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Abstract

This thesis work deals with the Random Euclidean Assignment Prob-
lem. Many contemporary and past authors were involved in its study
both for its challenging nature and for its infinite applications. Basically,
given a set of N workers and a set of N jobs one aims to find the best
way to assign bijectively workers to jobs. Our target will be the optimal
minimum cost. Differently, with respect the classical linear version, we
have artificially introduced a disorder, using an a priori chosen proba-
bility distribution. Mapping workers and jobs to vertices of a complete
bipartite graph we would like to study the average properties of the sys-
tem, searching for interesting behavior as we do in physical ststems with
a huge numebr of particles. We have computed the analytical expression
of the ground state of the system, averaging over all possible configura-
tions, up to the first order corrections. Explicit expressions for the cor-
relation function is given when the cost is a function of the eucliadean
distance between points. The Hungarian algorithm typical complexity is
studied with numerical simulations.
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Chapter 1

Introduction

This thesis work is organized in three main sections, each of one is di-
vided in three subsections. In the section 2.1, General Structure,the
problem is presented in its generality. Here,in 2.1.1, introductory con-
cepts of Graph Theory are given, without asking for the maximum gen-
erality, but to explain, as simply as possible, what is the mathematical
background to understand the problem. The main reason to study this
kind of problem is that there are great similarities between disordered
physical systems and the ideas developed in the general theory of ran-
dom optimisation problems. Indeed, it is possible to think to the energy
as a "cost" which must be minimised to reach an equilibrium position.
By the way, statistical physics methods were applied succesfully to op-
timisation problems and so in 2.1.2 it is given a brief sketch about the
celebrated replica trick and it is introduced the thermodynamic limit,
which we will use to compute average properties of our system. Follow-
ing, in 2.1.3 the computational aspects are analysed. Today, a lot of algo-
rithms to solve linear problems are available on the market: we choose
to use and to describe the Hungarian Algorithm. We studied it, reinter-
preting the calssical complexity theory, which is interested in study the
worst case, looking for average properties. The programming language
we have used to check theoretical results is Julia, a high-level, high-
performance dynamic language ,relatively new, in the world of comput-
ing [2] [3]. The section 2.2, Optimal Solutions, deal with fundamental
results that allow us to explicitly compute the average properties we are
interested in. Mainly, we follow the same approach of [6]. We will see
that for particular values of the parameter by which the cost depends, op-
timal solutions are ordered. In the last section 2.3, Tackling the Prob-
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lem, we effectively try to derive analytical expressions and each theoret-
ical expression is checked by numerical simulations. In 2.3.1, it is pre-
sented a fundamental theorem ,discovered by Donsker, which allows us
to use the theory of a particular stochastic process, the Brownian Bridge,
to average over the disorder of the system. In 2.3.2 and in 2.3.3 the aver-
age mean cost and the correlation function, respectively, are computed,
up to the first order corrections o

(
1
N

)
. It will be a challenging integral

"divertissement".
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Chapter 2

The Random Euclidean
Assignment Problem
in one dimension

2.1 General Structure

2.1.1 A Random Graph

Graph Theory has its roots at the beginning of the 19TH century with the
Four-Color Conjecture. In the 1976 its resolution by K. Appel and W.
Hanken using a computer-assisted proof marked a turning point in the
theory development [20]. Its modern foundation is based on the seminar
work of Claude Berge, Paul Erdös, Bille Tutte and others. Most of real
world problems have a natural interpretation in term of a graphs. In fact
a graph is the mathematical abstraction of the associating things with
other things. Examples could be the genealogical tree of a given person
or the railway system thought with its railways and stations. An easy
introduction full off examples may be found in [4]. Let us start with the
basic definition of what precisely a graph is:

Definition 1. Given sets V and E ⊆ V ×V we define a graph G the pair
(V , E) and an incidence map φG : E → V × V such that if e is an edge
and u, v are vertices φG(e) = (u, v).

We always write simply G = Graph(V , E) understanding the inci-
dence map φG . The set V is the vertices (or nodes) set while E is the
edges (or lines) set. Then given two vertices u, v ∈ V an edge between
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u and v is the pair (u, v). The number of vertices is V = |V| and is
called order of G. Given an edge e and an vertex v ∈ e we say that e
is incident with v. We call E(v) the set of incidence edges at v and we
|E(v)| the degree of v. If (u, v) ∈ e we say that u and v are adjacent.
We call complete graph KV the graph with V vertices in which all of
them are adjacent to all the others. Basically speaking a complete graph
is one where all vertices are linked with all the others. A complete bi-
partite graph KV1,V2 is a complete graph G = Graph(V1 ∪V2, E) where
V1 ∩ V2 = ∅. Fig. 2.1 shows examples of such graphs. The incidence
relation can be ordered leading to the definition af a digraph:

Definition 2. A digraphD = DiGraph(V , E) is a graph in which edges
are ordered i.e. (u, v) 6= (v, u).

In case of a digraph we depict an edge as ~e = ~(u, v) and we say
that u is the head and v is the tail. The most important tool we have
to understand the properties of a graph is its graphical interpretation so
that in most cases we consider the sketch of a graph the graph iteself.
The diagram of a graph merely depicts the incidence relation between
its vertices and edges.

(a) KV (b) KV1,V2

Figure 2.1: A complete graph a) and a complete
bipartite graph b)

In order to say why graphs are the natural mathematical background
of our problem we need some other basic definitions. It is possible to
define different notions of subgraph. Actually, there is a general simple
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way to contruct a graph from an other, that is removing or adding ver-
tices or edges. Given a graph, by using these simple operations we can
contruct every subgraphs or supergraphs.

Definition 3. We say that a graph G ′ = Graph(V ′, E ′) is a subgraph of
G = Graph(V , E) if V ′ ⊆ V and E ′ ⊆ E . In such case we write G ′ ⊆ G.
It is understood that the incidence map it given by φG′ : E|E ′ → V ′ × V ′.

We say that G ′ is a spanning subgraph of G if V ′ = V . A vertex
cover of G = Graph(V , E) is a subset of V such that any edge of G has
at least one endpoint in it. The smallest possible size of a vertex cover
is called vertex covering number cV (G). In the same way we define an
edge cover aa a subset of E such that any vertex of G is the end point of
at least one edge in it. The smallest possible size of an edge cover is the
edge covering number cE(G).

Now a fundamental definition for our aims:

Definition 4. We say thatM = Graph(VM, EM) ⊆ G = Graph(V , E)
is a matching of size |EM| in G if given two edges in M they have no
vertex in common.

The size of the largest matching (maximum matching) is called match-
ing number m(G). Whenever VM = V we say that the matching is
perfect.

Here a fundamental result proved in 1931 by Konig:

Theorem 1 (Konig’s Theorem). Let G be a bipartite graph. Then it has
a matching if and only if

cV (G) = m(G) (2.1)

and an immediate corollary:

Corollary 1 (Marriage Theorem). Let G = Graph(V1 ∪ V2, E) be a
bipartite graph. Then it admits a perfect matching if and only a matching
exists and

|V1| = |V2| (2.2)

Each times in a bipartite graph we have |V1| = |V2| = V , labelling
or numbering its vertices in different ways, a matching can be expressed
as a permutation of V elements [17]. The Assignment Problem is a
classical linear problem defined on a complete bipartite graph KV1,V2 =
Graph(V1 ∪V2, E), see 2.1. Given a set of N black points X = {Xi}Ni=1
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and a set of N white points Y = {Yi}Ni=1, the embedding of the vertices
on the open unitary interval Λ = (0, 1) will be perfomed by the following
(invertible) map

ψ : E → Λ× Λ (2.3a)
e 7→ ψ(e) = (x, y) (2.3b)

which relates each same-color points set respectively to V1 and V2. We
will label points, withouth loss of generality, in such a way that:

x1 ≤ . . . ≤ xi ≤ . . . ≤ xN (2.4a)
y1 ≤ . . . ≤ yi ≤ . . . ≤ yN (2.4b)

To introduce a disorder in the system we assume that each point is a
random variable with PDF given by:

ρ(x) = χ(0,1)(x) (2.5)

where

χA(x) =

{
1 x ∈ A
0 otherwise

is the characteristic function of the set A. Random Assignment Prob-
lems are concerned with the study of the average properties of the sys-
tem when N → ∞ and when points are distibuted according to a given
PDF. So thinking to the space of all possible REAMs we are considering
just an instace, given by the choice (2.5). An optimisation problem is
a couple (F,C) where F 6= ∅ is the space of feasible solutions and a
cost function C : → R. The target of the problem is usually the min-
imisation (or maximisation) of the cost function, defined on the space of
all possible initial configurations which represents the problem itself. A
globally optimal solution X0 ∈ F is such that

C[X0] = min
X∈F

C[X] (2.6)

It is important to mention that the cardinality of F and the existence
of an optimal solution is not guaranteed.

Note the analogy with physics: a physical system tends to reach equi-
librium making minimum its energy. In our case possible configurations
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are given by pairs of random variables (X, Y ) uniformly and indipen-
dently distributed on the unitary interval. We do the following assump-
tion about the cost function:

c(x, y) = c(|x− y|) (2.7)

In the subsequent development we will call 2.7 cost instead of the more
abstract one in 2.6 understanding that actually c = C ◦ ψ, where ψ is
defined in 2.3. Specifically, in our case, we choose:

c(z) = (|z| − α)2 Λ 3 z = x− y α ∈ R (2.8)

It follows immediately that due to the dependence by the relative dis-
tance between points, the cost is a homogeneus and roto-traslationally
invariant function. This means that its simmetry group is SO(3,R)
union the traslations. A hypotetical physical system described by this
model has a degenerate spectrum as happens for the Coulomb potential.
In addition, as points on the real line are completely equivalent there is
also an exchange symmetry as happens for identical particles. In typical
situations a particle couples or interacts with particles in its immediatly
neighborhood as for example in the Ising Model[18]. This does not hap-
pen in our case: it is no more true that energy is locally minimised by
such couplings. A given particle may quietly choose to couple with a
farer one. Such systems are called frustrated due to this not "free" be-
havior. A question one may try to answer is: what is the probability that,
given a black point, it couples with the k-th white point to minimise the
total energy? This probability can be computed in the large N limit adn
but the work is a little bit tedious. By (2.8) in our case we have the cost
matrix:

cij = c(|xi − yj|) (2.9)

It is important to say that due to the embedding of points in a geometric
space correlations between entries of the cost matrix arises. For example
points must satisfy the triangle intequality. It is clear, from the symme-
tries, that 2.9 is symmetric. Recalling Definition 4 and denoting as S
the symmetric group (the set of all the permutations of N objects), an
optimal solution for the REAM is given by a perfect matching M0 ⊆ G
which minimise the total cost per edge i.e. such that:

εαN(σ) =
1

N
min
π∈SN

N∑
i=1

(|ϕi| − α)2 (2.10)
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where

ϕi
.
= xi − yπ(i) (2.11)

is the displacement field at the point xi. Note that as |V1| = |V2|
the exitence of such a matching is guaranteed by the Marriage Theorem.
What about randomness? An instance of the problem is an immutable
configuaration of the black and white points randomly distributed on
the interval. For each fixed the configuration the minimum optimal cost
can be found. Clearly, for each configuration the optimal cost 2.7 will
be different and this behavior does not allow us to extract satisfactory
informations. By the way, we will consider a large number of instances
of the same random problem, then performing an average operation over
all possible initial configuration, we will get informations about average
properties of the system. Indicating as 〈·〉 the average over the disorder,
our targets will be

E∗N,α = 〈EN,α〉 = 〈min
π∈PN

N∑
i=1

(|ϕi| − α)2〉 (2.12)

and the correlation function given by

χN(r) =

∑
(x,y):|(x,y)|=r

G(x, y)∑
(x,y):|(x,y)|=r

1
(2.13)

where
G(x, y) =

∑
σ

σxσy = 〈σxσy〉 (2.14)

and
σi =

ϕi
|ϕi|

(2.15)

2.1.2 The Thermodynamic Limit

In statistical mechanics one is interested in finding average properties of
the system. At the beginning of the 19TH L.E. Boltzmann understood
that macroscopic properties of objects around us are just average over
a miscroscopic complex behavior with generally different laws. In a
system with N possible states, in thermal equilibrium with an external
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bath, within the canonical formalism it is defined the partition function
as:

Z(β;N) =
∑
n

e−βEn (2.16)

where β is the inverse temperature of the system (or the bath) and
n is a label that runs over all possible states. By the knowledge of this
function it is possible to derive a set of relations which can be used to
compute all macroscopic quantities of interest. In our case, when points
on the interval Λ are generated, they have no kinetic energy i.e. are
considered frozen in their positions. To recover this situation the average
energy will be computed as:

〈E〉 = lim
β→∞

− ∂

∂β
〈logZ(β,N)〉 (2.17)

where it is understood that E already is intended to be the thermal mean
of the energy. The average in 2.17 is still hard to be computed analyti-
cally and it has been approached using the celebrated replica trick[15][8].
Basically one may consider n identical replicas of the system and then
average over it. The mean of a logarithm is not an easy object to manip-
ulate and one should try to use some smart method. We can write:

xn = en log x

⇒ en log x ≈ 1 + n log x as n→ 0

⇒ log x = lim
n→0

xn − 1

n
(2.18)

Then,

〈log(Z(β;N))〉 = lim
n→0

〈Z(β;N)n − 1〉
n

= lim
n→0

〈Z(β;N)n〉 − 1

n
(2.19)

Moreover, using

nx ≈ log(1 + nx) as nx� 1

we get,
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n〈log(Z(β;N))〉 ≈ log(1 + n〈log(Z(β;N)〉) (2.20)
as n→ 0

and by 2.18

〈log(Z(β;N))〉 = lim
n→0

1

n
log(1 + n〈log(Z(β;N))〉)

= lim
n→0

1

n
log[1 + n(

〈Z(β;N)n〉 − 1

n
)]

= lim
n→0

1

n
log(〈Z(β;N)n〉) (2.21)

The mindful reader should be aware as n ∈ N then in performing the
limit 2.18 one must specify how to take this limit due to the fact that
0 is not an accumulation point for the natural numbers set N. To avoid
this mathematical problem one considers the analytical continuation of
Z(β;N)n, where n 7→ x ∈ R, and then performs the limit.

2.1.3 The Hungarian Method

In this section we will face with the computational aspects of the prob-
lem. Given an instance of the problem, there are a lot of algorithms
able to find the optimal cost[10][14][1]. Every problem has to do with
linearity is easier to be solved and so the huge interest in linear program-
ming. Algorithms are routiney improved and an extensive study of their
complexity is done. An instance of the REAM is just its classical linear
version. But how to formalise precisely a linear problem? Hiterto, We
have talked about such a problem but until this point we have not stated
its precise definition. For an optimisation problem two possibilities ex-
ist:

• Maximisation

• Minimisation

In our study we consider the minimisation of a function, the cost, then
let us give the definition in this this case [9]:
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Definition 5 (Standard Minimum Linear Problem). A linear problem is
the research of a vector of numbers x such that

xTb = min
y

∑
n∈I⊆N

ynbn (2.22a)

Ax ≥ c (2.22b)
x ≥ 0 (2.22c)

where A, c and b are a matrix and vectors respectively (we suppose the
dimensions coherent with standard matrix multiplication).

By Def. 5 we can say that a linear problem is defined by a set of in-
equalities (which may be equalities of course) as 2.22b and 2.22c, called
constraints, and a target function as 2.22a to minimise (maximise). A
solution x is called feasible if it satisfies the constraints. In the same
way a problem is said to be feasible if there exist at least one feasible
solution. Moreover, we say that a problem is unbounded if the solu-
tion can assume arbitrarily large values otherwise is bounded. Among
the wide literature on the subject we choose the Hungarian method to
solve computationally the Assignment Problem. As anticipated, for each
instance we compute the minimum cost and then we average over all re-
alisations. The Hungarian algorithm was developed by Harold Kuhn in
1955, who based its study on the previous work of hungarians mathe-
maticians Dénes König and Jenó Egerváry. The complexity class of the
implemented algorithm is O(N3) as we will verify later. This is not the
unique possible existing implementation but it is surely the best one. It
is an example of procedure which uses an augmenting path subroutine to
speedup the research of the optimal solution. Mathematically speaking
is not hard to illustrate how and why the algorithm works, we need just
a couple of very easy definitions. With reference to definitions in Sec.
2.1.1 we define:

Definition 6. Let G = Graph(V = V1 ∪ V2, E) be a weighted bipartite
graph with weight function w.

i) A feasible labeling is a function l : V → R such that

l(v1) + l(v2) ≤ w(v1, v2) (2.23)

ii) The equality graph G = Graph(V , El) (with respect to 2.23) is de-
fined as

El = {(v1, v2) : l(v1) + l(v2) = w(v1, v2)} (2.24)
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Here the promised easy-to-prove result which shows why the Hun-
garian algorithm works:

Theorem 2 (Kuhn-Munkres). Given a bipartite graph G = Graph(V , E),
with |V| = |V1| + |V2|, if l is a feasible labeling and M is a perfect
matching in Gl, thenM is a minimum-weight matching in G.

Proof. Denote an edge e ∈ E as e = (v1, v2). Let M′ be any perfect
matching in G. By definition every v ∈ V is covered exactly once by an
edge inM. Then:∑

e∈M′
w(e) ≥

∑
(v1,v2)∈M′

(l(v1) + l(v2)) =
∑
v∈V

l(v)

Now let M be a perfect matching in Gl. By the definition in 2.24 the
thesis is proved.

To give an idea of how the algorithm works here there is an intuitive
explanation:

Algorithm 1 Hungarian Algorithm (augmenting-path)

function F(I)ND() Find an augmenting path forM⊆ Gl
and increases the size ofM
end function

Require: A feasible labeling l and some matchingM⊆ Gl
whileM⊆ Gl is not perfect do
FIND()

if No augmenting path exists then Improve l to l′

end if
end while

Note that the process will continue to find augmenting paths but as
the size of the the graph is finite the execution must terminate. The
result will be of course the optimal matching. To test the mean time
distribution of the Hungarian algorithm,for fixed input N , we generated
5 · 104 different configurations, recovering at each time the duration of
a single computation of the optimal solution. After, an average over
all recovered times gives the mean time. Repeating that procedure a
lot of times, 104 is good again, we are able to trace the distribution. It
is important to say that we work with a physical situation in mind. A
measure of the time distribution may give useful information about the
energy of the simulated system. Programs ran on a machine with an Intel
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Core i7-5500U CPU @ 2.40GHz x 4 (Turbo Boost up to 3.0 GHz) and
a total of 8 GB of RAM.

Figure 2.2: Some particular time distributions

In Fig. 2.2 there are the distributions for three different inputs. The
first thing we note is that, for a small number of points to match, the
shape of the distribution shows a second relative maximum near the ab-
solue one. For N = 50 and N = 75 there is not such a maximum.
How do we interpret this result? When points are less there must be
certain configurations which raise up the average time. This means that
not all configurations are equivalent but there are instead two calsses of
them. When the number of points is greater then a certain threshold this
splitting is no more present. Anyway, we are not interested in small-
number confirurations, because of, as explained in section Sec. 2.1.2 we
are studying the thermodynamic limit and so the system will be always
far from this unconventional, thought interesting, situation. As we go
up with the input size as the shape becomes smoother and regular. Con-
trary to the case of the previous discussed case when dealing with a big
number of points we can be sure we are treating a calss of equivalent
configurations. This happens because of the raising N , the number of
all possible matchings becomes larger forcing the relative frequency of
"strange" situations to be smaller. The result is that the algorithm 1 takes
more time to augmenting path and then to output the optimal solution. In
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Figure 2.3: Here we fitted the position of the most probable time of the time distribution
as the input size N grows.

any case, we can say more about the time distribution. Let be fH(N, t)
the time distribution of the Hungarian algorithm when the size of the
input is N . Clearly, as every respectable ditribution, it must satisfy a
normalisation condition: ∫

R
fH(N, t)dt = 1 (2.25)

Suppose now that there exist a, b such that∫
R
N bfH(1, t/Na)dt = 1 (2.26)

With a simple change of variable we find,

Na+b

∫
R
fH(1, u)du = 1 (2.27)

which implies that a = −b. Then we look for an universal exponent
such that:

N−a
∫
R
fH(1, t/Na)dt = 1 (2.28)

Fig. 2.3 shows the results from a simulation with 15 · 103 experiments
on the distribution. The strategy of the fitting was to record the positions
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of the most probable time or the average mean time as a function of the
size N and then fit them with a non-linear method. Note that being the
complexity of the Hungarian algorithm O(N3) we expect a coefficient
smaller than three. Fig. 2.4 shows a good agreement with our ansatz. In
Fig. 2.5 the experimental complexity Cexp of the algorithm is plotted. It
is evident that O(N2) ≤ Cexp ≤ O(N3).

Figure 2.4: In the plot the hypotetical time distributions for N = 70 and N = 80. The
Two curves tend to overlap with each other.
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Figure 2.5: The experimental complexity is
between O(N3) and O(N2)

2.2 Optimal Solutions

In Sec. 2.1 we discussed the general structure of our problem. This
section is devoted to the presentation of some results which will reveal
fundamental to make explicit computations of the quantities of interest.
Recall that our aim is the evaluation of the average minimum cost eq.
2.12 and the correlation function eq. 2.13. The explicit evaluation of
the average minimum cost eq. 2.12 is not possible without knowing
the permutation which makes the cost minimum. We have seen that the
optimal matching is determined by a particular permutation. Of course
we call that optimal permutation.

Definition 7. Given a set of N elements, we say that a permutation π ∈
SN belongs to CN ⊆ N if there exists k ∈ N such that 0 ≤ k < N and

π(i) = i+ k mod N, i = 1, ..., N (2.29)

This simply apparent definition will be fundamental in the future. In
fact remembering that the cost function 2.8 depends parametrically by
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α, we will show that the optimal permutation has a different structure
depending on the values assumed by α. That is because such a parame-
ter influences the shaping of the cost function whose properties influence
the structure of the optimal permutation. The set of cyclic permutations
CN form an abelian group (the proof is straighforward and will be omit-
ted) and has order N . Geometrically it corresponds to the N discrete
rotations which leave a plane polygon invariant. Note also that C2 = S2

and C3 = A3, the alternating group of even permutations of three ele-
ments.

Definition 8. Given a triple of three integers (i, j, k) ∈ [N ], [N ]
.
=

{1, 2, ..., N}, we say that the ordered triple of integers (a, b, c) is cycli-
cally co-oriented with it it there esists an even permutation π ∈ C3 such
that (π(a), π(b), π(c)) is in the same order of (i, j, k) respect to the order
relation of integers.

The following proposition is rather important:

Proposition 1 (Necessary and sufficient condition for cyclicity). A per-
mutation π ∈ PN belongs to CN if and only if for any triple (i, j, k) the
corresponding triple (π(i), π(j), π(k)) is cycliccally co-oriented with
(i, j, k).

Proof. Assume that π ∈ CN . Then π is order preserving ando so the
only if holds. Nssume that each triple (i, j, k) is cyclically co-oriented
with its image through the permutation π. Observe that for any couple
(i, j) ∈ [N ]2 we have π(i) − π(j) = i − j mod N , the π ∈ CN To
prove this we proceed by contradiction. Suppose that there exist at least
one couple (i, j) ∈ [N ]2 such that π(i) − π(j) 6= i − j mod N . If so,
the sequences

I = (i, i+ 1 mod N, ..., j)

J = (π(i), π(i) + 1, ..., π(j))

do not have the same cardinality. This implies that there exists k such
that either k ∈ I and π(k) /∈ J or k /∈ I and π(k) ∈ J . By conse-
quence, the triples (i, j, k) are not cyclically co-oriented and the theorem
is proved.

The proof of the statement can be found in [5]. The results means that
to test wether a permutation is cyclic we need just to check if it leaves
invariant (respect to the standard order relation) triples of integers.
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Definition 9 (Crossing and Planar Matchings). Consider two sets of
points X = {Xi}Ni=1 and Y = {Yi}Ni=1 on the interval Λ = (0, 1) la-
beled as in 2.4. A matching between X and Y is said to be planar or
non-crossing if, given the corresponding permutation π adn two pair of
points (xi, yπ(i)) and (xj, yπ(j)), the corresponding intervals are either
disjoint xi < yπ(i) < xj < yπ(j), or nested xi < xj < yπ(j) < xπ(i).
Otherwise the matching is said to be crossing.

From a pictorial point of view a matching is crossing if drawing a
semi-circle in the upper half-plane which connects a pair of matched
points, it intersects one that connects another pair of points.

As anticipated in this section when the parameter α varies, the shape
of the cost function changes. An approach to find explicit solutions is to
characterize the structure of the optimal permutation in dependence of
the functional properties of the cost eq. 2.8. For the further development,
it is useful a little analysis of our cost function, given by:

c(z) = (|z| − α)2

In ref. [6] it was studied the cost function c(z) = |z|p and pretty
results were obtained. In the article, two different regions are taken into
account:

• p ∈ (−∞, 0), where the optimal solution is the identity permuta-
tion

• p ∈ (1,+∞), where the optimal solution is a cyclic permutation

The same approach has been used here and it has revealed to show
excellent results in our case too.

2.2.1 Strictly Increasing Convex Functions

It is trivial to prove that the considered cost function is convex and
strictly increasign when α < 0. The shape of c is shown in Fig. 2.6:

Proposition 2. The function c(z) = (|z| − α)2 is a strictly increasing
and convex for α < 0 when z ∈ Λ.

i) Strictly increasing
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Figure 2.6: The cost for some values of α

Proof. Using the definition, taking z1, z2 ∈ Λ z1 < z2:

(z1 − α)2 < (z2 − α)2

z2
1 + α2 − 2z1α < z2

2 + α2 − 2z2α

z2
1 − z2

2 < 2α(z1 − z2)

α < 0

because z2
1 − z2

2 > 0 and z1 − z2) < 0.

ii) Convexity

Proof. The second derivative is always positive.

At the beginning of this section we anticipated that analytical proper-
ties of the cost force the structure of the optimal permutation. In fact the
following theorem holds:

Theorem 3. Given the assignment problem on the unitary interval, if the
cost function is strictly increasing and convex, then the optimal permu-
tation is the identity permutation.
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Having proved that our cost function is strictly increasing and convex
in the region α < 0, this theorem says precisely what is the permutation
which minimises the total cost. We will use explicitly this result in the
last section.

2.2.2 C-Functions

What is a C-function and where this name come from?

Definition 10 (C-function). We say that a function f : (0, 1) → R is a
C-function if for any η ∈ [0, 1− z2], η̂ ∈ [z2, 1] and 0 < z1 < z2 < 1 :

f(z2)− f(z1) ≤ f(η + z2)− f(η + z1) (2.30a)

f(z2)− f(z1) ≤ f(η̂ − z2)− f(η̂ − z1) (2.30b)

Eq. 2.30a implies that Ψη(z) := f(η + z) − f(z) is an increasing
function on the interal (0, 1−η), for any value of η ∈ (0, 1). In ref. [6] it
is shown that if f is continuous eq. 2.30a is equivalent to convexity. Eq.
2.30b implies that the function Φη(z) := f(η − z) − f(z) is increasing
on the interval (0, η) for any η ∈ (0, 1). If f is differentiable, this can be
written as:

f ′(η − z) + f ′(z) ≤ 0 z ∈ (0, η) η ∈ (0, 1)

and for η → 0 we have:

f ′(1− z) + f ′(z) ≤ 0 (2.31)

Using these facts it is immediate to show the following:

Proposition 3. The function 2.8 is a C-function when α > 1
2
.

Proof. Being a polynomial continuity is guaranteed and convexity is
independent of α as shown in Proposition 2 and so 2.30a is satisfied.
For the second inequality using 2.31 we have, f ′(1 − z) + f ′(z) =
2(1− z − α) + 2(z − α) = 2− 4α ≤ 0. Then α > 1

2
.

The name C-function is justified by the following results:

Theorem 4. Given the assignment problem on the unitary interval if the
cost function is a C-function , then the optimal permutation belongs to
CN , i.e. is a cyclic permutation.
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So, in our case, for α > 1
2

the optimal solution is a cyclic permutation.
It is important to note that Theorem 4 does not say what is the precise
optimal solution. But instead of searching the optimal solution in the
set of all permutations SN , which has cardinality N!, we can restrict our
attention to CN , which has cardinality N. In computational terms this is
a great advantage and in fact it turned out to be fundamental in avoiding
simulation times of the order of 24 hours. In addition because the rapid
explosion of N!, it would be hard to check our theoretical results if we are
interested in the thermodynamic limit. Theorem 4 allows us to decrease
dramatically the number of operations needed to compute the quantities
of interest.

2.3 Tackling the Problem

Finally we arrived at the conclusive point of this thesis. Here we will
show a comparison between theorical predictions and numerical results.
For the most part of what follows we will consider the mean cost per
edge given by:

εN,α :=
1

N
EN,α (2.32)

We compute the leading and the subleading term up to the order o( 1
N

)
of eq. 2.32 while for the eq. 2.13 the results is correct in accord to
Donsker’s Theorem of the following section.

2.3.1 Donsker’s Theorem

Recall that in the REAM we have a cost functions whose variables are
actually randomly generated according to the distribution eq. 2.5 of
Sec. 2.1.1. The dispacement field is connected, in the thermodynamic
limit, with a stochastic process called Brownian Bridge, which is a lin-
ear combination of Wiener Processes. Donsker’s Theorem makes this
connection quantitative and allows us to do an analytical forecasting of
the quantities in eq. 2.12 and in eq. 2.13. A brief introduction to these
processes is given in Appendix A.

Theorem 5 (Donsker). For any N ∈ N there exists a probability space
ΩN such that we can define on it the random variable XN := (Xi)i,XN :
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ΩN → ΛN , each component being a random variable uniformly dis-
tributed on the unitary interval Λ. Moreover, let us consider the corre-
sponding N-th empirical process

FN(t,XN) :=
1

N

N∑
i=1

θ(t− xi)− t (2.33)

Then we can find a path-continuous Brownian Bridge process on Λ,
defined on the same probability space ΩN , BN : Λ × ΩN → BN(t, ω)
such that for all ε > 0

lim
N→∞

P[ sup
t∈[0,1]

|
√
NFN(t,XN(ω))−BN(t, ω)| > ε] = 0 (2.34)

In terms of Appendix A we can say that

sup
t∈[0,1]

|
√
NFN(t,XN(ω))−BN(t, ω)| → 0

in probability. In [7][13] the convergence rate has been studied:

sup
t∈[0,1]

|
√
NFN(t,XN(ω))−BN(t, ω)| = O(

logN√
N

) (2.35)

Let us now see why Donsker’s Theorem is so fruitful for the study of our
problem. Given an instance of the problem ω ∈ ΩN , take a realisation
of points distrubution ΞN = XN(ω) = {xi}Ni=1. The empirical process
in Donsker’s Theorem is :

FN(t,XN(ω)) =
1

N

N∑
i=1

θ(t− xi)− t (2.36)

Now considering the labeling order given in 2.4, we have:

lim
t→xi

FN(t,XN(ω)) =
i

N
− xi (2.37)

Therefore, for two different realisations ΞN = XN(ω) = {xi}Ni=1 and
ΓN = XN(ω̂) = {yi}Ni=1, we can write:

yj − xi =
j − i
N

+ lim
t→x+i

FN(t,XN(ω))− lim
t→y+j

FN(t,XN(ω̂)) (2.38)

At this point we do practically the thermodynamic limit: take i = Nu+ 1
2

and j = Nv + 1
2

with u, v ∈ (0, 1). In this way we are using the fact
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that rational numbers are dense on the real line allowing us to work with
continuous indices u, v instead of discrete ones i, j. The shift 1

2
is just

convenient to do calculations and obviously does not affect final results.
By using this transormation it is possible to choose every generated point
in the interval Λ. For example, the first point is taken if we choose
u = 1

2N
and the last one is taken when u = 1− 1

2N
. Now, the probability

to find a given point xi in the interval [x, x+ dx] is given by:

P(xi ∈ dx) =
xi−1

(i− 1)!

x(N−i)

(N − i)!
1
xN

N !

=

(
N

i

)
xi(1− x)N−i

i

x
dx

= Bi(N, x)
i

x
dx (2.39)

being Bi(N, x) the binomial distribution. This implies that, in the large
N limit,

P(|xi − u| ≥ ε) = exp (− Nε2

2u(1− u)
) (2.40)

Then by Donsker’s Theorem we can write:
√
N(yNv+ 1

2
− xNu+ 1

2
+ u− v)→ B(u, ω)−B(v, ω̂) , N →∞

(2.41)
The fundamental property of Brownian bridge processes we will use is:

〈B(s, ω)B(t, ω)〉 = min(s, t)− st (2.42)

For the proof of this property go to Appendix A.

2.3.2 The Ground State

In Sec. 2.2 we saw that analytical properties of the cost function 2.8 are
different in dependence of the values of α. By the way, structure of the
optimal permutation is different depending on α. Then, it is smart to
consider two different intervals of solution:

i) α < 0

ii) α > 1
2

Let us start with the case i). Consider eq. 2.32. By Theorem 2 we have:

εN,α =
1

N

N∑
k=1

(|ϕk| − α)2 = α2 − 2α

N

N∑
k=1

|ϕk|+
1

N

N∑
k=1

|ϕk|2 (2.43)
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This expression, written as above, is rather difficult to tackle, because of
the presence of the disorder. Using the fact that black and white points
are random variables independently and identically distributed, we can
average over all possible configurations using the following expression:

P(ϕk ∈ dϕ) = dϕ

(
N

k

)2

k2×

×
∫∫ 1

0

δ(ϕ− y + x)(xy)k−1[(1− x)(1− y)]N−kdxdy

(2.44)

Now defining φ(s) =
√
NϕNs+ 1

2
and taking the limit N →∞ we get:

P(φ(s) ∈ dφ) = dφ
e−

φ2

4s(1−s)

2
√
πs(1− s)

{1 +
s(1− s) + 1

8Ns(1− s)
+

7s(1− s)− 2

8Ns2(1− s)2
φ2

+
1− 5s(1− s)
32Ns3(1− s)3

φ4 + o(
1

N
)}

(2.45)

This result may appear rather complicated but actually it is not too diffu-
cult to work with it. It is convenient to introduce the following notation:

1

N

N∑
k=1

|ϕk|p := ε
(p)
N (2.46)

The average mean cost per edge eq. 2.32 becomes:

εN,α = α2 − 2αε
(1)
N + ε

(2)
N (2.47)

that means that in the present case, α < 0, the cost is a quadratic function
in α, at least in the leading term. Following [6] and using the well-known
properties of the Γ function, it is easy to derive the expression below, as
N in large:

N
p
2 ε

(p)
N ds =

∫ 1

0

〈|φ(s)|p〉ds =

=
Γ(p

2
+ 1)

p+ 1

(
1− p(p+ 2)

8N

)
+ o
( 1

N

)
(2.48)
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Now using eqs. 2.47 and 2.48, we get:

εN,α = α2 +
1

3N

(
1− 1

N

)
− α
√
π

2
√
N

(
1− 3

8N

)
+ o
( 1

N

)
=

= α2 − α
√
π

2
√
N

+
1

3N
+ o
( 1

N

)
(2.49)

and the total cost:

EN,α = NεN,α =

= N
(
α2 − α

√
π

2
√
N

+
1

3N
+ o
( 1

N

))
(2.50)

Note the expected parabolic dependence by α of the leading term. The
subleading term is linear in α. Here an interesting thing happens: the first
correction to the leading term is of order o

(
1√
N

)
. This happens because

by eq. 2.48 there is a mismatch in the scaling of ε(1)
N and ε

(2)
N . The

following plots shows the agreement between theory and simulations.
In particular Fig. 2.7 shows the finite size corrections. We resctricted
our attention to the first order term i.e. we have considered

EN,α = N
(
α2 − α

√
π

2
√
N

+ o
( 1√

N

))
(2.51)

Further corrections can be verified in the same way as shown in the
figure 2.8.
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Figure 2.7: In this plot we see the agreement between the theoretical prediction the
finite size corrections in eq. 2.51. Simulation is done over 105 instances. The agree-
ment with the thoeretical prediction is good and error bars are typically smaller then
the markers size.

Let us now try to do a similar computation when α > 1
2
, i.e. the case

ii). This is the more challenging case because Theorem 4 does not say
what is the precise optimal permutation, we know just that πopt ∈ CN .
Define the quantity:

1√
N
φ

(N)
t (s) := yN((s+t) mod 1)+1/2 − xNs+1/2 − σ(s, t) (2.52)

where Ns+ 1/2 = k ∈ [N ], Nt ∈ [N ] and

σ(s, t) := ((s+ t) mod 1)− s (2.53)

In the above expression we have used the continuum limit approxima-
tion. The shift variable t is the continuum counterpart of k in Definition
7. We can write

ε
(p)
N =

1

N

N∑
k=1

∣∣∣σ(k − 1/2

N
, t
)

+
1√
N
φ

(N)
t

(k − 1/2

N

)∣∣∣p (2.54)
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Figure 2.8: Checking the corrections of order o
(

1
N

)
. Simulation is done over 105

instances.

and using again Donsker’s Theorem we have

φ
(N)
t (s)→ φ

(N)
t := B(s, ω)−B((s+ t) mod 1), ω̂), N →∞

(2.55)
Now eq. 2.54 as N →∞ becomes:

ε
(p)
N =

∫ 1

0

∣∣∣σ(s, t) +
1√
N
φt(s)

∣∣∣pds (2.56)

Now to estimate the mean shift we proceed perturbatively:

lim
N→∞

∫ 1

0

∣∣∣σ(s, t) +
1√
N
φt(s)

∣∣∣pds = tp(1− t) + t(1− t)p (2.57)

Putting the above expression, specialised for p = 1, 2, in eq. 2.47, we
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get:

εN,α = α2 − 4α

N
(t(1− t)) +

1

N
(t2(1− t) + t(1− t)2) =

=
t− 4tα +Nα2 + t2(4α− 1)

N
(2.58)

and minimising with respect to t we get,

t = 1/2 (2.59)

which means that the shift is independent by α. Following again [6] we
suppose that

t = 1/2 +
τ√
N

(2.60)

where τ depends both on α and on the particular configuration of the
problem. The figure above shows the results of a numerical simulation.

Figure 2.9: As expected the mean shift which results from the ansatz 2.60 is N/2.
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Expanding eq. 2.57 in t = 1/2 + τ√
N

in the large N limit we have:∫ 1

0

∣∣∣σ(s, t) +
1√
N
φt(s)

∣∣∣pds =

=

∫ 1/2− τ√
N

0

∣∣∣1/2 +
τ√
N

+
1√
N
φt+ τ√

N
(s)
∣∣∣p +

∫ 1

1/2− τ√
N

∣∣∣1/2− τ√
N

+
1√
N
φ1/2+ τ√

N
(s)
∣∣∣p =

=
1

2p
+ p

∫ 1

0

sign(1/2− s)
2p−1
√
N

φ1/2(s)ds−
pτ(τ + φ1/2(1/2))

2p−2N

+
p(p− 1)

2p−1N

∫ 1

0

(τ + φ1/2(s))2ds+ τp

∫ 1

0

sign(1/2− s)
2p−1N

∂tφt(s)|t=1/2ds+ o(
1

N
)

(2.61)

where we have used

σ(s, 1/2 +
τ√
N

) =

{
1/2 + τ√

N
s < 1/2− τ√

N

1/2− τ√
N

s > 1/2− τ√
N

(2.62a)

|1 + x|p = 1 + px+
p(p− 1)

2
x2 + o(x2) x→ 0 (2.62b)∫ ε

0

f(x)dx = εf(0) + o(ε) ε→ 0 (2.62c)

1√
N
φ1/2+ τ√

N
(s) =

1√
N
φ1/2(s) +

τ

N
∂tφt(s)|t=1/2 + o(

1

N
) N →∞

(2.62d)
Now minimising this expression with respect to τ we find:

τ =
(1− 2α)(φ1/2(1/2) + φ1/2(0))−

∫ 1

0
φ1/2(s)ds

4α− 1
(2.63)

Remember that until this moment no average over the disorder has been
done. To do this note that:

〈φ1/2(s)φ1/2(t)〉 = min(s, t)− st

+ min
(
s+

sign(1/2− s)
2

)
, t+

sign(1/2− t)
2

)
−
(
s+

sign(1/2− s)
2

)(
t+

sign(1/2− t)
2

)
(2.64)

This relation is trivial to be proved using the fundamental property of
brownian Bridge processes eq. 2.42. The first term in eq. 2.61 requires
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to proceed carefully in performing the average operation because of it
is of order 1√

N
and we must take into account the correction provided

by the limiting Brownian Bridge distribution. Introducing the variable
ζ(s) := s+ σ(s, 1/2) we get,

P(φ1/2(s) ∈ dφ) =
exp

(
− φ2

2s(1−s)+2ζ(1−ζ)

)
√

2π
√
s(1− s) + ζ(1− ζ)

×
[
1 +

s− ζ√
N

( (s+ ζ − 1)2

(s(1− s) + ζ(1− ζ))2
φ

− 1− (s− ζ)2 − 3s(1− s)− 3ζ(1− ζ)

3(s(1− s) + ζ(1− ζ))3
φ3
)

+ o(
1√
N

)
]

(2.65)

Performing this integral using the saddle-point method (see Appendix
B) it provides:

〈φ1/2(s)〉 = − 1√
N
σ(s, 1/2) (2.66)

Using this result and remembering that the integral and the average op-

Figure 2.10: Simulation is done over 105 instances. The agreement with the thoeretical
prediction is good and error bars are typically smaller then the markers size.

erator 〈·〉 commute, we can perform all averages we need. For example,
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Figure 2.11: Corrections from a different point of view.

it is easy to find: ∫ 1

0

〈φ1/2(s)〉ds = 0 (2.67)

After some integration exercise we finally get:

〈τ〉 = 0 (2.68a)

〈τ 2〉 =
12α2 − 6α + 1

6(4α− 1)2
(2.68b)

This yields,

εN,α = (α− 1/2)2 +
2α(3α− 1)

3(4α− 1)N
+ o
( 1

N

)
(2.69)

and for the total cost,

EN,α = N
(

(α− 1/2)2 +
2α(3α− 1)

3(4α− 1)N
+ o
( 1

N

))
(2.70)

We have verified our analytical computations and also in this case we
find a good agreement between theory and simulations.
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Figure 2.12: In the plot it is possible to see a good agreement for the ansatz in 2.60

2.3.3 The Correlation Function

As anticipated, when the cost function depends explicitly on the relative
distance between points, euclidean correlations may arise. This quan-
tity gives a measure of how two quantities depends by each other. In
the continuum limit, the same as in the previous section, the correlation
function when α < 0 is easily computed, as in [6]

χN(r) =
1

N (r)

∫∫ 1

0

〈φ(s)φ(t)〉δ(|s− t| − r)dsdt =

=
1

N (r)

∫∫ 1

0

〈(B(s, ω)−B(s, ω̂))(B(t, ω)−B(t, ω̂))〉δ(|s− t| − r)dsdt =

=
1

N (r)

∫∫ 1

0

2(min(s, t)− st)δ(|s− t| − r)dsdt =

=
2

N (r)

∫ 1

0

dt
[
(1− t)

∫ t

0

sδ(s− t+ r)ds+ t

∫ 1

t

(1− s)δ(s− t− r)ds
]

=

=
2

N (r)

[ ∫ 1

0

(t− r)θ(t− r)dt+

∫ 1

0

(1− t− r)θ(1− r − t)dt
]

=
2

3N (r)
(r − 1)3 (2.71)
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and using the same trick of splitting the inner integral the normalisation
constant is given by,

N (r) =

∫∫ 1

0

δ(|s− t| − r)dsdt = 2(1− r) (2.72)

Then the correlation function is given by:

χN(r) =
1

3
(1− r)2, r ∈ Λ (2.73)

The case α > 1
2

is similar but not the same. Firs of all it is necessary to
note that as N →∞ the matching field becomes,

µk = yπ(k) − xk → µ(s) =

{
1/2 0 ≤ s < 1/2

−1/2 1/2 < s ≤ 1
(2.74)

Now in the same way as in eq. 2.71 we have,

ξN(r) =
1

N (r)

∫∫ 1

0

〈µ(s)µ(t)〉δ(|s− t| − r)dsdt =

=

{
3/4− 1

2(1−r) 0 ≤ r < 1/2

−1/4 1/2 < r ≤ 1
(2.75)

In the following numerical simulations ,again, show a good agreement

(a) (b)

Figure 2.13: Numerical check of eqs. 2.73 and 2.75.
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with theoretical results. The numerical computation of the correlation
function is not an easy matter. Despite of its easy and intuitive definition,
when considering a single bin of a finite size, the number of instances
to get a reasonable agreement with the theoretical result may be high.
In this section we verified what was done in [6] about the correlation
function. Correlation functions is a measure of how points in the system
re-organize theirselves when a perturbation is applied. As the correlation
is positive as the system respond accordingly to the perturbation. As the
correlation is bigger as the system responds strongly.
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Chapter 3

Conclusions

In this thesis work we have faced the Random Euclideam Assignment
Problem. Quantities of interest were average properties of the system
and the correlation function. We were able to give analytical expression
for these functions in dependence of the parameter of the system up to
the first order term. This was possible in all regions where we knew
how the optimal permutation is made, thanks to theorems of Sec. 2.2.
We found that in the case α ≤ 0 there are corrections of order 1√

N
as

well as of order 1
N

. In the case α ≥ 1/2 corrections to the total cost
do depends by 1

N
. Then, regarding the cost function we can conclude

that we have a good control on whats going on, at least in regions where
the optimal permutation is known. In the remaining interval (0, 1/2) we
have found an interesting information about the probability of finding
as a solution a cyclic permutation: almost everywhere this probability
is zero in the large N limit. We verified the appearing of a non trivial
correlation for the dispacement field, due to the underlying geometry
of the embedding space. The correlation functions, in each case, are
positive and decreasing as points are far from the origin. Physically,
this means that the system, always responds to an external perturbation
accordingly to the perturbation and with less intensity as we go against
the endpoint of the interval. An interesting result is obtained regarding
the Hungarian algorithm. We studied its complexity and we tried to fit its
universal time distibution. The ansatz we did was oversimplified and it
will be interesting in further studies to analyse better the typical behavior
of the algorithm.
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3.1 Futher Studies

Maybe the most interesting case of this particular problem in when 0 <
α < 1/2. That is because we do not know how the general structure of
the optimal solution is, a fact that makes any attempt to do an analytical
computation unsuccesful. If on one hand (the anlytical one) it is difficult
to face this situation, on the other hand (the computational one) some-
thing may be exctracted by simulations. In fact, if for α < 0 and α > 1/2
the optimal permutation is always cyclic (the identity permutation is a
cyclic permutation with zero shift), the first question one may ask is:
what about the structure of the optimal solutions when 0 < α < 1/2?
To answer this question we plotted the probability distribution of the
event "the optimal solution is a cyclic permutation". In the figure above
we can see the form of the distribution.

(a) (b)

Figure 3.1: P("the optimal solution is a cyclic permutation")

As we can see the the probabilty to find a cyclic permutation in this
interval is almost surely zero. Going up with the size of the system the
probability distribution becomes more and more smashed on zero. In
addition if we try to solve for the optimal cost in this region we get:
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(a) (b)

Figure 3.2: Optimal Cost ,for N = 10 (a) and N = 100 (b), in the "unkown" region
0 < α < 1/2. Note how complicated is the shape of the average minimum cost.
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Appendix A

Continuous Time Stochastic
Processes

All phenomena have a stochastic component. Exact macroscopic laws of
nature are the result of an average of a completely different microscopic
behavior. A pollen grain on the surface of the water follows a random
paths due to the collision with liquid molecules. The societies are reg-
ulated by complex mechanisms which we do not know exactly. Stock
prices goes up and down following non-smooth curves which make them
unpredictable and can cause cathastrofic economic breakdowns. Math-
ematics is surely an abstract subject but it gives us powerful tools to
produce quantitative answers. Indeed mathematical thinking is the ac-
tual state of art of the human mind, although there are scientist who
are working on different kinds of investigation tools [19]. In such a big
framework Probability theory gives us the chance to understand globally
what we do not understand totally. Let us recall some familiar concept
on the basics. The interpretation of probability is matter of long, some-
times philosophycal, discussions that, although interesting, are not the
main subject of this chapter and so we recommend [12].

Definition 11. Given a set Ω , a family of its subsets F is said to be a
σ-algebra on Ω if

i) ∅,Ω ∈ F

ii) AC ∈ F ∀A ∈ F

iii)
⋃
n∈N

An ∈ F
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Definition 12. Given a set Ω and σalgebra F on it, a map P : F →
[0, 1] such that it is normalized to unity and countably additive is called
probability measure on Ω. In formulae:

i) P(Ω) = 1

ii) P(
⋃
n∈N

An) =
∑
n∈N

An ∀{An}n∈N : Ai ∩ Aj = ∅ ∀i, j

Definition 13. Given a non empty set Ω, a probability space is a triple
(Ω,F(Ω),P) where F is a σ-algebra on Ω and P is a probability mea-
sure on Ω.

Traditionally, in probability theory, the set Ω is called samples space
and F(Ω) is the event space. The structure of σ-algebra is needed to
combine sample events. Note that logically speaking a set is equivalent
to a proposition to which we assign a non-negative number, i.e. a prob-
ability. This fact follows immediately from De Morgan’s laws. Com-
bining events is then the same as combining proposition and using the
probability function we ask for a measure of how much reasonably an
event occurs.

Definition 14. A mapX : (Ω,F(Ω))→ (Ω′,F ′(Ω′)) such thatX−1(A′) ∈
F ∀A′ ∈ F ′(Ω′) is said to be measurable. Given a set Ω, a real-valued
random varaible is a measurable map X : (Ω,F(Ω)) → (R,B(R))
where B(R) is the Borel σ-algebra of all open subsets of R.

We indicate as < X >=
∫

Ω
XdP(x) the mean value of X , σ2

X =∫
Ω

(X − 〈X〉)2dP(x) = 〈X2〉 − 〈X〉2 the variance and σX =
√
σ2
X

the fluctuation. Note that the for traditional random variables as for ex-
ample a gaussian one, we can formally write dP(x) = ρX(x)dx where
ρX(x) is the probability density function (PDF) of X . In fact, more pre-
cisely, the PDF is defined as a push-forward operation: by P(X−1(B)) =∫
B
ρX(x)dx ∀B ∈ B(R). The cumulative density function (CDF)

is defined as FX(s) = P(X−1(−∞, s]). More precisely the measure
µ(B) = P(X−1(B)), which is called law of X , defines a measure on
B(R) i.e. on the Borel σ-algebra. The relation between ρ and F is
trivial but rather important: ρ = F ′. For further reasons we anticipate
that given a real-valued random variable X , its probability of being in
[x, x+ dx] is indicated by the shorthand P(X ∈ dx). A set of n random
variables is called identically distributed if each random variable hase
the same PDF. Moreover, it is called independent if the joint density

41



factorizes in the product of the cumulatives: ρX(x) =
∏
n

ρXn(xn). The

covariance between two random variables is given by Cov(X, Y ) =

〈XY 〉 − 〈X〉〈Y 〉 and the correlation coefficient by c(X,Y ) = Cov(X,Y )
σXσY

.

Proposition 4. Given independent random variablesX, Y thenCov(X, Y ) =
0. In this case we say that variables are uncorrelated.

An interesting quantity for our discussion is the following:

Definition 15. Given two real-valued random variables X, Y on the
same probability space (Ω,F(Ω),P) with PDFs ρX and ρY , the space-
shifted correlation function is defined as

cX,Y (r) =

∫
Ω

ρX(x)ρY (x+ r)dx r ∈ R (A.1)

An useful quantity in probability theory is the so called characteristic
function. In practice it is the Fourier transform of the PDF of a given
random variable except for the normalisation factor.

Definition 16. Given a random variable X : Ω → R the characteristic
function is defined as

φX(s) = 〈eisX〉 =

∫
Ω

eisxρX(x)dx (A.2)

This definition will be useful in the sebsequently discussion. The n-th
moment of a random variable is defined as µn =

∫
Ω
XndP(x) and using

Fourier transform properties it followes imemdiately that:

Proposition 5.
inµn = ∂sφX(s)|t=0 (A.3)

In statistical mechanics ,where disorder is present, both classical and
quantum, this is atypical quantity of interest [16]. The set L of all real-
valued random variables is an algebra i.e .a vector space closed with
respect a product. Many results can be proved and many techniques
from functional analysis provides very powerful theorems [11]. Here we
develop just notions to reach our aims. There are a lot of convergence
definitions in L. The one we are interested in is:

Definition 17 (Convergence in probability). We say that a sequence Xn

of random variables converges in probability to X if

P(|Xn −X| ≥ ε)→ 0 ∀ε > 0 (A.4)
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Let us now introduce the most important concept of this chapter. Ba-
sically speaking a stochastic process is a random variable with a para-
metric time dependence. Here we discuss continuous time stochastic
processes, then t ∈ [0,+∞] ⊂ R.

Definition 18. A real-valued stochastic process is a collection of real-
valued random variables Xt t ∈ R.

We consider continuous time measurable stochastic processes only,
i.e. mappings X : B([0,+∞]) × F(Ω) → R. Keeping ω ∈ Ω fixed
we can consider fX(t) = X(t, ω) , a family of functions called sample
functions of X . If the sample functions are continuous ∀ω ∈ Ω then
the process is said to be path-continuous. If Xt+h → Xt as h → 0 in
probability the process is called continuous in probability. If a process
is continuous both in probability and path-continuous it is said to be
continuous. Properties of sample functions are of fundamental interest
in stochastic processes study. In the figure below there is an example of
Random Walks, one of the first studied random processes.

200 400 600 800 1000
Steps

-20

-10

10

20

30

40

Position(Steps)

Figure A.1: A pair of Random Walks Processes with parameter p = 1
2

To define precisely what a Brownian motion is we should mention
random vectors. Random vectors are collections of random variables
so one could think that a gaussian vector is a set of gaussian ones. The
right definition is:

Definition 19. An Rn-valued random vector X is called Gaussian if it
has multidimensional characteristic function given by:

φX(s) = 〈eis·X〉 = e−
1
2
s·V s+im·s (A.5)
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where m = 〈X〉 is the mean vector and Vij = Cov(Xi, Xj) is a non
singular n× n symmetric matrix called covariance matrix.

Definition 20. A random vector is said to be jointly Gaussian if any

linear combination
n∑
i=0

aiXi is a Gaussian random variable for any ai ∈

R.

Proposition 6. If a random vector is jointly Gaussian then it is Gaus-
sian.

And immediately follows:

Proposition 7. If V is a non singular symetric matrix then, the random
vector

X(x) =
1

(2π)
n
2

√
det(V )

e−
(x−m)·V−1(x−m)

2 (A.6)

on Ω is a Gaussian random variable.

Note that because V is symmetric one can diagonalize it and do com-
putations in the diagonal basis so that the characteristic function reduces
for normal random variables. For processes generalisations are straight-
forward:

Definition 21. A Gaussian process is an Rn-valued stochastic process
with continuous time such that (Xt1 , ..., Xtn) is jointly for any t1 ≤ ... ≤
tn. It is centered if mt = 〈Xt〉

Finally we have:

Definition 22. An Rn-valued continuous Gaussian process with mean
mt =< Xt > and covariance matrix V (s, t) = Cov(Xs, Xt) = 〈(Xs −
ms)(Xt − mt)〉 is a Brownian Motion or Wiener process if for any
t1 ≤ ... ≤ tn the random vectors Xt0 , Xti+1

−Xti are independent and
the covariance matrix satisfy V (s, t) = V (r, r) with r = min(s, t).

The Wiener Process is called standard if mt = 0 ∀t and V (s, t) =
min(s, t). The first rigorous construction of the Brownian Motion was
given by Norbert Wiener in 1923 by defining the wiener measure on
the space of continuous bounded functions on an interval. We will not
talk about this interesting contruction for space reasons. We refer to the
bibliography for further deepening.

Here some basic properties fo the Wiener Process:
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Theorem 6. Given a Wiener Process Wt, then:

i) Time Homogeneity. ∀t > 0Wt+s −W (t+ u) = Ws −Wu

ii) Reflection simmetry. The process −Wt is a Wiener process

iii) Brownian scaling. ∀c > 0W ′
t = cW t

c2
is a Wiener process

iv) Time inversion. The process W0 = 0, W ′
t = Wt 1

t
for t > 0 is a

Wiener process

All of this seems to be not concerned with the existence of such a pro-
cesses. In the past many authors as for example Albert Einstein showed
an heuristic construction of the the Wiener Process in terms of Random
Walks. We should be ensured by the following:

Theorem 7. The Wiener Process exists.
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0.5

B

(b) Bt

Figure A.2: a) Wiener Processes and b) a Brownian Bridge Processes

Now with the existence result we can be quiete and talk about all of
Wiener processes we want. There is one that is special for our purposes.
This is a linear combination of Wiener processes:

Definition 23. The process defined by Bt = Wt− tW1 is called Brown-
ian Bridge.

From the definition it is clear that a Brownian Bridge is a Wiener pro-
ces that starts at 0 and and ends at 1. In this sense it is a bridge between
the two points.
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Proposition 8. Given a Brownian Bridge, if 0 ≤ s ≤ 1 and 0 ≤ t ≤ 1
the following holds:

〈BsBt〉 = min(s, t)− st (A.7)

Proof. Using 〈WsWt〉 = min(s, t) we have

〈BsBt〉 =〈(Ws − sW1)(Wt − tW1)〉
= 〈WsWt〉 − t〈WsW1〉
− s〈WtW1〉+ st〈W1W1〉
= min(s, t)− st− st+ st

= min(s, t)− st (A.8)
(A.9)
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Appendix B

Saddle-point approximation

Here we give an heuristic derivation of the saddle-point methos in the
real case. Consider the following integral:

I(λ) =

∫ b

a

f(x)eλg(x)dx (B.1)

where f, g are two real valued functions and a < b. It is clear that, if
g has a peaked maximum in x0 ∈ (a, b), the integral is dominated by
the value around the point where the maximum is reached. Furthermore,
suppose f and g are "regular" functions in such a way that it is possible
to do a series expansion:

g(x) = g(x0)− |g
′′(x0)|

2
(x− x0)2 +O((x− x0)3) (B.2)

(B.3)

Up to a change of variable, we can write,

I(λ) = eλg(x0)

∫ ub

ua

√
2

λ|g′′(x0)|
f
(
x0 +

√
2

λ|g′′(x0)|
u
)
e−u

2+Rdx

(B.4)

where R → 0 as x → x0, ua =
√

λ|g′′(x0)|
2

(a − x0) < 0 and ub =√
λ|g′′(x0)|

2
(b− x0) > 0. Now taking the limit λ→∞ and using f(x0 +

ε) = f(x0)+εf ′(x0)+ f ′′(x0)
2

ε2 +O(ε3) performing the gaussian integral
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with standard methods we get,

I(λ) = eλg(x0)
(
f(x0)

√
2π

λ|g′′(x0)|
+

1

2
f ′′(x0)

√
2

(λ|g′′(x0)|)3
+O(λ−5/2)

)
(B.5)
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