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Introduzione

Le teorie di Yang–Mills [1] furono originariamente introdotte per estendere l’elettrodinamica

quantistica (QED) con lo scopo di includere gruppi di simmetria non abeliani, in particolare il

gruppo di isospin. Si cercava allora una teoria di gauge che spiegasse le proprietà degli adroni

a partire dalle simmetrie fondamentali del sistema. Dopo l’introduzione del modello a quark da

parte di Gell–Mann e Zweig nel 1964 fu sviluppata la cromodinamica quantistica (QCD), che

nel 1972 divenne la teoria fondamentale alla base della fisica adronica [2]. Tuttavia, per rendere

conto dello spettro di particelle osservate negli esperimenti, fu necessario assumere che in qual-

che modo i costituenti elementari della QCD, quark e gluoni, non potessero esistere come stati

asintoticamente liberi dello spettro. Quest’ultima affermazione va sotto il nome di confinamento

ed è una caratteristica della QCD a basse energie (o, equivalentemente, grandi distanze) di cui

ancora non si conosce una spiegazione definitiva a partire da principi primi.

Il confinamento può anche essere definito in modo più formale usando argomenti di teoria dei

gruppi, la forma del potenziale statico tra una coppia di quark e antiquark, oppure il fatto che

i mesoni seguono le traiettorie di Regge. La QCD ha gruppo di gauge SU(3) e i campi che

rappresentano i quark (antiquark) trasformano sotto la rappresentazione fondamentale (antifon-

damentale), mentre i campi di gauge (gluoni) trasformano nella rappresentazione aggiunta. Di

conseguenza ai quark è associato un indice di carica (che in QCD si chiama ”colore”) mentre

ai gluoni ne sono associati due. Si può riformulare il confinamento in termini del ”colore” delle

particelle osservate nello spettro: esse devono trasformare nella rappresentazione banale (per

questo vengono anche chiamate singoletti) e devono quindi essere invarianti di gauge. Tra i sin-

goletti di colore ci sono, per esempio, i barioni (composti da 3 quark) e i mesoni (coppie di quark

e antiquark), ma anche i gluoni possono essere combinati insieme per creare stati invarianti di

gauge. Questi stati legati che contengono solo gradi di libertà gluonici sono le glueballs. Lo

studio delle glueballs è interessante per approfondire il ruolo giocato dalla dinamica dei campi

di gauge nel fenomeno del confinamento.

A causa del confinamento, la costante di accoppiamento diventa sempre maggiore all’aumentare

della distanza tra le particelle che interagiscono e al diminuire dell’energia. Per questo motivo, i

metodi perturbativi impiegati per analizzare le soluzioni delle teorie di campo, non sono utilizza-
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bili nel regime di bassa energia della QCD: la serie perturbativa nella costante di accoppiamento

non converge. Al contrario, ad alte energie e piccole distanze, come dentro un protone ad esem-

pio, i quark e i gluoni si comportano come particelle quasi–libere e interagiscono debolmente tra

loro. Questo comportamento è dovuto alla cosiddetta libertà asintotica che caratterizza la QCD

ad alta energia, ed è legato alla struttura non–abeliana del gruppo di gauge SU(3). La costante

di accoppiamento decresce all’aumentare dell’energia ed è possibile, in quel regime, utilizzarla

come parametro di espansione della serie perturbativa.

Ne consegue, dunque, che la tradizionale analisi dei diagrammi di Feynman, è in grado di fornire

una descrizione solo di un regime della QCD. La fisica dei collider, caratterizzata da una scala

di energia elevata, appartiene al regime perturbativo della teoria, mentre il confinamento e le

glueballs sono fenomeni non–perturbativi e richiedono lo sviluppo di diversi metodi di analisi.

Per lo studio delle glueballs, prendiamo in esame la Lagrangiana della QCD che si ottiene

dopo aver fatto il limite mq → ∞, dove mq è la massa dei quark. In questo modo stiamo stu-

diando una teoria di pura gauge, ma non stiamo eliminando dal sistema informazioni rilevanti

per le glueballs: la dinamica contiene ancora i gradi di libertà gluonici a cui siamo interessati.

Possiamo ottenere una giustificazione teorica all’esclusione della parte fermionica della Lagran-

giana considerando SU(3) come caso particolare di SU(N). È stato dimostrato da ’t Hooft [3]

che una teoria di gauge con gruppo SO(N), U(N) o SU(N) ha un naturale parametro in cui è

possibile fare un’espansione perturbativa della soluzione. Questo parametro è 1/N . Nel limite

N → ∞ i primi termini dell’espansione danno il contributo dominante alla serie e, in prima

approssimazione, si possono scartare quelli successivi. Per ottenere un limite non banale, è ne-

cessario che rimanga costante il parametro di ’t Hooft che nel caso di SU(N) è λ0 = g2
0N , dove

g0 è la costante di accoppiamento bare della teoria. Inoltre, nel limite di ’t Hooft, è possibile

riarrangiare l’usuale serie perturbativa, in g2
0 , nella serie in 1/N , sfruttando le caratteristiche

topologiche dei diagrammi di Feynman. L’espansione in 1/N può infatti essere vista come

un’espansione topologica in grafici di Feynman, dove un grafico di gene h contribuisce all’ordi-

ne
(

1
N2

)h
. Per esempio i diagrammi dominanti, O(1), nel caso di SU(N) di pura gauge, sono

tutti quelli planari (possono essere disegnati su un foglio senza alcuna intersezione tra le linee);

è possibile dimostrare che il contribuito dei fermioni è soppresso di un fattore 1/N rispetto al

contributo gluonico. Esistono in letteratura diversi studi che evidenziano come la serie in 1/N

descriva correttamente la fisica di SU(3) con un numero limitato di correzioni. Ad esempio, li-

mitandosi ai termini O(1/N2), si ottiene una descrizione approssimata con un errore dell’ordine

del 5 − 10%.

Oltre al fatto che il limite di grande N possa essere studiato con una serie perturbativa, c’è anche

un’altra ragione per cui è interessante affrontarne lo studio, e proviene dalla teoria delle stringhe.

Si tratta della corrispondenza di gauge–gravità (AdS/CFT), basata sulla famosa congettura di
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Maldacena [4] e sviluppata nel successivo lavoro di Witten [5]. Questa corrispondenza mette in

relazione teorie di stringhe su appropriate varietà Anti–de Sitter (varietà multidimensionali con

una curvatura costante negativa) con teorie di campo conformi le cui simmetrie dipendono dalla

geometria della varietà. In particolare la congettura di Maldacena afferma la dualità tra una

teoria di stringa in AdSd+1 ⊗ X e il limite di grande N di una teoria di campo conforme in d

dimensioni e il cui gruppo di simmetria (o super–simmetria) dipende dalla scelta della varietà

X. Sono ormai moltissimi gli studi che confermano la validità di questa congettura per diverse

geometrie dal lato della teoria delle stringhe e corrispondenti diversi gruppi di simmetria per le

teorie di campo. Chiaramente il nostro interesse non è in una teoria di campo conforme, ma

nella QCD. È possibile includere teorie non conformi in diversi modi, ma quello più semplice è

stato proposto da Witten [6]. Compattificando una dimensione della varietà su cui è definita

la teoria conforme si introduce una scala che rompe automaticamente l’invarianza conforme e

questa scala è data dal raggio di curvatura R0 della compattificazione. Affinchè gli approcci ispi-

rati dalla corrispondenza AdS/CFT, abbiano un potere predittivo per la QCD, una condizione

necessaria è che il limite di grande N sia una descrizione accurata di tale teoria. Il confronto

di osservabili, come le masse delle glueball, in teorie di gauge SU(N) con N grande rispetto a

N = 3 ci permette di studiare le correzioni con cui la QCD è approssimata dal suo limite per

N → ∞.

Con queste motivazioni, in questo lavoro di tesi, abbiamo preso in considerazione una teoria

di Yang–Mills con gruppo di gauge SU(N) per N compreso nell’intervallo di numeri interi

(3, 8). Il nostro scopo finale è quello di ottenere il valore delle masse degli stati più bassi

dello spettro e di alcune eccitazioni, per tutti i valori dei numeri quantici JPC , spin, parità e

carica, e per diversi valori di N . Non potendo usare, per il nostro studio, regolarizzatori basati

sull’espansione perturbativa in diagrammi di Feynman, abbiamo scelto di definire la teoria su

un reticolo euclideo quadri–dimensionale. L’uso del reticolo come regolarizzatore fu introdotto

da Wilson [7] nel 1974 ed è oggi uno degli strumenti più usati per lo studio di fenomeni non–

perturbativi. La presenza di una lunghezza minima, il passo reticolare, impone un ”cutoff”

agli impulsi (in trasformata di Fourier) e impedisce la divergenza degli integrali; inoltre gli

integrali funzionali sono matematicamente ben definiti perchè i cammini sono numerabili su un

reticolo finito. Una teoria di gauge definita su reticolo ha il vantaggio di assomigliare sotto certi

aspetti ad un sistema di meccanica statistica e può essere analizzata con gli stessi strumenti:

per esempio un metodo come l’espansione di alta temperatura in meccanica statistica si traduce

in un’espansione nell’inverso della costante di accoppiamento per la teoria di gauge. È dunque

possibile in questa formulazione studiare fenomeni nella regione di ”strong coupling” della teoria,

come il confinamento. Per quanto riguarda le glueballs, la presenza di un mass gap m tra lo stato

di vuoto e il resto dello spettro, in teorie di gauge su reticolo, è stato per la prima volta mostrato
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da Osterwalder e Seiler [8]. Come ogni altro regolarizzatore, il reticolo è da considerarsi un puro

strumento di calcolo: la fisica compare nel momento in cui viene eliminato il regolarizzatore e

vengono fissate quantità osservabili attraverso la procedura di rinormalizzazione. La presenza

delle glueballs nello spettro del continuo, è subordinata al fatto che m, calcolata su reticolo,

scali nel modo corretto seguendo le equazioni del gruppo di rinormalizzazione. Una massa su

reticolo è l’inverso di una lunghezza di correlazione e può essere misurata per esempio studiando

l’andamento di una funzione di Green a due punti. Come vedremo, le funzioni di correlazione

possono essere scritte nella forma

C(t) =
〈

Φ†(t)Φ(0)
〉

=
∑

n

∣

∣

∣

〈

0|Φ†|n
〉
∣

∣

∣

2
e−Ent =

∑

n

|cn|2e−atEnnt ,

dove abbiamo inserito gli autostati dell’Hamiltoniana H|n〉 = En|n〉 (|0〉 è lo stato di vuoto) e

scritto la coordinata temporale in unità del passo reticolare t = atnt.

La procedura usuale [9, 10] per estrarre la massa di una glueball tramite una simulazione di

Monte–Carlo consiste nel costruire operatori Φ a partire da prodotti gauge invarianti di campi

di gauge sul reticolo; tali operatori devono avere proiezione non nulla sullo stato dello spettro

corrispondente alla glueball in esame (|n〉), e quindi avere gli stessi numeri quantici di |n〉. Per

estrarre più facilmente la massa dallo studio dei correlatori abbiamo scelto di calcolare operatori

a impulso nullo ~p = 0 (E2
n = |~pn|2 + m2

n). Tuttavia, questa procedura può dare informazioni

solo sullo stato più basso nello spettro del canale studiato , questo perchè, a grande distanza

(t → ∞) l’unico contributo rilevante nella sommatoria proviene dal termine con la massa più

piccola. D’altro canto l’utilizzo di un metodo variazionale ci offre la possibilità di estrarre anche

la massa dei primi stati eccitati. Un altro aspetto da tenere in conto è che sul reticolo siamo

in grado di misurare C(t) solo per pochi valori di t, prima che il rumore diventi più grande del

segnale. Di conseguenza risulta fondamentale che lo stato Φ abbia la massima proiezione possi-

bile sullo stato di glueball |n〉, |
〈

0|Φ†|n
〉

|2 ∼ 1, per poter estrarre informazioni dalla funzione di

correlazione anche a piccole distanze temporali: questo incrementa il segnale della misura [11]

per piccoli t prima che il rumore statistico, indipendente da t, cominci a prevalere.

La misura dei correlatori sarà effettuata usando metodi numerici. Questo perchè una teoria di

gauge su reticolo ha anche la caratteristica di poter essere simulata al calcolatore, grazie alla sua

natura intrinsecamente discreta. Come in meccanica statistica, possono essere usati i metodi

Monte–Carlo. Fu Creutz [12] per la prima volta nel 1980 a cominciare questi studi numerici che

oggi dominano quasi ogni tipo di calcolo su reticolo.

Va fatto notare, che su reticolo, il gruppo di simmetria dello spazio–tempo non è il gruppo di

Lorentz, dunque gli stati creati non saranno identificabili con gli autovalori dello spin: gli stati

a momento nullo trasformeranno sotto il gruppo delle rotazioni del cubo O (a cui sono aggiunte

coniugazione di carica e parità) e saranno identificati dai valori di RPC , dove R gioca un ruolo
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analogo allo spin ed indica una delle 5 rappresentazioni irriducibili (A1, A2, E, T1, T2) del grup-

po. Nel continuo, gli stati di spin JPC possono essere ricostruiti dagli stati in RPC studiando le

rappresentazioni di O incluse in SO(3), che è il gruppo delle rotazioni continue dello spazio.

Per SU(3) i risultati numerici sono ormai consolidati da tempo [13, 14], ma non esiste ancora uno

studio a grande N che abbia indagato tutti i canali RPC sistematicamente. Il risultato originale

di questo lavoro di tesi è di effettuare tale studio. Utilizziamo, inoltre, una nuova metodologia

per creare gli operatori di glueball Φ. Come abbiamo già detto, la procedura per calcolare le

masse si basa fondamentalmente sulla possibilità di creare operatori Φ che trasformano sotto le

rappresentazioni irriducibili A1, A2, E, T1, T2, e che proiettano con un coefficiente di ordine 1

su almeno uno stato dello spettro. A partire dal prodotto di campi di gauge lungo un percorso

chiuso di lunghezza L (in unità di passo reticolare), costruiamo, in maniera automatica, una

combinazione lineare delle sue trasformazioni sotto il gruppo cubico tale che essa appartenga ad

una rappresentazione irriducibile: prendendone la traccia della parte reale o della parte imma-

ginaria otteniamo un operatore gauge invariante in grado di creare dal vuoto uno stato con i

numeri quantici RP+ o RP−. Usando percorsi di diversa lunghezza L e di diversa forma riuscia-

mo a costruire operatori per stati in tutte le rappresentazioni irriducibili di O. Questi operatori

vengono usati per misurare i correlatori per tutte le 20 combinazioni dei numeri quantici RPC ;

mediante una procedura variazionale e poi possibile estrarre la massa dello stato fondamentale

e di alcuni stati eccitati.

Dalla nostra analisi abbiamo ottenuto lo spettro delle teorie di gauge da SU(3) fino ad SU(8), e

questo ci ha permesso di estrapolare, mediante un fit, il valore delle masse degli stati dello spet-

tro a N = ∞. Per quanto riguarda le teorie di gauge in 3+1 dimensioni, questo è il primo studio

di grande N compiuto in modo completo su tutte le rappresentazioni. Inoltre, abbiamo cercato

di determinare, con maggiore precisione rispetto agli studi precedenti presenti in letteratura,

le possibili contaminazioni nello spettro misurato da parte di stati spuri, non corrispondenti

alla propagazione di singole particelle. Tuttavia, sebbene sia stato possibile riconoscere alcune

di queste contaminazioni, ulteriori analisi sono necessarie per approfondire la natura dei nostri

risultati a riguardo.
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1. Introduction to Lattice Gauge

Theories (LGT)

The Lattice Gauge Theory (LGT) formalism [7], is one of the few known non–perturbative

regularization of quantum field theory. It is mainly based on three essential concepts: the

Feynman path integral, or functional integral, the Euclidean formulation obtained by continuing

the real time variable to imaginary time, and the regularization of Euclidean functional integrals

through a space–time lattice. The material presented in this chapter does not pretend to be

original and can be found in many good textbooks on the subject [15, 16]. However, this

introduction makes this thesis work self–consistent.

1.1 Feynman Path Integral and Euclidean Field Theory

1.1.1 A quantum mechanics example

Let’s start with a simple example, given by the quantum mechanical description of a non–

relativistic particle in one space dimension, to elucidate the construction of the path integral

formulation. The path integral representation, as we will see, is perhaps the most intuitive pic-

ture one can make to explain quantum mechanical transition amplitudes. Given the Hamiltonian

H of the system, a transition amplitude is

〈

x′, t′|x, t
〉

=
〈

x′
∣

∣ e−iH(t′−t) |x〉 , (1.1)

where x label the position of the particle in the space and it is the only degree of freedom of

the system. It is related to the probability of the particle going from the space–time point (x, t)

to (x′, t′) under the dynamics dictated by H. Now we would like to expand this expression

inserting a complete set of coordinate eigenstates (resolution of the identity)

1 =

∫

dx1 |x1〉 〈x1| , (1.2)
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and dividing the temporal interval T = (t′ − t) in T − ∆t = (t′ − t1) and ∆t = (t1 − t); thus we

obtain
〈

x′, t′|x, t
〉

=

∫

dx1

〈

x′
∣

∣ e−iH(t′−t1) |x1〉 〈x1| e−iH(t1−t) |x〉 . (1.3)

This simply means that we are summing over all the x1 positions the particle can occupy at

time t1.

Proceeding this way, using other positions x2, . . . , xn , results in cutting the initial time interval

in n parts which we can choose to be equal to ∆t = T
n . The resulting expression is a sum

(integral) over all the positions that the particle can occupy at discrete time intervals and so we

end up with a discretized time direction:

〈

x′, t′|x, t
〉

=

∫

dx1 . . . dxn−1 〈xn| e−iH∆t |xn−1〉 〈xn−1| e−iH∆t |xn−2〉 . . . 〈x1| e−iH∆t |x0〉 ,

(1.4)

where we set x′ ≡ xn and x ≡ x0 because they are the positions at time T = n∆t and at time

t = 0.

If ∆t is small enough and the potential part of the Hamiltonian is only position dependent, every

matrix element in the multiple integral (1.4) can be approximated using the Baker–Campbell–

Hausdorff formula. Using the Fourier transformation of the kinetic part in the Hamiltonian

leads to

〈

x′
∣

∣ e−iH(t′−t) |x〉 ≈
∫

dx1 . . . dxn−1 exp i

n−1
∑

k=0

∆t

{

m

2

(

xk+1 − xk

∆t

)2

− V(xk)

}

. (1.5)

The exponent is just the classical action in the limit n → ∞ for a classical trajectory from x to

x′ and with intermediate positions xk = x(k∆t),

n−1
∑

k=0

∆t

{

m

2

(

xk+1 − xk

∆t

)2

− V (xk)

}

−→
∫ T

0
dt

{

m

2

(

dx

dt

)2

− V (x)

}

=

∫ T

0
dt L(x, ẋ; t) ≡ S .

(1.6)

If we write the integrations over the xk in the continuum time limit, the integral can be inter-

preted as an integration over a continuous path; therefore we can write (1.5) as

〈

x′
∣

∣ e−iH(t′−t) |x〉 =

∫ x′

x
Dx eiS . (1.7)

The meaning of (1.7) is that, if we want to evaluate a quantum transition amplitude, we have

to sum over all possible classical paths from x to x′, each weighted with the exponential of i

times the correspondent classical action. Quantum mechanical operators have been eliminated
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in favour of an infinite–dimensional integral, often called functional integral. Although it is a

physically beautiful result, it is difficult to give the expression above a satisfactory mathematical

meaning as an integral over some space of functions: this is due to the fact that the integrand

is complex and strongly oscillating. We will return on this key point after reviewing the main

lines of the path integral applied to quantum field theory.

1.1.2 Functional integrals in Quantum Field Theory

The language of the path integral can be translated from quantum mechanics to quantum field

theory, and indeed it turned out to be one of the most useful tools in field theory, because many

results can be derived in a compact and easy way through formal manipulations of functional

integrals.

In a quantum field theory, one of the tasks is to calculate the Green functions for the fields, which

provide all the physical information for the system (like scattering matrix elements via reduction

formula, or decay rates). Let’s try to be more precise introducing the path integral formalism

for a real scalar field φ(x), where x = (~x, t) labels the space–time coordinates. Now the field

φ(x) is an operator in the Heisenberg representation: the space–time continuous coordinates are

the degrees of freedom of the theory.

A Green function (or n–points correlation function) is the vacuum expectation value of a time–

ordered products of n Heisenberg fields (indicated by the subscript H),

G(φ(x1), . . . , φ(xn)) = 〈0|φ(x1) . . . φ(xn) |0〉 ( t1 > · · · > tn)

= 〈0| T {φH(x1) . . . φH(xn)} |0〉 .
(1.8)

T is the time–ordering operator and the time evolution of each field is given by the Hamiltonian

H as

φH(~x, t) = eiHt φH(~x, t = 0) e−iHt . (1.9)

In the quantum mechanical example we have seen that, using the path integral, the action S
of the system acquires a central role and so does the Lagrangian. Thus we decide to abandon

the Hamiltonian formalism in favour of the Lagrangian one; furthermore, every symmetry the

Lagrangian may have is explicitly preserved by the functional integral and the role of symmetries

will be increasingly important as we proceed in our study of quantum field theory.

For a field theory we write the action as

S =

∫

d4x L(x) , (1.10)

where L(x) is the Lagrangian density. Now, just by translating what we have seen in Sec. 1.1.1,

we know how a field transition amplitude looks like using the functional integral: the basic
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variables xk(t) become the fields φ(x), the measure over the paths become a measure over field

configurations in the space,
∏

t,~x dφ(~x, t) ≡ Dφ. Thus our formula becomes

〈φf (~x)| e−iHT |φi(~x)〉 =

∫

Dφ exp

[

i

∫ T

0
d4x L

]

, (1.11)

where the functions φ(x) over which we integrate are constrained to the specific configurations

φi(~x) at t = 0 and φf (~x) at t = T . However, a Green function is a vacuum expectation value: it

is a different object from a transition amplitude. To find the functional expression for a Green

function we can start from the following integration

∫

Dφ φ(x1)φ(x2) . . . φ(xn) exp

[

i

∫ T

−T
d4x L(φ)

]

, (1.12)

where the boundary conditions on the path integral
∫

Dφ are φ(~x,−T ) = φi(~x) and φ(~x, T ) =

φf (~x) for some φi(~x),φf (~x). Here we should remark that, whereas the φ’s in (1.12) are clas-

sical fields (and then φ(x) are numbers), the ones in (1.8) are Heisenberg operators. Starting

from (1.12) and introducing completeness relations, we can relate it to a field transition ampli-

tude of a T –ordered product of fields

〈φf (~x)| e−iHTT {φH(x1) . . . φH(xn)}e−iHT |φi(~x)〉 . (1.13)

This expression is almost equal to the n–point correlation function. To make it more nearly

equal, we take the limit T → ∞(1 − iǫ), to project out the vacuum state |0〉 from |φi〉 and |φf 〉
(provided that these states have some overlap with |0〉, which we assume). This can be shown,

for example, inserting a complete set of energy eigenstates

e−iHT |φi〉 =
∑

n

e−iEnT |n〉 〈n|φi〉 , (1.14)

and isolating the contribution of |0〉 from the sum

e−iHT |φi〉 = e−iE0T |0〉 〈0|φi〉
∑

n 6=0

e−iEnT |n〉 〈n|φi〉 , (1.15)

where E0 is the vacuum energy (and we are assuming 〈0|φi〉 > 0). Since En > E0 for all n 6= 0,

we can get rid of all the n 6= 0 terms in the series by sending T → ∞ in a slightly imaginary

direction: then the exponential factor e−iEnT dies slowest for n = 0, and we have

e−iHT |φi〉 = lim
T→∞(1−iǫ)

〈0|φi〉 e−iE0·∞(1−iǫ) |0〉 . (1.16)

The overlap 〈0|φi〉 and the awkward phase factor e−iE0·∞(1−iǫ) cancel if we divide (1.13) by the

same expression, but without the T–ordered product of n fields, and, if we use the same trick
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to project out the vacuum state in that field transition amplitude as well. In the end, we obtain

the path integral formula for a n–point Green function:

〈0| T {φH(x1) . . . φH(xn)} |0〉 = lim
T→∞(1−iǫ)

∫

Dφ φ(x1)φ(x2) . . . φ(xn) exp
[

i
∫ T
−T d4x L

]

∫

Dφ exp
[

i
∫ T
−T d4x L

] .

(1.17)

We remark here again that the infinite dimensional integration over all classical field configura-

tions is not mathematically well defined, despite the fact that it has a formal meaning.

1.1.3 Euclidean Field Theory

In the previous section we used a trick to relate quantum field amplitudes to Green functions;

the key reason for this to work, is that the exponential factor is no more an oscillating phase if

the time is an imaginary number, but it dies out when the exponent is strictly positive (as the

energy of states above the vacuum).

With this in mind, let us choose all time variables to be purely imaginary

t = −iτ , τ ∈ R . (1.18)

This imaginary time analytic continuation (which is often referred to as the Wick rotation,

because the time coordinate is rotated by 90 degrees in the complex plane, going from the real,

to the imaginary axis) transforms the real time Green functions in Euclidean Green functions

(or Schwinger functions)

G(φ(~x1,−iτ1), . . . , φ(x̃n,−iτn, ) = GE(φ(x̃1, τ1), . . . , φ(x̃n, τn)) . (1.19)

The name ”Euclidean” is understood looking at the space–time metric for x = (~x, τ) which is

now a Kronecker δ:

ds2 = −dt2 + dx2
1 + dx2

2 + dx2
3 (1.20)

has changed in

ds2 = dτ2 + dx2
1 + dx2

2 + dx2
3 , (1.21)

and the Euclidean symmetry between space and time is manifest. The path integral functional

for a Euclidean Green function can be written, starting from (1.17) and substituting (1.18).

Then the T → ∞(1 − iǫ) limit becomes a limit on the imaginary axis alone. Thus we obtain

GE(φ(~x1, τ1), . . . , (~xn, τn)) = lim
τ→∞

∫

Dφ φ(x1E)φ(x2E) . . . φ(xnE) exp
[

−
∫ τ
−τ d4xE LE

]

∫

Dφ exp
[

−
∫ τ
−τ d4xE LE

] ,

(1.22)
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where we used the subscript E to remind us the fact that we are in a Euclidean space–time.

The exponential weight in the integral is now

e−SE , (1.23)

and, if the Euclidean action SE is a real valued functional of the fields, bounded from below,

this can be interpreted as a ”Boltzmann factor”. The form of (1.22) then, resembles that of a

statistical ensemble average, where the denominator is the partition function

Z[φ] =

∫

Dφ e−SE [φ] (1.24)

of the system: the Euclidean fields are no more considered as operators, but as random variables,

whose expectation values yield the correlation functions through (1.22). The Euclidean action

SE is obtained, from the real time action in the Minkowski space–time, just by replacing t with

−iτ in the argument of functions, in the integration measure and in the space–time derivative.

1.1.4 Lattice discretization

As we have pointed out in the previous sections, the path integral expressions for Green functions

have only a well defined meaning for systems with a numerable number of degrees of freedom. In

field theory, however, where one is dealing with an infinite number of degrees of freedom, labelled

by the coordinates ~x and, in general, by some additional discrete indices, the multiple integrals

are only formally defined. In the quantum mechanical case, the path integral was defined as a

limit of a finite–dimensional integral which resulted from a discretization of time. To give the

path integrals, in quantum field theory, a precise meaning, we will therefore have to discretize

not only time, but also space: we will be forced to introduce a space–time lattice.

Eventually we will have to remove again this lattice structure, and this is quite a non–trivial

task, which is related to the renormalization of Green functions. The renormalization program

in continuum perturbation theory first requires the regularization of the Feynman path integrals

in momentum space. These integrals will then depend on one or more parameters which are

introduced in the regularization process (momentum cutoff, Pauli–Villars masses, dimensional

regularization parameter). Since the effect of any regularization procedure is to render the mo-

mentum integrations in Feynman integrals ultraviolet finite, let us loosely say that the first step

in the renormalization program consists in the introduction of a momentum cutoff. If the origi-

nal Feynman integrals are divergent, the the regularized integrals will be strongly dependent on

the cutoff. The second step in the renormalization program now consists in defining renormal-

ized Green functions, which approach a finite limit as the cutoff is removed. This demands that

the bare parameters of the theory become cutoff dependent. This dependence is determined
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by imposing a set of renormalization conditions, which merely state that such quantities as the

physical coupling strength measured at some momentum transfer, and particle masses are to be

held fixed as the cutoff is removed.

In the lattice approach this program can be formulated without reference to perturbation the-

ory. The first step (regularization) consists in introducing a space–time lattice at the level of

the path integral. This regularization merely corresponds to defining what we mean by a path

integral. The second step of the renormalization program the corresponds to removing the lat-

tice structure. This amounts to studying the continuum limit. It is therefore not surprising that

the bare parameters of the theory will have to be tuned to the lattice spacing in a very definite

way depending, in general, on the dynamics, if physical observables are to become insensitive

to the underlying lattice structure. Within the perturbative framework, the introduction of the

a space–time lattice corresponds to a particular way of regularizing Feynman integrals, but this

regularization does not amount to the naive introduction of a momentum cutoff. Although the

momentum space integrals will indeed be cut off at a momentum of the order of the inverse

lattice spacing, the integrands of Feynman integrals will not have the usual structure, but are

modified in a non–trivial way. For example, in the lattice formulation of gauge theories, new

interaction vertices pop up, which have no analogue in the continuum formulation.

Let us define the path integral on a four–dimensional hypercubic lattice; space–time coordinates

xµ are restricted to be discrete lattice sites:

xµ = amµ , mµ ∈ Z , (1.25)

where a is the lattice spacing. We will always use a hypercube of finite extension so that all

our functional integral are finite–dimensional. This means we are considering the theory in a

finite volume and we shall specify boundary conditions for the functions. Of course, we would

like to recover physics in a continuous and infinite space–time eventually. If we define the size

of the hypercubic box as L = na, then the task is to take the infinite volume limit n → ∞,

which is the easier part in general, and to take the continuum limit a → 0, which amount to

the renormalization program described above. Choosing the size L equal in each of the four

directions is just a matter of convention for the moment and the same is true for the lattice

spacing; we could also choose different lattice spacing as, at for the spatial and the temporal

directions (even if the choice of the temporal direction is purely conventional due to the Euclidean

symmetry) and this breaks the cubic symmetry of the discrete system: a lattice of this kind is

called anisotropic. Moreover, one can choose also different lattice sizes Ls, Lt and we will see at

the end of this chapter that the field theory defined on such lattices can be seen as a thermal

field theory if Lt is small (Lt is proportional to the inverse of the temperature, thus the infinite

volume limit is equivalent to a zero temperature field theory).

Let’s see now how we can write a discretized action on the lattice. Firstly, on the lattice, integrals
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can be replaced by finite sums. We shall use the notation

∑

x

≡ a4
n−1
∑

m1=0

· · ·
n−1
∑

m4=0

≡ a4
∑

m

, (1.26)

which leads to
∑

x

f(x) →
∫ L

0
d4x f(x) , (1.27)

in the continuum limit for a smooth function f(x). Moreover, derivatives can be replaced by

finite differences. We can define, for example, a forward difference

∆f
µf(x) =

1

a
(f(x + aµ̂) − f(x)) , (1.28)

and a backward difference

∆b
µf(x) =

1

a
(f(x) − f(x − aµ̂)) , (1.29)

where µ̂ is a unit vector in the direction µ; both these differences led to the continuum derivative

∆f
µf(x) , ∆b

µf(x) → ∂

∂xµ
f(x) if a → 0 . (1.30)

Different definitions of finite differences can lead to the same continuum limit derivative, but

the error in powers of the lattice spacing can be of different order. Usually, if we expand the

finite difference of a smooth function in powers of a, the term which is independent of a survives

in the continuum limit, whereas the terms O(a) , O(a2) , etc... are called lattice artifacts and are

supposed to vanish. This is indeed only a simple, or classic, interpretation of the continuum limit

for a discretized theory: the field configurations, which enter the path integral, are usually not

smooth at all on the lattice scale, they can change rather wildly from site to site, and we should

treat carefully the continuum limit of the quantum theory. This limit involves the concept of

renormalization that we stated above, and the concept of scaling of physical properties. We will

return on these concepts with more details in Sec. 1.3.

With finite sums and differences, it is easy to define the discrete analogue of the Euclidean

action, which, of course, has to be chosen with the right classical continuum limit (in the sense

of power expansion in terms of the lattice spacing). The last piece we need, to write down a

well–defined formulation of the path integral, is the integration measure over the paths; in a field

theory we know that this is a measure on the field configurations and that we can interpret these

fields as random variables. If the hypercubic lattice is finite, then the functional integration is

finite dimensional and perfectly defined; for example, the measure of (1.24) is

Dφ =
∏

x

dφ(x) , (1.31)
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where the product
∏

x is on all the lattice sites defined by (1.25).

Having a well–defined functional integral, we can now try to evaluate it. In perturbation theory,

for example, we usually face momentum integrals that have to be regularized in order to proceed

with the calculation. A lattice field theory has a natural momentum cutoff which regularizes it,

as we have already noticed: the lattice spacing is the minimum distance between two points,

thus the wavelengths propagating on the lattice have a maximum frequency. By having a look

at the Fourier transform, we can show how the cutoff emerges for a scalar field φ(x) defined only

on x ∈ Λ. The Fourier transformed scalar field is

φ̃(p) =
∑

x

e−ip·xφ(x) , (1.32)

where we have used the sum on the lattice sites, and the Euclidean inner product p ·x; this field

is periodic in momentum–space because, if we change p to

pµ = pµ +
2π

a
, (1.33)

φ̃(p) is unchanged. Every function defined in momentum–space can then be restricted to have

values only in the Brillouin zone

−π

a
< pµ <

π

a
. (1.34)

Therefore, the maximum possible momentum is π/a, and if we specify periodic boundary con-

ditions for the scalar field, the momenta will be also discretized. This last observation implies

that momentum–space integration, used in perturbation theory for example, can be replaced by

finite sums.

At this point, all functional integral have turned into regularized and finite expressions. We can

then proceed to discuss gauge theories in this framework.

1.2 Gauge theories on the lattice

We would like to start this section with a reminder of gauge theories in a continuum and infinite

Euclidean space–time, in order to underline the main differences that we will see in their discrete

form. Since we are going to deal with the pure gauge theory for the rest of our work, we will

focus on that; however, we will use matter fields, and their transformation laws under the gauge

group, to explain concepts such as parallel transport and covariant derivative. We will refer to

the pure gauge theory with any gauge group as the Yang–Mills theory [1].

1.2.1 Pure Yang–Mills (YM) theories: continuum formulation

Let’s start our discussion on continuum gauge theory in a Euclidean space–time with N complex

scalar fields φi(x) , i = 1, . . . , N . These fields are the components of a complex vector field φ(x).
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For each space–time point x, the vector φ(x) is an element of a vector space V (x), where a scalar

(inner) product is defined by summation over the components of the vectors.

Given the usual continuum scalar field action, with a potential quadratic in φ(x), like

S =

∫

d4x [φ(x)
(

� + m2
)

φ(x) + V
(

φ2(x)
)

] , (1.35)

it is easy to show that this is invariant under the transformation

φ(x) → φ′(x) = Ω φ(x) , Ω ∈ SU(N) . (1.36)

Ω is a N × N matrix, independent of x, and belongs to the special unitary group SU(N), i.e.

Ω Ω† = 1 , det Ω = 1 . (1.37)

We will always use this group in the following. However, the action (1.35) is also invariant under

the more general U(N) group.

A more general request of invariance on the action, is that physics must be independent of a

local change of basis. Applied to our situation, this would demand the modification of the action

in order to remain unchanged under the transformations of the form

φ(x) → φ′(x) = Ω(x)φ(x) , Ω(x) ∈ SU(N) . (1.38)

Since Ω(x) varies with the space–time point x, these are called local gauge transformations,

or simply gauge transformations. An observation is in order here: the gauge transformation

matrices Ω(x) have to be chosen in a unitary irreducible representation of the gauge group.

As it stands, the continuum action (1.35) is not invariant under (1.38), because the derivative

term is applied to the transformation matrix as well. Another way to look at this problem is that

a derivative, in general, involves the field φ in two distinct points, even if they are infinitesimally

close: φ(x) and φ(x+dx) can be expressed in two different basis (transform under different Ω’s),

therefore they can not be compared.

The solution can be achieved by introducing a ”covariant” derivative. By analogy with General

Relativity, the covariant derivative can relate quantities which are expressed in different basis,

depending on the space–time point.

As we said, we have to subtract vectors at infinitesimal neighbouring points x and y = x + dx;

as the basis in different points may be chosen arbitrarily, we can compare the vectors only by

parallel transporting them to the same point. The parallel transport along a curve is defined in

the following way. Let Cxy be some curve in space–time from x to y. With Cxy we associate a

SU(N) matrix which define a mapping from the vector space in x, V (x), to the one in y, V (y)

U(Cxy) : V (x) → V (y) . (1.39)
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Then the vector

U(Cxy) φ(x) ∈ V (y) , (1.40)

is defined to be the vector φ(x) parallel transported along Cxy to the point y. U(Cxy) is called

parallel transporter. Under the transformation law (1.38) the parallel transporter transforms as

U(Cxy) → U ′(Cxy) = Ω(x)U(Cxy)Ω
†(x) . (1.41)

Let us consider an infinitesimal straight curve from x to x + dx and its parallel transporter,

in order to recover an expression for the covariant derivative. A curve with zero length has a

parallel transporter equal to unity, and if the length of the curve is infinitesimal, the parallel

transporter deviates from unity only infinitesimally; we can then write

U(Cx,x+dx) = 1 + Aµ(x)dxµ , (1.42)

where

Aµ(x) ∈ su(N) (1.43)

is an element of the Lie algebra of SU(N): Aµ is a N × N traceless anti–hermitian matrix and

it transforms as a vector under the Lorentz group. If we define the covariant differential of φ(x)

as

Dφ(x) = U(Cx,x+dx)φ(x + dx) − φ(x) , (1.44)

we obtain

Dφ(x) = Dµφ(x)dxµ , (1.45)

with the covariant derivative given by

Dµφ(x) = (∂µ + Aµ(x))φ(x) . (1.46)

In this context, Aµ is called gauge field and transforms with the following law

Aµ(x) → A′
µ(x) = Ω(x)Aµ(x)Ω†(x) + Ω(x)(∂µΩ†(x)) . (1.47)

It is easy to show that the covariant derivative of φ(x), then transforms as φ, i.e. it is a vector:

Dµφ(x) → D′
µφ′(x) = Ω(x)Dµφ(x) , (1.48)

because the derivative itself as the same transformation as the parallel transporter.

Replacing ∂µ with Dµ in the action is then sufficient to guarantee its gauge invariance. However,

the gauge field does not transform homogeneously. A function of the gauge fields which transform

covariantly, can be found using the commutator of two covariant derivatives. It is the field
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strength tensor. This tensor is the corresponding quantity of the curvature tensor in General

Relativity:

Fµν(x) = [Dµ,Dν ] (x) = ∂µAν(x) − ∂νAµ(x) + [Aµ(x), Aν(x)] , (1.49)

and in the abelian U(1) case it is exactly the Faraday–Maxwell tensor of the electromagnetic

field. The field strength tensor transforms covariantly

Fµν(x) → F ′
µν(x) = Ω(x)Fµν(x)Ω†(x) . (1.50)

From this quantity it is easy to construct a scalar, by contracting the indices together; then a

scalar and gauge–invariant quantity is the trace

Tr [Fµν(x)Fµν(x)] → Tr
[

F ′
µν(x)F ′

µν(x)
]

= Tr
[

Ω(x)Fµν(x)Fµν(x)Ω†(x)
]

= Tr [Fµν(x)Fµν(x)] ,
(1.51)

where the Einstein summation convention on repeated indices is used. We will see in a moment

how we can use this trace to define an action for the gauge fields, in order to give them a

dynamics.

Now, we would like to introduce the component notation which is merely a parametrization of Ω,

Aµ, Fµν in terms of the generators of the Lie algebra corresponding to the gauge group SU(N).

Every element of a Lie group can be written in terms of the elements of the corresponding algebra

via the exponential (canonical) map, and an element of the Lie algebra is a linear combination

of its generators. Therefore we can write a gauge transformation matrix as

Ω(x) = ei
P

a
ωa(x)Ta , (1.52)

where the matrices Ta are the N2 − 1 generators of the algebra su(N) and ωa are real functions

of x. This decomposition in terms of the ωa is unique in a sufficiently small neighbourhood of

unity. The generators Ta transform under the adjoint representation of the group which has the

same dimension of the group itself, and are usually chosen to be traceless hermitian matrices.

Moreover they satisfy the commutation relations

[Ta, Tb] = ifabcTc , (1.53)

where fabc are real and completely antisymmetric, and are called the structure constants of the

algebra. Usually they are also normalized as

Tr (TaTb) =
1

2
δab . (1.54)
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These generators can be used to parametrize the gauge field, which is an element of the algebra.

It can be decomposed as

Aµ(x) =

N2−1
∑

a=0

iAa
µ(x)Ta , (1.55)

where the Aa
µ’s are the components of the gauge field. The same can be done with the field

strength tensor,

Fµν(x) =

N2−1
∑

a=0

iFa
µν(x)Ta . (1.56)

The components of the field strength tensor are related to the ones of the gauge field by the

following expression

F a
µν(x) = ∂µAa

ν(x) − ∂νA
a
µ(x) + fabcA

b
µ(x)Ac

ν(x) , (1.57)

where we have used the definition (1.50) and the relations (1.53).

Now we return to the problem of defining a dynamics for the gauge fields; this will be given by an

action which we require to be gauge invariant. We have already seen a function of the gauge fields

which is scalar and gauge invariant, and this function is the trace of the scalar quantity obtained

by contracting the indices of the field strength tensor (1.51). Usually, a coupling constant g is

introduced conventionally to account for the strength of the interaction (the components Aa
µ(x)

are redefined as −gA′a
µ (x), and the same happens to F a

µν(x)), and the action is

SYM = − 1

2g2

∫

d4xTr FµνFµν =
1

4

∫

d4x
∑

a

F a
µνF a

µν . (1.58)

This is the pure Yang–Mills action, or pure gauge action, in the continuum and represents the

dynamics of the gauge field coupled to itself (we have presented here the Euclidean form of

the action). It defines a highly non–trivial interacting continuum theory because, writing down

the product of the F a
µν ’s, cubic and quartic self–interaction terms for Aa

µ appear. It is thus

interesting to study this gauge theory on its own, without the scalar field we used to introduced

the basic concepts: we will go more into the details in Chapter 2.

What we have written so far, was a review of the concepts defining a continuum gauge theory.

In the next section, we are going to define the same concepts, but in their discretized form on

the lattice. At the end we would like to recover also a relation between the lattice variables and

the continuum variables, in order to ensure that in the classical continuum limit we are actually

recovering the right physics.

1.2.2 Pure Yang–Mills (YM) theories: lattice formulation

Following the lines of the previous section we would like to define a discretized action which

is invariant under local gauge transformations. On a Euclidean discrete lattice, the fields and



14 Introduction to Lattice Gauge Theories (LGT)

the gauge matrices are defined only for x being a lattice point. In order to avoid ambiguities

between the continuum and the lattice quantities, we will refer to the x–dependence of lattice

quantities using a subscript; indeed we can think of a field in x, for example, as it is a variable

associated with that point.

The gauge transformation on the scalar field is

φx → φ′
x = Ωx φx , Ωx ∈ SU(N) . (1.59)

If the action contains bilinears of the fields in different lattice points, then it is not gauge

invariant, and a gauge field must be introduced. For example, if we discretize the scalar field

action (1.35) using the finite forward difference (1.28), then the kinetic part contains nearest

neighbours interactions of the form

φx · φy with y = x + aµ̂ . (1.60)

An interaction of this kind is not invariant under transformation (1.59) because the Ωx and Ωy

are generally different. Let us follow the procedure used in the continuum to create a covariant

derivative: the first step is to define a parallel transporter in order to compare φx with φy. The

shortest parallel transporters on the lattice, different from unity, are those associated with the

links (or bonds) b connecting nearest neighbouring points. To denote such a quantity we use

the notation

U(b) ≡ U(x, x + aµ̂) ≡ Ux,µ , (1.61)

and it can be shown that it is an element of the gauge group in the same irreducible representation

of the gauge transformation matrices Ω. Therefore the link variable, as this parallel transporter

is always called, transforms following

Ux,µ → U ′
x,µ = ΩxUx,µΩ†

x+aµ̂ . (1.62)

A lattice covariant derivative can be constructed starting from the forward lattice derivative, and

by parallel transporting the field φx+aµ̂ to the point x, such that its transformation properties

are the same as φx. By looking at (1.62), it is easy to see that

Ux,µφx+aµ̂ → Ωx

(

Ux,µφx+aµ̂

)

, (1.63)

under a gauge transformation, like φx, and that we can write

Df
µφx =

1

a

(

Ux,µφx+aµ̂ − φx

)

, (1.64)

for the lattice covariant (forward) derivative. We could have recovered this form for the lattice

covariant derivative starting from the forward finite difference (1.28) and adding an auxiliary
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discrete field to compensate for the lack of gauge covariance; then, by requiring that Df
µφx

should transform covariantly, it can be shown that (1.64) is the only possible form for the lattice

covariant derivative.

It is important now to underline one important difference with the continuum formulation: the

lattice covariant derivative is defined using Ux,µ, which is an element of the gauge group, whereas

the continuum lattice derivative makes use of Aµ(x), which belongs to the gauge algebra. This

means that we will be able to write down an action where the lattice gauge fields are group

elements, and the functional integration will be an integration over the group manifold.

Let us deepen our understanding of the link variable by finding the relation between it and

the continuum gauge fields (or gauge vector potential). The canonical relation between a Lie

group and its algebra is the exponential map and, if we remember the expression (1.42) for an

infinitesimal parallel transporter in the continuum, we would then write the link variable as

Ux,µ = eaAµ(x) ≈ 1 + aÃµ(x) . (1.65)

In the last expression, Ãµ(x) is defined only on lattice sites and it is a discretized version of the

vector potential (can be identified with it only in the continuum limit)

Aµ(x) = Ãµ(x) + O(a) . (1.66)

The lattice spacing enters the expression above because it is the natural unit of the lattice, and

we see from (1.42) that the vector potential has the dimension of an inverse length. In the

continuum we expect that aµ̂ ≈ dxµ.

After having defined the lattice gauge field, we would like to obtain the field strength tensor on

the lattice. This can be done easily, starting from the continuum definition in terms of covariant

derivatives, and replacing them with the corresponding lattice expressions:

Gx,µν =
[

Df
µ,Df

ν

]

=
1

a2

(

Ux,µUx+aµ̂,ν − Ux,νUx+aν̂,µ

)

. (1.67)

The dimension of the lattice field strength is expressed in terms of power of the lattice spacing,

and it is [L−2]. We should remember, from now on, that on the lattice, every object has a

dimension which can always be expressed in terms of the fundamental length given by the

lattice spacing a.

Following what we did in the last section, using the field strength tensor, we now define an

action for the lattice theory, following (1.51), and noting that

Tr Gx,µνG†
x,µν , (1.68)

is gauge invariant. It is interesting to note that the object we traced can be written as the

product of gauge fields around a closed squared path, called the plaquette. The plaquette p,
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identified by a lattice site x and two directions (µ, ν), is the smallest closed loop on the lattice,

and we can associate to it a parallel transporter

Up ≡ Ux,µν = Ux,µUx+aµ̂,νU
†
x+aν̂,µU †

x,ν , (1.69)

called the plaquette variable. This variable is the analogue of the continuum parallel transporter

around an infinitesimal dxµ, dxν square, which we have related to the commutator of covariant

derivative.

Using the plaquette variable, we can write

Tr
[

Gx,µνG
†
x,µν

]

=
1

a4
Tr

[

2 · 1− Ux,µν − U †
x,µν

]

=
2

a4
Tr

[

1 − ReUx,µν

]

. (1.70)

Substituting (1.65) in (1.69), and using the Baker–Campbell–Hausdorff formula, we find

Ux,µν = ea2F̃µν(x) , (1.71)

where F̃µν(x) is a discretized version of the continuum field strength tensor (it is defined using

∆f
µ and Ãµ, instead of ∂µ and Aµ) and it is related to the continuum Fµν by

Fµν(x) = F̃µν(x) + O(a) . (1.72)

The lattice action which has been proposed by Wilson [7] for the pure SU(N) lattice gauge

theory is defined in terms of the plaquette variables:

SLAT = β
∑

p

[

1 − 1

N
ReTr Ux,µν

]

. (1.73)

Here, the sum over all plaquettes p is meant to include every plaquette only with one orientation.

This action in clearly gauge invariant due to the ciclicity of the trace; furthermore it is real and

positive. There are other possibilities for defining a gauge–invariant action, but this is the

simplest choice.

A first observation we can make is that, whereas the continuum Yang–Mills action does not

depend on the irreducible representation of the gauge transformations (because the algebra

generators are always in the adjoint representation), here we are using group elements, and

the Wilson action depends explicitly on the representation of the gauge matrices Ω we started

with. For our purpose, in this work we are going to use always the fundamental (defining)

representation for the matrices Ω (and then for the link and plaquette variables).

The parameter β in front of the plaquette sum is the coupling constant of the lattice gauge

theory and it is related to the bare coupling g0 of the continuum Yang–Mills theory. To find

this relation, we merely require that, for a → 0, we recover the action (1.58). Expanding (1.71)

in powers of small a and tracing it, as dictated by the Wilson action, we find

β =
2N

g2
0

, (1.74)
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by comparing the leading term O(1) of the resulting expression with the Yang–Mills continuum

action. We can anticipate here that, as a bare coupling, this can vary following the renormal-

ization flow and it becomes a function of the cutoff, i.e. a function of the lattice spacing, β(a).

We are now ready to define the quantum gauge theory on the lattice using a gauge–invariant

functional integral; the last thing we need is to define a gauge–invariant functional measure.

1.2.3 Gauge–invariant lattice path integral

We have already shown how to quantize a field theory using the functional integral formalism;

to calculate the expectation value of some observable O in the pure Yang–Mills theory, we would

write the formal expression

〈O〉 =
1

Z

∫

DAµ O e−SYM [Aµ] , (1.75)

where

DAµ =
∏

x,µ

dAµ(x) . (1.76)

This integral is meant to be a functional integral over all configurations of the gauge field Aµ.

However, this integral is ill–defined because it is divergent: for every configuration of the gauge

fields, we shall count also the infinite gauge–equivalent configurations and with the same weight

given by the action, which is gauge invariant. Moreover, if we were to calculate the functional

integral by means of perturbation theory, then we would face the problem that some particular

configurations of the gauge fields are not allowed: it is then necessary to fix a particular gauge

to avoid the zero modes that appear in the quadratic part of the action.

On the lattice we would like to have an integration measure which we require to be gauge

invariant not to spoil the gauge symmetry principle that guided us in the construction of the

theory from the beginning. In a lattice pure gauge theory, we expect all the observables to be

functions of the lattice gauge fields: the link variables define the physical observables. Let us

denote a lattice field configuration as a particular set of link variables

{U(b)} ≡ U , (1.77)

where b = (x, µ) is an oriented link (from x to x + aµ̂) and the set spans all the lattice links.

Then the expectation value of a lattice observable can be written as

〈OLAT 〉 =
1

ZLAT

∫

DU OLAT e−SLAT [U ] , (1.78)

where

DU =
∏

b

dU(b) (1.79)
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is a finite–dimensional group measure. Here, dU(b) is a volume element in the group manifold.

In order to be gauge invariant, the integration measure must satisfies

dU = dU ′ , U ′
x,µ = ΩxUx,µΩ†

x+aµ̂ , (1.80)

which also means that

dU = d(UΩ) = d(ΩU) . (1.81)

On a compact Lie group, such a measure, invariant under left and right translations in the group

space, can always be uniquely defined: it is the Haar measure.

The problem of equivalent gauge configurations is present in the lattice path integral as well,

but with an important difference: here the integration variables belong to the group, whereas

in the continuum they are elements of the algebra. Moreover, on a finite lattice, the measure is

finite–dimensional, and then well defined (the infinite volume results are obtain taking the limit

of finite volume quantities). The difference between the group and the algebra we are interested

in at the moment, is that, for a compact group, the gauge volume is finite: the gauge equivalent

configurations we need to integrate over, are finite, and their volume can be normalized to unity.

However, if we attempt to use perturbation theory starting from (1.78), we will be forced to

introduce a gauge–fixing term in the action, right as in the well known continuum case; the

reason is that we would like to avoid the zero longitudinal modes in the gauge field propagator.

Non–perturbatively, it is possible not to fix any gauge on the lattice, as long as one is interested

in gauge–invariant observables: the expectation value of a non gauge–invariant quantity is zero

if we do not fix the gauge, whereas, for a gauge–invariant observable, the expectation value is

the same in any case, with fixed or unfixed gauge. This is the consequence of having chosen the

path integral to be entirely gauge invariant.

Let us now look closely at the partition function which enters the formula (1.78) for an expec-

tation value on the lattice. We can write it as

ZLAT =

∫

∏

b

dU(b) e−SLAT [U ] , (1.82)

and we know that this defines the vacuum effects of a regularized gauge theory. We can use

this partition function to study the resulting theory without resorting to perturbation theory:

lattice formulation of gauge theories is then a powerful tool to explore the non–perturbative

regime of such theories. Moreover, we can find an analogy between (1.82) and the partition

function of a statistical mechanics system where β = 2N/g2
0 is the inverse temperature and

∑

p

[

1− 1
N ReTr Ux,µν

]

gives the energy in the Boltzmann factor; it is possible to use statistical

methods to study a lattice theory and the advantages are that these methods are well established

and usually easy to apply. For example, a high–temperature expansion of the partition function
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in statistical mechanics consists in a small β expansion: since β ∝ 1/g2
0 , this amounts in a

strong–coupling expansion of the corresponding gauge theory. Other methods, like mean field

approximation or Monte Carlo simulations, can be employed for a lattice gauge theory. We shall

make use of numerical Monte Carlo simulations in the following.

1.3 Critical points and the quantum continuum limit

It is important to stress again that, after having obtained a result on the lattice using one of

the methods above or by means of perturbation theory, this result has to be ”translated” into a

physical continuum result. This procedure, called the continuum limit, or quantum continuum

limit, is not trivial. As we already said in Sec. 1.1.4, the quantum continuum limit can be viewed

as a renormalization program, where one has to remove the regularization (the lattice spacing

in this case), while keeping fixed some physical observables (like a mass or an energy scale).

Imagine that we have measured a mass in lattice units m̂ = ma; if we let a → 0, then m̂ → 0

because we would require the physical dimensionful mass m to remain finite in that limit.

At the same time, we can look at m̂ as the inverse of a correlation length ξ̂ = 1/m̂ in the

corresponding statistical system. In the continuum limit, the correlation length diverges, which

is a sign of a second order phase transition, or critical point of the statistical system. This

relation between continuum limit and critical points, can be explained naively with a physically

sounding argument; if we want the lattice result to be valid in the continuum physics, we have

to require that the system looses memory of the underlining lattice structure: this is just what

happens when the correlation length of the system diverges.

The only parameter we have in our lattice theory is the dimensionless coupling constant β, or

equivalently g2
0 . This is the only quantity we can tune to reach the critical point of the theory.

What we are saying is that, while sending a to 0, we should let g0 go to gcrit at the same time.

This is a typical feature of the renormalization procedure, where bare couplings of a theory

acquire a dependence on the cutoff or on the energy scale at which the theory is defined.

1.3.1 β function and asymptotic freedom

Using the renormalization group (RG) equation for g, and considering the lattice spacing a as

the inverse of our energy scale, we write

−a
dg

da
= β(g) . (1.83)

Here β(g) is the beta function of the theory. In the perturbative regime g0 ≪ 1, the renormal-

ization group equation is well approximated by the first two terms of the beta function:

−a
dg0(a)

da
= −β0g

3
0 − β1g

5
0 , (1.84)
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where the first two terms of the expansion are universal (do not depend on the choice of renor-

malization scheme) and read

β0 =
11N

48π2
, β1 =

102

121
β2

0 , (1.85)

for a SU(N) pure gauge theory. The remarkable fact in these formulae is that the beta function

in (1.84) is negative in a neighbourhood of the origin (where the perturbative series is reliable),

implying that the coupling g0 becomes smaller as the length scale a decreases. This property,

characteristic of non–Abelian gauge theories, is called asymptotic freedom. It suggests that

perturbation theory becomes reliable at short distances, or high energies, in the continuum as

well as in the lattice theory. Moreover, it implies that the point g0 = 0 is a RG–fixed point, and

the continuum limit of lattice gauge theory has to be taken sending a to 0, as well as g0 to 0, if

we want physical quantities to remain finite.

Integrating the RG equation (1.84), we obtain the relation between a and g0

a = Λ−1
LAT e

− 1

2β0g2
0

(

β0g
2
0

)−
β1

2β2
0

[

1 + O(g2
0)

]

, (1.86)

and

g2
0 = − 1

β0ln
(

a2Λ2
LAT

) , (1.87)

which again reveals the vanishing of g0 in the continuum limit a → 0. The equations above, also

show the appearance of an integration constant ΛLAT which has the dimension of an energy.

This is quite interesting, because the pure gauge theory has no dimensional parameters (g0 is

dimensionless and there is no mass term) in its classical action. This phenomenon is associated

with dimensional transmutation and it is a pure quantum effect.

From the last discussion, we see that, in order to make physical predictions using lattice gauge

theories, it is in general necessary to measure a number of physical observables equal to the

number of bare parameters on the action. Every physical dimensionful observable on the lattice

is then measured in terms of the appropriate power of the lattice lambda parameter ΛLAT .

This parameter is completely arbitrary so far and reflects the arbitrariness in the choice of the

renormalization scale. What we learn from this is that, on the lattice, we can only determine

dimensionless ratios of physical quantities. Moreover, to ensure we are extracting continuum

physics, every observable should follow the exponential behaviour in (1.86) called asymptotic

scaling, which means we are sufficiently close to g0 = 0.

In the following, we would like to calculate masses on the lattice. We should then set a physical

scale, and express our masses in terms of that. In Ch. 3, we will see how to practically set the

scale for our lattice calculations.
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1.4 Finite temperature lattice gauge theories

We are going to explain in this section how to describe a quantum field theory in thermodynamic

equilibrium at finite–temperature T 6= 0. The natural framework is, again, the Euclidean path

integral, and a lattice formulation follow just in the same way as we have described in the

previous sections.

The path–integral representation of a finite–temperature quantum field theories starts from the

thermal partition function

Z(T, V ) ≡ Tr e−βH ≡
∑

n

〈n| e−βH |n〉 =
∑

n

e−βEn , (1.88)

where we have written the trace as a sum over a complete set of energy eigenstates. The

parameter β is related to the inverse temperature through the Boltzmann constant

β =
1

kT
. (1.89)

For convenience, we set k = 1 in the following.

Following (1.11), which tells us how to write the amplitude for the propagation of a field in the

time interval given by T , we can now interpret our temperature us a time variable (after a Wick

rotation) writing

〈φf (~x)| e−H/T |φi(~x)〉 =

∫

Dφ exp

[

−
∫ 1/T

0
dt

∫

d3x L
]

. (1.90)

In order to calculate the trace over states, we should put φf (~x) = φi(~x), and perform an

additional integration over φi(~x). The resulting expression for the partition function is almost

equal to (1.24), where the time variable of the action goes from 0 to 1/T , and where the field φ

is taken with periodic boundary conditions

φ(~x, 0) = φ(~x, 1/T ) , (1.91)

Z(T, V ) =

∫

Dφ exp

[

−
∫ 1/T

0
dt

∫ ∞

−∞

d3x L
]

. (1.92)

If the field were a fermionic one, instead of bosonic, we would have chosen antiperiodic boundary

conditions in order to gain the right Fermi–Dirac statistics. The expression (1.92) reproduces

the standard Euclidean formulation of quantum field theory in the limit T → 0. The point is

that nothing depends on real time for a system in thermodynamical equilibrium, and in this

formulation we are allowed to calculate only static properties (such as masses or interaction

potentials) of the field theory.

As we pass to the lattice regularization of the quantum field theory, the only thing to do is to
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define a lattice whose size along the temporal axis is much smaller than along the spatial ones.

The spatial volume should remain large to guarantee that we are in the thermodynamic limit,

whereas the time direction need to be small in unit of lattice spacing if we want to reproduce a

finite temperature:

Lt =
1

aT
≪ Ls , (1.93)

where Lt is the size of the temporal direction and Ls the size of the spatial ones. It is then

straightforward to consider the temperature on the lattice as

T =
1

aLt
, (1.94)

and to impose periodic boundary conditions as usually by construction. We remind that on a

Euclidean lattice, all directions are symmetric, and any of the four can be chosen as the temporal

one.

Another important remark is that, since the lattice spacing is related to the coupling constant,as

described in Sec. 1.3, we can change the temperature on the lattice by varying either the size

along the temporal axis Lt, or the lattice coupling constant β (we are now considering only a

pure lattice gauge theory for our convenience).



2. Motivations for a large–N study

From the previous chapter, we have learnt that the lattice discretization has the advantage of

being a truly non–perturbative regularization of gauge theories. We can apply the lattice ap-

proach to study QCD, for example. However, it would be of great importance to have some kind

of non–perturbative insight of the theory directly in the continuum to guide numerical studies.

The most concrete proposal in this direction is the large–N limit, first proposed by ’t Hooft [3].

Another non–perturbative insight of QCD comes from string theories through their conjectured

duality with field theories [4]. In this chapter we will briefly review the aforementioned ap-

proaches in order to motivate our study of a pure Yang–Mills theory in the large–N limit.

2.1 Pure YM and QCD in 3 + 1 dimensions

The analysis we will describe in the next chapters starts from the definition of a pure gauge

theory with a generic gauge group SU(N) in 3 + 1 dimension. Such a theory, which is perfectly

sensible as a continuum theory, will be discretized on a regular hypercubic 4 dimensional lattice

in order to gain information with direct measurements of spectral observables. However, we now

want to start from the continuum gauge theory defined by the Lagrangian density

L = −1

2
Tr FµνFµν , (2.1)

where the field strength tensor Fµν has already been defined in Sec. 1.2.1, but in the following

discussion we shall use a slightly different notation. Now the gauge field Aµ is an hermitian

N × N matrix expressed in terms of the su(N) algebra generators Ta as

[Aµ(x)]ij =

N2−1
∑

a=0

Aa
µ(x)[Ta]

ij . (2.2)

As we know, the index a in the above expression refers to the adjoint representation of the group

(the one of the generators), whereas the two indices i and j of the matrix form [Aµ(x)]ij , refer

to the fundamental and anti–fundamental representations respectively. Using the double index

notation (or component notation) will help in understanding the index structure of the Feynman
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diagrams.

A perturbative evaluation of the dynamics of such a Yang–Mills theory, expressed as a series

in powers of the coupling constant or equivalently in the usual diagrammatic expansion with

Feynman graphs, is not a valuable tool to investigate the low energy regime of the theory. In

that region of the phase space, the theory is supposed to be confining for all values of N ≥ 2 and

signals of confinement, such as a linear increasing of the potential between two static charges

at asymptotically large distances, have been observed in numerical simulations. However, a

deep understanding of the full large distance/small energy regime of the theory needs still to be

reached.

It is important to note that, though the theories defined by (2.1) for all values of N , might

have little to do with the physics of the real world described by QCD with gauge group SU(3),

their understanding can shed light on the behaviour of the gauge degrees of freedom in QCD

and explain their role in the confinement phenomenon. Indeed, a pure SU(3) pure gauge theory

can be viewed as the full QCD where the mass of the matter fields (the quarks) has been taken

to infinity; this mq → ∞ limit corresponds to the impossibility of propagating a quark particle

which, being infinitely heavy, does not contribute to the dynamical sector of the theory. Thus,

this limit describe the propagation of only gauge fields (the gluons), and from their interactions

it is possible to create a full spectrum of bounded excitations called glueballs. Glueballs are

supposed to be present in the full QCD as well, but their mixing with quark bound states, such

as mesons, can hide their contribution in the spectrum.

In the following, we will provide a reason for discarding the quark degrees of freedom, at least for

large SU(N) groups and we will show that QCD with a SU(∞) gauge group is a pure Yang–Mills

theory.

2.2 1/N expansion and planar graphs

One might think that letting N → ∞ would make the analysis of QCD much more complicated

because of the larger gauge group and consequent increase of the number of dynamical degrees

of freedom. Moreover, one might think that N = ∞ has very little to do with N = 3. However,

SU(N) gauge theories simplifies in the N → ∞ limit and, more precisely, the solutions to these

theories possess an expansion in powers of 1/N .

This important observation was first pointed out by ’t Hooft [3] and it is based on the fact

that in such theories, N is another dimensionless parameter besides g0; a sensible N → ∞ limit

is possible when a suitable combination of N and g0 is held fixed. Moreover, this is true for

general field theories with symmetry group O(N), U(N), besides their restriction to the special

subgroups. Here we want to give only a brief overview of the arguments and of the consequences
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relevant to our work; what follows is based on the treatment of Coleman [17] and on [18, 19].

Let us consider a pure continuum gauge theory as expressed at the beginning of the previous

section by (2.1) and (2.2). The propagator of the gluon field Aa
µ with colour index a (using the

adjoint notation) is
〈

Aa
µ(x)Ab

ν(y)
〉

= δabDµν(x − y) , (2.3)

where Dµν(x − y) is the the gauge fixed propagator in perturbation theory. We are now only

interested in the index structure of the propagator and we will omit the space–time term Dµν(x−
y). The index is conserved in the propagation as indicated by the delta function. However, as

we have already noticed, general theoretical observations of group theory allow an adjoint index

to be written as a pair of fundamental and anti–fundamental indices running,in this case, from

1 to N . In the double index notation we can write the propagator as

〈

(Aµ)ij(x) (Aν)kl(y)
〉

∝
(1

2
δilδkj − 1

2N
δijδkl

)

, (2.4)

where we have used the completeness condition on the generators Ta. Omitting the second

term in parentheses on the right hand side of (2.4) at large N because it is subleading, we can

depict the gluon propagator by a double line as shown in Fig. 2.1: each line represents the delta

function which preserve the index along the line, and each line has an arrow indicating if it is a

fundamental (arrow from left to right) or anti–fundamental index (arrow from right to left).

The great advantage of the double line representation is manifest when we have to follow colour

indices on Feynman diagrams; to each double–line graph there corresponds a single–line graph

with a given assignment of the indices. Every diagram in the usual perturbation expansion

can be completely rewritten as a sum of double–line graphs. Each double–line graph gives

a particular colour index contractions of the original diagram. For example, the three–gluon

interaction vertex is shown in Fig. 2.2.

To compute the N–dependence of each diagram, in order to understand its contribution in the

large–N expansion, it is better to define a rescaled Lagrangian where the fields are g0N
−1/2A →

A

L =
N

g2
0

[

− 1

2
Tr FµνFµν

]

. (2.5)

The theory defined by this Lagrangian admit a smooth non–trivial N → ∞ limit where there

exists loops diagrams which contributes even at the leading order in 1/N .

One can read off the powers of N in any Feynman graph from (2.5). Every vertex has a factor

of N , every propagator a factor 1/N and, in addition, every colour index loop gives a factor of

N , since it represents a sum over N colours. Moreover, through the double–line notation, we

can relate each graph to a two dimensional surface. For simplicity, let us consider only vacuum

connected diagrams. Because those graphs has no external lines, every index line must close to
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Figure 2.1: The gluon propagator in the single–line representation (above panel) with an index in the

adjoint representation which is conserved by the delta function in (2.3). In the double–line

representation (lower panel), the index conserved are in the fundamental (right arrow) and

in the anti–fundamental (left arrow).

Figure 2.2: The three–gluon interaction vertex in the single–line representation (above panel) and in the

double–line representation (lower panel). The subscripts in the line indices refer to each of

the three gluons. The relative minus sign can be calculated directly from the cubic A term

in the Lagrangian (2.1) written in the components notation.
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form a loop: this loop can be considered as the perimeter or edge of a polygon. Hence, a double

line is a prescription for fitting together these polygons to form a two dimensional surface. Since

the edge of the polygons are oriented by the arrows on the index lines, the resulting surface

corresponding to a graph will be oriented.

We know that every two dimensional oriented surface is topologically equivalent to a sphere with

some number of holes cut out of it and some number of handles stuck on it. It can be shown

that the diagrammatic expansion can be rearranged in a topological expansion. In fact, a graph

with V vertices, E edges and F faces (where a face is an index loop) is proportional to

NV −E+F ≡ Nχ , (2.6)

where χ is the Euler character of the surface and it is a topological invariant. For the kind of

surfaces we can construct starting from the double–line diagrams, the Euler character can be

defined using the number of holes (boundary in mathematical language) b and handles h (which

is called the genus of the surface )as

χ = 2 − 2h − b . (2.7)

Therefore, the maximum power of N carried by a diagram can be 2, when h = 0 and b = 0 and

the surface is equivalent to a sphere. In the N → ∞ limit, these graphs contribute to the leading

term. In terms of the single–line original graphs this means that they are planar graphs, that

is graphs that can be written with no intersections between the lines but interaction vertices.

Non–planar diagrams have genus h > 0 and then are subleading.

Moreover, the number of holes b can be different from zero only if we allow quarks to propagate,

because a boundary in the surface comes from a loop of unpaired index lines. As we can see

from (2.6) and (2.7), planar diagrams with one quark loop forming the boundary of the graph

are subleading because they carry a power N .

Any diagram in perturbation theory is proportional to the coupling constant and we insert it

in our previous counting rules. Let us consider the simplest radiative correction in the pure

gauge theory, the one–loop correction to the gluon propagator shown in Fig. 2.3. There are 2

three–gluons vertices, each with a power of g0, and a gluon loop where a sum over the colour

must be performed giving a contribution of order N . Therefore, the contribution of this diagram

is ∼ g2
0N . If we want the large–N limit to be non–trivial, the coupling constant should satisfy

the scaling

g2
o ∼ 1

N
. (2.8)

A sensible N → ∞ limit is then performed by keeping fixed

λ ≡ g2
0N , (2.9)



28 Motivations for a large–N study

the so called ’t Hooft coupling, which is O(1). Hence, the pure gauge theory has a genus

expansion in diagrams which contribute at order

( 1

N2

)h
, (2.10)

whereas a gauge theory with quarks has diagrams at order

( 1

N2

)h( 1

N

)b
. (2.11)

We can then draw the conclusion that neglecting quark degrees of freedom by sending mq → ∞
gives corrections that are increasingly unimportant as N grows.

In this work we will consider only the pure gauge theory and then we expect that the leading

corrections are suppressed with 1/N2.

Figure 2.3: The pictorial representation of the one–loop contribution to the gluon propagator. Associated

with the closed index line in the double–line notation, there is a factor of N . If we count the g0

factors of each interaction vertex, we find that the contribution of the diagram is ∼ g2
0N ∼ 1.

2.3 The gauge/gravity correspondence

The topological expansion of double–line diagrams has a striking similarity to the string coupling

constant expansion in string theories. It is indeed conjectured that a connection between large–

N QCD and string theories may exists.

The aim of this section is to provide the necessary information to understand one possible

motivation for this work; here we don’t want to give a formal description of the subject which,

on the other hand, can be found in the literature [20, 21]. We will follow [22] for a review
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relevant for our study: the final result of this section will be to show that our study can be used

to compare the emerging non–perturbative picture of a large–N four dimensional gauge theory

with predictions obtained from a perturbative calculations in string theories.

Let us begin with the conjecture which relates string theories on suitably chosen AdS manifolds

with conformally invariant field theories whose symmetries depend on the internal manifold. This

is the Maldacena conjecture [4], further investigated in the work of Witten [5]. The conjecture

relates the M theory in the AdSd+1 × X background to the large–N limit of a d dimensional

conformal field theory. Different field theory can be described by a careful choice of the internal

Einstein manifold X; for example it is possible to induce the presence, on the field theoretic

side of the correspondence, of supersymmetry, or of a SU(N) gauge symmetry. It is important

to stress that this AdS/CFT correspondence is formally only a conjecture. Let us discuss the

conjecture in the most studied example of type IIB string in the AdS5 × S5 background. We

can recognize three different levels of using the conjecture:

1. the ”weak” level statement is that the correspondence only holds between supergravity on

AdS5 × S5 and the strong coupling limit of large–N SU(N) N = 4 supersymmetric gauge

theory in 4 dimensions. Many results that confirm the same behaviour of some observables

on both sides have been obtain so far (see for instance [20] for a thorough discussion of

all these checks); this level of the Maldacena conjecture is now commonly accepted as a

firmly established result;

2. The ”normal” level of the conjecture extends the relation from the supergravity limit to

the whole type IIB super–string theory in the AdS5 ×S5 background. that theory is then

related with the large–N limit of SU(N) N = 4, also beyond the region of strong coupling.

If we want to to obtain from the AdS/CFT correspondence a QCD–like theory in the weak

coupling limit, we should work at this level of the conjecture, but essentially no check exists

of the Maldacena conjecture at this level;

3. the ”strong” level assumes that the conjecture holds also for the string theory at an

arbitrary order in the loop expansion (in term of the string coupling constant which is

proportional to 1/N). This would imply that, given the string theory result at a given

order, we have, on the field theory side, information about an arbitrary order in the 1/N

expansion discussed in Sec. 2.2. We have by now a rather good control of the large–N

limit on the lattice side and a step in this direction has been made with our present work:

knowing the corrections to the N = ∞ theory on both side of the correspondence will help

in checking the conjecture even at this ”strong” level.

It is worthwhile to stress that (independently from the possible applications to QCD) the

AdS/CFT correspondence is of great theoretical interest in itself.
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If we aim to reach a description of real QCD–like theories by using the gauge/gravity correspon-

dence, it is mandatory to break the conformal invariance which characterize the resulting field

theory independently of the choice of the gravity background. At the same time (if needed) we

must somehow break the supersymmetry of the theory.

There are several possible ways to reach the aforementioned results, but we shall briefly expose

the proposal suggested by Witten in [6]. The idea, whose main appealing feature is its simplic-

ity, is that we can break the conformal invariance of the theory by compactifying the theory in

one (or more) direction(s). Conformal invariance is then explicitly broken by the scale of the

compactification radius R0. If we then choose appropriate boundary conditions for the particles

of the theory in (one of) the compactified directions we can also break supersymmetry. The

important point in all these steps is that the Maldacena conjecture can be extended also to

the compactified version of the theory and that the theory obtained in this way can be a good

candidate for a pure Yang Mills theory.

Let us state the simplest example of a type IIB super–string theory in the AdS5 × S5 back-

ground. As already mentioned, the Maldacena conjecture allows us to relate this theory with

the large–N limit of the SU(N) N = 4 supersymmetric gauge theory in 4 dimensions. Following

Witten’s proposal, we can break the N = 4 supersymmetry and the conformal invariance by

compactifying only one direction, in this case. A nice physical interpretation of this recipe is

that, if we choose to compactify the manifold in the time direction we are equivalently studying

the original system at a non–zero temperature T : indeed the temperature is proportional to

the inverse of the compactification radius R0. For this reason, the original SYM theories are

referred to as T = 0 theories and the non–supersymmetric compactified ones as T > 0 theories.

In the R0 → 0 (hence T → ∞) limit we then obtain a three dimensional effective theory which

has several features in common with large–N 3d YM and could hopefully be identified (at least

in some limit) with it.

Many of the attempts which have been made up to now to compare the results obtained in

the framework of the finite temperature version of AdS/CFT correspondence with YM theories

dealt with the glueball spectrum. In principle the calculation of the glueball spectrum, at least

for the 0++ state, is rather simple. In the supergravity limit, the 0++ glueball is mapped by the

Maldacena conjecture into the dilaton field of the corresponding supergravity description. Its

mass is then obtained by solving the wave equation corresponding to that field (see [23] for the

first performed calculations).

Even if there is no quantitative agreement with the lattice estimates, the pattern of the glueball

masses (at least in d = 3 [24]) is correctly reproduced. Our study can provide new data from the

lattice side of the AdS/CFT correspondence, and supergravity calculations can compare their

results. We should first give our results in the continuum limit of the lattice theory before any
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comparison can be made.
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3. Setting the physical scale

In this chapter we are going to explain how we fix the energy scale of SU(N) lattice gauge

theories. Since we want to compare observables coming from theories with different gauge

groups, we need to be sure that for all the theories we are extracting physical results at the

same scale. This is done by using the energy scale of the deconfinement transition, which occur

for all non–abelian lattice gauge theories.

3.1 Fixing the lattice spacing

To extract information about the glueball spectrum in the N → ∞, we want to be able to

compare lattice results for different theories. Perturbatively, we know that a smooth non–trivial

N → ∞ limit is possible only if the ’t Hooft coupling λ ≡ g2
0N is held fixed, as we have already

shown in Sec. 2.2. On the lattice, the inverse of λ, can be written in term of the lattice coupling

β as

γ ≡ 1

λ
=

β

2N2
. (3.1)

We should check that, for each N , the spectrum is evaluated at β values such that γ is fixed.

However, in the non–perturbative lattice formulation, we can obtain physical results only if we

set the scale of our calculations: a physical quantity must be measured. Having in mind our

final purpose, we should try to fix the scale such that, for every N , we are describing the same

physics: every SU(N) theory on the lattice must be regularized at the same cutoff a.

We decided to fix the lattice spacing using the physical scale characteristic of the deconfinement

phase transition: the deconfinement temperature Tc (cfr. Sec. 3.2). However, we should be

careful in the choice of a, because, in the end, we hope to perform a smooth continuum limit of

our results: this can be achieved only if calculations are done in the scaling region, that is to

say, at small enough lattice spacing (and correspondingly big enough values of β).

Since we are going to study thermal properties of a gauge theory, such as the deconfinement

temperature, we use a periodic lattice whose temporal direction has a size much smaller than

the spatial one. The temperature, in unit of lattice spacing, of the corresponding thermal theory
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is then given by

a(β)T =
1

Lt
. (3.2)

In (3.2) we wrote explicitly the dependence of the cutoff on the lattice coupling, and we referred

to the temporal size, in unit of lattice spacing, as Lt. The same equation can be viewed also as

a way to fix the cutoff

a =
1

LtT
. (3.3)

We decide, in this work, to fix the cutoff, for every value of N , at the value of

a =
1

6Tc
, (3.4)

where 6 is the fixed number of lattice sites in the temporal direction. Given the implicit depen-

dence a(β), we can also write

a(βc) =
1

6Tc
. (3.5)

Then we are sure that the spectrum extracted from the lattice, for different gauge groups SU(N),

is given at the same physical scale.

The method used to find the critical value βc, at which the deconfinement transition occur

in the lattice gauge theory, is explained in the following, after a general discussion about the

deconfinement transition in lattice gauge theories.

3.2 The deconfinement transition in LGT

On the basis of asymptotic freedom, one can expect that, at asymptotically large temperatures,

the hadronic matter appears as an asymptotically free gas of quarks and gluons (quark–gluon

plasma). The qualitative differences between this phase at high energy, and the phase of ordi-

nary matter at low energy, imply the existence of a phase transition between the two regimes.

This can be proved for instance in the strong coupling limit of lattice QCD [25, 26]. Over the

years, many Monte Carlo studies have investigated this transition. A recent review is given

in [27]. We shall now describe some aspects of of this phase transition relevant for our work.

Let us consider only pure SU(N) YM theories, which can be seen as a generalization of QCD

when the masses of all quarks go to infinity as described in Sec. 2.1; in this case it is easier

to find a criterion to distinguish between the two phases of matter. The low temperature (and

density) regime of a pure SU(N) gauge theory is characterized by confinement, whereas the high

temperature phase is deconfined (this behaviour is confirmed by lattice simulations on the low

energy side, and by perturbation theory on the high energy side). As a first step to characterize

the phase transition, one can try to describe the behaviour of the deconfined phase using per-

turbation theory; in fact, the short distance behaviour of matter is dominated by asymptotic
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freedom for this theories. Nevertheless, serious infrared divergences appear and the predictive

power of this expansion is limited; moreover, long distance properties, like confinement, are

prevented from being investigated by the perturbative approach.

Using the purely non–perturbative lattice formulation, we can find a good order parameter to

study the phase transition. Because of the periodic structure of the lattice, we can construct

gauge–invariant quantities by taking the trace of the product of link variables along topologically

non–trivial loops winding around the time direction. Let us consider the following expression,

constructed from the temporal link variables starting from a given point ~x:

lp(~x) = Tr

Lt−1
∏

t=0

Ux,x+ta0̂ , (3.6)

where 0̂ represents a unit vector in the temporal direction. This expression is invariant under

periodic gauge transformations, and it is referred to in the literature as the Polyakov loop.

The expectation value of the Polyakov loop has a simple physical interpretation. It is related to

the free energy Fq(~x) of the system with a static quark in ~x, measured relative to that in the

absence of the quark [28]:

〈lp(~x)〉 = e−Fq(~x)/T . (3.7)

Then, it probes the screening properties of a static non–singlet test charge in the surrounding

gluonic medium. In the confined phase, a gauge charge in the fundamental representation cannot

be screened by gluons, therefore the free energy (minus that of the vacuum) is infinite; on the

contrary, in the deconfined phase, the free energy of a static quark is finite. This led to the

Polyakov criterion of confinement at finite temperature:

〈lp(~x)〉
{

=0 confinement

6=0 deconfinement .
(3.8)

3.2.1 Center symmetry and the order parameter

It can be seen that this criterion is intimately connected with the spontaneous breakdown of

a global exact symmetry of the pure SU(N) gauge action on the lattice: the center symmetry.

We recall that the center of a group refers to that set of group elements which commute with

all other elements of the group. For a general SU(N) group, the center is the abelian group ZN :

its elements are diagonal N × N unitary matrices proportional to the identity with coefficients

zn = e
2πin

N (n = 0, 1, 2, . . . , N − 1) . (3.9)

Let us call zn also the matrix of ZN which has the elements zn on the diagonal. The lattice

action is then invariant under a global ZN transformation of all the time oriented link variables
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between two neighbouring spatial slices

Ux,0 → U ′
x,0 = znUx,0 , (3.10)

where the zn is the same for all spatial lattice points. Clearly, the Polyakov loop transform non

trivially under this transformation, because only one of the link in the product (3.6) changes.

Hence we have

lp(x) → znlp(x) . (3.11)

Now, if we measure the expectation value of the Polyakov loop as a sum over link configurations

distributed according to the exponential of the lattice action, we expect the following picture.

Since lattice gauge field configurations related by center symmetry occur with the same proba-

bility (because they correspond to the same action), the sum over configurations yields zero for

lp because
∑

n zn = 0. However, this is true only if the symmetry of the action is valid for the

ground state as well: if not, then the symmetry is spontaneously broken and the configurations

will cluster around any one of the zn elements. Hence, we can conclude that the center symmetry

is realized in the low temperature confining phase of the lattice gauge theory where 〈lp〉 = 0,

whereas the symmetry is spontaneously broken in the deconfined phase and 〈lp〉 6= 0. In the

study of phase transitions, the spontaneous breakdown of a global symmetry is the first signal

one should look for and in the case of lattice pure gauge theories, we have just shown that the

Polyakov loop is a good order parameter.

3.2.2 Description of the phase transition

As we said, a pure gauge theory is characterized by a physical phase transition as the temperature

is increased. At the critical temperature Tc, both a phase with confined gluons, and a phase

which can be described as composed by a gluon plasma, coexist. For gauge group SU(N) with

N ≥ 3 this is a first order phase transition of the lattice theory [29, 30, 31] and it is conjectured

to be so also in the continuum [32].

In a first order phase transition, we can describe the two phases as the two vacua of an effective

finite–T potential. However, for gauge group SU(N), the deconfining vacua is indeed a set of

N degenerate vacua (with the same free energy). On a finite volume, there will be a finite

range of temperature T around Tc in which the system has a significant probability to be in

both confining and deconfined vacua, occasionally tunnelling between them. Out of the range

of temperature where this occurs, the degeneracy lifts and one phase becomes more probable as

the free energies of the vacua split by some ∆E: the relative probabilities of the two vacua are

then given by e−β∆E . Since the free energy grows with volume ∆E ∝ V , we see that the finite

volume transition region is typically δβ ∼ O(1/V ). We will make use of this in the following.

The thermodynamic limit of the phase transition temperature will be extrapolated from a finite
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size study; this is a typical study for a second order transition, but it has been shown [33] that,

even for first order transitions, it gives the correct values of (pseudo)–critical exponents and can

be used to study the properties of the transition region in the thermodynamic limit.

When a physical phase transition is under investigation, it is always necessary to identify an

order parameter that help distinguishing the different phases of the system. The order parameter

is the Polyakov loop (see Sec. 3.2.1): its expectation value 〈lp〉 is zero in the confining phase,

but suddenly grows to a non–zero value when the transition temperature is passed. On a

finite volume, however, tunnelling occurs between the N different vacua of the deconfined phase

because the energy barrier between them is finite (this is related to the fact that a symmetry

can be spontaneously broken only if there are an infinite number of degrees of freedom). As

a consequence of this, 〈lp〉 = 0 ∀T , because every N degenerate vacuum corresponds to an

element of the center of SU(N), and the Polyakov loops acquire that element as a phase factor

when measured in that vacuum: the expectation value, being the average of lp, sums up all the

phase factors which gives always zero.

For finding βc, we follow a well–known procedure e.g. [29]. We replace the Polyakov loop lp with

its average over a field configuration l̄p and take its modulus |l̄p|:

l̄p =
1

L3
s

∑

x

Tr

Lt−1
∏

t=0

Ux,x+ta0̂ , (3.12)

where the summation is only on spatial sites, and 0̂ represents a unit vector in the temporal

direction. Since l̄p is a complex number, its modulus is defined as usual.

Though this is a good order parameter on a finite volume lattice, it is now not true that, in

the confined phase, |l̄p| = 0: indeed |l̄p| 6= 0 ∀T , but we should be able to distinguish the two

separated phases by looking at the distribution of |l̄p| as we will explain in the following. One

sign of a first order phase transition is a double–peak shape of this distribution. In this case,

the peak near zero (the distance from zero is O(1/V ) because it is a finite volume effect) is the

one associated to the confined phase and it is well separated (in large enough volumes) from

the peak corresponding to the deconfined phase. On the other hand, the value of l̄p itself can

be in N + 1 different regions of the complex plane in the deconfined phase: a region around

the axis origin and N regions distributed at angles corresponding to the N roots of unity. It is

straightforward to associate the N regions different from zero, to elements of the broken centre

group. In Fig. 3.1, we show the scatter plot of l̄p in the complex plane and, in Fig. 3.2, we show

the histogram of |l̄p|: the features described above are clearly visible.
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Figure 3.1: Scatter plot, on the complex plane, of the expectation value of l̄p for SU(5) in the critical

region. The 5 regions out of the centre of the plane, correspond to transformations of l̄p under

the 5 elements of the group Z5.
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Figure 3.2: Histogram of the expectation value of |l̄p| for SU(5) in the critical region. The double peak

of this distribution is clearly visible even if the volume is only 83.
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3.3 Locating the phase transition

As we said at the beginning of this chapter, we look for the deconfinement transition temperature

keeping the lattice volume fixed and varying the lattice parameter β. Then the transition has

to be found at a certain value βc. Clearly, we are interested in the infinite volume value,

corresponding to the thermodynamic limit of the system. In general, for a first order phase

transition, we already said that we expect the following finite–V correction for the (pseudo)–

critical β:

βc(V ) = βc(∞) + O
( 1

V

)

. (3.13)

In an infinite volume, the internal energy of the system will jump across the transition, with

an infinite derivative in that point: the location of this jump defines the value βc and the

corresponding critical temperature a(βc)Tc = 1/Lt. However, in a finite volume, the change

will be continuous but rapid (if V is not too small) and we can define the specific heat C(β)

measuring this behaviour. The specific heat change is then related to the latent heat which

characterizes the transition in the thermodynamic limit and a sensible definition of βc(V ) can

be the one where the maximum of C(β) occurs. Another quantity can be used to locate the

(pseudo)–critical βc(V ) in a finite volume: it is the Polyakov loop susceptibility χL, which is

known to diverge in the thermodynamic limit:

χL = L3
s ·

( 〈

|l̄p|2
〉

−
〈

|l̄p|
〉2 )

. (3.14)

In particular, βc(V ) is the value at which χL has its maximum. If we call the point of the

maximum of χL, βχ
c , and the point where the specific heat has a maximum, βC

c , these two

definitions will differ by O(1/V ) terms, but will be equivalent in the thermodynamic limit. In

the following we will use βχ
c because the signal of the Polyakov loop in our numerical simulations

is better and χL can be measured with good precision (we will use, from now on, βc referring

to βχ
c ).

As we remarked above, when the volume is large enough, our estimate for βc ≡ βc(∞) is given

by

βc(V ) = βc(∞) − h
L3

t

L3
s

, (3.15)

where the volume V of (3.13) is expressed here in physical units. The physical volume where the

above formula starts to be valid has to be determined for every N we are going to investigate.

In general, one determines Tc for a first order phase transition, as lying in the range of T where

the system undergoes back–and–forth tunnelling between the two phases. Roughly locating this

region, is the first step required before starting the study of the susceptibility. Unfortunately,

the tunnelling probability decreases exponentially with the volume (remember the relative prob-

ability between the vacua as a decreasing exponential of the energy splitting ∆E), that is, in
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the infinite volume limit, there would be an infinite energy barrier between the two phases, and

the tunnelling does not happen. Hence, the first problem we face is to find a small interval of T

(or β) where we can see tunnelling and, at the same time, we are at volumes where (3.15) can

be used.

In the following, we are going to describe the finite size study we have performed using Monte

Carlo numerical simulations to evaluate expectation values. A section of this thesis is dedicated

to the explanation of Monte Carlo methods for lattice gauge theories (see Sec. 5.1).

3.3.1 Finite size study

We performed the finite volume study on lattices with Lt = 5 for SU(5) and SU(7). The values

of βc for N = 3, 4, 6, 8 are obtained in previous works by Lucini, Teper and Wenger [29, 30, 31].

Our work can, on one side, be used to fill the gap and, on the other side, more important, is

fundamental to carry on our glueball study on the lattice: we need to fix the physical scale for

all values of N we are going to investigate.

In the following, we would like to explain in details the procedure used, which is mostly similar

to the one used in the above cited works.

Let us explain first, why this finite–V study was done at precisely the value of Lt = 5. This

choice is crucial because for Lt = 4, the region of T where the phase transition occurs, is known

to suffer from the effects of the bulk transition (the transition occurring between the strong

and weak coupling regions of a lattice theory). The studies at Lt = 4, which means a = 1/4T ,

are on lattices where the bulk transition occurs in the same region of β characteristic of the

physical phase transition between confined and deconfined phase. Of course, even at a = 1/5T

we can find the bulk transition, but this occurs at smaller β than the physical phase transition,

as shown in Fig. 3.3. Moreover, if we were to choose Lt = 6, we would have spent too much time

doing simulations due to the larger size of the lattice. We want to remark that the choice, we

made clear at the beginning of this chapter, was to choose a lattice spacing of a = 1/6Tc, but

we performed simulations at a = 1/5T . The procedure used to calculate βc at lattice spacing

a = 1/6T is the following:

1. perform Monte Carlo (MC) runs in a wide interval of β and look at the expectation value

of the plaquette: the bulk transition is in fact characterized by a sudden change of the

plaquette average 〈up〉, ∆ ∼ 0.13;

2. at the same time, measure the order parameter |l̄p| and find a region in β where it

jump from a value close to zero, to a value much greater (on finite volume, this jump

is smoothed);
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3. scan the region of β where the transition occurs and measure the Polyakov loop suscep-

tibility (3.14). This point has to be done on different volumes. It is important that, on

the smallest volume considered, the transition is clearly visible as a double peak in the

histogram of |l̄p|;

4. for every volume V , determine βc(V ) using a multi–histogram reweighting [34, 35] on the

susceptibility: the position of its maximum is then measured with high precision;

5. perform a long simulation on a large volume (in physical units) for Lt = 6 and determine

βc(V ) in the same way described above;

6. use (3.15) to extract βc(∞) for Lt = 6, where the parameter h is fitted using data obtained

by the finite size study on Lt = 5.

This last point is known to be a weakness of this procedure, because h suffers of correction

O(a2) and of possible violations of asymptotic scaling (a = 1/5T can, for example, be out of

the scaling region). However, in a very recent paper [36], the authors measured βc for SU(4)

and SU(6), directly on lattices with a = 1/6T using intensive MC simulations. The results the

authors have obtained, using a reweighting analysis similar to ours, are compatible, within the

errors, with the results of [30]. The conclusion is that we can then rely on our finite size study

for SU(5) and SU(7).

3.4 Results for SU(5) and SU(7)

The study of the finite–V dependence of the critical value βc for Lt = 5 was done on the volumes

presented in Tab. 3.1. In the same table, we show the number of configurations used to measure

the average spatial and temporal plaquette 〈us〉, 〈ut〉, and the average Polyakov loop
〈

l̄p
〉

.

A wide range of β is scanned for the smallest volume and the average plaquette plot in Fig. 3.4

clearly indicates the region of the bulk transition. This transition is a lattice artifact; hence it is

not physical and there is no scaling with the volume, i.e. it will be in the same region for larger

volumes as well.

A scatter plot of
〈

l̄p
〉

shows, in Fig. 3.5 and Fig. 3.6, the presence of one phase when β < βc and

of N different regions when β > βc, monitoring the breaking of ZN centre symmetry. In general,

to see how close we are to the critical value, we plot the MC history of
〈

|l̄p|
〉

for different values

of β: the tunnelling is clearly visible in Fig. 3.7. Indeed, we are interested in the distribution of
〈

|l̄p|
〉

; we expect a double peak, showing that the system spent part of the simulation time in

one phase, and part in the other. That is exactly what we see in Fig. 3.8. We should make sure

that a statistical sufficient number of tunnelling events is present, even at the largest volume.
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Only if the system has spent enough time in both phases, we can rely on the reweighting method

we used: a large part of the phase space (or configurations space) needs to be visited by the

system during the simulation, if we want our data to be a good sample for statistical purposes.

The tunnelling events on the largest volume investigated are shown in Fig. 3.9 for β values very

close to βc.
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Figure 3.3: Expectation value of the order parameter |l̄p| and of the plaquette up for SU(7). The plot

on the left shows the physical deconfinement transition; the plot on the right shows the bulk

transition. The data of the two plots come from different volumes, but same lattice spacing:

since the bulk transition is not physical, it occurs always at the same value of β for every

volume. We determined it on a small volume.

SU(5) SU(7)

Lt Ls configs.×103 Ls configs.×103

5 8 100 6 100

10 100 8 100

12 200 10 150

14 200 11 200

16 300 12 250

6 14 200 12 250

Table 3.1: Spatial size of the lattices used in the finite volume study, and number of lattice gauge field

configurations used to measure the expectation values 〈up〉 and
〈

l̄p
〉

.
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Figure 3.4: Bulk transition for a = 1/5T in SU(7) determined on a lattice of spatial size Ls = 6. The

average plaquette is not a smooth function of β: the small β behaviour is determined by a

strong coupling expansion but it is not a good approximation near to the phase transition.
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Figure 3.5: Scatter plot, on the complex plane, of the expectation value of l̄p for SU(5). The 5 regions

out of the centre of the plane, correspond to transformations of l̄p under the 5 elements of the

group Z5. The smaller value of β is in the confined phase, the other in the deconfined phase

where the centre symmetry is broken. Only points every 1000 measurements are plotted.



3.4 Results for SU(5) and SU(7) 45

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
Re L

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Im
 L

β = 33.52654
β = 33.40000

SU(7) on 8
3
x5

Figure 3.6: Scatter plot, on the complex plane, of the expectation value of l̄p for SU(7). The 7 regions

out of the centre of the plane, correspond to transformations of l̄p under the 7 elements of the

group Z7. The smaller value of β is in the confined phase, the other in the deconfined phase

where the centre symmetry is broken. Only points every 1000 measurements are plotted.
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Figure 3.7: History of |l̄p| for SU(5) at Ls = 10. The points are plotted every 10 MC steps. From top to

bottom: β = 16.840 < βc ; β = 16.86125 ≈ βc ; β = 16.88875 > βc.
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Figure 3.8: Normalized distribution of |l̄p| for SU(5) at Ls = 10. Each of the two peaks present, is centered

around the most probable value of |l̄p| of each phase. From top to bottom: β = 16.840 < βc

; β = 16.86125 ≈ βc ; β = 16.88875 > βc.
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Figure 3.9: History and distribution of |l̄p| for SU(5) on the largest volume investigated Ls = 16. The

points of the top plot are taken every 10 MC steps. The simulation is made at β = 16.87500,

which is very close to βc. As can be seen from the distribution in the bottom plot, on larger

volumes the two peaks are well separated.
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3.4.1 Reweighting and error estimation

For all the simulation summarized in Tab. 3.2, we measured the susceptibility χL. The position

in β where it has its maximum is then determined with an uncertainty given at least by the dis-

tance between the scanned β’s. The scan in β is already quite fine, but we want to reach a higher

precision. To reach our goal, we used a reweighting technique: starting from the probability

distribution of
〈

l̄p
〉

at a given value of β, this technique allows us to extract the susceptibility

at other values of β. From only one simulation, which gives the starting distribution, say at β̄,

it is possible then to obtain χL in a small range of β near β̄. However, the method works prop-

erly only if the reweighted points come from a distribution not very different from the starting

one. To have a more robust statistical analysis, we used a multi–histogram reweighting, where

different distributions coming from different simulations are taken into account. We examined

the stability of this analysis through the comparison of the multi–histogram method with dif-

ferent numbers of histograms in input. As shown in Fig. 3.10 , the choice of the histograms is

important: as we have already remarked, the points need to be properly sampled. We did this

stability analysis especially in situations where a small number of tunnelling was visible. The

reweighted points are summarized in Tab. 3.3 for every volume.

In a reweighting procedure, the output points (in this case for the susceptibility) are statistically

correlated and a usual procedure to deal with this is given by the bootstrapping [37, 38]. The

bootstrap method consists in a resampling, with uniform probability, of the starting distribu-

tion; in general, the number of different resamplings, is equal to the number of points of the

input distribution, but it can be smaller. By construction, the different bootstrap samples are

independent and the distribution of their average values can be used to better estimate the

variance of the input distribution. We obtain, from the bootstrap analysis, not only one value

of χL for each β reweighted, but nb of these values. nb is the number of bootstrap samples. In

order to give the right estimate for βc, we analized the position of the maximum of χL using

two different strategies. We note that the errors on βc(V ) we obtain from the two strategies,

are quite different.

1. The first strategy amounts in fitting the susceptibility points; each of these points is given

with an error and it comes from the analysis of the bootstrap samples at each value of

β. A typical plot is shown in Fig. 3.11. The fitting formula is parabolic and the fit with

lowest reduced χ2 is chosen. We made fit in various ranges of β because the parabolic form

is a correct approximation only in a small neighbourhood of the maximum. An example

is given in Fig. 3.12. Information about the value of βc(V ) obtained, and about the fits,

are given in Tab. 3.4.

2. The second strategy considers each bootstrap sample separately. The points of χL in each
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sample are without errors. Hence, if we find the β value of the maximum in each sample, it

is natural to consider, as βc(V ) and as its error, the mean and standard deviation over the

samples. In other words, since each bootstrap sample is an independent set, the critical

β values coming from them are normally distributed and the usual gaussian analysis can

be used. We also perform an analysis varying the number nb of bootstrap samples: we

can conclude that, choosing nb = 100 is sufficient, in general, to have a stable statistical

error. A typical distribution of βc is the one in Fig. 3.13. In the end, we summarize the

estimated values of βc(V ) from this strategy, in Tab. 3.5.

Lt = 5 Ls β range points

SU(5) 8 16.820 – 16.880 40

10 16.840 – 16.890 40

12 16.86 – 16.87 18

16.862 – 16.876 8

14 16.860 – 16.872 8

16 16.855 – 16.880 24

16.865 – 16.885 8

SU(7) 8 33.4 – 33.6 30

10 33.40 – 33.65 30

33.50 – 33.55 8

11 33.45 – 33.58 20

12 33.50 – 33.60 16

33.53 – 33.55 8

Lt = 6 Ls β range points

SU(5) 14 16.87 – 17.29 20

SU(7) 12 33.55 – 34.35 37

Table 3.2: Summary of the simulations done. In the β range, the points scanned are are at fixed dis-

tances. Where two ranges are present, the first one is a preliminary study, usually with less

configurations, to roughly locate the region of the transition. From the values of β in the

smallest region and for every volume, we take the simulations to reweight. Both the values for

a = 1/5T and for a = 1/6T are shown.
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Figure 3.10: Different number of input points for the reweighting technique. We found that choosing 5

points spread in the whole region of β reweighted, was, when possible, the best choice. The

lines highlight the region of reweighted points coming from nb = 100 bootstrap samples.

This gives a qualitative idea of the statistical distribution of the reweighted points.
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Figure 3.11: Bootstrap samples and average values from the reweight of 5 input histograms done for

SU(7) at Ls = 8. The number of samples is nb = 100, and the points reweighted are 200.

The average values of χL are then fitted following the first strategy explained.
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Figure 3.12: Fit of the reweighted susceptibility χL using different β ranges. The parabolic approximation

is clearly better in the small range around the maximum. The χ2 values are small because

we know that the error are underestimated: a simple fit can not count for correlation error.
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Figure 3.13: The β value corresponding to the maximum of χL are plotted for each bootstrap sample.

The average value and its standard deviation are taken as the βc(V ) and its error.



3.4 Results for SU(5) and SU(7) 51

Lt = 5 Ls β values in input

SU(5) 8 16.8335, 16.8500, 16.8560, 16.8590, 16.8785

10 16.840, 16.85875, 16.86125, 16.86375, 16.87625

12 16.86375, 16.86550, 16.86725, 16.86900, 16.87075

14 16.8615, 16.8645, 16.8660, 16.8690

SU(7) 8 33.473260, 33.508560, 33.513220, 33.519880, 33.54652

10 33.500, 33.52500, 33.53125, 33.54375, 33.52495

11 33.5150, 33.5280, 33.5345, 33.5410, 33.5475

12 33.5300, 33.5350, 33.5375, 33.5425, 33.5475

Lt = 6 Ls β values in input

SU(5) 14 17.0635, 17.0850, 17.1065, 17.1280

SU(7) 12 33.93, 33.97, 33.99, 34.03, 33.98

Table 3.3: Summary of the simulations used to reweight the susceptibility. The β points are chosen to

have a good sampling of all the configurations space. Both the values for a = 1/5T and for

a = 1/6T are shown.

Lt = 5 SU(5) SU(7)

Ls range βc χ̃2 range βc χ̃2

8 [16.84,16.88] 16.85980(4) 0.0067 [33.50,33.53] 33.51670(1) 0.0002

10 [16.850,16.875] 16.86261(1) 0.0055 [33.51,33.54] 33.52653(2) 0.006

11 [33.525,33.540] 33.53190(1) 0.0025

12 [16.860,16.875] 16.867141(1) 0.004 [33.525,33.545] 33.53497(2) 0.014

14 [16.864,16.874] 16.869693(8) 0.0037

16 [16.868,16.878] 16.8726(8) 0.02

Lt = 6 SU(5) SU(7)

Ls range βc χ̃2 range βc χ̃2

12 [33.95,34.01] 33.9798(1) 0.02

14 [17.08,17.11] 17.09640(3) 0.005

Table 3.4: Finite volume value of the deconfinement temperature βc for SU(5) and SU(7) at lattice spacing

a = 1/5T and a = 1/6T . The analysis was done fitting the reweighted susceptibility χL in the

range shown. All fits have more than 100 points and χ̃2 is defined as usual equal to χ2/dof .

Only best fits are shown.
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Lt = 5 SU(5) SU(7)

Ls βc βc

8 16.859(2) 33.5165(36)

10 16.8623(10) 33.5265(20)

11 33.53184(88)

12 16.86699(74) 33.5349(14)

14 16.86969(81)

16 16.87258(80)

Lt = 6 SU(5) SU(7)

Ls βc βc

12 33.9798(34)

14 17.0966(24)

Table 3.5: Finite volume value of the deconfinement temperature βc for SU(5) and SU(7) at lattice

spacing a = 1/5T and a = 1/6T . The analysis was done on nb = 100 bootstrap samples for

all volumes.
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3.4.2 The thermodynamic limit

To extrapolate the infinite volume value βc(∞), we fit the data of Tab. 3.5 with (3.15). We

choose to use the data from the bootstrap analysis of the previous section, because they better

account for the statistical auto–correlations coming from the reweighting technique.

The resulting values for βc(∞), the critical value in the thermodynamic limit, are summarized in

Tab. 3.6. Usually the small volume points do not follow (3.15) very well, because that behaviour

is only asymptotically valid. We try to find the region of validity of (3.15) doing the fit using

various number of volumes and choosing the best χ2 fit as shown in Fig. 3.14 and Fig. 3.15.

To obtain the corresponding βc(∞) at the cutoff a = 1/6T , following the previously described

strategy, we perform simulations on a single volume (see bottom of Tab. 3.2) for Lt = 6, and,

with the same reweighting technique, we obtain the value of βc(V ) shown at the bottom of

Tab. 3.5. Then, using (3.15), where the value of h comes from the finite size study at Lt = 5,

we obtain

βc(∞)SU(5) = 17.1068(30) βc(∞)SU(7) = 33.9995(37) . (3.16)

We only calculate these values for SU(N), N = 5, 7, because the corresponding values for

N = 3, 4, 6, 8 were present in the literature, as we have already mentioned. Let us summarize

in Tab. 3.7 all the βc we used in our simulations of the glueball spectrum. Now, if we want to

measure a mass in lattice unit m̂ = ma, we can write a as 1/6Tc and then m/6Tc will be our

physical result for every N .

Now we should go back to the beginning of this chapter and remind two important points:

• we would like to extract the glueball spectrum at zero temperature, that is, on symmetric

lattices. We used the deconfinement transition to fix the scale of all our lattice calculations.

One of the things we are interested in, is the continuum limit, then we want to assure that

the cutoff is in the scaling region. This was recently shown in [36]; a = 1/6Tc is sufficiently

small that can be used to extract continuum physics using renormalization group equations;

• another thing we are interested in, is the large–N limit. At this point we have fixed the

lattice spacing for all our lattice calculations, in such a way to have the same energy scale

for every N . We want to be sure that, in the large–N limit, the spectrum we get is non

trivial and, following the ’t Hooft limit, we should require perturbatively that βc/N
2 is

constant in N . We verify that this is the case, with small corrections O(1/N2). This

scaling checks shows that for our cutoff a = 1/6Tc, we have a large–N theory which is

non–trivial.
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Figure 3.14: Finite volume fit with various ranges of the lattice spatial size for SU(5). The points are

taken from Tab. 3.5.
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Figure 3.15: Finite volume fit with various ranges of the lattice spatial size for SU(7). The points are

taken from Tab. 3.5.
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βc(∞) h Ls fitted χ̃2

SU(5) 16.8762(12) 0.129(23) 12, 14, 16 0.783

SU(7) 33.5465(11) 0.158(12) 10, 11, 12 0.068

Table 3.6: Critical values, in the thermodynamic limit, of the deconfinement transition on lattices with

a = 1/5T . All the values are obtained from fits (best χ̃2 shown) to the range of volumes

shown.

SU(N) → 3 4 5 6 7 8

βc(∞) 5.8941(12) 10.7893(23) 17.1068(30) 24.8458(33) 33.9995(37) 44.496(3)

Table 3.7: βc values used in the simulations of the glueball spectrum: the lattice spacing is fixed at

a = 1/6Tc. For N = 3, 4, 6, 8, we used the values in [30].
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4. Glueballs operators methodology

4.1 Glueballs masses on the lattice

We are going to discuss now the central topic of the work. From lattice calculations we can

infer the mass of particles in the theory under investigation; how this is done in practice for

a pure lattice gauge theory is the topic of the following discussion. Briefly, we can say that,

by constructing suitable operators as products of lattice gauge fields, it is possible to obtain

information about the spectrum looking at their correlators (which are the propagators in the

Euclidean space–time).

4.1.1 Euclidean correlators: effective masses

Our present purpose is to extract the mass of propagating particles of a pure gauge theory. In

the continuum Minkowskian space–time, we would look at the poles in the propagator of the

gauge fields; in the Euclidean lattice regularized theory, the spectrum can be otherwise extracted

from the large–time decay rate of the two point functions of the lattice gauge field (i.e. the link

variable). The mass gap, that is the mass of the lowest state of the spectrum (the ground state)

above the vacuum, can be viewed as the largest correlation length of the statistical system

corresponding to the lattice gauge theory.

Following the statistical mechanics correspondence, we can interpret the two point correlation

function in a physical appealing way by using the transfer matrix formalism [39]. The lattice

4–d gauge theory can be viewed as a 3–d quantum mechanical system with a Hilbert space H of

physical states, a Hamilton operator Ĥ and linear operators Φ̂ corresponding to the Euclidean

functionals Φ (see Sec. 1.1.3). The transfer matrix T̂ can be defined explicitly as an operator

acting on H, and it is related to the partition function by

Z = Tr T̂Lt . (4.1)

In the previous formula, Lt is the size of the temporal direction of the lattice, and the trace is

over all the states of H. From the above relation, the Hamiltonian is defined through

T̂ = e−aĤ . (4.2)
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The transfer matrix evolves the states defined on one time slice of the lattice to states on a

different time slice. Thus the two point function of an operator Φ̂(t) localised on a time slice t,

reads

CΦΦ(t) ≡
〈

Φ̂†(t)Φ̂(0)
〉

= 〈0| Φ̂†(0)T̂ tΦ̂(0) |0〉 = 〈0| Φ̂†(0)e−tĤ Φ̂(0) |0〉 . (4.3)

Inserting a complete set of energy eigenstates Ĥ |n〉 = En |n〉, we get

CΦΦ(t) =
∑

n

〈0| Φ̂†(0) |n〉 〈n| Φ̂(0) |0〉 e−Ent =
∑

n

| 〈n| Φ̂ |0〉 |2e−Ent . (4.4)

The interpretation is particularly simple: the operator Φ̂(0) ”creates”, from the vacuum |0〉,
states which can have a projection cn = 〈n| Φ̂ |0〉 on |n〉 at time t = 0, and Φ̂†(t) ”annihilates”

them at time t.

The basic principle of lattice spectroscopy measurements is that the sum on the right hand side

of (4.4) is dominated by the state with the smallest energy when t is large (if the ”overlap”

coefficient |cn|2 of that state does not vanish). Then, the eigenvalues of the Hamiltonian of the

system can be calculated from the t → ∞ limit of suitable correlators CΦΦ(t) (let us call this

correlators simply C(t) in the following).

To extract the mass spectrum, we decide to restrict ourselves to consider only zero–momentum

operators Φ̂~p=0; this is done for simplicity and because operators of this kind give the best

measured signal in numerical simulations. Since the lattice is chosen with periodic boundary

conditions, the system described has translational invariance, and the operators can always be

chosen to have definite momentum : in Fourier transform, Φ̂~p=0(t) =
∑

x Φ̂x(t). Moreover,

we can think that, near the continuum limit, the continuum relativistic dispersion relation

E2 = m2 + |~p|2 is approximated on the lattice and the zero–momentum correlators give us the

mass spectrum from (4.4).

So far, we have talked only of the mass of the lowest state of the theory (i.e. the mass gap).

However, the pure gauge theory has a very rich spectrum composed by states (particles) called

glueballs. Glueballs are colour singlet bound states of gluons and are the states in the spectrum

arising in a continuum pure gauge theory (we will see that on a finite lattice we can find other

states which vanish in the infinite space–time limit). In general, physical states are character-

ized by quantum numbers dictated by the symmetry group of the theory; for example, in the

continuum, glueballs are classified as irreducible representations of the Lorentz symmetry group

and, moreover, they are also eigenstates of discrete symmetry transformations such as parity

and charge conjugation. Zero–momentum glueball states are then labelled with spin J , parity

P and charge conjugation C. Therefore, the mass m of a JPC state can be calculated from

the correlation function of operators capable of creating from the vacuum a state with the right

quantum numbers.
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In our lattice approach, however, the pure gauge theory defined by (1.73) has a different sym-

metry group which is a restriction of the continuum one. For example, the continuum rotation

invariance is only approximated: we can have rotations only in unit of π/2. Moreover, only

discrete translations are allowed, so momentum is conserved, but in discrete steps p = 2πL/n,

where L is the spatial extent of the cubic lattice and n is an integer.

This implies that zero–momentum glueball states on a simple cubic lattice are characterized by

irreducible representations of the cubic group O combined with parity P and charge conjugation

C: we label these states with RPC , or simply R. We will go further into details of lattice glueball

states in the following.

Now, provided that we can write operators with the right symmetry properties, and that we can

measure the asymptotic behaviour of the correlators, it is possible to extract the mass spectrum.

The first mass estimate is given by the effective mass (we set the lattice spacing to unity in the

following):

meff = − ln

〈

Φ̂†(1)Φ̂(0)
〉

〈

Φ̂†(0)Φ̂(0)
〉 . (4.5)

Since it involves the correlator C(1) at such a short temporal distance, this effective mass

overestimate the real mass; it can be a good estimate only if, even at t = 1,
〈

Φ̂†(t)Φ̂(0)
〉

can

be written as a single exponential. This assertion is certainly false because more massive state

usually propagate as well in such a short distance.

We can do better considering effective masses at different temporal distance, to see whether or

not, from a certain time tmin, C(t) starts to behave like a single exponential. Using the definition

meff (t) = − ln
C(t)

C(t − 1)
, (4.6)

we try to identify a plateau t ≥ tmin where the effective mass meff (t) is the same as meff (tmin)

within the errors: if this effective mass does not change, then the exponential decay of the

correlators is governed by a single scale, which is the plateau mass meff (tmin).

We use numerical Monte Carlo simulation (see Sec. 5.1) to evaluate the correlators C(t) =
〈

Φ̂†(t)Φ̂(0)
〉

as vacuum expectation values of product of Euclidean functionals at different times.

This numerical approach implies that, for every time separation t, C(t) is measured with a

statistical error. The error is mainly independent of t, however, the correlator decreases with

increasing time: the ratio between signal and statistical noise decreases and the small t points of

the correlator have the smallest relative errors. Hence, the effective mass is best determined at

small times. On the other hand, from (4.4) it is easy to see that, far away from the asymptotic

t → ∞ regime, the correlator is a sum of exponentials; the effective mass then is not a good

definition for the mass of the state of interest and excited states contribute as well in the
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exponential decay. The conclusion is that, at small t the relative statistical error on the correlator

is small, but the effective mass has large systematic errors.

The simple solution to this impasse is to make C(t) behave like a single exponential even at small

times. In general, we could have a single exponential decay if the sum on the energy eigenstate

is dominated by only one energy eigenstate; this happen, for example, if the normalized overlap

coefficient of one state is of order 1. Let us say that we are interested in the mass of the state

|1〉; then, if

|c1|2 = | 〈1| Φ̂ |0〉 |2 ≈ O(1) , (4.7)

and we have normalized the coefficients such that

∑

n

|cn|2 = 1 , (4.8)

the correlator reads

C(t) =
∑

n

|cn|2e−mnt ≈ |c1|2e−m1t ∀t . (4.9)

The systematic error in the effective masses is drastically reduced.

There are several ways to improve the overlap on the state of interest and then find a good

estimate of its mass. We are going to describe two methods in the following: the first is related

to the construction of operators which are ”good” approximations of the physical wave–function

of the desired state; the second is a variational method which try to minimize the effete mass

over a all range of operators and it is also capable of extracting the mass of excited states of the

spectrum above the lowest one.

4.1.2 Operators with a physical size

We want to study the correlator of two ”glueball” operators; since we are exploring the pure

lattice gauge theory, these operators Φ̂ are gauge invariant combinations of link variables Ux,µ

(glueballs are colour singlet). Such operators can be constructed starting from products of link

variables around closed spatial paths, traced over the gauge group. Making use only of spatial

links supports the transfer matrix interpretation of the two point function.

We said that we want operators that are good approximations of glueball states wave–functions,

in order to enhance the coefficient | 〈n| Φ̂ |0〉 |2. If we construct Φ̂ using the plaquette, for example,

we are using a highly local operator (the plaquette is the smallest closed loop on a cubic lattice),

whereas the physical glueball wave–functional has a typical scale: if the lattice spacing is too

small, the plaquette operator is dominated by ultra–violet fluctuations and overlaps more or less

equally on all the physical states.

To better approximate glueball wave–functions, even at small lattice spacing, we need operators
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that are smooth, not only in the ultra–violet, but also at the physical scale of glueball states.

In other words, we want to construct operators having the extended structure of physical states

(see Fig. 4.1). There are two well–developed procedures to obtain such operators on the lattice:

smearing [40] and blocking [41]. Let us briefly review how these iterative techniques work. Since

we are going to use only spatial paths, the indices in the following link variables run from 1 to

3.

The usual smearing algorithm replaces the links in the path, used to construct an operator, with

the sum over the five shortest paths connecting the sites of the original link. This substitution

allows to ”fatten” the links extending the physical size of the resulting operator. The first step of

the algorithm consists in evaluating the ”staples” and then summing them to the original link :

this produces a N×N matrix which is no more unitary (it is proportional to a unitary matrix only

in the SU(2) case). The second step consists in assigning this matrix to the original link, after

having projected it to SU(N). This ”smearing” procedure produces SU(N) matrices on the links

of the lattice. We also introduce a parameter pa to weight the sum of the staples relatively to

the original link; this parameter determines how rapidly the lattice gauge field spreads outwards

as the procedure is iterated. If pa is small with respect to 1, operators constructed using the

smeared links will extend, with a fine resolution, over all important length scales.

The first smearing step can be further improved in order to make it more symmetric about

the axis of the basic link. To the four staples we can also add 16 ”diagonal” staples, each one

including links parallel to the original one, but at a distance
√

2a away. A new parameter pd is

introduced to weight these diagonal staples in the smearing sum. The parameters pa and pd are

chosen such that the operator constructed using smeared links is a good approximation of the

glueball wave–function. The whole procedure can be iterated as follows. Define Ũ s
i (x) to be the

N × N matrix after s iteration smearing iteration. Each iteration can be written as

Ũ s+1
i (x) = U s

i (x) + pa

∑

j 6=i

U s
j (x)U s

i (x + ̂)U s†
j (x + ı̂)

+ pa

∑

j 6=i

U s†
j (x − ̂)U s

i (x − ̂)U s
j (x − ̂ + ı̂)

+ pd

∑

j 6=i

∑

k 6=i,j

U s
j (x)U s

k (x + ̂)U s
i (x + ̂ + k̂)

∑

j′ 6=i

∑

k′ 6=i,j′

U s†
j′ (x + ı̂ + k̂)U s†

k′ (x + ı̂)

+ pd [rotated terms] ,

(4.10)

starting from

Ũ s=0
i (x) = Ui(x) . (4.11)
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The new SU(N) link matrix U s+1
i (x) is then obtained with a unitarization procedure represented

by

U s+1
i (x) = U

{

Ũ s+1
i (x)

}

. (4.12)

In (4.10), the ”rotated terms” refers to three further terms similar to the previous one repre-

senting the diagonal staples, but rotated around the i–axis of the original link by multiples of

π/2. In Fig. 4.2 we show a pictorial representation of (4.10).

The blocking algorithm is different because the resulting matrices live on ”super–links” joining

sites that are 2b lattice spacing apart, where b is the number of blocking iterations. After each

iteration, the original link length is doubled and elongated staples are added: this implies that

blocking is faster than smearing in increasing the size of an operator, but the resolution of the

scale probed is rather crude. This can be a problem, because ”blocked” operators (by this we

mean operators constructed using ”super–links”) can just be too large or too small with respect

to the typical size of the physical glueball state of interest: we will solve this problem improving

the blocking algorithm as we will explain in a moment.

The iterative blocking procedure as follows:

Ũ b+1
i (x) = U b

i (x)U b
i (x + 2b ı̂)

+ pb

∑

j 6=i

U b
j (x)U b

i (x + 2b̂)U b
i (x + 2b ̂ + 2b ı̂)U b†

j (x + 2b+1ı̂)

+ pb

∑

j 6=i

U b†
j (x − 2b ̂)U b

i (x − 2b̂)U b
i (x − 2b ̂ + 2b ı̂)U b

j (x − 2b ̂ + 2b+1 ı̂) ,

(4.13)

where we set

Ũ b=0
i (x) = Ui(x) . (4.14)

The blocked ”super–link” matrices are then projected back to SU(N) following (4.12). The new

parameter pb which weight the sum of elongates staples is typically chosen to be O(1) so that

the width of the blocked link grows together with its length. The paths added in the blocking

algorithm are shown in Fig. 4.3.

As we said before, we define an improved blocking algorithm following [11]. The improved

blocking has both the rapid increasing rate of the blocking above and the fine resolution of the

smearing; it consists in multiplying together two smeared links at smearing level s creating a

super–smeared–link:

U b+1
i (x) = U b,s

i (x)U b,s
i (x + 2bı̂)

U b,s
i (x) = Smears

{

U b
i (x)

}

.
(4.15)

Here Smears denotes the smearing procedure iterated at level s and generalized to apply to

blocked links U b
i (x). The difference between (4.15) and the original blocking in (4.13) is that



4.1 Glueballs masses on the lattice 63

Figure 4.1: When the lattice spacing shrinks, operators constructed only from local path shrink as well

and they are no more a good approximation of the glueball wave–functional, which always

remains of the same physical extension.

Figure 4.2: In the smearing algorithm, a smeared lattice link (on the left) is obtained adding to the

original link the parallel transported nearest neighbour links weighted by the parameter pa,

and the next–to–nearest neighbour links parallel transported along all possible paths on the

elementary cube weighted by another parameter pd. In red we highlight a normal staple and

a particular ”diagonal” staple; all other diagonal staples are constructed following the lines

in the picture.

Figure 4.3: Pictorial representation of a blocked super–link as a sum of elongated staples. These staples

are parallel transported nearest neighbour links which go from the site x to the site x+2b+1 ı̂
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in the former we use more paths at intermediate length scales and the probability to obtain a

good overlap is greater.

The above procedure has two parameters, pa and pd, which have to be tuned in order to optimize

the overlap. In our simulations, we fix s = 1, b = 0, 1, 2, 3 and pa = 0.40, pd = 0.16; this choice

is dictated by the results in [11], showing that a normalized overlap greater than 0.90 is reached

for almost every glueball state investigated. It should be clear that the links resulting from the

previous procedure are used to create the operator Φ̂, which now is ”dense” and smooth on

physical scales.

4.1.3 Effective mass minimization

Another way to find good overlaps for physical glueball states is to choose, not just an operator

Φ̂, but a whole set
{

Φ̂i

}

i=1,...,No
, and to find the one that minimize the effective mass. To use

this method, we simultaneously measure correlators between Φ̂i coming from differently shaped

closed loops C; moreover, we insert in the variational basis, operators with different blocking

levels b. The variational method will find the operator which best approximate the wave–function

of the state we are interested in. By using this method, it is also possible to extract the mass of

excited states as we will explain later.

Let us concentrate on the procedure itself, leaving details of the construction of the variational

basis for later discussions. We choose a certain number No of operators. These are of different

shapes and sizes, but they all have the same symmetry quantum numbers of the glueball state

we want to study. Call these operators, forming our variational basis, φR
i , where i labels the

kind of operator and R the quantum numbers (like the irreducible representation of the cubic

group, the parity and the charge); since R is the same for all operators, we will omit it in the

following.

At this point, we measure the No × No correlation matrix for every time separation t

C̃ij(t) =
∑

τ

〈0|φ†
i (t + τ)φj(τ) |0〉 . (4.16)

When it is possible that some operators can couple to the vacuum state |0〉, that is when

these operators have the same symmetry of the vacuum, we correlate the corresponding vacuum

subtracted operators:

φi(t) − 〈φi(t)〉 . (4.17)

This subtraction is done, in practice, only for one value of R, the one corresponding to the

vacuum, but in the following we refer for simplicity always to vacuum subtracted operators and

their corresponding correlators.
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From the basic operators, we want to find an appropriate linear combination

Φ̂(t) =
∑

i

viφi(t) , (4.18)

such that its correlator gives us the best estimation of the mass of the lowest lying state with

quantum numbers R. Of course, between different estimates of the mass, the best one in a

variational sense, is the lowest one. The coefficients vi are chosen to minimize the effective mass

meff (t̄) = −1

t̄
ln

∑

ij vivjC̃ij(t̄)
∑

ij vivjC̃ij(0)
, (4.19)

where we usually choose t̄ = 1 in lattice units because it gives the best statistical ”signal”. It is

easy to show that the effective mass above is exactly the effective mass we would obtain from
〈

Φ̂†(t)Φ̂(0)
〉

; then we try to find the optimal coefficients vi.

This minimization is usually turned into a generalized eigenvalue problem. If we denote as ~v a

column vector whose elements are the coefficients vi, then the optimal values for vi are obtained

when ~v is an eigenvector of C̃(t̄). The problem is to numerically solve the following eigenvalue

equation

C̃(t̄) · ~v = λ(t̄)~v , (4.20)

where the eigenvalues are

λ(t̄) = e−meff(t̄)t̄C̃(0) . (4.21)

One way to proceed is to diagonalize the matrix C̃−1(0)C̃(t̄) for t̄ = 1; we will see how numerical

issues can make this task quite hard.

Form (4.20) we see that to each eigenvector ~v corresponds an effective mass. The eigenvector

corresponding to the lowest effective mass m0eff yields the coefficients v0i for the operator Φ̂0

which best overlaps on the lowest–lying glueball state with quantum numbers R. Higher–mass

eigenvectors can be used to construct operators with good overlap onto excited states.

To evaluate the mass of the desired states, we then decide to consider only the 4 lowest effective

masses (or equivalently the 4 eigenvectors corresponding to the 4 highest eigenvalues); the

operators constructed using the components of these eigenvectors are then correlated in the

matrix

Cij(t) = 〈0| Φ̂†
i (t)Φ̂j(0) |0〉 , (4.22)

with the implicit vacuum subtraction when needed. The diagonal correlators Cii(t) contain the

information about the mass of the state i, where i (from 1 to 4 in our case) can be the ground

state or even some excited state. Fitting this correlators with a single exponential gives us the

mass of the state (see (4.4)). Usually, what happens is that we obtain the mass of the lowest

state from more than one operator; in other words, since we are dealing with a statistical set of
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data, we obtain two masses compatible within errors from correlators of two different operators.

In such a situation we choose to consider the operator with the best overlap on the lowest state,

which means that the mass has a lower systematic error from the fitting procedure.

At this point we want to make a little remark: on a finite lattice with periodic boundary

conditions, the correlator has also contributions from propagation backward in time. When the

correlation distance (in time) is large, these contributions cannot be neglected. The functional

form of the correlator with time, is not that of a single exponential alone, but that of two

exponential; we fit the correlator with

Cii(t) = A
[

e−mt + e−m(Lt−t)
]

, (4.23)

where various regions [tmin, . . . , tmax] are fitted and the best χ2 fit is chosen. Clearly, the

multiplicative constant A is also fitted and is what we have called the overlap |cn|2 (see (4.7)

and (4.9).

4.2 Constructing glueballs operators

We have shown how to extract the spectrum of a lattice gauge theory for correlators of certain

operators. Now we are going to explain how this operators are chosen and what properties

they should have in order to create glueball states from the vacuum of the theory. We begin

reviewing the symmetry group of a simple cubic lattice and then we show how to explicitly

construct glueball operators.

4.2.1 Cubic group rotations

We want to discuss here the properties of the symmetry group of the cube. As we have already

said, zero–momentum glueball states on a simple cubic lattice fall into the irreducible representa-

tions of the rotations of the cube combined with parity transformations and charge conjugation.

Therefore, if we take an operator, which is a gauge invariant product of link variables around a

closed contour, we can say that it creates a glueball state with the same symmetry of the closed

contour. We will make this point clearer in the following section, describing how to create closed

paths that transform under the irreducible representations of the cubic group, but first we need

to show briefly what are this representations and what is the relations between them and the

representations of the continuum rotation group.

The cubic group O is the group of symmetry of a cubic polyhedron and it is also called the

octahedral point group. It contains only pure rotations, that is each element can be written as

a rotation around a uniquely defined axis. The rotations are, of course, discrete; if we see that

the cube is brought into coincidence with itself after a rotation through an angle ϕ = 2π/n (n



4.2 Constructing glueballs operators 67

integer), we say that the rotation axis in a n–fold axis. If n = 1, we have coincidence after

rotations through 2π, which is the identity transformation denoted by E. All other rotation

through 2π/n are denote by Cn, and successive rotations by C2
n, C3

n, etc...

Going back to the cubic group O, we see that it has four 3–fold axis (space diagonals), three

4–fold axis (joining centers of opposite faces), and six 2–fold axis (joining midpoints of oppo-

site edges, see Fig. 4.4). We have in total 24 elements which are further divided in 5 different

equivalence classes. Two elements a and b of a group G are equivalent if b = gaa−1 for a g ∈ G,

and are in the same equivalence class also called conjugacy class. We can write O divided into

Figure 4.4: Symmetry axis of the cube.

conjugacy classes as

O : E; C2(6); C3, C
2
3 (8); C4, C

3
4 (6); C2

4 (3); (4.24)

where in brackets we show the number of element in each class.

In group theory there are theorems about irreducible representations of finite groups which help

identifying them. The first theorem we are going to use, tells us that the number of conjugacy

classes is equal to the number of irreducible representations: then the cubic group O has 5

irreducible representations that we call A1, A2, E, T1 and T2. A second theorem states that the

dimension of these representations satisfies the following relation
∑

µ

n2
µ = dim(G) , (4.25)

where dim(G) is the order of the finite group G and nµ is the dimension of each irreducible rep-

resentation µ (the sum runs over all µ’s). In our case, we have only one possibility to satisfy the
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relation above, and this gives us the dimensions of the irreducible representations: 1, 1, 2, 3, 3

respectively for A1, A2, E, T1 and T2.

The usual way to represent the relation between the conjugacy classes and the irreducible rep-

resentations is the table of characters; for the group O this table is shown in Tab. 4.1.

Now we want to consider the group O as a subgroup of the continuum rotation group SO(3);

E C2(6) C3(8) C4(6) C2
4(3)

A1 1 1 1 1 1

A2 1 −1 1 −1 1

E 2 0 −1 0 2

T1 3 −1 0 1 −1

T2 3 1 0 −1 −1

Table 4.1: Character table of the cubic group O. The character of a conjugacy class is invariant inside the

class because it is the trace of the matrix associated to the class elements in each representation.

glueball states on the lattice transform under irreducible representations of O, but continuum

glueball states must be in irreducible representations of SO(3). The aim is to obtain the con-

tinuum spectrum making the continuum limit of the discrete one. Therefore we need to know

how the irreducible representations of SO(3) are decomposed in terms of those of O. We are

interested only in single–valued representations of the continuum rotation group, identified by

an integer number J , the spin of the particle (glueballs are made of gluons, hence they are

bosons). Each representation J has a degeneracy of 2J + 1 (its dimension), but on the lattice

this degeneracy is splitted into terms belonging to irreducible representations of O: for example,

the spin 2 representation has 5 polarizations in the continuum which split into the E and T2

(respectively 2 and 3 dimensional). The irreducible representations of spin J of SO(3) restricted

to O are called subduced representations J ↓ O and are reducible in O. The decomposition of

the subduced representations J ↓ O is shown in Tab. 4.2.

It is then possible to reconstruct the continuum spectrum from the masses extracted on the

lattice by matching the patterns of degeneracies observed in each level; by this we mean, for

example, that if the same mass (within the errors) is present in the irreducible representations

A2, T1 and T2, then it corresponds, in the continuum limit, to the mass of a spin J = 3 particle.

So far, we have neglected parity and charge conjugation transformations. However it is easy to

include them in the discussion above. Including parity means adding reflections in the cubic

point group; this is easily done by taking the direct product of O with Ci, the group of order 2

containing the identity and the inversion with respect to the origin of the axis. The full group

is then Oh = O × Ci: it contains 48 elements, which are combinations of pure rotations and
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J A1 A2 E T1 T2

0 1 0 0 0 0

1 0 0 0 1 0

2 0 0 1 0 1

3 0 1 0 1 1

4 1 0 1 1 1

Table 4.2: Subduced representations J ↓ O of the cubic group up to J = 4. In the table we give the

multiplicities with which the irreducible representations of O can be found in the subduced

representation for each J .

reflections, divided in 10 classes. The group Ci has 2 irreducible representations which we can

identify with the parity eigenvalues P = ±1; then the irreducible representations of Oh are

obtained directly from those of O using the character table in Tab. 4.1: we get 10 irreducible

representations, labelled by A±
1 , A±

2 , E±, T±
1 and T±

2 .

Adding also the charge conjugation brings us to a total of 20 irreducible representations of the

group OC
h (or OPC). In each of these ”channels” we can extract the mass of the lowest–lying

state, usually denoted as RPC , where R ∈ {A1, A2, E, T1, T2}, P ∈ {+1,−1} and C ∈ {+1,−1}.
Moreover, excited states in a particular symmetry channel will be denoted by the representation

label RPC⋆ with one or more asterisks.

4.2.2 Operators for glueball states

Now we want to describe how we can, in practice, obtain lattice glueball states with the desired

symmetries. As explained in Sec. 4.1.1, we can extract the mass of the ground state of glueballs

in every RPC channel, but for this purpose, we need operators capable of projecting on the

desired states, that is with the same symmetry. On the lattice, this symmetry will be that of

the closed path around which we multiply the link variables to create the operator.

In general we can write a lattice glueball operator as

φR =
∑

c∈C

Tr
∏

l∈c

U(l) , (4.26)

where C is a collection of spatial loops and depends on the quantum numbers R ≡ RPC .

In the following, we will denote our operators φR simply as paths P because that is the only

structure important in order to understand their symmetry properties. Let us follow the notation

in [9], where a path P of length L is represented by a L–tuple

(f̂1, f̂2, . . . , f̂L) , (4.27)
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with the constraint given by the fact that the path is closed
∑L

i=1 f̂i = 0. The vectors f̂i are

±êj , the unit vectors corresponding to the spacelike coordinates of the lattice. Given a path P,

it is independent of the point where it starts, as long as the orientation is preserved; hence we

can construct equivalence classes in which paths are equivalent if we make a ciclic permutation

of the f̂i. The equivalence class of (f̂1, f̂2, . . . , f̂L) is denoted by [f̂1, f̂2, . . . , f̂L].

Obtaining the operator with the desired charge conjugation C symmetry is easy in this case,

because on link variables, the conjugation operation is equivalent to reverse the orientation of

the link :

C [f̂1, f̂2, . . . , f̂L] = [−f̂L,−f̂L−1, . . . ,−f̂1] . (4.28)

A path with defined charge C = ±1 is defined as the combination

[f̂1, f̂2, . . . , f̂L]± =
[f̂1, f̂2, . . . , f̂L] ± [−f̂L,−f̂L−1, . . . ,−f̂1]

2
. (4.29)

This amounts in taking only the real part of the trace in (4.26) for a C = +1 operator and only

the imaginary part for a C = −1 operator. Therefore, we just need to find oriented paths which

transforms under the 10 irreducible representations of Oh.

The parity operation applied on a path, simply reverts every link f̂i, because it is equivalent to

an inversion with respect to the starting point of the path. Thus we can write

P [f̂1, f̂2, . . . , f̂L] = [−f̂1,−f̂2, . . . ,−f̂L] , (4.30)

and paths with defined parity P = ±1 are

[f̂1, f̂2, . . . , f̂L]± =
[f̂1, f̂2, . . . , f̂L] ± [−f̂1,−f̂2, . . . ,−f̂L]

2
. (4.31)

Our aim is then to find paths which transforms in the 5 irreducible representations of O (A1,

A2, E, T1, T2); after that, from each of then, we can construct every combination of parity

and charge RPC following (4.29) and (4.31) (even if in practice the charge conjugation is done

calculating real and imaginary part of the trace).

We now define how a given element of the symmetry group O, i.e. a rotation R, acts on a

given path. Since the path is a collection of elementary space–like unit vectors, the operation of

rotation on the path is defined by what that rotation does to each of the vectors:

MR(P) = [R(f̂1),R(f̂2), . . . ,R(f̂L)] , (4.32)

where R on the right hand side of the equation stands for an operator in a 3 dimensional vector

representation (we use the same symbol for the operator and for its representation), whereas on

the left had side we have it in an arbitrary representation M . The standard way to construct a

representation of a group, is to choose any function on which the elements of the group can act
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as operators, and then apply to this function all the operators of the group. The transformed

functions can be linearly independent or not; if they are, they form a basis for a representation

with dimension equal to the order of the group. In our case, the function is replaced by a path,

and the transformed paths are given by (4.32) for each rotation; if we want MR(P) to be linearly

independent we should choose a path P with no symmetry at all under the cubic group. This

is the point where we start to construct all the irreducible representations of the cubic group;

after that we will be able to construct an orthonormal basis of each representation starting from

any path P (which has a projection on that representation, as we will show later).

Let us start with the path

Pbase = [ê1, ê2, ê3] , (4.33)

which is not left invariant by any rotation R. The 24 rotated paths PR = MR(Pbase) are

an orthonormal basis for a 24 dimensional representation Mbase. This representation is fully

decomposable and we want to find its irreducible content, which consists, as we already know,

of 5 irreducible representations. This means that PR can be expressed as linear combinations of

n ≤ 24 other paths, the basis of a new representation of smaller dimension. The result is that

there exists a unitary matrix A which change my initial basis into the new one, and transforms

the original representation in a new representation which has a n×n diagonal block in its matrix

form (this block corresponds to the new basis of n paths):

M ′ = A−1MbaseA . (4.34)

There is a general method used to decompose a representation of finite dimension and it is based

on the Schur lemmas (which is related to the existence of the matrix A): it consists in turning

the original 24 × 24 matrix representation Mbase into its Jordan form, with blocks on the main

diagonal, using matrices that commutes with Mbase. In practice we construct matrices C which

commute with Mbase using sum of matrices in the conjugacy classes of Mbase, then we try to

find a matrix A which diagonalizes them, or better, that turns them into their Jordan form

CJord = A−1CA; as a result, Mbase gets decomposed using (4.34). We need to stress that with

this method we are able to Jordanize matrices of all conjugacy classes at the same time. To

find the fully reduced form of Mbase, we need to iterate this procedure: after 3 iterations using

matrices Ci coming from 3 different conjugacy classes, we get a M ′′′ matrix with 5 blocks on its

diagonal, corresponding to the invariant subspaces of the 5 irreducible representations of O:

M ′′′ = A−1
3 A−1

2 A−1
1 MbaseA1A2A3 , (4.35)

where the Ai comes from the 3 Jordanization of matrices Ci.

Using the matrix Ā = A1A2A3 we can change the original 24–dimensional basis made of Pbase,
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in a new set of paths which is subdivided into 5 more subsets forming the basis of each of the

invariant subspaces of the irreducible representations; if we take the vectors

Pirr = Ā · Pbase , (4.36)

they are the base paths of the 5 irreducible representations of the cubic group O. Following our

method just discussed we are able to reproduce the table given in [42], which prescribes how

to create an orthonormal basis of each irreducible representation R starting from an arbitrary

path: the table is given by the 24 Pirr vectors, taken as a 24× 24 matrix (remember that Pbase

are 24 vectors in a 24 dimensional space): they form the projection table Pr(R,R).

To conclude this section we show how we can find a set of basic operators in each RPC channel

to be used in the variational method described in Sec. 4.1.3. We start from a set of prototypical

paths Pi of different shapes with length varying from 4 lattice spacings up to 8 lattice spacings;

they are shown in Fig. 4.5. From each of them, we define a basis for the irreducible representation

R using the projection table Pr(R,R) by means of

Pi
R =

∑

R

Pr(R,R)MR(Pi) , (4.37)

where we Pi
R are linear combinations of rotated paths (MR(Pi) is defined in (4.32)), weighted

by coefficients in the projection table. However, the Pi
R obtained are not linearly independent

in general because, for every R, we have in Pr(R,R) a number of R equal to the square of the

dimension of the representation; we then try to identify only a subset of Pi
R which are actually

different from one another and we perform the parity and charge conjugation operations as

defined in (4.31) and (4.29): this leaves us with a full range of combinations of paths Pi
RPC in

each of the RPC channels, from which we can construct operators

φRPC

=
∑

c∈Pi

RPC

Tr
∏

l∈c

U(l) . (4.38)

The sum in the previous expression means that an operator φRPC
is created from a single com-

bination in Pi
RPC , but, since this combination is made up summing paths c with appropriate

coefficients, we should sum the traces around the paths c using exactly those coefficients. More-

over, we don’t perform the charge conjugation operation on the paths because, as we already

said, it is sufficient to take the real or imaginary part of the trace above; this saves us time in

the computation of the operators. In Tab. 4.3 we summarize the number of operators in each

symmetry channel RPC . Recall that each operator is also ”blocked” following the algorithm

described at the end of Sec. 4.1.2; hence in our variational basis, for each RPC , the number

of operators measured is equal to the number written in Tab. 4.3 multiplied by the number of
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Figure 4.5: Set of basic prototypical path used to construct operators in all the 20 RPC symmetry chan-

nels. The path in (a) in the only possible one of length 4a; in (b) there are the 3 possible

path of length 6a; in (c) we show 4 of the 21 paths of length 8a. Their projections on each

symmetry channel is used to construct basis operators for the variational method.



74 Glueballs operators methodology

blocking iterations.

The code we have written to create and transform these paths and to write the operators as

products of link matrices on the lattice around those closed paths is entirely new and it is a first

original contribution given by this thesis work. Moreover, it gives total freedom in the choice of

the operators one would like to use (the only constraint is the amount of available memory for

the computation of the operators).

4.3 Mixing with other states

After we have obtained a set of operators that we can correlate to extract the mass of the glue-

ball states, we want to be sure that these operators are really projecting only onto one–particle

states. It is indeed possible that some of them have non–vanishing overlaps onto two–particle

scattering states. However, two–particle states are clearly heavier than a one–particle state and

they do not enter in the calculation of the low–lying spectrum: we want to look at them to avoid

their presence when we look for excitations in the spectrum.

Moreover, since we are on a finite lattice with periodic boundary conditions, it is possible to get

a gluon excitation which wraps around the toroidal lattice, called torelon state. If a torelon state

has a lower mass than the lightest glueball in a given symmetry channel, than the possibility

exists that the mass we extract from the asymptotic decay of the correlator will be that of the

torelon state. Due to their symmetry properties under the center group, torelon states cannot

be created by the operators we constructed in the previous section; however, as we will show

later, pairs of torelons in opposite directions can couple to our operators and we want to identify

their contribution in the spectrum.

4.3.1 Two glueballs scattering states

Multi–glueball states have an energy that can be approximately determined. In our case we

restrict only to two–glueball states having zero total momentum. We expect their mass to be

greater than or equal to double the mass of the one–glueball states in each symmetry channel

(if we neglect all interactions): this gives us a threshold near and above which we are not sure

to obtain the spectrum of only one–particle states. However, we can do better by including

in our variational basis (see Sec. 4.1.3) operators that are expected to overlap significantly on

two–glueball states. Adding these new operators in the variational procedure results in a set

of optimized coefficients vi (see (4.19) and following) encoding the mixing of the two–particle

states with the low–lying eigenstate of interest.

Let us take two operators φA(x) and φB(x) which are supposed to create one–particle states;
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the Fourier representation of an operator which projects on a two–particle state with relative

momentum p is then given by

φ2(p) =
∑

x,y

eip·(x−y)φA(x)φB(y) . (4.39)

Hence, the zero–momentum operator we are searching for is

φ2(p = 0) =
∑

x

φA(x)
∑

y

φB(y) = φA(p = 0)φB(p = 0) , (4.40)

that is the product of 2 zero–momentum operators. Therefore, there is no need to create other

paths, but we simply need to correlate products of 2 operators, coming from paths that we

already had, with other operators (which can in principle project on both one and two–glueball

states).

It is possible to choose φA(x) and φB(x) in different way to obtain φ2(x), and we decide to

choose φA(x) = φB(x) because, in this case, we expect that their correlators decay more slowly

and then project more on the lowest part of the spectrum that we are interested in (recall that

slow decay implies a lower mass). Moreover, we want to be able to decide from which kind

of prototypical paths φA comes from: this will allow us to understand, after the variational

procedure, which shape better project onto glueball scattering states.

Following the naive argument that at N = ∞ direct products of two operators factorize, we

expect that they create states which are good approximation of two non–interacting glueballs.

However, there is a priori no reason to say that they do not mix at all with single glueball states,

since selection rules allow this type of overlap. We are aware of only another study of this kind

in the literature (see [43]) restricted to the SU(3) case and very preliminary (only 2 operators

in the A1++ were considered).

Our code, on the contrary, is written in a way that one has complete freedom in the choice of

the operators and in our simulations we chose ”scattering” operators coming from path (a), (b)

and (c) in Fig. 4.5: in total we get operators that can project onto two–glueball states in every

symmetry channel.

When an eigenstate ~v is extracted from (4.20), it can contain, between his coefficients vi, those

coming from two–glueballs operators φ2: if the relative weight of coefficients vi, with the index i

related to operators φ2, is significant (more than 20%), than there is the possibility that this state

has an important contamination from scattering states. However, we can repeat the analysis

without the ”scattering” operators; comparing the resulting spectrum of eigenvectors, in the

two distinct cases, gives us a measure of the influence of such operators.
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4.3.2 Torelon pairs mixing

Whereas multi–glueball states can only affect the mass of excited states, torelon state can be

lighter than one–particle glueballs in every symmetry channel. Hence, identifying their presence

in the spectrum is mandatory. However, their contribution vanish in the infinite–volume limit,

because, as we will see, their energy is proportional to the size of the lattice box.

A torelon state, being an excitation winding around the spatial toroidal lattice, can be classified

by its transformation under the discrete center group ZN of SU(N): if we apply an element

zn ∈ ZN , to the state, it acquires a phase factor exp(2πin
N ) (n = 0, 1, 2, . . . , N−1). More generally,

representations of SU(N) can be divided in classes of same N–ality with respect to ZN : for each

representation of N–ality k, a transformation by zn ∈ ZN corresponds to multiplication by a

factor exp(2πikn
N ). Simple torelon state have 1 N–ality and operators that project on them can

be constructed using Polyakov loops lp wrapping around the spatial dimensions. For large lattice

size L, the Polyakov loop represents a flux tube with energy given by σL, then it increases with

the volume of the lattice: it decouples from the glueball spectrum in the infinite–volume limit.

To be precise, our operators constructed from spatial closed loops can not have a non–vanishing

overlap onto torelon state, because they have 0 N–ality; if we combine two torelon states with

opposite center charge, that is Polyakov loops winding around the same dimension in opposite

directions, then we obtain a state with 0 N–ality that mix with glueballs. This state is usually

called a bi–torelon state.

A method that can be used to find these states in the spectrum used the finite–volume nature

of them and study the dependence of the volume of every level in the spectrum. We do not

try this attempt, but we follow what we have done with two–particle states, and we insert

in the variational basis operators that strongly project on bi–torelon states. The mass of the

eigenstates coming from the variational procedure is referred to a bi–torelon state if, again, the

coefficients of the eigenstates contains those of the new operators added.

We construct zero–momentum operators coupling to bi–torelon states by multiplying together

two spatial Polyakov loops at different lattice points winding in opposite directions

φtor(p = 0) =
∑

x,y

lp(x)l⋆p(y) , (4.41)

where the sum is intended only on spatial coordinate x and y in the plane orthogonal to the

Polyakov loop direction, due to its translational invariance along that. Using (4.41), we can

only obtain operators in two symmetry channels (A++
1 and E++) by summing lp’s rotated in

different ways. However, if we use a ”wiggly” path to construct the Polyakov loop, we find that

there exists a basis of φtor operators in almost each irreducible representation of OC
h .

In practice we can use the same method of Sec. 4.2.2 and the projection table Pr(R,R), but

for that the paths to be rotated have to be closed: a path closed around a direction, such as
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a Polyakov loop, is too much symmetric because it is rotationally invariant around the axis,

and this invalid the whole procedure. The simplest solution is to consider in (4.41) one straight

Polyakov loop lp multiplied by a ”decorated” Polyakov loop l̃p as they were a single path closed

at the edges of the spatial lattice slice: this procedure identifies a plane for the operator, which is

thus no more rotational invariant. It is, however, important to note that the links used to close

the path are not evaluated when calculating the operators, because they do not enter (4.41).

In Fig. 4.6 we show the prototypical paths used to construct the operators in all the symmetry

channels. We expect that adding decorations to the straight Polyakov loop will increase its

energy resulting in operators coupling to higher glueball states in the spectrum; that’s way we

choose only the two shortest (in lattice units) paths which allow us to obtain a projection on all

the irreducible representations of OC
h . In Tab. 4.4 we show the number of ”bi–torelon” operators

we calculate in each symmetry channel RPC .

If we apply the improved blocking procedure, we see that different length regions are auto-

matically spanned even if the ”decorations” are originally only one lattice spacing wide and if

the two opposite Polyakov loops are one lattice spacing apart. Using blocked super–links re-

sults in having operators with ”decorations” of all sizes. However, a careful treatment of the

blocking iterations is needed when we deal with Polyakov loops with ”decorations”, due to their

non–trivial topological structure: this structure remains the same under the blocking procedure

only if a ”decoration” does not start to wrap around the direction of the loop axis when using

blocked super–links instead of the original links. Another way to say this is that the ”decorated”

Polyakov loop has a maximum size in the direction of his symmetry axis.

We then decide to iterate the blocking procedure in different ways for the direction of the loop

axis and for the orthogonal directions: the number of steps in the axis direction is limited by

the number of ”decorations” of the loop, whereas there is no limit for the number of iterations

in the orthogonal directions. The result is that the physical size of the operator is increased

in the right way on all the directions: when the maximum size is reached in one direction, the

blocking stops in that direction, but can continue in the others. Moreover, when the blocked

super–links cannot fit a given lattice size, we blocked them at different ”levels” (which means

different lengths) in order to fill the winding direction completely. A pictorial representation of

this procedure is shown in Fig. 4.7.
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R++ A++
1 A++

2 E++ T++
1 T++

2

# op. 8 3 22 19 44

R−+ A−+
1 A−+

2 E−+ T−+
1 T−+

2

# op. 2 1 7 24 33

R+− A+−
1 A+−

2 E+− T+−
1 T+−

2

# op. 1 3 7 48 33

R−− A−−
1 A−−

2 E−− T−−
1 T−−

2

# op. 3 3 14 27 29

Table 4.3: Different operators calculated in each of the 20 symmetry channels. All these operators are

used in the variational basis and to each of them we apply the improved blocking procedure

of Sec. 4.1.2.

R++ A++
1 A++

2 E++ T++
1 T++

2

# op. 2 1 7 3 9

R−+ A−+
1 A−+

2 E−+ T−+
1 T−+

2

# op. 1 0 3 3 9

R+− A+−
1 A+−

2 E+− T+−
1 T+−

2

# op. 0 1 3 14 8

R−− A−−
1 A−−

2 E−− T−−
1 T−−

2

# op. 0 1 3 9 3

Table 4.4: Different ”bi–torelon” operators calculated in each of the 20 symmetry channels. All these

operators are used in the variational basis and to each of them we apply the improved blocking

procedure of Sec. 4.1.2.
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Figure 4.6: Paths used for the construction of operators coupling with bi–torelon states. Both these paths

extend over the entire lattice in one direction, whereas the distance between the Polyakov

loops composing them is chosen to be one lattice spacing. (a) is the simplest (and shortest)

path made of two simple Polyakov loops in opposite directions; (b) is made of one straight

Polyakov loop and one Polyakov loop with 2 ”decorations” one lattice spacing wide.
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Figure 4.7: A Polyakov loop with two ”decorations” on a plane lattice of dimension L = 10 in the

winding direction of the loop. (a) shows the original loop, then at blocking level b = 0: each

”decoration” is one lattice spacing wide; (b) shows the blocked loop at b = 1 where the links

are thicker meaning that they are super–links (and also smeared, as described in (4.15)): each

decoration is 2 lattice spacing wide and all links are blocked at the same level; (c) shows the

same path at blocking level b = 2 where the super–links of the ”decorations” have length

2b = 4, but the loops fill the whole length of the lattice only if we choose the first link of

length 2, that is at blocking level b = 1.



5. Numerical simulations and data

analysis

5.1 Monte–Carlo simulations

One of the mainly used tools in the non–perturbative lattice approach to quantum field theories

is numerical computer simulations. As we showed in Sec. 1.1.3, the structure of the Euclidean

path integral, allows us to obtain expectation values of field operators as averages over an

ensemble of variables distributed according to the weight given by the exponential of the action

〈O〉 =

∫

Dφ O[φ] e−SE [φ]

∫

Dφ e−SE [φ]
. (5.1)

On the lattice, the above integration is finite dimensional and can be afforded using well–known

statistical methods due to the large number of stochastic variables and the fact that, being the

Euclidean action SE real and lower bounded, the exponential weight can be interpreted as the

Boltzmann factor of a statistical mechanics system. A first estimate of 〈O〉 is given by the

ensemble average

〈O〉 ≈
∑

conf O[φi]

Nconf
, (5.2)

where φi are field configurations that appear in the statistical system with probability e−SE [φ];

this estimate has an error which goes as 1/
√

Nconf if the φi configurations are statistically

independent. This way of choosing the configurations is often referred to in the literature as

important sampling.

In numerical simulation the main problem is to generate an ensemble of configurations φi with a

distribution which is the Boltzmann one (the equilibrium distribution); in Monte–Carlo simula-

tions, this is achieved by generating a sequence of configurations starting from an initial one φ0

and following an update algorithm: after every application of the update step on φi, we obtain a

new configuration φi+1. The entire set of configurations for a given algorithm is called a Markov

chain. General mathematical theorems on Markov chains (for an introductory review see [44])

ensure that the correct distribution is reached asymptotically if the update satisfies the detailed
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balance

e−S[C]Prob.(C → C ′) = e−S[C′]Prob.(C ′ → C) , (5.3)

where C and C ′ are two configurations of the Markov chain. It is then possible to measure the

operator O on the configurations φi and obtain its expectation value following (5.2). In order

to ensure the detailed balance relation, we should require that the configurations on which we

measure have lost every memory of the initial configuration φ0; this happens if we evolve the

system of configurations until it has reached its equilibrium state. From that point onward, we

say that the system is thermalized. The thermalization time depends on the type of update

algorithm, the observable O and on the bare parameters in the action SE [φ]: general experience

gives rules to establish a safe bound for the thermalization time (our choice is shown in Tab. 5.1).

A good update algorithm should be able to generate configurations from all the regions of the

configuration space, and, in order to ensure their statistical independence, successive configu-

rations must have the lowest possible auto–correlation. There are several update algorithms

and in our Monte–Carlo simulations we use a heat–bath update to generate lattice gauge field

configurations weighted by the exponential of the lattice action ( 1.73). The particular heat–

bath update we use is the version of Kennedy and Pendleton [45]: it updates each of the four

real parameters of a generic SU(2) matrix according to the distribution given by the lattice

action. Since every link variable is a N × N matrix of the SU(N) group, we actually update

elements of a group different from SU(2): this is done by updating the maximal covering set

of N(N − 1)/2 SU(2) subgroups through the Cabibbo–Marinari algorithm [46]. These choices

are the most widely used in the pure gauge lattice simulations. The update algorithm acts on a

single link per time and must be used to update all the links of the lattice to have an updated

configuration: the update of a configuration is called sweep.

To reduced correlations of a sequence of configurations obtained by local changes of link vari-

ables, it has been proved that the use of an intermediate update step called over–relaxation

step [47] can help. Such an update simply changes a link variable in the maximal way compati-

ble with the invariance of the action. The fact that the action does not change implies that only

a subset of zero measure of the configuration space is explored and we can use this step only in

conjunction with a heat–bath update. However, an over–relaxation step spans the configuration

space faster than a heat–bath update generating less auto–correlated configurations; we use it in

a ratio 1:4 between the number of heat–bath and over–relaxation sweeps: such a sequence of 4

over–relaxation sweeps followed by 1 heath–bath sweep is called compound sweep. We can choose

to measure our observables/operators after each compound sweep or after a certain number of

them, in order to further reduce correlations between subsequent measures.

Even when we apply the above setup in a simulation, we need to keep in mind that our measures

are not strictly independent and a careful analysis of correlation time is always mandatory to
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estimate the right variance. We have already described in Sec. 3.4.1 the bootstrap method used

to deal with correlations in a given set of measures; in the analysis of our simulations we use

another technique called jackknife [38] to estimate the right variance of observables without

having to rely on a particular statistical distribution. The jackknife method is supposed to

work on statistically independent data and to ensure this condition we bin measures in groups

larger than the auto–correlation time. We usually make bins of 20 measures and we have a total

number of bins of order 500.

A summary of the parameters of all the simulations performed is shown in Tab. 5.1.

5.2 Diagonalization and numerical issues

In every simulation we measure the correlators between operators in a given set {φR
i }N0

i=1 con-

structed following the method described in the previous chapter. The correlators are measured

as expectation values of product of operators on different temporal lattice slices

C̃ij(t) =
∑

τ

〈

φ†
i (t + τ)φj(τ)

〉

, (5.4)

on background gauge field configurations generated by the Monte–Carlo procedure described in

the previous section; for every set {i, j, t} we make ∼ 10000 measures further grouped in ∼ 500

bins: all these measures are then analized with the jackknife method to obtain an average value

of C̃ij(t) together with its statistical error for each {i, j, t}.
Recall from Sec. 4.1.3, that we need to perform the diagonalization of the matrix C̃−1(0)C̃(1)

and before this, the inversion of C̃(0); this is done by means of numerical routines [48]. Clearly,

the inversion of a square matrix is possible only if the matrix is non singular, or, in other words,

if its rows (columns) are linearly independent and different from zero. The main issue related

to the singularity of the correlator matrix is that we should not allow two equal operators to

enter the variational basis, because this will result in two equal rows (columns) and in the im-

possibility of performing the inversion of C̃(0); moreover we should avoid linear combinations of

operators to appear, because they bring to the same consequences. In constructing the opera-

tors for the variational basis we check, in each symmetry channel, if there are ”formally” equal

operators or ”zero” operators and discard them immediately. By ”formally” equal operators,

we mean operators constructed using exactly the same set of link variables whereas, with ”zero”

operators, we refer to operators constructed summing rotated paths which exactly cancel due

to the coefficients of the projection table. The former can appear in our construction, because

parity and charge conjugation transformations, as defined in Sec. 4.2.2, can sometimes send an

operator in a given R irreducible representation of the cubic group into another in the same

representation; this can be seen only if we directly perform the charge conjugation operation on
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the underlying paths instead of taking the real or the imaginary part of the trace of the related

operator.

On the other hand, the check just presented is not enough to ensure that C̃ij(0) is invertible,

because we can not check all the linear combination of operators. Since the number of operators

that can be created on a finite lattice is finite, it is always possible that in our basis we are

using operators that can be written as linear combinations of other operators already included.

This sort of problem can not be avoided and it can totally spoil our diagonalization procedure

and the possibility of getting any mass of the spectrum; this is exactly what we found when

we tried for the first time to invert the correlation matrix using all the operators (blocked and

unblocked) in a given symmetry channel.

The natural approach to circumvent this issue, is to start from a small basis of operators ,

and consequently a small correlator matrix, and then add operators (considering each blocked

operator separately, even when they come from the same original operator): whenever the diago-

nalization is possible, we proceed by adding more and more operators, but, if an added operator

forbid the diagonalization process, we discard it and we go on with the following one. Since the

inversion is only approximated (because it is numerical) we need to fix a minimum tolerance

value of 10−10 on the off-diagonal elements of the matrix C̃−1(0)C̃(0): if adding an operator

gives an off-diagonal minimum value greater than our tolerance, that operator is also discarded.

The result is the widest possible variational basis (starting from our original set of operators)

compatible with the best diagonalization of the correlator matrix.

In Tab. 5.2 we compare the number of total operators (including ”scattering” and ”bi–torelons”

operators) in the variational basis before and after the ”cutting” of the correlators in each

symmetry channel for SU(3); moreover, we note that to different gauge groups SU(N), it corre-

sponds, in general, a slightly different number of operators in the cut basis even if of the same

order of magnitude.

5.3 The glueball spectrum

When the diagonalization in the variational procedure goes right, we can obtain the optimized

eigenvectors, and in their basis, the diagonal correlators give us the spectrum from their expo-

nential decay. For every gauge group SU(N), with N = 3, 4, 5, 6, 7, 8, and in each symmetry

channel, we apply the procedure described in Sec. 4.1.3 and the cutting method described above,

to obtain the low-lying spectrum and some of the excitations of glueballs. In this section we want

to show the main features of each spectrum (such as excited states, scattering and bi–torelon

mixing) and in the next section we will perform the large–N limit of the spectrum (when pos-

sible).
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N β L Nτ NMC Ncompound Nwidth Nbins runs

3 5.8945 12 10k 100k 200 20 25 20

4 10.789 12 10k 100k 200 20 25 20

5 17.107 12 10k 100k 200 20 25 20

6 24.845 12 10k 100k 200 20 25 20

7 33.995 12 10k 65k 250 20 13 40

8 44.496 12 10k 100k 250 16 25 20

Table 5.1: The table summarize the parameters used for the simulations. A typical run has Nτ thermal-

ization sweeps after which we start measuring. The thermalization starts with 200 heat-bath

updates followed by compound sweeps, which are sequence of 1 heat–bath update followed

by 4 over–relaxation sweeps. After the thermalization process we start NMC sweeps. We

then decide to measure every Ncompound sweeps to reduce autocorrelation between the mea-

sures. The Nmeasures measure sweeps are further divided in Nbins bins where each one is an

average over Nwidth measures. This is the relation that has to be satisfied between the param-

eters: Nwidth × Nbins × Ncompound = NMC The total set of measures to be analized is then

Nbins × runs, where each run starts with a different random seed and is indeed independent

of all the others.

SU(3) variational basis before → after the cut

R++ A++
1 A++

2 E++ T++
1 T++

2

# op. 72→45 28→28 204→192 164→144 388→281

R−+ A−+
1 A−+

2 E−+ T−+
1 T−+

2

# op. 20→20 8 → 8 68 → 60 204→192 300→245

R+− A+−
1 A+−

2 E+− T+−
1 T+−

2

# op. 8 → 8 28→28 68 → 60 440→337 296→244

R−− A−−
1 A−−

2 E−− T−−
1 T−−

2

# op. 24→24 28→28 124→112 252→209 244→204

Table 5.2: Number of operators in each symmetry channel of the variational basis used to extract the

spectrum of SU(3). The number of operators on the left of the arrow refers to the original

basis with blocked and unblocked operators of every kind; on the right of the arrow there is the

number of the operators with which the correlator matrix is invertible and the diagonalization

is possible.
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5.3.1 A general overview

The pure gauge spectrum of SU(3) has already been largely studied with lattice simulations,

even in the continuum limit [14, 43]. In our present work we have data for only a single lattice

spacing and a single volume, but previous works at the same value of β and L [49, 11] suggest

that we are already in the scaling region and in the infinite volume limit; not withstanding this,

we performed a test run on a bigger lattice and confirmed the observation previously done.

We have in this case the possibility of comparing some of our results with previous ones in the

literature, but, in addition, we try a first attempt of including, in our variational calculations,

a very large number of operators coupling with bi–torelon states and multi–glueball states. For

SU(3), a study of the mixing with scattering states on the lattice was done in [43] using the same

kind of operators that we use (the direct product of two single trace operators), but only for 2

operators in the A++
1 ; we extend the survey for scattering states including, in the variational

basis, the same number of ”scattering” operators as of single–glueball operators. However, we

note that, after the cut of the correlator, in order to obtain a invertible matrix in the variational

procedure, many of these ”scattering” states were discarded (though leaving us with a number

of them between 4 and 180 depending on the symmetry channel).

It is important to remark that we explicitly include also operators winding around the spatial

toroidal lattice coupling to bi–torelon states for each set of RPC quantum numbers, whereas

previous works could deal only with the simplest combinations of them, projecting only onto

the A++
1 and E++ (and onto the T−−

1 considering the imaginary part of some particular com-

binations [50]).

Our aim is to better identify the one–particle states of the glueball spectrum and to extend the

above strategy to a quite large number of gauge groups. Previous large–N studies of the glueball

spectrum, perform the N → ∞ extrapolation using 3 or 4 points of N ∈ [3, 8]. What we have

done is a full analysis of all the symmetry sectors for every value of N in the above interval.

In Tab. 5.3 we present the SU(3) spectrum coming from our simulations. First of all, let us

explain what kind of information we are showing for each symmetry channel:

• the first column contains the information about the mass in unit of lattice spacing am and

its statistical error σ, for the channel indicated on the left of the column;

• in the second column we show the overlap of the operator for the given mass; as we already

said, the overlap |cn|2 = |〈n|Φ̂|0〉|2 measures how good is the operator in approximating

the wave–function of the glueball state. As a consequence, a good overlap implies a reliable

extrapolation of the mass from the single–exponential decay of the correlator (higher mass
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states do not contribute even at small time). Since the overlap is fitted from the correlator

decay (it is the multiplicative constant in front of the exponential) it comes with an error

which we estimate to be 0.05; we decide to consider ”reliable” operators with |cn|2 ≥ 0.90

and we also consider overlaps |cn|2 ≥ 1.00 as long as they remain ≤ 1.10: then we are

choosing a conservative 2σ = 0.10 wide interval around the best overlap possible, which is

unity. In the following tables, overlaps outside this reliability range are bold–face;

• the third column shows the reduced χ2 of the exponential fit (see (4.23)) which is the best

possible fit coming from different ranges of the temporal distance; the best fitted range is

usually made up by 3 points starting from t = a to t = 3a. We choose to consider good

fits the ones with χ2 ≤ 1.20 and values greater than this bound are highlighted in the

following tables;

• the last three columns, labelled by mixG, mixS and mixT , contain the information about

the mixing of the operator Φ̂, whose correlator is used to extract the mass, and the original

basis operators φi, where the index i can label a single–glueball operator (G), a ”scattering”

operator (S) or a ”bi–torelon” operator (T ) for a total of N0 operators. Using (4.18), and

recalling that vi are the components of the eigenvector ~v corresponding to the operator

Φ̂, we define the normalized mixing of a particular state with each of the subsets of basic

operators G, S and T by

mixA =

∑

i∈A v2
i

∑N0

i=1 v2
i

, A = G, S, T . (5.5)

We decide to consider as single–glueball states, those with a mixing with the operators

in the group G greater than 80%; those states with mixG below that threshold have the

mark ”(?)” next to the name of the representation, as long as mixG is still the dominant

contribution (but we cannot be sure of their interpretation as one–particle states). When

the contribution to the state splits almost equally between operators in G and in T we use

the mark ”(2T?)” and if the contribution of mixT is greater than 50% we decide to discard

that state from the one–particle states we are interested in and we use the mark ”(2T)”

(even we are still not sure that it is a bi–torelon state). States with an appreciable mixing

with the ”scattering” operators do not appear apart from the A++
1 channel, on which we

want to comment in a separate section for all the gauge groups;

In the next paragraphs we want to discuss the main features of the SU(3) spectrum, which

is summarized in Tab. 5.3. All the important aspects are checked in the same way for the other

gauge groups as well.
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In the A++
1 representation we clearly see the ground state and 3 excitations, two of which

are above the energy threshold where scattering states can appear (using a free relativistic dis-

persion relation for such states). All the overlaps are very good (≥ 93%) and the χ2 values

indicate that the masses are reliable, which is a consequence of our big variational basis and of

the improved blocking method. The high mixing coefficients with the ”scattering” operators are

a completely new feature revealed by our work and we will go a bit into the details of this issue

in Sec. 5.3.2; however, by comparing our A++
1 spectrum with previous works, we can say that,

at least for the two lightest states, the one–particle interpretation is the most probable.

In the A1 representation we find only another state, in the −+ sector, which comes from one–

particle operators for the 99% of its composition.

In the E++ we have two operators that, after the variational procedure, give the same mass

(within a 1σ interval) and we can interpret them as the same state or as the 2 degenerate mag-

netic polarizations of a continuum spin 2 glueball; however one of them has a χ2 out of our

reliability range and in the extrapolation of the large–N spectrum we will use only the reliable

state. The continuum spin 2 glueball, with 5 polarizations, gain contributions from the lattice

state in the E and T2 representation (see Tab. 4.2), hence we expect to find state in the T++
2

channel corresponding to that in the E++. From the table it is clear that we find such a state,

and indeed we see it from 3 different operators which can therefore corresponds to 3 of the 5

polarizations of the spin 2 continuum state. In the large–N extrapolation we will use in this

case the operator wit the lowest χ2, as it gives the most reliable mass estimate. The splitting of

a continuum state into degenerate multiplets in the lattice representations is seen also for the

−+ sector of the E and T2 representations: 2 operators in the E−+ give a mass compatible,

within 1σ, with the states coming from 3 different operators in the T−+
2 channel.

The other interesting feature of our SU(3) spectrum is the presence of 2 bi–torelon states, one

in the A++
2 and one in the E++; although their χ2 are not reliable, the mixing with operators

winding around the spatial lattice is more than 80% for both of them. The E++ bi–torelon we

see here, is probably the one seen in the same position by the author of [43].

The state in the T−−
1 channel is another interesting state because it comes from an operator

whose components are half from single–glueball operators and half from ”bi–torelon” operators.

The bi–torelon contribution is less and less manifest at higher N except for N = 8 and this

behaviour is still to be understood.

As we increase N , we note, from Tab. 5.4 to Tab. 5.8, really small differences in the glueball spec-

trum and the variation of the mass of each state with the number of colours will be investigated

deeply in Sec. 5.4.
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SU(3) at β = 5.8945 and L = 12, T = 12

RPC am(σ) |cn|2 χ2 mixG mixS mixT

A++
1 0.798(14) 0.98 0.10 0.5391 0.4609 0.0000

A++⋆
1 1.320(44) 0.95 0.13 0.5535 0.4465 0.0000

A++⋆⋆
1 1.624(89) 0.93 0.54 0.5041 0.4959 0.0000

A++⋆⋆⋆
1 2.02(17) 1.03 0.11 0.4924 0.5076 0.0000

A−+
1 1.429(59) 0.91 0.49 0.9927 0.0056 0.0017

A++
2 (2T) 1.82(12) 0.91 2.31 0.0508 0.0108 0.9383

E++ 1.260(36) 0.97 1.28 0.8552 0.0692 0.0756

E++ 1.293(40) 0.98 0.06 0.8308 0.0855 0.0837

E++⋆(2T) 1.372(63) 0.91 1.50 0.1629 0.0316 0.8055

E+− 2.59(45) 1.06 0.76 0.9269 0.0618 0.0114

E−+ 1.662(89) 0.93 0.63 0.9752 0.0229 0.0019

E−+ 1.614(81) 0.87 0.31 0.9768 0.0199 0.0033

E−+⋆ 2.37(33) 1.01 0.54 0.9738 0.0188 0.0074

T+−
1 1.628(80) 1.01 0.41 0.9002 0.0814 0.0185

T−−
1 (2T?) 2.19(25) 0.93 0.13 0.4905 0.0375 0.4721

T−+
1 2.29(31) 0.96 0.62 0.8597 0.1309 0.0094

T++
2 1.293(41) 0.99 0.33 0.9250 0.0520 0.0230

T++
2 1.233(38) 0.92 1.87 0.9261 0.0512 0.0227

T++
2 1.329(41) 0.99 0.89 0.8983 0.0858 0.0159

T−−
2 1.96(19) 0.81 0.20 0.9231 0.0689 0.0080

T−−
2 2.26(27) 1.00 0.38 0.9187 0.0784 0.0028

T−+
2 1.571(80) 0.87 0.73 0.8888 0.0962 0.0149

T−+
2 1.707(90) 0.99 0.01 0.8748 0.1011 0.0241

T−+
2 1.625(94) 0.88 2.48 0.8384 0.1327 0.0290

Table 5.3: The full spectrum of pure SU(3) gauge theory from lattice simulations at the parameters shown

in the header. Bold–face values correspond to non–reliable states which will not be used in

the large–N extrapolation.
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SU(4) at β = 10.789 and L = 12, T = 12

RPC am(σ) |cn|2 χ2 mixG mixS mixT

A++
1 0.821(15) 0.99 0.99 0.5733 0.4267 0.0000

A++⋆
1 1.381(46) 0.94 1.67 0.5490 0.4510 0.0000

A++⋆⋆
1 1.93(16) 0.84 0.15 0.6071 0.3929 0.0000

A−+
1 1.424(54) 0.89 0.15 0.9908 0.0083 0.0009

A−+⋆
1 2.52(54) 0.94 0.88 0.9474 0.0441 0.0085

A++
2 (2T) 1.82(14) 0.85 1.40 0.0260 0.0094 0.9646

A++
2 2.06(21) 0.85 0.17 0.8638 0.0201 0.1161

A+−
2 2.10(19) 1.02 0.29 0.9925 0.0074 0.0002

E++ 1.264(41) 0.94 0.01 0.9431 0.0334 0.0235

E++ 1.346(47) 1.01 0.41 0.8872 0.0700 0.0427

E++⋆(2T) 1.635(75) 1.04 0.54 0.3102 0.1063 0.5835

E−+ 1.728(97) 0.95 0.12 0.9660 0.0262 0.0078

E−+ 1.635(90) 0.83 0.85 0.9633 0.0322 0.0045

T++
1 1.85(16) 0.75 0.28 0.9292 0.0645 0.0063

T+−
1 1.637(82) 1.02 1.05 0.8856 0.1014 0.0130

T+−
1 1.669(76) 1.03 0.43 0.9103 0.0633 0.0264

T+−
1 1.695(82) 1.03 0.17 0.8635 0.1053 0.0312

T−−
1 (?) 2.25(27) 0.99 0.08 0.6288 0.1067 0.2645

T−+
1 2.28(35) 0.87 0.60 0.8781 0.1039 0.0179

T++
2 1.333(48) 0.99 0.85 0.9128 0.0754 0.0119

T+−
2 (2T?) 1.97(16) 0.95 1.53 0.4000 0.1435 0.4565

T−+
2 1.636(88) 0.90 0.02 0.8485 0.1386 0.0128

T−+
2 1.676(91) 0.90 0.40 0.8859 0.0772 0.0369

Table 5.4: The full spectrum of pure SU(4) gauge theory from lattice simulations at the parameters shown

in the header. Bold–face values correspond to non–reliable states which will not be used in

the large–N extrapolation.
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SU(5) at β = 17.107 and L = 12, T = 12

RPC am(σ) |cn|2 χ2 mixG mixS mixT

A++
1 0.800(16) 0.98 0.84 0.5173 0.4826 0.0001

A++⋆
1 1.386(56) 0.90 0.39 0.5224 0.4771 0.0005

A++⋆⋆
1 1.548(79) 0.86 0.45 0.4881 0.5119 0.0000

A++⋆⋆
1 1.70(10) 0.95 0.47 0.5063 0.4901 0.0036

A++⋆⋆⋆
1 1.84(14) 0.86 0.51 0.5323 0.4674 0.0003

A−+
1 1.408(57) 0.88 0.09 0.9852 0.0124 0.0024

A−+⋆
1 2.32(30) 0.96 0.36 0.9764 0.0111 0.0124

A++
2 (2T) 1.90(16) 0.86 0.05 0.0748 0.0039 0.9213

A+−
2 2.21(23) 1.13 0.53 0.9849 0.0132 0.0019

A+−
2 2.48(55) 0.83 2.23 0.9970 0.0018 0.0012

E++ 1.317(43) 0.97 1.57 0.9354 0.0484 0.0161

E++⋆(2T) 1.613(84) 0.94 1.44 0.2979 0.0612 0.6409

E++⋆(2T?) 1.604(85) 0.91 0.05 0.4385 0.1560 0.4055

E−− 1.99(20) 0.80 0.03 0.9174 0.0535 0.0290

E−+ 1.71(10) 0.90 0.24 0.9530 0.0372 0.0098

E−+ 1.69(10) 0.86 0.09 0.9889 0.0086 0.0024

E−+⋆ 2.58(46) 1.10 0.02 0.9554 0.0373 0.0073

T++
1 2.08(20) 0.93 0.12 0.9485 0.0462 0.0053

T++
1 2.02(21) 0.82 0.15 0.9621 0.0330 0.0049

T+−
1 1.485(65) 0.87 1.55 0.9250 0.0595 0.0154

T+−
1 1.500(70) 0.88 0.56 0.8359 0.1375 0.0265

T+−
1 1.613(74) 0.97 0.94 0.8379 0.1206 0.0416

T−−
1 (?) 2.25(29) 0.92 0.40 0.7642 0.0467 0.1891

T−+
1 2.31(29) 0.96 0.47 0.8839 0.1091 0.0070

T++
2 1.258(43) 0.91 0.80 0.8667 0.1175 0.0158

T++
2 1.381(47) 1.02 0.23 0.9273 0.0649 0.0079

T++
2 1.323(45) 0.96 0.14 0.8741 0.1043 0.0215

T++⋆
2 1.77(11) 0.90 0.18 0.9413 0.0366 0.0221

T+−
2 (?) 1.99(16) 1.02 0.70 0.7312 0.1130 0.1558

T+−
2 1.94(15) 0.90 0.82 0.8007 0.1156 0.0837

T+−
2 1.95(17) 0.85 0.04 0.8582 0.1074 0.0344

T−−
2 2.00(20) 0.82 0.48 0.8843 0.1101 0.0056

T−+
2 1.74(11) 0.96 0.53 0.9132 0.0759 0.0109

Table 5.5: The full spectrum of pure SU(5) gauge theory from lattice simulations at the parameters shown

in the header. Bold–face values correspond to non–reliable states which will not be used in

the large–N extrapolation.
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SU(6) at β = 24.845 and L = 12, T = 12

RPC am(σ) |cn|2 χ2 mixG mixS mixT

A++
1 0.785(14) 0.96 0.15 0.4854 0.5144 0.0002

A++⋆
1 1.508(62) 1.01 2.04 0.4969 0.5030 0.0001

A++⋆
1 1.534(87) 0.84 0.03 0.4959 0.5041 0.0000

A−+
1 1.416(59) 0.89 1.54 0.9983 0.0013 0.0004

A+−
2 1.84(14) 0.80 0.68 0.9923 0.0070 0.0007

A+−
2 2.56(48) 0.97 0.02 0.9964 0.0027 0.0009

E++ 1.253(41) 0.92 1.83 0.9147 0.0396 0.0457

E++ 1.247(43) 0.89 0.59 0.9437 0.0311 0.0252

E++⋆(2T) 1.620(87) 0.94 0.64 0.2264 0.0745 0.6991

E−+ 1.74(11) 0.92 0.77 0.9774 0.0159 0.0068

E−+ 1.71(11) 0.85 1.03 0.9838 0.0115 0.0047

E−+⋆ 2.45(40) 0.97 0.01 0.9387 0.0527 0.0086

T++
1 2.10(22) 0.85 0.41 0.9393 0.0574 0.0033

T+−
1 1.518(67) 0.90 0.37 0.9060 0.0820 0.0120

T+−
1 1.640(77) 0.98 0.24 0.8386 0.1191 0.0423

T+−⋆
1 1.89(13) 0.94 1.57 0.8600 0.0858 0.0542

T−+
1 2.45(38) 1.02 0.35 0.9056 0.0831 0.0113

T−+
1 2.40(37) 0.96 0.02 0.8694 0.1223 0.0082

T++
2 1.275(39) 0.92 0.60 0.9173 0.0758 0.0069

T++
2 1.362(44) 1.00 1.71 0.9290 0.0556 0.0154

T++⋆
2 1.98(14) 1.08 0.97 0.9429 0.0473 0.0098

T+−
2 (?) 1.93(15) 0.91 0.03 0.7748 0.1109 0.1144

T+−
2 2.02(16) 0.99 0.63 0.8765 0.0883 0.0351

T−−
2 2.03(20) 0.81 0.34 0.8607 0.1330 0.0063

T−−
2 2.23(25) 0.96 1.11 0.9212 0.0757 0.0031

T−+
2 1.85(11) 1.07 0.34 0.8408 0.1036 0.0555

T−+
2 1.77(11) 0.95 0.34 0.8670 0.1119 0.0211

T−+
2 1.66(10) 0.85 0.97 0.9321 0.0458 0.0221

Table 5.6: The full spectrum of pure SU(6) gauge theory from lattice simulations at the parameters shown

in the header. Bold–face values correspond to non–reliable states which will not be used in

the large–N extrapolation.
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SU(7) at β = 33.995 and L = 12, T = 12

RPC am(σ) |cn|2 χ2 mixG mixS mixT

A++
1 0.820(15) 0.98 0.43 0.5586 0.4414 0.0000

A++⋆
1 1.570(61) 1.09 0.90 0.4952 0.5044 0.0005

A++⋆⋆
1 1.734(88) 0.97 1.87 0.4709 0.5050 0.0241

A++⋆⋆⋆
1 1.96(15) 0.95 2.22 0.5492 0.4504 0.0004

A−+
1 1.451(58) 0.92 0.06 0.9978 0.0016 0.0007

A++
2 (2T) 1.84(13) 0.78 1.41 0.0386 0.0094 0.9520

A++
2 2.19(26) 0.90 0.44 0.9002 0.0306 0.0692

A+−
2 2.44(45) 0.85 0.58 0.9963 0.0033 0.0004

E++ 1.303(45) 0.96 0.86 0.9435 0.0406 0.0158

E++ 1.307(46) 0.93 1.27 0.9338 0.0392 0.0271

E++⋆(2T) 1.670(90) 0.94 0.77 0.2598 0.0879 0.6522

E++⋆(2T) 1.71(10) 0.93 1.49 0.3531 0.0596 0.5873

E+− 2.55(56) 0.86 0.12 0.9693 0.0257 0.0049

E+− 2.62(64) 0.87 0.31 0.9572 0.0385 0.0043

E−+ 1.80(11) 0.93 0.13 0.9701 0.0280 0.0019

T+−
1 1.517(69) 0.88 0.03 0.8716 0.0962 0.0322

T+−
1 1.622(80) 0.96 0.37 0.8713 0.0838 0.0449

T+−
1 1.612(77) 0.93 0.38 0.8651 0.1112 0.0236

T+−⋆
1 1.85(12) 0.88 1.08 0.8500 0.0754 0.0746

T−−
1 2.21(23) 0.99 0.72 0.8766 0.0612 0.0622

T−+
1 2.30(30) 0.92 0.38 0.8915 0.0982 0.0103

T−+
1 2.31(34) 0.89 1.17 0.8354 0.1301 0.0345

T++
2 1.328(44) 0.97 0.22 0.8891 0.0988 0.0121

T++
2 1.355(49) 0.97 0.67 0.9392 0.0499 0.0109

T++
2 1.445(50) 1.05 1.84 0.8792 0.0995 0.0213

T+−
2 2.08(17) 1.02 1.62 0.9001 0.0737 0.0262

T+−
2 (?) 2.05(18) 0.95 0.98 0.6316 0.0795 0.2889

T−−
2 2.28(29) 0.97 0.51 0.8500 0.1407 0.0093

T−+
2 1.77(10) 0.98 0.50 0.8903 0.0870 0.0227

T−+
2 1.675(98) 0.84 1.10 0.9323 0.0539 0.0138

T−+⋆
2 2.37(32) 1.05 0.92 0.9177 0.0358 0.0465

Table 5.7: The full spectrum of pure SU(7) gauge theory from lattice simulations at the parameters shown

in the header. Bold–face values correspond to non–reliable states which will not be used in

the large–N extrapolation.
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SU(8) at β = 44.496 and L = 12, T = 12

RPC am(σ) |cn|2 χ2 mixG mixS mixT

A++
1 0.786(16) 0.96 0.78 0.5868 0.4131 0.0000

A++⋆
1 1.406(63) 0.90 0.50 0.5052 0.4943 0.0005

A−+
1 1.404(62) 0.83 1.44 0.9973 0.0022 0.0005

A−+⋆
1 2.39(39) 1.03 0.03 0.9720 0.0260 0.0020

A+−
2 2.20(26) 1.08 2.73 0.9612 0.0366 0.0021

A−−
2 2.46(61) 0.79 0.07 0.9260 0.0637 0.0103

E++ 1.335(53) 0.96 0.19 0.9394 0.0532 0.0073

E++ 1.231(46) 0.84 1.79 0.9376 0.0487 0.0137

E++⋆(2T?) 1.78(12) 0.96 0.45 0.5361 0.0805 0.3834

E−+ 1.88(13) 1.04 0.40 0.9745 0.0233 0.0023

T++
1 2.19(32) 0.86 0.22 0.9257 0.0623 0.0120

T+−
1 1.717(98) 1.05 0.10 0.8786 0.0987 0.0228

T+−
1 1.686(96) 1.01 1.37 0.8541 0.1220 0.0240

T+−
1 1.567(96) 0.89 0.03 0.8664 0.0808 0.0528

T+−⋆
1 1.99(17) 1.04 0.31 0.8685 0.1131 0.0184

T−−
1 (?) 2.26(29) 1.02 0.69 0.6625 0.0825 0.2550

T−−
1 2.33(36) 1.05 1.65 0.8065 0.0347 0.1588

T−+
1 2.32(37) 0.99 0.12 0.8516 0.1324 0.0160

T−+
1 2.51(42) 1.10 0.10 0.8465 0.1411 0.0124

T++
2 1.325(51) 0.95 0.01 0.9301 0.0547 0.0151

T++
2 1.457(56) 1.06 1.11 0.9006 0.0750 0.0244

T++
2 1.386(56) 0.98 0.19 0.8878 0.0897 0.0225

T++⋆
2 1.91(14) 0.99 1.23 0.9357 0.0565 0.0078

T+−
2 (?) 2.06(19) 1.07 0.47 0.7608 0.1913 0.0479

T+−
2 1.91(17) 0.85 0.02 0.8966 0.0732 0.0303

T+−
2 2.07(23) 0.94 1.86 0.8905 0.0951 0.0143

T−−
2 2.27(30) 1.05 0.40 0.8430 0.1435 0.0135

T−+
2 1.84(14) 1.02 0.79 0.8885 0.0742 0.0373

T−+
2 (?) 2.14(27) 0.87 0.08 0.7799 0.1499 0.0702

Table 5.8: The full spectrum of pure SU(8) gauge theory from lattice simulations at the parameters shown

in the header. Bold–face values correspond to non–reliable states which will not be used in

the large–N extrapolation.
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5.3.2 Scattering states

Before exploring the N → ∞ limit, we want to take a closer look to the representation where

we see the largest number of states, which is the A++
1 . For every value of N , we see in this

representation, that every state has a significant mixing with ”scattering” operators. Remember

that we have started with a variational basis in which there where the same number of operators

in the group G and operators in the group S; however, after the cutting procedure described in

Sec. 5.2, the total number of ”scattering” operators has changed to values between 1/3 and 1/8

of the initial number. Although the number of these operators is significantly smaller than the

number of one–particle operators, we clearly see that they couple equally well with the states in

the spectrum. This seems to tell us that a pure multi–glueballs interpretation of the ”scattering”

operators is not possible, even when N is as big as N = 8, and our physical understanding of

large–N factorisation suggests that non–interacting glueballs should be created by that kind of

operators.

We know that there is the possibility that ”scattering” operators couple to every state with

their set of quantum numbers, but, at the same time, we expect the contribution of scattering

states to the spectrum to become relevant only above the energy threshold of twice the ground

state mass; from Tab. 5.3 to Tab. 5.8, there is no clue for a particular state with A++
1 quantum

numbers to be a scattering state, but we can be sure that the ground state is not, even if excited

states remain ambiguous.

In order to clarify the relative importance of a ”scattering” operators besides looking at the

mixing coefficients, we repeat the variational procedure using different sets of operators: first we

use only single–glueball operators G and then we look at the spectrum using only ”scattering”

operators S. The results for each gauge group are shown in Tab. 5.9 to Tab. 5.14. By looking

at those tables is apparent that the low–lying spectrum does not change at all when we change

the variational basis as we said above.

There is still not a definite and clear answer to what we are seeing in our spectra for what it

concerns the ”scattering” operators; their are not acting as we would expect and further studies

are required in order to understand this issue.
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SU(3) at β = 5.8945 and L = 12, T = 12

RPC am(σ) |cn|2 χ2 mixG mixS mixT

A++
1 0.798(15) 0.98 0.11 1.0 0.0 0.0

A++⋆
1 1.365(48) 0.97 0.42 1.0 0.0 0.0

A++⋆⋆
1 1.66(10) 0.90 0.46 1.0 0.0 0.0

A++⋆⋆⋆
1 1.93(14) 0.97 0.36 1.0 0.0 0.0

A++
1 0.799(15) 0.97 0.12 0.0 1.0 0.0

A++⋆
1 1.328(46) 0.94 0.25 0.0 1.0 0.0

A++⋆⋆
1 1.72(12) 0.88 0.13 0.0 1.0 0.0

A++⋆⋆⋆
1 2.21(23) 1.10 1.09 0.0 1.0 0.0

Table 5.9: The A++
1 spectrum for SU(3) obtained with a different choice of the variational basis: in

the upper panel, we use a total of 32 single–trace operators which are expected to couple

with single–glueball states; in the lower panel, we use 13 ”scattering” operators alone in the

variational basis.

SU(4) at β = 10.789 and L = 12, T = 12

RPC am(σ) |cn|2 χ2 mixG mixS mixT

A++
1 0.821(15) 0.99 1.04 1.0 0.0 0.0

A++⋆
1 1.413(47) 0.96 1.52 1.0 0.0 0.0

A++⋆⋆
1 1.81(11) 0.93 1.22 1.0 0.0 0.0

A++
1 0.820(15) 0.99 0.95 0.0 1.0 0.0

A++⋆
1 1.386(47) 0.94 1.23 0.0 1.0 0.0

A++⋆⋆
1 1.76(11) 0.90 1.51 0.0 1.0 0.0

Table 5.10: The A++

1 spectrum for SU(4) obtained with a different choice of the variational basis: in

the upper panel, we use 32 single–trace operators which are expected to couple with single–

glueball states; in the lower panel, we use 32 ”scattering” operators as our variational basis.
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SU(5) at β = 17.107 and L = 12, T = 12

RPC am(σ) |cn|2 χ2 mixG mixS mixT

A++
1 0.797(14) 0.98 0.70 1.0 0.0 0.0

A++⋆
1 1.457(58) 0.94 0.02 1.0 0.0 0.0

A++⋆⋆
1 1.68(12) 0.76 0.21 1.0 0.0 0.0

A++⋆⋆
1 1.99(19) 0.85 0.88 1.0 0.0 0.0

A++
1 0.797(15) 0.98 0.40 0.0 1.0 0.0

A++⋆
1 1.439(58) 0.93 0.06 0.0 1.0 0.0

A++⋆⋆
1 2.23(28) 1.02 1.03 0.0 1.0 0.0

Table 5.11: The A++
1 spectrum for SU(5) obtained with a different choice of the variational basis: in

the upper panel, we use 32 single–trace operators which are expected to couple with single–

glueball states; in the lower panel, we use 32 ”scattering” operators as our variational basis.

SU(6) at β = 24.845 and L = 12, T = 12

RPC am(σ) |cn|2 χ2 mixG mixS mixT

A++
1 0.785(14) 0.96 0.21 1.0 0.0 0.0

A++⋆
1 1.509(63) 0.99 2.40 1.0 0.0 0.0

A++⋆⋆
1 2.03(19) 0.83 0.06 1.0 0.0 0.0

A++
1 0.785(14) 0.96 0.19 0.0 1.0 0.0

A++⋆
1 1.523(64) 1.02 2.30 0.0 1.0 0.0

Table 5.12: The A++
1 spectrum for SU(6) obtained with a different choice of the variational basis: in

the upper panel, we use 32 single–trace operators which are expected to couple with single–

glueball states; in the lower panel, we use 32 ”scattering” operators as our variational basis.
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SU(7) at β = 33.995 and L = 12, T = 12

RPC am(σ) |cn|2 χ2 mixG mixS mixT

A++
1 0.820(15) 0.98 0.44 1.0 0.0 0.0

A++⋆
1 1.569(61) 1.08 1.12 1.0 0.0 0.0

A++⋆⋆
1 1.87(13) 0.88 2.69 1.0 0.0 0.0

A++⋆⋆
1 2.23(25) 1.00 0.26 1.0 0.0 0.0

A++
1 0.820(14) 0.98 0.39 0.0 1.0 0.0

A++⋆
1 1.575(62) 1.08 1.17 0.0 1.0 0.0

Table 5.13: The A++

1 spectrum for SU(7) obtained with a different choice of the variational basis: in

the upper panel, we use 32 single–trace operators which are expected to couple with single–

glueball states; in the lower panel, we use 8 ”scattering” operators alone in the variational

basis.

SU(8) at β = 44.496 and L = 12, T = 12

RPC am(σ) |cn|2 χ2 mixG mixS mixT

A++
1 0.786(16) 0.96 0.76 1.0 0.0 0.0

A++⋆
1 1.414(63) 0.90 0.40 1.0 0.0 0.0

A++
1 0.798(17) 0.90 1.23 0.0 1.0 0.0

A++⋆
1 1.499(80) 0.84 0.20 0.0 1.0 0.0

Table 5.14: The A++
1 spectrum for SU(8) obtained with a different choice of the variational basis: in

the upper panel, we use 32 single–trace operators which are expected to couple with single–

glueball states; in the lower panel, we use 5 ”scattering” operators as our variational basis.



5.4 Large–N extrapolation 99

5.4 Large–N extrapolation

The final purpose of this work is to provide some evidence that spectral quantities of pure

SU(N) gauge theories, such as glueball masses, can be described by their values for N = ∞,

plus subleading corrections of order 1/N2 in a smooth large–N limit; this is suggested by many

arguments, from the continuum perturbation theory in the ’t Hooft planar limit to string per-

turbative calculations. From the continuum limit of lattice measurements, this has been proven

by Lucini and Teper from a first attempt in [49] to improved calculations in [11]. Their analysis

was carried on only on the 2 channels with lightest masses, the A++
1 and the E++, but they

found evidences that even the pure gauge spectrum of SU(3) can be described very well by the

N = ∞ contribution.

We should recall that our present work can only try to describe the N = ∞ spectrum at a fixed

value of the lattice spacing, but this is not a real obstacle in obtaining the continuum spectrum

because it has been shown that the continuum limit and the large–N limit commute. Hence we

will be able, in a future work, to reach the continuum limit without affecting this first large–N

computation.

As can be seen in Tab. 5.15 to Tab. 5.19, we have a large number of lattice glueballs which can

be studied in the large–N limit. In the same tables we show the SU(∞) value obtained for each

state by fitting the masses with

am(N) = am(∞) +
c

N2
. (5.6)

The details of the fits performed to obtain the SU(∞) lattice gauge spectrum are summarized

in Tab. 5.20.

We usually have small χ2 values due to the large errors on the masses (which are however, always

below 20%) and the results on the fits is a very large uncertainty on the determination of the

linear coefficient c. For the A++
1 channel the data and the fit is plotted in Fig. 5.1. We also try to

fit the points in each symmetry channel with a constant value: we find an agreement, within one

standard deviation, with the am(∞) value from the linear fit except for the quantum numbers

T−−
2 and T−+

2 . In those particular representations, the best linear fits come from discarding the

smallest N value (which is N = 3) (see Fig. 5.10 and Fig. 5.11) and the constant fits performed

give a value for the mass which is not compatible in 2σ.

For all the other representations, the conclusion of our analysis is that, given our errors on the

fitted masses, it is not possible to discern for certain between a constant value, from SU(∞)

down to SU(3), and a linear behaviour with 1/N2 corrections. However, as we already said, the

uncertainty on the linear coefficient is large, and more precise measurements of the spectra are

needed in order to confirm our just stated conclusion. In this direction, we have already planned

future simulations with anisotropic lattices, where a finer resolution in the temporal direction
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helps in extracting correlators with lower statistical fluctuations and hence more precise masses

(due to the higher stability of the effective mass plateau, cfr. Sec. 4.1.1).
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Masses in the A1 representation

A++
1 A++⋆

1 A++⋆⋆
1 A−+

1 A−+⋆
1

SU(3) 0.798(14) 1.320(44) 1.624(89) 1.429(59) –

SU(4) 0.821(15) 1.381(46) 1.93(16) 1.424(54) 2.52(54)

SU(5) 0.797(15) 1.386(56) 1.70(10) 1.408(57) 2.32(30)

SU(6) 0.785(14) 1.534(87) – 1.416(59) –

SU(7) 0.820(15) 1.570(61) 1.734(88) 1.451(58) –

SU(8) 0.786(16) 1.406(63) – 1.404(62) 2.39(39)

SU(∞) 0.799(12) 1.507(51) 1.774(97) 1.420(13) 2.31(17)

Table 5.15: Values of the masses in unit of the lattice spacing a for each SU(N) gauge group in the A1

representation. These are the values used in fits and bold–face quantities are included to

have a wider overview, but they come from non reliable operators. The SU(∞) values are

obtained by fits using (5.6).

Masses in the A2 representation

A+−
2

SU(3) –

SU(4) 2.10(19)

SU(5) 2.21(23)

SU(6) 2.56(48)

SU(7) 2.44(45)

SU(8) –

SU(∞) 2.60(15)

Table 5.16: Values of the masses in unit of the lattice spacing a for each SU(N) gauge group in the A2

representation. The A++

2 is not shown because what we see is probably a bi–torelon state.
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Masses in the E representation

E++ E−+ E−+⋆

SU(3) 1.293(39) 1.662(89 2.37(33)

SU(4) 1.264(41) 1.728(97 –

SU(5) 1.317(43) 1.71(10) 2.58(46)

SU(6) 1.247(43) 1.74(11) 2.45(40)

SU(7) 1.303(45) 1.80(11) –

SU(8) 1.335(53) 1.88(13) –

SU(∞) 1.297(25) 1.818(34) 2.55(11)

Table 5.17: Values of the masses in unit of the lattice spacing a for each SU(N) gauge group in the E

representation. The E++⋆(2T) is not shown because what we see is probably a bi–torelon

state. The states chosen come from the best possible operators (when this is not true we

highlight the corresponding state, which has usually a high χ2 or a small overlap |cn|2).

Masses in the T1 representation

T++
1 T+−

1 T−+
1

SU(3) – 1.628(80) 2.29(31)

SU(4) 1.85(16) 1.695(82) 2.28(35)

SU(5) 2.08(20) 1.613(74) 2.31(29)

SU(6) 2.10(22) 1.640(77) 2.40(36)

SU(7) – 1.622(80) 2.30(30)

SU(8) 2.19(32) 1.717(98) 2.51(42)

SU(∞) 2.332(57) 1.654(32) 2.382(54)

Table 5.18: Values of the masses in unit of the lattice spacing a for each SU(N) gauge group in the T1

representation.
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Masses in the T2 representation

T++
2 T++⋆

2 T−+
2 T−−

2

SU(3) 1.293(41) – 1.707(90) 2.26(27)

SU(4) 1.333(48) – 1.636(88) –

SU(5) 1.323(45) 1.77(11) 1.74(11) 2.00(20)

SU(6) 1.275(39) 1.98(12) 1.77(11) 2.23(25)

SU(7) 1.328(44) – 1.77(10) 2.28(30)

SU(8) 1.325(51) 1.91(14) 1.84(14) 2.27(30)

SU(∞) 1.316(19) 2.07(20) 1.782(45) 2.16(11)

1.868(23) 2.514(84)

Table 5.19: Values of the masses in unit of the lattice spacing a for each SU(N) gauge group in the T2

representation. The two SU(∞) values in T−+

2 and T−−

2 come from different fits: the first

value include the N = 3 point in the fit, whereas the second doesn’t.
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SU(∞)

RPC am(σ) c N fitted χ2

A++
1 0.799(12) 0.05(22) (3,4,5,6,7,8) 1.42

A++⋆
1 1.507(51) -1.7(8) (3,4,5,6,7,8) 1.43

A++⋆⋆
1 1.774(97) -1.1(1.3) (3,4,5,7) 1.10

A−+
1 1.420(13) 0.06(23) (3,4,5,6,7,8) 0.10

A−+⋆
1 2.31(17) 1.6(4.4) (4,5,8) 0.10

A+−
2 2.60(15) -8(3) (4,5,6,7) 0.12

E++ 1.297(25) -0.13(41) (3,4,5,6,7,8) 0.63

E−+ 1.818(34) -1.5(5) (3,4,5,6,7,8) 0.19

E−+⋆ 2.55(11) -1.5(1.5) (3,5,6) 0.07

T++
1 2.332(57) -7.5(1.2) (4,5,6,8) 0.04

T+−
1 1.654(32) -0.14(56) (3,4,5,6,7,8) 0.30

T−+
1 2.382(54) -0.99(91) (4,5,6,8) 0.05

T++
2 1.316(19) -0.13(32) (3,4,5,6,7,8) 0.36

T++⋆
2 2.07(20) -6(6) (5,6,8) 0.72

T−+
2 1.868(23) -3.6(6) (4,5,6,7,8) 0.04

T−−
2 2.514(84) -12(2) (5,6,7,8) 0.04

Table 5.20: Spectrum of the SU(∞) lattice gauge theory. The masses, in unit of lattice spacing, are

obtained from fits over the range of N shown following (5.6); also the fitted coefficient c of

the 1/N2 correction is shown. All χ2 values quoted are best fits.



5.4 Large–N extrapolation 105

0 0.02 0.04 0.06 0.08 0.1 0.12

1/N
2

1

1.5

2

am

A1
++

A1
++

*

A1
++

**

Figure 5.1: Ground state and two excited states in the A++

1 representation expressed in unit of the lattice

spacing for all N in [3, 8]. The points in zero are the N = ∞ extrapolations done using the

linear fits shown.
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Figure 5.2: Ground state and first excited state in the A−+

1 representation expressed in unit of the lattice

spacing for all N in [3, 8]. The points in zero are the N = ∞ extrapolations done using the

linear fits shown.
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Figure 5.3: Ground state in the A+−

2 representation expressed in unit of the lattice spacing for all N in

[3, 8]. The point in zero is the N = ∞ extrapolation done using the linear fits shown.
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Figure 5.4: Ground state in the E++ representation expressed in unit of the lattice spacing for all N in

[3, 8]. The point in zero is the N = ∞ extrapolation done using the linear fit shown.
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Figure 5.5: Ground state and first excited state in the E−+ representation expressed in unit of the lattice

spacing for all N in [3, 8]. The points in zero are the N = ∞ extrapolations done using the

linear fits shown.
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Figure 5.6: Ground state in the T ++
1 representation expressed in unit of the lattice spacing for all N in

[3, 8]. The point in zero is the N = ∞ extrapolation done using the linear fit shown.
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Figure 5.7: Ground state in the T +−

1 representation expressed in unit of the lattice spacing for all N in

[3, 8]. The point in zero is the N = ∞ extrapolation done using the linear fit shown.
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Figure 5.8: Ground state in the T−+

1 representation expressed in unit of the lattice spacing for all N in

[3, 8]. The point in zero is the N = ∞ extrapolation done using the linear fit shown.
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Figure 5.9: Ground state and first excited state in the T ++

2 representation expressed in unit of the lattice

spacing for all N in [3, 8]. The points in zero are the N = ∞ extrapolations done using the

linear fits shown.
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Figure 5.10: Ground state in the T−−

2 representation expressed in unit of the lattice spacing for all N in

[3, 8]. The points in zero are the N = ∞ extrapolations done using the linear fits shown,

where the red one does not consider the point for N = 3. The red fit has the best χ2.
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Figure 5.11: Ground state in the T−+

2 representation expressed in unit of the lattice spacing for all N in

[3, 8]. The points in zero are the N = ∞ extrapolations done using the linear fits shown,

where the red one neglect the point for N = 3. The red fit has the best χ2.
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6. Conclusions and perspectives

Glueballs have been investigated for over twenty years. They are a genuine non–perturbative

effect coming from the quantization of a pure gauge theory. Their masses can be studied by

numerical simulations and by modelling; the former method is used in this work. The pure

SU(N) Yang–Mills theory is regularized with a lattice cut–off [7] and correlators of glueball op-

erators are measured with Monte–Carlo simulations. Lattice spectroscopy techniques allow us

to extract the mass of states in the spectrum of the regularized theory. Since the wave–functions

of such states cannot be known in other ways, we try to guess an approximation of them by

constructing a large number of different operators.

A major breakthrough of this thesis is the realization of an automated procedure capable of con-

structing operators for all the quantum numbers of the lattice glueball states. This allows us, in

principle, to obtain the masses in every symmetry channel. The only restriction on the number

of operators created is given by the computational memory needed. Using this automated pro-

cedure, we have explored the spectrum of SU(N) with N = 3, 4, 5, 6, 7, 8. Since we were able

to measure glueball masses in all symmetry channels, our work goes beyond previous studies

well known in the literature [49, 11] where only two channels were investigated. Moreover, the

full range of N ∈ [3, 8] has been considered. To do this we had to calculate for the first time the

deconfining temperature for SU(5) and SU(7) in order to set the scale of our lattice simulations

consistently for all values of N and this is another original contribution given by this work.

Our calculation has been performed at only one value of the lattice spacing in the asymp-

totic scaling region, were some features of the continuum spectrum should already be manifest.

Continuum glueball states characterized by integer spin can split into different irreducible repre-

sentations of the lattice symmetry group, and, when the full rotational invariance is dynamically

restored, some lattice states are degenerate. We can observe that pattern between the E and

the T2; their ground states in all PC channels have the same masses within the errors and are

expected to be the continuum spin 2 glueball. However, we are not claiming that at our lattice

spacing the continuum symmetries are restored.

Despite our progresses, at our lattice spacing, only the low–energy part of the spectrum can be

investigated and higher excited states are very difficult to extract due to the statistical noise of

the numerical procedure. Some improvements can be used to enhance the signal in correlator
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measures; one of the future developments of this work will be to use anisotropic lattices, with a

smaller lattice spacing in the temporal direction, to obtain a finer resolution of the correlators.

This will enable us to obtain a reliable continuum limit that includes a few excitations in each

channel.

In the spectrum of glueballs in a finite box, other contributions can be found, from multi–

glueball scattering states and from excitations with a non–trivial topology such as torelons. It

is important to identify the unwanted states to obtain the low–lying single–particle spectrum

with less uncertainty. We made a further step in this direction trying to find the signal of such

states using suitably constructed operators.

Our analysis has shown that some states extracted do not posses a clear single–glueball inter-

pretation, like the ground state in the A++
2 or the first excited state in the E++ (for almost

all values of N). They clearly receive contributions from bi–torelon operators and we cannot

trust them as glueball states. Moreover, all states in the A++
1 seem to receive contributions

from operators that we expected to overlap onto scattering states. This is a completely new

observation we obtain as a result of our study with a very large number of operators of different

kind. Since it was not expected, it will be further investigated in a future analysis.

In conclusion, with our data we were finally able to provide an extrapolation of the spectrum at

N = ∞ aiming to confirm and further improve the results of [49], but also to get in contact with

large–N theoretical results coming from the string theory (supergravity) side of the AdS/CFT

correspondence. We are confident that a real comparison between our lattice data and string

theory calculations is possible, but we first need to extrapolate the spectrum of SU(∞) to its

continuum limit. This will be the natural prosecution of this work.
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grazie all’utilizzo del cluster del gruppo di fisica teorica a Swansea e a Wuppertal. In particolare

voglio ringraziare Francesco Knechtli per averci permesso di utilizzare le risorse del cluster di

Wuppertal, senza le quali sarebbe stato impossibile completare lo studio effettuato nel tempo a

disposizione.

I miei ringraziamenti vanno anche al mio relatore Prof. Sergio Caracciolo, il quale è sempre
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