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A B S T R A C T

Large deviation theory connects different areas of physical interest,
being able to justify the average properties of statistical ensembles
while characterizing rare events and probabilities of extreme values.

In this work we focused on its application to the cost function of the
random euclidean matching problem (REMP) on a compact interval.
This is a well known toy-model belonging to the family of disordered
spin-glass systems and optimization problems. In our case the cost
function is given by the distance of two matched points (spacing) raised
to some power p > 1.

In here we present the main results obtained in the case of indepen-
dent, identically distributed, spacings, providing a precise asymptotic
expression for the probability distribution of the cost function. In par-
ticular, we found two threshold sequences depending on the number
of random variables n and the power p, which define different regions
where different behaviors can be observed. On one hand, we show
that in a region close to the expected value, deviations from the mean
are exponentially suppressed in the number of spacings, which is
typical. On the other hand, in a broader region, probability of rare
events is less than exponentially dumped, making extreme values not
so unlikely.

Moreover, even when correlations between spacings induced by
the distance are taken into account, we show that the distribution
of the average optimal cost in the REMP is asymptotically normally
distributed in the region predicted by the central limit theorem. We
show this region can be extended on a broader interval, defining a
moderate large deviation principle in a range limited, as before, by a
suitable threshold sequence.

Both results are supported by numerical simulations. These were
obtained from direct sampling the distribution of the spacings and
thus evaluating the cost function for different choices of p.
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Part I

L A R G E D E V I AT I O N P R I N C I P L E A N D T H E O N E
D I M E N S I O N A L E U C L I D E A N M AT C H I N G

P R O B L E M





1
I N T R O D U C T I O N T O T H E L A R G E D E V I AT I O N
T H E O RY

In this chapter we want to give some fundamental notions of large
deviation theory and its applications in physics. We want to give
some sense of what a large deviation is by a simple introduction to
probability theory and collecting the fundamental results in this field.
A simple application to statistical mechanics is given at the end of the
chapter which tries to justify the physical interest of the topic. A good
introduction to this topic can be found in the book of R. Ellis [11] and
in the Lecture Notes in Physics book series by Springer [40]

1.1 why a large deviation theory

Describing the physical properties of macroscopic bodies via the com-
putation of (ensemble) averages was the main focus of statistical
mechanics at its early stage. As a matter of fact, as macroscopic bodies
are made of a huge number of particles, fluctuations were expected to
be too small to be actually observable. Broadly speaking, we can say
that the theoretical basis of statistical descriptions was guaranteed by
the law of large numbers.
On the other hand, whenever physicists calculate an entropy function
or a free energy function, large deviation theory is at play. Indeed,
large deviation theory is almost always involved when one studies
the properties of many-particle systems, be they equilibrium or non
equilibrium systems. It explains, for example, why the entropy and
free energy functions are mutually connected by a Legendre transform,
and so provides an explanation of the appearance of this transform in
thermodynamics. Large deviation theory also explains why equilib-
rium states can be calculated via the extremum principles that are the
(canonical) minimum free energy principle and the (microcanonical)
maximum entropy principle.

The earliest origins of large deviation theory lie in the work of
Boltzmann on entropy in the 1870ies [34] and Cramér’s Theorem from
1938 [7, 8]. A unifying mathematical formalism was only developed
starting with Varadhan’s definition of a large deviation principle (LDP)
in 1966 [37, 38].

Basically, large deviation theory centers around the observation that
suitable functions f of large numbers of random variables (X1, . . . ,Xn)

often have the property that, for n ≫ 1,

Pr (f(X1, . . . ,Xn) ∈ dx) ∼ e−anI(x) dx , (1.1)

3



4 introduction to the large deviation theory

where an is a suitable sequence such that limn→∞ an = ∞ (in most
cases simply an = n). In other words, LDP states that the probability
that f(X1, . . . ,Xn) takes values near a point x decays exponentially
fast, with speed an, and rate function I.

Large deviation theory has two different aspects. On the one hand,
there is the question of how to formalize the intuitive formula (1.1).
This leads to the already mentioned definition of large deviation
principles and involves quite a bit of measure theory and real analysis.

On the other hand, there is a much richer and much more important
side of large deviation theory, which tries to identify rate functions
I for various functions f and study their properties. This part of the
theory is as rich as the branch of probability theory that tries to prove
limit theorems for functions of large numbers of random variables,
and has many relations to the latter.

1.2 basic elements of probability theory

We start our study of large deviation theory by considering f as a sum
of real random variables (RV for short) having the form

Sn =
1

n

n∑︂
i=0

Xi . (1.2)

Such a sum is often referred to in mathematics or statistics as a sample
mean. Three basic questions naturally arise when n is very large:

• The behavior of the sample mean Sn , the possible convergence
to an asymptotic value and its dependence on the sequence;

• The statistics of small fluctuations of Sn around ⟨Sn⟩, i.e. of
δSn = Sn − ⟨Sn⟩, when |δSn| is small;

• The statistical properties of rare events when such fluctuations
are large.

The answer to the first question, in the simple case of sequences
(X1, . . . ,Xn) of independent and identically distributed (IID for short)
random variables with expected value µ and with finite variance,
comes form the law of large numbers (LLN) which states the empirical
average gets closer and closer to the expected value µ = ⟨Xi⟩, when n

is large:

lim
n→∞ Pr (|δSn| < ϵ) = 1 . (1.3)

The second issue is addressed by the central limit theorem (CLT). For
instance, in the case of IID RV with expected value µ and finite variance
σ2, the CLT describes the statistics of small fluctuations, |δSn| .
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O(σ/
√
n), around the mean value when n is very large. Roughly

speaking, the CLT proves that, in the limit n ≫ 1, the quantity

Zn =
1

σ
√
n

n∑︂
i=0

(Xi − µ)

is normally distributed, meaning that

pZn
(z) ∼

1√
2π

e−z2/2 (1.4)

independently of the distribution of the random variables. Under
suitable hypothesis the theorem can be extended to dependent (weakly
correlated) variables.

Finally, the last point is the subject of large deviation theory which,
roughly, states that in the limit n ≫ 1

pSn
(s) ∼ e−anI(s) , (1.5)

or, equivalently,

lim
n→∞ 1

an
logpSn

(s) = −I(s) . (1.6)

Unlike the central limit theorem result with the universal limit prob-
ability density (1.4), the detailed functional dependence of I(s) – the
Cramér’s or rate function – and the speed an depends on the probability
distribution of p(X1, . . . ,Xn). However, I(s) possesses some general
properties: it is zero for s = ⟨Sn⟩ and positive otherwise, moreover
– when the variables are independent (or weakly correlated) – it is
a convex function. A motivation of this last statement is provided
in Appendix A. For a complete study of the properties of the rate
function we refer to [36, 39]. For sake of simplicity in the following we
will assume an = n, which is common in most simple cases.

1.3 from small to large deviations

An LDP for a random variable, say Sn again, gives us a lot of infor-
mation about its distribution. The fact that the behavior of pSn

(s) is
dominated for large n by a decaying exponential means that the exact
distribution of Sn can be written as

pSn
(s) = e−nI(s)+o(n)

with o(n) a sublinear correction in n. By taking the limit

lim
n→∞ 1

n
logpSn

(s) = I(s) + lim
n→∞ o(n)

n
= I(s)

which retains only the dominant exponential term of the limiting
distribution and neglects the others. For this reason, large deviation
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theory is often said to be concerned with estimates of probabilities on
the logarithmic scale.

Thus it should be clear that probability is exponentially suppressed
in n anywhere the rate function I(s) is non-vanishing. Moreover, we
know that pSn

(s) concentrates on certain points which are the typical
values of the sample mean Sn in the large n limit. These points
correspond to the zeroes of the rate function I(s) and it can be shown
to be related mathematically to the LLN. Indeed, an LDP always
implies some form of LLN.

Often it is not enough to know that Sn converges in probability to
some values and we may also want to determine the likelihood that
Sn takes a value away but close to its typical value. Let s0 be one of
this values and assume that I(s) admits a Taylor series around s0, then

I(s) = I(s0)+ I ′(s0)(s− s0)+
I ′′(s0)

2
(s− s0)

2+o
(︁
(s− s0)

2
)︁

. (1.7)

Since s0 is a zero of I(s) the first two terms vanish and we are left
with a law of small deviations of Sn around its typical value

pSn
(s) ∼ e−n

I ′′(s0)
2 (s−s0)

2

.

and in this sense, large deviation theory contains the CLT. At the same
time, large deviation theory can be seen as an extension of the latter
because it gives information not only about the small deviations but
also about large deviations far away from its typical value(s).

1.3.1 A combinatorial example

A natural way to introduce the large deviation theory and show its
deep relation with the concept of entropy is to perform a combinatorial
computation. We will consider the simple example of a sequence of
independent unfair-coin tosses. Denoting with Xi the result of the
i-th toss, the possible outcomes are head (+1) with probability π or
tail (−1) with probability 1− π. Let Sn be the sample mean of such
variables, we are now interested in formulating an LDP for the RV Sn.

Actually, the probability of the sample mean taking a specific value
can be explicitly computed: in the sequence of n tosses of the coin the
ways k heads can occur is given by the binomial coefficient(︃

n

k

)︃
=

n!
k! (n− k)!

.

Thus, we have for the probability of the sample mean

Pr
(︃
Sn =

2k

n
− 1

)︃
=

n!
k! (n− k)!

πk(1− π)n−k , (1.8)

that is the binomial distribution.



1.4 some useful results in large deviation theory 7

Since we are interested in the asymptotic expression in the large n

limit, both the number of heads and the number of tails will diverge.
Thus, by setting

k = pn ,

n− k = (1− p)n ,

and using Stirling approximation of the factorial, the probability in
(1.8) will take the form

Pr (Sn = 2p− 1) ∼ e−nIπ(p) , (1.9)

where

Iπ(p) = p log
p

π
+ (1− p) log

1− p

1− π
(1.10)

is the rate function of the probability distribution. We can notice
Iπ(π) = 0, meaning the only value for which the probability is non
vanishing is the expected value of the sample mean. Actually, the CLT
can be recovered by a Taylor expansion at p = π, that is

Iπ(p) =
1

2

(p− π)2

π(1− π)
+ o

(︁
(p− π)2

)︁
. (1.11)

From the above computation we understand that it is possible to go
beyond the CLT, and to estimate the statistical features of extreme (or
tail) events, as the number of observations n grows without bounds.

1.4 some useful results in large deviation theory

The first approximation we can have on the distribution comes from
the Markov’s inequality, that gives an upper bound for the probability
that a non-negative function of a random variable is greater than or
equal to some positive constant. It relates probabilities to expectations,
and provide bounds for the cumulative distribution function of a
random variable. It is obtained by noting that, for any non-negative
RV X with probability density function (PDF for short) p(x), it holds

⟨X⟩ =
∫︂∞
0

dx xp(x) =

∫︂a
0

dx xp(x) +

∫︂∞
a

dx xp(x)

>
∫︂∞
a

dx xp(x) > a

∫︂∞
a

dxp(x) = aPr(X > a) ,

for any positive a. Therefore we have

Pr(X > a) 6
⟨X⟩
a

(1.12)

A direct consequence of Markov’s inequality is the Chernoff bound
[6], that gives exponentially decreasing bounds on tail distributions
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of sums of independent random variables. This is simply obtained by
applying (1.12) to the RV etX,

Pr(X > a) = Pr
(︁
etX > eta

)︁
6

⟨︁
etX
⟩︁

eta
,

that holds for any t > 0. Now, let X = Sn be the sample mean of IID
RVs: by recalling that

p(n)(X1, . . . ,Xn) =

n∏︂
i=1

p(1)(Xi) , (1.13)

then it holds

Pr(Sn > s) = Pr

(︄
n∑︂

i=0

Xi > ns

)︄
= Pr

(︂
et

∑︁n
i=0 Xi > etns

)︂
6

(︄⟨︁
etX
⟩︁

ets

)︄n

6

(︃
min
t>0

[︁
e−ts

⟨︁
etX
⟩︁]︁)︃n

.

Thus, in terms of large deviation theory,

lim
n→∞ 1

n
log Pr(Sn > s) 6 − sup

t>0

[ts− logM(t)] (1.14)

where M(t) ≡
⟨︁
etX
⟩︁

is the moment generating function (MGF) of the
variable X.
A similar Chernoff bound can be obtained for the complementary
probability: namely, for any t 6 0, we have

Pr(Sn 6 s) = Pr
(︂
et

∑︁n
i=0 Xi > etns

)︂
6

(︃
min
t60

[︁
e−ts

⟨︁
etX
⟩︁]︁)︃n

,

and thus

lim
n→∞ 1

n
log Pr(Sn 6 s) 6 − sup

t60

[ts− logM(t)] . (1.15)

The main result of large deviation theory that is widely used to
obtain LDPs is called the Gärtner–Ellis Theorem (GE Theorem) [12,
14]. Let

K(λ) = lim
n→∞ 1

n
log
⟨︁
enλfn

⟩︁
fn

(1.16)

be the scaled cumulant generating function (SCGF) for some real RV fn
parametrized by n, where⟨︁

enλfn
⟩︁
fn

=

∫︂
Pr (fn ∈ dx) enλx . (1.17)

In the following we will omit the subscript on which probability
measure the expectation value is taken unless it is essential for un-
derstanding. The GE Theorem states that if K(λ) exists ∀λ ∈ R and is
differentiable then fn satisfies a LDP

Pr (fn ∈ dx) ∼ e−nI(x) dx , (1.18)
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with rate function I(x) given by

I(x) = sup
λ

[λx−K(λ)] . (1.19)

The transform defined by the supremum is an extension of the Leg-
endre transform referred to as the Legendre–Fenchel transform (LFT for
short). We refer to Appendix A for a more in-depth discussion.

The GE Theorem thus states in words that, when the SCGF K(λ) is
differentiable, then fn obeys a large deviation principle with a rate
function I(x) given by the LFT of K(λ).
The SCGF has some interesting properties: since the probability mea-
sure is normalized K(0) = 0 and, for m ∈ N, it holds

K(m)(0) =
∂m

∂λm
K(λ)

⃓⃓⃓⃓
λ=0

= lim
n→∞ 1

n

∂m

∂λm
log
⟨︁
enλfn

⟩︁⃓⃓⃓⃓
λ=0

= κm

where κm is the m-th cumulant of fn. In particular, the first two
cumulants correspond to

κ1 = lim
n→∞ ⟨fn⟩fn = µ

κ2 = lim
n→∞n

(︂⟨︁
f2n
⟩︁
− ⟨fn⟩2

)︂
= lim

n→∞nvar(fn) .

The importance of the GE Theorem is to be able to calculate the
SCGF without knowing the exact form of pfn(x). Conversely, the
asymptotic expression of the distribution pfn(x) can be retrieved ex-
actly with this theorem, by the evaluation of the rate function itself.

The rigorous proof of the GE Theorem is too technical to be pre-
sented here. However, there is a way to justify this result by deriving
in a heuristic way another result known as Varadhan’s Theorem. The
latter theorem is concerned with the evaluation of a functional expec-
tation of the form

Wn [g] =
⟨︂
eng(fn)

⟩︂
=

∫︂
dxpfn(x)e

ng(x) (1.20)

with g some function of the real RV fn. Assuming fn satisfies a LDP
with rate function I(x), then we can write

Wn [g] ∼

∫︂
dx en[g(x)−I(x)]

∼ en supx[g(x)−I(x)]

where the last equality follows from the saddle-point approximation
or Laplace approximation, and it is justified in the context of large
deviation theory because the corrections to this approximation are
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subexponential in n, as are those of the LDP. By defining the following
functional

K[g] = lim
n→∞ 1

n
logWn[g] ,

using a limit similar to the limit defining the LDP, we then obtain

K[g] = sup
x

[g(x) − I(x)] . (1.21)

The result above is what is referred to as Varadhan’s Theorem [37],
which proved this result for a wide class of RV.

To connect Varadhan’s Theorem with the GE Theorem we consider
the special case g(s) = λs with λ ∈ R. Then equation in (1.21) becomes

K(λ) = sup
x

[λx− I(x)] , (1.22)

which is the same function defined in (1.16).
Thus it is clear that if Sn satisfies a LDP with rate function I(s), then
the SCGF K(λ) is the LFT of I(s).

This heuristic derivation illustrates two important points about large
deviation theory. The first is that LFTs appear into this theory as a
natural consequence of the saddle point approximation. The second
is that the Gärtner–Ellis Theorem is essentially a consequence of the
large deviation principle combined with Laplace’s approximation.

To complete this presentation of known results it is useful to have a
look at the application of GE Theorem in the special case of the sample
mean of a set of IID RV (X1, . . . ,Xn). Namely, by taking fn = Sn as in
(1.2) and by recalling that

p(n)(X1, . . . ,Xn) =

n∏︂
i=1

p(1)(Xi) ,

we can write for the SCGF

KSn
(λ) = lim

n→∞ 1

n
log
⟨︁
enλSn

⟩︁
n

= lim
n→∞ 1

n
log

[︄
n∏︂

i=1

⟨︁
eλXi

⟩︁
1

]︄
= log

⟨︁
eλX

⟩︁
1

. (1.23)

As a result the SCGF KSn
is simply derived by the cumulant generating

function of the single RV X and the LDP for Sn is retrieved by taking
the LFT just as in (1.19). This result goes under the name of Cramér’s
Theorem and plays a central role in determining a large deviation
principle for the sample mean of different RV.
Note that the differentiability condition of the GE Theorem need not be
checked for IID sample means because the moment generating function
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(MGF) or Laplace transform
⟨︁
eλX

⟩︁
1

of a RV is always real analytic when
it exists ∀λ ∈ R. On the other hand, the existence of the MGF on the
positive real axis (usually referred to as Cramér’s condition) must not be
taken for granted and sometimes more refined tools may be necessary
to establish an LDP.

1.5 large deviations in statistical mechanics

As it has been said the mathematical basis for the notion of thermo-
dynamic behavior is the LLN. The idea is that the outcomes of a
macrostate, say Mn(ω), involving n particles should concentrate in
probability around certain equilibrium values despite the fact that the
particles’ microstate is modeled by a random variable ω taking values
in the phase space Λn. Large deviation theory enters this picture by
noting that, in many cases, the outcomes of the macrostate are ruled by
a large deviation principle, and that, in these cases, the concentration
of probability measure pMn

around these equilibrium values is expo-
nentially fast in the large n limit. Consequently, all that is needed to
describe the state of a large many-particle system at the macroscopic
level is to know the equilibrium values of Mn which correspond to
the global minima of the rate function governing the fluctuations.

Let us consider the microcanonical ensemble, that is a closed system
with constant energy. We can start by writing the probability that the
energy ϵn sits in a range dϵ in terms of the probability measure of the
microstates

Pr(ϵn ∈ dϵ) =

∫︂
Λn

δ (ϵn(ω) − ϵ)Pr(dω) .

By taking the uniform measure Pr(dω) = dω/|Λ|n it appears that
Pr(ϵn ∈ dϵ) is proportional to the volume in the phase space occupied
by microstates which satisfy ϵn(ω) = ϵ, namely

Ωϵn(ϵ) =

∫︂
Λn

δ (ϵn(ω) − ϵ)dω .

Thus, by admitting ϵn satisfies an LDP with rate function I(ϵ), we
have

I(ϵ) = − lim
n→∞ 1

n
log Pr(ϵn ∈ dϵ) ≡ −s(ϵ)

where

s(ϵ) = lim
n→∞ 1

n
log

Ωϵn(ϵ)

|Λ|n

is the microcanonical entropy density. Moreover, proportionality between
Pr(ϵn ∈ dϵ) and Ωϵn(ϵ) implies for the SCGF

K(λ) = lim
n→∞ 1

n
log
⟨︁
enλϵn

⟩︁
= − βϕ(β)|β=−λ
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where ϕ(β) is the free energy density. More explicitly

ϕ(β) = − lim
n→∞ 1

βn
logZn(β)

= − lim
n→∞ 1

βn
log

∫︂
Λn

dωe−nβϵn(ω)

= − lim
n→∞ 1

βn
log
⟨︁
e−nβϵn

⟩︁
.

As a consequence, from Varadhan’s and GE Theorem, we can establish
the relation between ϕ(β) and s(ϵ)

βϕ(β) = inf
ϵ
[βϵ+ s(ϵ)] ,

s(ϵ) = − inf
β
[βϵ−βϕ(β)] ,

that is the entropy and the free energy can be obtained by an LFT.
As it may have become clear, LDT is at play each time we are

interested in average properties of statistical ensembles, while account-
ing for probability of rare events. In particular, we showed that both
the SCGF and the rate function itself are related to thermodynamic
quantities of great physical interest, that is the free energy and entropy.



2
T H E O N E D I M E N S I O N A L R A N D O M E U C L I D E A N
M AT C H I N G P R O B L E M

2.1 disordered systems

Before we start studying a specific spin-glass model, we need to
introduce a couple of simple concepts, which we will extensively use
all along the dissertation. Each of them would deserve much more
space than we can afford: we refer to [5, 24] for a background in
statistical mechanics and glassy systems.

2.1.1 What is disorder

As already pointed out in the previous chapter, when we study a
system involving a large number n of observables, we are mainly
interested in finding the expression of some average properties, that is
the value of a macroscopic measurable quantity.

In the language of statistical mechanics this is usually achieved by
the evaluation of the partition function

Z(β) =
∑︂
ω∈S

e−βϵ(ω) , (2.1)

where each microstate ω, in the space of configurations S, is associated
with the corresponding energy ϵ(ω). This dependence between energy
ϵ and microstates ω is expressed by the dependence of the energy on
the parameters describing the microstate, that is the Hamiltonian H.
From the partition function in (2.1), we can obtain a lot of information
on the average, or typical, values that different quantities of physical
interest can assume. As an example, the mean energy can be retrieved
by a simple derivation of the partition function, that is

E = −
∂

∂β
logZ(β) . (2.2)

The simplest way to introduce disorder in any system is considering
some of the parameters describing the microstate ω as stochastic
variables. There are two main classes of disordered systems: the first
we are going to discuss are quenched disordered systems. In these
systems the disorder is explicitly present in the Hamiltonian, typically
under the form of random couplings J among the degrees of freedom
σ

H = H(J,σ) .

13
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The disorder introduced by the set of RVs J is completely specified by
their probability distribution p(J) which is assumed to be the same for
each different coupling constant in the system. A famous example is
the Edwards-Anderson model [10], described by the Hamiltonian

H = −
∑︂
⟨i,j⟩

Jijσiσj ,

where the spins σi = ±1 are the degrees of freedom of the system,
and the couplings Jij are Gaussian RVs. This is a finite dimensional
model, since the sum is performed over nearest-neighbor spins. In
this case we say the disorder is quenched, meaning that the set of
RVs J are constant on the time scale over which the the degrees of
freedom σ fluctuate. This fact is realized in physical systems where the
(microscopic) parameters governing the evolution of the system, that
is the variables on which the Hamiltonian depends on, at sufficiently
low temperatures can be separated into two different classes, slow and
fast observables. The difference between the two classes arises from
noticing that the typical time scale of evolution of an observable (in
this case the couplings Jij) is much larger than the time scale on which
the spins σi interact. These systems are called spin-glass systems
and an extended literature has been produced around this kind of
problems [1, 24, 35].

As a matter of fact disorder creates frustration: it becomes impos-
sible to satisfy all the couplings at the same time, as it would be in
a ferromagnetic system. Formally, a system is said to be frustrated if
there exists a loop on which the product of the couplings is negative.
This can be better understood by looking at a frustrated loop: if we
fix an initial spin, and starting from it we try to chain-fix the other
spins one after the other according to the sign of the couplings, we are
bound to return to the initial spin and flip it. As a consequence, the
energy of a frustrated loop is not located at its minimum, as it would
be if the couplings Jij could explore the whole configurations’ space.

On the other hand, if the time scale of the parameters describing the
system are of the same magnitude, this implies the time evolution of
all the observables must be taken into account simultaneously when
computing ensemble averages. Such kind of randomness is usually
referred to as annealed disorder. This is often the case of spin-glass
systems at high temperature, where the frustration induced by the
disorder is irrelevant, as the system can visit a lot of different, often
high energy, configurations due to the effect of the entropic force.

In the following we will deal only with quenched disordered sys-
tems, that is statistical systems where a bunch of degrees of freedom
cannot fluctuate freely and the space of configurations is restricted
due to the specific realization of the parameters.



2.2 random optimization problems 15

2.1.2 Large deviations in glassy systems

In the study of disordered systems nearly all predictions concern
the most likely behavior, but there is also considerable interest in
developing techniques to compute the probability distribution of rare
events, i. e. the probability of finding systems that have properties
different from the typical ones. Systems with quenched disorder have
been studied intensively for the last two decades. Thermodynamic
properties in these systems, such as the free energy, fluctuate from
sample to sample, but not very much: indeed, they are self-averaging
if the disorder does not have long range correlations [19]. This means
that typical values of the free energy density (to name but one quantity)
deviate arbitrarily little from a fixed value in the large volume limit.

Because of this, little work has considered large deviations, i. e.
the probability of finding a rare sample (realization of the disorder).
Indeed it is well known that the probability of large deviations is
related to the free energy function ϕ(β). Thus we are interested in big
oscillations of this quantity when we try to formulate an LDP for any
observable in a disordered system. As already discussed in Section 1.5,
in LDT the analog of the free energy is the SCGF: this will play a
central role in determining big oscillations from the typical values for
the quantities of interest.

2.2 random optimization problems

Combinatorial optimization is a branch of operational research which
deals with the problem of optimizing a cost function over a finite set
of configurations. Let S be the set of all the possible configurations ω

a system can explore. Then, given a cost function E(ω) ∈ R, we are
interested in finding the optimal configuration ω∗ ∈ S that minimizes
such cost, namely

E(ω∗) = min
ω∈S

E(ω) .

In terms of statistical systems discussed in the previous section, the
cost function E(ω) can be interpreted as the energy of a configuration.
In this case the problem of finding the optimal cost corresponds to
find the average energy in the zero temperature limit. More explicitly,
the optimal cost is retrieved from (2.2) by simply taking the limit for
β → ∞, that is

E(ω∗) = − lim
β→∞ ∂

∂β
logZ(β) .

When considering a random optimization problem we mean a special
kind of optimization problem where the space of configuration S

depends on some random parameters. It is quite clear that in this case
E = E(ω∗), i. e. the set S of possible configurations, will depend on
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the particular realization of the set of RVs, which remains fixed for
any realization. As a consequence, this kind of systems belong to the
bigger family of glassy systems.

We call S an instance of the problem and we are interested in finding
the average properties of the optimal solution. In particular, denoting
with ⟨•⟩ the average over the instances, we could ask what is the
average minimal cost

⟨E⟩ =
⟨︃

min
ω∈S

E(ω)

⟩︃
= − lim

β→∞
⟨︃

∂

∂β
logZ(β)

⟩︃
. (2.3)

After the seminal works of Kirkpatrick [18] Orland [30], and Mézard
and Parisi [21], random optimization problems have been successfully
studied using statistical physics techniques. The average appearing
in the previous equation can be tackled using the celebrated replica
trick, which allowed the derivation of fundamental results for many
relevant random combinatorial optimization problems, like random
matching problems [21–23, 30] or the traveling salesman problem in
its random formulation [20, 30].

Very often the set of the configurations S is described in the modern
abstract framework of graph theory. It seems useful to briefly recall
some definitions of this field: an (undirected) graph G is a couple (V ,E)
where

• V is the set of vertices of the graph;

• E ⊆ V × V is the set of edges, where e ∈ E is an unordered pair
of vertices, namely e = (u, v) ⊂ V , v ̸= u.

The vertices u and v are said to be the ends of the edge e = (u, v)
and thus we say the edge e is incident onto both v and u. A graph
K = (V ,E) is said to be complete if each pair of vertices are connected
by an edge (i.e. (u, v) ⊂ V ⇔ e = (u, v) ∈ E).
With this definitions we are now able to present the main topic of this
chapter.

2.2.1 The matching problem

The matching problem is a rather simple system which has similarities
with spin glasses with finite range interactions [24]. Its applications
go from biology [13], to traffic modeling [3, 31], to neural networks
[32, 41]. Here we want to define the generic problem in terms of graph
theory and give a hint of the different flavors it can assume.

Given a graph G = (V ,E) a matching µ ⊆ E is a set of edges having
the property that none of the edges in µ have an end in common.
More explicitly, for any e1, e2 ∈ µ, then e1 ∩ e2 = ∅. We say that a
vertex v ∈ V is matched if there is an edge incident to v in the matching,
otherwise the vertex is unmatched.
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Denoting by |µ| the cardinality of µ, we define ν(G) ≡ maxµ|µ| the
matching number of G. As a consequence a matching µ is maximum if
there is no matching of greater cardinality, that is if |µ| = ν(G) . In
particular, a maximum matching is called perfect if every vertex of G
is matched. Obviously any perfect matching is maximum and thus
maximal and we will denote by M the set of perfect matchings.

Now, we can imagine to assign a cost to each edge in the graph: let
we > 0 be a weight corresponding to the edge e ∈ E in the graph G.
Then we can associate to each perfect matching µ ∈ M the total cost
function

E(µ) ≡
∑︂
e∈µ

we (2.4)

and the average cost per edge

ε(µ) ≡ E(µ)

ν(G)
=

1

ν(G)

∑︂
e∈µ

we . (2.5)

In the weighted matching problem we search for the perfect matching
µ such that the total cost in (2.4) is minimized, that is the optimal
matching µ∗ is such that

E(µ∗) = min
µ∈M

E(µ) . (2.6)

In the following we will deal with random matching problems,
where the costs {we}e∈E are RVs. In this case, the average properties
of the optimal solution are of a certain interest, and in particular the
typical optimal cost, ⟨E⟩ = ⟨minµ E(µ)⟩. The simplest way we can
imagine to introduce randomness in the problem is to consider the
weights as IID RVs. A number of rigorous result were obtained in this
mean field theory, starting from the work of Parisi and Mézard [21].

In this work, we will focus on the random Euclidean matching prob-
lem (REMP), where the graph G is supposed to be embedded in a
d-dimensional Euclidean domain Λ ⊆ Rd through an embedding
function Φ, in such a way that each vertex v ∈ V of the graph is
associated to a random Euclidean point v ↦→ Φ(v) ∈ Λ. In this case
the random weights we associated to each edge e = (u, v) ∈ E will
be some function of the distance of the corresponding points in Λ,
namely

we = f (∥Φ(u) −Φ(v)∥) .

REMPs are usually more difficult to investigate than the purely ran-
dom case of {we} IID RVs, due to the presence of Euclidean correlations
among the weights. This induces a non-trivial dependence between
the RVs, that result in the problem being more complex to investigate.
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2.3 the random euclidean matching problem on an in-
terval

In the following we will restrict ourselves to a specific toy model in
one dimension, that is the random Euclidean matching problem. Here
we refer to the work of Caracciolo, D’Achille, Sicuro [4], that obtained
a number of results for this system.

We will focus only on the case in which G = K2n is a com-
plete graphs with 2n vertices associated with a set of points Ξ2n ≡
{xi}i=1,...,2n independently and uniformly generated on the compact
interval Λ = [0, 1]. In this case a perfect matching µ of 2n points
corresponds to any partition of the set Ξ2n made up of two elements
only, its cardinality being n.

As weight function of the edge e = (xi, xj) we will consider

we ≡ wi,j = |xi − xj|
p , p > 1 .

Hence the average cost function in (2.5) will take the form

ε
(p)
n (µ) =

1

n

∑︂
(i,j)∈µ

|xi − xj|
p . (2.7)

The reason for this specific choice of the weight function is that,
with this definition, it is a monotonically increasing, convex function
of the Euclidean distance. Among the numerous consequences, it can
be shown [4] the cost function is self averaging quantity, meaning
that the probability measure concentrates around the typical values
while vanishing elsewhere. Moreover, in this particular case, the op-
timal configuration has a simple structure. Let the elements in Ξ2n

be indexed such that 0 6 x1 6 x2 · · · 6 x2n 6 1, then the pair (xi, xj)
belongs to the optimal matching if and only if i is odd and j = i+ 1.
This follows from the direct investigation of the simplest non-trivial
case for n = 2: the possible outcomes are shown in Figure 2.1 where
the arcs represent the edges in each matching.
The solution in Figure 2.1b is non-optimal since, for any p > 1,

|x3 − x1|
p = |(x3 − x2) + (x2 − x1)|

p > |x2 − x1|
p

and similarly |x4 − x2|
p > |x4 − x3|

p. Moreover, for the case in Fig-
ure 2.1c, we have

|x4 − x1|
p = |(x4 − x3) + (x3 − x2) + (x2 − x1)|

p

> |x4 − x3|
p + |x3 − x2|

p + |x2 − x1|
p

> |x4 − x3|
p + |x2 − x1|

p

the last line being the cost of the optimal matching in Figure 2.1a.
The study of the properties of the optimal matching is reduced

therefore to the study of spacings between successive random points
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x1 x2 x3 x4

(a)

x1 x2 x3 x4

(b)

x1 x2 x3 x4

(c)

Figure 2.1: Representation of the three possible matchings in the simple case
of n = 2 with cost function wi,j = |xi − xj|

p, p > 1. Both solutions
in (b) and (c) are non-optimal, their cost being greater by direct
inspection. As a consequence, the optimal solution with generic
n has always the structure (a) with edges ei = (x2i−1, x2i), i =
1, . . . ,n.

on Λ. By defining ϕi ≡ |xi − xi−1| the i-th spacing, the optimal cost in
(2.7) takes the form

min
µ∈M

ε
(p)
n (µ) =

1

n

n∑︂
i=1

ϕ
p
2i−1 . (2.8)

Having defined the structure of the optimal solution we can now study
its average properties.

2.3.1 Probability distribution of random uniform spacings on an interval

We are interested in finding the explicit expression for the probability
distribution of the set of RVs ϕ = (ϕ0, . . . ,ϕ2n). Let us firstly observe
that the distribution of the ordered set X = (X1, . . . ,X2n) of random
points on Λ is given by

pn(x) = (2n)!
2n∏︂
i=0

θ(xi+1 − xi) (2.9)

being x0 ≡ 0 and x2n+1 ≡ 1. It follows that for the set ϕ

ρ
(2n+1)
n (ϕ) = (2n)!

[︄
2n∏︂
i=0

θ(ϕi)

]︄
δ

⎛⎝ 2n∑︂
j=0

ϕj − 1

⎞⎠ . (2.10)

This multivariate distribution is known as Dirichlet distribution, of-
ten denoted Dir(α), with α = (α1, . . . ,α2n+1) a vector of positive
real parameters. The generic PDF for a set of non-negative RVs
Y = (Y1, . . . , YK) ∼ Dir(α) is given by

pD(y;α) =
1

B(α)

K∏︂
i=1

yαi−1
i . with

K∑︂
i=1

yi = 1 , (2.11)

The normalizing constant in front of the distribution is defined as

B(α) =

∏︁
j Γ(αj)

Γ
(︂∑︁

j αj

)︂
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which denotes the multivariate beta function. The Dirichlet distribution,
because of the constraint on the sum of yis being 1, obviously induces
correlations among the RVs. Actually, the joint probability distribution
is degenerated, meaning it can be expressed in terms of K− 1 variables,
while the K-th one is uniquely determined by the constraint, namely

yK = 1−

K−1∑︂
i=1

yi . (2.12)

As it can be easily seen from (2.11), the PDF is completely symmetric
for any exchange in the couples (yi,αi). This implies that the explicit
dependence in (2.12) of one variable in terms of the K− 1 remaining
ones can be carried out for any of the K RVs, while the distribution
remaining consistent. This property, that is the complete exchangeabil-
ity of the RVs under any permutation of the indices, is a consequence
of the probability distribution (2.11) having support on the (K− 1)-
dimensional simplex. This is a generalization of a triangle embedded
in the next-higher dimension. For example, with K = 3, the support is
an equilateral 2-dimesional triangle embedded in a downward-angle
fashion in 3-dimensional space, with vertices at (1, 0, 0), (0, 1, 0) and
(0, 0, 1), i. e. touching each of the coordinate axes at a point 1 unit away
from the origin.
The set of positive parameters α can be interpreted as the weights
of the RVs. Their meaning can be better understood by taking the
symmetric case where αi = α, for all i. For values of α larger than
1 the resulting distribution favors evenly distributed RVs, meaning
Yi are close to each other. On the other hand, when α is smaller than
1, the distribution selects sparse samples, meaning that most of the
contribution to their sum comes from few RVs taking a large value. In
our case the distribution in (2.10) is retrieved simply by setting αi = 1,
i = 1, . . . , 2n+ 1, that corresponds to the uniform distribution on the
(2n+ 1)-dimesional simplex.

It is useful to evaluate the expected value of a generic product of
Dirichlet distributed RVs⟨︄

K∏︂
i=1

y
pi

i

⟩︄
=

1

B(α)

[︄
K∏︂

i=1

∫︂∞
0

dyi y
pi

i

]︄
δ

⎛⎝1−

2n∑︂
j=0

yj

⎞⎠
=

Γ
(︂∑︁

j αj

)︂
∏︁

j Γ(αj)

∫︂∞
0

dy1 . . .

· · ·
∫︂∞
0

dyK−1 y
p1

1 . . .

⎛⎝1−

2n−1∑︂
j=0

yj

⎞⎠pK

,
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which reduces to⟨︄
K∏︂

i=0

y
pi

i

⟩︄
=

Γ
(︂∑︁

j αj

)︂
Γ
(︂∑︁

j αj + pj

)︂ K∏︂
i=0

Γ(αi + pi)

Γ(αi)
(2.13)

=
B(α+ p)
B(α)

. (2.14)

Thus, specializing to our case,⟨︄
2n∏︂
i=0

ϕ
pi

i

⟩︄
=

Γ (2n+ 1)

Γ
(︂
2n+ 1+

∑︁
j pj

)︂ 2n∏︂
i=0

Γ(pi + 1) . (2.15)

This formula can be used to evaluate any moment and correlation
function, which is finite for any choice of n ∈ N and p > 1.

The distribution in (2.10) can now be marginalized to obtain the
PDF for the single variable by subsequent integrations. Performing
this operation over 2n variables we have

ρ
(1)
n (ϕi) = (2n)!

⎡⎣∏︂
r̸=i

∫︂∞
0

dϕr

⎤⎦ δ

(︄
2n∑︂
s=0

ϕs − 1

)︄

= (2n)! lim
ϵ→0+

∫︂
R

dξ

2π
e(−iξ+ϵ)(1−ϕi)

×

⎡⎣∏︂
r̸=i

∫︂∞
0

dϕr e(iξ−ϵ)ϕr

⎤⎦
= (2n)! i2n lim

ϵ→0+
eϵ(1−ϕi)

∫︂
R

dξ

2π

e−iξ(1−ϕi)

(ξ+ iϵ)2n

where we used the Fourier representation of the Dirac delta function.
Thus, from a simple contour integral around the pole ξ = −iϵ of 2n-th
order, it follows

ρ
(1)
n (ϕ) = 2n(1−ϕ)2n−1θ(ϕ)θ(1−ϕ) , (2.16)

which is known as the beta distribution B(α,β), the parameters being
in this case α = 1, β = 2n. It is important to stress out that no depen-
dence on i appears in ρ

(1)
n because of the symmetry from Dirichlet

distributed RVs. From a similar calculation we can also evaluate the
joint probability density for the set of RVs ϕodd = (ϕ1, . . . ,ϕ2n−1), i. e.
the set of spacings appearing in the cost function (2.8) of the optimal
matching. It follows

ρ
(n)
n (ϕodd) =

(2n)!
n!

(︄
1−

n∑︂
i=1

ϕ2i−1

)︄2n−1

, (2.17)

with ϕi > 0 and
∑︁

iϕ2i−1 6 1.
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From the expression in (2.16), we can now retrieve the average cost
per edge, that is⟨︂

ε
(p)
n

⟩︂
≡ ⟨ϕp⟩ = Γ(2n+ 1)Γ(p+ 1)

Γ(2n+ p+ 1)
(2.18)

=
Γ(p+ 1)

(2n)p

[︃
1+

p(p+ 1)

4n
+ o

(︃
1

n

)︃]︃
. (2.19)

Moreover, successive moments can be evaluated in the same way:⟨︃(︂
ε
(p)
n

)︂2⟩︃
=

1

n2

n∑︂
i,j=1

⟨︂
ϕ

p
2i−1ϕ

p
2j−1

⟩︂
=

1

n2

(︂
n
⟨︁
ϕ2p

⟩︁
+n(n− 1)

⟨︂
ϕ

p
i ϕ

p
j

⟩︂)︂
and by using the expression in (2.15) we have⟨︁

ϕ2p
⟩︁
=

Γ(2n+ 1)Γ(2p+ 1)

Γ(2n+ 2p+ 1)
, (2.20)⟨︂

ϕ
p
i ϕ

p
j

⟩︂
=

Γ(2n+ 1)Γ2(p+ 1)

Γ(2n+ 2p+ 1)
, (2.21)

which, once again, do not depend on the specific i and j. As a conse-
quence, the variance of the average cost results

var
[︂
ε
(p)
n

]︂
≡
⟨︃(︂

ε
(p)
n

)︂2⟩︃
−
⟨︂
ε
(p)
n

⟩︂2
=

2Γ(2p+ 1) − (2+ p2)Γ2(p+ 1)

(2n)2p+1
+ o

(︃
1

n2p+1

)︃
.

(2.22)

It is useful to stress out the dependence of the set of RVs ϕ, i. e. the
two point function brings non-zero contribution, arises from the sum
of the spacings being constrained. Moreover, it is explicitly related to
the weight function, that is (2.21) depends on the exponent p in ε

(p)
n .

Since at leading order ⟨ϕp⟩ = O(n−2p) this suggests, in the large n

limit, the substitution ϕi = φi/(2n). By plugging in (2.16) we have

ρ̂
(1)
n (φ) =

(︃
1−

φ

2n

)︃2n−1

θ(φ)θ(2n−φ) (2.23)

= e−φ

[︃
1−

φ2 − 2φ

4n
+ o

(︃
1

n

)︃]︃
, (2.24)

that is, in the large n limit, the spacings φi are exponentially dis-
tributed with ⟨φp⟩ = Γ(p + 1) = O(1). In this frame we can now
explicit the weak dependence of the RVs. Using the result in (2.19) and
taking the series expansion for n ≫ 1 in (2.21), after the proper rescal-
ing in n, we have

⟨φ⟩ = 1−
1

2n
+ o

(︃
1

n

)︃
, (2.25)

⟨︁
φiφj

⟩︁
= 1−

3

2n
+ o

(︃
1

n

)︃
, (2.26)
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that results in

cov[φiφj] ≡
⟨︁
φiφj

⟩︁
− ⟨φ⟩2 (2.27)

= −
3

2n
+ o

(︃
1

n

)︃
. (2.28)

As we could expect form a set of RVs with a constrained sum, the
covariance is negative. This can be interpreted as the consequence of
the fact that, given any instance of the problem, namely given any 2n

points on the interval Λ, if any spacing is stretched to become larger,
the others must shrink as a compensation for the sum being fixed.

Moreover, even looking at the leading order of covariance in (2.28),
it vanishes when n approaches infinity. This suggests the RVs φi

act more and more like IID when the number of spacings increases.
Driven by this observation we can now try to establish an LDP for the
RV ε

(p)
n .





3
A L A R G E D E V I AT I O N P R I N C I P L E F O R T H E
I N D E P E N D E N T C A S E

In the previous chapter we have obtained the average properties of the
one dimensional REMP and looked at the asymptotic behavior when
the number of variables n is large. Since the RVs are weakly dependent,
i. e. cov[φiφj] = O(n−1), here we want to formulate an LDP for the
sum of powers of IID RV.

In the following we will take X = (X1, . . . ,Xn) a set of n IID RVs
and we will focus on giving an asymptotic expression for the tail
probability

Fn(x) = 1− Fn(x) ≡ Pr(Sn > x) (3.1)

where

Sn = Sn(X) =
1

n

n∑︂
i=1

Xi . (3.2)

Firstly, it is useful to introduce ourselves in providing an LDP for a
simple case, that is the sample mean of exponential RVs. Since a slight
complication of this problem will be treated in the following sections,
we will show how a small modification can result in a catastrophic
outcome, with the loss of validity of Cramér’s Theorem.

3.1 a simple case : the sample mean of exponential ran-
dom variables

Let X, be a set of IID RVs with common probability density function

ρ(x) = e−x , x > 0 . (3.3)

It is quite easy to characterize the distribution of Sn: in fact we can
check Cramér’s condition is satisfied, that is the MGF is finite, pro-
vided that λ < 1. By explicitly computing the MGF

M(λ) ≡
⟨︁
eλX

⟩︁
=

∫︂+∞
0

dx e−(1−λ)x =
1

1− λ
,

thus from (1.23) the SCGF results

K(λ) = log
1

1− λ
. (3.4)

25
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We can now plug this result in (1.19)

I(x) ≡ sup
λ<1

[λx−K(λ)]

= λx−K(λ)| ∂
∂λK(λ)=x

=

(︃
1−

1

x

)︃
x+ log

[︃
1+

(︃
1−

1

x

)︃]︃
.

which leads to the rate function

I(x) = x− 1− log x . (3.5)

Thus, we can state a large deviation principle holds for Sn, with

Fn(x) ∼ xne−n(x−1) . (3.6)

As a result, large deviations from the expected value ⟨X⟩ = 1 are
exponentially damped in the size n of the sample, making a large
value of (Sn − ⟨X⟩) extremely unlikely.

3.2 the case of remp

In the REMP studied in Chapter 2 we had to deal with the sample
mean of powers of the RVs, namely we are interested in formulating
an LDP for the quantity

S
(p)
n (X) =

1

n

n∑︂
i=1

X
p
i , p > 1 , (3.7)

by assuming the the set X are IID RVs, with common probability
distribution ρm : [0, 1] → R+, m ∈ N, given by

ρm(x) = 2m(1− x)2m−1 , (3.8)

that is the distribution found in (2.16). By simply applying Cramér’s
Theorem in (1.23) to S

(p)
n and taking the expansion of the exponential

we have for the MGF

Mp,m(λ) ≡
⟨︂
eλx

p
⟩︂
m

=

∫︂1
0

dx ρm(x)eλx
p

=

∞∑︂
k=0

⟨︁
xkp

⟩︁
Γ(k+ 1)

λk

=

∞∑︂
k=0

Γ(2m+ 1)Γ(kp+ 1)

Γ(k+ 1)Γ(2m+ kp+ 1)
λk

which is a regular finite function ∀λ ∈ R, for ρm(x)eλx
p

being regular
on the compact interval [0, 1]. As an example, for p = 2, we have

M2,m(λ) = 2F2

(︃
1

2
, 1;

1

2
+m, 1+m; λ

)︃
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Figure 3.1: Rate function I2,1(s) of the sample mean S
(2)
n =

∑︁
i X

2
i /n over the

probability distribution ρ1(x) = 2(1− x). The function is obtained
via numeric evaluation of the Legendre–Fenchel transform of
the scaled cumulant generating function K2,1(λ). The function is
defined on the open interval (0, 1) taking its minimum at

⟨︁
X2
⟩︁
=

1
6 .

where 2F2 denotes the generalized hypergeometric function, that is an
entire function of the variable λ, defined by

2F2

(︃
1

2
, 1;

1

2
+m, 1+m; λ

)︃
≡

∞∑︂
k=0

(︁
1
2

)︁
k
(1)k(︁

1
2 +m

)︁
k
(1+m)k

λk

and (a)k is the Pochhammer symbol

(a)k ≡ a(a+ 1) . . . (a+ k− 1) =
Γ(a+ k)

Γ(a)
, k > 0 .

The rate function Ip,m(x) for the RV S
(p)
n can be obtained as in (1.19)

by a Legendre–Fenchel transform of the SCGF Kp,m(λ) = logMp,m(λ)

Ip,m(s) = sup
λ

[λs−Kp,m(λ)] . (3.9)

Although an analytic expression is unfeasible, the inversion can be
carried out numerically as in Figure 3.1.

Since an LDP always involve taking the limit for large number of
RVs, we want to take the asymptotic expression of ρm(x) for m ≫ 1.
By setting

y = 2mx , ρ̂m(y) = e−y +O(m−1)
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as in (2.24) and taking the limit, we have that y is exponentially
distributed, with finite moments given by

µp ≡ ⟨Z⟩p = Γ(p+ 1) , (3.10)

σ2
p ≡

⟨︁
Z2
⟩︁
p
− ⟨Z⟩2p = Γ(2p+ 1) − Γ(p+ 1)2 . (3.11)

Thus, we have for the MGF referring to the RV ˆ︁S(p)n (Y) ≡ S
(p)
n (2mX) =

(2m)pS
(p)
n (X)

ˆ︂Mp(λ) ≡ lim
m→∞Mp,m ((2m)pλ) =

∫︂+∞
0

dy e−y+λyp

(3.12)

which clearly is a well defined function only for λ 6 0. In this case
Cramér’s condition (i. e. the existence of the MGF for some positive
λ) is violated and Cramér’s Theorem does not apply. Anyway, by
expanding the exponential eλy

p
, we can express the MGF by the

power series

ˆ︂Mp(λ) =

∞∑︂
k=0

Γ(kp+ 1)

Γ(k+ 1)
λk (3.13)

that returns the right moments

⟨︁
(Yp)k

⟩︁
=

∂k

∂λk
ˆ︂Mp(λ)

⃓⃓⃓⃓
λ=0

= Γ(kp+ 1) < ∞ , ∀k > 0.

For example, this specializes in the p = 2 case to

ˆ︂M2(λ) =

∫︂+∞
0

dy e−y+λy2

= e−
1
4λ

√︃
−

π

4λ
Φ

(︃
1√
−4λ

)︃
(3.14)

where

Φ(x) = 1−Φ(x) ≡ 2√
π

∫︂+∞
x

dz e−z2

denotes the complementary error function. A sketch of the function can
be found in Figure 3.2. Here we want to stress out that the existence
of the MGF on the positive real axis is a fundamental requirement for
the proof of Cramér’s Theorem. In particular, for the rate function to
be properly defined, we need for the SCGF, and thus for the MGF, to
be defined in a neighborhood of the origin. This is no surprise, since
all the properties of the distribution, that is all the moments of the RV,
can be retrived by subsequent derivations of ˆ︂Mp(λ) at λ = 0.

Anyway, we can still extract a bound for the probability

F
(p)
n (s) ≡ Pr

(︂ˆ︁S(p)n 6 s
)︂

.

Recalling the Chernoff bound in (1.15), we have

lim
n→∞ 1

n
F
(p)
n (s) 6 − sup

t60

[︂
−ts+ logˆ︂Mp(−t)

]︂
≡ −ˆ︁I−p (s) . (3.15)
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Figure 3.2: Plot of the rate functionˆ︁I−2 (s) of the sample mean S
(2)
n =

∑︁
i Y

2
i /n

over the probability distribution ρ̂(y) = e−y. The function is ob-
tained via numeric evaluation of the Legendre–Fenchel transform
of the scaled cumulant generating function K2(λ). The function is
positive only in the region s <

⟨︁
Y2
⟩︁
, while vanishing elsewhere,

taking its minimum at
⟨︁
Y2
⟩︁
= Γ(3) = 2.

Here ˆ︁I−p (s) is very similar in definition to the rate function apart from
taking the LFT only in the region of non-positive t. From convexity of
logˆ︂Mp(t) we have that ˆ︁I−p (s) > 0 in the region

s <
ˆ︂M ′

p(t)ˆ︂Mp(t)

⃓⃓⃓⃓
⃓
t=0

= ⟨Yp⟩ = Γ(p+ 1) , (3.16)

while ˆ︁I−p (s) = 0 otherwise. This implies oscillations of ˆ︁S(p)n from the

left-hand side of the average
⟨︂ˆ︁S(p)n

⟩︂
= ⟨Yp⟩ are suppressed at least

exponentially in the size n of the sample.
We are left now with the problem of formulating an LDP for big

oscillations on the right-hand side (that is the tail of the distribution)
of the RV ˆ︁S(p)n .

3.3 subexponential distributions

As it can be easily seen from (3.12), the existence of the MGF depends
heavily on the nature of the tails of the PDF. Even in the simple
example of a sample mean Sn of a set on IID RVs X we have

M(λ) =
⟨︁
eλX

⟩︁
=

∫︂
dx ρ(x)eλx (3.17)

that stays finite for some λ > 0 only if ρ(x) decays at least exponentially
for x ≫ 1. A slower than exponential decay for ρ(x) in the large x
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limit prevents M(λ) to be defined on the positive real axis. Such
distributions are known as subexponential or heavy-tailed distributions,
provided that X > 0. They are defined by the limit

lim
x→∞

⃓⃓⃓⃓
Fn(x)

nF1(nx)
− 1

⃓⃓⃓⃓
= 0 , n ∈ N. (3.18)

Let X∗
n = maxi6n [X1, . . . ,Xn], then it can be easily seen that

lim
x→∞ Pr(X∗

n > x)

nF̄1(x)
= 1, (3.19)

which allows for the interpretation that the large deviations of sums
of independent heavy-tailed random variables are typically realized
by just one of these variables taking a very large value. This is well
known since the classical works of Heyde [17] and Nagaev [28, 29].
As (3.20) suggests, we can explicit the asymptotic expression for large
values of x

sup
x>dn

⃓⃓⃓⃓
Fn(x)

nF1(nx)
− 1

⃓⃓⃓⃓
= o(1) , (3.20)

for a suitable sequence dn.
Thus we are led to ask what kind of approximation to the tail

probabilities Fn(x) can be expected in the finite x region. A natural
bound comes from the CLT which implies, given ⟨X⟩ = µ,

⟨︁
(X− µ)2

⟩︁
=

σ2 < ∞,

sup
x

⃓⃓⃓⃓
Fn(x) −Φ

(︃√
n(x− µ)

σ

)︃⃓⃓⃓⃓
= o(1) , (3.21)

where, once again, Φ denotes the standard error function. This is
formally identical to the formulation we gave in Section 1.2. The last
relation can be rewritten as

sup
(x−µ)∈[an,bn]

⃓⃓⃓⃓
⃓⃓ Fn(x)

Φ
(︂√

n(x−µ)
σ

)︂ − 1

⃓⃓⃓⃓
⃓⃓ = o(1), (3.22)

for

an =
a√
n

, bn =
b√
n

, a,b ∈ R . (3.23)

We can expect that an asymptotic expression of this type may hold
even for large deviations, namely that exists a sequence cn > bn,
with cn

√
n → ∞ sufficiently slowly and such that (3.22), with an =

O(n−1/2), holds. In his famous work, Cramér [7, 8] proved that,
given the existence of the moment generating function of X in a
neighborhood of the origin, (3.22) holds with an = O(n−1/2)and
cn = o(n−1/3), while (3.22) fails in general for cn = O(n−1/3).
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From the previous discussion it seems typical for Fn(x) (and it
actually is, see [25]) that there exist two threshold sequences cn 6 dn

such that

Fn(x) ∼

⎧⎪⎨⎪⎩
Φ
(︂√

n(x−µ)
σ

)︂
x− µ ≪ cn

nF1(nx) x− µ ≫ dn

. (3.24)

The rigorous treatment of where these sequences arise from would
require a number of technical tools; we refer to [25] for the details.
Despite this, an heuristic argument can be provided: from the previous
discussion it may have become clear that there exist different types
of large deviation results on different intervals, where either the CLT
applies or the extremes in the sample dominate Fn(x). A separating
sequence cn can be expected at the border, where both the CLT and
the extremal behavior overlap, i. e. where

Fn(x) ∼ Φ

(︃√
n(x− µ)

σ

)︃
∼ Pr(X∗

n > x) ∼ nF1(nx) . (3.25)

Thus a natural definition of bn comes from the relation

Φ
(︁√

ncn
)︁
∼ nF1(ncn) ,

which implies

Φ
(︁√

n(x− µ)
)︁
= o

(︁
nF1(nx)

)︁
, x ≫ cn .

On the other hand, the estimate of dn is rather more complicated.
It can be retrieved both from extreme value theory arguments or more
simply by looking at the distribution of Sn −X∗

n/n, conditional upon
Sn = x, that is

Pr
(︃
Sn −

X∗
n

n
= u

⃓⃓⃓⃓
Sn = x

)︃
= n

pn−1(u)

pn(x)
p1(nx−nu)

In this case the threshold sequence dn arise from pn−1(u), i. e. the
quantity Sn −X∗

n/n, being asymptotically negligible. This implies that
the large deviation of Sn occurs only on account of X∗

n.
These heuristic arguments explain that the maximum of the sample

begins to have influence on the large deviations of Sn for x ≫ cn, and
that it dominates the large deviations when x ≫ dn. In the region
(cn,dn), the partial sums and the extremes have influence. Therefore,
in the latter region, explicit asymptotic expressions for Fn(x) are quite
difficult to obtain. The choice for the two threshold sequences heavily
depend on the nature of the tail of the distribution. A complete case
study has been collected by Nagaev and Mikosh [25] where a number
of known results are presented.
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3.3.1 Large deviations for sample mean of stretched exponential random
variables

Let X be a set of n IID RVs distributed according to the exponential
distribution ρ(x) as in (3.3) and S

(p)
n (X) the sample mean of Xp

i as in
(3.7).
After a proper rescaling X

p
i = Zi, this problem is formally identical to

the one of considering the sample mean SN(Z) of the set of IID RVs Z,
sorted according to the probability density

ρ̃(p)(z) =
z(1−p)/p

p
e−z1/p z > 0 . (3.26)

Distributions of the type in (3.26) are called stretched exponential
distributions due to a slower than exponential decay. This kind of
distributions clearly exhibit a subexponential tail in the large z region.
As a check we can evaluate

Pr(Z∗
n > z) = 1− Pr(Z∗

n < z)

= 1− Pr(Z1 < z,Z2 < z, . . . ,Zn < z)

= 1−

n∏︂
i=1

Pr(Zi < z)

which leads to

Pr(Z∗
n > z) = 1−

[︂
1− e−z1/p

]︂n
. (3.27)

Thus, by replacing in (3.19), we have

lim
z→∞ Pr(Z∗

n > z)

nF1(z)
= lim

z→∞
1−

[︂
1− e−z1/p

]︂n
ne−z1/p

= lim
z→∞ 1− e−ne−z1/p

ne−z1/p

= 1 .

As a consequence we can state the tail probability F
(p)
n (x) for the

sum Sn(Z) = S
(p)
n (X) takes the asymptotic form

F
(p)
n (x) ∼ Φ

(︃√
n(x− µp)

σp

)︃
, x− µp ≪ c

(p)
n

with µp, σp given in (3.10) and (3.11), while

F
(p)
n (x) ∼ nF

(p)
1 (nx) = ne−(nx)1/p , x− µp ≫ d

(p)
n .

This implies large deviations are less than exponentially dumped in
the size n of the sample.
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It can be shown the threshold sequences are given by

c
(p)
n =

⎧⎨⎩c ·n− 1
3 p ∈ (1, 2)

c ·n
1−p
2p−1 p > 2

, (3.28)

d
(p)
n = d ·n

2−p
2p−2 , (3.29)

for any c,d ∈ R+.
As it can be easily seen, c(p)n always vanishes in the large n limit, being
c
(p)
n 6 O(n−1/3), due to the concentration of probability measure, that

is the CLT. On the other hand, the behavior of the threshold sequence
d
(p)
n strongly depends on the parameter p that determines the behavior

of the heavy-tail. In fact, by taking the exponent in (3.29)

2− p

2p− 2
> 0 ⇐⇒ p ∈ (1, 2) . (3.30)

Hence, provided that p ∈ (1, 2), the stretched exponential behavior
of F

(p)
n (x) is recovered only for extremely large deviations, namely

(x− µp) ≫ nδ, δ > 0.
As a check, as p → 1, that is as S(p)n approaches the sample mean Sn

of exponentially sorted random variables, d(p)
n → ∞ and no stretched

exponential decay occurs. This is strongly related to the fact that
Cramér’s condition still holds for distributions with proper exponen-
tial decay like in (3.3). Thus the moment generating function is not
ill-defined and a rate function of the type in (3.5) can be recovered.

3.4 the large deviation principle for sum of powers of

independent exponential variables

Here we want to collect the results we found in the independent case.
We started from the simple case of the sample mean Sn of IID RVs
sorted according to the exponential distribution ρ(x) = e−x. This case
present no difficulties, for the MGF being finite up to a certain value
on the positive real axis, i. e. Cramér’s condition holds. By applying
Cramér’s Theorem we found the moment generating function I(x) in
(3.5) that assures large deviations from the mean value are suppressed
exponentially in the number n of RVs in Sn.

We found the same procedure applies to the distribution ρm(x) in
(3.8) (i. e. the marginal probability in the REMP) for the RV S

(p)
n as

defined in (3.7), for finite values of m. Even in this case Cramér’s Theo-
rem applies and the MGF Mp,m(λ) can be expressed as a power series
of λ. Despite the fact that Im,p(x) has no simple analytic expression,
it can be computed by numerically evaluating the LFT of the SCGF,
as defined in (3.9), which leads for example to the RF in Figure 3.1.
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As a result, once again we have an exponential decay in n for the tail
probability, that is

lim
n→∞ 1

n
log F

(p)
n,m(s) = −Im,p(s) (3.31)

Since the parameter m in the distribution ρm(x) controls the number
of intervals in the REMP, that is the number of the RVs in the sum
S
(p)
n , we took the limit for large m. By rescaling the RVs Y = 2mX we

found

lim
m→∞ ρm (y/(2m)) ≡ ρ̂(y) = e−y . (3.32)

Thus we focused on finding an asymptotic expression for the proba-
bility F

(p)
n (s) ≡ Pr

(︂ˆ︁S(p)n (Y) > s
)︂

, with the set of RVs Y sorted accord-
ing to ρ̂(y), as in (3.3). This time we found that Cramér’s condition
is violated, that is the MGF ˆ︂Mp(λ) is defined only in the region
λ 6 0. Despite this, by using the Chernoff bound for the probability
F
(p)
n (s) ≡ 1− F

(p)
n (s), we had

lim
n→∞ 1

n
F
(p)
n (s) 6 −ˆ︁I−p (s) ,

where ˆ︁I−p (s) is a regular positive function in the region s < ⟨Yp⟩ ≡
µp = Γ(p+ 1), while it vanishes otherwise. In this case we have an
LDP only on the left-hand side from the expected value of ˆ︁S(p)n , where
the probability of deviations exhibits an exponential dumping in n,
while the right-hand side, that is for s > ⟨Yp⟩, has no proper bound.
This suggests a different regime from the exponential one for the
probability F

(p)
n (s) must be taken into account.

From the analysis made in Section 3.3 it should have become clear
that the problem of formulating an LDP for the RV ˆ︁S(p)n (Y) is identical
to the one of finding the asymptotic expression for the probability
Pr(Sn(Z) > s), where the set of RVs Z is distributed according to the
PDF ρ̃(p)(x) ∼ e−x1/p

as in (3.26). Here we found two threshold se-
quences c

(p)
n ,d(p)

n such that, for (s− µp) ≪ c
(p)
n the Gaussian regime

is still valid, even beyond the usual (s− µp) = O(n−1/2), that is the
well known CLT. Moreover, for (s− µp) ≫ dn, we observed the distri-
bution of ˆ︁S(p)n (Y) is influenced by the maximum of the RVs taking a
very large value, that is the tail probability F

(p)
n (s) ∼ nF

(p)
1 (ns).

In conclusion we can state that, given a set of RVs Y distributed
according to the exponential distribution

ρ̂(y) = e−y

an LDP holds for the RV ˆ︁S(p)n (Y) with different bound in different
regions. In particular

F
(p)
n (s) 6 e−nˆ︁I−p (s) , s− µp 6 0 , (3.33)
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with I−p (s) as given in (3.15), while

F
(p)
n (s) ∼

⎧⎪⎨⎪⎩
Φ
(︂√

n(s−µp)
σp

)︂
0 < s− µp ≪ c

(p)
n

ne−(ns)1/p s− µp ≫ d
(p)
n

, (3.34)

with µp, σp given in (3.10) and (3.11), and with the threshold se-
quences c

(p)
n ,d(p)

n as given in (3.28) and (3.29).
Thus the distribution of ˆ︁S(p)n (Y) exhibits a different scaling with n

on the left and on the right-hand side of the average value µp. In par-
ticular, while in the region s ≪ c

(p)
n deviations are always suppressed

exponentially in n, we have for s ≫ d
(p)
n that the probability assumes

a stretched exponential behavior, with scaling speed n1/p, making
extreme values more likely.

3.5 numerical simulations

In this section we want to discuss the numerical methods to have
an estimate of the shape of the rate function. This problem is quite
difficult to approach, mainly because of the nature of large deviations.
From the previous discussion it should have become clear that LDT
has to deal with extreme value theory and the probability of rare
events, while the number of RVs is very large. Since from CLT we
have that probability concentrates around the typical values of the
distribution as the number of RVs increases, sampling rare events,
that is extracting a precise asymptotic trend for the tail probability,
can result in an unfeasible task. In other words, given the sample
mean Sn of RVs, regardless the speed of the scaling, large deviation
probabilities are always exponentially suppressed in n, while, to obtain
an accurate approximation for the rate function I(s), we would need n

to be large. This comes from the asymptotic expression of the PDF for
large values of n retaining only the dominant term in the exponential,
while neglecting subleading orders.

There are different techniques to treat this problem: here we refer to
one of the most simple tools we can imagine to extract a rate function
from numerical simulations, that is the direct sampling.

3.5.1 Direct sampling method

The problem addressed here is to obtain a numerical estimate of
the PDF pSn

(s) for the real RV Sn satisfying an LDP, and to extract
from this an estimate of the rate function I(s). To be general, we will
consider Sn = Sn(X) to be a function of the set X of n RVs, which, at
this point, are not necessarily IID.

Numerically, we cannot of course obtain pSn
(s) or, equivalently, I(s)

for all s ∈ R, but only for a finite number of values s, which we take
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for simplicity to be equally spaced with a small step ∆s. Thus, we can
estimate the coarse-grained PDF

pSn
(s) =

Pr (Sn ∈ [s, s+∆s])

∆s
=

Pr(Sn ∈ ∆s)

∆s
, (3.35)

where ∆s ≡ [s, s+∆s] denotes the interval of amplitude ∆ anchored
to the value s.

To construct this estimate, we follow the statistical sampling or Monte
Carlo method, which we can broke down into the following steps

• generate the sample {X(j)}Lj=1 of L copies of the sequence X from
its PDF;

• obtain from this sample, the set {s(j)}Lj=1 of the realizations of
Sn, that is

s(j) = Sn(X(j)) ;

• estimate the probability Pr(Sn ∈ ∆s) by evaluating the sample
mean

PL(∆s) ≡
1

L

L∑︂
j=1

χ∆s

(︂
s(j)
)︂

,

where χA(x) denotes the indicator function of the set A, that is

χA(x) ≡

⎧⎨⎩1 x ∈ A

0 x ̸∈ A
;

• use the sample mean PL(∆s) to estimate the probability distribu-
tion of Sn:

pL(s) ≡
PL(∆s)

∆s
=

1

∆sL

L∑︂
j=1

χ∆s

(︂
s(j)
)︂

.

Note that pL(s) above is nothing but an empirical vector for Sn
or, equivalently, a histogram normalized over the total counts of the
sample {s(j)}Lj=1. The reason for choosing pL(s) as our estimator of
pSn

(s) is that it is an unbiased estimator, in the sense that

⟨pL(s)⟩ = pSn
(s)

for any L. Moreover, we know from the LLN that pL(s) converges in
probability to its mean pSn

(s) as L increases. Therefore, the larger our
sample, the closer we should get to a valid estimation of pSn

(s).
The rate function can be easily computed by recalling the symptotic

expression of the PDF, that leads to

I
(L)
n (s) =

1

n
logpL(s) . (3.36)
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We can repeat the whole process for larger and larger integer values
of n and L to improve the accuracy of the rate function.

This method presents a severe limitation: a basic rule in statistical
sampling, suggested by the LLN, is that an event with probability P

will appear in a sample of size L roughly LP times. Thus to get at least
one instance of that event in the sample, we must have L > P−1, as
an approximate lower bound for the size of our sample. In terms of
LDT we see that if a RV Sn satisfies an LDP with rate function I(s)

and speed n then we would need L > enI(s) to see just one event. As
a consequence, increasing the size n of the sample mean to maximize
accuracy, determines the number of instances L to get exponentially
large.

3.5.2 Simulation results

Here we collect the results of the numerical computations in the
independent case. The simulations presented here are obtained via
the direct sampling method discussed in the previous paragraph. As
a consequence of the limitations of this procedure, the plots should
be considered as a qualitative check, without claiming to confirm nor
reject the rigorous results obtained in Section 3.4.

As a first check, we extrapolated the rate function I−p (s) for the RV

S
(p)
n we found in (3.15) from the direct sampling of the exponential

distribution. As an example, in Figure 3.3 the plot of the rate function
I−2 (s) is shown in gray with the estimated rate functions, as in (3.36),
for fixed L = 107 instances of the sample mean S

(2)
n and for different

values of n. As we can see, the larger the value of n the closer the points
are to the expected rate function. On the other hand, it is important to
notice that the range of the simulations, that is the interval on which
the estimated rate function is defined, decreases as the number of RVs
n accounted for in S

(2)
n becomes larger. This directly follows from the

deterioration of the statistics far away from the expected value due
to the direct sampling method: in fact, as n increases we are probing
only the (small) Gaussian deviations, that is the CLT.

Moreover, we can check the exponential scaling of the tail probability
F
(p)
n (s) is n1/p, as we found in (3.34). An estimation of F

(p)
n (s) =

Pr
(︂
S
(2)
n > s

)︂
can be obtained in the same fashion of the previous

paragraph, by counting the number of instances having a realization
s(j) > s and normalizing over the total number of instances L.
By recalling that

F
(p)
n (s) ∼ e−n1/p(x−µp)

1/p

,

we can extract the exponent of n from the relation

log
[︂
− log F

(p)
n (s)

]︂
≡ logQ

(p)
n (s) =

1

p
logn+ log(x− µp)

1/p . (3.37)
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Thus, from a linear regression in logn, we can obtain the exponent
as the slope of the fitting line. An example is shown in Figure 3.4
for the case p = 5, which we expect to show a more pronounced
subexponential tail, with L = 107 number of instances and different
values of logn.
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Figure 3.3: Plot of the rate function ˆ︁I−2 (s) as in (3.15) of the sample mean

S
(2)
n =

∑︁
i Y

2
i /n over the exponential PDF ρ̂(y) = e−y and the

estimated rate functions from direct sampling method for different
values of n. As the number of RVs n increases the estimated
rate functions (i. e. the PDF of Sn) get closer to the asymptotic
expression ˆ︁I−2 (s), while the range of definition shrinks due to
concentration of measure, that is the central limit theorem.
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Figure 3.4: Linear regression as defined in (3.37) to check the scaling speed

for the tail probability F
(5)
n = Pr

(︂
S
(5)
n > s

)︂
in the subexpo-

nential region (p = 5). The slope of the fitting line coincide

with the exponent of n in the asymptotic expression of F
(5)
n ∼

exp{−n1/5(x− Γ(6))1/5} as in (3.34). The result matches with the
expected value p−1 = 5−1 = 0.2.
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A L A R G E D E V I AT I O N P R I N C I P L E F O R T H E
AV E R A G E C O S T O F O N E D I M E N S I O N A L R E M P

In this section we collect the main results we obtained for the distri-
bution of the average cost of the one dimensional matching problem
discussed in Chapter 2 in the large n limit. We start by proving the
total cost in REMP is asymptotically normally distributed, that is the
probability measure concentrates around the typical value, as stated by
the central limit theorem. We show that actually the Gaussian regime
can be extended to moderate large deviations, for a suitable threshold
sequence c

(p)
n as in the case of independent identically distributed

random variables. A short comment on numerical simulations is pro-
vided at the end of this chapter, where some interesting features of
the distribution can be noticed.

4.1 the central limit theorem for dependent variables

In the following we want to explicit that the limiting distribution for
n → ∞ of the total optimal cost E(µ∗) for the REMP, as gven in (2.6),
is Gaussian. Although this is not a result of LDT, we want to stress
that the CLT does not apply in its standard formulation to dependent
variables, as the one we are considering in our problem. Here we
refer to the work of Darling [9] which proved this limit holds for the
generalized sum

W
(h)
n =

2n∑︂
i=0

h(ϕi) (4.1)

for a wide range of real-valued functions h.

4.1.1 The fundamental formula

Let us start by noting that, given ϕ = (ϕ0, . . . ,ϕ2n) the set of subin-
tervals in which the unit interval Λ = [0, 1] is divided by 2n random
points, for f = (f0, . . . , f2n) a set of real-valued function, it holds⟨︄

2n∏︂
j=0

fj(ϕj)

⟩︄
=

(2n)!
2πi

∫︂c+i∞
c−i∞ dz ez

⎡⎣ 2n∏︂
j=0

∫︂∞
0

drj e
−rjzfj(rj)

⎤⎦ . (4.2)

Here c is a constant larger than all the abscissas of convergence of the
corresponding Laplace transforms of the fi, the path of integration
being on the complex plane Re(z) = c. The formula in (4.2) can be

41
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obtained by observing that the expectation value of the product of
fi(ϕi) = fi(xi+1 − xi), 0 = x0 6 x1 6 x2 · · · 6 x2n 6 x2n+1 = 1, is
given by⟨︄

2n∏︂
j=0

fj(ϕj)

⟩︄
=(2n)!

∫︂1
0

dx2n

∫︂x2n

0

dx2n−1

· · ·
∫︂x2

0

dx1 f0(x1)f1(x2 − x1) . . . f2n(1− x2n) .

This is simply the convolution f0 ∗ f1 ∗ · · · ∗ f2n(1), where

g ∗ h(x) ≡
∫︂x
0

dt g(x− t)h(t) .

Hence, by recalling that the Laplace transforms multiply under convo-
lution, we obtain∫︂∞

0

dx f0 ∗ f1 ∗ · · · ∗ f2n(x)e−zx =

2n∏︂
j=0

∫︂∞
0

drj fj(rj)e
−zrj .

Now, by applying the complex inversion for the Laplace transform
and setting x = 1, we obtain (4.2).

The formula we just found is completely general and allows to
evaluate numerous expectation values over the probability distribution
of uniform spacings. By simply setting fi(ϕi) = eiξh(ϕi) we have

⟨︂
eiξW

(h)
n

⟩︂
≡

⟨︄
2n∏︂
i=0

eiξh(ϕi)

⟩︄

=
(2n)!
2πi

∫︂c+i∞
c−i∞ dW eW

[︃∫︂∞
0

dr e−rW+iξh(r)

]︃2n+1

,

(4.3)

that is the characteristic function, i. e. the Fourier transform of the
distribution, for the generalized sum W

(h)
n .

4.1.2 The Gaussian regime

The proof of asymptotic normality of the distribution of the total cost
in REMP follows directly from the evaluation of the characteristic
function. It is useful to recall that in the REMP we have a set of
(2n + 1) RVs, namely the subintervals ϕ, while the total optimal
cost E(p)

n = nε
(p)
n is evaluated by summing only on the set ϕodd =

(ϕ1, . . . ,ϕ2n−1). Thus, from (4.3) we have

F
(p)
n (ξ) ≡

⟨︂
eiξE

(p)
n

⟩︂
=

(2n)!
2πi

∫︂c+i∞
c−i∞ dE eE

[︃∫︂∞
0

dr e−rE+iξrp
]︃n [︃∫︂∞

0

dr e−rE

]︃n+1

.

(4.4)
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Now, letting

ξ = (2n+ 1)p−1/2t , E = (2n+ 1)z ,

and shifting the contour parallel to itself we have

F
(p)
n

(︂
(2n+ 1)p−1/2t

)︂
=

(2n+ 1)!
(2n+ 1)2n+1

1

2πi

∫︂c+i∞
c−i∞ dz

e(2n+1)z

z2n+1
[Bn(z, t)]n , (4.5)

where

Bn(z, t) ≡ (2n+ 1)z

∫︂∞
0

dr e−r(2n+1)z+it(2n+1)p−1/2rp . (4.6)

As it will turn out, [Bn(z, t)]n is actually a bounded function with
a well defined limit for n → ∞ for t bounded and ∀z. Thus the
integral in (4.5) can be evaluated by just taking the dominant term
of e(2n+1)zz−(2n+1) = e(2n+1)f(z) by a saddle point approximation,
with f(z) = z− log z. Now, solving for f ′(z) = 0, we have z = 1, while
f ′′(1) = 1. Hence in (4.5) we simply take c = 1 to get the contour of
steepest descent. By setting

z = 1+
iy√

2n+ 1
(4.7)

with

y ∈ In =
[︁
−(2n+ 1)δ, (2n+ 1)δ

]︁
δ ∈

(︃
0,

1

2

)︃
, (4.8)

the integral has its essential contribution in this range. It is useful
to stress out the Gaussian regime results as a consequence of this
approximation, for the CLT being valid in an interval around the
average value of order

√
n. Plugging the expression of z = z(y) as in

(4.7) in (4.5) we have for the constants preceding the integral

(2n+ 1)! e2n+1

(2n+ 1)2n+ 3
2

1

2π
=

1√
2π

+ o(1)

which follows from Stirling’s approximation of the factorial (2n+1)! =
Γ(2n+ 2). Thus, for the characteristic function in (4.5), we have

F
(p)
n

(︂
(2n+ 1)p−1/2t

)︂
=

∫︂
In

dy√
2π

e−y2/2 [Bn(z, t)]n [1+ o(1)] ,

(4.9)

Now we take the asymptotic expansion in (4.6) that gives

Bn(z, t) = (2n+ 1)z

∫︂∞
0

dr e−r(2n+1)z

×
(︃
1+ it(2n+ 1)p−1/2rp +

(it)2

2
(2n+ 1)2p−1r2p + . . .

)︃
= 1+ (it)

Γ(p+ 1)

zp
√
2n+ 1

+
(it)2

2

Γ(2p+ 1)

z2p(2n+ 1)
+ o(n−1) ,
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and letting z = z(y) we get

n logBn(z, t) = n log
[︃
1+ (it)

Γ(p+ 1)

zp
√
2n+ 1

+
(it)2

2

Γ(2p+ 1)

z2p(2n+ 1)
+ o(n−1)

]︃
= (it)

Γ(p+ 1)√
2

√
n+ ty

pΓ(p+ 1)

2

+
(it)2

2

Γ(2p+ 1) − Γ(p+ 1)2

2
+ o(1) .

Plugging this estimate in (4.9) we obtain

F
(p)
n

(︂
(2n+ 1)p−1/2t

)︂
e
−it

Γ(p+1)√
2

√
n

= e−
t2

2
Γ(2p+1)−Γ(p+1)2

2

∫︂
In

dy√
2π

e−y2/2+ytpΓ(p+1)/2 (1+ o(1)) ,

and by taking the limit of large n we get

lim
n→∞

⟨︃
exp

{︃
it

(︃
(2n+ 1)p−

1
2E

(p)
n −

Γ(p+ 1)√
2

√
n

)︃}︃⟩︃
= lim

n→∞
⟨︃

exp
{︃
it(2n)p−1/2

[︃
E
(p)
n −

Γ(p+ 1)

2pnp−1

]︃}︃⟩︃
= exp

{︃
−
t2

2

2Γ(2p+ 1) − 2Γ(p+ 1)2

4

}︃
×
∫︂∞
−∞

dy√
2π

e−y2/2+ytpΓ(p+1)/2

= exp
{︃
−
t2

2

2Γ(2p+ 1) − (2+ p2)Γ(p+ 1)2

4

}︃
.

Since the Fourier transform of a normal distribution is normal dis-
tributed in the conjugate variable, we have established the assumption.
As a consequence, we have also an independent derivation for the
asymptotic moments given in (2.19) and (2.22).

4.2 the extension to large deviations

Here we collect the results of large deviations which we obtained for
the average cost for the REMP. The main achievement is the extension
of Gaussian regime we just extracted to a broader interval.

4.2.1 The Gaussian moderate deviations

In this section we will try to show the asymptotic normality of the
distribution of the average cost in the REMP can be extended in a
larger region than the typical one of CLT. As in the previous chapter,
to properly formulate an LDP for the average cost we would need a
number of technical tools of probability theory. In here we refer to the
work of Mirakhmedov [26, 27], that found a number of precise large
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deviations for the generalized sum Wn, as in (4.1), under suitable
conditions of the function h.

The topic seems to be of great interest for asymptotic efficiency of
goodness-of-fit tests [15, 33]. These are aimed to confirm or reject the
hypothesis that a certain data set is distributed according to some a
priori PDF, which in this case is the uniform distribution on the unit
interval Λ. Typically, this is achieved by looking at the discrepancy
between the expected and empirical value of a generalized sum W

(h)
n ,

for some suitable function h of the spacings between successive points.
Although a number of possible choices is given for the actual function
h, it seems common to choose h(x) = x2, called Greenwood statistics,
named after Major Greenwood [16] who firstly introduced this test to
estimate the distribution of genes in the chromosomes of living organ-
isms. The asymptotic expression of the tail probability for this kind of
statistics has a specialized result, as it will be shown subsequently.

After the discussion in Chapter 3, it should have become clear that
the right observable to be taken into account to formulate an LDP is
the rescaled RV φ = 2nϕ, which has a well defined distribution in
the large n limit. In particular, we will refer to the average cost per
edge of the REMP, namely to the quantity ε̂

(p)
n = (2n)pε

(p)
n whose

limit moments, given in (3.10) and (3.11), are positive and finite.
As in Section 3.3, the validity of asymptotic normality for the dis-

tribution of the RV ε̂
(p)
n is constrained by a threshold sequence c

(p)
n .

This defines the region where the approximation holds, namely how
far from the expected value

⟨︂
ε̂
(p)
n

⟩︂
the deviation can get for the dis-

tribution to be Gaussian. In this case the sequence arises from noting
that the problem of finding the distribution of the random vector
φ = (φ0, . . . ,φ2n) can be mapped in the one of 2n+ 1 exponential
RVs Z = (Z0, . . . ,Z2n) conditional to their sum being 2n+ 1. More
explicitly, by denoting with D(X) the distribution of the random vector
X, we have

D (φ) = D(Z|S2n+1(Z) = 1) , (4.10)

where, as always, Sn(X) stands for the sample mean of the random vec-
tor X. In this case it can be proved that, for any p > 1, the asymptotic
expression for the tail probability takes the form

Pr
(︂
ε̂
(p)
n > x

)︂
∼ Φ

⎛⎜⎝⌜⃓⃓⎷ n

var
[︂
ε̂
(p)
n

]︂(x− µp)

⎞⎟⎠ , 0 < x−µp ≪ c
(p)
n ,

(4.11)

where

c
(p)
n = cn = c ·

√︃
logn

n
, c ∈ R+ , (4.12)
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while µp = ⟨Zp⟩ as given in (3.10) and var
[︂
ε̂
(p)
n

]︂
as in (2.22). It is

important to notice that the expectation value of ε̂
(p)
n is exactly µp

only in the large n limit, namely

lim
n→∞

⟨︂
ε̂
(p)
n

⟩︂
= µp .

This fact arises exactly from (4.10), the difference of the two distribu-
tion being o(1) in the region defined by (4.12).

This result can be specialized to the case p = 2, that is the Green-
wood statistics: in his work Mirakhmedov shows that the cumulants of
the RV ε̂

(2)
n and the ones of S(2)n (Z) can be both bounded by the same

quantity, making the two RVs asymptotically equivalent. This method
of extracting large deviation probabilities is known as Statulevičious’
condition [2], which allows to verify that ε̂(2)n is normally distributed
in a region broader than the one defined by (4.12). This results for the
tail probability taking the limit expression

Pr
(︂
ε̂
(2)
n > x

)︂
∼ Φ

(︃√
n(x− µ2)

σ2

)︃
, 0 < x− µ ≪ c

(2)
n , (4.13)

with

c
(2)
n = c ·n−1/3 , c ∈ R+. (4.14)

As a consequence, from both (4.11) and (4.13), we can state the
probability distribution is exponentially suppressed in the size of the
sample with speed n due to ε̂

(p)
n being normally distributed up to a

distance from the average value defined by the threshold sequences
given in (4.12) and (4.14).

4.2.2 Large deviations for the tail probability

In the previous section we discussed the extension of the Gaussian
regime up to a threshold sequence c

(p)
n . As in the independent case

discussed in Section 3.4, we tried to establish an LDP even in the
large x region, where we suspect the behavior of the tail probability
Pr
(︂
ε̂
(p)
n > x

)︂
is qualitatively identical to the one of the independent

case. As already mentioned, this was driven by the observation that,
as the number of spacings n increases, the spacings ϕ (that is φ) act
more and more like independent and identically distributed. This
comes from the RVs being weakly dependent, as we already pointed
out in Section 2.3.1. As a matter of fact, no rigorous result could
be provided to support this assumption. Nevertheless, a number of
numerical simulations were carried out to see if any LDP could be
extracted from the directly inspecting the distribution of costs.
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4.3 numerical simulations

In this section we present the results of the simulations carried out
with the direct sampling method discussed in Section 3.5.1.
Firstly, we checked that the average cost per edge ε̂

(p)
n is normally

distributed for large values of n. An example of this fact is illustrated
in Figure 4.1 for the p = 2 case, where the normalized histogram
of the average cost pL(x), sampled over L = 107 instances, and the
expected Gaussian distribution is given. Actually, the convergence to
the normal distribution comes quite rapidly as n increases: the heavy
tail behavior for n = 50, which is stressed out in the logarithmic plot
(Figure 4.1b), gets almost entirely suppressed as n = 500 (Figure 4.1d),
where no appreciable subexponential trend can be noticed.

It is useful to recall from Section 3.3.1 that, in case of independent
RVs, the value p = 2 was quite exceptional. For smaller values, that
is for p ∈ (1, 2), the subexponential tail can be recovered only in the
region of x ≫ nδ, with δ > 0, that is for extremely large deviations
from the expected value. On the other hand, for p > 2, the stretched
exponential tail dominates a region that gets closer and closer to the
expected value µp as n increases.

Driven by this observations we could ask if a similar behavior
applies to the (correlated) case of REMP. Namely, we could ask if, even
for large values of n, a stretched exponential tail can be observed for
p > 2. In Figure 4.2 we collected the distribution of the average cost
in the case p = 5 for different values of n with the expected Gaussian
distribution as a comparison. It appears clearly that the convergence
to the Gaussian regime is slower than the previous case as n increases,
mostly due to the variance being larger as a consequence of larger p.
Nevertheless, especially in the logarithmic plot (see Figure 4.2b), it
appears the distribution exhibit a subexponential tail in the region of
large x, even for values of n where the Gaussian regime is dominant
(Figure 4.2f). This could suggests a slower than exponential dumping
in n may occur in the large x region, as in the case of independent
RVs. Although, given the great inefficiency of the sampling method
we used for large deviations, extracting a precise speed of scaling for
the tail distribution of the average cost is unfeasible. This, as already
discussed in Section 3.5.1, has to deal with both the nature of rare
events and the limitations of this procedure. As a consequence, no
proper bound for the tail probability far away from the expected value
can be extracted from the numerical simulations.

4.4 conclusion and outcomes

As already pointed out, we have proved the distribution of the average
cost in the REMP is normally distributed around the typical value in
the limit of large n, that is the Gaussian regime applies in a region
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predicted by the CLT. We provided some motivations to the fact that
this regime can be extended in a broader region than the classical one
by using results coming from statistical inference and goodness-of-fit
tests.

We would have liked to obtain some rigorous results regarding the
behavior of the tail probability of the distribution of cost in the very
large x region. This would have allowed to establish a proper large
deviation principle for the whole distribution of the average cost. As
a consequence, the characterization of probability of rare events and
how fast values different from the typical one become unlikely is not
completely resolved. This is a challenging task to accomplish, mostly
because of non-trivial correlations induced by the Euclidean distance.
Numerical simulations that we performed, despite their limitations,
seems to suggest that the independent and the correlated case could
have a similar asymptotic expression far away from the expected
average cost.

Actually, this remains an open problem that needs to be further
investigated.
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Figure 4.1: Normalized histogram of the average cost ε̂(2)n for p = 2, from
the direct sampling method. The number of instances L = 107 is
fixed and different values of n are collected ( n = 50 in (a) and
(b), n = 500 in (c) and (d)). Convergence towards the expected
normal distribution (in black, with given mean and variance)
is quite fast as n increases: while the probability concentrates
around the typical value from (a) to (c), the subexponential tail
which can be observed in the logarithmic plot (b) for n = 50 is
almost entirely suppressed in (d) for n = 500.
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Figure 4.2: Normalized histogram of the average cost ε̂(5)n for p = 5, from
the direct sampling method. The number of instances L = 107 is
fixed and different values of n are collected. Convergence towards
the expected normal distribution (in black, with given mean and
variance) happens to be slower in n than the p = 2 case (see Fig-
ure 4.1), although the Gaussian regime is almost totally recovered
in (e) for n = 105. While the probability concentrates around the
typical value from (a) to (e), the subexponential tail in the loga-
rithmic plot (b) for n = 500 persists even for larger values of n,
as in (f) for n = 105. This may suggest the subexponential regime
for large values of x can reflect in a subexponential dumping in n

of the tail probability.
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A
T H E L E G E N D R E - F E N C H E L T R A N S F O R M

In this appendix we want to give a proper definition and enunciate
some useful properties of the Legendre-Fenchel transform, which are
extensively used during the dissertation.

a.1 definition and first properties

Let f : R → R be a real-valued function: we define the Legendre-
Fenchel transform (LFT) of f(x) by the variational formula

f∗(k) ≡ sup
x∈R

[kx− f(x)] . (A.1)

In the same way, the LFT of f∗(k) can be defined as

f∗∗(x) ≡ (f∗(k))∗ = sup
k∈R

[kx− f∗(k)] , (A.2)

which corresponds also to the double LFT of f(x). It is important to
notice LFT is not necessarily involutive: that is to say, f∗∗ does not need
necessarily to be equal to f.

Obviously, the LFT can be defined using an infimum rather than a
supremum:

g∗(k) = inf
x∈R

[kx− g(x)] . (A.3)

This can be shown to be equivalent to expression in (A.1) by introduc-
ing minus signs at the right place. Explicitly

−f∗(k) = − sup
x∈R

[kx− f(x)]

= inf
x∈R

[−kx+ f(x)]

so that, by setting g(x) = −f(x), we have g∗(k) = −f∗(−k). That is,
defining the LFT by the infimum as in (A.3) simply results in the point
reflection of the function f∗.

The LFT is often referred to in physics as Legendre transform. Actually
the Legendre transform is simply defined by considering

f∗(k) = kxk − f(xk) (A.4)

where xk is determined as the solution of the equation

d

dx
f(x) ≡ f ′(x) = k . (A.5)
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This form is more limited in scope than the LFT since it applies only to
differentiable and convex functions, as we will see later. In this sense,
the LFT is a generalization of the Legendre transform, which extends
to nonconvex, non differetiable functions.

The definition of the LFT given in (A.1) can trivially be generalized
to functions defined on higher-dimensional spaces, namely functions
f(x) : Rd → R, with d a positive integer, by replacing the normal
real-number product kx by the scalar product k · x, where k and x are
both d-dimensional vectors.

a.2 theory of legendre-fenchel transform

The theory of LFT deals almost entirely with two question

• how the choice of the function f affects the expression of f∗;

• when an LFT is involutive, i. e. when it holds f∗∗ = f.

These two questions are answered by using a fundamental concept
of convex analysis known as a supporting line. We say that the func-
tion f : R → R admits a supporting line at x ∈ R if there exists a real
constant α such that

f(y) > f(x) +α(y− x) , ∀y ∈ R . (A.6)

The constant α is called the slope of the supporting line. We further
say that a supporting line is strictly supporting at x if

f(y) > f(x) +α(y− x) , ∀y ̸= x . (A.7)

From now on we will replace the expression ”f admits a supporting
line in x” with the one ”f is convex in x”. If, on the other hand, f
does not admit a supporting line, we will say f is nonconvex at x. It
should be clear that, for any differentiable function f, the property of
admitting a supporting line in x, i. e. to be convex at x, simply implies
f ′′(x) to be positive, while α = f ′(x).

Ideed, it can be shown that the LFT f∗(k) of a real-valued function
f(x) is always convex for any k ∈ R. This requires the double transform
f∗∗(x) to be a convex function as well, without being guaranteed f(x)

was convex in the first place. We now understand why the equality
f∗∗(x) = f(x) does not always hold, namely if f is nonconvex in x then
we are guaranteed that f∗∗(x) ̸= f(x).

We can now answer to the first question by using the result of the
following theorem.

Theorem A.2.1 If f admits a supporting line at x with slope k, then the
LFT f∗ admits a supporting line at k with slope x.

This fact specializes to the case of f being a strictly convex function.



A.2 theory of legendre-fenchel transform 55

Figure A.1: Illustration of the duality property for supporting lines: points of
f are mapped by the Legendre-Fenchel transform into slopes of
f∗, and, vice versa, slopes of f are transformed into points of f∗.

Theorem A.2.2 If f admits a strict supporting line at x with slope k, then
f∗ is differentiable at k and it admits a tangent supporting line with slope
f∗′(k) = x.

These facts go under the name of supporting line duality, i. e. taking
the LFT of a convex function f simply means to write the function in
terms of the slope k it assumes at the point x. An illustration of this
property is given in Figure A.1.

The second answer, namely when the equality f∗∗=f holds, is ad-
dressed by the following theorems.

Theorem A.2.3 The function f admits a supporting line at x if and only if
f(x) = f∗∗(x).

Theorem A.2.4 If f∗ is differentiable at k, then f = f∗∗ at x = f∗′(k).

From the last result we can state that if f∗ is everywhere differentiable
in its domain, then f is a convex function and it holds f(x) = f∗∗(x),
∀x ∈ R. This says in words that the LFT is completely involutive if
f∗(k) is everywhere differentiable.

All this result can become more clear if we consider again the simple
case of a smooth, differentiable real function f: in this case the LFT is
simply given by (A.4), where xk is the solution, for a given k, of the
equation

∂

∂x
F(x,k) ≡ ∂

∂x
[xk− f(x)] = 0 , (A.8)

that is

xk = arg sup
x∈R

F(x,k) . (A.9)

In other words, for any fixed k, the supremum returns the maximal
distance between the line y = kx with slope k and the underlying
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x

y
f(x)

y = kx

xk

Figure A.2: Geometrical representation of the Legendre transform: maximiz-
ing the function F(x,k) = kx− f(x) with respect to x is equivalent
to finding the maximal distance between the line y = kx and the
underlying function f(x). Here the maximal distance (red) having
length kxk − f(xk), where xk is determined by the differential
equation ∂xF(x,k) = 0.

function y = f(x). A geometrical interpretation of this fact is given in
Figure A.2. Obviously there could be more than one critical points
of F(x, k) that would solve the differential equation in (A.8). To make
sure that there is actually only one solution for every k ∈ R, we
need to require f ′ to be monotonically increasing in the variable x,
while f ′(x) → ±∞ for x → ±∞. With these two assumptions we are
guaranteed that there exists a unique value xk that satisfies

f ′(xk) = k ,

and which maximizes F(x,k). Thus we have proved the LFT reduces
to a simple Legendre transform for the case of differentaible and
strictly convex functions, the latter descending from monotonicity of
f ′. As a consequence of this fact, from Theorem A.2.3 we also have
f∗∗(x) = f(x), ∀x ∈ R, meaning the LFT is completely involutive. Thus,
from the definition we gave in (A.2) we have

f∗∗(x) = f(x) = xkx − f∗(kx) , (A.10)

where, analogously to (A.9), kx is the unique solution of the equation

f∗′(k) = x . (A.11)

Now we could ask what would happen if we remove the assumption
that f ′(x) is monotone, that is if f is a differetiable nonconvex function
of x. In this case we have at least one open interval I = (x1, x2) in
which the function f does not admit a supporting line. This means,
by recalling the results in Theorem A.2.1 and Theorem A.2.2, that the
points in the interval I have no representation in terms of the LFT f∗.
In other words, there is no point k of f∗ which admits a supporting
line with slope in the range (x1, x2).
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Figure A.3: On the right a nonconvex smooth function f(x). The double
Legendre-Fenchel transform f∗∗(x) coincides with the convex
envelope of f(x): it is obtained by replacing the nonconvex branch
of f with the supporting line connecting the two convex branches.

From the definition we gave in (A.6), it is easy to see that the points
x1 and x2 must share the same supporting line. Namely, since f is
differentiable, the supporting line of f in x1 coincides with its tangent
line

y = f(x1) + f ′(x1)(x− x1) 6 f(x) , ∀x ∈ R ,

and taking x = x2 it follows that f ′(x2) = f ′(x1). As a consequence
The LFT f∗ must have a non differentiable point at kc, with kc =

f ′(x1) = f ′(x2) equal to the slope of the supporting line connecting
the two points (x1, f(x1)) and (x2, f(x2)). Thus, in a certain way, f∗

must have two slopes at kc that are x1 and x2.
We define the convex hull or convex envelope of f to be the function

obtained by replacing the nonconvex branch of f(x), i. e. f(x)|I, by the
supporting line connecting the two convex branches of f. Then, both
the LFT of f and its convex envelope yield f∗. It should be evident
that the convex hull of f is nothing but f∗∗, the double LFT of f. A
graphical illustration of this property is shown in Figure A.3. This
implies the LFT has the following structure:

f ⇀ f∗ � f∗∗ . (A.12)

This diagram clearly shows that the LFT is not involutive in general.
Only in the special case of convex functions, i. e. for functions admit-
ting supporting lines everywhere, it holds f = f∗∗, thus the diagram
reduces to

f � f∗ . (A.13)
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