G;x, y)

T (G;x, y)
dt, (2.10)

where x = 1/F (t), y = 1/(1 − F (t)) and Tx(G;x, y) is the partial derivative of
the Tutte polynomial w.r.t. x. In particular, for x ∈ (0,∞) if Fu(x) is the uni-
form cumulative distribution and Fe(x) = 1 − e−x the exponential one, for every
connected graph G it holds

CFu [G] < CFe [G]. (2.11)

2.2 The Potts model
The main result of the previous section is that given a graph with i.i.d. edge
weights, the average optimal cost of the MST converges in probability to ζ(3). This
limit immediately reminds us of an analogous one in the case of the assignment
problem (1.16), which was computed by Mézard and Parisi [26] by means of the
replica method. One is then led to wonder whether the same calculation can be
performed for the random MST. To try to answer to this question, we need as a
starting point an expression for the "partition function" of our system, namely a
function that enumerates all the spanning trees in a given graph, weighted with
their total edge cost. The aim of this section is thus to derive such an expression,
which remarkably emerges as a particular limit of one of the most studied models
in statistical physics, the Potts model.

The Potts model [43] represents one of several possible generalization of the
Ising model: each spin, instead of being allowed to point only up or down, can find
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2.2 The Potts model

itself in q different states (or colors). Historically, the model bears its current name
after Domb proposed it as a research topic to his student Potts in 1951. Thanks
to the outstanding number of problems it is related to, from lattice statistics, to
combinatorics, to graph theory, the Potts model has been a subject of increasingly
intense research interest in recent years.

Originally, being the Ising model a system of interacting spins that can be either
parallel or anti-parallel, a natural extension appeared to be the consideration of
spins confined on a plane, each pointing to one of q equally spaced directions
specified by the angles

θn = 2πn/q, n = 0, . . . , q − 1. (2.12)

In the most general form, the nearest-neighbour interaction J := {Jij}ij depends
only on the relative angle beetwen the two spins θij := θni − θnj , and the Hamil-
tonian of the system on a graph G = Graph(V ; E) reads

HG = −
∑
〈ij〉

J(θij). (2.13)

This is quite generally known as a system of Z(q) symmetry and it plays an im-
portant role in lattice gauge theories, (see e.g. [44] for an interesting review).

At first, Potts considered an interaction of the type J(θ) = −ε cos θ, but was
unable to extend his results on the critical point of the system for q > 4. He
then focused on another version of the q-state model, known as the Ashkin-Teller
model in the case q = 4 [45], in which there are only two different interaction
energies that correspond to nearest-neighbour spins being in the same or differ-
ent states. This is the q-component model, that has attracted the most attention,
and it is the one referred to as the standard Potts model, or simply the Potts model.

Given a graph G = Graph(V ; E) the Potts model Hamiltonian can be written as

HG[σ; J] = −
∑
e∈E

e=(i,j)

Jeδ(σi, σj), (2.14)

where the sum runs over all the adjacent vertices, δ is the Kronecker delta and
σ = {σi}i denotes the spin configuration of the system. As usual, the interaction
is said ferromagnetic or antiferromagnetic if the coupling Je is either positive
or negative. Finally, the partition function is simply given by the sum over all
mappings σ : V 7→ {1, . . . , q}

ZG(q,J) =
∑
σ

∏
e∈E

e=(i,j)

eβJeδ(σi,σj). (2.15)

Let us observe that this model possesses an Sq symmetry under the group of
permutations of q elements, in opposition to the Z2 symmetry of the Ising model,
which is recovered in the special case q = 2.
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2. The MST in the mean field approximation

2.2.1 The Fortuin-Kasteleyn representation

The fact that the interaction in the Potts model is expressed through a delta
function has strong implications on the combinatorial content of the model. In
particular, one is allowed to perform a redefinition in which the parameter q has
a natural analytic continuation, as we will show now. This redefinition is called
Fortuin-Kasteleyn representation of the Potts model [46].

First of all, let us conveniently introduce the following couplings

ve := eβJe − 1, (2.16)

so that the partition function (2.15) reduces to

ZG(q,v) =
∑
σ

∏
e∈E

e=(i,j)

(1 + veδ(σi, σj)) . (2.17)

The ferromagnetic region (Je > 0) is mapped to ve > 0, whereas the antiferro-
magnetic one (Je < 0) is sent to the interval −1 ≤ ve ≤ 0. The zero temperature
limit is obtained by letting ve →∞ for all e ∈ E in the former case, and ve → −1
in the latter. In both cases, the high temperature regime corresponds instead to
the specific value ve = 0. Let us note that for ve values smaller than −1 the
system falls into an unphysical region, because the Boltzmann weight is no more
a positive quantity, as we expect for a statistical mechanical model.

Theorem 2.2.1 (Fortuin-Kasteleyn representation). For each positive inte-
ger q, we have that

ZG(q,v) =
∑
S∈S

qk(S)
∏
e∈ES

ve, (2.18)

where SG is the set of all spanning subgraphs of G and k(S) represents the number
of their connected components, including isolated vertices.

Proof. Let us assume for simplicity that ve = v ∀e ∈ E . Looking at Eq. (2.15),
each term in the sum is the product of E = |E| factors, one per edge e = (i, j),
that can be either 1 or vδ(σi, σj). The 2E possible choices of factors are clearly in
bijection with the power set P(E), and thus, as mentioned at the beginning of Sect.
1.1, with the set of spanning subgraphs of G. This tells us that every spanning
subgraph S takes the weight vES . Furthermore, each connected component is
made of spins of the same color q, thanks to the effect of the Kronecker delta, so
summing over allowed spin configurations gives a contribution qk(S). Putting all
the elements together, the Potts partition function can be written as a sum over
spanning subgraphs S = Graph(V ; ES) ⊆ G with the following form

ZG(q, v) =
∑
S∈SG

qk(S)vES (2.19)

It is quite simple to verify that the same reasoning can be repeated in the case of
edge-dependent coupling constants ve, leading to the desired expression (2.18).
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2.2 The Potts model

What we have just proved is that the Fortuin-Kasteleyn representation shows
that the partition function ZG(q, v) of the q-state Potts model on any finite graph
G is in fact a polynomial in q and v. This allows us to interpret these two param-
eters as taking arbitrary real or even complex values.

It should be stressed, however, that the Potts spin model has a probabilistic
interpretation, i.e. it has nonnegative weights, only when q is a positive integer
and v ≥ −1. Likewise, the Fortuin-Kasteleyn representation, which extends the
Potts model to noninteger q, has a probabilistic interpretation only when q ≥ 0
and v ≥ 0. In all other cases, the model belongs to the "unphysical" regime with
negative or complex weights, and the ordinary statistical mechanical properties
need not to hold. For instance, the free energy needs not to possess the usual con-
vexity properties, or phase transitions can occur even in one-dimensional systems
with short-range interactions.

Let us observe that the obtained partition function can be rewritten in an useful
way by means of Euler formula (1.4). Denoting by L(S) the cyclomatic number of
the spanning subgraph S, i.e. the number of its independent cycles, we have

ZG(q,v) = qV
∑
S∈SG

qL(S)
∏
e∈ES

ve
q
. (2.20)

Note that in the mathematical literature, formulas like (2.18) and (2.20) are usually
written in terms of the Tutte polynomial T (G;x, y) defined in Eq. (2.9). In
particular, it can be easily shown that the following relation holds

T (G;x, y) = (x− 1)−k(G)(y − 1)−|V|ZG((x− 1)(y − 1), y − 1). (2.21)

In other words, the Tutte polynomial T (G;x, y) and the Potts model partition
function ZG(q, v) are essentially equivalent under the change of variables

x = 1 + q/v, y = 1 + v (2.22)

q = (x− 1)(y − 1), v = y − 1 (2.23)

The advantage of the Tutte notation is that it allows a slightly smoother treatment
of the q → 0 limit. The disadvantage is that the use of the variables x and y
conceals the fact that their particular combinations q and v play very different
roles: q is a global variable, while v can be given separate values ve on each edge.

2.2.2 The q → 0 limit

Now that we have seen how to define the Potts model partition function ZG(q,v)
for arbitrary (even unphysical) values of q and v, we can investigate the limit where
these two parameters go to zero, keeping w = v/q fixed [47]. As anticipated above,
this regime is particularly relevant for us because it has an intriguing combinatorial
interpretation, i.e. the partition function reduces to the generating function of
spanning forest for the graph G. Moreover, the limit we are about to consider
acquires further importance in light of the recent discoveries [48] that (a) it can
be mapped onto a fermionic theory containing a Gaussian term and a special
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2. The MST in the mean field approximation

four-fermion coupling, and (b) this latter theory is equivalent, to all orders in
perturbation theory in 1/w, to the N -vector model, i.e. O(N)-invariant σ-model,
at N = −1 with β = −w, and in particular it is perturbatively asymptotically free
in two dimensions, analogously to two-dimensional σ-models and four-dimensional
nonabelian gauge theories.

We now proceed to consider the different ways in which a meaningful limit
q → 0 can be taken for the Fortuin-Kasteleyn representation of the Potts model
partition function. Let us note that in what follows we will assume that the graph
G = Graph(V ; E) on which the model is defined is in general not connected, but we
will specify every time what happens in the particular case of a single component
graph.

The first and simplest approach is to take q → 0 at fixed couplings v. From
Eq. (2.18), we see that this selects out the subgraphs S ⊆ G having the smallest
possible number of connected components. The minimum achievable value is of
course k(G) (= 1 when the graph is connected), therefore we have

lim
q→0

q−k(G)ZG(q,v) = CG(v), (2.24)

where
CG(v) =

∑
S∈SG

k(S)=k(G)

∏
e∈ES

ve (2.25)

is the generating function of maximally connected spanning subgraphs (connected
spanning subgraphs). Observe that all the generating functions we talk about are
just polynomials until G is a finite graph, i.e. with V = |V| <∞.

A different limit can be obtained by taking q → 0 with fixed values of w = v/q.
Looking at the alternative form (2.20) of the partition function it is clear that only
the subgraphs with the smallest possible cyclomatic number survives. The latter
is of course 0, so we get

lim
q→0

q−VZG(q, qw) = FG(w), (2.26)

with
FG(w) =

∑
S∈SG

L(S)=0

∏
e∈ES

we (2.27)

generating polynomial of spanning forest (spanning trees).

Suppose now that in CG(v) we replace each edge weight ve by λve, and then we
take the limit λ→ 0. This chooses, among all the maximally connected spanning
subgraphs, those having the fewest edges, i.e. precisely the maximal spanning
forests (spanning trees in case G is connected), with exactly V − k(G) (V − 1 for
a single component) edges. Hence

lim
λ→0

λk(G)−VCG(λv) = TG(v), (2.28)

where
TG(v) =

∑
S∈SG

k(S)=k(G)
L(S)=0

∏
e∈ES

ve (2.29)
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2.2 The Potts model

Figure 2.2: Schematic picture of the q → 0 limit for the Fortuin-Kasteleyn
representation of the Potts model.

is the generating function of unrooted spanning forests (trees). Note that the same
result can be obtained from (2.27) by replacing we with λwe and sending λ→∞.
This selects the spanning forests with the greatest number of edges, i.e. once again
the maximal spanning forests

lim
λ→∞

λk(G)−V FG(λw) = TG(w). (2.30)

Finally, maximal spanning forests (spanning trees) can also be obtained directly
from ZG(q,v) by a one-step process in which the limit q → 0 is taken at fixed
x = v/qα, where 0 < α < 1. Indeed, a simple manipulation of Eq. (2.18) with the
Euler formula yields

ZG(q, q
αx) = qαV

∑
S∈S

qαL(S)+(1−α)k(S)
∏
e∈ES

xe. (2.31)

The quantity αL(S) + (1−α)k(S) is minimized only on maximal spanning forests,
where it takes the value (1− α)k(G), hence

lim
q→0

q−αV−(1−α)k(G)ZG(q, q
αx) = TG(x). (2.32)

In summary, the polynomials that we have obtained are all related one another,
as it can be seen pictorially in Fig. 2.2.

We conclude this section by noting that according to the Yang-Lee picture of
phase transitions [49], information about their possible loci can be obtained by
investigating the zeros of the partition function for finite subsets of the lattice L
on which the system is defined, when one or more physical parameters (e.g. the
temperature or the magnetic field) are allowed to take complex values. The ac-
cumulation points of these zeros in the thermodynamic limit constitute the phase
boundaries. For the Potts model, therefore, by studying the zeros of ZG(q, v) in
complex (q, v)-space in the infinite-volume limit, we can learn about its phase di-
agram even in the real (q, v)-plane. Since those computations are usually quite
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2. The MST in the mean field approximation

involved, it is very convenient to study first "slices" of the complex space such the
one provided above.

The polynomials that we have introduced are thus of great interest not only
from the combinatorial point of view, but also in the study of the physical prop-
erties of the Potts model itself. Actually, in the specific case of the spanning trees
polynomial (2.29) a number of other interesting physical results exists. For in-
stance, the number of stable configurations that occur with nonzero probability
in the steady state of the abelian sandpile model [50, 51] on a graph G equals the
number of spanning trees on G′, the graph obtained from G by connecting one extra
site. Furthermore, the spanning tree polynomial is closely related with the analy-
sis of electrical circuits, as we will point out in the following section to introduce
the matrix-tree theorem.

2.3 Matrix-tree theorem and Temperley formula
Let G = Graph(V ; E) be a connected graph with edge weights w = {wij}(i,j)∈E ,
then its Laplacian matrix, defined in Sect. 1.1, is written as

(LG(w))ij :=


−wij if i 6= j and (i, j) ∈ E
0 if i 6= j and (i, j) /∈ E∑

k 6=iwik if i = j

(2.33)

As we already mentioned, in the case the graph G is undirected LG is symmetric.
Moreover it has zero determinant by construction, since each row (and column)
elements sum to zero.

If we now consider the graph as an electrical network, the weights we represent
the conductance, while their inverse 1/we are the resistance. Supposing we inject
currents J = {Ji}i∈V into the vertices, one can ask what node voltages φ = {φ}i∈V
will be produced. By applying Kirchhoff’s law of current conservation at each
vertex and Ohm’s law on each edge, it is quite easy to see that the node voltages
and current inflows satisfy the linear system

LG(w) · φ = J. (2.34)

If we further impose that
∑

i∈V Ji = 0, namely total current conservation, and
fix an arbitrary node i0 ∈ V to zero voltage (the "ground", because only voltage
differences are physically observable), the linear system becomes

LG(w)\i0 · φ\i0 = J\i0 , (2.35)

where LG(w)\i0 denotes the matrix obtained from LG(w) by deleting the i0-th row
and column. A natural question is then to ask under which conditions does this
system have a (unique) solution, i.e. when the determinant of LG(w) is nonzero.
In 1847 [3] Kirchhoff answered this question with the following striking result.

Theorem 2.3.1 (matrix-tree theorem). The determinant of LG(w)\i is inde-
pendent of i and equals the spanning trees generating polynomial TG(w) (see Eq.
(2.29)) for the graph G

detLG(w)\i = TG(w). (2.36)
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2.3 Matrix-tree theorem and Temperley formula

Many different proofs of the matrix-tree theorem are now available in the lit-
erature, e.g. a simple one based on Cauchy-Binet theorem of matrix theory can
be found in [52].

The above result is extremely useful for our purposes, because it provides a way
to represent in a very useful form the spanning trees generating function, which
will represent the starting point of our replica calculation for the MST problem.
What remains to be done is to express Eq. (2.36) in a still simpler fashion, namely
eliminating the constraint on the deletion of the i-th row and column. In the mean-
time, as we have promised at the end of Sect. 1.1.1, we will also provide a proof of
Cayley’s formula (see Theorem 1.1.4), which counts the number of spanning trees
in a complete graph KN .

Let us start by representing the determinant in Eq. (2.36) in terms of a Berezin
integral on the couple of Grassmann variables {ψi}i∈V , {ψ̄i}i∈V that we introduce
on each vertex of the graph G (see Appendix A for an introduction on the Grass-
mann algebra). Using Eq. (2.29) for the generating polynomial of spanning trees
one can write

τ =
∑
T∈T

∏
e∈T

we = detL\i =

∫
D(ψ, ψ̄) ψ̄iψi e(ψ̄,Lψ), (2.37)

where the sum runs over the set of all spanning trees T in the graph G, and with
the shorthands D

(
ψ, ψ̄

)
:=
∏

i dψidψ̄i for the integration measure and(
ψ̄,Lψ

)
:=
∑
i,j

ψ̄iLijψj. (2.38)

for the scalar product in the exponent. As we have already mentioned, the deter-
minant of L is zero by construction, so by developping it along the k-th row we
have

detL =
∑
l

Lkl(adjL)lk =
∑
l

Lkl

∫
D
(
ψ, ψ̄

)
ψ̄lψk e(ψ̄,Lψ) = 0 (2.39)

with the matrix adjugate to L (i.e. the transpose of the cofactor), defined by

(adjL)ij = (−1)i+j detL\j,i, (2.40)

From Eq. (2.39) it is evident that adjL has to be proportional to the projector on
the eigenstate with zero eigenvalue of the matrix L, i.e. to the operator Π such
that

L Π = Π L = 0. (2.41)

This corresponds to Π = J/N , with N = |V| and Jij = 1 ∀i, j, as can be
checked easily given the structure of the Laplacian matrix. The proportionality
constant follows again from Eq. (2.39) by decomposing the sum into diagonal and
off-diagonal parts, and then using the matrix-tree theorem on the first term∑

l

Lkl(adjL)lk = τLkk +
∑
l 6=k

Lkl(adjL)lk. (2.42)
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2. The MST in the mean field approximation

What one obtains is therefore

adjL = τ J = τN Π (2.43)

or, in other words, a generalization of the matrix-tree theorem, saying that it does
not matter what specific row and column we remove from the Laplacian matrix,
due to the fact that

τ = (adjL)ii = (adjL)jj = (adjL)ij. (2.44)

Introducing now the orthogonal projector Π⊥ = 1 − J/N , thanks to the last
relation one can directly check that∫

D
(
ψ, ψ̄

) (
ψ̄,Π⊥ψ

)
e(ψ̄,Lψ) = 0, (2.45)

thus we can write the following chain of equalities

τ =
1

N

∫
D
(
ψ, ψ̄

) (
ψ̄, ψ

)
e(ψ̄,Lψ)

=
1

N

∫
D
(
ψ, ψ̄

) (
ψ̄,Πψ

)
e(ψ̄,Lψ)

=
1

λN

∫
D
(
ψ, ψ̄

)
e(ψ̄,Lψ)+λ(ψ̄,Πψ)

=
1

λN
det (L + λΠ) . (2.46)

In the first passage we simply exploited the independence of τ from the indices i, j,
and we used Eq. (2.45) in the second. The third equality follows instead from the
fact that the determinant of the Laplacian matrix vanishes, as it happens to higher
order in the expansion of λ, thanks to the nilpotency of Grassmann variables.

Note that in the last equation the zero eigenvalue of the Laplacian is substituted
by the arbitrary constant λ, which is removed by the denominator. By choosing
in particular λ = N we finally arrive at the desired result, which is the so called
Temperley’s formula [53]

τ =
1

N2
det (L + J). (2.47)

To directly check the validity of the obtained result let us consider a complete
graph KN with all weights fixed to one. In this case, the generating polynomial
TG(w) coincides with the number of different spanning trees that can be drawn on
the graph, and with our formula we find

τ(KN) =
1

N2
det (L + J) =

1

N2
det (N I) = NN−2 (2.48)

which is exactly Cayley’s result (1.7).
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2.4 Random MST via replicas

2.4 Random MST via replicas
In the previous sections we have provided all the building blocks necessary to set
up the final part of our analysis of the random MST problem with i.i.d. edge
weights. In particular, we have seen in Sect. 2.2.2 how to obtain the partition
function for our system, namely the spanning tree generating polynomial (2.29),
as a q → 0 limit of the q-state Potts model. Then we have expressed it as the
determinant of the graph Laplacian through the matrix-tree theorem, which al-
lows us to state the problem in terms of a Berezin integral defined on Grassmann
variables.

Now we want to proceed with the established path, i.e. with an attempt in the
calculation of the average optimal cost of the MST with the replica method, as
already performed for other combinatorial optimization problems [25, 26]. Before
we start, however, it is important to mention that at least another promising route
exists that one can consider to obtain our desired result. In fact, one could think
to carry out a replica calculation directly on the q-state Potts model, and only in
a second time to consider the limit q → 0 to investigate the case of spanning trees
and forests.

In this case, a good starting point would be to consider the work of Elderfield
and Sherrington [54], even if a crucial difference has to be taken into account. The
two authors applied the replica method to the Potts model by choosing couplings
of the form given in Eq. (1.25), i.e. Gaussian random variables, thus finding that
only the first two moments of their distribution matter when one averages over
the disorder, exactly as it happens in the SK model (see Sect. 1.3.2). Instead,
in our case we have to redefine the couplings according to Eq. (2.16), and so we
expect that all the moments of the distribution will play a role in the calculations,
making them much more involved.

From now on we will restrict ourselves to the case of the complete graph KN with
N vertices. According to Temperley’s formula (2.46) with the arbitrary constant
fixed to λ = 1, the partition function for the weighted spanning trees on the given
graph can be written as

Z :=
∑
T∈T

∏
e∈T

we =
1

N
det(L +

J

N
). (2.49)

To select the minimum spanning tree T0 in the low temperature limit β →∞, we
assume that the edge weights are of the form

we := e−βNle (2.50)

In this case, the cost of the optimal configuration for our system will properly be
given by

C = − lim
β→∞

logZ(β) = min
T∈T

∑
e∈T

le =
∑
e∈T0

le. (2.51)

Clearly, as we are considering a random optimization problem, le are positive
random variables generated according to a probability distribution density ρ(l),
which we take for definiteness as the simple exponential one

ρ(l) = θ(l)e−l. (2.52)
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2. The MST in the mean field approximation

We now introduce the Grassmann variables representation (A.11) for the deter-
minant appearing in Eq. (2.49), and according to the prescription of the replica
method (see Sect. 1.3.2) we take the n-th power of the partition function, obtain-
ing

Zn =
1

Nn

∫
D
(
ψ, ψ̄

) n∏
a=1

exp

(
N∑

i,j=1

[
1

2

(
ψ̄ai − ψ̄aj

)
wij
(
ψai − ψaj

)
+

1

N
ψ̄ai ψ

a
j

])
(2.53)

where we have written explicitly the action of the matrices L and J on the anti-
commuting variables ψ, ψ̄.

The next step of our recipe consists in performing the average over the disorder,
namely the configurational average Zn. For this purpose, we exploit the identity∫

dwρ(w)exw = exp

(
∞∑
k=1

φk
xk

k!

)
, (2.54)

where φk are the cumulants of the distribution ρ(w). More precisely, being the
form of the weights the one given in Eq. (2.50), we have to perform the following
integral ∫

dlρ(l)exe
−βNl

=
∞∑
k=0

xk

k!

∫
dlρ(l)e−βNkl ≡ 1 +

1

N

∞∑
k=1

gk
xk

k!
. (2.55)

where we have introduced, as in the case of the assignment problem [55], the
moments gk/N of the distribution function ρ. Expanding the last equation in series
of N one recovers Eq. (2.54), so the following relations between the cumulants
and the moments of the distribution hold

φ1 =
g1

N
, φ2 =

g2

N
−
(g1

N

)2

, . . . (2.56)

Remembering that we are interested in the thermodynamic limit N → ∞, it is
evident that at the leading order in N the k-th cumulant and the k-th moment
coincides. Therefore, the averaged partition function w.r.t. the edge weights
distribution is

Zn =
1

Nn

∫
D
(
ψ, ψ̄

)
exp

(
1

N

∑
a

∑
i,j

ψ̄ai ψ
a
j+

+
1

N

∑
k

gk
2kk!

∑
i,j

[∑
a

(
ψ̄ai − ψ̄aj

) (
ψai − ψaj

)]k . (2.57)

Let us remark that thanks to the nilpotency of the Grassmann variables, by ex-
panding the power in the exponent when two indices are equal the product van-
ishes, so one has

1

2kk!

N∑
i,j=1

n∑
a1,...,ak=1

(
ψ̄a1i − ψ̄

a1
j

) (
ψa1i − ψ

a1
j

)
· · ·
(
ψ̄aki − ψ̄

ak
j

) (
ψaki − ψ

ak
j

)
=

∑
1≤i<j≤N

∑
1≤a1<···<ak≤n

(
ψ̄a1i − ψ̄

a1
j

) (
ψa1i − ψ

a1
j

)
· · ·
(
ψ̄aki − ψ̄

ak
j

) (
ψaki − ψ

ak
j

)
(2.58)
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2.4.1 Sites decoupling

Having in mind what we have done in Sect. 1.3.2 for the Sherrington-Kirkpatrick
model, normally the next step in the analysis of the replicated partition function
is to transform the part of the integrand of Zn that involves sums on pairs of sites
into a form involving only sums over single sites. Having done that, the partition
function may be written as an integral where the number of sites N appears just
as a parameter.

Unfortunately, in our case this task is not straightforward due to the particular
structure of the Laplacian matrix, resulting in the complicated form of the expo-
nent in Eq. (2.57). A similar problem has been already treated in the context
of disordered diffusion [56], and faced by the authors with a generalized func-
tional Hubbard-Stratonovich transformation, necessary to introduce the auxiliary
variables one needs to decouple different sites. This technique has been used in
subsequent years in the study of random matrices too, so we refer the reader e.g.
to the work of Fyodorov [57], in which one can find an example of the procedure
together with a heuristic discussion on its validity. Here we will simply sketch the
reasoning, highlighting only the fundamental steps.

The term we want to decouple is of the form

e
1

2N

∑
i,j L (ψ̄i,ψi,ψ̄j ,ψj) (2.59)

where we have defined the operator

L
(
ψ̄i, ψi, ψ̄j, ψj

)
≡ 2

∑
a

ψ̄ai ψ
a
j +

∞∑
k=1

gk
2k−1k!

∑
a1,...,ak

k∏
s=1

(
ψ̄asi − ψ̄

as
j

) (
ψasi − ψ

as
j

)
.

(2.60)

Note that for simplicity we have dropped the dependence on the replica indices into
the arguments of the operator L . Suppose now it is possible to diagonalize the
operator, and that the basis over which it is diagonal is spanned by the functions
eµ
(
ψ̄i, ψi

)
(again, ψ̄i and ψi depend on all replica indices), which are orthonormal

with respect to the measure D
(
ψ, ψ̄

)
in the replica space∫

D
(
ψ, ψ̄

)
eµ
(
ψ̄i, ψi

)
eν
(
ψ̄i, ψi

)
= δµν . (2.61)

Therefore we have

L
(
ψ̄i, ψi, ψ̄j, ψj

)
=
∑
µ

λµeµ
(
ψ̄i, ψi

)
eµ
(
ψ̄j, ψj

)
(2.62)

so the expression (2.59) can be manipulated as follows

e
1

2N

∑
i,j L (ψ̄i,ψi,ψ̄j ,ψj) = exp

 1

2N

∑
µ

λµ

[∑
i

eµ
(
ψ̄i, ψi

)]2


=

∫ (∏
µ

dyµ√
2π

)
exp

(
−N

2

∑
µ

y2
µ +

∑
µ

√
λµ
∑
i

eµ
(
ψ̄i, ψi

))
. (2.63)
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2. The MST in the mean field approximation

By defining the function

G(ψ̄, ψ) :=
∑
µ

yµ
√
λµeµ

(
ψ̄, ψ

)
(2.64)

together with the inverse operator

L −1
(
ψ̄i, ψi, ψ̄j, ψj

)
:= F

(
ψ̄i, ψi, ψ̄j, ψj

)
=
∑
µ

1

λµ
eµ
(
ψ̄i, ψi

)
eµ
(
ψ̄j, ψj

)
, (2.65)

one can easily prove by exploiting the orthogonality condition (2.61) that the
following equality holds∫

D
(
ψ, ψ̄

)
D (η, η̄)G

(
ψ̄, ψ

)
F
(
ψ̄, ψ, η̄, η

)
G (η̄, η) =

∑
µ

y2
µ. (2.66)

We have thus obtained the generalized Hubbard-Stratonovich transformation
we were looking for, which reads

e
1

2N

∑
i,j L (ψ̄i,ψi,ψ̄j ,ψj) =

∫
DG e−

N
2

∫
D(ψ,ψ̄)D(η,η̄)G(ψ̄,ψ)F(ψ̄,ψ,η̄,η)G(η̄,η)+

∑
iG(ψ̄i,ψi)

(2.67)

with DG representing a suitable integration measure. Therefore, we have shown
that proceeding this way one finally arrives to the desired form for the configura-
tional average of the replicated partition function

Zn =

∫
DG e−NS[G], (2.68)

where we have defined the action

S[G] ≡ 1

2

∫
D
(
ψ, ψ̄

)
D (η, η̄)G

(
ψ̄, ψ

)
F
(
ψ̄, ψ, η̄, η

)
G (η̄, η)− log z[G], (2.69)

with
z[G] ≡

∫
D
(
ψ, ψ̄

)
eG(ψ̄,ψ). (2.70)

From these expressions one can perform a saddle point analysis in the thermody-
namic limit N →∞.

Clearly, here we have performed a series of formal manipulations, and the main
question is whether it is possible to explicitly diagonalize the operator L for our
specific problem. The integral representation we have found is rather puzzling at
first sight, still the method is very useful and led to correct results in various cases
[58]. In particular, provided some kind of regularization of the problem is allowed,
the functional Hubbard-Stratonovich transformation is correct and identical to the
set of Hubbard-Stratonovich identities.
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Chapter 3

The Euclidean MST

In the last chapter of this thesis we focus on the so called random Euclidean
MST problem, in which correlations between edge weights are present due to the
fact that the N vertices of the graph are random points scattered in a Euclidean
domain. After an introduction to the subject, we provide for the first time the
solution of the problem defined on a bipartite graph in one dimension. Moreover,
we perform a numerical investigation in one and two dimensions to study the
scaling for large N of the average cost of the random MST. Both of this elements
show that the random fluctuations in the positions of the points do not influence
the scaling behavior of the average cost in the bipartite setting, which remains
identical to the one of the monopartite case, a fact that represents the main
contribution of our work to the topic.

3.1 Random Euclidean optimization problems
In the previous chapter, in particular in the first and last sections, we focused on
the random minimum spanning tree problem defined on a graph with independent
and identically distributed weights. In practice, we excluded the possibility of the
presence of correlations between different edges, and so we considered what can
be thought of as a mean field approximation for the case we will examine here.
In fact, some optimization problems are actually defined in the geometric space,
think e.g. to the TSP to be solved in a certain geographical area, or to the several
applications of the MST problem cited in Sect. (1.2.2), so let us introduce the
class of so called Euclidean optimization problems.

This kind of problem is still defined on a graph G = Graph(V ; E), but a con-
nected convex domain Ω ⊂ Rd is also given, together with a random point process
Φ which provides the embedding of G in the Euclidean space,

Φ : V → Ω such that vi ∈ V 7→ Φ(vi) ≡ ξi ∈ Ω. (3.1)

In the remaining part of this thesis, we will consider a weight function w : E → R+

defined as
w(eij) ≡ w

(p)
ij := ‖ξi − ξj‖p , p ∈ R+ (3.2)

so that the weight associated to the edge eij ≡ (vi, vj) is a positive power of
the Euclidean distance between the points. Note that apart from this, no other
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3. The Euclidean MST

differences emerge with respect to the combinatorial optimization problems on
graphs introduced in the first chapter.

Clearly, the Euclidean origin of the weights in the graph is not relevant for
the solution of a given instance of the problem, and the algorithms available in
the literature work perfectly. However, the study in presence of randomness is
more complicated. In the context of random Euclidean optimization problems,
randomness is typically introduced in the embedding process of the graph in Ω.
In this case, a probability distribution density is given on Ω,

ρ : Ω→ R+,

∫
Ω

ρ(x) ddx = 1. (3.3)

and we suppose in practice that N = |V| points, X := {ξi}i=1,...,N ∈ Ω, are
independently randomly generated on Ω. Therefore, we associate to each vertex
vi ∈ V of the graph a point ξi at random.

Doing so, the weights w(e) defined according to Eq. (3.2) are random, but in
general Euclidean correlations appear, due to the correlations among the distances
of the points, such as the one imposed by the triangle inequality. Considering all
this, the average procedure becomes more subtle than in the purely uncorrelated
case, and great importance is given to the point generation procedure. In this
regard, one usually defines the empirical measure

ρX (x) =
1

N

N∑
i=1

δ(d)(x− ξi), (3.4)

which can be proven to converge to ρ almost surely for N →∞.

Let us now fix some notations and terminology considering the MST problem
defined in a Euclidean domain Ω ⊂ Rd, having in mind that everything can be
readily adapted to other combinatorial optimization problems, such as the TSP
or the matching problem.

In the random Euclidean monopartite MST problem (rEm) the problem is de-
fined on the complete graph KN , with each vertex vi ∈ V associated to a point
ξi ∈ Ω randomly generated according to a given probability density function ρ, as
in Eq. (3.3). We are interested in the spanning tree T0 ⊆ KN that minimizes the
functional

C(p,Em)[T] :=
∑
e∈ET

w(p)(e), T = Graph(VT; ET) ∈ T , (3.5)

where w(p)(e) is defined in Eq. (3.2) and

T := {T | T ⊂ KN spanning tree} . (3.6)

In what follows we will denote the MST cost by

C(p,Em)
N := C(p,Em)[T0] = min

T∈T
C(p,Em)[T], (3.7)

while its average will be indicated by

C(p,rEm)
N,d := C(p,Em)

N . (3.8)
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3.2 Average optimal cost scaling for the rEm

(a) (b)

Figure 3.1: Random Euclidean monopartite MST (a) with N = 200 and random
Euclidean bipartite (grid-Poisson) MST (b) with N = 100. In both cases the ran-
dom points are generated with uniform distribution on [0, 1]2 and open boundary
conditions are assumed.

Clearly the average • is performed on the positions of the points, and we note
that the previous quantity strongly depends on the considered domain Ω, on the
number of points N and on their distribution ρ.

If the problem is defined on a complete bipartite graph KN,N = Graph(V ,U ; E)
we call it random Euclidean bipartite MST problem (rEb), but two different possi-
bilities exist to introduce randomness. Considering the flat distribution ρ(x) = 1

|Ω| ,
if both vertices in V and U are associated to points in Ω that are randomly and
independently generated according to ρ, we will call the problem Poisson-Poisson
Euclidean MST problem (RR-Eb). Whereas if one set of vertices, say U , is mapped
to a fixed hypercube lattice on Ω we will refer to the problem as the grid-Poisson
Euclidean MST problem (GR-rEb). Naturally, all the above definitions for the
(rEm) continue to hold (with some obvious modifications), but this time two dif-
ferent averages on the positions of the points can be performed, namely

C(p,RR)
N,d := C(p,Eb)

N (3.9a)

C(p,GR)
N,d := C(p,Eb)

N

∣∣∣
U on the grid

. (3.9b)

In the first case we average over both the sets of points, in the latter one set is
instead supposed fixed.

3.2 Average optimal cost scaling for the rEm
As we did in Sect. 2.1 for the purely uncorrelated case, we now want to review
the existing literature on the MST problem when defined in a Euclidean setting.
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3. The Euclidean MST

Before we start to analyze it in detail, let us note that the asymptotic optimal
cost of all the classical combinatorial optimization problems has been studied
extensively in the hypothesis that the points {ξi}i are randomly generated on
Ω ⊂ Rd [59]. For instance, using the fact that the Euclidean functionals of the
TSP (1.12) and the matching problem (1.13) are homogeneous and translationally
invariant, i.e.

C[S]
ξi 7→λξi+r−−−−−−→ λpC[S], λ ∈ R+, r ∈ Rd, (3.10)

with S proper subgraph depending on the problem considered, Redmond and Yu-
kich [60] proved that on the complete graph K2N , embedded in the unit hypercube
in d dimensions, their optimal cost scales as N1− p

d for 0 < p < d in the large N
limit.

An analogous result for the random Euclidean MST functional of Eq. (3.7) was
obtained by Steele in 1988 [61], and it can be formulated in the following form.

Theorem 3.2.1. Consider a complete graph G = Graph(V ; E) with vertex set given
by V = {ξ1, . . . , ξN}, where ξi are independent random variables with distribution
F having compact support in Rd, d ≥ 2. If the monotone weighting function
w = w(‖e‖), with ‖e‖ denoting the Euclidean length of the edge e ∈ E, satisfies
w(x) ∼ xp for some 0 < p < d, then with probability 1

lim
N→∞

N−1+ p
d C(p,Em)

N = c(p, d)

∫
Rd
f(x)1− p

d ddx. (3.11)

Here f denotes the density of the absolutely continuous part of F and c(p, d) is a
stricly positive constant.

First of all, let us note that this theorem lacks the case d = 1 simply because it is
trivial. In fact, the Euclidean MST for a set of random points scattered on a line
is readily constructed by joining them in order from one end to the other. This
will not be true anymore in the case of a bipartite graph, in which points in the
same class cannot connect, as we will see explicitly in the next section.

Secondly, it is worth observing that the above result is closely related to the
general theory of subadditive Euclidean functionals [62], but there are some cru-
cial differences. One issue is that the cost of a monopartite Euclidean MST is not
an almost surely increasing sequence of random variables, i.e. it is not true that
C(ξ ∪A) ≥ C(A) for any ξ ∈ Rd and finite subsets A of Rd. This forces subtleties
on its analysis, which are not present in the study of the TSP or other monotone
Euclidean functionals.

At the end of its paper, Steele outlined some open problems concerning with
its result, e.g. the possibility to investigate the rate of convergenge for the asymp-
totic behaviour he provided. This task was carried out by Yukich [63], who also
extended the above theorem to the critical range p ≥ d in the sense of complete
convergence. In particular, for all d ≥ 2 and p ≥ 1 he established that for the
average cost of the monopartite Euclidean MST it holds∣∣∣N−1+ p

d C(p,rEm)
N,d − c(p, d)

∣∣∣ ≤ c′N−
1
d (3.12)

where c′ is a simple constant.
Another important question stemming from theorem 3.2.1 was whether the
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3.3 One dimensional rEb: exact solution for p > 0

constants c(p, d) could be determined explicitly somehow. Despite the pessimistic
attitude of Steele’s itself about the topic, a step in this direction was performed
some years later [64], exploiting a procedure that remarkably unified the deriva-
tion for the MST asymptotic behaviour for the Euclidean model and the purely
uncorrelated one. Supposing as usual that the set {ξi}Ni=1 of i.i.d. points is given
in Rd, let us define GN(z) as the graph composed by all vertices distant at most
z, together with the function

gk(y) = lim
N→∞

Pk,N

[(
y

Nvd

) 1
d

]
, (3.13)

where vd denotes the volume of the unit sphere in d dimensions, while Pk,N(z) is
the probability that a given point belongs to a component of GN(z) having exactly
k points. In this setting, the values of the constants appearing in (3.11) for p ≤ d
are given by

c(p, d) =
p

d v
p/d
d

∞∑
k=1

1

k

∫ ∞
0

gk(y) y
p
d
−1 dy. (3.14)

Truncation of the sum after a finite number of terms yields a sequence of lower
bounds for the constants, but unfortunately the functions gk(y) are increasingly
harder to obtain analytically as k increases. Nonetheless, from the expression
above one can obtain the following bounds in arbitrary dimension for the case
p = 1

Γ(1/d)

d v
1/d
d

≤ c(1, d) ≤ 21/d Γ(1/d)

d v
1/d
d

. (3.15)

We conclude this section by noting that, contrary to the monopartite case, no
scaling results exist in the literature concerning the cost of the random Euclidean
bipartite MST. The fact that, from a mathematical point of view, the treatment
of the problem becomes more complicated should not particularly impress the
reader. In fact, although the bipartite case appears as a slight modification of the
monopartite one, the differences can prove to be crucial with respect not only to
the value of the average optimal cost, but also to its scaling behaviour for large N ,
especially in low dimensions, where local fluctuations of points of different type
are much more relevant.

Those discrepancies between the monopartite and bipartite case have been
observed in several random Euclidean optimization problems, such as the matching
problem [65, 72, 73] and the TSP [66, 74, 75]. Instead, they do not appear in the
random Euclidean MST problem, as we will see explicitly in the next sections by
analyzing in detail the one and two dimensional cases. We remark that this fact
represents the main result of this thesis, and it will be explained in detail at the
end of the chapter.

3.3 One dimensional rEb: exact solution for p > 0

In this section we want to provide the explicit solution for the random Euclidean
bipartite MST problem in one dimension. As in the general setting illustrated
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3. The Euclidean MST

(a)

(b)

(c)

Figure 3.2: (a) KN,N = Graph(R,B; E) with N = 6 embedded in the segment
[0, 1], with the vertices chosen uniformly at random. (b)-(c) First and second step
of the construction of the MST for the given graph. The lines corresponding to
the edges of the MST are drawn as semicircles out of the segment for a matter of
visualization.

above, we consider the complete graph KN,N = Graph(R,B; E), N = |R| = |B| ∈
N, and we assume that the points {ri}i and {bi}i, which correspond to the "red"
R and "blue" B vertices respectively, are randomly and independently generated
with uniform distribution in the interval [0, 1] (Fig. 3.2a). Moreover, we consider
a weight function w(p) : E → R+ of the form

w(p)(eij) ≡ |ri − bj|p , p ∈ R+ (3.16)

i.e. a monotonically increasing function of the distance of the points. The quantity
of interest for us is the average cost of the MST, which we have indicated in the
previous section as

C(p,rEb)
N,1 := min

T∈T

∑
e∈ET

w(p)(e), (3.17)

with T set of all possible spanning trees of the graph G.
First of all we provide an explicit construction method for the one-dimensional

bipartite MST given a specific instance of the 2N points on the segment [0, 1]. This
will allow us to write down a general formula for the total cost of the MST, which
can be computed exactly for all finite N . Let us consider one of the two sets of
points, e.g. the blue one, as the seeds of a Voronoi diagram on the line (see Sect.
1.2.2). In Fig. 3.2a Voronoi cells are represented by the ticks, corresponding to the
mean points between successive blue points. In the first step of the construction
of the MST every red point connects to the (blue) seed of the Voronoi cell which
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3.3 One dimensional rEb: exact solution for p > 0

he belongs to, as shown in Fig. 3.2b. After that, to form the remaining N − 1
links, we have to connect different cells, and to do so we concentrate on the ticks
separating them. For each tick, we select its closest red point, that could end up
on its right or left, and connect it to the first blue point on the opposite side of
the tick (see Fig. 3.2c). The resulting subgraph is the MST for the starting 2N
vertices complete graph.

To definitely prove the last statement it is sufficient to consider the functioning
of Kruskal’s algorithm, explained in Sect. 1.2.3. Let us recall that once the edge
weights have been sorted in increasing order, starting from the smallest one the
algorithm checks if its corresponding link does form a loop when inserted in the
developing spanning forest, discarding it if that happens and adding it otherwise.
In our case, when a weight from the list is taken into account two situations can
occur.

1. The corresponding link lies completely in the interior of a Voronoi cell (step
I). In this case it is necessarily the first edge connecting its red end to the
forest, so it will never form any loop.

2. The corresponding link connects two different cells (step II). When this hap-
pens, the link is added to the forest if and only if it is the shortest connecting
the two cells. In fact, any longer edge will necessary form a loop, since all the
red points between the two seeds of the cells have already been connected
to them in the first step.

Let us note that by considering the previous procedure, only if more than one
consecutive Voronoi cells are empty, i.e. free of red points in our case, it happens
for an edge to connect non adjacent cells.

We conclude this proof, together with the section, observing that we never
mentioned in our construction the power p which determines the values of the
edge weights. This is due to fact that until the weighting function is a monotone
increasing function of the distance of the points, the cluster structure formed by the
Voronoi cells and the relative distance ordering among the points are unchanged.
This means that given a specific instance of the 2N random points on [0, 1], the
MST will be always the same for all p > 0.

3.3.1 The Grid-Poisson case

To evaluate explicitly the average cost of the rEb we first focus on its grid-Poisson
version, where one set of points (e.g. the blue one) is supposed fixed on a grid.
We are thus interested in the cost functional

C(p,GR)
N,1 := C(p,Eb)

N

∣∣∣
B on the grid

, (3.18)

so we set
bj =

2j − 1

2N
, j = 1, . . . , N. (3.19)

In what follows, we will always consider separately the contributions to the cost
given by the two different steps of the MST construction given above. So let us
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3. The Euclidean MST

start with the first one, taking into account the weights of intra-cells links (Fig.
3.2a).

If the red points are uniformly and independently distributed on [0, 1] all cells
are equivalent, so without loss of generality we can concentrate on one of them, say
the first [0, 1/N ]. The probability distribution density for the random variable R
representing a red point’s position ending up in this interval is simply ρR(r) = N ,
so the expected value of the p-th power of its distance from the blue seed at the
center of the cell can be written as

E
[∣∣∣∣R− 1

2N

∣∣∣∣p] = N

∫ 1
N

0

∣∣∣∣r − 1

2N

∣∣∣∣p dr =
1

2p(p+ 1)Np
(3.20)

This quantity times the number of red points gives the total contribution of the
first step to the average cost of our MST. Observe that for p = 1 the above result
turns into 1/4N , which can be derived immediately from simmetry considerations
too.

Considering now also the second step of the construction, we can write explicitly
the total cost of the MST in the grid-Poisson case

C(p,GR)
N,1 =

1

2p(p+ 1)Np−1
+

N−1∑
i=1

(
min

j=1,...,N

∣∣∣∣rj − i

N

∣∣∣∣+
1

2N

)p∣∣∣∣∣
B on the grid

(3.21)

Note that in the second term the sum runs over the mean points i/N (ticks in
Fig. 3.2c) between successive blue points, and for every link the contribution can
be splitted in two parts: a constant 1/2N corresponding to the distance between
the blue seed and the tick, plus the distance between the tick and its closest red
point.

To compute the average over R, i.e. over red points’ positions, we first need
the distribution function of the random variable

M (y) = min
j=1,...,N

|rj − y| , (3.22)

where y ∈ (0, 1) is considered fixed. For this purpose, we start from the all order
statistics probability distribution of N random samples choosen uniformly in [0, 1]
(see Appendix B). Thus, supposing the red points are labeled in such a way that
ri < rj if i < j, their joint distribution can be written as

ρR(1),...,R(N)
(r1, . . . , rN) = N !θ(r1)

N−1∏
i=1

θ(ri+1 − ri)θ(1− rN). (3.23)

The probability distribution for the distance between the N ordered red points
and y, let us call it f , follows then by simply imposing N constraints with a delta
function on the previous distribution

f(d(y)
r1
, . . . , d(y)

rN
) =

∫
ρR(1),...,R(N)

(r1, . . . , rN)
N∏
i=1

δ
[
d(y)
ri
− (ri − y)

]
dr1 . . . drN =

= N ! θ(d(y)
r1

+ y)
N−1∏
i=1

θ(d(y)
ri+1
− d(y)

ri
)θ(1− d(y)

rN
− y) (3.24)
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3.3 One dimensional rEb: exact solution for p > 0

To compute the pdf for the random variable M (y) we start from its cumulative
distribution function

Pr
[

min
j=1,...,N

∣∣∣d(y)
rj

∣∣∣ < m

]
= 1− Pr

[∣∣d(y)
r1

∣∣ ≥ m, . . . ,
∣∣d(y)
rN

∣∣ ≥ m
]

=

= 1−
∫ 1−y

−y
f(l1, . . . , lN)

N∏
i=1

θ(|li| −m) dl1 . . . dlN =

= 1−
∫

[−y,−m]∪[m,1−y]

f(l1, . . . , lN) dl1 . . . dlN (3.25)

where we have used the fact that d(y)
ri ∈ [−y, 1 − y] ∀i. By observing the

interval of integration we note that the result will be different from 0 only if
m ∈ [0,max{y, 1 − y}]. To simplify the notation from now on we will denote∫

[−y,−m]∪[m,1−y]
≡
∫
. Taking the derivative of the above cumulative we obtain

ρM(y)(m) = − ∂

∂m

[∫ −m
−y

dl1

∫
dl2 . . . dlNf(l1, . . . , lN)

+

∫ 1−y

m

dl1

∫
dl2 . . . dlNf(l1, . . . , lN)

]

=

∫
dl2 . . . dlN [f(−m, l2, . . . , lN) + f(m, l2, . . . , lN)]

−
∫

dl1
∂

∂m

∫
dl2 . . . dlNf(l1, . . . , lN) = . . .

=
N∑
i=1

∫
dl1 . . .��dli . . . dlN [f(l1, . . . ,−m, . . . , lN) + f(l1, . . . ,m, . . . , lN)]

(3.26)

with −m and m both as the i-th argument in the last line. We can now substitute
Eq. (3.24) in the previous expression, considering y ∈ [0, 1/2] and y ∈ [1/2, 1] sep-
arately. Nonetheless, the calculations are exactly the same, so we write explicitly
only the first case.

Looking at the form of the pdf in Eq. (3.24) it is clear that one has to pay
attention when substituting m and −m if the index of the last sum is i = 1 or
i = N . For this reason we will consider separately these two situations, excluded
from the general case which starts below. Proceeding with the substitution, the
terms of the sum in Eq. (3.26) become

N !
N−1∑
i=2

∫
dl1 . . .��dli . . . dlN θ(l1 + y) . . . [θ(−m− li−1)θ(li+1 +m)

+ θ(m− li−1)θ(li+1 −m)] . . . θ(1− lN − y) (3.27)
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with the two terms in the square brakets giving the same contribution when one
considers the intervals of integration (remember the shorthand), which imply

li−1 < −m, li+1 > −m

li−1 < m, li+1 > m.

Moreover, from the inequality li−1 < m the integral is nonzero only if m < y, so
we write

2N ! θ(y −m)
N−1∑
i=2

∫ −m
−y

dli−1

∫ 1−y

m

dli+1

∫
dl1 . . .((((

(((dli−1dlidli+1 . . . dlN

· θ(l1 + y) . . . θ(li−1 − li−2)θ(li+2 − li+1) . . . θ(1− lN − y) = . . .

= 2N !θ(y −m)
N−1∑
i=2

∫ −m
−y

dli−1

∫ li−1

−y
dli−2

· · ·
∫ l2

−y
dl1

∫ 1−y

m

dli+1

∫ 1−y

li+1

dli+2· · ·
∫ 1−y

lN−1

dlN (3.28)

In the particular case i = 1 we have instead

N !

∫
dl2 . . . dlN [θ(−m+ y)θ(l2 +m) + θ(m+ y)θ(l2 −m)]θ(l3 − l2) · · ·

= N !

∫ 1−y

m

dl2

∫
dl3 . . . dlN [θ(y −m) + 1]θ(l3 − l2) · · · θ(1− lN − y) = . . .

= N !

∫ 1−y

m

dl2

∫ 1−y

l2

dl3· · ·
∫ 1−y

lN−1

dlN [θ(y −m) + 1] (3.29)

Here it is evident that an additional term emerges for y < m < 1 − y, given by
the +1 in the braket. The same calculation can be carried out for i = N , where
no new terms appear with respect to the general case. In the end, putting all
together, we have

ρ
(1)

M(y)(m) = 2N ! θ(y −m)
N∑
i=1

∫ −m
−y

dli−1

∫ li−1

−y
dli−2· · ·

∫ l2

−y
dl1

·
∫ 1−y

m

dli+1

∫ 1−y

li+1

dli+2· · ·
∫ 1−y

lN−1

dlN

+N !

∫ 1−y

m

dl2

∫ 1−y

l2

dl3· · ·
∫ 1−y

lN−1

dlNθ(m− y) (3.30)

The integrals are easy to evaluate and the expression one obtains is

ρ
(1)

M(y)(m) = 2N ! θ(y −m)
N∑
i=1

1

(i− 1)!(N − i)!
(y −m)i−1(1− y −m)N−i

+N(1− y −m)N−1θ(m− y)θ(1− y −m) (3.31)
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3.3 One dimensional rEb: exact solution for p > 0

Finally, the finite sum can be computed explicitly using the binomial theorem, so
the probability distribution for the minimum distance between the N red points
and a fixed one y ∈ [0, 1/2] is given by

ρ
(1)

M(y)(m) =


2N(1− 2m)N−1 0 < m < y

N(1− y −m)N−1 y < m < 1− y y ∈ (0, 1
2
)

0 m > 1− y

(3.32)

The result for the specular case y ∈ [1/2, 1], due to trivial symmetry considera-
tions, can be obtained directly by substituting y → 1− y in the above expression,
so we obtain

ρ
(2)

M(y)(m) =


2N(1− 2m)N−1 0 < m < 1− y

N(y −m)N−1 1− y < m < y y ∈ (1
2
, 1)

0 m > y

(3.33)

At this point we are ready to perform the average over the red points’ positions
of Eq. (3.21), namely the average over the disorder of our system. For simplicity,
let us first consider the case p = 1, in which the average cost for the MST can be
rewritten as

C(1,GR)
N,1 =

1

4
+
N − 1

2N
+

N−1∑
i=1

M( i
N )
∣∣∣∣
B on the grid

(3.34)

For y ∈ [0, 1/2] we have to perform the following integrals

M (y) = 2N

∫ y

0

m(1− 2m)N−1dm+N

∫ 1−y

y

m(1− y −m)N−1dm

=
(1− 2y)N+1 + 1

2(N + 1)
(3.35)

which can be readily asapted as before to the case y ∈ [1/2, 1]. The obtained
results can be putted together, so substituting y = i/N in the end we find

C(1,GR)
N,1 =

1

4
+

(2N + 1)(N − 1)

2N(N + 1)
+

1

N + 1

bN−1
2 c∑
i=1

(
1− 2i

N

)N+1

(3.36)

We stress that this result is exact for all number of points N , because no assump-
tions have been performed during its derivation. Only now, not being able to
provide a closed form for the sum appearing above, it is worth performing a large
N expansion of the formula, in order to obtain a result comparable with numerical
simulations that we will report in Sect. 3.4. By approximating its argument as
an exponential, the partial sum turns into a geometric one, which can be easily
evaluated

1

N + 1

bN−1
2 c∑
i=1

(
1− 2i

N

)N+1

≈ 1

N + 1

bN−1
2 c∑
i=1

e−
2(N+1)
N

i =
1

N + 1

1− e−N+ 1
N

e2+ 2
N − 1

. (3.37)
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Therefore, the expression of the average cost for N � 1 is given by

C(1,GR)
N,1 =

5

4
+

5− 3e2

2(e2 − 1)

1

N
+

e4 − 5e2 + 2

(e2 − 1)2

1

N2
+ o

(
1

N2

)
(3.38)

When p > 0 the procedure is similar and the computation gets just a little
more involved. This time the formula for the average cost reads

C(p,GR)
N,1 =

1

2p(p+ 1)Np−1
+

N−1∑
i=1

(
M( i

N ) +
1

2N

)p ∣∣∣∣∣
B on the grid

(3.39)

and for y ∈ [0, 1/2] the argument of the sum corresponds to,

I1+I2 ≡ 2N

∫ y

0

(m+c)p(1−2m)N−1dm+N

∫ 1−y

y

(m+c)p(1−y−m)N−1dm (3.40)

where we have defined c := 1/2N . The two terms can be computed in the same
way by iteratively integrating by parts, so let us focus only on the first one (note
that p ∈ R+ so one can only take the derivative of the term independent of p to
get rid of it after N − 1 steps).

I1 =
2N

p+ 1

[
(y + c)p+1(1− 2y)N−1 − cp+1

]
+

4N(N − 1)

p+ 1

∫ y

0

(m+ c)p+1(1− 2m)N−2dm = . . .

= N !p!
N∑
j=1

2j

(N − j)!(p+ j)!

[
(y + c)p+j(1− 2y)N−j − cp+j

]
(3.41)

We notice that the above result does not hold for y = 1/2, because an indetermi-
nate form 00 emerges when j = N . By evaluating singularly this particular case,
all the terms containing 1− 2y vanish and we arrive to

I
(y=1/2)
1 = N ! p!

[
−

N∑
j=1

2j

(N − j)! (p+ j)!
cp+j +

2N

(N + p)!

(
1

2
+ c

)N+p
]
. (3.42)

Note that this problem does not arise in I2, which is identically zero when y = 1/2.
Putting together the results of the two integrals we obtain

(M (y) + c)
p

= I1 + I2

=



N ! p!
{∑N

j=1
1

(N−j)! (p+j)!

[
(2j − 1)(y + c)p+j(1− 2y)N−j

−2jcp+j] + 1
(N+p)!

(1− y + c)N+p
}

y ∈ (0, 1
2
)

N ! p!
[
−
∑N

j=1
2j

(N−j)! (p+j)!
cp+j + 2N

(N+p)!

(
1
2

+ c
)N+p

]
y = 1

2

(3.43)
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3.3 One dimensional rEb: exact solution for p > 0

which is valid in the case y ∈ [1/2, 1] too if one substitutes y → 1− y as usual.
In conclusion, rearranging the various terms the average optimal cost of the

grid-Poisson one-dimensional MST for p > 0 and for all N is

C(p,GR)
N,1 =

1

2p(p+ 1)Np−1
− (N − 1)N ! p!

(2N)p

N∑
j=1

1

N j(N − j)! (p+ j)!

+ 2N ! p!

bN−1
2 c∑
i=1

[
N∑
j=1

2j − 1

(N − j)! (p+ j)!

(
i

N
+

1

2N

)p+j (
1− 2i

N

)N−j

+
1

(N + p)!

(
1− i

N
+

1

2N

)N+p
]

+N ! p!

[
2N

(N + p)!

(
1

2
+

1

2N

)N+p
]

1 + (−1)N

2
(3.44)

Note that the last line survives only when N is even due to the last factor, in fact
this contribution arises from the case y = i/N = 1/2, appearing in the MST only
if one has an even number of Voronoi cells.

3.3.2 The Poisson-Poisson case

Making use of the calculations performed in the previous section we now concen-
trate on the Poisson-Poisson MST problem, where both red R = {ri}i and blue
B = {bi}i points are chosen uniformly at random in [0, 1]. In this case, a general-
ization of Eq. (3.21) provides the cost functional for our problem in the following
form

C(p,RR)
N,1 =

N∑
i=1

(
min

j=1,...,N
|ri − bj|

)p

+
N−1∑
i=1

(
min

j=1,...,N

∣∣∣∣rj − bi+1 + bi
2

∣∣∣∣+
bi+1 − bi

2

)p
, (3.45)

where now the average have to be carried out w.r.t. to the positions of both point
sets. Again, this formula follows straightforwardly from the construction of the
MST illustrated in Sect. 3.3. The first term is the contribution of the links that
lie completely in the interior of a Voronoi cell. In fact by choosing the blue points
as the seeds of the Voronoi diagram, every red point connects to its closest blue
neighbour. Instead, the second term takes into account links between different
cells and is composed by two pieces:

1. the distance between the boundary of the cell (indicated with a tick in Fig.
3.2), i.e. the mean point of two consecutive blue seeds, and its closest red
point

min
j=1,...,N

∣∣∣∣rj − bi+1 + bi
2

∣∣∣∣ (3.46)
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2. the distance between the boundary of the cell and the blue seed, e.g. the
left one

bi+1 + bi
2

− bi =
bi+1 − bi

2
. (3.47)

Although the method adopted is the same, the calculations are quite long when
p > 0, thus we just sketch the derivation of the average cost in the simple case
p = 1, providing the result for the general situation at the end. Let us consider
the first term of Eq. (3.45). Being the minimum taken on the positions of the
blue points, we can consider the random variables ri ∈ [0, 1], i = 1, . . . , N , fixed,
and therefore the average over the set B is given by Eq. (3.35) of the grid-Poisson
case, with y = ri,

M (ri)

∣∣∣
R fixed

=
|1− 2ri|N+1 + 1

2(N + 1)
(3.48)

At this point, to average over the set R we need the i-th marginal distribution
for the N points order statistics. In fact, we are supposing that the points are
ordered, i.e. ri < rj ⇐⇒ i < j, so the probability of finding ri in the interval
dr ≡ (r, r + dr) is given by Eq. (B.12)

Pr [ri ∈ dr] =
N !

(i− 1)! (N − i)!
ri−1(1− r)N−idr, (3.49)

and the quantity we have to compute is

M (ri) =
1

2(N + 1)

(
1 +

∫ 1

0

|1− 2r|N+1 Pr [ri ∈ dr]

)
(3.50)

To evaluate the integral, we note that it is very convenient to carry out first the
sum appearing in Eq. (3.45) by exploiting Newton’s formula. Doing so we obtain

N∑
i=1

M (ri) =
N

2(N + 1)

(
1 +

∫ 1

0

dr |1− 2r|N+1

)

=
N

2(N + 1)
+

N

2(N + 1)(N + 2)
(3.51)

The computation of the second line of Eq. (3.45) proceeds in a similar way,
this time with the average over the red points performed first. For this reason, we
start again from the result in Eq. (3.35), now with y = (bi+1 + bi)/2

M

(
bi+1+bi

2

) ∣∣∣∣
B fixed

+
bi+1 − bi

2
=
|1− (bi+1 + bi)|N+1 + 1

2(N + 1)
+
bi+1 − bi

2
(3.52)

For the second fraction, the average over blue points is easily performed with the
i-th and (i+1)-th order statistic distributions, exactly as we did above for the red
points, by again evaluating the sum appearing in Eq. (3.45) as the first step

N−1∑
i=1

bi+1 − bi
2

=
N − 1

2(N + 1)
(3.53)
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3.3 One dimensional rEb: exact solution for p > 0

For the first franction we need instead the joint probability of finding bi in dx ≡
(x, x+ dx) and bi+1 in dy ≡ (y, y + dy), which is given by Eq. (B.13)

Pr [bi ∈ dx, bi+1 ∈ dy] =
N !

(i− 1)! (N − i− 1)!
xi−1(1−y)N−i−1θ(y−x)dxdy (3.54)

We are thus left to evaluate the following expression

N−1∑
i=1

M

(
bi+1+bi

2

)
=

1

2(N + 1)

N−1∑
i=1

(
1 +

∫ 1

0

|1− (x+ y)|N+1 Pr [bi ∈ dx, bi+1 ∈ dy]

)

=
N − 1

2(N + 1)

(
1 +N

∫ 1

0

|1− (x+ y)|N+1 (1 + x− y)N−2θ(y − x)

)
(3.55)

Splitting the integral in two parts because of the absolute value, one finds that
the two contributions are the same, as can be verified by substituting x→ 1− x,
y → 1 − y, and then by renaming x ↔ y. Therefore, considering for a moment
only the term containing the integral, the result can be obtained with a series of
integrations by parts

N(N − 1)

2(N + 1)

∫ 1
2

0

dx

∫ 1−x

x

dy(1− x− y)N+1(1 + x− y)N−2

=
N(N − 1)

2(2N + 1)(N + 2)(N + 1)
. (3.56)

By putting together the results in Eqs. (3.51) and (3.55)-(3.56) we find that
the exact value of the average cost for the Poisson-Poisson MST in one dimension
for p = 1 is

C(1,RR)
N,1 =

3

2
− 4

N + 1
+

2

N + 2
+

1

2(2N + 1)
(3.57)

which in the large N limit can be written as

C(1,RR)
N,1 =

3

2
− 7

4N
− 1

8N2
+ o

(
1

N2

)
. (3.58)

As we have promised, we now provide the result for the general case p > 0 too.
Firstly, let us note again that the calculation one has to perform is identical to
the one described above. The only difference consists in the fact that the starting
point is given by the average over one set of points provided by Eq. (3.43), with
y = ri, c = 0 and y = (bi+1 − bi)/2, c = (bi+1 − bi)/2 for the computation of
the first and second term of Eq. (3.45) respectively. In particular, the results one
obtain for them are the following

N∑
i=1

(M (ri))
p

=
N ! p!N

2p(N + p+ 1)!

(
2p+1 +N − 1

)
(3.59)
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N−1∑
i=1

(
M

(
bi+1+bi

2

)
+
bi+1 − bi

2

)p
= 2N ! p!N(N − 1)

{
N∑
j=1

(2j − 1)(N − 2)!

·
N−1∑
k=1

1

(N − j + k)! (N − k − 1)!

[
(2N − j − 1)!

(2N + p)!
− (N − j + k)!

2p+j+1(N + p+ k + 1)!

]

+
(N − 2)!

(
1− 2NN + 2N

)
2N+p+1

N∑
j=1

1

(N − j)! (N + p+ j)!

+
1

(N − 1)(N + p+ 1)!

(
1− 1

2N+p+1

)
− 2N−1(N − 2)!

(2N + p)!

}
(3.60)

The final result, reached after some manipulations of the expressions above, is
given by

C(p,RR)
N,1 = 2N(N − 1)! p!

[
(N − 1)(2N + p+ 1) + 2p+1N

2p(N + p+ 1)!
− 4NN(N − 1)!

(2N + p)!

]

+
2(N !)2p!

(2N + p)!

N∑
j=0

2j
N∑
k=1

(
2N − j − 1

N − k

)
+

− (N !)2p! (N − 1)

2p−1

N∑
j=0

1

(N − j)! (N + p+ j)!
(3.61)

3.4 Numerical investigation in one and two dimen-
sions

The aim of the present section is to provide a collection of numerical results con-
cerning the average cost and the cost variance for the Euclidean MST in one and
two dimensions. The reasons for this are twofold. First of all we want to check the
correctness of the formulas derived in the last two sections for the average cost of
the one dimensional bipartite MST problem. Secondly, in light of the considera-
tions we made at the end of Sect. 3.2, we want to analyze the scaling behavior of
the average cost of our problem for large N , in order to see how the monopartite
result of Theorem 3.2.1 is modified when two different sets of points are present,
namely in the bipartite case.

In the plots below the specific problem considered is indicated in the title. We
denote by KN the complete monopartite case, and by KN,N the bipartite one, with
the labels GR and RR for its grid-Poisson and Poisson-Poisson versions respec-
tively. Let us note that the positions of the points on the grid are given in one
dimension by Eq. (3.19), and more generally are such that all points are equidis-
tant from each other and from the boundary of the Euclidean domain.

Each of the subsequent plots has been obtained using Mathematica and adopt-
ing the following procedure. For a given instance of our problem, one (KN or GR)
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3.4 Numerical investigation in one and two dimensions

or two (RR) set of points are uniformly generated on the unit interval (d = 1)
or square (d = 2). The list of their p-th power Euclidean distances, i.e. of the
edge weights, together with a complete (bipartite) graph structure, is passed to
Kruskal’s algorithm to find the MST of the graph, and consequently its cost CN .
This steps are iterated n times to compute the mean CN and the rescaled variance
of the cost (shown in the inset of each plot), which we denote by

σ2
N :=

C2
N − CN

2

CN
2 , (3.62)

together with their standard errors. Note that the number n, that we specify
under each plot, is chosen every time in such a way to reach a good compromise
between the precision of the numerical results and the running time necessary to
obtain them.

We then perform a fit on the numerical data of the average cost to obtain
its scaling behavior for large N : the result is both plotted as a blue line and
written below each plot. Moreover, in the one dimensional case, specifically in the
bipartite setting, we plot as a red line the numerical values computed with our
exact solution given in the previous section. Finally, let us note that error bars are
always present, but very often they end up being smaller than the marker sizes.

(a) n = 1000 f(N) = 0.9995− 1.9071
N
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(b) n = 2000 f(N) = 1.7259
N

(c) n = 4000 f(N) = 1.2499− 1.2783
N
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3.4 Numerical investigation in one and two dimensions

(d) n = 6000 f(N) = 1.5001− 1.8384
N

(e) n = 1000 f(N) = −0.3259 + 1.5761
N
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(f) n = 1000 f(N) = 1.9844
N

(g) n = 2000 f(N) = 0.1565 + 0.6578
√
N
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(h) n = 8000 f(N) = 0.5003 + 0.8702√
N
− 1.5736

N

(i) n = 1000 f(N) = 0.4405 + 1.1947
√
N
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(j) n = 5000 f(N) = 0.8515 + 0.8286√
N

(k) n = 1000 f(N) = 0.6301√
N
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3.4.1 Comparison with the matching problem and the TSP

The last two sections provided us some analytical and numerical results on which
some interesting considerations can be formulated. The final part of this thesis is
thus devoted to the analysis of these results, concerning the average cost scaling
and the rescaled variance of the cost for the random MST problem in one and two
dimensions.

Looking to the plots of the previous section, the thing that stands out from our
numerical study is the fact that the average cost of our problem scales for large N
in the same way both in the monopartite and bipartite case. This is corroborated
for p = d = 1 also by our exact solution of the Euclidean MST given in Eqs. (3.38)
and (3.58). In practice, the asymptotic behavior provided by Theorem 3.2.1, i.e.

C(p,rEm)
N,d ∼ N1− p

d as N →∞ (3.63)

is correct in one and two dimensions also when one considers the MST problem
defined on the complete bipartite graph KN,N . As we have already mentioned in
Sect. 3.2, this property of the Euclidean MST is quite unexpected considering
that in the TSP and in the matching problem the opposite holds. In fact, in the
case of the Euclidean assignment (rEa) the scaling of the average optimal cost is
known in every dimensions and for every p > 1 [65]

C(p,rEa)
N,d ∼


N1− p

2 d = 1

N1− p
2 (logN)

p
2 d = 2

N1− p
d d > 2.

(3.64)

Remembering that on the complete monopartite graph KN the scaling of the match-
ing problem is N1− p

d for all d, it is clear that an anomalous behavior appears in
low dimensions on KN,N . The same happens for the Euclidean TSP, whose average
optimal cost in one dimension is twice that of the assignment [66], and thus its
scaling is again anomalous w.r.t. the monopartite case.

In general, the fact that in one and two dimensions the scaling does not change
for the Euclidean bipartite MST means that the random fluctuations of the posi-
tions of the points are irrelevant. This can be understood considering the first part
of the construction of the MST as explained in Sect. 3.3 for the one-dimensional
case, but valid in general in higher dimensions too. The crucial element is that
when two different sets of points are present, a Voronoi diagram arises from one
of them, and each point of the other set connects with its closer seed. This allows
the presence of vertices in the final subgraph with degree greater than two, differ-
ently to what happens in the matching and the TSP, where such configurations
are forbidden. Thus, from the perspective of disordered systems, we can say in
a sense that the Euclidean bipartite MST is less frustrated than its two classical
counterparts, and this reflects on the asymptotic behavior of the average cost for
large sizes of the system.

Let us observe that the above discussion is confirmed also by the analysis of the
rescaled variance of the cost, depicted in the inset of each of the previous plots. In
fact, recalling the definition given in Eq. (1.23), in all the cases examined the cost
of the MST proves to be a self-averaging quantity, as one expects when fluctua-
tions do not matter in the thermodynamic limit. Again, this represents a crucial
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difference w.r.t. the TSP and the matching problem. In fact, in both these cases
it has been shown that the average optimal cost is not self-average in d = 1 for
the bipartite setting [66, 67], while it is self-average in all dimensions when the
problem is defined on KN [59].

We conclude by saying that if an anomalous behavior in the asymptotic scaling
is present, as in the cases of the TSP and the matching problem, it emerges in
low dimensions due to the major Euclidean constraints imposed by the structure
of the space. For this reason, even if we have not carried out a direct analysis, we
expect that what we have found for the Euclidean MST in one and two dimensions
continues to hold even in d ≥ 3, making our arguments valid for all dimensions.
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Chapter 4

Conclusions and perspectives

In this thesis we have analyzed the random MST problem both in the purely
random case, namely when the edge weights are independent and identically dis-
tributed random variables, and in the Euclidean setting, where correlations are
present. For both these situations, by considering the results obtained and the
approaches used, we can make some interesting final considerations.

In the first case, we have shown in Sect. 2.4 that it is possible to set up a replica
calculation for the MST problem on the complete graph, remarkably deriving the
partition function for our system as a particular limit of the Potts model. This is
certainly an important starting point for an innovative kind of analysis of the ran-
dom MST problem, considering the effectiveness displayed by the replica method
in the study of the matching problem, not only in the purely random case but also
in the correlated one. As we have seen, a problem emerges when one performs the
configurational average over the disorder, because an immediate decoupling of dif-
ferent sites of the graph appears impossible. However, we illustrated an interesting
general technique consisting in a functional Hubbard-Stratonovich transformation
that potentially could solve our problem. This method has proven very useful in
the study of random matrices in the case of bosonic variables, so it would be very
interesting to investigate further whether the same can hold when the problem is
formulated with Grassmann variables, as it happens for the random MST.

Regarding the random Euclidean MST problem, one fundamental result of this
thesis is surely the explicit solution of the one dimensional bipartite case for p > 0
obtained in Sect. 3.3. Unfortunately, in the case p 6= 1 we have not been able
to provide a closed formula for the average cost, nor to write down an asymp-
totic expansion for large N for the finite sums which appear in it. This remains
an open problem, especially considering the fact that numerical simulations show
that for p = 1 all the sums diverge, and so they have to cancel each other in the
thermodynamic limit. It is possible that a completely novel approach is necessary
in order to obtain closed formulas for general values of p > 0.

The second fundamental result of our work for the random Euclidean MST has
been obtained both with our explicit solution and with a numerical investigation
performed in one and two dimensions in Sect. 3.4. This can be formulated simply
by saying that random fluctuations do not play any role in the scaling behavior of
the average cost in the bipartite setting, being it equal to the one of the monopar-
tite problem. It would be extremely interesting to consider in more detail this
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fact, for example by computing explicitly the second moment of the cost in the
one dimensional case, or by studying directly the two dimensional problem. In
particular for the latter case, we expect that something interesting can be obtained
for the average properties of the MST by exploiting its relation with the elements
of computational geometry introduced in Sect. 1.2.2, namely the Voronoi diagram
and the Delaunay triangulation.
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Appendix A

Grassmann-Berezin calculus

An N -dimensional Grassmann algebra on R or C is the algebra generated by a set
of variables {ψi}Ni=1 satisfying the anticommutation relation

{ψi, ψj} = 0 ∀i, j. (A.1)

which implies in particular, ψ2
i = 0 ∀i. The most general function that one can

write in this algebra has the form

f(ψ) = f (0) +
∑
i

f iψi +
∑
i<j

f ijψiψj +
∑
i<j<k

f ijkψiψjψk + . . .

=
∑

0≤k≤N

1

k!

∑
{i}

f i1,...,iNψi1ψi2 · · ·ψik , (A.2)

the coefficients being antisymmetric tensors with k indices, each ranging from 1 to
N . Since there are

(
N
k

)
such linearly independent tensors, summing over k from 0

to N yields a 2N -dimensional algebra. The above expansion can be written also
in an alternative form, which highlights the relation with Fermi statistics

f(ψ) =
∑
ai=0,1

fa1,a2,...,aNψ
a1
1 ψ

a2
2 · · ·ψ

aN
N . (A.3)

The integers ai = 0, 1 can be tought of as occupation numbers of states described
by ψi. Note that in this setting one refers to the nilpotency property ψ2

i = 0 ∀i
as the Pauli exclusion principle.

Thanks to the anticommuting rule we can define an associative product

f(ψ)g(ψ) =f (0)g(0) +
∑
i

(
f (0)gi + f ig(0)

)
ψi+

+
1

2

∑
ij

(
f ijg(0) + f igj − f jgi + f (0)gij

)
ψiψj + . . . (A.4)

but in general fg 6= ±gf . Nevertheless, the subalgebra containing terms with an
even number of ψ variables commutes with any element f .

In the Grassmann algebra we can define a left and a right derivative ∂/∂ψi.
When applied to a monomial containing the variable ψi, this is moved to the left
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A. Grassmann-Berezin calculus

with the appropriate sign due to the exchanges, and then suppressed. In the case
where ψi is not present, the result is simply zero. The described operation can be
extended by linearity to any element of the Grassmann algebra. From the given
definition, one can prove the following rules{

∂

∂ψi
,
∂

∂ψj

}
= 0

{
∂

∂ψi, ψj

}
= δij. (A.5)

The so called Berezin integral is defined as a linear operation exactly in the same
way as the (left) derivative, so we have∫

dψf(ψ) =
∂f

∂ψ

∫
dψ2dψ1f(ψ) =

∂

∂ψ2

∂

∂ψ1

f(ψ) . . . (A.6)

In general, given a permutation π ∈ SN , it holds∫
dψπ(N)dψπ(N−1) · · · dψπ(1)f(ψ) = ε(π)

∫
dψNdψN−1 · · · dψ1f(ψ), (A.7)

where ε(π) denotes the signature of the permutation.
The integral operation as we have defined it satisfies the constraint of transla-

tional invariance, which requires∫
dψ1 = 0

∫
dψψ = 1. (A.8)

If a non-singular linear tranformation of the form χi =
∑N

j=1Aijψj is applied,
due to the anticommuting structure of the Grassmann algebra one obtains the
following relation∫

dψNψN−1 · · ·ψ1f(ψ) = detA
∫

dχNdχN−1 · · · dχ1F (χ), (A.9)

having set f(ψ) = F (χ). Let us note that in normal integration such a change of
coordinates produces on the right hand side the factor |detA|−1.

Let us now consider a 22N -dimensional Grassmann algebra comprising two in-
dependent sets of generators {ψi}Ni=1 and {ψ̄i}Ni=1, with ψ̄j that can be regarded
as the complex conjugate of ψi. Together with Eqs. (A.1), (A.5) for both the
variable sets, the following relations hold

{ψi, ψ̄j} = 0

{
∂

∂ψi
, ψ̄j

}
= 0

{
∂

∂ψ̄i
, ψj

}
= 0. (A.10)

With the ingredients introduced we can prove the fundamental result∫
DN

(
ψ, ψ̄

)
exp

(
N∑

i,j=1

ψ̄iAijψj

)
= detA, (A.11)

where we have defined the shorthand DN
(
ψ, ψ̄

)
=
∏N

i=1 dψidψ̄i. First, we perform
the change of variables χi =

∑N
j=1Aijψj, obtaining∫

DN
(
ψ, ψ̄

)
exp

(
N∑

i,j=1

ψ̄iAijψj

)
= detA

∫
DN

(
χ, ψ̄

)
exp

(
N∑
i=1

ψ̄iχi

)
, (A.12)
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then we observe that due to nilpotency of the Grassmann variables

exp
(
ψ̄iχi

)
= 1 + ψ̄iχi, (A.13)

so that ∫
DN

(
χ, ψ̄

)
exp

(
N∑
i=1

ψ̄iχi

)
=

∫
DN

(
χ, ψ̄

) N∏
i=1

(
1 + ψ̄iχi

)
. (A.14)

Properties (A.8) guarantees that the integral is non zero only if the integrand
contains every variable appearing in the integration measure. Therefore, in the
product expansion, only the term ψ̄1χ1 · · · ψ̄NχN contributes to the result. More-
over, the variables order in the integration fixes the factor of this term to +1,
proving (A.11).

The above result can be extended to expectation values of monomials. If we de-
note by A(I|J) the submatrix obtained from A deleting the rows I = (i1, 12, . . . , ik)
and columns J = (j1, j, . . . , jk) the following general formula can be proven∫

DN
(
ψ, ψ̄

)
ψ̄i1ψj1 · · · ψ̄ikψjkexp

(
N∑

i,j=1

ψ̄iAijψj

)
= ε(I|J) detA(I|J). (A.15)

Indeed, the presence of ψk (respectively ψ̄k) annihilates the contribution of terms
of the form ψ̄iAikψk (ψ̄kAkjψj), and ε(I|J) = ±1 accounts for the number of
interchanges needed to order the variables before the integration.
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Appendix B

Order statistics

Let X1, . . . , XN be a sample of i.i.d. random variables generated according to a
probability distribution density ρ and with cumulative distribution function given
by

Φ(t) = Pr (Xi < t) =

∫
ρ(t)θ(t− y), (B.1)

where θ(x) is the Heaviside step function. If one considers the ordered sample
X(1) ≤ X(2) ≤ · · · ≤ X(N) the element X(k) is called k-th order statistic.

The joint distribution of all order statistics can be easily derived from the joint
distribution of the random variables in exam. Denoting the interval (x, x + dx)
simply by dx, the probability for our random sample to be X1 ∈ dx1, . . . , XN ∈
dxN , thanks to independence of the Xi’s, is given by

Pr (X1 ∈ dx1, . . . , XN ∈ dxN) =
N∏
i=1

ρ(xi) dxi. (B.2)

Now since the order does not matter, we have N ! possible permutations of the
random variables Xi, so the joint distribution for all order statistics reads

Pr (X(1) ∈ dx1, . . . , X(N) ∈ dxN) = N !
N∏
i=1

ρ(xi) dxi. (B.3)

Two special cases of the order statistics are the minimum and the maximum of
a given random sample

x := X(1) = min
i∈[N ]

Xi X := X(N) = max
i∈[N ]

Xi (B.4)

where [N ] ≡ {1, . . . , N}. Considering e.g. the random variable x, its distribution
can be computed by asking which is the probability for an element Xk of the
random sample to be smaller than all the others

ρx(t) dt = Pr (x ∈ dt) = Pr (∃! k : Xk ∈ dt,Xi ≥ t ∀i 6= k). (B.5)

Due to the fact that the smallest element can be chosen indifferently among N ,
and exploiting independency of the random variables we have

ρx(t) dt = N Pr (X1 ∈ dt,Xi ≥ t ∀i 6= k) = N Pr (X1 ∈ dt)
∏
i 6=1

Pr (Xi ≥ t).

(B.6)
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Proceeding in a similar way for the random variable X in the end we obtain

ρx(t) dt = N [1− Φ(t)]N−1ρ(t) dt (B.7a)

ρX(t) dt = N [Φ(t)]N−1ρ(t) dt. (B.7b)

With the same considerations used above, we can compute the probability
distribution of the k-th order statistic too. The only difference lies in the fact that
we have to choose arbitrarily k− 1 samples out of N − 1 that are smaller of X(k).
Denoting by SN the set of permutation of N elements we have

ρX(k)
(t) dt = Pr (X(k) ∈ dt)

= Pr (∃σ ∈ SN : Xσ(1) ∈ dt,Xσ(2) ≤ t, . . . , Xσ(k) ≤ t,Xσ(k+1) ≥ t, . . . )

= N

(
N − 1

k − 1

)
Pr (X1 ∈ dt,X2 ≤ t, . . . , Xk ≤ t,Xk+1 ≥ t, . . . , XN ≥ t)

= N

(
N − 1

k − 1

)
Pr (X1 ∈ dt)

[
k∏
i=2

Pr (Xi ≤ t)

][
N∏

j=k+1

P (Xj ≥ t)

]

= N

(
N − 1

k − 1

)
[Φ(t)]k−1[1− Φ(t)]N−kρ(t)dt (B.8)

An identical procedure allows us to derive also the joint distribution for the two
order statistics X(p), X(q) with p < q. In this case, for t < s the result is

ρX(p),X(q)
(t, s) dtds = Pr (X(p)) ∈ dt,X(q) ∈ ds)

=
N !

(p− 1)! (q − p− 1)! (N − q)!
[Φ(t)]p−1[Φ(s)− Φ(t)]q−p−1

· [1− Φ(s)]N−qρ(t)ρ(s) dtds. (B.9)

Let us specialize the obtained results in the case of a random sample gener-
ated with uniform distribution on the interval [0, 1]. The probability distribution
density ρ and the cumulative distribution function Φ are given by

ρ(t) = θ(t)θ(1− t), Φ(t) = t θ(t)θ(1− t). (B.10)

Substituting into the Eqs. (B.7b), (B.8) and (B.9) we obtain

ρx(t) = N(1− t)N−1θ(t)θ(1− t) (B.11)

ρX(k)
(t) = N

(
N − 1

k − 1

)
tk−1(1− t)N−kθ(t)θ(1− t) (B.12)

ρX(p),X(q)
(t, s) =

N !

(p− 1)! (q − p− 1)! (N − q)!
tp−1(s− t)q−p−1(1− s)N−q

· θ(t)θ(s− t)θ(1− s). (B.13)
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