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Chapter 1

Introduction

The Domb–Joyce model is a model in statistical mechanics, which has been
introduced to describe polymers in good solutions through N -step lattice
walks. The interaction Hamiltonian is defined in such a way as to discourage
self-intersections of the walks, and the strength of the self-excluding con-
straint is regulated by an excluded volume parameter v. For v = 0 the model
reduces to the Random Walk (non-constrained free walk), while for v = ∞
it reduces to the Self-Avoiding walk (completely self-excluding walk). As
a consequence, the Domb–Joyce model appears as an interpolating model
between the two limiting cases of RW and SAW.

The most interesting properties are observed in the large-N regime, where
the static behavior ceases to be dependent on the microscopic particulars of
the model, and universality is displayed. In general, the study of systems with
infinite degrees of freedom is interesting exactly because some properties are
independent of the underlying micro-structure. This happens in the critical
limit, that is, the limit where an appropriate correlation length — which
measure the scale length of likely fluctuations of the system — diverges, and
some quantities show non-continuous behavior. The critical limit corresponds
to the limit N → ∞ in walk models; clearly the walk has only a finite number
of degrees of freedom for N finite, so they can not sum up but to smooth
functions. It is quantities defined in the critical limit, that are universal;
that is, they do not depend on the particular form of the interaction —
as long as it remains short-range in space — nor on the underlying lattice.
Universality is the reason why extremely simple models — like the Domb–
Joyce model — can be used to describe in some measure real physical systems
— like polymers in good solutions, which are governed by manifold types
of interactions, and of which there exists a wide variety of chemically and
structurally different realizations.

Above 4 dimensions the critical behavior of polymer solutions is expected
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to be Gaussian — that is, 4 is the upper critical dimension. The three-
dimensional Domb–Joyce model has been deeply studied, and many results
are found in literature, also for other model in the same universality class.
Here, we wish to study the two-dimensional case on the square lattice by
means of a very efficient Monte Carlo technique, and to compare numerical
results with theoretical predictions. We focus on the observable mean square
end-to-end distance, which is a measure of the swelling of the chain.

Two very different (critical) limits will be investigated. The first is the
usual scaling limit, where N is sent to infinity, while v remains fixed. In this
limit, the Domb–Joyce model is thought to belong to the SAW universality
class for every v > 0. One then expects the transition v → 0 to be dis-
continuous, because in the critical limit the model jumps from one kind of
behavior (SAW-like) to another (RW-like). This is true at the critical point
N = ∞, but far from the critical region this transition is smooth. As a con-
sequence, one is interested in the characteristics of this transition, which is
called crossover. Unfortunately, crossover behavior is not universal, and such
a greatly non-critical regime can be described only through fenomenological
models. Yet, there happens to exist a limit — called critical crossover limit
— in which the system shows universality: it is the limit where N → ∞ and
v → 0 while their product is kept fixed. This limit corresponds to going to
the critical limit (N → ∞) while still observing the crossover region. The
second limit we are interested in is exactly the critical crossover limit.

In chapter 2, a brief account on polymers solutions and their modelization
is given, with particular stress on good solutions. Chapter 3 contains a
thorough description of Monte Carlo methods applied to walk models, with
particular attention on the statistical analysis of data, and on the Pivot
algorithm, which is the algorithm we use to simulate the model on a computer.
In chapter 4, we give a review of the theoretical tools and the results that can
be found in literature, and we obtain — with a standard cluster expansion
— the one-loop form of the crossover function, which describes the behavior
of the observable in the critical crossover limit. Chapter 5 is devoted to the
presentation of numerical result. Finally, chapter 6 draws the conclusions.



Chapter 2

Polymers in Solution

2.1 Generalities

A polymer [1, 2, 3, 4, 5, 6] is a long, repeating chain of atoms, formed through
the linkage of many molecules, called monomers. When the number of bonds
becomes large, the overall polymer dimensions greatly exceed those of the
constituent monomer units; because of its large dimensions the polymer is
also called a macromolecule; real polymers can consist of more than 105

monomers.

X − X − X − · · · − X

If the monomers (X) are identical then the chain is called a homopolymer,
otherwise it is called a heteropolymer. Here, we will be interested mainly
in the former type of chains. By appending different long polymers after
each other one obtains a copolymer. The number of monomers in a single
chain (usually denoted by N) is called degree of polymerization, and is a
very important quantity, because it is responsible — as will be clear in the
following — of the approach to criticality. When one considers ensembles
of polymers, two different choices are possible with respect to the degree of
polymerization: one considers either fixed-N or variable-N ensembles. The
former case is referred to as monodisperse, while the latter is the polydisperse
ensemble.

Adjacent monomers along the chain are bound together by covalent bonds.
This kind of linkage does not in general allow complete independence between
successive monomers: each monomer is given only a certain freedom of rota-
tion about the axis of the preceding unit. It is the characteristics of this very
freedom that account for the different degrees of flexibility that are observed
in real polymers. A polymer is called flexible if the correlation between the
orientations of successive bonds persists only over the range of a few monomer
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units, otherwise it is called stiff. The actual range of this correlation (that is,
the flexibility of the polymer) is not expected to affect the behavior of very
long chains, as long as it remains finite so that many important quantities
one is interested in are not sensitive on the details of this property.

The monomer units do not in general have a functionality of only two,
that is they need not form only two bonds with two other monomers. When
the monomers are bonded one after another as in the figure on page 5 they
form a linear polymer. But in general one can obtain more complex branched
structures or lattice-like structures, where the elements are (linear) polymer
segments. Two very popular structures of this kind are the so called star
polymers, in which many different polymer segments share the same end-
point, and comb polymers, chains constituted of a polymeric backbone with
several branches attached along it.

When a large number of polymers is put together, the different chains
interact with each other. The bulk properties of this ensemble depend on the
type of polymers and on the temperature: the phase can be solid, liquid, or
glassy. The liquid phase is characterized by its viscosity, which raises rapidly
with the molecular mass, but its behavior under external solicitation is vis-
coelastic, that is, the liquid reacts at first in an elastic way, and the viscosity
manifest itself only after a time which raises with the molecular mass. In
general, the bulk properties of mass polymers are hard to describe mathe-
matically, because several kinds of interactions are involved, and because the
polymers all interact with each other. An example of the complex behavior
of these ensembles is the glassy transition, that is the transition between the
glassy and the solid phase: the transition temperature depends on the speed
at which the temperature is lowered. This complexity is smoothed when one
considers polymers in dilute solutions [see section 2.2].

A complete theory of polymers — be it solutions, melts, or solid state —
would be enormously complicated and almost certainly the mathematical and
computational difficulties in solving or extracting valuable information from a
thorough model would be severe. Modelization of polymers in the framework
of statistical mechanics and the renormalization group [see chapter 4] helps in
both simplifying the models one has to study and providing new techniques
and new perspectives that are valuable tools in coping with the problems
encountered when investigating such a vast and faceted subject.

In general, a polymer model on a configuration space Ω (be it on a lattice,
on continuum space, with discrete segments or with continuous chains) can
be described by means of an ensemble of instances {ω}, specified — with
respect to an underlying measure dµ on the state space — by a Hamiltonian
H [ω] which specifies the energy of a configuration. The Hamiltonian gives
information about the system statistics through the postulation of the Gibbs
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distribution, by which the mean value of an observable O[ω] over the ensemble
is given by

〈O〉H =
1

Z

∫
Ω

e−βH[ω]O[ω]dµ[ω] (2.1)

where

Z =

∫
Ω

e−βH[ω]dµ[ω] (2.2)

is called partition function, and β is the inverse temperature.

2.2 The Role of Solution

When two monomers become close in space, they repel each other through a
force F whose strength depends on the separation between them, as well as
on the chemistry of each bead and on temperature and pressure conditions.
When a liquid solvent is introduced into the system, and a dilute solution
is generated, other kinds of interactions are present. Now each bead has
a chance to interact with solvent molecules as well as other beads. As a
result, the effective force F + F ′ that acts between a pair of beads is no
longer equal to the vacuum value F , because it gets mediated by the solvent,
which contributes a force F ′. The type of this mediation — which modifies
the effective interaction that drives the chain — depends on the particular
choice of the two constituents of the solution, and on the temperature.

Generally speaking, the monomer–monomer interactions can be divided
into two categories:

• Short-range interaction. This indicates those interactions that have a
short range along the chain; they are responsible for the local connec-
tivity of the polymer — that is, its chain-like structure — and for the
kind of constraints that successive monomer units have to comply.

• Long-range interactions. These interactions are long-range along the
chain, but are usually short-range in space — an important exception
is the case where charged species are present, but treating long-range
interacting chains is hard from the theoretical point of view. These
forces can be both attractive and repulsive, and are responsible for the
deviation from ideal-chain (Gaussian) behavior.

The configuration statistics of short-range interaction polymer systems can
be treated with standard mathematical tools, such as the Markov methods;
hence, models involving only this type of interactions are often exactly solv-
able. When it comes to studying the long-range case, things get much more
complicated.
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Effective — solvent-mediated — interactions of the second type can be
either repulsive or attractive. This is an effect of the presence of the solvent.
If the bead-solvent interaction favors bead-solvent contact over the bead-bead
one, the solvent is said to be a good solvent (for the polymer and temperature
considered), while if the reverse is the case, it is called a bad solvent. In a
good solvent, then, the segment-solvent interaction tends to pull a pair of
segments apart, so that the effective force F ′ should be repulsive as is F .
On the other hand F ′ will be attractive in poor solvents. A solution of two
fixed constituents can be made poorer or better by changing the temperature.
There happen to exist a certain temperature — called theta temperature —
for which on average F +F ′ = 0. Roughly speaking, at the theta temperature
the attractive forces exactly balance the repulsive ones; the chain is then
expected to behave ideally. The theta point is then seen to be similar to
the Boyle temperature for real gases, which is the temperature for which the
(effective) behavior is ideal.

In the good solvent regime, the chain is expected to be in a swelled state.
This means that the average extension of the polymer has to be larger than in
the non-interacting case, because now the interactions are mainly repulsive.
On the contrary, for a poor solvent under the theta temperature, the poly-
mer is expected to be dominated by the attractive interactions between its
monomers, so that it will be found in a globular self-collapsed state. When
attractive forces prevail, the monomers all tend to occupy the same volume.
Yet, this is physically impossible, because short-range steric (hard-core) re-
pulsion — which is due to atom–atom forces between the monomers, and
no longer to the solvent-mediated van der Waals interactions — forbids the
coincidence of different monomers. Thus, below the theta temperature the
chain is found in a low-entropy globular phase, and the statistics is energy-
dominated, while above the theta point the chain is found in a swelled, high-
entropy phase.

A natural observable which measures the overall swelling of the chain
is the mean square end-to-end distance (sometimes it will be called simply
end-to-end distance) 〈

R2
e

〉
:=

〈(∑
i

ri

)2〉
(2.3)

where the ri are the vectors specifying the monomer locations. The end-to-
end distance is observed to follow a power-law behavior for N large:〈

R2
e

〉 ∼ N2ν (2.4)

Thus one expects ν to be ∼ 1/d in the collapsed phase — where the chain
densely occupies a volume — and ν ≥ νideal in the swelled phase, where
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νideal is the corresponding value for the ideal chain. A direct measure of the
swelling of the chain is the swelling or expansion factor

α2 :=
〈R2

e〉
〈R2

e〉0
(2.5)

that is, the ratio of the mean square end-to-end distance of the excluded-
volume chain to that of the ideal chain.

When describing a polymer solution within the framework of statistical
mechanics, the Hamiltonian is given by the total interaction energy W :

H [ω] = W ({Ri}) (2.6)

where {Ri} stands for the set of all monomer displacement vectors. For the
treatment of the theory it is necessary to make some approximation. The
fundamental approximation which is done in the good-solvent regime is the
binary cluster approximation or superposition approximation

W ({Ri}) =
∑

0≤i<j≤N

w(Rij) (2.7)

where w(Rij is the pair potential between the i-th and the j-th bonds as a
function of their separation. Equation (2.7) expresses the fact that only two-
body interactions are present, which seems to be a reasonable assumption,
since one does not expect that three-monomer interactions even exist.

Yet, the binary cluster approximation is valid only in the good-solvent
regime. Under the theta temperature, attractive forces begin to win over
repulsive ones. If one assumes only purely attractive interactions, a simple
argument [see section XIV-2.1 in [5]] shows the triviality of the model. Pick
for example a purely attractive walk on a square lattice. Indeed, it is easy
to see that entropy is always proportional to the chain-length N , while the
energy of the fundamental state is proportional to N2 — the fundamental
state being the chain {0, µ, 0, µ, . . .}, where µ is a neighbor of the origin 0.
Hence, the attractive phase is energy-dominated. Moreover, the energy of
the first excited state is seen to be orders of N greater than the fundamental
state, so that in the N → ∞ limit the chain will essentially stay in the latter.
This implies that the mean square end-to-end radius is equal to the lattice
constant. The situation is even worse when one takes a continuum limit of
the model, by removing the lattice, because the chain is seen to collapse onto
a single point of the space, and its mean metric dimension is null. It is then
clear that two-body interactions are not enough, and many-body terms have
to be introduced in order to obtain a non-trivial theory of poor and theta
solvents.
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Another approximation — which is implicit when one postulates a canon-
ical measure like the one in (2.1) — is that the theory actually describes
single chains: there are no interaction terms coming from the forces between
different chains. Physically this can be achieved by considering only dilute
solutions, where the mean distance between different chains is much larger
than the typical chain size.

2.3 Models

Several models have been proposed to describe polymers in solution. Each
has its own advantages and drawbacks: some are easier to treat theoretically,
because they can be handled using the standard tools of theoretical physics,
such as perturbative expansions and renormalization; others are easier to
simulate and treat numerically; still others provide more realistic results in
the non-critical region.

The first step in developing theories of large length scale polymer proper-
ties involves the introduction of a minimal model that adequately describes
these properties while using the smallest possible number of phenomenolog-
ical parameters. The simplest possible models are the continuum random
flight and the lattice random walk. These are thought to correctly describe
some properties of polymer solutions at the theta temperature (in dimension
d ≥ 3).

Away from the theta point, the effective interactions between distant
polymer units become an important aspect for the statistic description of
the system, even regarding those properties that are thought not to depend
on the strength or short-scale details of these interactions. So more sophis-
ticated models are to be considered; these need to have a larger number of
tunable parameters, thus increasing the difficulties in theoretical and numer-
ical investigation of these models.

2.3.1 Chain Models

Chain models describe real polymers through discrete straight segments at-
tached to each other in a chain-like fashion. Let N denote the number of
such segments, and let Ri denote the position in R

d of the i-th monomer
along the chain (i = 0 . . . N), so that the vector describing j-th segment is
rj = Rj − Rj−1 (j = 1 . . . N). The distribution functions τj for the bond
vectors rj is defined as

τj(rj) = e−βuj(rj) (2.8)
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where uj specifies the bond potential, and its zero is chosen in such a way
that the probabilities τj(rj) are normalized. In the random-flight model the
probability associated to a chain specified by the monomer vectors {Rj}j=0···N
is chosen as to depend only on the τj ’s, so that every segment is independent
of the rest of the chain. It is easy to guess that — by the central limit
theorem — the particular choice of the bond potential does not radically
change the long-chain behavior — which will be Gaussian — in accordance
with universality considerations. An important scale specified by uj is the
mean square bond length〈|rj|2

〉
=

∫
dr|r|2uj(r) = a2

j (2.9)

If the bond distribution is the same for each bond, then the mean square
end-to-end distance is easily calculated in terms of the unique bond length
a: 〈

R2
e

〉
=

〈(∑
i

ri

)2〉
=

N∑
i=1

〈|ri|2
〉

+
∑
i�=j

〈ri · rj〉 = a2N (2.10)

In some references the random-flight chain is taken as a chain with the
Markov property of independence between different bond distributions and
with all rod-like fixed-length segments. This model is not convenient for
theoretical formulation of global properties, because of the constraint that
the length of each segment be fixed.

A particular form of the random-flight model is the spring-bead model,
where the potential between two successive monomers is taken to be elastic,
so that the chain can be thought as being composed of beads joined together
by springs. A nice feature of this model is that it can be demonstrated that a
spring-bead chain — which is ‘locally Gaussian’ by definition — behaves as a
Gaussian regardless of the value of N , so that the behavior of its observables
can be calculated exactly and the large-N expansion can be actually written
in a closed form without corrections to scaling.

Other different chain models are possible and are found in literature.
The freely rotating chain is a polymer made of fixed-length segments that
are not completely free to rotate, but are subject to the constraint that the
angle between neighboring segments is fixed. A continuous chain generated
from the freely rotating chain by an appropriate limiting process has been
proposed, and is called Kratky-Porod chain, or worm-like chain.

All these models present a local granular structure, that corresponds to
the microscopic granularity of real polymers. This is not a fundamental
requirement of a polymer model, and continuous chain models have been
studied, which are described in continuum space (the chain is parametrized
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by means of a continuous index) so that they do not have local stiffness [see
section 2.3.3 for an example]. These models are usually easier to treat with
the standard tools of theoretical physics, so that they have been widely used
to study polymer properties with renormalization group techniques.

2.3.2 Walk Models

Walk models are defined on a lattice, so they are naturally regularized with
respect to ultraviolet divergences. These turn out to be very friendly models
when trying to investigate polymer properties with numerical methods such
as Monte Carlo or series extrapolation [see chapter 3]. On the other hand
they are usually harder to treat theoretically, and require additional care
in understanding how non-universal properties depend on the choice of the
underlying lattice. The role of the lattice is a non-trivial one, not only on
a local level. Actually, in certain circumstances careful choice of the lattice
even permits exact solution of some special models.

On the other hand, the lattice is often responsible for artifacts due to
the special local and global properties it has. For example, on a triangular
lattice a walk has a non-zero probability of returning to the origin after
N ≥ 2 steps, while on a square lattice this probability is null for every odd
N . For the self-avoiding walk this parity breaking is responsible for additional
corrections to scaling with different sign for N and N + 1; these are called
antiferromagnetic corrections, and are strictly linked to the appearance of an
additional singularity of the generating functions (for a negative real value in
the complex temperature plane) which is called antiferromagnetic singularity.

The simplest walk model on a lattice is the random walk (RW)[7, 8], which
describes polymers in a condition where all forces acting on the monomers
are neglected. A RW is a path on the lattice which is completely unrestricted;
the ensemble of RWs is defined as the set of all RW where each walk is given
the same statistical weight. This model is a true Markov process1, since
the probability distribution for the N -th point depends only on that for the
(N − 1)-th point. Many properties of the RW can be calculated exactly. Let
P (x1, t1;x0, t0) be the conditional probability for the walk to be on the site
x1 at time t1, knowing that its initial position is x0 at time t0. The obvious
observation that a walker can reach a certain point only if one unit of time
before it is on a neighboring site leads to a recurrence relation for P :

P (x, t + 1;x0, t0) =
1

2d

∑
µ̂

P (x + µ̂, t;x0, t0) (2.11)

1A brief introduction to Markov processes is given in chapter 3, but the goal is very
different than the description of the RW.
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where the sum is over all unit length vectors that generate the lattice. The
seed of the recursion is

P (x1, t0;x0, t0) = δx1,x0 (2.12)

The two equations (2.11) and (2.12) represent a generalization to arbitrary
dimension of Pascal’s construction of the binomial coefficient, which corre-
sponds to d = 1.

These recursion relations can be easily solved by working in momentum
space, and give

P (x1, t1;x0, t0) =

∫ π

−π

dk

(2π)d
eik·(x1−x0)

(
1

d

∑
µ

cos kµ

)t1−t0

(2.13)

A non-trivial limit of this propagator can be obtained by letting the time-
scale τ and the space-scale a go to zero in such a way that the ratio τ/a2 be
kept constant. One gets

P (x1 − x0, t1 − t0) =
1

(4π(t1 − t0))d/2
exp

(
−(x1 − x0)

2

4(t1 − t0)

)
(2.14)

that is the well-known kernel of the diffusion equation in continuous space.
From this distribution it is possible to compute the different observables of
interest; for example it can be seen that the squared end-to-end distance
〈|x1 − x0|2〉 is proportional to t1 − t0.

The random walk is a very simple model which does not take into account
any of the interactions that take place in a polymer solution. A somewhat
more refined model — which is still very simple in its definition — is the Self-
Avoiding Walk. The goal of this model is to describe the excluded volume
interactions that dominate the good solvent regime.

The self-avoiding walk (SAW)2 is a path on a lattice that does not visit
the same site more than once. This simple and straightforward definition
must not lead to an underestimation of the problem: the SAW turns out
to be a most fascinating and rich subject, arising manifold problems and
requiring deep investigation with tools borrowed from many different fields
of mathematical and theoretical physics. In a strict mathematical sense we
still do not know exactly even how many SAWs reach a certain point after a
certain number of steps (that is, the two-point function). On the other hand,
a variety of non-rigorous methods have been applied to the SAW, which have
shed light on some important aspects of this model.

2An excellent and quite complete review of results and methods for the self-avoiding
walk can be found in the book by Madras and Slade [9].
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The basic questions about SAWs regard the mean distance the walk is
from the starting point after N steps. Answers to this questions are known
for very small values of N (from exact enumeration) or asymptotically for
N large (from non-rigorous and rigorous methods, which give estimates and
bounds on the quantities of interest).

In general, a SAW lives on an (undirected) graph, which is a collection of
points, together with a collections of edges (pairs of points). The most com-
mon — and maybe the most simple and natural — graph is the d-dimensional
lattice Z

d, the points of which are the x ∈ R
d with integer coordinates, and

the edges of which are all the unit vectors connecting the points. In dimen-
sion one, everything is known exactly for the SAW: once an initial direction
is chosen, the walk is completely stretched in that direction, since it is never
allowed to turn back. This is quite a simple and uninteresting behavior. In
d < 1 the structure becomes vastly richer.

One defines cN as the number of all N -step SAWs starting at the origin.
Computation of cN (d) is possible for small values of N , but the combina-
torics are seen to become extremely complicated as N increases. Several
observations allow the computation of bounds on cN . The simplest of such
observations is that walks for which each step is in one of the d positive coor-
dinate directions are SAW, so that dN is a lower bound for cN . On the other
hand, the number of N -step SAWs is not greater than the number of ran-
dom walks for which immediate reversal is prohibited, so that this number
provides an upper bound on cN . Summing up

dN ≤ cN ≤ 2d(2d − 1)N−1 (2.15)

When it comes to computing mean values, the flat ensemble is considered,
in which all N -step SAWs get the same weight, so that for an observable O(ω)

〈O(ω)〉N :=
1

cN

∑
ω : |ω|=N

O(ω) (2.16)

where the sum is extended to all N -step SAWs.
For the simple random walk one clearly has cRW

N = (2d)N = µN , where µ
is the coordination number of the lattice. The number of random walks thus
follows a simple exponential growth for every N . The behavior for the SAW
is conjectured to follow a similar exponential law, but only asymptotically
for large N , with a different value of µ (accounting for the effective action
of the self-avoidance constraint) and with power-law corrections; that is, for
large N

cN ∼ AµNNγ−1 (2.17)
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where µ is called connective constant and γ is an example of a critical ex-
ponent3 (that is, an exponent describing power-law behavior of observables
in the vicinity of a second-order phase transition). While no prove of the
finiteness of γ is yet known, the existence of the connective constant can be
demonstrated rigorously as follows.

Given an N -step SAW ω1 and an M-step SAW ω2, their concatenation
ω1 ◦ ω2 is defined as the (N + M)-step walk obtained by appending ω2 after
ω1. The number of such walks is cNcM , which represents the number of
random walk that are self-avoiding for the initial N steps and for the final
M steps, but for which other kind of intersections are allowed. Clearly such
a number is an upper bound for the number of (N + M)-step SAWs, so that

cN+M ≤ cNcM (2.18)

log cN+M ≤ log cN + log cM (2.19)

Equation (2.19) expresses a property of sequences of numbers called subaddi-
tivity. One can then apply a standard theorem and obtain that the following
limit exists

µ := lim
N→∞

c
1/N
N (2.20)

It then follows immediately from the simple bound (2.15) that

d ≤ µ ≤ 2d − 1 (2.21)

Much more refined bounds for cN are available. In dimensions d = 2 the
strictest bound is provided by the Hammersley–Welsh theorem [10] (the proof
of which is based on an ‘unfolding’ procedure that brings a SAW into a self-
avoiding bridge, which is superadditive), while for d = 3, 4 the best result
is given by Kesten’s bound [11, 9]. Both these bounds (that are the best
bounds available) are in the form cN/µN ≤ exp(O(Np)) for some constant
0 < p < 1; it is a major open problem to replace this bound by a polynomial
in N .

Moreover, it is conjectured that the following behaviors hold in the large-N
regime

〈|ω(N)|2〉 ∼ BN2ν

G(x; zc) ∼ A/|x|d−2+η (as |x| → ∞)
cN(x) ∼ CµNNα−2

(2.22)

where cN(x) is the number of SAWs with end-point at site x, G(x; zc) is the
generating function of cN(x) evaluated at the singularity, and ν, η and α

3The particular expression 1 − γ at the exponent is chosen to match the definition of
a corresponding exponent γ for spin systems.
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are critical exponents, between which hyperscaling relations hold (see [9] for
details)4.

Several modified SAW and RW models turn out to be of great interest,
both in deepening the understanding of the ‘full’ SAW and in providing a
workbench to test theoretical and numerical tools. Examples are the loop-
erased RW, self avoiding bridges, self avoiding polygons, the SAW and RW
in constrained geometries, the SAW with medium range jumps, the myopic
SAW (sometimes called ‘true’ SAW, because it is defined as a true stochastic
process, while the SAW is not), and the weakly self avoiding walk or Domb–
Joyce model.

Loosely speaking, the Domb–Joyce model [12] is an ensemble of ordinary
random walks, where each walk ω pays an energy for each self-intersection,
so that self-intersecting walks are actually possible, but more or less probable
depending on the interaction coupling. The measure can be defined as

dµ
(v)
DJ [ω] :=

(∏
i

dωi

)
exp

[
−v

∑
i∈Λ

ni(ni − 1)

]
(2.23)

where ni is the occupation number of lattice site i, and
∏

i dωi is the under-
lying flat measure on lattice random walks. The partition function Zv is the
mass of this measure:

Zv =

∫
dµ

(v)
DJ (2.24)

For v = 0 the measure collapses onto the flat RW measure, while for v → ∞
only occupation numbers equal to 0 or 1 contribute to the energy, so that
one gets the usual SAW measure.

dµ
(v→∞)
DJ [ω] = dµSAW [ω]

dµ
(v=0)
DJ [ω] =

∏
i dωi

(2.25)

Definition (2.23) can be rewritten by counting self-intersections along the
walk itself — instead of counting them on the whole lattice — and by making
the dependence on N explicit:

dµ
(v,N)
DJ [ω] =

(
N∏

i=1

dωi

)
exp

−v

N∑
i,j=1
i�=j

δωi,ωj

 (2.26)

4See chapter 4 for an exact result on ν that is relevant to the model studied here.
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Another equivalent form is obtained by remembering that δn
ij = δij for every

n and resumming the exponential:

dµ
(N)
DJ [ω] =

(∏
i

dωi

) ∏
i�=j

[
1 + ṽδωi,ωj

]
(2.27)

where the new parameter is related to the old one through the following
relation

ṽ = e−v − 1 (2.28)

Both these latter forms are found in the literature5. We will be employing
definition (2.26), where the parameter v will be called the excluded volume,
interaction strength, or coupling of the theory, and N will be called number
of bonds, or walk length.

By comparing the foregoing description with the notions explained in the
previous two sections, the Domb–Joyce model appears then to describe (uni-
versal properties of) monodisperse ensembles of linear flexible homopolymers
in good solutions at high dilution.

Sometimes a generalization of this model has been proposed and studied
[13], where the weight of a self-intersection depends on the length of the loop
the intersection produces. Such a model is called forgetful weakly self-avoiding
walk (FWSAW) — because of its memory-loss property.

When it comes to describing polymers near or below the theta tempera-
ture, all the foregoing models fail, because they are completely neglecting the
attractive interactions between monomers that are distant along the chain.
A model which is refined in this direction is an improved version of the
SAW, to which attractive interactions are added. Such an ensemble is de-
fined as the set of all SAWs with Hamiltonian proportional to the number
of nearest-neighbor (on the lattice) contacts. Such an interaction is called
bridge interaction and is a model of the short range attractive forces between
the monomers.

2.3.3 Two-Parameter Theory

The so-called two parameter theory is a continuum theory of polymer so-
lutions above the theta temperature. It relies on the Edwards model [14],
which is a continuum measure on paths ω with the same characteristics of
the Domb–Joyce model — Gaussian backbone, point-wise range in space,

5Sometimes the sum at the exponent is restricted to i < j so that the parameter v
takes an additional 1/2 factor.
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long range on proper time. It is described by the partition function over
walks ω(τ) with τ ∈ [0, L]

Z(L, v) =

∫
D [ω] exp

[
−1

2

∫ L

0

dτ ω̇2(τ) − v

2

∫∫
τ1>τ2

dτ1dτ2 δd (ω(τ1) − ω(τ2))

]
The two parameters of the theory are L and v, the former being the chain-
length and the latter being the excluded volume parameter. The first integral
in the exponential is the well-known geodesic weight that appears in the
Wiener measure on random paths.

This is the modern version of the two-parameter theory, which was first
formulated by Flory [15] in a different form. The original method of Flory
approximately views the polymer as a spherical cloud of segments whose
density decreases according to a (α-dependent) Gaussian distribution in the
distance from the center of mass. Such a model is often referred to as the
smoothed-density model. In the Flory theory, the equilibrium value of the
expansion factor α is calculated from the balance between the osmotic force
which tends to swell the molecule, and the elastic force arising from the
resulting molecular expansion to a less probable configuration. The resulting
equation (in three dimensions) for α is called Flory equation

α5 − α3 = 2.6z (2.29)

where z is defined as

z :=

(
3

2πl2

) 3
2

vN
1
2 (2.30)

This equation appears to be correct at zeroth order, but is slightly differ-
ent from more precise theoretical calculations (for example by the Wang-
Uhlenbeck method) already at first order in z, where 4/3 is expected, instead
of 2.6.

Many variants of the original Flory approach have been proposed (see
for instance chapter VIII in [5]), and they all share the same features of the
two-parameter theory.



Chapter 3

Monte Carlo Integration

The name Monte Carlo is used to denote a class of techniques and algorithms
that are used to perform approximate calculations in cases where one is
not able to treat them analytically. The leit motif of these methods is the
fundamental role played by random numbers. These are used to probe the
space in a ‘uniform’ fashion, in such a way that integrals or infinite series be
substituted by finite sums that approximate them. Monte Carlo integration
is — in general — a bad method, because of its rate of convergence: the
statistical errors it produces are almost universally proportional to the inverse
square root of the computational budget; this is essentially a consequence of
the central limit theorem. Almost all other numerical methods converge at
far faster rates in low dimensions, but in high dimensional systems (such
as those in statistical mechanics and quantum field theory) Monte Carlo is
almost always the best choice. Also, Monte Carlo (also denoted MC from
now on) methods are easier to use in cases where the domain of integration
is irregular. Moreover the accuracy of results may be improved by adding a
single point (i.e. a single MC iteration), while for other deterministic methods
one usually has to go to higher order rules.

3.1 The Monte Carlo Method

The term ‘Monte Carlo’ can be traced back to a popular game played in
Monaco[16]. Strangely enough, this has little to do with random numbers
and luck; it is a street game where children toss pebbles1 blindfolded (that
is, randomly) on a circle inscribed in a square. The ratio between the two
areas is π/4. If — after a lot of tossing — the stones uniformly span the

1It is worth noting that incidentally (or maybe not) the word ‘pebble’ is ‘calculus’ in
Latin.



20 CHAPTER 3. MONTE CARLO INTEGRATION

whole square one is able to compute an estimate of π simply by counting the
pebbles inside and outside the circle.

This game perfectly describes the whole philosophy behind a class of
MC methods that are called static, or equilibrium Monte Carlo. In a more
abstract way, one wants to compute integrals∫

Ω

dµ(x) f(x) (3.1)

of a function f w.r.t. a measure dµ on a domain Ω. Using static MC means
generating a (large) set of samples x ∈ Ω in such a way that they are

• uniform (w.r.t. the measure dµ): this means that for a subset S ⊂ Ω
the probability of generating a sample in S is proportional to the volume
of S, i.e. to

∫
S

dµ;

• independent : that is, the probability of generating a given sample must
be independent of the previously generated samples.

Sampling a measure space with an algorithm that follows these two properties
is called direct sampling.

As often as unfortunately, there are cases in which one is not able to direct
sample the configuration space. For instance, one of these cases is represented
by the famous coins-in-a-shoe-box problem, treated in the original paper by
Metropolis et al.. Here, the problem is to sample the distribution of a fixed
number of coins packed inside a box, so that they do not overlap. A naive
simple sampling algorithm would be to choose randomly the position of the
first coin, and then to insert the other coins with a uniform distribution in
the allowed (non-overlapping) region. Unfortunately, this procedure does not
yield the correct distribution; in particular, the maximum density of random
sequential deposition is much smaller than the close packing density of the
coins.

For problems for which a static MC is unfeasible, one has to change strat-
egy and drop at least one of the two requirements above. Dynamic MC does
not produce independent samples anymore. Now successive MC iterations
give correlated samples: this means that the points in the configuration space
are not randomly dispersed anymore, but follow a ‘path’. But this dynamics
is carefully chosen in such a way that the walk ends up covering ‘uniformly’
the space of configurations. The drawback of this approach is that one has
to be more careful when analyzing the data obtained from such a sampling
scheme, because of correlation (the dependence of successive values) and re-
laxation (the initial ‘time’ it takes for the path to cover ‘uniformly enough’
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the space). [For a more precise discussion of this aspects see sections 3.2 and
3.2.3.]

In the pebble game metaphor dynamic MC corresponds to throwing a
pebble and then moving to the place it lands, before throwing another one.
This procedure brings up an important question: what should be done when
a stone is thrown outside the square. A correct answer is given by the
Metropolis–Rosenbluth–Teller algorithm [see section 3.1.2], which states that
when a pebble has fallen out of reach the player should remain where she is
and pile a new pebble on top of the old one, before continuing.

To state this more precisely, let Σ denote the configuration (or state)
space, and let the integral be expressed in terms of a probability density
π. Then the idea of dynamic MC methods is to invent a stochastic process
with state space Σ having π as its unique equilibrium distribution. One is
then assured that time averages over this process will eventually converge to
π-averages, irrespectively of how the process is initialized. It is important to
note (with the author in [17]) that this time evolution need not correspond
to any real dynamics, but is to be chosen on efficiency grounds.

3.1.1 Markov Chains

Stochastic processes for dynamic MC are Markov chains2. A Markov chain
with state space S is a sequence of S-valued random variables X0, X1, . . .
such that successive transitions Xt → Xt+1 are statistically independent.
Obviously the fact that Markov chains have a one-timestep memory3 does
not imply that correlation between distant elements on the chain be null. On
the contrary, often several thousand iterations are required for the system to
lose memory of initialization.

Once an initial distribution α is chosen, a Markov chain is completely
specified by its transition matrix (also called transition kernel, in general
state space). The elements in the transition matrix P represent the proba-
bilities associated with the transitions between elements of the state space:
P = {pxy}x,y∈S = {p(x → y)}x,y∈S. In order to let P be a probability transi-
tion matrix (or a stochastic matrix ) it is required that

• pxy ≥ 0 for all x, y ∈ S

• ∑
y pxy = 1 for all x ∈ S

2There are lots of references on the theory of Markov chains. Among them the books
by Iosifescu[18] and Chung[19] are worth a look; they focus on Markov chains with finite
state space and general state space respectively.

3Alternatively one says that the order of the chain is one.
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Now if the chain is initialized so that Prob(X0 = x) = α(x) then the stochas-
tic process is specified by the joint probability

Prob(X0 = x0, X1 = x1, . . .) := α(x0) px0x1 px1x2 · · · (3.2)

The goal is to construct a chain which will (in some sense to be made
more precise) converge — no matter what the initial distribution be — to
the probability distribution that MC is intended to simulate. Clearly not all
Markov chains have the property that they converge to the same distribution
for all initializations. For example the chain with identity transition matrix
always converges (in any sense) to the starting distribution. But that of
convergence is just the first difficulty. Actually one wants to be able to
construct a Markov chain given the equilibrium distribution, so asymptotic
distributions should be asked to have some caracterizing property that is
more easily checked. One is then brought to introduce stricter classes of
chains and distributions.

A Markov chain is said to be irreducible if for each pair x, y ∈ S there
exists an n ≥ 0 for which

(P n)xy > 0 (3.3)

Stated differently an irreducible chain is one for which every state has a
finite probability of being reached starting from any other state (including
itself). This definition is suggested from the necessity of having a unique
equilibrium distribution, because if the state space were divided into mutually
‘non-interacting’ domains (in the sense specified by failure of equation 3.3),
one could end up having different equilibrium probability measures when
starting from distributions supported in different domains. The period of
x ∈ S (denoted dx) is defined as the greatest common divisor of the numbers
n > 0 for which (P n)xx > 0. It can be shown that for an irreducible chin
all states have the same period, so one can speak of the period of the chain
d. Moreover the state space can be partitioned into subsets S1, S2 . . . , Sd

around which the chain moves cyclically, i.e. (P n)xy > 0 for every couple
x ∈ Si y ∈ Sj for which j − i �= n(mod d). If d = 1 the (irreducible)
chain is called aperiodic. Aperiodicity assures that the chain does not cycle
periodically through some subsets of the state space, so that — as stated by
the following theorem — convergence to the equilibrium distribution can be
intended in a ‘strong’ sense. Finally, a probability measure π = {πx}x∈S is
called stationary if it is a (left) eigenvector of the trasfer matrix P , that is if∑

x

πx(P )xy = πy for all y ∈ S (3.4)

With these definitions a theorem about convergence can be proved:
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Theorem. Let P be the transition probability matrix of an irreducible Markov
chain of period d. If a stationary probability measure exists, then it is unique
and

lim
n→∞

(
P nd+r

)
xy

=

{
dπy if x ∈ Si, y ∈ Sj, j − i = r(mod d)
0 if x ∈ Si, y ∈ Sj, j − i �= r(mod d)

(3.5)

In particular for an aperiodic chain d = 1, so that

lim
n→∞

(P n)xy = πy (3.6)

In the general case a stationary probability distribution need not exist,
but if it does, then the theorem assures that it is the distribution reached in
the long run, irrespectively of the initial distribution α.

Other theorems can be proved under the conditions of this theorem, such
as a central limit theorem and a law of the iterated logarithm (for statements
and proofs see [19]).

3.1.2 Dynamic Monte Carlo and the Metropolis Method

It is now clear how to set up a MC dynamics to calculate expectation values
w.r.t. a given probability measure π. It suffices to invent a Markov process
with a transfer matrix P such that

• P be irreducible

• π be stationary for P .

Then the theorem in section 3.1.1 implies that expectation values calculated
along the process (time averages) converge — in the ‘weak’ sense specified
by that theorem — to expectation values w.r.t. the measure π (equilibrium
averages)4.

A convenient way of satisfying the condition of stationarity without ex-
plicitly checking it is by requiring a stricter condition called detailed balance.
While stationarity means that the net ‘current’ coming out of an arbitrary
state x is null (so it is a rather global condition, because it concerns all other

4Notice that this equivalence between time-averages and π-averages is resemblant of
a fundamental aspect in ergodicity theory. Actually, the term ergodic is found in the
literature about Markov chains, where it denotes a chain which is irreducible and (in
general non-finite state space) also aperiodic and positive Harris recurrent (for a definition
see [20]). Elsewhere (for instance in [21]) the term is used to denote an irreducible chain
for which a stationary distribution exists.
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states), detailed balance requires that the net current between any couple of
states be null, i.e.

πx(P )xy = πy(P )yx for each x, y ∈ S (3.7)

Detailed balance is then a more local condition. It is easily seen that equa-
tion 3.7 implies global stationarity: summing over x one obtains the prod-
uct πP in the left hand side, and π in the right hand side, since summing
over an index of (P )xy gives unity (P is a probability transition matrix). A
Markov chain satisfying detailed balance is called reversible. It is worth not-
ing that if P1, P2, . . . , Pn are transition probabilities satisfying stationarity
for π, then so does any convex combination (that is, any matrix of the form∑n

i=1 λiPi with λi ≥ 0 and
∑n

i=1 λi = 1). The same holds for the product
P = P1P2 · · ·Pn

5.

Now, given a probability measure π on the state space S the goal is
to construct a transition matrix P satisfying detailed balance. The fact is,
that usually one already has some sort of idea about how the MC algorithm
should work, i.e. one already knows some features of the process, such as
locality or non-locality [see section 3.2.3], symmetries, and even the kind of
atomic moves the process should be driven by. So, in order to keep these
rough features in the final algorithm one is concerned about finding a way
of minimally modifing an existing probability transition matrix so that it
satisfies detailed balance with respect to π.

A general method of performing this task was first introduced by Metropo-
lis et al.[22] and was later extended and generalized by Hastings[23]. Let P0

(which will be called proposal matrix ) be an irreducible probability transition
matrix that includes the fundamental features of the algorithm one wants to
develop. One could then use this matrix to generate the atomic moves of
the process; these are called proposed moves. The core of the Metropolis–
Hastings method is then a way of determining whether a proposed move is
to be accepted or rejected. A most important point here is that in the case
of a rejected move the process should not simply wait for another move to be
processed, because following this way the rejected move would bring no in-
formation at all to the chain. On the contrary, if a proposed move is rejected,
then a null transition x → x is made, so that ‘memory’ of the rejection is
kept in the dynamics. In the pebble game metaphor [see the introduction to

5These correspondences are useful when constructing new MC algorithms, because
one can build a new dynamics using other known dynamics — for which stationarity is
demonstrated — as bricks. In fact, the convex combination means choosing at each step
with probability λi a move among the atomic moves specified by Pi, while the product
amounts to perform the moves sequentially.
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section 3.1] this rule equates to pile a new pebble on top of the old one at x
when the new pebble has been tossed out of the game square.

If the probability of accepting a proposed move x → y is denoted by αxy,
the transition matrix of the modified algorithm is then

(P )xx = (P0)xx +
∑

y �=x (P0)xy (1 − αxy)

(P )xy = (P0)xy αxy for x �= y
(3.8)

Now for P to satisfy the detailed balance condition w.r.t. π, the following
equation for α must be satisfied for all pairs x �= y:

αxy

αyx

=
(P0)yx πy

(P0)xy πx

(3.9)

Setting

αxy = f

(
(P0)yx πy

(P0)xy πx

)
(3.10)

where f : [0, +∞] → [0, 1], one sees that solutions to equation 3.9 correspond
to those functions f which satisfy

f(z)

f(1/z)
= z for all z (3.11)

The original procedure proposed by Metropolis et al. corresponds to the
choice

f(z) = min(z, 1) (3.12)

but other choices are possible, for instance

f(z) =
z

1 + z
(3.13)

which is sometimes used. The Metropolis choice 3.12 is the maximal function
satisfying equation 3.11, meaning that for all other possible choices of f the
following inequality must be satisfied6.

f(z) ≤ min(z, 1) (3.14)

Also notice that with the Metropolis choice a transition kernel already sat-
isfying detailed balance is not modified at all.

6In fact, f(z) ≤ 1 because it represents a probability. For z > 1 this suffices to conclude
that f(z) ≤ min(z, 1). On the other hand, if there exists a z∗ < 1 for which f(z∗) > z∗,
then equation 3.11 implies f(1/z∗) > 1, absurd.
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The special case in which the transition matrix is symmetric and the
target distribution is of the Gibbs form is worth analyzing directly. In this
case one has

αxy = f

(
πy

πx

)
(3.15)

with a distribution of the form

πx =
1

Z
e−βEx (3.16)

so that

αxy = f
(
e−β(Ey−Ex)

)
(3.17)

The most important aspect here is that the partition function Z has disap-
peared from this expression: this is crucial, because in general one is not
able to compute it exactly. Using the Metropolis acceptance probability one
finally obtains the following update rules:

• If ∆E ≤ 0, then just accept the proposal.

• If ∆E > 0, then accept the proposal with probability e−β∆E.

The second case is treated with the help of pseudo-random number genera-
tors, as in the prior procedure of generating a (random) proposed move. One
generates a random number uniformly distributed in [0, 1] and then accept
the proposal if this number is ≤ e−β∆E . This scheme for actually generating
the MC dynamics is the one we followed for the simulations in this work.

3.2 Statistical Analysis of Data

A most important aspect of Monte Carlo studies is the analysis of obtained
data. One usually gets long series of values for every observable, actually
one value for each MC iteration. The number of iterations achieved depends
on many factors — such as CPU power, time available, complexity of the
actual algorithm used — but it often gets as high as several million cycles.
This means several million values to analyze for each observable and for
each choice of the model parameters (if it has any). It is then clear that
analysis of data is a computationally expensive task, and its cost in terms of
CPU time — though not as high as that of actual MC computation — must
not be underestimated. Moreover analysis of data constitutes the ‘interface’
between the model being simulated and the scientist, because it provides
output in human readable form. So it must be treated with special care,
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not to completely misunderstand the behavior of the system that is being
simulated, and not to misjudge properties of the MC dynamics that is used.

MC work shares many of the features of ordinary experimental work. As
noted long ago in [24], this requires the inclusion in MC papers of estimates
of statistical error, descriptions of experimental conditions (i.e. parameters
used in the calculation), details about the experimental apparatus (i.e. about
the algorithms and the program), careful discussion of systematic errors, and
so on. Berretti and Sokal in [25] emphasize two points in particular:

• The importance of a correct statistical treatment of autocorrelations
and their effects, including a theoretical and an empirical study, leading
to valid error bars.

• The distinction between systematic errors, due to misspecification or
approximation of the mathematical model on wich the analysis is based
(these errors often result from unincluded corrections to scaling or from
not taking finite-size effects into account), and statistical errors, due
to the unavoidable random fluctuation inherent in any probabilistic
experiment.

The first point will be treated in this section.

3.2.1 Autocorrelation

In dynamic MC successive samples Xt, Xt+1 are correlated, perhaps even
very strongly. So autocorrelation in obtained data arises. This phenomenon
may cause the variance of estimates produced from the simulation to be much
higher than in static Monte Carlo, where successive samples are independent.
So a rigorous analysis of autocorrelation is needed to produce valid error bars.
Moreover the Markov chain is not in general initialized with the stationary
distribution (actually, since the simulation starts from one sample x taken
from the initial distribution, this should be thought as always being a delta
distribution δ(x)). Thus the dynamics must be allowed some time in order
to reach the stationary regime; this is again an effect of autocorrelation. So
also a treatment of thermalization (that is, convergence to the stationary
distribution) is needed to correctly analyze the data.

Consider the stationary Markov chain. This means observing the system
after a time long enough for it to have reached equilibrium (or else it suffices
to start the chain with the stationary — and unique — distribution π). Let
f : S → R be a real-valued function defined on the state space S; it represents
a real-valued observable. {ft} = {f (Xt)} is a (stationary) stochastic process.
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Its mean is
µf := 〈ft〉 =

∑
x∈S

πxf(x) (3.18)

and its unnormalized autocorrelation function — sometimes also called au-
tocovariance — is

Cff (t) := 〈fsfs+t〉 − µ2
f =

∑
x,y∈S

f(x)πx

((
P |t|)

xy
− πy

)
f(y) (3.19)

Note that even if the above definition contains the Monte Carlo times s and
s + t the autocorrelation function actually depends, by stationarity, only on
their difference t. Finally, the normalized autocorrelation function is defined
as

ρff(t) :=
Cff(t)

Cff(0)
(3.20)

Typically one expects the autocorrelation time to decay exponentially for
large t, so one is led to define — as in the case of spatial equilibrium corre-
lation functions — the exponential autocorrelation time as

τexp[f ] := lim sup
t→∞

(
− t

log |ρff (t)|
)

(3.21)

This definition highlights the fact that autocorrelation could manifest itself
at different time scales for different observables. But one is interested in the
relaxation of the Markov chain itself, which constitutes the dynamics behind
every observable that is calculated. So it is natural to slightly change this
definition into the following

τexp = sup
f

τexp[f ] (3.22)

Thus, τexp represents the relaxation time of the slowest mode in the system.
Yet, this latter definition — though being important from a theoretical point
of view — is modified in actual MC work, because calculation of the sup
in (3.22) is unfeasible. In fact one only considers the observables one has
collected data for; but clearly the actual autocorrelation of the chain (in the
sense of equation (3.22)) is in general different from that calculated this way.

Another way of looking at this issue is by considering the transition prob-
ability matrix P as an operator on the Hilbert space l2(π). Then it is possible
to derive a more mathematically precise result about the deviation from equi-
librium (see [17] for details). Indeed the distance from equilibrium (in the l2

sense) is found to satisfy the following inequality asymptotically as t → ∞:

d2

(
αP t, π

) ≤ d2(α, π) e
− t

τexp (3.23)



3.2. STATISTICAL ANALYSIS OF DATA 29

where α is the initial distribution, and d2(ν, π) is the l2-distance from ν to
the equilibrium distribution. Notice that a sup over all observables is hidden
here, too. It appears in the expression for the distance d2.

So, the exponential autocorrelation time defined above focuses on the
exponential decay of the autocorrelation function for large times. On the
other hand, for a given observable f another τ can be defined. It is called
the integrated autocorrelation time

τint[f ] :=
1

2

∞∑
t=−∞

ρff (t) (3.24)

So this new time-like quantity measures the magnitude of the ‘overall’ auto-
correlation7. One then expects it to be a measure of the statistical errors in
Monte Carlo measurements of averages 〈f〉, because the variance of sample
means is expected to be more and more important as the autocorrelation of
successive samples increases.

A very general bound on the autocorrelation times has been established
in [26] for algorithms of the Metropolis type. It is proved that for a suitable
observable H the autocorrelation function at lag 1 (from which it is possi-
ble to obtain bounds on the autocorrelation times) is bounded below by an
expression involving var(H).

3.2.2 Estimators

All characteristic times defined this way share the feature of containing limits
for t → ∞. When analizing data from a MC simulation, one never has
infinitely many values for each observable. Thus, a feasible way of estimating
the autocorrelation times — together with valid statistical error bars for
averages of observables — is needed.

There is a branch of statistics which is of great help in the task of finding
and studying estimators for the quantities one is interested in; it is called
time series analysis. Systematic expositions can be found for instance in the
books by Priestley [27] and Anderson [28].

Let us focus on a given observable f in the stationary regime (i.e. let us
start the chain in the stationary distribution, or equivalently let it evolve
for a long time). Then {ft} will be a real-valued stationary stochastic
process with mean µ = 〈ft〉 and unnormalized autocorrelation function

7Notice that in general τexp �= τint, and this is an important issue to remember when
analizing Monte Carlo data. With the previous definitions the two characteristic times
coincide in the special case where ρff (t) behaves as e−

|t|
τ . This also explains the factor of

1/2 inserted in definition (3.24).
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C(t) = 〈fsfs+t〉 − µ2. The goal is to obtain valid estimates of µ, C(t), ρ(t),
τint and τexp from a finite — but large enough — set of samples f1, . . . , fn.
The natural estimator of µ is the sample mean

f :=
1

n

n∑
i=1

fi (3.25)

that is, the arithmetic mean of all the values one has collected for the ob-
servable. This estimator is unbiased. This means that its average is equal
to the quantity it is an estimate of. In this case one can easily check that
indeed

〈
f
〉

= µ. Its variance — as calculated from the definition — is

var
(
f
)

=
1

n2

n∑
r,s=1

C(r − s) (3.26)

=
1

n

n−1∑
t=−(n−1)

(
1 − |t|

n

)
C(t) (3.27)

≈ 1

n
(2τint)C(0) (3.28)

The latter relation is an approximate equality valid in the regime n  τ 8.
Equation (3.28) gives a precise meaning to the integrated autocorrelation
time. The variance of an observable is a factor 2τint larger than it would
be if the samples were statistically independent (for instance in static MC).
One can see here how static and dynamic quantities mix together in calcu-
lating estimates. Even if one is interested only in the static quantity µ, it is
necessary to compute a dynamic quantity (viz. τint), in order to determine
the error bar. This is due to the peculiar way one tries to observe properties
of a static model — such as one in equilibrium statistical mechanics — by
simulating a dynamic process which approximates it.

It is then clear that in order to get an estimate of the statistical error
on µ an estimator for C(t) has to be found. Here (as clearly explained in
[25]) two different situations can occur, depending on whether the mean µ is
known or unknown. In the former case the natural estimator of C(t) is

C̃(t) :=
1

n − |t|
n−|t|∑
i=1

(fi − µ)
(
fi+|t| − µ

)
(3.29)

8 The requirement that n be much greater than τ is important in the whole discussion
about MC analysis, not only because of the intuitive meaning it gives to equation (3.28).
[See the discussion about self-consistency in section 3.2.3].
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while in the latter case one has to use the estimator of µ defined above,
instead of µ:

Ĉ(t) :=
1

n − |t|
n−|t|∑
i=1

(
fi − f

) (
fi+|t| − f

)
(3.30)

The latter is almost always the case, because one usually wants to compute
both the mean µ and its error from a MC simulation. C̃(t) is unbiased, that is
˜〈C〉(t) = C(t). On the other hand, the samples fi in the definition of Ĉ(t) are

entangled in such a way that it is not unbiased9; anyway the bias is of order
1/n. Notice that as t increases these estimates become rougher, because the
number of couples (i, i + t) available in the sampled data decrease10.

Likewise one defines two estimators for the normalized autocorrelation
function ρ(t) as

ρ̃(t) :=
C̃(t)

C̃(0)
(3.31)

and

ρ̂(t) :=
Ĉ(t)

Ĉ(0)
(3.32)

Formulas for the variances and covariances of C̃(t), Ĉ(t), ρ̃(t) and ρ̂(t) can
be computed (see for instance [28]).

All the natural estimators described so far turned out to be good esti-
mators, in the sense that their variances vanish as the sample size n goes to
infinity, so the MC worker may get an arbitrarily precise estimate of these
quantities by adjusting the run-length n. Unluckily, this happy property
does not hold anymore when one turns to consider other estimators, such as
that for the integral autocorrelation time. In fact, a naive estimator for τint

is directly constructed from the definition, substituting the autocorrelation
function with its estimator, and truncating the sum

τ̄int :=
1

2

n−1∑
t=−(n−1)

ρ̂(t) (3.33)

but this estimator turns out to have a variance that approaches a nonzero
constant as n goes to infinity. This happens because the sample autocorre-
lations ρ̂(t) carry most of the information in the region where t is less then
or of order τ . For t  τ the information is ‘hidden’ inside the noise, and the

9This is essentially due to the fact that
〈
f

2
〉
�= µ2.

10Again, one needs a number of samples much greater than tipical decay times involved
in the objects that have to be computed, in order to have valid estimates. See footnote 8.
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noise happens to sum up to a total variance of order 1. The solution is to
give more importance to the region t � τ in the definition of the estimator
for τint. This is achieved by insertion of a window function λ(t) which is of
order unity for |t| � τ and ≈ 0 for |t|  τ :

τ̂int :=
1

2

n−1∑
t=−(n−1)

λ(t)ρ̂(t) (3.34)

(the definition for τ̃int — in the case where the mean µ is known — is the
same with ρ̃(t)). A good and natural choiche for λ(t) is the rectangular
window

λ = χ [−M, M ] (3.35)

where χ is the characteristic function of an interval, and M is a suitably
chosen cutoff. This new estimator is biased, and the bias does not go to 0 as
n → ∞, but it does as the cutoff M goes to infinity:

bias(τ̂int) ≡ 〈τ̂int〉 − τint = −1

2

∑
|t|>M

ρ(t) + o

(
1

n

)
(3.36)

On the other hand, the variance is seen to be — under some approximation

var(τ̂int) ≈ 2(2M + 1)

n
τ 2
int (3.37)

so that for M fixed it can be made arbitrarily small for n large enough.
One then understands that the choice of M is a tradeoff between bias and
variance. Indeed, one can make the bias small by taking M large enough so
that the sum in (3.36) includes a negligible range of ρ(t). On the other hand
one also wants to keep M small, in order to have a small variance at fixed n,
or — equivalently — in order to obtain a fixed variance from a shorter MC
run.

Again, some self-consistency is required, since the choice of M is closely
related to the magnitude of the typical decay time τint, but this quantity
is estimated using M itself as a cutoff. The following automatic window-
ing [29, 17] procedure seems to be a most convenient one in assuring self-
consistency. Choose M as the smallest integer such that M ≥ cτ̂int(M) for
some windowing factor c. The choice of the factor is a very euristic one. If
ρ(t) follows a pure exponential decay then c ≈ 4 should be enough, because
e−4 < 2% and therefore the bias would not change the significance of the
estimated integral autocorrelation time. In a more realistic situation the de-
cay of the autocorrelation function can be slower than exponential (in the
pre-asymptotic and/or asymptotic region), so a more careful choice is to take
the windowing factor between, say, 6 and 10.
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3.2.3 Relaxation Problems

Summing up, convergence to equilibrium and autocorrelation at equilibrium
are very important subjects in Monte Carlo work. The questions arised
by these topics are answered by the tools and techniques described in the
previous two sections.

First, there is the problem of initialization bias. The Markov chain has
to be started in some configuration xi. For example, in simulating an Ising
model xi could be that with all spins pointing in one direction; this is called
a cold start. Another choice is a configuration having spin directions chosen
at random from some simple probability distribution, for instance the flat
distribution; this is called a hot start. A simulation usually works ‘point-
wise’ in state space, meaning that it deals with single configurations x ∈ S,
and not with ensembles {x}. This means that the initialization distribution
of a MC run will always be a delta distribution δ(xi), that is, the chain is
initialized in the state xi. However, if one considers a single MC run, some
initialization bias will always be present, since the initial distribution will
always differ from the equilibrium distribution.

In order to treat this aspect more quantitatively, one introduces the ex-
ponential autocorrelation time τexp, which serves as a measure of the rate
of convergence to equilibrium. Actually, the formal definition of τexp (eq.
(3.22) provides an upper bound on the amount of time one has to wait before
equilibrium is attained ‘for all practical purposes’. But one is never able to
compute an estimate of this quantity, because it implies a sup over all pos-
sible observables. Is is usually impossible to know τexp (or an upper bound
for it) even theoretically. For these reasons one computes an estimate of the
exponential autocorrelation time only for the observables one is interested in
and has collected data for, and the value of τexp is taken as the maximum
among these values and multiplied by some factor k to get the discard time
td. Then, the first td data in the run are discarded, and the means and vari-
ances of the observables are computed only from the data left. The choice
of k depends on the degree of accuracy one wants to achieve, but usually
a value around 20 is more than enough, for in this case the deviation from
equilibrium will be at most e−20 (≈ 10−9) times the initial deviation from
equilibrium (in the sense specified by equation (3.23)).

Notice that the problem of initialization bias is not a most important one,
because the bias on the sample means goes to zero as 1/n, while the statistical

errors are of order 1/n
1
2 . However, it is also true that in practice the coeffi-

cient of 1/n (which of course depends on τexp too) may be large, depending
on how far (in the l2 sense) the initial delta distribution is from equilibrium.
Rejecting the data from the initial transient is not very expensive, and grants
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the avoidance of a potentially large systematic error. Moreover — assuming
that τint ≈ τexp

11 — in order to practically forget about initialization it suf-
fices to throw away ∼ 20τ of the data, while the run-legths needed to obtain
reasonably small statistical errors are ∼ 1000τ (for ∼ 1% accuracy), so that
the loss due to rejection is totally negligible. From this discussion one can
also get an idea of how uncritical the choice of the factor k (and then of td)
is.

Autocorrelation in equilibrium, of which τint is a measure, controls the
variance of the sample means in a dynamic MC simulation. As stated by
equation (3.28) the variance on the sample mean f̄ is a factor 2τint[f ] higher
than it would be in independent sampling; roughly speaking, a run of length
n only contains n/2τint[f ] effectively independent (non-correlated) points as
far as the observable f is concerned. The integrated autocorrelation time
therefore represents a close measure of the computational efficiency of a MC
algorithm. Nonetheless, when comparing different algorithms another impor-
tant aspect must be taken into account, that is the computational complexity
per iteration, or the time it takes to complete a single MC step. This is be-
cause it is time in the definition of τint is measured in units of iterations,
but every iteration could take a lot of machine time to complete. Actu-
ally, in the most common scenario one has to find a tradeoff between good
autocorrelation times and speed of the algorithm.

One of the most important things to keep in mind when estimating τint

from a MC run is self-consistence. The estimate of τint depends on the num-
ber of iterations n, but this number is to be fixed upon knowledge of τint itself.
So one must require that the run length n be much greater than the estimates
of τint obtained from the same run. Unfortunately self-consistence is only a
necessary condition for the trustworthiness of MC data: in general it is not
sufficient, because the analyzed data could be poisoned by metastability.

Metastability is one of the wildest and less controllable problems that may
arise in MC simulation. It is a danger common to all empirical and numerical
methods of determining when equilibrium has been achieved, for example in
optimization algorithms, and in non-linear fitting methods. Metastability
means that equilibrium only appears to be settled, while the algorithm is
stuck in a metastable region of the state space. Metastable regions are those
regions of the state space in which the dynamics is ‘trapped’ and spends a lot
of time (iterations) to come out. One way to try and reduce the consequences
of this problem is to exploit the arbitrariness of the initial configuration, ob-

11It is important to note that this is not always the case, since the two time-scales
need not be equal; however this is a working assumption used to roughly compare the
importance of thermalization versus correlations at equilibrium.
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serving how the results change as the initial state is changed, and maybe
trying to avoid the metastable region. For example, near a first-order phase
transition most Monte Carlo methods present metastability, with metastable
regions associated with the distinct pure phases. One then starts the dynam-
ics with a hot and a cold start, and then tests consistency between results.
Even if this procedure does not guarantee that metastability is absent, it
does increase the confidence.

Yet, the worst problems arise when the autocorrelation times diverge.
This is a universal situation, studied in the theory of critical dynamics, and
is called critical slowing down. It happens that near a critical point (that is,
when the equilibrium measure is that of a model which is near a critical point)
the (exponential or integrated) autocorrelation time τ diverges, typically as

τ ∼ min(L, ξ)z (3.38)

Here L is the lattice size, ξ is the correlation length (in an infinite-volume
system with the same parameters), and z is a dynamic critical exponent.
This kind of behavior is typical of second-order phase transitions. Near a
first-order phase transition, things get even worse, with τ usually growing
exponentially fast with a power of L. This is essentially because the algorithm
needs to tunnel through very improbable configurations involving interfaces,
in order to move from one phase to another, so it takes a long time to get
really independent configurations.

Since there are two different definitions of a characteristic time for the
dynamics, there could be two different dynamic critical exponents zexp and
zint. This is in fact the case, and in general zexp �= zint, once again high-
lighting the fact that the two autocorrelation times actually correspond to
different aspects of the dynamics. In fact, near a critical point one expects
the autocorrelation function to obey a dynamic scaling law [30] of the form

ρff (t; β) ∼ |t|−αF
(
(β − βc) |t|b

)
(3.39)

for |t|  1, β ≈ βc, with |β − βc||t|b bounded, where a and b are dynamic
critical exponents, β is a relevant parameter and βc is its value at criticality.
If F (x) happens to have an exponential decay for large |x|, then letting |t|
scale as (β − βc)

−1/b in order to keep x bounded, one gets

τexp[f ] ∼ |β − βc|− 1
b (3.40)

τint[f ] ∼ |β − βc|− 1−a
b (3.41)

so it is clear that in general (unless a = 0) zexp �= zint.
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It is important — when designing new MC algorithms or when improving
existing ones — to understand the underlying physical reasons of critical
slowing down, in order to devise ways of making the exponent z smaller.
One property of conventional algorithms that is most responsible of critical
slowing down is locality. A local dynamic MC algorithm is one in which
the atomic moves change the configuration only locally (examples are the
single spin flip in an Ising model, or the one-bead flip in a SAW). Roughly
speaking one could say that a local algorithm changes only a little part of the
configuration at a time, so that ‘information’ travels only at a finite speed,
spreading from a site only to its neighbors at each MC step. One might
guess — very crudely indeed — that information executes a random walk,
so that after t2 steps it has traveled on average a distance t. One can also
guess — now less crudely — that information is to be allowed a journey of
a (static) correlation length, for the system to have reached an essentially
new configuration. But the correlation length diverges at the critical point
(in the thermodynamic limit), so that one expects the correlation time to
diverge roughly as ξ2, that is, the dynamic critical exponent z equals 2.

From this picture one sees that for a local algorithm the slow modes are
the long-wavelength modes. The natural solution to critical slowing down is
then to take care of these modes by some kind of global updating12.

Unfortunately, working with collective-mode algorithms is not easy as it
might seem. While they help — once the proper modes are identified and
exploited to generate non-local moves — in reducing critical slowing down,
on the other hands they usually require much more computational time per
cycle. So one needs to keep an eye on computational efficiency, too. The bad
news is, that usually the computational cost outweighs the advantages13.

It is then clear that implementing these ideas on the construction of new
algorithms is a highly model-dependent task. Nonetheless, some trends in
the struggle for ‘globalization’ may be categorized:

• Multi-grid Monte Carlo [31]

12Non-local moves may also be combined with local ones (hybrid algorithms), in order to
reduce the value of z while still retaining ergodicity. Oftentimes a clever hybrid algorithm
is more efficient than either of its ‘pure’ constituents; these are the cases when the slow
modes of the local moves are speeded up by the non-local moves and vice-versa. An
extremely happy situation is when a (hybrid) ergodic algorithm can be constructed from
non-ergodic algorithms.

13For example, in simulating self-avoiding walks the computational weight is given by
the self-avoidance check [actually this is not the whole story, since there are other sources
of slowing down; see the discussion on non-local moves in section 3.3.1]. When only local
moves are employed this check can be made faster, exploiting the very locality of the
changes; instead, when a global change is applied one has to check the whole walk again.
[But see the discussion about the Pivot algorithm in sections 3.3.2 and 3.3.3]
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• Fourier acceleration [32]

• Swendsen–Wang type algorithms [33]

See for instance [17, 34] and references therein for a description of these
methods.

3.3 Algorithms for Polymer Measures

The numerical study of the critical properties of self-avoiding walks makes
use of essentially two classes of methods. The first is exact enumeration.
With exact enumeration one is able to collect very fine-grained and precise
(actually, exact) data, but the computational weight is high, so one restricts
to the simulation of very short SAWs (usually N ≈ 30). Then this informa-
tion is used to extrapolate the behavior for large N , with techniques such as
Padé or differential approximants. The second class is — of course — Monte
Carlo simulation14. In MC study, by contrast, one aims to probe directly
the regime of fairly long SAWs (up to N ≈ 105). Both these methods re-
quire some assumptions about the large-N behavior of the system, in order
to correctly extrapolate the quantities of interest in the critical (N → ∞)
limit. But since the region probed by MC simulations is much deeper into
the critical regime, one can expect that in general systematic errors will be
less important than they are in results obtained from exact enumerations
(which, on the other hand, do not suffer from statistical errors).

SAWs have two big advantages over spin systems, when it comes to MC
simulations. Firstly, there are no finite-size effects due to the finiteness of
the lattice, that is, one can work with walks directly on an infinite lattice15.
This eliminates the need for finite-size scaling, and the risk of systematic
errors caused thereby. Secondly, there is no Ld factor in the computational
weight, because the walk is always ‘one-dimensional’ from a computational
point of view. This means one can go closer to criticality, especially for high
dimensions.

Since the definition of self-avoiding walks is only geometrical, many dif-
ferent ensembles can be constructed from SAWs. Since there are two param-
eters, one can freely choose among these the ones to be fixed, that is, the

14See [35] (and references therein) for a thorough explanation of the different algorithms
(both static and non-static) that have been proposed and used, together with an in-depth
analysis of the pros and cons of each algorithm.

15Of course this requires some clever programming, and some a priori knowledge of the
walk lengths that are to be probed; but in practice it is possible to completely avoid border
and finite-size effects.
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ones that will not be changed by the MC dynamics. The two parameters
are the walk length N and the end-point x16, so it is natural to define three
different ensembles17:

• Microcanonical — Fixed N , variable x

• Fixed-endpoint canonical — Variable N , fixed x

• Free-endpoint canonical — Variable N , variable x

MC studies of the self-avoiding walk go back to the early 1950’s [36]. The
first algorithms used were the most obvious and natural ones: static MC
algorithms. The most naive of them is simple sampling. In simple sampling
one just generates a random walk of length N and checks if it is self-avoiding.
If it is, then it is accepted, otherwise one goes back to the origin and starts
building a totally new walk. It is immediately clear that such a way of
proceeding is not at all efficient (even if one checks for self-avoidance after
every step, rejecting the walk as soon as an intersection is found) because
for large N the probability of getting a SAW decreases exponentially fast.
In fact this probability is given by the ratio between the number of N -step
self-avoiding walks and the number of ordinary random walk of length N ,
that is

cN

(2d)N
∼

N→∞

( µ

2d

)N

Nγ−1 = e−λNNγ−1 (3.42)

where λ = log(2d/µ) is called attrition constant, and is a measure of the ex-
ponential decay of the probability of finding a SAW among ordinary random
walks. (λ is approximately 0.42 on the square lattice).

A slight improvement that alleviates the problem and lowers the attrition
constant a little is achieved by considering only non-reversal random walks.
This ensemble is constituted by those random walks which never return to a
site they visited two steps before. This could be viewed as a forgetful SAW,
with an extremely short memory (namely, a 2-step memory). In practice, at
every step the walk chooses among all neighboring sites but the one it comes
from. With this modification, the factor (2d)N in equation (3.42) is replaced

16Actually, when simulating a polymer with excluded-volume interaction, there is an-
other parameter, that regulates the strength of the interaction. This is always a constant
of the MC dynamics, and is fixed before each simulation, because one wants to know how
properties of the model are related to changes of this parameter. As far as we know, no
‘grand canonical’ ensemble with a variable excluded-volume has ever been used in MC
simulations.

17The terminology is not a standard one. Some authors use very different nomenclatures.
Essentially, the differences rise from considering monomer or polymer ensembles. The
terms used here allow for the use of ‘grand canonical’ for ensembles of many SAWs.
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by 2d(2d − 1)N−1 and the algorithm does work faster, since the attrition
constant is now

λ(2) = log
2d − 1

µ
(3.43)

(For comparison, on the square lattice λ(2) ≈ 0.13). The next logical step
in improving the algorithm within this scheme is to consider forgetful SAWs
with r-step memory, that is random walks with only ‘long’ (viz. with length
> r) loops [37]. This is implemented by enumerating (before the actual
simulation starts) all r-steps SAWs, and building the walk using these as
bricks18. Now the probability of getting a SAW is

cN

(cr)
N
r

At first sight, the exponential behavior seems to have been beaten, so that
the attrition constant is zero. But this is not true, because in the regime
where r is not  1, cr is still much higher than µN , thus leading to a non
zero value for λ(r). Of course, attrition can in principle be made arbitrarily
small by taking r large, but this brings a serious drawback in terms of used
memory (for storing all r-step SAWs) and pre-simulation computing time.

The trouble is that c
1/r
r converges to µ rather slowly.

One can further improve the r-step sampling algorithm by choosing at
each step only among those walks which do not go back to the previous
walk’s initial site; this is called r-step non-reversal sampling (for comparison,

with 10-step SAWs one gets an attrition constant λ
(10)
NR ≈ 0.071 on the square

lattice).
Another very natural way of generating SAWs is through restricted sam-

pling. Since simple sampling algorithms seem to waste a lot of time discarding
non-self-avoiding walks, one is tempted to have the algorithm choose at each
step only those neighboring sites that are still available. Unfortunately, this
method does not generate SAWs with the correct (flat) weights. Rather, a
given walk ω is generated with probability

P (ω) = const
∏

i

1

ki(ω)
(3.44)

where ki is the number of choices available at the i-th step. For instance,
a walk that has been forced to follow a particular direction many times

18Actually, this implementation does not eliminate all k-step loops with k < r, because
there could still be loops generated by the coincidence of monomers belonging to different
sub-chains.
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during its path (such as a walk with lots of ‘passageways’ between two walls)
weighs more in this ensemble than a walk that has been more ‘free’. So
mean values of observable must be estimated using a weighted sum (divided
by the sum of the weights) where each weight is given by equation (3.44).
Restricted sampling has some hidden disadvantages. Firstly, it does not
avoid exponential attrition, despite the fact that self-intersections are now
completely avoided. Indeed, the avoidance of self-intersections does eliminate
one cause of attrition, but silently introduces another one, that of trapping.
A trapped SAWs of length N is a walk for which kN = 0, that is, the walk
could not be extended by a single step without violating self-avoidance. As
one could expect, this phenomenon is much more severe in two dimensions.
Secondly, the variance of estimates obtained with this method is usually
very high. This is due to the fact that as N gets large the greater part of the
data — namely those data whose corresponding weight is negligible — gets
practically ignored, so in a sense it is wasted data.

Yet another way of producing independent SAWs is through dimerization
[38], which is a recursive algorithm. One can build an N -step SAW by
concatenating two N/2-step SAWs and checking if the resulting walk is self-
avoiding. The two constituent walks may themselves be generated in a similar
way. The ‘seeds’ of the recursion, that is the first two (shorter than a fixed
cutoff length) SAWs, are to be generated using some other simple algorithm,
such as non-reversal simple sampling. This algorithm happens to be very
efficient in high dimensions (d ≥ 5), where generating an N -step SAW this
way takes a time that grows almost linearly in N .

A class of non-static methods is that of the so called quasi-static algo-
rithms. Here, one drops the strict requirement that the generated walks
not be correlated, and generate (non correlated) batches of (correlated) sam-
ples. Every static method can be made quasi-static by working with walks
at different values of N at the same time, and exploiting the fact that a
walk that self-intersects at the n-th step gives an n-step SAW, if cut on the
intersection, and m-step SAWs as well (with m < n), if cut before the in-
tersection. Other methods are intrinsically quasi-static, such as enrichment
and incomplete enumeration19. Enrichment is another recursive algorithm,
where if an s-step walk is a SAW, then t copies of it are made, and used as
starting points on top of which longer walks are constructed and tested (and
then again copied, if they reach lengths 2s, 3s, and so on). This algorithm
needs clever adjusting of the parameters s and t. Incomplete enumeration is
a modification of any exact enumeration algorithm in which the tree is not
completely explored. Rather, every branch b is followed only with probability

19See [35] for details and references on these methods.
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P (b) < 1.

3.3.1 Dynamic Methods for SAWs

Here only MC methods for simulating SAWs will be reviewed. It must be
stressed that once some attractive interaction is inserted in the model (for
describing theta-point behavior and polymers in bad solvents) all known
method behave very badly in the critical limit, because near the collapse
transition nearly all moves will get rejected, since the walk is no longer sparse
enough. On the contrary, most SAW algorithms can be easily implemented
for simulations of weakly SAWs and other purely repulsive polymer measures.

The atomic moves used by a dynamic MC algorithm for the SAW are
naturally categorized by means of three properties, regarding the way the
moves change a given walk. According to this categorization, moves can be

• N -conserving (e.g. k-bead, pivot) or N -changing (e.g. kink insertion
and deletion)

• endpoint-conserving (all internal local moves, both N -changing and
N -conserving) or endpoint-changing (e.g. slithering-snake, pivot)

• local (e.g. k-bead), bilocal (e.g. slithering-snake, kink-end reptation)
or non-local (e.g. pivot, cut-and-paste)

Here only a brief review of the most important moves will be given. For a
more thorough description see [35].

The most general local N -conserving move is the k-bead move (with
k ≥ 1). A move of this kind is defined to be one that changes the walk at
most on k consecutive steps, that is it changes ω into ω′ such that ω(i) = ω′(i)
for all i except possibly for k consecutive values of i20. If one of the changed
steps is the end-point or the origin, then the move is said to be end-group,
otherwise it is called internal. Writing all the possible k-bead moves reduces
to enumerating all maps between k-step SAWs21.

A bilocal move is generated by consecutive application of a local (in gen-
eral N -changing) move in two different parts of the walk. These places may
(ad usually will) be far from each other on the chain. Also, usually the two

20One also asks that the modified walk be different from the original one at some time
imin and at time imin + k, so that a k-bead move is not also a (k + l)-bead move for all l.

21This is because it is clearly not clever to use moves that surely introduce self-
intersections, because they will be surely rejected. The situation is quite different when
considering algorithms for weakly self-avoiding walks, where a self-intersection is not sure
to be discarded.
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constituent local moves are highly correlated, so that they can be thought of
as a single bilocal move. The most important bilocal moves are the slithering-
snake (a bond is deleted at one end of the walk, and another one is appended
at the other end), the kink-transport (a kink — that is, a figure formed by
three sides of a square — is deleted at one location and inserted at another
one), the kink-end and end-kink reptation (a kink is deleted from the walk
and two new bonds are appended at one end, and vice-versa). These moves
are all N -conserving. The simplest N -changing moves are kink insertion and
deletion (which are internal), and end-bond addition and deletion (which are
end-group moves).

As far as non-local moves are concerned, not many of them are known and
used. This is because it is much harder to find effective and fast non-local
moves. Firstly, they generate new configurations that are ‘far’ (that is, very
different) from the original ones, so they are more likely to get discarded,
slowing the dynamics. For instance in a SAW, a thorough change of the walk
will be more intersection-prone because in general the move is not exploiting
the self-avoidance of the walk it is attempting to change22. For an interacting
walk, on the other hand, non-local moves generate new configurations with
large energy differences and thus they will be rejected often. Secondly, while
a local move can be carried out in a (machine) time of order 123, a non-local
move often requires a time ∼ N (or at least ∼ Np, with p > 0) because the
number of sites to be updated at each MC step diverges for N → ∞24.

Several algorithms can be constructed for different ensembles using a
combination of these moves. The first algorithms used for SAWs (in the
1960’s) were local and N -conserving [39] (k-bead). These are also very easy
to implement and use. So it came as a great surprise the demonstration that
all such algorithms are in fact non-ergodic [40] in dimensions d = 2, 3 for
sufficiently large N . The proof is constructive and is based on showing that
for each k there exists a class of SAW configurations which are frozen with
respect to any k-bead local move (here ‘frozen’ means that any such move
generates an intersecting walk).

The critical dynamics of local N -conserving algorithms may be crudely
estimated using a heuristic argument. Of course, the autocorrelation times of

22Again, the pivot algorithm is an excellent compromise between non-locality and ac-
ceptance probability [see the discussion in section 3.3.2].

23For instance, when using k-bead moves, k does not depend on N , so the time to
algorithmically perform the move is constant.

24The pivot algorithm excels also when it comes to walk updating, because the infor-
mation one has to store on each step is of order 1 even if the walk itself is changed in a
non-local fashion. This involves clever programming, and a tricky use of data structures
[see section 3.3.3].
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a non-ergodic dynamics are strictly infinite, but one could restrict the analysis
to an ergodic class, that is, the ensemble of all configurations connected
(through successive iterations of the Markov chain) to some particular initial
state. Within this argument one observes the mean-square radius of gyration
〈R2

m〉, pretending it represents the typical dynamics of the system. For every
update of the walk, a few (order 1) steps move a distance of order 1, so that
the change in 〈R2

m〉 is of order Nν−1 (ν is the static critical exponent of the
correlation length). One must allow the mode to walk an average distance of
order N2ν in order to have it lose memory of past configurations. Guessing
that the mean-square radius of gyration performs a random walk around the
lattice one concludes that an average (N2ν/Nν−1)

2
moves are needed. So

τ ∼ N2+2ν : this dynamics is very slow.

Bilocal (N -conserving) algorithms are a little faster. The oldest one of this
kind was the reptation algorithm, whose moves are those of the slithering-
snake kind. This algorithm is clearly non ergodic, all configurations with
both ends trapped being frozen. It is easily seen by a heuristic argument
that the correlation time behaves like N2 (it is the time it takes for the
random-walking information to cover the entire N -step walk). Many other
moves can be added to this set, in order to recover ergodicity, thus obtaining
a plethora of different algorithms (for recent work on new extended reptation
dynamics see [41], where it is showed how some cleverly designed algorithms
show very mild slowing down).

In the N -changing ensembles two algorithms are worth citing, which have
πβ(ω) = const β |ω| as invariant probability distribution. One is the Berretti–
Sokal (BC) algorithm [25]25 (also called slithering-tortoise). The elementary
moves are as follows: either one attempts to append a new step (equally
distributed in each direction) to the walk, or else one deletes the last step
from the walk. The probabilities of appending and deleting a step are chosen
so that their ratio is 2dβ. Clearly this dynamics varies the end-point ω(N).
It is easy to see that this algorithm is ergodic and satisfies detailed balance
with respect to πβ. With an argument similar to that used for estimating the
critical slowing down of the reptation algorithm one can heuristically argue
that τ ∼ 〈N〉2 for the BC dynamics.

The other is the BFACF algorithm [42, 43], which leaves the end-point
fixed instead. It uses the one-bead flip (the only possible one-bead inter-
nal move), which has ∆N = 0, and kink insertion and deletion, which have
∆N = ±2. Ergodicity and dynamical behavior of this algorithm are most

25It is also worth noting that the authors of this work devise a way of computing a
priori (that is, prior to the actual performing of the simulation) error estimates, based on
the particular scaling law of the number of N -step SAWs.
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subtle problems (see [35] for a review).

3.3.2 The Pivot Algorithm

The pivot algorithm is was invented in 1969 by Lal [44], and then reinvented
in 1985 by MacDonald et al. [45]26. It had not been studied comprehensively
until the work of Madras and Sokal [29], where it is shown to be highly
efficient, and its dynamical properties are investigated.

The pivot is a dynamics for walks in the fixed-N , variable end-point
ensemble (the other end-point is fixed at ω0 = 0). The invariant probability
measure is the standard equal-weight SAW distribution πω = 1/cN . The
elementary moves are as follows: for every MC step one chooses a proper
time k along the walk and an element of the symmetry group of the lattice;
one then applies the symmetry-group element to the sub-walk constituted by
ωk+1 . . . ωN using ωk as a pivot, that is as a temporary ‘origin’ around which
the move is performed. Then the proposed walk is checked for self-avoidance
and rejected if it is self intersecting (in which case a null transition is made).
Obviously, the pivot time is chosen so that k < N because a symmetry
around ωN would always be an identity of the whole walk.

A specific variant of the pivot algorithm is specified by fixing the distribu-
tions of the object that are to be chosen ‘at random’ (the pivot location and
the symmetry-group element). The pivot time k can be chosen according to
any preset probability (Pi)i=0,...,N−1, provided that Pi > 0. Strict positivity
must be satisfied in order to ensure ergodicity. In fact, if some proper time
k along the chain is never hit, then the angle between the two bonds that tie
together at k will never change. The symmetry operation g ∈ G, where G is
the group of orthogonal transformations that leave the lattice invariant, may
be chosen according to any probability distribution that satisfies pg = pg−1

for all g and has enough nonzero entries to ensure ergodicity (the question
about ergodicity is a rather subtle one for the pivot algorithm27). It is easy
to see that the equality of the probabilities for an element of the group and
its inverse is a necessary and sufficient condition for the dynamics to satisfy
detailed balance with respect to the uniform distribution28.

Some variations of the pivot algorithm are possible, though not always
advantageous. Firstly it is historically worth noting that the original work
of Lal [44] uses the bonds of the walk as pivot locations, and the symmetry

26In this latter work the dynamics was called ‘wiggling’.
27For instance, in two dimensions one would guess that π/2 rotations are enough for all

the configurations to reach each other. This is false! See below.
28Because it is a necessary and sufficient condition for the equality of

pg1(k1) pg2(k2) · · · pgl
(kl) and pg−1

l
(kl) pg−1

l−1
(kl−1) · · · pg−1

1
(k1).
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operation is performed with respect to axis specified by the pivot bond. For
the simple hyper-cubic lattice this algorithm is clearly not ergodic, since a
rod-like configuration is frozen.

Another variant is one in which the choice of the transformation depends
on the configuration in the vicinity of the pivot location. For instance a
useful such variant could be one that excludes immediate reversals of the
walks, which would get rejected in a SAW29.

One obtains yet another variant — which is not strictly a variant, but
rather an optimization — by applying the symmetry-group element to the
shorter ‘half’ of the walk, not always to the part of the walk subsequent to
the pivot point. The initial point of the walk would no longer stay at the
origin, but one can get a slight (∼ 2) improvement in the computational work
(the average number of points the algorithm needs to move lowers from N/2
to N/4)30.

At first sight, the pivot seems to carry a great drawback: as N gets large,
nearly all proposed walks will get rejected, because of the very non-locality
of the moves. Indeed, the acceptance fraction does go to zero as N → ∞,
but it does so like N−p with a very low exponent p (in two dimensions it
is found to be around 0.19). This is perhaps because the moves exploit the
self-avoidance of the two segments that are moved, by transforming them
in a rigid fashion so that they remain self-avoiding: the only intersections
may be those between points belonging to different segments31. On the other
hand, the non-locality of the moves carries the benefit of producing a totally
different configuration — an independent one, for all practical purposes —
once every few moves. So the pivot algorithm sums up to a very good one,
actually the best known algorithm for simulating polymers above the theta
temperature.

A crude estimate helps in understanding the behavior of the acceptance
fraction f . The two sub-walks into which the pivot time k divides the whole
walk are both self-avoiding. The estimate is based on the assumption that
these two walks are typical k-step and (N−k)-step SAWs. Under this hy-
pothesis the acceptance fraction is simply the ratio between the number of
N -step truly self-avoiding walks and the number of possible (in general in-

29Clearly, this kind of variant makes no sense in a simulation of an interacting walk for
which self-intersections are not forbidden (such as the Domb–Joyce model), because the
dynamics would live in the wrong ensemble.

30This optimization has no effect when one uses the clever data structures accounted for
in section 3.3.3. [See that section for a much greater improvement of the computational
weight].

31This property is exploited also for speeding up the self-avoidance check in the opti-
mized implementation of section 3.3.3.
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tersecting) walks built with the two sub-SAWs, that is

f ≈ cN

ck cN−k
(3.45)

Which, for N large, gives the estimate

f ∼ N−(γ−1) (3.46)

Hence p = γ−1 ≈ 0.344 in two dimensions. Of course, the assumption made
here is not realistic: the two sub-walks are far from being typical. First of
all, they are appended after each other to form a restricted walk, so they are
expected to be more stretched than a typical SAW, in order to favor mutual
self-avoidance. Moreover, their relative orientation is not random, because
they are more likely to be found ‘pointing in the same direction’, that is,
with a small angle between their end-to-end vectors. Again, this is because
this configuration is more likely not to cause self-intersections.

It should be noted, also, that local observables evolve a factor N slower
than global ones, because for the latter a few accepted moves are enough
to radically change their value, while the former need the pivot point to be
inside the part of the walk they belong to (for example, the angle between
the first two bonds is changed only when the pivot point is exactly the second
step of the walk).

The ergodicity of the pivot dynamics depends on which transformations
are given nonzero probabilities. It turns out that in general π/2 rotations
alone are not sufficient to ensure ergodicity; as a matter of fact, there ex-
ists a 223-step SAW in Z

2 which is frozen with respect to all possible such
rotations32. Happily, it suffices to add all axis reflections in order to have
an ergodic algorithm. More precisely, the following theorems can be proved
(the versions provided here apply to d = 2, but similar theorems hold for the
general hyper-lattice Z

d).

Theorem. The pivot dynamics is ergodic, provided all axis reflections, and
either all π/2 rotations or all diagonal reflections are given nonzero proba-
bility.

Theorem. The pivot dynamics is ergodic, provided all π rotations, and either
all π/2 rotations or all diagonal reflections are given nonzero probability.

The proofs of these theorems — the detailed versions of which can be
found in [29] — are based on proving that any N -SAW may be transformed

32This is a stunning display of the complexity of self-avoiding walks. See [29] for a
picture of such a walk.
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into a straight rod by some sequence of at most 2N − 1 moves of the kind
considered. A sketch of the proofs is as follows. Let B(ω) denote the smallest
rectangular box containing the walk ω; let D(ω) be the sum of the sides of
B(ω) (so that D is the l1 diameter of B); let A(ω) be the number of straight
internal angles in ω. A walk ω having its end-points ω0 and ωN in opposite
corners of its B(ω) will be called diagonal. Then the set of all N -step SAWs
can be partitioned into the two subsets of diagonal and non-diagonal walks..
Any walk belongs in exactly one subset. Then it is proved that for any
non-diagonal SAW ω there exists a pivot move that transforms it into a new
SAW ω′ with D(ω′) > D(ω) (the box containing the walk is ‘bigger’) and
A(ω′) = A(ω) (the new walk has the same number of turns as the old one).
Likewise, it is proved that for any diagonal SAW ω which is not a straight
rod there exists a pivot move that transforms it into a new SAW ω′ with
D(ω′) ≥ D(ω) and A(ω′) = A(ω) + 1. Then every N -step SAW which is
not a straight rod can be transformed by a single pivot move into another
SAW with strictly larger A + D, but since A ≤ N − 1 and D ≤ N , and
A + D = 2N − 1 if and only if the walk is a rod, it follows that any N -step
SAW can be transformed into a rod by a sequence of at most 2N − 1 pivots.

Notice that when applied to weakly self-avoiding walks (such as the
Domb–Joyce model), the pivot dynamics is always ergodic, at least for finite
interaction coupling. This is because the actual ensemble for the Domb–
Joyce model contains the set of all random walk, and they all have non-zero
probabilities — at least in the coupling regime where the model does not
strictly become a SAW — so there can be no frozen configurations. So, for
the Domb–Joyce model, even taking the sole π/2 rotations suffices. But this
does not mean that there can not exist bottlenecks, that is very unlikely con-
figurations through which the system is forced to pass, in order to go from
one subset of the state space to another. These are usually responsible for
making the dynamics slower, or even cause severe metastability, when the
system is quasi-trapped in one of the subset and will take long to jump to
another. For instance, the 223-step SAW which is frozen with respect to π/2
rotations lies behind a bottleneck, because if the repulsive force is strong it
must cross a very unlike (i.e. whose probability is low) configuration involv-
ing (on average) a lot of self-intersections.

3.3.3 Optimized Implementation of the Pivot Algo-
rithm

Naive implementations of the pivot algorithm have performances limited to
O(N), meaning that the time to carry out a move (accepted or not) in an
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N -step walk is of order N . This includes the time needed to scan the walk
for self-intersections, and the time needed to write the new walk to memory
when the proposed move is accepted.

Checking self-avoidance is the most delicate part. Using a brute-force
routine that checks non-coincidence for each pair of walk points is clearly
not feasible, because it would take a time O(N2), which is far too expensive.
A more clever way of checking self avoidance is by using a so-called bit table.
A bit table is a large block of memory in which each lattice site is assigned
a bit; this bit is set to 1 if the walker passed on that site and 0 if that site
does not belong to the walk. One stores information about the walk in two
(redundant) ways: one is the usual structure that contains the walk points ωi

(be it a vector, a linked list, or whatever), and the other is a bit table. Now
checking whether a site is empty is a matter of reading one bit in the table,
an operation that takes a time O(1). Thus the self-avoidance check using
bit tables takes a time O(N). The drawback of using such a data structure
is the heavy memory requirements: the memory needed to store the table
raises fast with N , especially in high dimensions. A more feasible solution
is the use of hash tables (see for instance [46]), a structure in which several
lattice sites share the same memory address, and collisions are treated only
when they happen; hash tables are almost as fast as bit tables, but use much
less memory. Whatever method is chosen to store the data and to test the
self-avoidance, it is clearly useless to compare walk points that lie on the
same sub-walk with respect to the pivot point, so any implementation of this
check should consider only couples of points lying on opposite sides of the
point around which the pivot is performed.

The specific optimized implementation of the pivot algorithm that will
be used here is due to the recent work of Kennedy [47]. The two aspects
that are treated differently than in older implementations are the test for
self-intersections and the routine that actually carries out the pivot move,
that is the piece of code that stores the new walk into memory. Both these
steps used to reduce the performance to O(N), because the bit table was
the best method available for the self-avoidance check, and because actually
writing the whole new walk to memory clearly takes a time of order N .

The method for speeding-up the test for self-intersections takes advan-
tage of the fact that the walk only takes nearest neighbor steps, that is,
ωi+1 − ωi = eµ, where eµ is one of the vectors that generate the lattice. When
comparing the walk at times i and j one does not only check whether ωi = ωj,
but one computes the distance d(ωi, ωj) = ||ωi − ωj||1 instead. This norm
|| s ||1 (with s belonging to the lattice) is to be defined as the minimum num-
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ber of steps needed to get to site s (from the origin)33. For the hyper-cubic
lattice this distance is simply the l1 norm. Clearly, if the distance between
ωi and ωj happens to be null, then ωi = ωj. The information carried by this
quantity is valuable in speeding-up the test, because of the connectedness of
the walk; in fact if d is non zero one can conclude not only that ωi �= ωj, but
also that

ωi′ �= ωj′ for all i′, j′ ≤ N such that |i − i′| + |j − j′| < d(ωi, ωj) (3.47)

One now needs a clever way of choosing what values of i and j to check.
The most obvious strategy would be to let i run through all the times between
p+1 and N (where p is the pivot time), and update j (in the range [0, p − 1])
through ‘jumps’ of length d, that is jk+1 = jk − d(ωi, ωjk

); the procedure
should stop when an intersection is found, that is when d = 0, or when both
i and j are out of their ranges. Unfortunately, such an algorithm would take
a time O(N), because i is still taking all the values in the range [p + 1, N ],
that is an average N/2 different values if the pivot location is chosen with
uniform probability distribution.

It is then clear that in order to effectively improve the behavior of the self-
avoidance check one must find a way of simultaneously let both i and j make
jumps of more than 1 step. The improved strategy is as follows. Throughout
the algorithm i and j will be times on opposite sides of the pivot time p,
so that j < l < i. The algorithm is initialized with i = p + 1 and j = p − 1.
Then at each step one either decreases j or increases i in such a way that

ωi′ �= ωj′ for all i′, j′ such that j < j′ < p < i′ < i (3.48)

until a self-intersection is found, or until both the indexes i, j have reached
the end of the walk. This property is clearly satisfied in the initial state,
so it will hold during the whole procedure. The algorithms for increasing i
and decreasing j are analogous, so only the procedure for increasing i will be
explained. Let mi be the distance of ωi from the set {ωk : j < k < p}, that
is the minimum of the distances from ωi to ωk with k running on the values
from j to p. If mi > 0 then ωi′ �= ωj′ for all i′, j′ such that i ≤ i′ < i + mi

and j < j′ < p. Thus, one can increase i by mi, and property (3.48) will
still hold. The value of mi need not be computed exactly (moreover, such
a computation would take way too long, and would completely destroy the
advantages of this implementation): a lower bound bi will suffice, then one
can increase i by bi.

33In this definition the actual walk that sits on the lattice does not matter: the minimum
number of steps is intended on a void lattice, so that self-avoiding constraints do not enter
in the definition.
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In order to compute such a lower bound for mi one uses a loop on j′

running from p − 1 down to j and proceed as follows, again exploiting the
connectedness of the chain. At the start of the loop bi is set equal to N ,
so that it can not grow higher. At each step one computes the distance
d = d(ωi, ωj′). Then an integer s < d is picked, so that the distance of ωi

from the set {ωk : j′ − s ≤ k ≤ j′} is surely at least d − s. Now the estimate
bi can be replaced by min(bi, d − s), and the updated bi will be a lower bound
on the distance of ωi from the set {ωk : j′ − s ≤ k < p}, so one reduces j′ by
s + 1. When j′ reaches j, bi will be a lower bound on mi.

The possible choices of s are several, the most natural of which would be
to take s as the integer part of d/2. However there are significantly better
choices, such as the following, which exploits the knowledge of the previous
value of bi in order to find a trade-off between a fast decrease in j′ and a
lower bound bi which is not too far from the real mi.{

s = d/2 if d < bi

s = d − bi if d ≥ bi
(3.49)

If the algorithm reaches the point in which both i and j exceed their
ranges, then the walk is self avoiding and should be accepted. As long as
both indexes stay in their ranges, one is free to choose whether to increase
i or decrease j. A reasonable choice is to increase i if it is closer to p and
decrease j otherwise, so that the both indexes travel away from p roughly
at the same rate. This kind of updating searches for intersections in the
vicinity of the pivot point first, so that immediate returns and short loops
are detected fast.

The second performance bottleneck one has to speed up is the writing
down of the new walk, when it is accepted. The key idea here is not to
write down the whole walk at each MC step, but to solely keep track of the
transformations and the pivot locations. One then has a list of operations
that only after a certain number of iterations are to be actually carried out.
Of course, the routine that checks for self intersections needs to fetch coordi-
nates of the walk steps, so some of them must be computed at each step. But
the important point here is, that the optimized version of the self-avoidance
test does not need all walk sites. Indeed, it turns out to be more effective to
store the information about the walk in some ‘encrypted’ form that takes a
time O(1) to write to memory, and find a way of effectively fetch the actual
walk locations by reading from such a structure.

This structure could be for instance an array of the pivot times p and
the symmetry-group elements g. But it turns out that the time required to
compute the position of a location on the walk from such a data structure
would be significant. Instead, it is found to be more efficient to use a different
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data structure that contains information about the segments of walk that
lie between two successive34 pivot times. The following data structure is
motivated by the observation that one can think of the segment of ω′ that
lies between times pi and pi+1 as being rigid, and when a pivot move is
performed on a pivot time p the transformations needed to get ωj from ω′

j

change only for j > p. Thus for each accepted pivot one stores

• The old walk ω′. This is the last walk that has been completely enu-
merated.

• The number of rigid segments (as defined above) which constitute the
walk. Note that this needs note be the ‘age’ of ω′ — that is, the
number of accepted pivot not yet carried out — because two different
pivot moves could have the same pivot time, so that the lists defined
in the following do not grow.

• The pivot times p1 < p2 < · · · < pn. These are stored in increasing
order, not in the original order they were picked.

• The lattice symmetries g1, g2, · · · , gn. These are not the symmetry-
group elements of the various pivot moves, but rather the symmetries
that are to be applied to the rigid segments.

• The lattice sites x1, x2, · · · , xn that specify the translations that are to
be applied to the rigid segments.

With this data structure any walk location ωj belonging to the i-th segment
(pi < j ≤ pi+1) can be calculated using the equation

ωj = giω
′
j + xi (3.50)

Then, for every accepted pivot move, the elements of the data structure
must be updated so that equation (3.50) holds for each element of the chain.
This is done in two steps. In the first step one simply adds the pivot time
p to the list. In order to do this, the right position in the list has to be
found for p. This means that a k must be found, such that pk < p < pk+1;
there are efficient ways of performing this task, but this does not seem to
be a critical aspect of the whole algorithm, so that even a naive searching
procedure should suffice. If p is already present in the structure then nothing
is done, and one skips to the second step. Otherwise, the changes in the data
structure are

34Here ‘successive’ is to be intended with respect to proper time on the walk, not MC
time.
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• n� n + 1 (one of the formerly rigid segments has been cut in two by
the new pivot point, so their number increases by 1).

• p1, · · · , pn � p1, · · · , pk, p, pk+1, · · · , pn (the new pivot time is inserted
in the list).

• g1, · · · , gn � g1, · · · , gk−1, gk, gk, gk+1, · · · , gn (gk is inserted in the list
as a placeholder; the only symmetries that will be recalculated during
step two are those from this gk to gn).

• x1, · · · , xn � x1, · · · , xk−1, xk, xk, xk+1, · · · , gn (same as above).

The second step is to update the elements of the two lists containing the
symmetry operations g and the translations x. Under a pivot move specified
by time p and symmetry g (and then with pivot point x := ωp, and with k
such that pk < p < pk+1), a walk site ωj belonging to the i-th segment with
i > k (so that ωj does get affected by the move) transforms according to the
following equation

ωj � g(ωj − x) + x = g(giω
′
j + xi − x) + x = ggiω

′
j + gxi − gx + x (3.51)

Hence, the right update rule for the structure is the following

• gi � ggi for all i > k (nothing changes for i ≤ k).

• xi � gxi − gx + x for all i > k (nothing changes for i ≤ k).

So one keeps on updating the structure at each successful MC step; then,
after a given number Np of such ‘implicit’ updates, the walk is completely
calculated and substituted to ω′.

Summing up, there are three steps the time required for completion of
which depends on the length of the walk:

• The self-avoidance test.

• The updating of the data structure at each accepted pivot.

• Once in a while, the complete enumeration of the current walk.

The first of these bottlenecks is very hard to analyze a priori, and needs some
empirical study. This step involves repeated computations of the distance
d(ωi, ωj); one assumes that the average number of such computations grows
with Nσ. Moreover, every time the procedure that computes d is called, some
evaluations of walk points are to be made by applying equation (3.50). In
order to use this equation for ωj one must first find i such that pi ≤ j ≤ pi+1.
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This searching task can be accomplished in a time of order log n with a
bisection algorithm, and this translates in an average O(log Np) behavior.
So the first bottleneck of the list is believed to take O (Nσ log Np).

The second bottleneck involves only operations made on the data struc-
ture. This structure is stored in a linear fashion, and its size is specified by
n, so that one expects this step to take an average time of order Np.

The third task in the list above is very time-consuming (many of the
intricacies of this whole algorithm share the goal of reducing the times this
very task has to be accomplished): since it must travel the whole walk, it
takes a time O(N). Happily, now one needs not carrying this step out for
every accepted pivot, but only once every Np, so that the overall behavior is
expected to be O(N/Np).

Finally, the total time per accepted pivot is

O (Nσ log Np) + O(Np) + O

(
N

Np

)
(3.52)

It is then clear that the best choice for Np is to take it proportional to
N1/2, in order to balance the second and the third terms in the expression
above. As far as the exponent σ is concerned, Kennedy [47] finds 0.57 as an
upper bound for σ in two dimensions, but the real value could be significantly
less than this estimate.

Now, we want to apply (a modified version of) the pivot algorithm to
the simulation of the Domb–Joyce model. Unfortunately, one of the great
advantages of the test for acceptance seems to be broken in this case, since a
self-intersecting walk should not be discarded with probability 1. Recalling
the Metropolis criterion, one should compare the energy E2 of the current
walk to that of the previous one E1; if the difference is non-positive — that is,
if the proposed walk has a lower energy than the old one — then the proposed
walk is accepted with probability 1. Instead, if the difference is positive, then
the walk is accepted with a probability proportional to exp(−v∆E), where
v is the excluded volume. It would seem that the routine for checking self-
avoidance should cross the whole walk every time, in order to compute the
current energy.

Happily, there is a way of doing things that prevents this routine to
reach the end of the walk all the times, thus reducing the time needed to
complete the task. When one has to accept a walk with probability propor-
tional to p = exp(−v∆E), in fact one compares this value with a uniformly
distributed random number generated in [0, 1], and accepts the walk if the
random number is not greater than the statistical weight. The trick is to gen-
erate this random number before the algorithm starts scanning the chain for
self-intersections. Then, for each self-intersection that is found ∆E increases,
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so that p decreases, and one can be sure that the walk will be rejected as
soon as the value of p reaches the previously generated random number.

Clearly, the algorithm will be faster and faster as one increases the value
of v (that is, as one reaches the true self-avoiding walk), because p increases
faster for higher values of v, and the rejection point will be reached sooner.
Inversely, the algorithm is seen to become much slower in the vicinity of the
random walk (v → 0).



Chapter 4

Theoretical Results

4.1 Non-Rigorous Results

Most non-rigorous results are obtained by considering models equivalent to
the Edwards model. Notation in this section will be changed a bit some-
times, in order to keep it consistent with the symbols and definitions used
in the original works cited. The chain length will be denoted by s, L or N ,
the chain itself by c, ω or r and the proper time by τ or by latin indexes
(depending on whether it is continuous or discrete), moreover the excluded
volume parameter will be denoted by g, v or v2.

4.1.1 Flory Formula and Mean Field

The most simple approximation one can apply to the estimation of criti-
cal exponents is based on an energy balance argument. Following [48] one
considers the following measure

D [c] exp

[
−1

4

∫ s

0

ċ2(τ) dτ − g

6

∫ s

0

dτ1 dτ2 δd (c(τ1) − c(τ2))

]
(4.1)

The two terms that appear at the exponent in (4.1) represent respectively
the free action and the interaction. The energy balance argument consists in
asking that these two terms satisfy the same power scale law for s large. By
straightforward dimensional analysis [see also section 4.1.2] and by requiring
that |c| scale as sν one has ∫ s

0

ċ2(τ) dτ ∼ s2ν−1 (4.2)∫∫ s

0

dτ1 dτ2 δd (c(τ1) − c(τ2)) ∼ s2−dν (4.3)
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which can be easily obtained by remembering that

δd (ax) =
1

ad
δd(x) (4.4)

The requirement that the power scaling behavior be the same for the two
terms can then be written as 2ν − 1 = 2 − dν, so that for the swelling
exponent ν one gets

ν =
3

d + 2
(4.5)

which is known as the Flory formula.
The original argument due to Flory was rather different, but the main

features (and the result) are the same. His method was as follows. The
starting point is an N -chain in d-dimensional space, with a certain unknown
radius (end-to-end distance) R, and an internal mean monomer concentration
given by

cm ≈ N

Rd
(4.6)

The repulsive energy density due to monomer-monomer interactions is writ-
ten in terms of the local monomer concentration c. When only two-body
interactions are taken into account1, the local energy density will be propor-
tional to c2:

E(loc)
rep = vc2 (4.7)

where v is a positive excluded volume parameter2. The whole Flory argument
relies on two approximations. The first consists in replacing the average of
the local c2 with the square of the average〈

c2
〉
� 〈c〉2 = c2

m (4.8)

so that the mean repulsion energy density is

Erep = v
N2

Rd
(4.9)

This is a typical mean field approximation, where all correlations among
monomers are ignored. This tends to swell the chain indefinitely, because
the more far away the monomers are, the lower the repulsion is. To obtain
a non-trivial result, some attractive interaction between the monomers is to

1When considering the approach described in the previous paragraph, this assumption
is implicit in the choice of the action as in (4.1), where the interaction term is in the form
of a single delta function.

2In the original Flory notation v = ad(1 − 2χ), where a is the monomer radius and
χ < 1/2 is an interaction parameter.
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be included. The second approximation regards the particular choice of this
interaction. Flory included a term describing the attraction between the first
and the last monomers, which are a distance R apart. Following the result
for ideal (Gaussian) chains , an elastic form of the attractive energy density
was picked:

Eel =
R2

a2N
(4.10)

The total energy density then presents a minimum for some radius Rf , called
the Flory radius

Rd+2
f =

d

2
a2vN3 (4.11)

from which one gets the Flory formula (4.5).

Since one expects ν to be bounded from below by the Gaussian value of
1/2, equation (4.5) is expected to hold at most for 1 ≤ d ≤ 4. This appears
as another clue that the upper critical dimension of the excluded volume
problem be 4; in the picture given by (4.1) this means that for d ≥ 4 the
interaction term can not be strong enough to balance the free action. The
Flory formula gives stunning results in d = 1, 2, where it predicts the values
ν = 1, 3/4, which are confirmed by other methods. It is tempting to conjec-
ture that the formula is valid also near dimension 4, but the (purportedly
more precise) renormalization group results deviate from it even at first order
in ε = 4 − d.

De Gennes strongly criticized Flory’s argument, but his more refined ver-
sion of the derivation actually produced worse results. As a matter of fact,
the whole Flory’s argument seems to benefit from the cancellation of two
errors: the overestimation of the repulsive energy by the mean field approxi-
mation, and the overestimation of the elastic attraction between the ends of
the chain, which is truly elastic only in the Gaussian approximation. Indeed,
as de Gennes himself underlines [3], “As often happens in self-consistent field
calculations, two errors cancel each other to a large extent. Many post-Flory
attempts, which tried to improve on one term leaving the other unaltered
[either the repulsive or the elastic energy], led to results that were poorer
than the Flory formula”.

A somewhat more accurate and modern mean field approach to the model
of weakly self-avoiding walks is that developed in [13]. In this work a more
general model than the Domb–Joyce is considered, in which the repulsion
between monomers decreases as a power of the distance along the chain
|i − j|−λ; this model is referred to as the forgetful weakly self-avoiding walk
(FWSAW). This model is constructed on continuum space, but the ‘local
stiffness’ of the polymer is preserved by considering chains built with discrete
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segments. The measure is

D [ω]
1

Z
exp(−H [ω]) (4.12)

where the Hamiltonian is given by

H [ω] =
1

2

N∑
i=0

(�ωi − �ωi−1)
2 +

1

2
g
∑
i�=j

V
[
(�ωi − �ωj)

2]
|i − j|λ (4.13)

in which V stands for any short range potential, used to regularize a delta
function. The mean field approximation is based on a variational specializa-
tion of the general Gaussian trial measure

H0[ω] =
1

2

∑
i,j

G−1
ij �ωi · �ωj (4.14)

The function Gij is determined by minimization of the following functional

F [G] = 〈H − H0〉0 − log Z0 (4.15)

One then introduces the Fourier transform G̃(p) of G. In the large-N limit
p has infinite range, and the exponent ν can be extracted from the small-p
behavior of G̃(p). The results are

νMF (λ, d) =

{
1/2 for λ > (4 − d)/2
(2 − λ)/d for λ < (4 − d)/2

(4.16)

for 2 ≤ d ≤ 4 (with logarithmic corrections to 〈R2〉 for λ = (4 − d)/2), and

νMF = 1/2 for d > 4 (4.17)

This result again enforces the hypothesis on the upper critical dimension.

These mean field results are clearly not correct for λ = 0 — that is for the
infinite memory case, the Domb–Joyce model — for dimension less that the
critical dimension. For this reason the authors in [13] propose the following
conjecture (as supported by numerical results)

ν(λ, d) = min (νSAW (d), νMF (λ, d)) (4.18)
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4.1.2 Scaling Relations

It is interesting to study the behavior of the Edwards model under general
scale transformations. By means of this approach [49] — which will be called
naive, as opposed to more sensible formulations based on the renormalization
group — it is possible to obtain general scale relations without perturbative
ε expansions.

The partition function considered is of the form

Z =

∫
D [r] exp

(
− 3

2l

∫ L

0

ṙ2(τ) dτ − v

2l2

∫∫ L

0

dτ1 dτ2 δd(r(τ1) − r(τ2)

)
(4.19)

where l is the Kuhn length — which represents the typical bond length —
and v is the usual excluded volume parameter. The degree of polymerization
is naturally defined as N = L/l. The scale transformations under which the
behavior of the model will be studied are of the kind

r′(τ ′) = a0 r(τ)
τ ′ = b0 τ

(4.20)

This scaling transforms the partition function (4.19) into the following

Z =

∫
D [r′] exp

(
− b0

a2
0

3

2l

∫ b0L

0

ṙ′
2
(τ ′) dτ ′

− ad
0

b2
0

v

2l2

∫∫ b0L

0

dτ ′
1 dτ ′

2 δd(r′(τ ′
1) − r′(τ ′

2)

)
(4.21)

apart from an infinite volumetric factor. The partition function (4.21) can
be seen to be equivalent to (4.19) through the following positions

L′ = b0L, l′ = a2
0l/b0, v′/l′2 = (ad

0/b
2
0)(v/l2) (4.22)

This makes a connection between a partition function and infinitely many
polymer theories; the model is then really a two-parameter model, in spite
of the dependence of (4.19) from three parameters. By the further position

b := b0l, a := a0l, b = a2 (4.23)

one gets for the partition function Z the functional form

Z = Z(bN, b(d−4)/2vl−d) (4.24)

By considering (4.21) and choosing

b0 = L−1 (4.25)
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a2
0 = b0 (4.26)

so that the rescaled coupling multiplying the free term and the rescaled
contour length b0L are of order unity (that is, do not depend on L or v), one
gets that the two-body interaction coupling ṽ = v/2l2 takes a factor L2−d/2.
This is of particular importance in the critical crossover regime, where one
considers the limit in which v → 0 and L → ∞ [see section 4.4]. Indeed, by
the foregoing scaling argument one expects the perturbative expansion (for
small v and large N = L/l) of observables to depend only on the combination

x = vN2− d
2 (4.27)

which makes sense for d < 4.
A similar argument can be applied to the propagator

G(R, L) =

∫ r(L)=R

r(0)=0

D [r] QL,v[r] =

∫
D [r] δd(R− r(L)) QL,v[r] (4.28)

where QL,v[r] is the exponential weight in the partition function (4.19). The
following scaling behavior is obtained

G = (bl−2)d/2 G(b1/2Rl−1, bN, b(d−4)/2vl−d) (4.29)

From this relation it is found for the end-to-end distance〈
R2

〉
= l2b−1 f(bN, b(d−4)/2vl−d) (4.30)

which can be rewritten in a specialized form by exploiting the arbitrariness
of the scale factor b and choosing b = N−1:〈

R2
〉

= lL f(N (4−d)/2vl−d) (4.31)

An immediate consequence of this relation is that in dimension d > 4 the
behavior in the long chain limit is Gaussian, that is 〈R2〉 ∼ lL. This result
once again highlights the special role played by d = 4 for the relevance of the
excluded-volume interaction.

An analogous analysis can be carried out for the general two-body in-
teraction specified by a potential W (r(τ1) − r(τ2)). The treatment of the
general interaction term represents an interesting subject, because it helps in
understanding and closely observing what the meaning and consequences of
universality are. One assumes that W (r) solely depends on |r| — for trans-
lational and rotational invariance — and that it has a finite total interaction
strength (binary cluster integral)

∫
drW (r) < ∞. It is useful to study the
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dependence of the Fourier transform W̃ (k) on the scale factor. One then

observes that in the large-N limit only small arguments of W̃ contribute to
the integration in the transform. Then an expansion around k = 0 is used,
and one finally obtains〈

R2
〉

W
= l2N f

(
N (4−d)/2v0l

−d,
{
N−n+(4−d)/2l−(d+2n)v2n

}
n∈N

)
(4.32)

where the coefficients v2n are the 2n-th derivatives of W̃ (k = 0). Since
N−n+(4−d)/2 → 0 for every n in the N → ∞ limit, the dependence of 〈R2〉W
on the terms that contain derivatives of W̃ is dropped. This argument then
explains in a simple way — at least in three dimensions — why introduction
of potentials different from the δ is not important (in the approximate and
asymptotic sense of equation (4.32)): only the binary cluster integral v0 =

W̃ (0) matters.

4.1.3 Renormalization Group

The first attempts towards applying the methods of the renormalization
group to polymers were based on transformations à la Kadanoff. This kind of
approach was introduced in [50] and developed in [51]. The first k monomers
on the chain are grouped into the first renormalized monomer, the next k
monomers in the second, and so on, until the chain is described by a renor-
malized chain of N/k units. Unfortunately — as it is claimed in [52] — it is
not possible to obtain results at higher orders than ε in this scenario. The
need for a different formulation of a renormalization group transformation
for polymers has been taken into consideration in [52].

The ‘naive’ approach permits an easy analysis of excluded-volume behav-
ior under rescaling of the model. Yet, it introduces an extreme simplification
which is not justifiable: one ignores the dependence of physical observables on
the cutoff Λ. This cutoff is introduced in order to reproduce the discrete na-
ture of polymer chains, and to give mathematical sense to the integral of the
delta function. Obviously, Λ will scale under a rescaling of the model, too.
This non-trivial dependence of the cutoff on the scale is the heart of this
renormalization group analysis. One introduces transformations — which
will be called Ss —

c′(τ ′) = c(τ)/sν

τ ′ = τ/s(2−η)ν

(4.33)

where s > 0 is the scaling factor. This transformation will affect Λ too,
transforming it into Λ′. Actually, it will be useful to keep the cutoff fixed
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— by means of another transformation, which will be defined later — so
that it will be possible to ignore the dependence on Λ, or absorb it into the
functional relations. In the ‘naive’ approach this goal was reached by trivial
substitution of Λ′ with Λ. Here, another transformation will be introduced,
which will take care of transforming Λ′ back into Λ: it is the coarse-graining
or Kadanoff transformation Ks, chosen in such a way that

KsSs(Λ) ≡ Rs(Λ) = Λ. (4.34)

One focuses on the regularized propagator

G(R, N) =

∫ c(N)=R

c(0)=0

D [c] exp

[
− d

2l2

∫ N

0

ċ2(τ) dτ

− 1

2
v2

∫∫
|τ1−τ2|>Λ

dτ1 dτ2 δd(c(τ1) − c(τ2))

]
(4.35)

The Kadanoff transformation is constructed as follows.

• (I) Interactions whose loop3 is smaller than Λ in the chain rescaled with
Ss are absorbed into a redefinition of l2 and N .

• (II) When two interactions — one then considers two pairs of inter-
action points, say a and b, and c and d — have their ends separated
by proper times less than Λ — that is, a is ‘close’ to c, and b to d —,
these interactions are combined into a redefinition of the interaction
parameter v2.

The overall effect of Ks is then to integrate out interactions whose scale is
between Λ′ and Λ. Loosely speaking, Rs corresponds to looking at the chain
from far away: it appears smaller and the fine grain is no longer apparent.

3The loop of an interaction is defined as the piece of chain which lies between the two
interaction points that contribute to the δ.
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The perturbative calculation is based on the loop-wise expansion

G(R, N) = G0(R, N) +

− v2

∫ N

0
dτ0

∫ N

τ0+Λ
dτ1

∫
dr0 G0(r0, τ0) G0(0, τ1 − τ0) G0(R − r0, N − τ1)

+ v2
2

∫ N

0
dτ0

∫ N

τ0+Λ
dτ1

∫ N

τ1+Λ
dτ2

∫ N

τ2+Λ
dτ3

∫
dr0

∫
dr1 G0(r0, τ0) ·[

G0(0, τ1 − τ0) G0(r1 − r0, τ2 − τ1) G0(0, τ3 − τ2)

+G0(r1 − r0, τ1 − τ0) G0(0, τ2 − τ1) G0(r0 − r1, τ3 − τ2)

+G0(r1 − r0, τ1 − τ0) G0(r0 − r1, τ2 − τ1) G0(r1 − r0, τ3 − τ2)
]
·

· G0(R − r1, N − τ3) + O(v3
2)

(4.36)
where the free (Gaussian) propagator was used, which is

G0(r, n) =

∫ c(n)=r

c(0)=0

D [c] exp

[
− d

2l2

∫ n

0

ċ2(τ) dτ

]
(4.37)

Equation (4.36) is easily obtained from an expansion of the exponential sta-
tistical weight∫

D [c] e−H[c] =

∫
D [c] e−H0[c] [ 1 − HI [c] + · · · ] (4.38)

The Kadanoff transformation is implemented by subdividing the domain of
dτ integrals into contributions due to interactions with scale larger or smaller
than Λ. One then defines the renormalized free propagator as

G̃0(R
′, Rs(N); Rs(l)) := G0(R

′, N ′; l′) − v′
2

∫ N ′

0
dτ ′

0

∫
Λ′≤τ ′

1−τ ′
0≤Λ

dτ ′
1 ·

· ∫ dr′0 G0(r
′
0, τ

′
0) G0(0, τ ′

1 − τ ′
0) G0(R

′ − r′0, N
′ − τ ′

1) + O(v′
2
2)

(4.39)
which includes contributions of all ‘small’ loops. Expression (4.39) can be
calculated using some approximation, namely first order in ε and large N . It
is then possible to obtain Rs(N

−1), while including also two-loop diagrams
one finally gets

Rs(N
−1) = s2νN−1

(
1 − v2

(
2

πl2

)2

2ν log s

)
(4.40)
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Rs(v2) = sενv2

(
1 − 4v2

(
2

πl2

)2

2ν log s

)
(4.41)

The fixed points are
v2

∗ = π2l4ε/32
N∗ = 0,∞ (4.42)

The solution with N∗ = 0 is not interesting since it is not physical, and does
not carry information about the critical behavior of polymers. By linearizing
around (N−1)

∗
one obtains

Rs(N
−1) = s2ν−εν/4N−1 (4.43)

In order to extract information about the critical exponent ν one considers
the observable 〈R2〉, for which the following scaling relation holds〈

R2
〉

= s2ν f(Rs(N
−1), Rs(v2), Rs(Λ) = Λ) (4.44)

By considering this scaling form at the fixed point v2 = v2
∗, the dependence

of f from the scale factor will be solely due to the term Rs(N
−1). One then

chooses s so that
s2ν−εν/4 ∼ N (4.45)

Hence, the dependence of 〈R2〉 on s is only in the scaling factor which mul-
tiplies f . Finally, one obtains〈

R2
〉 ∼ N

2
2−ε/4 = N1+ ε

8
+··· (4.46)

It is interesting to compare this RG result with the Flory formula for ν; as
one can see, the two expressions differ already at first order in ε.

νF lory = 1
2

(
1 + ε

6
+ · · · )

νRG = 1
2

(
1 + ε

8
+ · · · )

By observing the renormalization group flow for N = ∞ (critical theo-
ries), one sees that the fixed point divides the parameter manifold into two
branches, depending on whether v2 ≷ v2

∗. One then expects to observe
leading corrections to scaling with amplitudes with different signs for the
two regimes, which are called weak and strong coupling branch. This obser-
vation is of fundamental importance in polymer physics, because it clearly
highlights the non-universality of certain aspects of the systems one inves-
tigates, even near criticality. The amplitudes of the corrections to scaling
are highly model-dependent: even their sign depends on the microscopic pa-
rameters of the model. Thus one should not be surprised if experimentally
observed properties of real polymers in solution approach their asymptotic
values from, say, above, while a particular model that is used to describe
them (say, the two-parameter theory in the weak coupling regime) predicts
the opposite behavior.



4.2. RIGOROUS RESULTS 65

4.2 Rigorous Results

Not many exact results are known for the Domb–Joyce model. Moreover,
most of them are derived in dimensions above the critical dimension (d ≥ 5),
or for the particular (and rather uninteresting) case d = 1. Even for the SAW
model — which is relatively simpler — only few exact results are known for
every dimension. The only rigorous SAW critical exponent that is known
through a rigorous method in dimension d = 2 is the swelling exponent
ν = 3/4, which is the same value obtained with a variety of other non-
rigorous methods, so that one is tempted to guess that in two dimensions non-
rigorous methods for the excluded volume problem actually provide precise
results. It is interesting to note that the demonstration of the fifty-year-old
conjecture νd=2 = 3/4 is based on the accurate study of a process that is
nearly resemblant of the Domb–Joyce walk [53].

4.2.1 Bounds on the Number of Self-Intersections

Both an upper and a lower bound on the number of self-intersections of a
weakly self-repelling walk are derived in [54]. For generality, the walk is
constructed on a graph G which is infinite (in order to consider the long
chain limit N → ∞), connected and transitive (in order to exploit a classical
argument in the study of self-excluding objects [see below]).

One considers the set Γn of strictly self-avoiding walks of length n defined
on G . The transitivity of the graph permits the definition of the concate-
nation of two walks γ1 + γ2, with γ1 ∈ Γn and γ2 ∈ Γm for every couple of
integers (m, n). Clearly, the general walk obtained by concatenation of two
self-avoiding walk is not itself self-avoiding, so that it does not in general
belong to Γn+m. One then has

|Γn+m| ≤ |Γn| + |Γm| (4.47)

that is, the sets Γn are subadditive in size. A classical theorem on subaddi-
tivity then assures that

lim
n→∞

|Γn|1/n = µ (4.48)

|Γn| ≥ µn (4.49)

for some positive µ, which is called connective constant, and depends only
on the choice of the graph G .

It is very interesting to note that an argument of this kind does not rely
on the particular sub-object whose appearance is forbidden on a walk, so that
a completely similar reasoning can be applied to other classes of constrained
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walks. Indeed, every time one defines a subset of random walks as the set
of those walks that do not present a certain type of sub-object — be it a
rectangle, nested loops, or any other geometrically-constrained loop — it
will happen that the general concatenation of two such walks does not obey
the same restriction, and the subadditivity property will be satisfied. It is
then natural to define generalized weakly self-avoiding walks (GWSAW), for
which an energy price is payed whenever some given event occurs on a walk.
Manifold interesting questions can then be considered about such a class of
walks. What classes of GWSAW belong to the same universality class of
the SAW? What classes — if any — behave as the random walk? Is there
a connection between the dimensionality of the excluded sub-object and the
behavior of the model?

Turning back to the Domb–Joyce model, one defines the number of self-
intersections, or self-intersection local time

Jn :=
∑

i<j≤n

δ{ω(i) = ω(j)} (4.50)

The estimates for the bounds are based on the following argument. Let Qβ
n

be the Domb–Joyce measure with excluded volume β and walk-length n.
Let A1 and A2 be two subsets of [0, n2] ⊂ N. Moreover, let 〈·〉0 denote the
expectation value with respect to the free measure Q0

n. Then it is easily
verified that

Qβ
n(Jn ∈ A1) =

〈exp(−βJn) δ{Jn ∈ A1}〉0
〈exp(−βJn)〉0

≤ 〈exp(−βJn) δ{Jn ∈ A1}〉0
〈exp(−βJn) δ{Jn ∈ A2}〉0

(4.51)

Now, if one is able to demonstrate the existence an A2 and a number τ > 0
— both independent of n — such that for every n and every A1 the following
property be satisfied

〈exp(−βJn) δ{Jn ∈ A1}〉0 < e−τn 〈exp(−βJn) δ{Jn ∈ A2}〉0 (4.52)

then one can conclude by relation (4.51) that

Qβ
n(Jn ∈ A1) < e−τn (4.53)

that is, the subset A1 contributes ‘little’ on the number of self-intersections
(that is, its contribution on the energy is little). Using arguments of the kind
outlined above, the following propositions can be proved (see propositions 1
and 2 in [54])
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• (Upper Bound) For fixed β > 0 and ε > 0, if τ = ε(log(deg(G )) −
ω(G )) > 0 and b̃ = (1 + ε)(log(deg(G )) − ω(G ))/β > 0 then for every
b ≥ b̃ and every n > 0,

Qβ
n(Jn > bn) < e−τn (4.54)

• (Lower Bound) For fixed β > 0 there exist b̃, ñ and τ , independent of n
but dependent on β and G , such that for every n > ñ and 0 < b < B̃,

Qβ
n(Jn < bn) < e−τn (4.55)

The proof of the upper bound is quite simple, and is based on (4.51) together
with the choice A2 = {0}. The proof of the lower bound, on the contrary, is
much more intricate, though still elementary.

4.2.2 High Dimensions and the Lace Expansion

In high dimensions (d ≥ 5) the excluded volume interaction is no longer
influent for the asymptotic behavior of the model. The most powerful tool
to derive asymptotic relations for the SAW in high dimensions is the lace
expansion, introduced by Brydges and Spencer two decades ago [55]. This
expansion is based on a procedure which is similar to the cluster expansion,
and provides a renewal equation for the propagator in Z

d

Cn(x) :=
∑

ω:0→x
|ω|=n

∏
0≤s<t≤n

(1 − λUst(ω)) (4.56)

where Ust(ω) = −δω(s), ω(t). One defines

K[a, b](ω) :=
∏

a≤s<t≤b

(1 − λUst(ω)) (4.57)

with which the propagator can be written as

Cn(x) =
∑

ω:0→x
|ω|=n

K[0, n](ω) (4.58)

Expansion of the product in (4.57) gives a sum over all possible graphs Γ. A
graph Γ is defined as the set of all couples {s, t} with s, t ∈ [a, b] ⊂ Z and
s < t. The set of all graphs is called B[a, b]. For brevity one refers to the
couple {s, t} as st.

K[a, b](ω) =
∑

Γ∈B[a,b]

∏
st∈Γ

(−λUst(ω)) (4.59)
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It is now natural — when trying to obtain an expression for Cn involving
two-point functions in some sense ‘irreducible’ — to define new objects by an
expression closely similar to (4.59) but restricting the sum only to connected
graphs. A graph in Γ ∈ B[a, b] containing at least two elements ax and yb
is said to be connected if for every c ∈ [a, b] there exists st ∈ Γ such that
s < c < t. The set of such graphs is denoted by G[a, b].

J [a, b](ω) :=
∑

Γ∈G[a,b]

∏
st∈Γ

(−λUst(ω)) (4.60)

One then defines the lace functions

Πm(x) :=
∑

ω:0→x
|ω|=n

J [0, m](ω) (4.61)

With these definitions it is simple to prove the following recursion relation.
It suffices to observe that the contribution to K[0, n] from graphs that do
not contain couples of type 0x is exactly K[1, n]. The other contributions
can be resummed by decomposing every Γ into its connected components.
One then substitutes the expression obtained for K[0, n] into (4.58):

Cn = (χ(Ω) ∗ Cn−1) +

n∑
m=2

Πm ∗ Cn−m (4.62)

where Ω is the set of nearest neighbors of the origin, and ∗ stands for the
convolution between two discrete measures. By briefly rearranging expression
(4.62) and calculating its Fourier transform one obtains an equation that
gives an important meaning to the lace functions:

C̃(k, z) =
1

1 − zD̃(k) − Π̃(k, z)
(4.63)

where
C̃(k, z) =

∑
T

zT
∑

x

C(x, T ) eik·x (4.64)

is the generating functional of the two-point functions, and a similar relations
holds for Π̃(k, z) as functions of Π(x, T )), and where

D̃(k) =
1

2d

∑
µ∈Ω

cos kµ (4.65)

is the well known function that appears in the propagator of the free walk.
Equation (4.63) hence expresses the fact that in some sense the lace functions
measure the deviation from Gaussian behavior.
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So far the objects formally called laces have not yet appeared. A lace is
defined as a minimally connected graph, that is a graph such that it becomes
disconnected if any couple st is removed. These objects are involved in the
demonstration of bonds on the lace functions. These estimates allow the
proof — starting from (4.63) — that for d ≥ 5 there exists a λ0 > 0 such
that for every excluded volume λ < λ0〈

ω2(T )
〉

λ
= DT (1 + O(T−1/16)) (4.66)

where D is a diffusive constant.
While this analysis is carried out in momentum space, the authors in [56]

examine equation (4.62) with a fixed point argument directly in Z
d. With a

somewhat involved argument a point-wise estimate is obtained of the error
one makes when approximating Cn(x) with a Gaussian distribution ϕσ(x)
(see [56] for details).

In [57] the lace expansion is investigated and abstracted from an axiomatic
point of view. Let P be a set (of properties). A map l which associates a
subset l(S) ⊂ P to every subset S ⊂ P is called lace map if it satisfies the
following properties for every S, S ′ ⊂ P :

(a) l(S) ⊂ S
(b) l(S) ⊂ S ′ ⊂ S ⇒ l(S ′) = l(S)
(c) l(S) = l(S ′) ⇒ l(S ∪ S ′) = l(S)

(4.67)

A set L for which l(L) = L is called lace. The set C(L) of properties com-
patible with a certain lace L is defined as the set of the properties p ∈ P
such that l(L∪{p}) = L. With these definitions, the following general result
can be obtained, which is called abstract lace expansion. Let X be a set of
elements, where each element is associated to (‘has’) a subset of the proper-
ties of P . For every L, let N(L) be the number of elements of X that have
all the properties in L e none in C(L). Then the number of elements in X
which have no properties in P is given by

N0(X) =
∑
L∈L

(−1)|L| N(L) (4.68)

where L is the set of all laces. The author in [57] guesses that the introduction
of a map l — different and perhaps more complicated than that formulated by
Brydges and Spencer — could allow a treatment of the asymptotic behavior
of the Domb–Joyce model even for d = 2, 3, 4.

4.2.3 Ballistic Behavior in d = 1

The case d = 1 is relatively simple — but not completely trivial —, and in
this case it is possible to obtain theorems of type ‘law of large numbers’ and
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‘central limit’. In [58] it is proved that for every β ∈ (0, 1) there exists a θ(β)
such that for every ε

lim
n→∞

Qβ
n

(∣∣∣∣ 1nSn − θ(β)

∣∣∣∣ ≤ ε

)
= 1 (4.69)

where θ(β) is called speed of the polymer. This result — which is obtained
with a large deviation technique — highlights the ballistic behavior of the
model in one dimension. A more accurate analysis is carried out in [59], and
gives the result that, for every C ∈ R,

lim
n→∞

Qβ
n

(
Sn − nθ(β)

σ(β)n1/2
≤ C

)
= N ((−∞, C]) (4.70)

where N is the normal distribution, and σ(β) is called the spread of the
polymer.

The speed of the polymer is expected to go to zero in the limit β → 0,
because for β = 0 the behavior is no longer ballistic, but diffusive. More
precisely, in [60] it is proved that

lim
β→0

β
1
3 θ(β) = α > 0 (4.71)

Other results — for example in the limit β → 0 with n3/2β → ∞ — are ob-
tained in [61]. Notice that the particular choice of this limit is not casual, and
the exponent 3/2 is not chosen for ease of proof, or for technical reasons: the
combination n3/2β exactly corresponds to the critical combination vN2−d/2

(in the special case d = 1) which was derived with a scaling argument in
section 4.1.2.

4.3 Universality

The interest in the study of polymer models is focused on the long-chain limit.
This is not only because real polymers have high degrees of polymerization.
First of all — as it is clear from the other sections of this chapter — some
calculations are possible only in the N → ∞ approximation, or at least they
are much more feasible in that limit. But the most important aspect of this
particular regime is related to a fundamental aspect of statistical (infinite
degrees of freedom) systems: universality.

4.3.1 Generalities

General statistical system exhibit a vast variety of behaviors, which are speci-
fied by the particular choices of a multitude of model parameters, for instance
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the microscopic characteristics of the model, the approximations introduced,
the type of lattice on which the system is placed. But there exists a particu-
lar situation in which much more symmetry and simplicity seems to emerge
from this apparently wild plethora of behaviors. When observed in the true
thermodynamic limit (infinite degrees of freedom), statistical systems hap-
pen to have a point — that is, a particular choice of their parameters — for
which they behave in some non-continuous fashion, and many of their mea-
surable quantities diverge. This point is called critical point (or second order
phase transition), and is defined as that particular set of model parameters
for which an appropriate correlation length diverges. The correlation length
is a quantity that measures the typical size of likely fluctuations, that is, the
distance along which the system exhibits coherence. More precisely, a cor-
relation function is defined, which measures the correlation between points
that are distant on the lattice. Away from the critical point, this correlation
function is believed to damp exponentially for large distances, so that the
correlation length is defined as the inverse factor multiplying the distance at
the exponent. At the critical point the divergence of the coherence length
says that fluctuations can travel along the ‘whole’ (infinite!) space.

The correlation length defines a typical scale of the system. It is easy to
guess that, when this scale becomes infinite, the small-scale characteristics
of the model become irrelevant. For example, if one considers a spin model
with medium range interactions — every spin interacts only with spins at
most a distance R away — one expects that in the critical limit some global
properties of the system will not be dependent on R, because any fixed R
becomes ‘negligible’ in the limit where the correlation length becomes infinite.
This is indeed a general property of statistical systems at a critical point:
they exhibit universality; that is, some properties do not depend on the
short-scale specifics of the models, and are therefore called universal. The
critical exponents, which describe the rate of divergence of some observables
near the critical point, are examples — and perhaps the most important ones
— of universal quantities.

Most qualitative and quantitative features of critical phenomena (that is,
statistical systems at the critical point) can be understood in the framework
of the renormalization group (RG) [62, 63]. This fertile point of view was
stimulated by the pioneering work of Kadanoff [64]. The RG idea is to study
the behavior of the system under some sort of transformation which neglects
the small scale particulars of the model, so that truly universal features
become apparent. This transformation induces a renormalization flow on the
space of theories. The fixed points of this flow correspond to those theories
which exhibit scale invariance. For a walk model, this means that the walk
is self-similar, and — for example — small loops are as likely to be found as
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large ones, at all scales. Critical theories flow towards the fixed points: their
universal quantities are the fixed point universal quantities4. In this picture,
the parameter space is divided into ‘attraction basins’, each corresponding
to a fixed point. Critical theories in the same basin flow towards the same
point. As a consequence they will share the same universal properties, so
that they are said to be in the same universality class.

4.3.2 Correspondence with Field Theory

With universality in mind, it is natural to ask whether there exist a field
theory whose universal quantities are those of polymer models. For polymers
in good solutions with only short-range (in space) interactions the answer is
affirmative. This answer is due to the original intuition of de Gennes [66],
an subsequent work of others [see [43] and reference therein].

Following [48], one considers the Edwards model. The delta function is
linearized by introducing auxiliary imaginary fields. The Laplace transform
of the two-point function can then be calculated. Then, a variant of the
replica trick is applied, so that one introduces additional fields φ, but at the
same time the limit n → 0 — where n is the number of components of φ
— must be taken, in order to delete a det factor. Finally the integration in
the auxiliary field can be carried out, so that one end up with the usual two-
point function of gφ4 theory. The remarkable conclusion is that the statistical
properties of polymers are related to the properties of the gφ4 field theory
in the ‘unphysical’ limit N = 0. More precisely, universal critical properties
of polymer chains are related to the singularities of correlation functions of
the N = 0 Φ4-theory in the massless (critical) limit [see chapter 28 in [48]
for details]5.

As a consequence, all critical exponents for polymer models are those
obtained for the zero-component field theory. In two dimensions, a very
accurate (five-loop) calculation of perturbative series for critical quantities
can be found in [68]. Also, in two dimensions there are other methods which
are of great help in extracting critical quantities, the most important of which
are conformal invariance methods [see [67] for an introduction]. The study
of conformal invariance properties of polymers, whose central charge — in
the terminology of conformal field theory — is zero, has been done in [69].
The two exponents ν and γ are known exactly from N = 0 field theory in

4For a comprehensive review of critical phenomena treated with renormalization group
techniques, see [65].

5Other derivations of this connection can be found in literature, see for instance [67]
chapter 9, where the correspondence between SAWs and a lattice model of interacting
spins is showed in a ‘geometric’ fashion.
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two dimension [70]:

ν =
3

4
γ =

43

32
(4.72)

On the other hand, the leading non-analytic correction to scaling exponent
∆1 is still the subject of controversy and debate, since its value as derived
with conformal-invariance methods (11/16, [69]) differs from that obtained
with Coulomb-gas arguments (3/2, [71]). This uncertainty does not even tell
whether the leading non-analytic correction is more important than the first
analytic correction.

Another thing that is exactly known from field theory is the upper crit-
ical dimension, which is 4, as conjectured for polymers by other methods.
Dimension d = 4 is the dimension above which excluded-volume polymers
behave asymptotically exactly as free (Gaussian) chains. Indeed, this is very
easy to explain heuristically, since Brownian motion paths have dimension
2, and one expects that two such paths almost never interact in d > 2 + 2:
a 4-dimensional walker has a ‘large’ volume to explore, and will rarely come
back to a place it already visited.

So the critical universal properties of polymers in good solutions are de-
scribed by the critical N = 0 field theory. But what happens if one considers
the properties of poor- or θ-solvent polymers? As sketched in chapter 2,
in these regimes two-body interactions are no longer enough, and one has
to include at least three-body interactions. At a field-theoretic level, this
translates into the introduction of a φ6 term. The qualitative picture of the
critical behavior then changes substantially, because now a tricritical point
appears. The upper critical dimension for the φ6 operator is 3, so one con-
cludes that while over d = 3 the behavior at the θ-point is strictly Gaussian
(with logarithmic corrections in three dimensions), in low dimensions θ-point
polymers do not behave like random walks.

From the foregoing discussion it should be clear that it is very important
to distinguish what properties of the system are universal. It is exactly by
means of universality, that very simple models — such as the Domb–Joyce
model — can claim to describe real physical systems — such as real polymers,
that are governed by manifold kinds of interactions, and of which there exist
a variety of chemically and structurally different realizations. One should
not be tempted to try and match the behavior of a real finite-length (that is,
non-critical) polymeric chain by carefully adjusting the interaction strength
in the Edwards model (for instance by scaling it like Ld/2−2, see [5], because
only universal quantities can be obtained from a simplified model. Actually,
there exist various quantities — for instance the interpenetration ratio and
some effective exponents — that are seen to approach their asymptotic value
from above or from below depending on the particular model chosen. This
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is a sign of the non-universality of correction-to-scaling amplitudes, even the
sign of which is non-universal [see [72] and reference therein].

4.4 Crossover Behavior

As it is clear from the discussion in the previous sections, the Domb–Joyce
model is expected to have a non-trivial SAW-like behavior in the critical limit
for every v �= 0. But when v = 0 the behavior suddenly becomes exactly that
of the RW, because then not only is the model in the Gaussian universality
class, but it becomes exactly the same model as the RW. Within this picture,
the interest is naturally turned to the study of the crossover between the two
types of behavior. This means that one is interested in how the observables
change their behavior from that of one fixed point to that of the other, by
letting v run from 0 to non-zero values. The parameter v is therefore called
running parameter.

4.4.1 Generalities

It is clear that in the strict critical limit N → ∞ the crossover must be abrupt
— that is, discontinuous —, because universal quantities have values that do
not depend on v when v > 0, but they assume different values for v = 0. On
the contrary, in the non critical region N < ∞ the crossover is expected to
be smooth6. Loosely speaking, this smoothness is obvious for walk models,
because the non-critical walk is of finite size, then it does not have but a
finite number of degrees of freedom, which can not sum up but to a smooth
function. In general, a (small) distance from the critical point contributes
to the critical asymptotic scaling laws through correction to scaling terms.
It is exactly these correction terms that are responsible of the non-critical
smoothness, because they sum up to give a gradual — that is, continuous —
transition between the two regimes.

Manifold quantities can be defined in the crossover region, which are
of help in matching the non-critical behavior of polymer models with that
of real polymers — here we refer to chain models, but similar quantities are
introduced in the study of non-critical crossover aspects of other models. For
example, the so-called effective exponents measure the effective ‘asymptotic’
behavior of the chain, which for finite v and N behaves ‘halfway’ between the
RW and the SAW. For instance, one can define an effective swelling exponent

6See, for instance, [73].
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by

νeff(N, v) :=
1

2 log 2
log

〈R2
e(2N, v)〉

〈R2
e(N, v)〉 (4.73)

From the point of view of the Wilson renormalization group, crossover
phenomena are explained by the competition between two fixed points: the
Gaussian (classical, mean-field) fixed point and the non-classical (Wilson-
Fisher) fixed point. The most important issue in the study of crossover
phenomena is to determine whether one is able to define crossover scaling
functions that are universal. The ‘range’ at which the crossover takes place
(the crossover region) is identified by the Ginzburg criterion [74]. If the re-
duced temperature |t| is greater than the Ginzburg number G — which of
course depends on the model, through its running parameter — the system
shows an approximate mean-field behavior, while non-classical critical behav-
ior begins to manifest itself when |t| < G. The Ginzburg number G is then a
measure of the relevance of space fluctuations, which drive the system to crit-
icality. When varying t while keeping G fixed, the type of crossover observed
is non-universal, since it depends on the details of the model. The descrip-
tion of such a crossover is usually performed through effective quantities by
phenomenological models. As was pointed out by Bagnuls and Bervillier [75],
a universal behavior can be obtained only in a properly defined critical limit.
In fact, in order to observe universality, one has to let the reduced temper-
ature go to zero — that is, observe the system at criticality. Moreover, if
one wants to observe a non-trivial crossover limit, the Ginzburg number has
to go to zero, too, so that one keeps the model in the crossover region. A
proper formulation of the problem is due to Luijten, Blöte and Binder [76],
who argue that a universal behavior can be observed by letting t → 0 and
G → 0 while keeping their ratio fixed. This particular limit will be called
critical crossover limit [77].

4.4.2 Crossover Functions in the Domb–Joyce Model

The first task in studying the crossover behavior of the Domb–Joyce model is
to find the function of the running parameter v and the ‘inverse temperature’
N which corresponds to the Ginzburg combination. By the scaling analysis
performed on the Edwards model [see equation (4.27)], the crossover scaling
variable is expected to be x = vN in two dimensions. Actually, from the
rigorous expansion performed directly on the lattice for the Domb–Joyce
model [see section 4.4.3], the expansion variable turns out to be exactly that
combination of the bare parameters. Notice, in passing, that the criticality
of d = 4 has a clear effect on the crossover variable, which is vN2−d/2 in
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arbitrary dimension. In fact, the critical crossover limit with respect to this
expression is meaningless for d ≥ 4, because it would be impossible to keep
x fixed in the large-N limit.

Hence, with the foregoing definition of x, the critical crossover limit is
defined as

CCL:


N → ∞
v → 0

vN fixed
(4.74)

In this limit the scaling argument of equation (4.31) predicts

〈R2
e〉N
N

= f(x) (4.75)

It is this very function f(x) which exhibits universality. Here, universality
does not mean the values of f(x) are universal. The function f(x) is universal
apart from an overall rescaling of the two axes, that is of x and of 〈R2

e〉. This is
actually quite natural, since x is a combination of bare parameters. Moreover,
in the critical crossover limit effective exponents like the one defined in (4.73)
become universal. The scaling form (4.75), which has been derived by a
scaling argument, is verified to first order in x in an expansion around x = 0
in section 4.4.3.

If one compares the crossover scaling functions f1 and f2 of two different
models in the same universality class, they will differ by a rescaling of the
kind described above.

f1(x) = af2(bx) (4.76)

This means that once the two non-universal scaling factors a and b are known,
and the axes are rescaled appropriately, the two functions collapse into the
same. For instance, let f1 belong to the Domb–Joyce model, and let f2 be
the crossover function as computed from field theory. If one knows, say, f2

to second order, and f1 from first order, then the second order coefficient
of f1 can be extracted, because the two non-universal factors are fixed by
comparison of the two functions to zeroth and first order. f1 to first order
for the Domb–Joyce model will be calculated in the following section. f2 can
be calculated from field theory by using the results in [68] and the method
described in [78].

4.4.3 Cluster Expansion

In order to study the crossover functions in the vicinity of the Gaussian fixed
point — that is, near the random walk — a cluster expansion is used. This
expansion naturally turns out to be an expansion in the crossover parameter
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x = vN2−d/2. Here we will restrict ourselves to the two-dimensional case,
so that x = vN . A cluster expansion for the Domb–Joyce model on the
cubic lattice in d = 3 has been carried out by Domb and Joyce — in the
original paper [12] where the model was first proposed — and by Barrett
and Domb in [79], using the results for random walks of reference [80]. Very
precise results — up to three loops — are obtained in these works for the
three-dimensional Domb–Joyce model.

Here we wish to compute the first order (one loop) diagram of the ex-
pansion for the case of interest, that is for d = 2. The tool of choice in
performing a cluster expansion for a walk model on the lattice is the use of
lattice generating functions. Following the notation of [12], we shall denote
by q the coordination number of the lattice (q = 4 for the square lattice), by
Pn(l) the probability for a random walk of length n to end at lattice site l,
and by un the number of n-step loops (returns to the origin). Moreover, let
cn be the number of n-step random walks, and let cn(l) be the number of such
walks that end at lattice site l. One can then define the following generating
functions, where x ≡ qt

∞∑
n=0

cntn =
∞∑

n=0

qntn = (1 − qt)−1 = (1 − x)−1 =: P (x) (4.77)

∞∑
n=2

untn =

∞∑
n=2

Pn(0)xn =: R(x) (4.78)

∞∑
n=0

cn(l)tn =

∞∑
n=0

Pn(l)xn =: P (l, x) (4.79)

so that P (0, x) = 1+R(x). It is useful to introduce the generating polynomial
of the lattice, which for the 2-dimensional square lattice is

Ψ(x) ≡ Ψ(x1, x2) :=
1

4

(
x1 + x−1

1 + x2 + x−1
2

)
(4.80)

It is easy to see that ∑
l

Pn(l)xl = Ψ(x)n (4.81)

where l is a 2-dimensional multi-index, and xl ≡ xl1
1 xl2

2 . Hence∑
l

P (l, x)xl = (1 − xΨ(x))−1 =: Q(x, x) (4.82)

Notice that all the foregoing quantities are completely analogous to those
usually defined for the random walk (see for instance [8]) in terms of β, βc, p̂,
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etc. in momentum space description. We shall denote the partition function
of the Domb–Joyce model in the v-expansion by

cn(v) :=
∑

ω

[
1 − v

∑
i,j

δωi,ωj
+ · · ·

]
(4.83)

This appears as a natural generalization of the number cn of random walks
to the interacting case. Consequently, the interacting generating function of
cn(v) will be defined as

P (x, v) :=

∞∑
n=0

cn(v)tn (4.84)

The zeroth order contribution to this object is the free function P (x).
The term that contributes to first order in v is obtained by considering

the one-loop diagram One must sum over all possible i and j such that the
i-th and j-th points of the walk are coincident on the lattice. For each chain
this gives ∑

n1+n2=n

(n1 + 1)cn1un2 (4.85)

and it is easy to see that this is the n-th coefficient in the t-expansion of

R(x)
d

dx
[xP (x)] = P (x)2R(x) (4.86)

This is the term that accounts for the first order of the partition function.
Since we are interested in the end-to-end distance, also a slightly different
object must be evaluated, which keeps account of the position of the end
point of each chain. By multiplying cn(l) by xl and summing over l it is
readily found that the generating one-loop term is

Q(x, x)2Q(x) (4.87)

From such a generating function G(x, x), the mean square end-to-end dis-
tance is extracted by the operator[(

x1
∂

∂x1

)2

+

(
x2

∂

∂x2

)2
]

G(x, x)

∣∣∣∣∣
x1=1, x2=1

(4.88)

After some algebra one obtains, to first order in v,

∞∑
n=0

cntn = P + vP 2R + · · · (4.89)
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∞∑
n=1

cn(v)
〈
R2

e

〉
n
tn = xP 2 + 2vxP 3R + · · · (4.90)

By expanding the expression for the end-to-end distance to first order in v
one gets

〈
R2

e

〉
n

=

∑
ω |ω(n)|2

[
1 − v

∑
ij δωi,ωj

+ · · ·
]

∑
ω

[
1 − v

∑
ij δωi,ωj

+ · · ·
]

=
〈
R2

e

〉(0)

n
− v

〈|ω(n)|2
∑
ij

δωi,ωj

〉(0)

n

+
〈|ω(n)|2〉(0)

n

〈∑
ij

δωi,ωj

〉(0)

n


(4.91)

where 〈·〉(0)n means expectation with respect to the flat RW measure. The
zeroth order gives the random walk value n, which can be obtained in this
framework by studying the n-th derivative of the free term xP (x)2 in the
generating function. The terms which contribute to first order in v are re-
spectively the connected and disconnected components. Since the expression
in (4.90) only gives the numerator of (4.91), it corresponds only to the con-
nected component. By equation (4.89), the disconnected component is read-
ily evaluated as nP 2R, so that the first order contribution to the end-to-end
distance is given by the n-th term in the expression for 2xP 3R minus n times
the n-th term in the expression for P 2R. Let Ln denote the operator that
extracts the n-th term:

Ln [F (x)] :=
1

n!

dn

dxn
F (x)

∣∣∣∣
x=0

(4.92)

Then the mean square end-to-end distance to first order in v is〈
R2

e

〉
n

= n − v
(
Ln

[
2xP 3R

]− nLn

[
P 2R

])
+ · · · (4.93)

In two dimensions [80], the loop generating function near the singularity7

x = 1 is given by

R(x) = −1

π
log(1 − x) − 1 (4.94)

With this result, we are able to compute the connected and disconnected
components

A = Ln

[
2xP 3R

]
= Ln

[
2x

(1 − x)3

(
1

π
log(1 − x) − 1

)]
(4.95)

7Since we are interested in the behavior for n large, only the behavior near the singu-
larity is needed.
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B = Ln

[
P 2R

]
= Ln

[
1

(1 − x)2

(
1

π
log(1 − x) − 1

)]
(4.96)

In order to do so, we have to compute the n-th derivative of the objects in
squared parentheses. They are in the form h(x) = f(x)g(x), so we shall make
use of Leibniz formula

dn

dxn
[f(x)g(x)] =

n∑
j=0

(
n
j

)
dj

dxj
f(x)

dn−j

dxn−j
g(x) (4.97)

The term 1 which appears together with the log in the parentheses does not
happen to contribute to leading order8; so we will neglect it. So, for A we
have

dk

dxk

[
x

(1 − x)3

]∣∣∣∣
x=0

=
(k + 2)!

2
− (k + 1)! (4.98)

dk

dxk
[log(1 − x)]

∣∣∣∣
x=0

= −(k − 1)! for k > 0 (4.99)

so that

Ln

[
x

(1 − x)3
log(1 − x)

]
∼ 1

n!

n−1∑
j=0

(
n
j

)[
(j + 2)!

2
− (j + 1)!

]
[−(n − j − 1)!]

= −
n−1∑
j=0

(j + 1)!

(n − j)!j!

(
j + 2

2
− 1

)
(n − j − 1)

= −
n−1∑
j=0

j + 1

n − j

j

2

= −
n−1∑
j=0

[
n(n + 1)

2

1

n − j
− j + 1

2
− n

2

]
(4.100)

where ∼ has been used to denote that the two expressions are equal at leading
order in n. The last two terms in the last sum of equation (4.100) can be
evaluated exactly, and respectively give n2/2 and n(n+1)/4. The remaining
term has a logarithmic divergence, and can be evaluated by transforming the

8The fact is, that use of Leibniz formula gives the k-th derivatives of the object, so that
the constant term 1 gives a null contribution, apart from the 0-th term. But when this
term is evaluated at x = 0, what remains is only the n-th derivative of the other factor
(that is, f(x)), whose behavior is subleading — as it is clear from the following discussion.
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sum into an integral; it gives a term − log n. Finally, for the connected term
we have the following leading behavior

A ∼ n2

π

(
log n − 3

2

)
(4.101)

The logarithmic divergence must not appear in the final expression, so we
expect it to be canceled by the disconnected term.

By a completely analogous procedure, the disconnected part B can be
evaluated. It turns out to be

nB ∼ n2

π
(log n − 1) (4.102)

As expected, the logarithmic term is canceled, and finally one is left with the
following one-loop expression for the expansion factor:

〈R2
e〉n
n

= 1 +
1

2π
vn + · · · (4.103)
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Chapter 5

Numerical Results

We simulated the two-dimensional Domb–Joyce model by means of the mod-
ified optimized Pivot algorithm which is described in chapter 3. The two free
parameters of the simulated lattice model that are to be chosen for every
Monte Carlo run are the excluded volume parameter v and the walk length
N . The parameter space to be probed is then the two-dimensional plane
v−N . Two different classes of paths on this plane have been followed in the
simulations, each corresponding to a different non-trivial limiting regime of
the model.

Firstly, the critical scaling limit has been investigated, that is the limit
in which N goes to infinity, while v is kept fixed. This corresponds to the
critical limit which is accounted for in section 5.1. It is important, when
making assertions by looking at plots in this regime, to remember that the
two limits N → ∞ and v → 0 do not commute in this regime. Indeed,
one expects the scaling limit to be of the Wilson-Fisher type for every fixed
v when N goes to infinity, so that limv→0 limN→∞ is expected to show the
same non-classical scaling. On the other hand, when letting v go to zero one
gets the Gaussian behavior for any fixed N , so that the limit limN→∞ limv→0

corresponds to the mean-field regime.

Secondly, we studied the critical crossover limit of the model. This regime
corresponds to taking N → ∞ and v → 0 strictly at the same time, while
keeping the combination x = vN fixed. This regime is described in section
5.2.

For a correct analysis of the data obtained from the simulations, we relied
on the time-series analysis results described in chapter 3. The number of
MC iterations executed for every coordinate in the parameter plane (v, N)
is 500,000. These iterations are to be intended as consecutive, that is they
are the run length of a single Markov chain, starting from a single initial
configuration.
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Not every sample was recorded, in order to reduce the correlation time,
and to save disk space; one sample out of 100 was saved and used in the
analysis. The integrated autocorrelation time has been measured with the
automatic windowing procedure, where a windowing factor c = 8 was taken.
This procedure turned out to produce nearly independent samples, that is,
the resulting integrated autocorrelation time was slightly above 0.5.

In order to reduce the bias due to the initial transient, the first few samples
of every run were discarded. In order to be assured about the consistency
of the method, the exponential autocorrelation time was computed both
for data including and not including the samples that were chosen to be
discarded. It turned out that for every observable and every point chosen in
the parameter plane1 (the estimator of) the exponential autocorrelation time
was τexp < 10, so that a few tens discarded samples should suffice. Indeed,
after discarding the first 100 samples (that is, the first 10,000 MC iterations)
the exponential autocorrelation time became 1 for every observable2.

All fits in this chapter were obtained by the Levenberg–Marquardt method
[81, 82], which seems to be the best tradeoff between speed and accuracy. It
must be noticed that non-linear fitting algorithms are not exact, since they
are not guaranteed to give the exact solution to the residual minimization
problem. Moreover, they may suffer from slow convergence and — even worse
— the dreaded metastability. In order to rule out, as far as it was possible,
metastability, we performed the fits several times, each time starting from a
different initialization of the parameters. No metastable attractive regions
have ever emerged from the fits.

5.1 Scaling Behavior

The hope in studying the fixed-v behavior of the model for N large was
to verify that criticality was SAW-like for every v > 0. The difficulty here
is, that the estimation of critical behavior via extrapolation of MC data
(as well as exact enumeration data) is largely subjective, and heavily relies
on assumptions of smoothness, and on the expressions chosen for describing
the corrections to the critical behavior. According to general renormalization
group arguments [83], observables in the SAW (that is, in the extreme critical

1The exponential autocorrelation time is expected to depend mainly on the choice of
N , being higher for N large, because more pivot moves are required to ‘completely bend’
a long chain. Yet, quite surprisingly, the exponential autocorrelation time measured on
the whole set of samples does not seem to depend strongly on N .

2The exponential autocorrelation time is probably now much less than unity, but the
estimator operatively computes it as the least integer greater than the ‘definition value’.
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Domb–Joyce model) near criticality are expected to follow a scaling law of
the following kind

〈O〉N = ANp

[
1 +

a1

N
+

a2

N2
+ · · ·+ b0

N∆1
+

b1

N∆1+1
+ · · ·

]
(5.1)

where the ∆ exponents are called correction to scaling exponents. They
describe the non-analytic corrections which — in the RG picture — are due
to the approach to the fixed point, that is, to irrelevant operators. Scaling
form (5.1) also contains analytic corrections to scaling, which are due to
the approach to criticality. The first non-analytic correction exponent ∆1 is
expected to be universal. Notice that knowledge of this exponent is of great
importance when fitting MC data, because it is the most important ingredient
in a systematic-error free extrapolation. Actually, systematic errors in such
extrapolations are always present, but fitting versus an expression like (5.1)
truncated at order ∆1 is a great improvement over a naive power scaling
ansatz.

In most three-dimensional systems, ∆1 ≈ 0.5, so that non-analytic cor-
rections are far more relevant than analytic ones. The problem is much more
subtle in two-dimensions, and both theoretical and numerical analyses have
failed in clarifying whether ∆1 ≷ 1 [see chapter 4]. From the numerical point
of view, measuring correction to scaling exponents is difficult. This is be-
cause one is actually measuring an effective exponent — as is always the case
in fitting numerical data — which incorporates, in an averaging fashion, all
corrections to scaling that lie further than the truncation point in the fitting
function. The fact is, that this could lead to largely underestimated expo-
nents, because — for example — two corrections to scaling with exponents
of the same order — as is the case for the first analytic and the first non-
analytic corrections —, but with amplitudes of different signs, could combine
to give a phenomenological exponent near 0.

To complicate things, in the Domb–Joyce model another parameter is
present beside N . This means that every amplitude in (5.1) will depend on
v. Studying a one-parameter family of Hamiltonians, like the Domb–Joyce
model, can be interesting, because comparison of exponent estimates for dif-
ferent values of v might give an idea of the extent to which measured effective
exponents depend on the non-universal amplitudes, and on the choice of the
fitting function (as observed in [84]). We tried such an approach, at least
to make this subtle cancellation of behaviors apparent. We chose two dif-
ferent values of the excluded volume parameter (1 and 0.02), and measured
the effective correction to scaling exponent ∆eff by fitting the mean square
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end-to-end distance versus3

f(N) = ANp

(
1 +

B

N∆eff

)
(5.2)

where p was fixed to the theoretical value 3/2. The two values we obtained
did differ from each other (0.8 for v = 0.02, and 1.5 for v = 1), but the
second value had an extremely large error (over 100%). These estimates do
not help in understanding more deeply the problem.

In [85] for the first time strong numerical evidence in favor of one of the
two theoretical values of ∆1 was given, by careful study of SAWs on the
lattice. The authors conclude that ∆1 = 3/2 in two dimensions, and this is
the value we will be using for fits in this section, also because it is the value
that gives best fits.

We simulated the model for three fixed values of v, namely v = 0.01, 1, 10.
The values of N were taken in the range [10, 1500] covering all even numbers.
A dense covering of the range surprisingly appeared to be more important
— for the measure of the leading exponent ν — than the distance from crit-
icality — that is, the cutoff Nmax. A representative plot of the observable is
reported in figure 5.1. The fitting function was chosen to be

f(N) = ANp
(
1 + BN−1 + CN−3/2

)
(5.3)

and the fit was performed via variation of A, B, C and p. The resulting values
of the exponent 2ν are reported in table 5.1.

v 2ν
0.02 1.506(24)
1 1.515(21)
10 1.499(25)

Table 5.1: The swelling exponent 2ν for different values of the excluded
volume. Its theoretical value is 1.5.

These values are in excellent agreement with the theoretical prediction:
the behavior is the critical SAW-like behavior even for relatively small values
of v. No trends can be observed in the measured value as the interaction
strength is varied, meaning that the fitting function accurately describes
corrections to scaling, so that we are measuring a quantity that is very close
to the asymptotic one. As a consequence, one expects that this exponent
does indeed exhibit a discontinuity for v = 0.

3In order to get better results, one could try and include also higher order terms in the
fitting function, such as the first analytic correction. Nonetheless, such an improved fit
turned out to give much wilder statistical errors, because another parameter is introduced.
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5.2 Crossover Behavior

We wish now to qualitatively characterize the critical crossover function in
two dimensions, and to check quantitatively their behavior for small values of
the crossover variable. As described in the chapter 4, crossover functions are
the scaling functions that describe observables in the critical crossover limit.
Here, we will focus on the crossover function for the end-to-end distance:

f(x) ≡ f(vN) :=
〈R2

e(v, N)〉
N

for N → ∞, v → 0 and x ≡ vN fixed

(5.4)
First of all, in order to get a global picture of the crossover function, we
simulated the Domb–Joyce model for increasing values of N in the range
[800,1200] and for values of v distributed in a logarithmic fashion in the
range [0.001,100]. The crossover function is expected to converge to 1 in
the small-x limit — this corresponds to the random walk regime — and to
diverge in the large-x limit — the self-avoiding walk regime. A plot of this
function in the ranges described above is in figure 5.2.

The convergence to a single function for fixed x in the critical limit is
very evident even for such relatively small values of N . The accordance is
better for lower values of x. The asymptotic regimes are clearly satisfied: the
function is seen to diverge for large values of the scaling variable, while it is
nearly equal to 1 for x < 0.1.

To move on to a more quantitative level, we focus on the small-x regime.
We simulated the model for values of N up to 16000, and for x in the range
[0.1,2]. The results are plotted in figure 5.3, where they are presented to-
gether with the theoretical one-loop prediction. In this range the function is
seen to be linear with good approximation. Nonetheless, we performed both
linear and quadratic fits, and the latter gave much better results, the former
displaying slight systematic underestimation of the linear coefficient. The
quadratic fits have been done with the following fitting function

f(x) = a + bx + cx2 (5.5)

where all three parameters were varied in the fit. Notice that the correlation
between the linear and the quadratic terms in such a fit turns out to be
rather high, around 0.9. The results for the linear coefficient b are reported
in table 5.2, and they are to be compared with the theoretical prediction of
equation (4.103), which is

b =
1

2π
≈ 0.159 (5.6)
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N b
250 0.150(20)
500 0.168(18)
1000 0.157(26)
2000 0.167(21)
4000 0.158(17)
8000 0.187(24)
16000 0.162(24)

Table 5.2: The linear coefficient of the crossover function, as obtained from
numerical data for different values of N . Its theoretical value is ≈ 0.159

The numerical values all agree with the theoretical prediction, and no
trends for increasing N are apparent. This last circumstance strengthens
the result that the crossover functions only depend on the combination vN ,
and corrections to crossover behavior are not detectable in this range. No-
tice that the theoretical curve in figure 5.3 does not have free parameters,
so the accordance between theory and simulations is not mediated by any
numerically-fitted parameter.

Finally, we turn to the observation of the effective exponent

νeff(N, v) :=
1

2 log 2
log

〈R2
e(2N, v)〉

〈R2
e(N, v)〉 (5.7)

As explained in chapter 4, this quantity is expected to become universal in
the critical crossover limit. Then, we expect — as for the crossover function
— to observe that the curves for different values of N converge to the same
scaling curve for N large. We simulated the model for N = 500 · 2k with
k = 0, 1, 2, 3, 4, and for values of v logarithmically distributed in the range
[0.0001,2]. Then, these values of N and v were combined to plot the quantity
versus x. A plot of the effective swelling exponent is reported in figure
5.4. The curves corresponding to different values of N nicely converge onto
the same curve, as expected. The overall behavior is qualitatively the one
expected: the curves for different values of N reduce to the same curve in
the critical limit. Actually, the coincidence between the functions is very
close even for low values of N , in the middle range. The curve also displays
monotonicity to a good extent, as expected, since the Domb–Joyce model is
always in the non-broken phase [86].

When one considers the curve quantitatively, the accordance with theory
is less precise. In the small x regime, the exponent shows the correct limiting
RW value 1/2. In the large x regime, the effective exponent is expected to
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approach the critical SAW value 3/4, which does not seem to be the limiting
value of the curve in figure. In that region the values of v are of order unity,
and perhaps the disagreement is due to corrections in v, which sum up to
important deviations from universal behavior.
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Figure 5.1: A plot of the mean square end-to-end distance for v = 1.
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Chapter 6

Conclusions

In this work we analyzed the critical behavior of the Domb–Joyce model, as
a model of polymers in good dilute solutions. We reviewed previous results
— which mainly refer to other models belonging to the same universality
class, or they are obtained for the three-dimensional Domb–Joyce model —,
calculated the one-loop crosover function directly for the Domb–Joyce model
on the square lattice, and checked theoretical predictions through Monte
Carlo simulations. We focused on the end-to-end distance, and analyzed two
different limits: the scaling limit and the critical crossover limit. The results
for the scaling limit are in perfect accordance with the expected behavior:
the model belongs to the SAW universality class for every strictly positive
value of the interaction strength. In the critical crossover limit we checked
that the non-critical curves actually converge to a universal function, and
displayed such function in a wide range of the crossover variable. Moreover,
we obtained estimates for linear coefficient of the crossover function in the
random walk regime, that is, for small values of the variable. The check
between numerical data and theoretical calculations is good.

Future work on the Domb–Joyce model should perhaps be directed to-
wards the study of other observables, first of all the second virial coefficient,
in order to study critical amplitude rations, which are expected to be uni-
versal [87]. From the theoretical point of view, the calculation we performed
in two dimensions gives the non-universal amplitude that is needed to match
the critical crossover behavior of the lattice model with field-theoretical pre-
dictions. Thus, future theoretical work should be devoted to obtaining high
order perturbation series from field theory, and matching them against nu-
merical Monte Carlo data. Also, another interesting extension of the present
work is towards the study of branched chains and polymers with different
topological structures.
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