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Introduction

Within the context of statistical mechanics in two dimensions, one the topics that de-
served a lot of interest during the last thirty years is the study of statistical systems on
random lattices, that is accomplished by replacing the fixed lattice on which a model is
defined with its spatial fluctuations. The computations of the thermodynamical quan-
tities in this case can be pursued using the techniques of the so called random matrix
theory since the partition function of a model can be expressed as a suitable integral
over one or more matrices.

The idea behind this identification dates back to a work by ’t Hooft on quantum
chromodynamics [1]. ’t Hooft showed that the Feynman diagrams of a matrix field
theory can be interpreted as double line graphs called fat-graphs, setting the basis for
the enumeration of graphs according to their genera (topological expansion) needed to
study models on random graphs.

The precise connection between a matrix field theory and the enumeration of graphs
was established by Brezin et. al in [2] where they computed exactly a sum over planar
graphs solving a matrix integral in the limit of large dimension of the matrix. Their
breakthrough result inspired Kazakov who few years later solved the Ising model on
fluctuating lattices [3]. Since then a plethora of statistical models, such as the O(n) or
the Potts model, were solved on random graphs.

The study of this branch of statistical mechanics is of interest for a wide range of
physical and mathematical research areas. Random lattices are dual to dynamical tri-
angulations that can be interpreted as discretized version of surfaces. There are indeed
many of two dimensional systems that can be understood in terms of statistical me-
chanics of fluctuating surfaces, such as biological membranes, 2D quantum gravity and
string theory [4].

The connection with 2D quantum gravity was the most investigated and a lot of
checks between its continuum formulation, Liouville field theory, and the results ob-
tained with matrix models were performed, ensuring that the discrete approach is valu-
able and important. In string theory one dimensional objects called strings evolve in
time describing a 2D world-sheet, that is a surface on which is defined the d-dimensional
vector field that describes the string. Then also string theories can be discretized as ran-
dom lattices, but the applicability of this discrete approach is limited to d ≤ 1 [5].

A great interest about physical systems on random lattices comes also from their flat
space counterpart since the critical properties of a model on fixed and random graphs
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can be related with the KPZ relations [6]. If the discrete formulation of 2D quantum
gravity and string theory have eventually been not so successful, this connection is in
principle very fruitful since models on random lattices are generally easier to solve than
their partners on the plane, the deep reason being their larger symmetry, the discrete
version of the general covariance.

Random matrices, the most important tool to deal with statistical mechanics on ran-
dom lattices, were first introduced in physics by Wigner [7], for explaining the energy
level distribution in heavy nuclei. Since then, they were useful not only in statistical
mechanics, but also in different aspects of quantum physics [8] and in integrable sys-
tems [9] to mention some of the applications1.

Random graphs are studied also by mathematicians, and from their point of view
the partition function of a model on fluctuating lattices is the generating function of
decorated random graphs. Then during the last years direct combinatorial methods
has entered the field beside random matrix techniques. Combinatorics and random
matrices have been applied together for solving different enumeration problems of both
mathematical and physical interest, such as the enumeration of maps [11], the counting
of knots and tangles [12] and the meander problem, directly related with the folding
of polymers and membranes [13]. The intimate connection between combinatorics and
statistical physics led also to new combinatorial solutions of statistical models, as in
[14, 15].

Given this background, in this thesis we will turn our attention to the study of span-
ning forests and spanning trees on random lattices. A spanning forest is a subgraph
without cycles that has the same vertex set of the underlying graph, and a tree is a
forest with only one connected component. Spanning forests are an important and in-
teresting topic in graph theory and combinatorics, but not only in these fields. They are
also important in statistical physics, where the partition function of spanning forests
arises in the limit q → 0 of the Potts model in the Fortuin-Kasteleyn representation [16].
Moreover the same partition function can be represented as a fermionic theory, that
resembles the O(n) invariant non linear σ−model at n = −1 [17]. Studying spanning
forests then gives information on the phase diagram of these models. The connection
with the O(n) σ−model model makes also clear that at least perturbatively spanning
forests are asymptotically free for positive values of the fugacity of the trees. Asymp-
totic freedom is a not yet completely understood feature shared also by non abelian
gauge theories, and the simplicity of forests can potentially give new insights on this
important aspect. Moreover, a good reason for studying spanning trees is that they
are related to further different topics of 2D statistical mechanics, such as logarithmic
conformal field theories and stochastic Loewner evolution (SLE).

1For an extensive treatise on random matrices, see Mehta [10]
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Outline of the thesis

In this thesis we will explain how to deal with spanning forests and spanning trees
when considered on random lattices. It will turns out that in most cases simple com-
binatorial considerations can be used to solve the models. We will try to follow the
implications of our results and in particular we would like to have a better understand-
ing of the critical behaviour on both random and flat lattices.

In chapter 1 we explain the connection between combinatorics and random matri-
ces. We first show how averages with respect to a Gaussian measure over a N × N
Hermitian matrix generate random fat-graphs weighted by powers of N according to
their genus, and we give an expression for the generating function of fat-graphs. Then
we put loops and spin variables on the lattices, using multi-matrix models. These are
interpreted as the partition functions of the O(n) loop-gas and Potts model on fluctu-
ating surfaces.

Chapter 2 concerns the solution of the matrix integral of the O(n) loop-gas model
with the saddle point technique. We show how to derive the saddle point equation in
the general case, and we solve it in the special cases n = 0 and n = −2. The special-
ization to n = 0 is equivalent to a one-matrix model and its solution is a pedagogical
introduction of the relevant concepts, such as the spectral density of eigenvalues and
the string susceptibility exponent. The solution of the O(−2) loop-gas model is then
pursued following Kostov [18], and we show how to derive the critical points of the
model.

Chapter 3 will be devoted to some results in the enumeration of unicellular maps.
Maps are embedded graphs and their counting can be pursued using matrix integrals as
shown in chapter 1. We first present the early work of Harer and Zagier that involved
random matrices [11]. Then we turn to purely combinatorial formulas and give the
results obtained by Walsh and Lehman [19] and Goupil and Schaeffer [20] who express
the number of unicellular maps of given genus as sum over integer partitions of the
genus. Along with the trend of using combinatorial methods in statistical mechanics,
we will use these results later to compute the partition function of spanning trees on
random lattices of arbitrary genus.

In chapter 4 we will deal with the model of spanning forests on random lattices.
After a brief revision of the actual state of the art in understanding spanning forests,
we derive a matrix integral to represent the partition function, as done by Caracciolo
and Sportiello in [21]. This derivation consists in shrinking the trees to points and
study the resulting ensemble of graphs with effective vertices, the whole procedure
being controlled using basic results in the combinatorics of trees. Then we expose our
original contribution to this problem. We make the connection with the O(−2) loop-
gas model and use its solution presented in chapter 2 to obtain the critical behaviour of
spanning forests on random lattices. This analysis joint with the KPZ relations confirms
asymptotic freedom and predicts the existence of a critical point for negative value of
the fugacity whose interpretation is discussed.

Chapter 5 and 6 present the combinatorial methods to deal with spanning trees and
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related models on random lattices. Starting from the combinatorial solution of trees on
random planar graphs presented in [21], we are able to solve also other models pertain-
ing to the same universality class, γ = −1. We first generalize the analysis to hypertrees
on random planar hypergraphs, thanks to the derivation of more general combinatorics
about hypertrees and hyperlink patterns, and then we easily solve Hamiltonian cycles.
The solution of these two models are original work. Chapter 6 is entirely original.
There we will extend the analysis of spanning trees from planar to positive genus lat-
tices, showing that we can compute exactly the partition function at every genus using
the results of chapter 3. The critical exponents computed are in agreement with the
literature and our previous analysis. It is also shown that the analysis at generic genus
in the thermodynamic limit can be carried out by considering only one-vertex triangu-
lations of a surface. We will also try to understand the possibility of a non perturbative
solution from the topological expansion we have computed. We study the exponen-
tial generating function of spanning trees of given genus, deriving its critical behaviour
and explaining a method to keep track of the subleading corrections.

In appendix A we give some standard notions about graphs and maps that will be
useful in the whole work, explaining concepts such as duality and automorphism of
a map. In appendix B the Tutte polynomial of a graph and its relation with spanning
forests is presented. In particular we specialize to the spanning trees expansion in the
case of random planar graphs.
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Chapter 1

Random Matrices and
Combinatorics

Integrals over the ensemble of random matrices are intimately connected with the enu-
meration of graphs [13, 22]. Wick’s theorem and Feynman diagrams allow to associate
to every matrix integral a generating function for decorated graphs of given genus that
are interpreted as statistical models on fluctuating surfaces, namely the discretization
of 2D Quantum Gravity coupled to matter model [5]. The idea underlying the diagram-
matics of matrix integrals dates back to the work of ’t Hooft in the context of large N
QCD [1]. Subsequently, starting from the fundamental works of Bessis [23] and Brezin
et. al [2] this subject deserved a lot of interest during the last thirty years, and a lot of
solutions of several statistical models on random lattices were exposed.

1.1 Wick’s theorem and Feynman diagrams as tools for enu-

merating graphs

We start considering a normalized Gaussian measure over the real line and we want to
compute averages of monomials x2n w.r.t it:

〈
x2n

〉
=

1√
2π

∫ +∞

−∞
x2ne−

1
2 x2

dx . (1.1)

To compute this integral introduce the generating function Σ(s) = 〈esx〉 = es2/2, so
that

〈
x2n

〉
will be given by the 2n-th derivative of Σ(s) evaluated in s = 0. Note

that derivatives must be taken by pairs one on the exponential and one on the term
thus created, to yield a nonzero result. Since every pair of derivative contributes as
( d2/ ds2)Σ(s)|s=0 = 1, integral (1.1) will be equal to the number of pairings of 2n ob-
jects, (2n − 1)!!. We can describe the computation of

〈
x2n

〉
pictorially associating a

half-edge attached to a single vertex to every term x. Then a pair of derivatives will
correspond to a matching between two half-edges and each of the (2n − 1)!! possible
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saturation of these half-edges will produce a one-vertex graph with n edges. This inter-
pretation lead to the one-dimensional version of the Wick’s theorem:

〈
x2n

〉
= ∑

P
∏
e∈P

〈
x2

〉
(1.2)

where the sum is over all possible pairings P that saturate the 2n half-edges and the
product is over the set of of edges e thus formed. We have then reduced the computa-
tion of the integral (1.1) to that of

〈
x2

〉
= ( d2/ ds2)Σ(s)|s=0 = 1.

Wick’s theorem is a fundamental result in quantum field theory (QFT) which ex-
presses the averages of polynomials w.r.t a Gaussian measure (finite or infinite dimen-
sional). In the language of QFT each saturation of the half-edges is a Feynman diagram
of this theory and to every edge corresponds a propagator 〈xx〉 = 1.

Now, we substitute to the integration over the line an integration over N × N Her-
mitian matrices M and we would like to generalize the analysis above. Using a matrix
notation, the normalized Gaussian probability measure we will use is1:

1

Z0
e−

1
2 NTrM2DM (1.3)

where Z0 = (2π/N)N2
2(N−N2)/2 and DM = ∏i dMii ∏i<j dℜMij dℑMij is the Haar

measure of the group of Hermitian matrices invariant under U(N). We are interested
in computing

〈 f (M)〉 =
1

Z0

∫

f (M) e−
1
2 NTrM2DM . (1.4)

To generalize Wick’s theorem to the matrix case, introduce as above a generating

function Σ(S) =
〈
eTrSM

〉
= e

TrS2

2N . Deriving Σ(S) by S and evaluating in S = 0 gives the
averages of product of matrices and again we have to take derivatives by pairs to have
a nonzero result. So, analogously to the uni-dimensional case, we can easily state the
Wick’s theorem for matrix fields:

〈

∏
(ij)∈J

Mij

〉

= ∑
P

∏
(ij,kl)∈P

〈
Mij Mkl

〉
(1.5)

where J is a list of indices and the sum is over all the possible pairings P of pairs of
indices in J and the propagator is2:

〈
Mij Mkl

〉
=

∂

∂Sji

∂

∂Slk

〈

eTrSM
〉

∣
∣
∣
∣
∣
S=0

=
1

N
δilδkj . (1.6)

Following ’t Hooft [1], the Feynman diagrams of this matrix field theory can be
constructed by associating to every term Mij a half-edge composed of two double lines

1 We introduced a factor N in the exponential to yield a non trivial limit N → ∞, since DM consists of

N2 terms and behaves like eN2
.

2Note that to obtain a factor Mij we have to derive Σ(S) by Sji.

6



carrying indices i and j in opposite directions (Fig. 1.1(a)). According to (1.6), nonzero
contractions of the half-edges are the ones where they are joined according to the arrows
orientations to form

〈
Mij Mji

〉
(Fig. 1.1(b)). In this way, Tr(Mn) will be represented by a

star diagram with n half-edges made of oriented double lines in such a way to respect
the identification of the indices (see figure 1.1(c) for an example in the case n = 6).

i

j

Mij

(a)

i≡l

j≡k

〈
Mij Mkl

〉

(b)

i1

i1

i2

i2

i3

i3

i4

i4i5

i5

i6

i6

TrM6 = ∑i1,...,i6

(c)

Figure 1.1: Pictorial representation of matrix elements as double opposite oriented lines.
Propagators force to contract the half-edges according to arrows.

To compute the average of TrMn

〈Tr(Mn)〉 = ∑
i1,...,in

〈Mi1i2 · · · Mini1〉 , (1.7)

we contract the half-edges in all possible ways that conserve indices along the lines and
weight diagrams with the following Feynman rules:

• Associate a factor N−1 to every propagator (see eq. (1.6))

• Faces (cycles formed by single line) brings a factor ∑i δii = N.

The pictorial representation outlined above associate to the Feynman diagrams of
the zero-dimensional matrix field theory described by (1.4) one-vertex fat-graphs, graphs
with oriented double lines.

These fat-graphs G thanks to the “thickened” oriented structure specify an order-
ing at the edges at vertices, and thus can be seen as piecewise linear surfaces of Euler
characteristics

χ(G) = 2 − 2h(G) = V(G) − E(G) + F(G) (1.8)

7



where we call V, E and F respectively the number of vertices, edges and faces, and
h(G) is the genus of the surface, its number of handles. Then, in the computation of
(1.7) every labelled fat-graph produced by the contractions of the half-edges will be
weighted by N−E+F = N1−2h. For a discussion on graphs and their embedding, called
in the mathematical language maps, see A.2. However please note that in this thesis
we will use the word graph also to indicate its embedding on surfaces.

We remark that 〈TrMn〉 has an important combinatorial meaning; it is written as a
sum of powers of N and the coefficient of N1−2h gives the number of one-vertex labeled
graphs with n/2 edges that can be drawn on a surface of genus h.

2 +3

+6 +3 +1

〈
TrM6

〉
= 5N + 10N−1 =

Figure 1.2: The graphical representation of
〈
TrM6

〉
as a sum over (6− 1)!! = 15 labelled

one-vertex fat-graphs with 3 edges.

In figure 1.2 we represent graphically
〈
TrM6

〉
. Note that the number of the possible

contractions is correctly (6− 1)!! = 15. Out of this 15, 5 diagrams are planar, and 10 are
of genus 1, as we can read from the coefficient of the term N and N−1. Integrating on
the space of Hermitian matrices rather than on the line has so allowed us to separate
the ways of contracting half-edges according to the genus of the resulting graph.

Now we specialize to the planar case, namely we consider graphs that can be em-
bedded in the Riemann sphere (h = 0). This is the subset of the (n − 1)!! one-vertex
diagrams in which petals are juxtaposed or included into one-another. If we set χ = 2
and V = 1 in (1.8), we have that planar graphs contribute as N, while if h is higher the
diagrams contribute with a lower exponent of N. This means that if we perform the
limit N → ∞ in (1.7), only the class of planar diagrams survives, and we are left with
the enumeration of planar contraction of half-edges of a one-vertex graph. In the next
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paragraph we will see how to solve this counting problem.

1.1.1 Catalan numbers

Consider the problem of enumerating the planar contractions of half-edges of a one-
vertex graph. To better visualize the configurations, we fix a half-edge of an edge (say at
position 1) and open the petals respecting their positions. What remains is counting the
resulting non-intersecting arcs with extremities on the border of the upper half plane,
called link patterns (top of figure 1.3, where we switched from the double to the single
line representation).

Figure 1.3: On top, there is a link pattern with n = 8 arcs. On bottom there is depicted
the procedure of removal of the rightmost arc that leaves two link patterns.

Call Cn the number of link patterns with n arcs and set C0 = 1, since we have only
one empty configuration. Given a configuration with n > 0, remove the rightmost arc.
Then we are left with two smaller link patterns (bottom of figure 1.3) and this translates
into this convolutional formula for the coefficient Cn:

Cn =
n−1

∑
n1=0

Cn1
Cn−1−n1

. (1.9)

Introducing the generating function C(q) = ∑n≥0 Cnqn, (1.9) can be rewritten as

C(q) = 1 + qC(q)2 (1.10)

and the solution that is coherent with the condition C(0) = 1 is

C(q) =
1 −

√
1 − 4q

2q
. (1.11)
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The coefficient of the Taylor series of the function C(q) above can be expressed as a
Cauchy integral:

Cn =
∮

dz

2πiz

1 −
√

1 − 4z

2z
z−n . (1.12)

The integration is performed on a circle that encloses the singularity at the origin and
since the integrand has a branch cut from 1/4 to ∞, we can deform the contour of
integration up to encircle the whole plane except the cut. For any integer n the inte-
gral on the large circle vanishes and what remains are the integrals on the two sides
of the cut. Setting z = x ± iǫ, with x ∈ (1/4, ∞) and ǫ > 0 infinitesimal, we have
√

1 − 4(x ± iǫ) = ∓i|
√

4x − 1| + O(ǫ). Then, we can write:

Cn =
∫ ∞

1
4

dx

2π

√
4x − 1

xn+2

=
1

n + 1

(
2n

n

)

. (1.13)

This numbers are called the Catalan numbers (sequence A000108 in [24]) and are a very
famous integer sequence in combinatorics, since they solve a lot of combinatorial prob-
lems.

Once enumerated the planar pairings of a one-vertex diagram, we can immediately
obtain the value of 1

N 〈TrMn〉 in the planar limit:

lim
N→∞

1

N
〈TrMn〉 =

{

Cp = 1
p+1(2p

p ) if n = 2p

0 otherwise
. (1.14)

1.2 EGF for fat-graphs

With the formalism of the previous section, we can write a formal expression for the
exponential generating function (EGF) for fat-graphs. Consider the following average:

eZN({gi}) =

〈

eN ∑i≥1 gi
TrMi

i

〉

(1.15)

which is to be intended as a formal expression defined by its perturbative expansion.
When we expand the exponential, we have to compute averages of products of matrices
using (1.5) that will instruct us to contract together half-edges of a set of star diagrams
in all possible ways. Doing so, (1.15) can be written as a sum over fat-graphs and using
Euler relation, we have:

eZN({gi}) = ∑
V1,...,Vi ,...

∏
i

(Ngi)
Vi

iVi Vi!

〈

∏
i

(TrMi)Vi

〉

(1.16)

= ∑
G

1

|Aut(G)| ∏
i

g
Vi(G)
i N2−2h(G) . (1.17)
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Note that summing over Wick contractions produces labelled graphs, but in (1.17)
we are left with a sum over unlabelled fat-graphs G weighted by 1/|Aut(G)|, where
|Aut(G)| is the order of the automorphism group of G, that is the discrete group of
symmetries of G (see A.2.2). The same happens in QFT where symmetric diagrams
does not cancel completely the factor 1/n! in the perturbative expansion of the expo-
nential of the interaction term.

The sum in (1.17) contains also disconnected graphs, and as usual we take the loga-
rithm to have the exponential generating function of connected fat-graphs. Further, we
can express it as a sum over topologies:

ZN({gi}) =
+∞

∑
h=0

N2−2hZh({gi}) (1.18)

where we call Zh the partition function of connected fat-graphs of fixed genus h. As
well as performing a power series expansion in terms of the couplings gi, we can re-
gard the diagrammatic expansion as a perturbation series in 1/N2, called the topological
expansion.

Dual fat-graphs give a polygonal tessellation of the Riemann surface in which are
embedded (see A.2.3 for the definition of duality). Consider the ensemble of triangula-
tions T and the partition function

ZN(g) = ∑
T

gA(T )

|Aut(T )|N2−2h(T ) . (1.19)

This is equal to (1.17) restricted to cubic graphs (gi = 0 if i 6= 3, g3 = g) if we identify
V(G) = A(T ), for T and G dual. Equation (1.19) is the partition function of pure gravity,
the model that describes the structure of the vacuum in 2D quantum gravity3

1.3 Multi-matrix integrals

Considering ensembles of more than one Hermitian matrix will give us the possibil-
ity of specifying decorations on graphs, that will be interpreted as statistical systems
defined on fluctuating lattices.

3 Indeed 2D quantum gravity is described formally as a sum over topologies of the path integral over
the metrics g of fixed topology:

ZQG =
+∞

∑
h=0

∫

Dg e−SE

The action SE is the Einstein action, that in 2 dimension is

SE = Λ

∫

S

dx2
√

|g| + N
4π

∫

S

dx2R = ΛA(S) + N (2 − 2h(S))

where Λ is the cosmological constant coupled to the area A(S) of the surface S, R is its scalar curvature
and N is the Newton constant. If we set g = e−Λ and N = e−N in (1.19), we recover the discrete version
of the functional integration over the metrics. [4]
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We now address our interest to generalization of (1.4) of the form

〈
f (M1, . . . , Mp)

〉
=

∫
f (M1, . . . , Mp) e−

N
2 ∑

p
a,b=1 TrMaQab MbDM1 · · · DMp

∫
e−

N
2 ∑

p
a,b=1 TrMaQab MbDM1 · · · DMp

(1.20)

where M1, . . . , Mp are p Hermitian matrices and Qab is a positive-definite quadratic
form. Following our derivation of (1.5) we introduce the source

Σ(S1, . . . , Sp) =
〈

e∑
p
a=1 TrSa Ma

〉

= e
1

2N ∑
p
a,b=1 TrSaQ−1

ab Sb (1.21)

and its derivatives in zero will yield the desired averages. The propagator is

〈
(Ma)ij(Mb)kl

〉
=

∂

∂(Sa)ji

∂

∂(Sb)lk
Σ(S1, . . . , Sp)

∣
∣
∣
∣
∣
Sa=0,Sb=0

=
1

N
δilδkj(Q−1)ab (1.22)

and Wick’s theorem for multi-matrix integrals will tell us to sum over possible pairings
weighting by (1.22). Different traces of matrices will then represent different types of
vertices (and labels a, b, . . . are attached to half-edges, or legs) and we now have the
freedom of forbidding the link between legs of type a and b by setting (Q−1)ab = 0.
This is a way to represent the partition function of statistical systems on fluctuating
lattices. We will now see how to construct a matrix integral for the partition function
of the O(n) loop-gas and Potts model on random lattices. In the O(n) loop-gas model
studied in this thesis it is sufficient to consider only the case in which Qab is a diagonal
matrix. More generally, a possible simplification comes from regarding the off-diagonal
part as bivalent interaction vertices.

1.3.1 O(n) loop-gas model on random lattices

The O(n) loop-gas model is described on a graph G, say on the honeycomb lattice, by

Z
O(n)
G =

∫

∏
i∈V(G)

dµ(~σi) eSG (1.23)

where the spherical measure dµ(~σi) is

dµ(~σi) =
2

Ωn
δ(~σi

2 − 1) dn
~σi , (1.24)

Ωn = 2πn/2

Γ(n/2)
. The model is specified by a logarithmic action,

SG = ∑
(i,j)∈E(G)

log(1 + nβ~σi · ~σj) (1.25)

so that (1.23) is

Z
O(n)
G (β) =

∫

∏
i∈V(G)

dµ(~σi) ∏
(i,j)∈E(G)

(1 + nβ~σi · ~σj) . (1.26)
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Expanding in terms of β we obtain a loop model. Since we are on a cubic graph,
integrating the terms coming from this expansion involves only the first three moments
of (1.24), 〈σa〉 = 0,

〈
σaσb

〉
= 1

n δab,
〈
σaσbσc

〉
= 0. Interpreting the term nβσa

i σa
j as a

marked edge with color a, the integration over the spherical measure forces to mark
edges with the same color and to have self-avoiding loops. Marked edges get a factor
β and the sum over colorings produces a topological factor n per loop:

Z
O(n)
G (β) = ∑

l∈L(G)

βE(l)nc(l) . (1.27)

L(G) is the set of possible configurations of self-avoiding loops on G, E(l) the number
of edges of G occupied by the loops and c(l) the number of loops. Now the model can
be formally extended to values of n not integer.

The random graph counterpart of (1.27) is easy to figure out, we just have to replace
the honeycomb lattice with its spatial fluctuations into cubic graphs of arbitrary genera
[25]:

Z
O(n)
N (g, β) = ∑

G

1

|Aut(G)| gA(G)N2−2h(G) ∑
l∈L(G)

βE(l)nc(l) (1.28)

where the first sum is over connected cubic graphs. We now want to write a multi-
matrix integral to reproduce this partition function. We introduce a matrix B that de-
scribes the fluctuations of the graphs and n matrices Ac, c = 1, . . . , n that generates
self-avoiding loops with n colors. This is done by considering two types of vertices
g
3 B3 and gBA2

c . The first type describes unoccupied vertices, while the second vertices
with two half-edges colored with colour c and a third not occupied. To reproduce self-
avoiding loops on cubic lattices we consider propagators that connect only matrices
with the same color and unoccupied half-edges only to unoccupied ones

〈
(Ac)ij(Ad)kl

〉
=

β

N
δilδjkδcd

〈
BijBkl

〉
=

1

N
δilδjk

〈
(Ac)ijBkl

〉
= 0

where we give an additional factor β for Ac propagators. These equations define the
quadratic form Qab, a, b = 1, . . . , n. As before, the sum over all possible colorings will
give the topological factor nc(l). For a typical configuration see figure 1.4.

The matrix integral that gives (1.28) from its Feynman expansion is:

Z
O(n)
N (g, β) = log

∫
DA1 . . .DAnDBe−NTrV(A1,...,An ,B)

∫
DA1 . . .DAnDBe−NTrV0(A1,...,An ,B)

(1.29)

V(A1, ..., An, B) =
1

2
B2 +

1

2β

n

∑
c=1

A2
c −

g

3
B3 − gB

n

∑
c=1

A2
c

V0(A1, ..., An, B) =
1

2
B2 +

1

2β

n

∑
c=1

A2
c .
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Figure 1.4: A configuration of self-avoiding loops on a random triangulated surface of
genus 1 in the O(n) loop-gas model on random lattices.

1.3.2 Potts model on random lattices

Another important model that can be easily defined on random graphs using the method
of this section, is the Potts model. Given a graph G, consider the spin variables σ,
maps from the set of vertices V(G) to Zq. We associate to an edge e = (v, v′) a factor
1 + veδσ(v),σ(v′), where we choose ve = eK − 1, corresponding to an energy of 0 if the
spins in the two endpoints of e are unequal and K if they are equal. The q-state Potts
model partition function on a graph G is

ZPotts
G (q, K) = ∑

σ:V(G)→Zq

∏
e∈E(G)

(

1 + veδσ(v),σ(v′)

)

. (1.30)

When we let the lattice fluctuate into arbitrary cubic graphs, the partition function of
the model becomes [26]:

ZPotts
N (g, K, q) = ∑

G

1

|Aut(G)| gA(G)N2−2h(G)ZPotts
G (q, K) . (1.31)

We want to construct a matrix model that generates all connected cubic graphs with
q different types of vertices, according to the values of the spin at each vertex. For
this purpose we introduce q Hermitian matrices M1, . . . , Mq. A vertex of type a, a =
1, . . . , q will be produced by a term g/3TrM3

a . Then we consider a Gaussian potential

∑
q
a,b=1 MaQab Mb such that the propagator between vertices of the same type is eK, and

between vertices of different type is 1. This is achieved by using an inverse quadratic
form (Q−1)ab = 1 + (eK − 1)δab, a, b = 1, . . . , q, that is easily inverted to give

Qab =
1

eK − 1

(

δab −
1

eK − 1 + q

)

. (1.32)

14



Then the partition function will be:

ZPotts
N (g, K, q) = log

∫
DM1 . . .DMqe−NTrV(M1,...,Mq)

∫
DM1 . . .DMqe−NTrV0(M1,...,Mq)

(1.33)

V(M1, ..., Mq) =
1

2

q

∑
a,b=1

Qab Ma Mb −
g

3

q

∑
a=1

M3
a (1.34)

V0(M1, ..., Mq) =
1

2

q

∑
a,b=1

Qab Ma Mb

with Qab as in (1.32). This matrix integral will reproduce through the Wick’s theorem
the sum over lattices with a q-color spin on their vertices (figure 1.5), and each graph
will receive an overall contribution NV−E+F = N2−2h as before, regardless of the value
of the spin. When q = 2 the model is the Ising model equivalent to the O(n = 1) model
above (by high-temperature expansion).

Figure 1.5: A configuration of the Potts model on random graphs. Edges colored in one
color weight ek, while edges that links vertices with different colors weight 1.

As a last remark we want to derive the matrix integral for the Fortuin-Kasteleyn
representation of the Potts model. Given a graph G = (V, E), expand the product over
e in (1.30) and let A ⊆ E be the set of edges for which veδσ(v),σ(v′) is not zero. Then the
color in each component of (V, A) is constant and if we sum over σ : V(G) → Zq, we
get the Fortuin-Kasteleyn expression of the partition function of the Potts model

ZFK
G (q, K) = ∑

A⊆E

qk(A) ∏
e∈A

ve (1.35)
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where k(A) is the number of connected components in the subgraph (V, A). Equation
(1.35) is related to the Tutte polynomial of the graph, as explained in section B.1.

The version of this model on random lattices is obtained as before by summing over
cubic connected graphs G the partition function (1.35):

ZFK
N (g, q, K) = ∑

G

1

|Aut(G)| gA(G)N2−2h(G)ZFK
G (q, K) . (1.36)

For integer values of q, the configurations of the Potts model in the Fortuin-Kasteleyn
representation can be produced by introducing the q + 1 Hermitian matrices Ma, a =
1, . . . , q and B. A potential that reproduces the sum over subgraphs in (1.35) with a
correct factor of q for every component and eK − 1 for propagators of edges pertaining
to the subgraph is:

VFK(M1, . . . , Mq, B) =
1

2
B2 +

1

2

1

eK − 1

q

∑
a=1

M2
a +

g

3

q

∑
a=1

(Ma + B)3 . (1.37)

Note that the interaction is such that also the components made of a single vertex,
produced by the term g/3 ∑

q
a=1 B3, receive a factor q.

Then the partition function (1.36) can be specified by the matrix integral

ZFK
N (g, q, K) = log

∫
DM1 . . .DMqDBe−NTrVFK(M1,...,Mq,B)

∫
DM1 . . .DMqDBe

−NTr
(

1
2 B2+ 1

2
1

eK−1
∑

q
a=1 M2

a

) . (1.38)

We can easily show that correctly (1.38) reduces to (1.33). Indeed if we perform the
change of variable Ma → Ma − B with Jacobian 1 the interaction for the fields B in
(1.37) becomes trivial and we are left with a Gaussian integral for B

VFK → 1

2

(

1 +
q

eK − 1

)




(

B − 1

eK + 1 + q

q

∑
a=1

Ma

)2

−
(

1

eK + 1 + q

q

∑
a=1

Ma

)2


 +

+
1

2

1

eK − 1

q

∑
a=1

M2
a +

g

3

q

∑
a=1

M3
a .

(1.39)

Performing the integral over B we have a matrix integral that corresponds exactly to
(1.33).
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Chapter 2

Solution of the O(n) loop-gas model
for n = 0,−2

In chapter 1 we have established the combinatorial connection between matrix integrals
and the sum over graphs and we showed how the integral (1.29) represents the O(n)
loop-gas model on cubic random lattices.

This model has received a lot of interest during the years [25, 27, 28, 18, 29, 30, 12]
thanks to its appealing geometrical interpretation and for its rich critical structure. We
are interested in the model with n = −2 and a quartic potential, since this is connected
with spanning forests on fluctuating lattices as we will show later. Before addressing
our attention to it, we present the solution of the O(0) loop-gas model for pedagogical
purposes.

We start by considering a partition function more general than (1.29):

Z
O(n)
N ({gi}, b0) = log

∫
DA1 . . .DAnDBe−NTrW(A1,...,An,B)

∫
DA1 . . .DAnDBe−NTrW0(A1,...,An ,B)

(2.1)

W(A1, ..., An, B) = V(B) +
1

2

n

∑
c=1

A2
c −

1

4b0
B

n

∑
c=1

A2
c

W0(A1, ..., An, B) =
1

2
B2 +

1

2

n

∑
c=1

A2
c .

Here we admit higher powers of B in the action to allow for arbitrary unoccupied ver-
tices and we have defined the coupling that counts the number of occupied vertices
1/4b0. Note that if we consider V(B) = 1

2 B2 in (2.1), this corresponds to loops densely
packed onto cubic graphs. Instead a quartic potential with weights g1 for cubic ver-
tices and g2 for quartic vertices, makes the problem equivalent to the counting of self-
avoiding loops and dimers configurations on a cubic lattice. This is because a quartic
vertex can be viewed as obtained by shrinking a dimer on a cubic graph to a single ver-
tex. If we give a weight ξ to dimers, then the term in the potential of a matrix integral
that produces dimers on cubic lattices is of the form 1/2D2 −√

ξg1DB2. Performing
Gaussian integration we are left with a quartic term g2

1ξ/2B4.
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To deal with the computation of this matrix integral, we first perform a change of
variables that takes the matrix B to its diagonal form and is unitary on the matrices Ac

B −→ UDU−1, Ac −→ UAcU
−1 (2.2)

where U is a unitary matrix and D = diag(b1, . . . , bN). TrW in (2.1) becomes:

TrW −→
N

∑
i=1

V(bi) +
1

2

n

∑
c=1

N

∑
ijkl=1

(Ac)ijδilδkj

(

1 − 1

4b0
(bi + bj)

)

(Ac)kl . (2.3)

From the invariance of the measure of the matrices Ac under a unitary transformation,
the Jacobian of the transformation depends only on B and in particular on its eigenval-
ues. To see this, we compute the square of the line element and read the Jacobian as
the square root of the metric tensor. Call Ωij the skew symmetric matrix (U−1 dU)ij, we
have:

Tr( dB)2 = Tr
(

U( dD + [Ω, D])U−1
)2

. (2.4)

The matrix L = dD + [Ω, D] has diagonal entries Lii = dbi and off diagonal entries
Lij = (bi − bj)(bj − bi)ΩijΩji. Therefore we have

Tr( dB)2 = TrL2 =
N

∑
i,j=1

LijLji = ∑
k

( dbk)
2 + ∑

i 6=j

(bi − bj)
2|dΩij| . (2.5)

The determinant of the metric tensor is then g = ∏i 6=j(bi − bj)
2 and we get that the Jaco-

bian is ∏i<j(bi − bj)
2 = ∆2({bi}), which is the square of the Vandermonde determinant

∆({bi}) = det(b
j−1
i ), i, j = 1, . . . , N. Further, the “angular” integral over the U matrices

factorizes in (2.1) and can be simplified.
We finally note that the integral over the Ac matrices is Gaussian1 and can be imme-

diately performed. Then (2.1) takes the form

Z
O(n)
N ({gi}, b0) = log

∫

∏
N
i=1 dbi∆

2({bi}) ∏ij

(

1 − 1
4b0

(bi + bj)
)−n/2

e−N ∑i V(bi)

∫

∏
N
i=1 dbi∆

2({bi})e−N/2 ∑i b2
i

. (2.6)

We are left with a matrix integral over only the eigenvalues of a single Hermitian ma-
trix.

2.1 Saddle point equation

We now compute (2.6) in the “planar” (large N) limit, applying the saddle point tech-
nique introduced by Brezin et al. in [2]. To do this we first write the partition function

1 To make positive definite the Gaussian integration, from (2.3) we get that the eigenvalues bi have to
satisfy 1 − 1

4b0
(bi + bj) > 0.
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in the form

Z
O(n)
N ({gi}, b0) = log

∫

∏
N
i=1 dbie

−N2S

∫

∏
N
i=1 dbie−N2S0

(2.7)

S =
1

N ∑
i

V(bi) −
1

N2 ∑
i 6=j

log |bi − bj| +
n

2N2 ∑
ij

log |4b0 − bi − bj|

S0 =
1

2N ∑
i

b2
i −

1

N2 ∑
i 6=j

log |bi − bj| .

Then the saddle point method states that as N → ∞ the integral can be approximated
by evaluating the integrand in the stationary point of the action. The method is appli-
cable since the explicit powers of N present in (2.7) appears together with a sum over
N terms. Note that if we had applied this method before going to eigenvalues, the sta-
tionary matrix B0, V ′(B0) = 0, would not be the dominant term. Indeed all the N2 − N
points related to B0 by the unitary transformation B = UB0U−1 are stationary and they

contribute as eN2
, so not being sub-dominant.

In the form of equation (2.7) the problem is analogous to a unidimensional gas of
eigenvalues. The equilibrium point is shifted from the minimum of the bulk potential
V by the Vandermonde determinant which acts as a two-body Coulomb repulsion and
by the additional two-body potential proportional to n that, depending on the sign of
n, attracts or repels the particles to their mirror coordinates with respect to the origin.
The saddle point equation is

∂S

∂bi
= 0 =

1

N
V ′(bi) −

2

N2 ∑
j

j 6=i

1

bi − bj
− n

N2 ∑
j

1

4b0 − bi − bj
. (2.8)

To solve equation (2.8) for large N, we introduce the spectral density of eigenvalues

ρ(y) =
1

N ∑
i

δ(y − bi) (2.9)

which is positive, ρ(y) ≥ 0, and normalized

∫

ρ(y) dy = 1 . (2.10)

In the limit N → ∞ the distribution of eigenvalues becomes continuous and the saddle
point equation (2.8) can now be rewritten as an integral equation for the density:

∫

dyρ(y)

(

P
1

x − y
+

n

2

1

4b0 − x − y

)

=
1

2
V ′(x) (2.11)

where P denotes the Cauchy principal value.
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2.2 The O(0) loop-gas model, i.e. the one-matrix model

Setting n = 0 in (2.6) leaves us with a one-matrix model

Z1M
N ({gi}) = log

∫

∏
N
i=1 dbi∆

2({bi})e−N ∑i V(bi)

∫

∏
N
i=1 dbi∆

2({bi})e−N/2 ∑i b2
i

(2.12)

and the saddle point equation is

P
∫

dyρ(y)
1

x − y
=

1

2
V ′(x) . (2.13)

Following [13], to solve this model it is convenient to introduce the discrete resol-
vent

ωN(x) =
1

N

N

∑
i=1

1

x − bi
, (2.14)

where bi are the values that makes the action stationary when n = 0. If we rewrite
equation (2.8) with n = 0 as:

1

N ∑
i

V ′(bi) − V ′(x) + V ′(x)

x − bi
=

1

N2 ∑
i 6=j

1

bi − bj

(
1

x − bi
− 1

x − bj

)

(2.15)

under the assumption that ωN tends in the limit N → ∞ to a differentiable function,
the resolvent ω(x), (2.15) becomes a quadratic equation for ω:

ω(x)2 − ω(x)V ′(x) + P(x) = 0 (2.16)

whose solution is

ω(z) =
1

2

(

V ′(z) −
√

V ′(z)2 − 4P(z)

)

. (2.17)

P(x) is an unknown polynomial of degree k − 2, given that V has degree k.
ω(x) is the Hilbert transform of the spectral density

ω(x) =
∫

dy
ρ(y)

x − y
=

∞

∑
k=0

1

xk+1

∫

dyρ(y)yk (2.18)

and can be defined analytic in the whole complex plane except a cut located on the
support of ρ. Equation (2.18) can be inverted into a discontinuity equation for ω by
means of the Sokhotsky-Weierstrass formula P 1/x ± iπδ(x) = 1/(x ∓ i0) :

ρ(x) =
1

2πi
(ω(x − i0) − ω(x + i0)), x ∈ supp(ρ) . (2.19)

Equation (2.18) determines the resolvent in terms of the moments of ρ and this can
be used to fix the coefficients of P(x) and determine ω(x) from (2.17).

20



In particular the resolvent must behave as ω(x) ∼ 1/x for large x. In the simplest
case the support of ρ is a connected subset of the real axis [a, b] (one-cut assumption),
so ω(x) has two branch points and V ′(x)2 − 4P(x) has k − 2 double roots. This is all we
need to determine P(x) and then ω(x). Knowing ω or ρ, entirely solves the problem in
the planar limit. The averages of TrBn will be given by the moments of ρ

1

N
〈TrBn〉 ∼

∫

dyρ(y)yn (2.20)

and the partition function in the large N limit Z1M ∼ Z1M
N /N2 will be:

Z1M ∼ −S + S0 = −
∫

dyρ(y)V(y) +
∫

dy dxρ(y)ρ(x) log |y − x| +

+
∫

dyρ0(y)V(y)−
∫

dy dxρ0(y)ρ0(x) log |y − x| (2.21)

where ρ0 is the density in the Gaussian case.

2.2.1 Wigner semicircle law and quartic potential

Here we apply the method developed above to the case of a Gaussian potential. This
case is trivial:

ω0(x) =
1

2

(

x −
√

x2 − 4
)

(2.22)

and we note that ω0 has the appropriate large x behaviour. From (2.19) we obtain the
celebrated Wigner semicircle law that describes the density of eigenvalues in the Gaus-
sian unitary ensemble

ρ0(x) =
1

2π

√

4 − x2 . (2.23)

Note that as x approaches the ends of the cut, the density has a square root edge. Fur-
ther, 1/N 〈TrBn〉 corresponds to the n-th moment of the eigenvalue density and coin-
cides with our previous result (1.14). Accordingly x−1 ω0(x−1) is the generating func-
tion of Catalan numbers (of argument x2).

Consider the quartic case V(x) = 1
2 x2 − g

4 x4. Under the one-cut assumption, the
support of ρ will be [−a, a] and:

ω(x) =
1

2

(

x − gx3 − (c1 + c2x2)
√

x2 − a2
)

. (2.24)

Imposing ω(x) ∼ 1/x fixes the unknowns c1, c2 and the support of ρ. We end with:

ω(x) =
1

2

(

x − gx3 −
(

1 − ga2

2
− gx2

)
√

x2 − a2

)

(2.25)

ρ(x) =
1

2π

(

1 − ga2

2
− gx2

)
√

a2 − x2 (2.26)

a2 = 2
1 −

√
1 − 12g

3g
. (2.27)
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The partition function can be calculated from (2.21) and the result is:

Z(g) =
1

2
log

a2

4
+

1

384
(a2 − 4)(a2 − 36)

=
+∞

∑
n=1

(2n − 1)!12n

(n + 2)!

(g/4)n

n!
. (2.28)

Equation (2.28) is an expansion over 4-valent graphs weighted by the inverse of the
order of their automorphism, as shown in figure 2.1. In the language of quantum field
theory (2.28) counts the vacuum planar bubbles in the theory φ4 with coupling g/4.

Z(g) = g +g2 + . . .

1
2

1
2

1
2

1
8

Figure 2.1: The terms in the expansion (2.28) up to n = 2. Under every graph there is
its weight.

The partition function has an analytic continuation from g < 0 to g > 0 and the
critical point is located at gc = 1/12, where there is a square root branch point and the
regime 0 < g < gc makes sense only in the large N limit. The analiticity near the origin
means that the original path integral (2.12) has been drastically cut up when N → ∞.
When g → gc, ρ(x) ∼ (x − a)3/2 and the density has no more a square root edge. This
is due to the fact that, in this class of models, at criticality a zero of the singular part of
ω(x) coalesces with an end point of the cut.

2.2.2 The continuum limit

The critical behaviour of the partition function in the large N limit Z(g) = ∑n Zngn is
related to the asymptotic of the coefficients of its power series, Zn, giving an estimate
for the number of planar fat-graphs. Indeed, call 1 − g/gc = t and suppose that the
behaviour of the partition function is described by the critical exponent γ called the
string susceptibility exponent:

Z(g) ∼ t2−γ , for g ր gc . (2.29)

This dependence gives the asymptotic

Zn ∼ g−n
c n−3+γ (2.30)
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since if we sum Zn over n, and approximate the summand with this large-n behaviour,
we obtain (2.29).

For the quartic model solved above, the expansion of (2.28) near gc yields γ = −1/2,
that is the critical exponent of pure gravity.

If instead we consider more general potentials V(x) of a one matrix model, fine tun-
ings of the coupling constants can change the value of γ. The crucial fact in obtaining
γ = −1/2 for the quartic model was that at g = gc, a zero of the singular part of the
resolvent coincided with an end of the cut. If we now adjust the parameters of V(x) in
order that the singular part of the resolvent behaves as w(x) ∼ (x − a)m−1/2, it can be
shown that we have γ = −1/m (see for example [5]). This new critical point is called
m-th multicritical point.

2.3 The O(−2) loop-gas model

For solving the O(−2) loop-gas model, we will mainly follow the approach of Kostov
and Staudacher [18], considering the specific case of a fourth-degree potential:

V(x) =
4

∑
k=2

gk−2

k
xk , g0 = 1 . (2.31)

We will present an explicit solution of the integral equation and an analysis of the sin-
gularities.

2.3.1 Eigenvalue density

Set n = −2 in (2.11). If we call [a, b] the support of ρ, the saddle point equation is

∫ b

a
dyρ(y)

(

P
1

x − y
− 1

4b0 − x − y

)

=
1

2

3

∑
k=1

gk−1xk (2.32)

From now on, the principal value is understood. It is convenient to perform the change
of variables λ′ = 1

2 (2b0 − x), µ′ = 1
2 (2b0 − y)

∫ b′

a′
dµ′ρ(y(µ′))

(
1

λ′ − µ′ +
1

µ′ + λ′

)

=
1

2

3

∑
k=1

gk−1(−2)k(λ′ − b0)
k (2.33)

and redefine 2ρ(y) → ρ(µ′) and (−2)kgk → gk to obtain

∫ b′

a′
dµ′ρ(µ′)

λ′

µ′2 − λ′2 =
3

∑
k=1

gk−1(λ′ − b0)
k . (2.34)

If we then perform another change of variables λ′ =
√

A + Bλ, µ′ =
√

A + Bµ where
A = (a′2 + b′2)/2 and B = (a′2 − b′2)/2, we obtain the simplified form

∫ 1

−1

dµ ρ(µ)
√

A + Bµ

1

λ − µ
= 2

3

∑
k=1

gk−1√
A + Bλ

(√
A + Bλ − b0

)k
. (2.35)
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Using results from the theory of singular integral equations [31], equation (2.35) can be
inverted and we have the explicit expression of the eigenvalues density of the O(−2)
loop-gas model

ρ(λ) = − 2

π

√
A + Bλ

√

1 − λ2

∫ 1

−1
dµ

1

λ − µ

1
√

1 − µ2

3

∑
k=1

gk−1
√

A + Bµ

(√

A + Bµ − b0

)k
.

(2.36)
The normalization conditions is

B

2

∫ 1

−1
dµ

ρ(µ)
√

A + Bµ
= 1 (2.37)

and positivity is assured by:

∫ 1

−1
dµ

1
√

1 − µ2

3

∑
k=1

gk−1
√

A + Bµ

(√

A + Bµ − b0

)k
= 0 . (2.38)

(2.37) and (2.38) gives a′ and b′, the extrema of the support of ρ, in terms of the couplings
and fully determine the solutions of the model.

2.3.2 Singularity structure

We now study the singularity structure by first showing some general results regarding
the critical exponents of the O(n) loop-gas model. The structure now is richer than
the one studied for the the one-matrix model in section 2.2. If we go back to (2.11)
we see that in addition to the criticality coming from the divergence of the volume
of the graph, a non-zero n poses the new singularity condition b′ = 0. In this case
the term proportional to n in the saddle point equation diverges and this affects the
distribution of the eigenvalues near 0 (cf. to equation (2.33)). This kind of singularity
sets the critical value of the coupling b0 to b∗0 = b/2, and corresponds to diverging
length of the loops on the random graphs. Supposing that ρ(λ′) ∼ λ′θ as λ′ → 0 and
with the parametrization n = 2 cos(πν), 0 ≤ ν ≤ 1, one can show [30] that the string
susceptibility exponent is

γ =
−2ν

θ + 1 − ν
. (2.39)

Note that when n = 0, that is ν = 1/2, we recover the m-th multicritical point of a
one-matrix model for θ = m − 1/2 with γ = −1/m. If we then restrict to the case of
interest ν = 1, we have γ = −2/θ.

Before setting b′ = 0 in (2.36), we rewrite ρ in a form more convenient to identify
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the critical points:

ρ(λ) =
2

π

√

1 − λ2 r1

√
A + Bλ − 2

π2

√

1 − λ2 t0

√
A + Bλ ·

·
∫ 1

−1
dµ

1

λ − µ

1
√

1 − µ2

1
√

A + Bµ
+

− 2

π2

√

1 − λ2 t2

√
A + Bλ

∫ 1

−1
dµ

1

λ − µ

√
A + Bµ

√

1 − µ2
(2.40)

where r1, t0 and t2 are functions of the couplings:







r1 = Bg2

t0 = −b0 + b2
0g1 − b3

0g2

t2 = g1 − 3b0g2

. (2.41)

The remaining integrals in (2.40) can be expressed as complete elliptic integrals of the
third kind, but if we set b′ = 0 those integrals become simple, since A = B = a′2/2.
We note that the integral multiplying t0 tends to infinity as b′ → 0 and this gives the
condition t0 = 0.

At criticality the density of eigenvalues ρc(λ′) = ρ(λ′)|b′=0 becomes:

ρc(λ′) =
4

πa′2
√

a′2 − λ′2 r1λ′2 − 4

π2
t2λ′2 log

λ′

a′ +
√

a′2 − λ′2 . (2.42)

We note that if the potential were even, we would not have a logarithmic piece in
the density. To understand this, consider the partition function of the O(−2) loop-gas
model (2.6) with n = −2 and perform the change of variables bi → 2b0 − λi to have

Z
O(−2)
N ({gi}, b0) =

1

N2
log

∫

∏
N
i=1 dλi ∏i<j(λi − λj)

2 ∏i,j(λi + λj) e−N ∑i V(2b0−λi)

∫

∏
N
i=1 dλi∆

2({λi}) e−N/2 ∑i λ2
i

=
1

N2
log

∫

∏
N
i=1 dλi 2λi ∏i<j(λ2

i − λ2
j )

2 e−N ∑i V(2b0−λi)

∫

∏
N
i=1 dλi∆

2({λi}) e−N/2 ∑i λ2
i

.

If we now change again variables to xi = λ2
i , we obtain a one-matrix model with a

potential not polynomial, function of the square root of the matrix (note that dxi =
dλi 2λi). Then, with an even potential the problem is exactly a one-matrix model in
the variables xi. The critical exponent m − 1/2 of the eigenvalue density ρ̃(x) derived
from this matrix model, translates into an exponent 2m for the original problem, since
ρ(λ) = 2λρ̃(λ2). Because our potential is not even, we have in addition a singular
behaviour of the kind λ′2m log λ′.

From (2.42) we also find the critical exponent of the density of eigenvalues θ = 2.
This corresponds to γ = −1.

We now want to find the critical points. There are two kinds of critical points that
correspond to a behaviour ρ(λ′) ∼ λ′2.
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1. The potential is cubic2 and the critical points are obtained by setting g2 = 0 in
addition to t0 = 0.

2. The potential is quartic and the couplings are tuned to reach t2 = 0, t0 = 0.

Imposing the first conditions sets g1 = 1/b0 and the density contains a logarithmic
term. The positivity and normalization conditions are respectively 2a′ = b0π and a′3 =
3b0π. Remembering that at the beginning of this section we redefined the couplings,
we find at criticality for the cubic potential:

b∗0 =
2
√

6

π
g1 = − π

4
√

6
g2 = 0 . (2.43)

In the second case imposing t2 = t0 = 0 gives g2 = 1/2b0 and g1 = 3/2b0. The density
does not have a logarithmic piece along a line in coupling space where the previous con-
ditions are satisfied and is ρ(λ′) = 1/(πb2

0)λ′√(a′2 − λ′2)(λ′2 − b′2). Positivity gives
a′2 = 2b2

0 and normalization a′4 = 16b2
0. Then the critical couplings in this case are

b∗0 = 2 g1 = −3

8
g2 =

1

32
, (2.44)

giving positive weights for the cubic vertices and negative for the quartic vertices.
Finally we mention that if we had considered a more general potential with higher

degree, we could have encountered multicritical phases for the O(−2) loop-gas model
corresponding to higher values of θ, that are organized in the phase diagram of the
O(n) model on random lattices as explained in [18].

2This is the original problem studied by Kostov in [25]
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Chapter 3

Counting unicellular maps

In chapter 1, we showed how integrals over Hermitian matrices are connected with
the enumeration of fat-graphs. Now we want to make precise statements about the
counting of unicellular (one face) maps. Having seen that a statistical model on random
lattices is defined by summing over arbitrary graphs its partition function on fixed
graph, we understand the importance of map enumeration in statistical mechanics and
the interplay between combinatorial methods and solutions of random matrix models.
In this spirit, the results presented here will be the core of the solution of the spanning
trees model on lattices of arbitrary genus presented in chapter 6.

The problem of map enumeration is important in the mathematical literature and
has been addressed by several authors. The first result in the enumeration of unicellu-
lar maps in positive genus was obtained by Lehman and Walsh [19], and later extended
by Goupil and Schaeffer [20]. We will discuss those results in section 3.2. Another
approach has been pursued by Harer and Zagier [11], via matrix integrals techniques.
They obtained a formula known as the Harer-Zagier theorem, that we will present in
section 3.1. This result has been retrieved later by several authors, by various tech-
niques. A combinatorial interpretation was given by Lass [32], and the first bijective
proof was given by Goulden and Nica [33].

3.1 An exponential generating function from matrix integrals

We first recall the combinatorial interpretation of the Gaussian average of TrMn. For
convenience we will remove the factor N in the Gaussian weight. Setting

Z0 = (2π)N/22(N−N2)/2 ,

the quantity Tn(N) defined by

Tn(N) =
1

Z0

∫

DMe−
1
2 TrM2

TrM2n (3.1)
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for n = 1, 2, . . . , is a polynomial in N where the coefficient of the term1 Nn+1−2h is
the number ǫh(n) of one-vertex maps of genus h and n edges, or considering the dual
graph, of unicellular maps of genus h and n edges. In the language of dual graphs
we will talk about gluings of the sides of a 2n-gon, dual to the contractions of the 2n
half-edges of a star diagram. Refer to section A.2.3 for the definition of duality and an
example of the dual of a one-vertex map.

Tn(N) can be written as

Tn(N) =
∞

∑
h=0

ǫh(n)Nn+1−2h (3.2)

and ǫh(n) = 0 for h > ⌊n/2⌋.
Our task is to compute the numbers ǫh(n). We already know their values in the case

h = 0, since they are the number of planar contractions of a star diagram with 2n half-
edges, and according to our result (1.14) they are the Catalan numbers Cn = 1

n+1 (2n
n ).

Then we know that Tn(1) = ∑h ǫh(n) = (2n− 1)!!, since it is the number of contractions
of 2n half-edges, regardless the planarity.

Following [11, 34] we derive an expression for the exponential generating function
for the sequence of polynomials Tn(N). The derivation proceeds in two steps. Define
t(n, N) as

t(n, N) =
Tn(N)

(2n − 1)!!
. (3.3)

The first step is demonstrating that this ratio is a polynomial in n. If we go to the
eigenvalues coordinates in (3.1), and call the measure of the unitary matrices cN , we
have

Tn(N) = cN

∫

∏
i

dλi ∏
i<j

(λi − λj)
2e−1/2 ∑i λ2

i ∑
i

λ2n
i . (3.4)

Since the integral is symmetric under permutations of the eigenvalue labels, we can
substitute ∑i λ2n

i with Nλ2n
1 . Then we expand the square of the Vandermonde determi-

nant and integrate on all λi except λ1. The resulting integrand is the Gaussian weight

e−1/2λ2
1 times a polynomial in λ1 of degree 2n + 2N − 2. In this way Tn(N) is a sum of

integrals of monomials λ2n−2k
1 whose value is (2n + 2k − 1)!! and t(n, N) will be a sum

of terms of the form (2n + 2k − 1)!!/(2n − 1)!!, each being a polynomial in n of degree
k. Then t(n, N) is a polynomial in n of degree N − 1.

The next step in obtaining the expression for the generating function is purely com-
binatorial. Consider a coloring of the vertices of a graph obtained by gluing a 2n-gon.
The vertices of the polygon glued will be consequently colored and this gluing will
agree with this coloring, that is, vertices of the same color are glued together. Since

1 Since we are omitting N in the exponential with respect to what we did in section 1.1, propagators will

not receive anymore a factor N. Then a general one-vertex graph G will have a weight NF(G) = NV(G∗),
that can be expressed in term of genus and number of edges with the Euler formula. G∗ is the dual
unicellular graph.
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there are NV ways to color the vertices of the graph with N colors, Tn(N) can be re-
garded as the number of gluings of the 2n-gon that agree with possible colorings of the
vertices in no more than N colors. Then call T̃n(L) the set of gluings of the 2n-gon that
agree with the colorings of its vertices in precisely L colors. We have:

Tn(N) =
N

∑
L=1

(
N

L

)

T̃n(L) . (3.5)

The function

t̃(n, N) =
T̃n(N)

(2n − 1)!!
(3.6)

is a polynomial in n of degree N − 1 according to our previous matrix integral result.
We know N − 1 roots of this polynomial, because T̃0(N) = T̃1(N) = · · · = T̃N−2(N) = 0
since a graph with n edges has at most n + 1 vertices. Therefore we could write t̃(n, N)
as

t̃(n, N) = ANn(n − 1) · · · (n − N + 2) (3.7)

where the factor AN depends only on N. If we substitute this expression in formula
(3.5), we have

Tn(N) = (2n − 1)!!
N

∑
L=1

AL

(
n

L − 1

)(
N

L

)

(L − 1)! . (3.8)

AL can be fixed by equating the coefficient of Nn+1, (2n − 1)!!An+1n!/(n + 1)!, to the
Catalan number Cn. It follows that An+1 = 2n/n! and

Tn(N) = (2n − 1)!!
N

∑
L=1

2L−1

(
n

L − 1

)(
N

L

)

. (3.9)

Then the exponential generating function T(N, s) for Tn(N) is

T(N, s) = 1 + 2s
∞

∑
n=0

Tn(N)

(2n − 1)!!
sn , (3.10)

where we used T0(N) = N. Since the binomial ( n
L−1) vanishes if n < L − 1, we obtain

the Harer-Zagier theorem:

T(N, s) = 1 +
N

∑
L=1

2L

(
N

L

)
∞

∑
n=L−1

(
n

L − 1

)

sn+1 =
N

∑
L=0

(
N

L

) (
2s

1 − s

)L

=

(
1 + s

1 − s

)N

,

(3.11)
that can be written as

1 + 2
∞

∑
n=0

t(n, N)sn+1 =

(
1 + s

1 − s

)N

. (3.12)

In this form the computation of the number of unicellular maps is not evident and we
want to go further and obtain a more explicit formula for the numbers ǫh(n).
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Our task now is to extract the coefficient of sn+1 in the l.h.s of equation (3.12). To
do this is convenient to first differentiate (3.12) and expand the right member in power
series around s = 0 to have

(n + 1)t(n, N) =
N

2πi

∮
ds

sn+1

1

1 − s2

(
1 + s

1 − s

)N

. (3.13)

Now indeed we can perform the change of variables s = tanh t
2 since the Jacobian of

this transformation has been produced by deriving:

(n + 1)t(n, N) =
N

2πi

∮
dt

2

(

1

tanh t
2

)n+1

etN

=
N

2
Res





(

1

tanh t
2

)n+1

etN , 0



 = 2nN [tn]



etN

(

t/2

tanh t
2

)n+1




= 2nN
n

∑
r=0

Nr

r!
[tn−r]





(

t/2

tanh t
2

)n+1


 (3.14)

where we used the notation [zn] f (z) for the operation of extracting the coefficient of zn

in the power series f (z) = ∑n fnzn. The function t/(2 tanh t
2) is even and n − r is zero

unless is an even number, say n − r = 2h. Finally we have:

Tn(N) =
(2n)!

(n + 1)!

⌊n/2⌋
∑
h=0

Nn+1−2h

(n − 2h)!
[t2h]





(

t/2

tanh t
2

)n+1


 (3.15)

and from equation (3.2) we get an expression for the numbers ǫh(n) as a corollary of the
Harer-Zagier theorem:

ǫh(n) =
(2n)!

(n + 1)!(n − 2h)!
[t2h]





(

t/2

tanh t
2

)n+1


 . (3.16)

Remark that in this expression we don’t have anymore dependence on N as was in
(3.12), and we have obtained a formula for computing directly ǫh(n). In table 3.1 we
list the values of ǫh(n) for 1 ≤ n ≤ 8 and 0 ≤ h ≤ 4. Note that correctly the sum of the
values in the n-th line is (2n − 1)!!, and ǫ0(n) = Cn.

3.2 More facts about counting unicellular maps

In this section we will present the formula of Goupil and Schaeffer [20] for counting uni-
cellular bicolored maps and its monochromatic version obtained by Walsh and Lehman
several years before. We will not go into the details of the quite long derivations and
just state the results needed for the analysis of chapter 6.
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n\h 0 1 2 3 4

1 1 0 0 0 0

2 2 1 0 0 0

3 5 10 0 0 0

4 14 70 21 0 0

5 42 420 483 0 0

6 132 2310 6468 1485 0

7 429 12012 66066 56628 0

8 1430 60060 570570 1169740 225225

Table 3.1: Values of ǫh(n) for 1 ≤ n ≤ 8 and 0 ≤ h ≤ 4.

We start with some definitions. A partition λ = (λ1, . . . , λk) is a non-increasing finite
sequence of positive integers λi called parts such that λ1 ≥ λ2 ≥ · · · ≥ λk > 0. The
number of parts is the length L(λ) = k and if αi parts of λ are equal to i, we will use
the frequency representation λ = 1α1 · · · nαn . The sum ∑

k
i=1 λi = n is the weight and

in this case λ is said to be a partition of n, and we will write λ ⊢ n. A partition can
be represented by a Ferrers’ diagram, composed of rows positioned on top of each other
from the shorter to the longer where if we start counting from top, in the i-th row there
are λi elements. The total number of elements is the weight of the partition. For an
example see figure 3.1.

λ =

Figure 3.1: A representation of the partition λ = (4, 3, 2, 1, 1) of 11 by its Ferrers’ dia-
gram.

A composition p = (i1, . . . , il) of n is a finite sequence of non-negative integers sum-
ming up to n and we will denote it by p ² n.

A bicolored map has a vertex set composed by two subsets corresponding to black
or white vertices and each edge connects a black vertex to a white one. When not
specified, by maps we will intend monochromatic maps, with only one type of vertices.
Consider a bicolored unicellular map of genus h with n edges and the degree of the
two types of vertices given respectively by the two partitions of n, λ = 1α1 . . . nαn and
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µ = 1β1 . . . nβn . The number of such maps according to Goupil and Schaeffer is2:

cn
λµ =

n

∏i αi!iαi ∏i βi!iβi 22h ∑
h1+h2=h

(l + 2h1 − 1)!(m + 2h2 − 1)!·

· ∑
(i1,...,il)²h1

(j1,...,jm)²h2

∏
k

(
λk

2ik + 1

)

∏
k

(
µk

2jk + 1

)

. (3.17)

L(λ) = l and L(µ) = m are the parts of λ and µ, which satisfy the formula l + m =
n + 1 − 2h. The sets of ik and jk are compositions of the integers h1 and h2.

The monochromatic version of this formula can be obtained by giving coordination
2 to one type of vertices. Taken as weight for the partitions 2n, we set λ = 2n. Then
every ik in (3.17) is equal to 0, otherwise the binomial coefficient is zero, and we have
that the number of monochromatic maps with one face and n edges is

c2n
2n,µ =

2n(n − 1)!

∏i βi!iβi 22h ∑
(i1,...,im)²h

∏
k

(
µk

2ik + 1

)

. (3.18)

Here the length of µ is the number of vertices of the map, or returning to the dual one-
vertex graph, is its number of faces and µ gives the number of sides of every face. As
a first non-trivial example, and also for later purposes, we consider the case of triangu-
lations, i.e. fixing all µ equal to 3, to have faces with three sides in the one-vertex map.
(An example of a one-vertex triangulation of the torus together with its dual map can
be found in section A.2.3, figure A.5). The number of edges in a triangulation of a sur-
face of genus h, h ≥ 1, is 6h − 3 and by Euler formula we get the number of triangles,
4h − 2. We have thus a simple formula, coherent with the one derived in [35] with a
different approach:

∑
T ∈ T

1

|Aut(T)| =
c12h−6

34h−2 , 26h−3

12h− 6

=
2

12h

(6h− 5)!

h!(3h− 3)!
(3.19)

where T is the set of one-vertex triangulations of a genus h surface.
We checked with a direct computation the result (3.19) for n less than 7. This check

was done with a Hermitian matrix model. Consider the following average

Fh(N) =
1

Z0

∫

DMe−
1
2 M2 (TrM3)4h−2

34h−2(4h− 2)!
. (3.20)

2 This is a rather complicated and powerful formula and the authors derived it in the context of char-
acter theory and group algebra of the symmetric group. In this framework called Cλ and Cµ two con-
jugacy classes of the symmetric group, (3.17) counts the number of pairs of permutation of n elements
(σ, τ) ∈ Cλ × Cµ, such that στ = (1, 2, . . . , n).
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Using Wick’s theorem we produce the ensemble of cubic graphs with 4h − 2 vertices.
Fh(N) is a polynomial in N and its coefficients can be obtained by calculating explic-
itly the matrix integral for the first N and solving a linear system for the coefficients.
Then, expanding the logarithm of F = ∑k Fk(N)xk and matching the expansion of
f = ∑k fk(N)xk gives fk(N), that is the polynomial that counts only connected graphs.
The coefficient of the monomial N in fh(N) is the sum over one-vertex triangulations
of a genus h surface weighted by the inverse of their automorphism group. The values
obtained with this method were in agreement with (3.19).

Now we can make contact with the results obtained in section 3.1, and if we sum
(3.18) over all the possible partitions µ ⊢ 2n with fixed length m = n + 1 − 2h, we
obtain a more tractable expression for ǫh(n). The result is:

ǫh(n) =
1

22h

(2n)!

n!(n + 1)! ∑
γ ⊢h

(n + 1) · · · (n + 2 − 2h− L(γ))

∏i ci!(2i + 1)ci
. (3.21)

As before γ = ∏i ici is a partition of h and L(γ) is the number of parts. We correctly
have ǫ0(n) = Cn. (3.21) coincides with the formula of Walsh and Lehman obtained
many years before (also before the work of Harer and Zagier) by means of a direct
recursive method, relying on multivariate recurrence equations [19].

The asymptotic in n of (3.21) can be easily derived using Stirling formula. If we fix
h and consider the limit of large n, only Ferrers’ diagrams with every row made of one
element contributes. So, in the large volume limit, ǫh(n) becomes:

ǫh(n) ∼ n3(h−1/2)4n

√
π h!12h

. (3.22)
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Chapter 4

Random matrix approach to
spanning forests on random lattices

In this chapter we will discuss the spanning forests model on random lattices in con-
nection with the Potts and O(n) models and the results obtained on flat lattices. Then,
we will follow the procedure outlined by Caracciolo and Sportiello in [21] to derive
a matrix integral for spanning forests. Lastly we will present the contribution to this
problem we did in this thesis, that is solving this integral thanks to its equivalence with
the O(−2) loop-gas model discussed in section 2.3, and interpret the results.

4.1 General background and motivations

A statistical system observed in the thermodynamic limit can exhibit critical points
where some thermodynamic quantities diverge. At criticality the Hamiltonian of the
system flows to a scale invariant fixed point since the correlation length becomes infi-
nite and every local scale becomes negligible. Then, when we reach a critical point, the
critical exponents become universal, they do not depend on the short-scale character-
istics of the model and are determined only by the symmetry properties. Systems that
share the same universal properties are in the same universality class. Critical phenom-
ena on 2D flat lattices can be efficiently studied using conformal field theory (CFT). If
we admit the larger invariance of the Hamiltonian under conformal transformations,
the identification of the model under investigation with a conformal field theory is in-
deed very useful. A conformal field theory is specified by a central charge c, related
to the scaling behaviour of the stress tensor of the theory, and its knowledge character-
izes a given universality class and allows to derive the critical exponents (for a recent
review of the topic, see [36]).

Both the Potts model (in the range 0 ≤ q ≤ 4) and the O(n) loop-gas model (in
the range −2 ≤ n ≤ 2) on a large portion of a periodic two dimensional lattice G,
specified respectively by the partition functions (1.30) and (1.27), can be identified with
conformal field theories. This can be done from known exact results on these models.
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Indeed the O(n) loop-gas model can be mapped onto a Solid-On-Solid model [37] and
the Potts model can be mapped onto an Ice model [38] and subsequently transformed
again to a Solid-On-Solid model. Then, the critical behaviour of the Solid-On-Solid
model is found thanks to its connection to the Coulomb gas as explained by Nienhuis
in [39].

On the other hand, starting from the work of Kazakov on the Ising model on dy-
namical planar lattices [3], a lot of statistical models on fluctuating surfaces were solved
with random matrix techniques. Among these, there are the Potts model, studied in
[26, 40, 41, 42], and the O(n) loop-gas model, that we partially solved in chapter 2.

The critical behaviour of systems in the standard plane and in a random 2D metric
can be related by the KPZ relations, obtained by Knizhnik, Polyakov and Zamolod-
chikov analyzing a conformal theory in presence of 2D quantum gravity [6]. In particu-
lar they were able to conjecture the relation between the string susceptibility exponent
that accounts for the non analyticity of the partition function when we reach the con-
tinuum limit (see section 2.2.2), to the central charge of the model on flat space:

γ = 2 − 1

12

(

25 − c +
√

(1 − c)(25 − c)

)

. (4.1)

Despite the fact that explicit solutions of statistical models on random graphs and on
flat lattices were a testing ground for KPZ relations and confirmed their previsions [43],
these formulas as yet eluded a rigorous approach and are a current active research field
[44, 45, 46]. Nonetheless they have been used as a powerful tool by Duplantier [47] to
give insights about random walks on the plane from their random surface solution.

Now we want to address our attention to the spanning forests model on random
lattices. A spanning forest over a graph is a spanning subgraph without cycles, made
of components called trees.1 The partition functions of spanning forests Zforest

G (t, ~w) and
spanning trees Ztree

G (~w) on a graph G are defined as

Ztree
G (~w) = ∑

T≺G
∏

(ij)∈E(T)

wij (4.2)

Zforest
G (t, ~w) = ∑

F≺G

tK(F) ∏
(ij)∈E(F)

wij . (4.3)

where the sum on respectively F ≺ G and T ≺ G means on all spanning forests and
trees over G, and K(F) is the number of connected components of the forest. These
models have great combinatorial interest and arise in physics when we consider the
limit q → 0 of the Potts model in the Fortuin-Kasteleyn representation as explained in
section B.1.

Another connection between spanning forests and a statistical model of great inter-
est was given by Caracciolo et al. in [17] when they introduced Grassman integrals to

1For a list of useful definitions from graph theory see section A.1.
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generalize Kirchoff’s matrix-tree theorem 2 to unrooted forests:

Ztree
G (~w) =

∫

D(ψ, ψ̄) exp(ψ̄LG(~w)ψ) ψ̄iψi (4.6)

Zforest
G (t, ~w) =

∫

D(ψ, ψ̄) exp
[

ψ̄LG(~w)ψ + t
(

∑
i

ψ̄iψi − ∑
(ij)∈E(G)

wijψ̄iψiψ̄jψj

)]

. (4.7)

We see how the complex free fermion representation of spanning trees is extended in
the case of forests to a Gaussian term and a local four fermions interaction.

In this form, the partition function of spanning forests can be mapped to all orders
in perturbation theory to an O(n) invariant σ-model at n = −13 defined on the lattice
G by the following Hamiltonian HG

HG = −T−1 ∑
(ij)∈E(G)

wij(~σi ·~σj − 1) (4.8)

where ~σi ∈ RN , |~σi| = 1, located at the sites i ∈ V(G) and T = temperature. The
coupling constant of the continuum formulation of the model is identified with the
temperature. The correspondence of this model with spanning forests is such that the
coupling constant of the σ-model is interpreted as minus the fugacity of the trees t. So
this approach sheds light also on an unexpected connection between the Potts and the
O(n) σ-model.

Studying spanning trees is simple and a lot of results have been achieved in this
case. But these results can be no more than useful checks of an eventual solution of
spanning forests, since to study forests we need information at finite values of the cou-
pling constant t and trees correspond only to the critical limit t → 0. We want to
address the study of general values of the coupling and we then wonder how far we

2 Kirchoff’s matrix-tree theorem is a result proved by Kirchoff in 1848 and states that the generating
function of spanning trees is given by the determinant of a minor of the Laplacian matrix. The Laplacian
matrix of a graph G is defined as

LG(~w) =







−wij if (ij) ∈ E(G)
0 if (ij) 6∈ E(G)
∑k∼i wik if i = j

(4.4)

where k ∼ i denotes the vertices k connected to i and ~w = {wij}(ij)∈E(G). The Laplacian matrix can be
generalized to the case of graphs with an infinite number of vertices and edges; this generalization is
known as the discrete Laplace operator. Kirchoff’s theorem is

Ztree(G; ~w) = det LG(~w)\i (4.5)

where LG(~w)\i is the minor of the LG(~w) with the column and row i deleted and this result is independent
from the choice of i.

3 But the O(n) loop-gas model at n = −1 has a central charge c(−1) = −3/5 and does not describe
spanning forests. Instead c(−2) = −2. This puzzling issue is maybe pertinent to considering different
realizations of the O(n) symmetry: in the loop-gas model, whose random-matrix variant is discussed
in chapter 2, we have the “logarithmic” realization, while in [17] we have a purely quadratic, although
projective, realization of the symmetry. We will show that on random planar graphs spanning forests are
exactly the O(−2) loop-gas model solved in section 2.3.
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can go in this way on both 2D flat regular lattices (for example the square lattice) and
the ensemble of random graphs described in chapter 1.

Given this perspective, we want to derive results directly for spanning trees and
forests on random lattices in order to understand as much as we can about these and
related models on random graphs, having then the possibility of inferring about their
flat lattice counterpart using the KPZ relations. We will use basically two methods to
investigate the models. One is a purely combinatorial approach, based on the fact that
on random lattices, degrees of freedom of the lattice and of the matter fields cooperate
to simplify the counting of the configurations. With this combinatorial method we will
show how to easily obtain some partially known results, but with a greater control of
the finite size and the possibility of directly investigate the all genus partition function
of spanning trees. Having understood the procedure for trees, immediately gives us the
possibility of solving other models that present the same combinatorial formulation,
such as spanning hypertrees on spanning hypergraphs and Hamiltonian cycles. This will
give more information about the universality class corresponding to the KPZ mapping
of the c = −2 theory. Apart from this approach, we will also establish the equality of the
spanning forests matrix integral to the O(−2) loop-gas model and use the results for
that model to have information about the critical structure of spanning forests. This will
be the topic of the present chapter and we refer to the next chapters for an explanation
of the combinatorial methods.

4.2 The model

Given a graph G and a spanning forest F over it, define the contraction G/F as the
graph in which the components of the forest are shrinked to points, by identifying
vertices pertaining to edges of the same tree. Then, we define the partition function for
spanning forests over a fixed graph G as

ZG(t) = ∑
F≺G

tK(F ) |Aut(G)|
|Aut(G/F )| (4.9)

This corresponds to the partition function Zforest
G (t, 1) where we introduce the addi-

tional ratio |Aut(G)|/|Aut(G/F )| for later convenience.
In chapter 1 we saw that the random matrix prescription to define a model on ran-

dom lattices is summing over graphs G weighting by 4

N−2h(G)g|V(G)|

|Aut(G)| .

4With respect to our former definition, here for convenience we substitute χ with −2h in the exponent
of N, since Z/N2 is the sensible quantity that has a non trivial limit N → ∞.
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Then the partition function for spanning forests on random lattices is

Z(t, g, N) = ∑
G

N−2h(G)gV(G) ∑
F≺G

tK(F ) 1

|Aut(G/F )|

= ∑
F

tK(F )g|V(F )| ∑
G≻F

N−2h(G/F )

|Aut(G/F )| (4.10)

where G are connected graphs with fixed coordination k = h + 2. In this formula we
exchange the two sums because this form simplifies the analysis, and we can do this
since V(G) = V(F ) and h(G) = h(G/F ) (a tree is homotopic to a point).

Note that the partition function (4.10) is a triple series in N, g and t. We will mainly
be interested in the thermodynamic limit that occur for large size of the graph, when g
tends to its critical value, and we will investigate directly the planar limit N → ∞ and
the limit of trees, t → 0.

4.3 Useful counting problems

Before explaining how to derive a random matrix representation for the partition func-
tion (4.10), we will give combinatorial results regarding the enumeration of trees rooted
on the plane and on the disk that are important in the following discussions. Call H

the upper half plane, and D the unit disk.

4.3.1 Counting non-intersecting trees in H

We want to solve the problem of counting the configurations of non-intersecting trees
of degree k = h + 2 with n vertices in H and hn + 2 leaves on the boundary of the plane
∂H. Call this number Ah,n. We set Ah,0 = 1, since there is only one empty configuration.
Then, we start by considering the case of trees with h = 1 (for a typical configuration
see top of figure 4.1) because is easier and the result well-known. Given a configuration
with n > 0, we remove the rightmost leaf in such a way that the two edges connected
to the vertex to which this leaf is attached, become themselves new rightmost leaves for
the two remaining components (bottom of figure 4.1 ).

We can then write the following convolutional formula for the coefficient A1,n:

A1,n =
n−1

∑
n1=0

A1,n1
A1,n−1−n1

. (4.11)

We recognize the convolutional relation of Catalan numbers (1.9) that lead to the quadratic
equation (1.10) for the generating function A1(q) = ∑n=0 A1,nqn = C(q). So we have:

A1,n =
1

n + 1

(
2n

n

)

; A1(q) =
1 −

√
1 − 4q

2q
. (4.12)
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Figure 4.1: On top, there is a cubic tree (h = 1) with n = 8 vertices and 10 leaves on
∂H. On bottom, we depicted the procedure of removal of the rightmost leaf and the
resulting trees that remains.

One can convince himself that when h = 1 this problem is solved by Catalan numbers
also by direct enumeration of the first terms.

The derivation in the case of generic h is analog to the h = 1 case. Upon removing
the rightmost leaf, this time we have h + 1 remaining components and accordingly, the
equation satisfied by the generating function Ah(q) = ∑n Ah,nqn generalizes to:

Ah(q) = 1 + q(Ah(q))h+1 . (4.13)

The coefficients of Ah(q) are a generalization of the Catalan numbers5

Ah,n =
1

hn + 1

(
(h + 1)n

n

)

. (4.14)

The large n behaviour of Ah,n is easily obtained performing a Stirling expansion:

Ah,n ∼
(

(h + 1)h+1

hh

)n

n− 3
2

√

h + 1

2πh3
. (4.15)

The radius of convergence of Ah(q) can be obtained from the condition that the ratio of
two successive terms in the expansion tends to 1 and it is

|q| <
hh

(h + 1)h+1
. (4.16)

5In [24], A2,n: A0001764; A3,n · · · A6,n: A0002293 · · · A0002296.
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Despite equation (4.13) does not have an easy solution except at h = 1 or 2, where

A1 is the generating function of Catalan numbers and A2 can be written as A2

(
4x2

27

)

=
3
x sin

(
1
3 arcsin x

)
, it admits a parametric solution in algebraic form

{
q1/h = x(1 − xh)
Ah = (1 − xh)−1 .

This generalizes to
{

z = x(1 − gxh)
z(Ah(gzh) − 1) = gxh+1 . (4.17)

4.3.2 Counting non-intersecting trees in D

The number of non-intersecting trees on the disk D with n vertices of fixed coordination
k = h + 2 and hn + 2 leaves on ∂D is immediately computed by dividing Ah,n by the
number of border legs, which accounts for the cyclic symmetry among the leaves on a
disk. If we call these numbers A′

h,n,

A′
h,n =

Ah,n

hn + 2
=

((h + 1)n)!

n!(hn + 2)!
. (4.18)

Their generating function A′
h(q) = ∑n≥1 A′

h,nqn, where now the summation starts from
1, is related to Ah by the relation

z
(

Ah(gzh) − 1
)

=
d

dz

(

z2 A′
h(gzh)

)

. (4.19)

From the parametric formula (4.17), the above relation becomes

z2 A′
h(gzh) =

x2

2

(
2

h + 2
gxh − (gxh)2

)

. (4.20)

4.4 A matrix integral for the partition function

In this section we will write a matrix integral to represent the partition function (4.10).
That formula suggests to first contract the trees to points and then represent the com-
binatorics of the resulting effective vertices by a suitable integral. The procedure is
explained in [21] and works as follows.

Given a connected graph G with coordination k = h + 2 and a spanning forest F
over it, mark the edges of the forest and all the vertices, and leave the remaining edges
unmarked. Then K(F ) coincides with the number of marked components. Now insert
in every unmarked edge two intermediate vertices such that every unmarked edge
can be considered as the contraction of three auxiliary edges, two attached to trees a
middle one. For every component of the forest, regard the tree with the auxiliary edges
attached to its terminations as a new tree Tα, α = 1, . . . , K(F ) with its leaves on the
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Figure 4.2: The identification of a component of a forest on a random cubic graph with
a tree on the disk. The edges of the tree are marked in bold and the region enclosed by
the shaded line is the tree with its border legs.

disk, as depicted in figure 4.2. From section 4.3.2 we know that the number of such
trees with n vertices is A′

h,n.
Now contract every Tα to single vertices respecting the ordering of the the border

legs, as in figure 4.3. The resulting graph is G/F , whose vertices are linked by the
middle auxiliary edges, what remains of the unmarked edges of the original graph.

To keep track of this shrinking procedure, we assign to every tree with n vertices
an effective coupling gn = tgn A′

h,n, since we have to add a factor t for every compo-
nent, a power of g for every vertex and count all the possible trees with n vertices and
coordination h + 2.

Then, the coordination of vertices of G/F is hn + 2, n ≥ 1, and at every vertex there
is a corresponding coupling gn. In this form, thanks to the language of Wick’s contrac-
tion and Feynman diagrams developed in section 1.1, the problem can be represented
by a one-Hermitian matrix integral:

Z(t, g, N) =
1

N2
log

∫
DMe−NTrV(M)

∫
DMe−

N
2 TrM2

(4.21)

where the potential is

V(z) =
1

2
z2 − ∑

n≥1

gnzhn+2

=
1

2
z2(1 − tA′

h(gzh)) . (4.22)

Note that despite we have only one matrix, the potential is not polynomial in the fields,
in analogy with what occurred in section 2.3 for the O(−2) loop-gas, and we will show
later that this is more than a mere coincidence.
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=

Figure 4.3: The procedure for shrinking the trees. Given a spanning forest F over
a graph G, we mark the components of the forest (here in bold) , and we shrink the
trees with their leaves to single vertices respecting the ordering of the the border legs.
Then we obtain G/F (graph on the bottom). The figure on top right is an intermediate
step, where we deform the graph and color in gray the region to be shrinked, to better
visualize the procedure.
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Nonetheless there is a suitable change of coordinates that will give a polynomial
potential at the price of an additional term in the integrand. First of all we go to the
eigenvalues basis, M → (Λ, U), as done in chapter 2 for the solution of the O(n) loop-
gas model. Remember that the Jacobian of this transformation is the square of the
Vandermonde determinant ∆2({λi}) = ∏i<j(λi − λj)

2. (4.21) becomes:

Z(t, g, N) =
1

N2
log

∫

∏
N
i=1 dλi∆

2({λi})e−N ∑i V(λi)

∫

∏
N
i=1 dλi∆

2({λi})e−
N
2 ∑i λ2

i

(4.23)

and from the expression of the potential V in equation (4.22), we note that we have to
integrate inside the analyticity region of A′

h(q), according to (4.16).
In section 4.3 we gave a parametric formula for A′

h(gzh), equation (4.20). This sug-
gests the right change of variables to obtain a polynomial potential:

λi(xi) = xi(1 − gxh
i ) . (4.24)

Upon this transformation in (4.23), we end with the following expression for the parti-
tion function of spanning forests6:

Z(t, g, N) =
1

N2
log

∫

∏
N
i=1 dxi∆

2({xi})∆̂g({xi})e−N ∑i Ṽ(xi)

∫

∏
N
i=1 dxi∆

2({xi})e−
N
2 ∑i x2

i

(4.25)

where the potential Ṽ is now polynomial

Ṽ(z) =
z2

2

(

1 − 2g

(

1 +
t

h + 2

)

zh + g2(1 + t)z2h

)

(4.26)

and the new factor ∆̂g({xi}) comes from the combination of the Jacobian and the change
of the Vandermonde determinant in the new coordinates, and is

∆̂g({xi}) = ∏
i,j

(1 − g(xh
i + xh−1

i xj + · · · + xh
j )) . (4.27)

4.5 Critical structure of spanning forests

4.5.1 Equivalence with the O(−2) loop-gas model

We now want to solve the matrix integral (4.25) exploiting the equality with the parti-
tion function of the O(−2) loop-gas model, upon identification of the parameters. This
is actually the original work with respect to the rest of the chapter. To make easier see-
ing the correspondence let us rewrite here the matrix integral for the O(−2) loop-gas

6 At the denominator we simply call the integration variables xi
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model with a quartic potential that can be interpreted as a model of self-avoiding loops
and dimers on the cubic lattice,

Z
O(−2)
N ({gi}, b0) =

1

N2
log

1
∫

∏
N
i=1 dbi∆

2({bi}) exp
(
−N

2 ∑i b2
i

) ·

·
∫ N

∏
i=1

dbi∆
2({bi}) ∏

i,j

(

1 − 1

4b0
(bi + bj)

)

exp

(

−N ∑
i

(
1

2
b2

i +
g1

3
b3

i +
g2

4
b4

i

))

,

(4.28)

and that for spanning forests on cubic lattices (h = 1)

Z(t, g, N) =
1

N2
log

1
∫

∏
N
i=1 dxi∆

2({xi}) exp
(
−N

2 ∑i x2
i

) ·

·
∫

∏
i

dNxi∆
2({xi}) ∏

i,j

(
1 − g(xi + xj)

)
·

· exp

(

−N ∑
i

x2
i

2

(

1 − 2g

(

1 +
t

3

)

xi + g2(1 + t)x2
i

))

.

(4.29)

The two expressions are the same if we match the parameters in the following way:






1
4b0

= g

g1 = −g(3 + t)
g2 = 2g2(1 + t)

. (4.30)

Further, also the integration region are the same for these two models. The analiticity
condition on xi that restricts the region of integration in (4.29) coincide with the condi-
tion of positivity of the Gaussian weight in (2.3) on bi.

Having established the correspondence of spanning forests on random lattices with
the O(−2) loop-gas model previously discussed, we can use the study of the critical
behaviour of the latter, pursued in section (2.3.2). There we studied exactly (4.28) with
the saddle point technique and found two kinds of critical points: (2.43) and (2.44), both
corresponding to a string susceptibility exponent γ = −1. The first set of critical points
translates into

t∗ = −1 g∗ =
π

8
√

6
, (4.31)

while the second set into

t∗ = 0 g∗ =
1

8
. (4.32)

4.5.2 Mapping to flat lattice

So far we obtained that spanning forests on cubic graphs possess two critical values
for the fugacity of the trees, t = 0 and t = −1. Both these points correspond to a
string susceptibility exponent γ = −1. Our interest now is to map this results to flat
two dimensional lattices using the KPZ relations. From formula (4.1) we have that the
central charge corresponding to γ = −1 is c = −2.
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Critical behaviour of spanning forests on flat lattice

The critical values of the fugacity can be understood in light of what is known in the
literature about spanning forests on fixed graphs. The correspondence established in
[17] permitted the authors to derive the continuum limit of spanning forests on flat
lattices from the renormalization group analysis of the O(n) σ-model. The beta function
of the O(n) σ-model is such that this model is asymptotically free for N > 2, that is, at
small distances the coupling constant u becomes small, and it grows at large distances,
and the point of zero coupling u = 0 is an ultraviolet-stable fixed point. However
if N < 2 the model can be again asymptotically free if we approach u = 0 from the
region where the coupling is negative, and u = 0 is still an ultraviolet-stable fixed
point. Then, the identification of spanning forests with the O(n) σ-model allows to
conclude that at least perturbatively, spanning forests are asymptotically free. Further,
since the fugacity of the trees t is minus the coupling of the O(n) σ-model, spanning
forests do not possess any critical point in the region t > 0 and the model is attracted
to the trivial infinite temperature fixed point at t = +∞ that corresponds to a massive
theory. If instead we are in the region tc < t < 0, we are attracted to the spanning trees
point t = 0 with c = −2 described by free fermions. This phase is massless and has
c = −2, while for t < tc the model is again massive.

Other insights into the critical behaviour can be derived from the analysis of the
Potts model in the limit q → 0, with w = v/q fixed, where v is the uniform weight
of edges. For the square lattice, the ferromagnetic and antiferromagnetic critical curves
where Baxter solved the model [48], define near the point (q, v) = (0, 0) two regions cor-
responding to a high temperature non-critical phase and a massless low temperature
phase with central charge c = −2. The phase diagram of the Potts model according
to [49] is depicted in figure 4.4 where we enlarge the region near the origin and high-
light the critical behaviour. This is consistent with our previous discussion of spanning
forests derived from the O(n) σ-model since the slope of the curves w = v/q corre-
sponds to the inverse of the fugacity of the trees t, if in the fermionic model we assign a
weight 1 to edges (formula (B.12)). In particular we can fix tc, interpreted as the q → 0
limit on the antiferromagnetic critical curve, to tc = −4. This point corresponds to a
critical theory with c = −1 [50, 51].

On the triangular lattice the picture is similar, but the ferromagnetic curve is not
known exactly. There is numerical evidence [49] that the massless universal phase with
c = −2 is still present but the value of tc is different from the square lattice result and it
appears to be difficult to detect if the critical behaviour at tc changes.

Asymptotic freedom of spanning forests is a characteristic pertaining only to 2D. It
has been shown numerically in three, four and five dimensions in the q → 0 limit of
Potts model [52] and analytically in infinite dimension (complete graph case) [53], that
there is a finite nonzero critical value t∗ at which a percolation transition can occur. This
means that for t < t∗ emerges a gigantic component, a tree which occupies a fraction of
order one of the volume of the forest, while for t > t∗ all trees have a characteristic size
depending on t. In 2D asymptotic freedom should emerge because t∗ coincides with
the criticality of trees, t = 0.
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Spanning trees

Spanning trees

Antiferromagnetic
transition
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Asymptotic freedom

Figure 4.4: The phase diagram of the Potts model on the square lattice. There are four
regions, corresponding to a ferromagnetic phase (F), a high temperature phase (HT), an
antiferromagnetic phase (AF), and a non physical region (NP) where v < −1. The blue
solid curve are the ferromagnetic and antiferromagnetic transition curves of the Bax-
ter solution. We enlarge the phase diagram near the origin related to spanning forests.
The two regions corresponding to a high temperature phase and a massless low tem-
perature phase, are colored respectively in light red and light blue. Note that there are
not critical points between w = +∞ (spanning trees, c = −2) and w = −1/4 (antiferro-
magnetic transition, c = −1), beside the trivial point w = 0, thus confirming asymptotic
freedom. The point v = eK − 1 = 0 (w = 0) is the infinite temperature point, and the
arrows determine the stability of critical points according to the renormalization group
analysis of the O(n) σ-model.
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t = 0

Our results obtained on random planar graphs predict no critical points in the region
t > 0, coherently with asymptotic freedom, and state that the spanning trees limit t = 0
is described on flat lattices by a central charge c = −2, in agreement with what obtained
directly on flat lattices. Moreover we have also agreement with the solution of the Potts
model on random graphs by Eynard and Bonnet [42], that predicts for q = 0, γ = −1.

t = −1

The critical point t = −1 instead is harder to interpret. The presence of another point
with c = −2 at a negative value of the fugacity, could be related to tc on flat lattice and
so to the antiferromagnetic critical line of the Potts model. But, if the critical point t = 0
is an universal feature for spanning forests on flat lattices, as already mentioned the
antiferromagnetic curve is lattice-dependent and its critical behaviour is understood
only for the square lattice. We could then speculate that t = −1 is indeed the critical
value corresponding to the transition from high to low temperature in the Potts model
with q → 0 on the triangular lattice, also if on the square lattice it corresponds to c = −1.

A computation that could help us in interpreting the presence of t = −1 is solving
the integral (4.25) for random graphs with coordination k = 4. In that case we could
check the consistency with the prevision for the square lattice, in particular with the
presence of a critical point with c = −1 at a negative value of t. Unfortunately this
computation is not as immediate as the one for the cubic graphs, since we have to deal
with a saddle point equation that cannot be directly solved using the results for the
O(−2) loop-gas model, where the loops are built from cubic vertices, and so deserves
a more complicated treatment.

We note also that a central charge c = −1 corresponds, via KPZ, to a the unnatural
value of the string susceptibility γ = −(1 +

√
13)/6, when for every minimal models

(p, q), p > q, the string susceptibility is rational, γ = 1 − p/q.
Lastly we remark that at the point t = −1 the partition function of spanning forests

(4.3) has a non positive definite Boltzmann weight. However we can still give to this
point a probabilistic interpretation in the sense of a positive weight of configurations
if we describe the partition function (4.3) no more in terms of spanning forests, but
as a sum over spanning trees weighted according to their activities. This form of the
partition function is discussed in section B.2 where we introduced also the new notion
of activity due to Bernardi that is natural for embedded graphs, and then for random
planar graphs. We recall here the formula for the partition function of spanning forests
in terms of activities (B.18):

Zforest
G (t, 1) = t ∑

T≺G

(1 + t)I(T)

where I(T ) is the number of internal embedding-active edges. Given a rooted embed-
ding of G and a spanning tree T over it, starting from the root draw a line that walks
around the tree and label the edges in order according to their appearance. Then an
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internal (resp. external) edge is an internal (resp. external) embedding-active edge if
minimal in its fundamental cocycle (resp. cycle). This partition function is probabilistic
for t ∈ [−1, +∞), and at the special point t = −1 is given by the number of span-
ning trees over the graph G that possess no internal embedding-active edges. A rooted
graph with a spanning tree that have no internal embedding-active edge must have
at least one external embedding-active edge in the fundamental cocycle of every inter-
nal edge. In terms of random planar graphs, the partition function of spanning forests
at t = −1 is obtained by considering the ensemble of graphs and spanning trees that
satisfies I(T) = 0, as the one in figure 4.5.2.

1⋆

2⋆

3

4⋆

5

6⋆

7

8
9

Figure 4.5: A rooted cubic random planar graph with 6 vertices ad a spanning tree over
it that has no internal embedding-active edges and then contributes to the partition
function of spanning forests on random planar graphs at t = −1. External embedded-
active edges are marked with a star. The blue line starting at the root (red half-edge) is
the walk that defines the ordering and consequently the activity.

Then our random matrix solution of the spanning forests model predicts that this
point is critical and corresponds to a CFT of central charge c = −2.
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Chapter 5

Exploring the universality class
γ = −1

In chapter 4 we explained how to study spanning forests on random lattices repre-
senting the partition function as a matrix integral and we obtained that spanning trees
corresponds to a criticality described by the exponent γ = −1. In this chapter we will
solve spanning trees on random planar graphs by a direct enumeration of the possible
configurations, following what is done in [21]. This approach is simple and efficient
and can be applied to other statistical models. Indeed slight modifications of the pro-
cedure outlined in section 5.1 for spanning trees will give us the possibility of exhibit
the exact solutions of spanning hypertrees and Hamiltonian cycles. These models share
the feature to possess γ = −1 and this approach allows us to explore this universality
class. The study of spanning hypertrees and Hamiltonian cycles is the original work
we describe in this chapter.

5.1 Spanning trees on random planar graphs

We start by considering spanning trees, whose partition function Ztree
0 (g, N) corre-

sponds to the limit t → 0 of the one for spanning forests Z(t, g, N) defined in equation
(4.10). If we restrict to the ensemble of random planar graphs (N → ∞), it is

Ztree
0 (g) = lim

N→∞
lim
t→0

Z(t, g, N)

t
(5.1)

and from (4.10):

Ztree
0 (g) = ∑

T
gV(T ) ∑

G≻T

1

|Aut(G/T )| . (5.2)

The first sum is over trees T of coordination k = h + 2, the second over connected
planar graphs G that have T as a spanning tree over them. To compute this partition
function we actually have a simple task: count all the possible pairs (G, T ). This is
indeed easy if we apply the idea exposed in section 4.4 of shrinking trees with their
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leaves to points. This can be done if we keep track of the shrinking by counting all the
possible configurations of a tree with its leaves on a disk, a problem solved by A′

h,n (see
section 4.3.2) If we do so, we are left with planar one-vertex graphs with (hV + 2)/2
edges (see picture 5.1), which are enumerated by the Catalan numbers, as shown in
section 1.1.1.

Figure 5.1: On the left a spanning tree (with edges in bold) on a random cubic planar
graph. The gray region becomes a point when the tree is shrinked. Then we are left
with a planar one-vertex diagram with petals juxtaposed or included into one-another.

In this way 5.2 can then be written as

Ztree
0 (g) = ∑

V>0

A′
h,V C hV+2

2
gV

= ∑
V>0

((h + 1)V)!

V!( 1
2 hV + 1)!( 1

2 hV + 2)!
gV . (5.3)

Notice that using A′
h,V we are considering the cyclic symmetry of the hV + 2 legs of

the tree and correctly reproducing the inverse of the order of the automorphism group
as a weight for the configurations. The sum over V is intended over the values such
that the ensemble of trees with V vertices and coordination k is not empty. So, if the
coordination is odd the sum is over even number of vertices, while if it is even, every
integer value of V has to be considered.

5.1.1 Critical coupling and string susceptibility exponent

If we fix h the sum 5.3 is a Hypergeometric function pFq of the type p = q + 11 and from
its argument we can identify the critical coupling gc.

1A hypergeometric function pFq(a1, . . . , ap; b1, . . . , bq; x) is a function that can be defined from a hyper-
geometric series, that is a series ∑

∞
n=0 cnxn for which the ratio of successive terms can be written as

cn+1

cn
=

(n + a1)(n + a2) · · · (n + ap)

(n + b1)(n + b2) · · · (n + bq)(n + 1)
.
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Anyway a large volume limit is sufficient to obtain the critical value of the coupling
and the string susceptibility exponent, as can be read from equation (2.30). Distinguish-
ing the case of h odd and even, we can approximate equation 5.3 using Stirling formula
on the summand:

Ztree
0,even(g) ∼ ∑

V

(
g

gc

)V

V−4 (5.4)

Ztree
0,odd(g) ∼ ∑

V

(
g

gc

)2V

V−4 . (5.5)

The critical value of the coupling

gc = 2−h hh

(h + 1)h+1
, (5.6)

and the string susceptibility exponent γ = −1 are as expected universal.
Here we have directly showed that spanning trees correspond to a critical theory

that is mapped through the KPZ relation to a CFT with c = −2, in agreement with the
discussion pursued in section 4.5.2.

We can analyze further the critical structure of the partition function if we sum
the large limit approximation and look at the result that we obtain. For fixing ideas
choose h = 1, then parametrizing g/gc = e−ǫ and keeping the constant factors, in the
thermodynamic limit we have to perform the following sum:

Ztree
0 (g) = c1 ∑

n≥1

e−2nǫn−4 (5.7)

where c1 =
√

2/(2π). The sum is a polylogarithmic function, and if we expand (5.7) in
ǫ, we get

Ztree
0 (g)

c1
=

(

8192

315
− 16

√
2π

3

)

+

(

14848

315
− 32

√
2π

3

)

ǫ + · · · + 4

3
ǫ3 log ǫ + . . . . (5.8)

This expansion is affected by the large volume approximation that we used, but nonethe-
less it has the correct dependence on the non-analytic term 4

3 ǫ3 log ǫ, as can be checked
from the direct expansion of the Hypergeometric function that corresponds to the exact
sum of the partition function. This is consistent with the fact that the critical behaviour
can be studied in the thermodynamic limit.

5.2 Spanning hypertrees on random planar hypergraphs

Having shown how to deal with spanning trees on random planar lattices, it is a natural
generalization to turn our attention to studying spanning hypertrees on random planar
hypergraphs.

Note that when p = q + 1 the ratio cn+1/cn → 1 so in this case the radius of convergence of the series is 1.
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Studying the ensemble of spanning hypertrees is particularly interesting because no
matrix integral can generate it and so random matrix techniques are not applicable. It
will turns out that γ = −1, then they are in the same universality class of spanning
trees, as one could expect. We start with the definition of hypergraphs.

A hypergraph K = (V, E) is defined by its vertex set V and the set of hyperedges E
which consists of subsets of V of cardinality at least 2. A sub-hypergraph H ⊆ K has
V(H) ⊆ V(K) and E(H) ⊆ E(K), and is spanning if V(H) = V(K). H is a hypertree
if it is connected and there are no cyclic sequences of vertices and hyperedges

v1, e1, v2, e2, · · · , vℓ, eℓ, vℓ+1 (vℓ+1 = v1)

such that ℓ ≥ 2, vi 6= vi+1 and vi, vi+1 ∈ ei.
For embedding a hypergraph in a Riemann surface S, we first consider a bipartite

graph G = (V ∪ VE, L) on S. G can be seen as an incidence graph of a hypergraph if
for each ve ∈ VE we merge ve and its incident edges into a hyperedge e with ve as its
center. Calling E the set of hyperedges, a hypergraph on S is K = (V, E). In this way
the notions of 2-dimensional cell complexes are extended to hypergraphs and the genus
of a hypergraph is well defined.

In the following we will consider connected planar hypergraphs with fixed coor-
dination of vertices k and l-uniform, that is with all hyperedges of cardinality l. The
case l = 2 corresponds to ordinary graphs. Inspired by (5.2), we define the partition
function for spanning hypertrees H over hypergraphs K as:

Zh-tree(g) = ∑
H

gV(H) ∑
K≻H

1

|Aut(K/H)| . (5.9)

See figure 5.2 for an example of a spanning hypertree over a random planar hyper-
graph.

As before, we want to shrink hypertrees and count the remaining configurations.
To do this, we first have to do some preliminary combinatorics.

5.2.1 Two combinatorial results for spanning hypertrees

In this section we will solve two counting problems. First we count the number of
hyperlink patterns and then the number of hypertrees with border legs on the boundary
of the upper half plane. As in 4.3 we call H the upper half plane and ∂H its boundary.

Counting hyperlink patterns

Define a l-hyperarc as a generalization of an arc, where its l endpoints on ∂H are joined
together with a hyperedge of cardinality l. An arc is a 2-hyperarc. Now we will count
the configurations of m non-intersecting l-hyperarcs in H, with endpoints in ∂H. Call
such configurations hyperlink patterns (for a typical hyperlink pattern, see top of figure
5.3) and their number Cl,m. This section has the purpose of generalizing the enumera-
tion of link patterns and Catalan numbers that correspond to the case of graphs, l = 2.
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Figure 5.2: A spanning hypertree on a 3-uniform cubic random hypergraph. Hyper-
edges of the spanning tree are in black.

Figure 5.3: On top a hyperlink pattern with m = 5 3-hyperarcs. On bottom the removal
procedure of the rightmost hyperarc that leaves l = 3 remaining component.
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Given a configuration, upon removing the right-most hyperarc, we are left with l
remaining components as at the bottom of figure 5.3, and we have the familiar convo-
lutional relation:

Cl,m = ∑
m1,...,ml

l

∏
α=1

Cl,mα
(5.10)

where the mα’s satisfies m1 + · · · + ml = m − 1.
This is exactly the same problem of counting trees of coordination l + 1 with border

legs on ∂H solved in 4.3.1. So once again we introduce the generating function Cl(x) =

∑m Cl,mxm and relation (5.10) turns into the non linear equation Cl(x) = 1 + x(Cl(x))l

leading us to the hyper-Catalan numbers:

Cl,m =
1

(l − 1)m + 1

(
lm

m

)

. (5.11)

Counting non-intersecting hypertrees with leaves in ∂H

Now we turn our attention to the enumeration of the configurations of non-intersecting
l-uniform hypertrees of degree k, with leaves in ∂H.

Define the generating function Fk,l(z):

Fk,l(z) = ∑
m>0

∑
σ(m)

zm (5.12)

where σ(m) are the configurations of non-intersecting l-uniform hypertrees of degree
k, with m border legs rooted (we distinguish the rightmost leg) on ∂H (see top of figure
5.4). The coefficients of zm are the number we want to compute.

Next, define an auxiliary generating function

F∗
k,l(z) = ∑

m>0
∑

σ′(m)

zm (5.13)

where σ′(m) are the configurations of hypertrees which in addition to m border legs
rooted on ∂H have a vertex as the rightmost point on the boundary of the plane (see
bottom of figure 5.4). While the sum in (5.12) contains the configurations with no hy-
peredges, of course the one in (5.13) does not.

Fk,l(z) satisfies the following equation:

Fk,l(z) = z(z + F∗
k,l(z))k−1 . (5.14)

Indeed, given a configuration in Fk,l(z), associate a factor z to the rightmost leg and this
account for the first factor z on the r.h.s. of (5.14). Then, the remaining k − 1 objects
attached to the vertex of the rightmost leg can be a border leg or part of a hyperedge,
and this choice brings the term (z + F∗

k,l(z))k−1. This is illustrated at the top of figure
(5.5).

Instead, if we start from a configuration in F∗
k,l(z), we can remove the hyperedge

containing the rightmost vertex and attach a border leg to the l − 1 vertices pertaining
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Fk,l(z) =

F∗
k,l(z) = = ∑m≥0 ∑

= ∑m≥0 ∑

︸ ︷︷ ︸

m

︸ ︷︷ ︸

m

Figure 5.4: On top the generating function Fk,l(z). It is a sum over m of the configura-
tions of hypertrees with m border legs rooted on ∂H. On bottom the auxiliary generat-
ing function F∗

k,l(z). Here the sum is over configurations constrained to have a vertex
as the rightmost point in ∂H.

to this hyperedge. This brings a corrective term 1/z for every leg that was not rooted
and the equation satisfied by F∗

k,l(z) is:

F∗
k,l(z) =

(
1

z

)l−1

Fk,l(z)l−1 . (5.15)

The graphical explanation is given at the bottom of figure 5.5.
Putting together these two relations, we obtain:

Fk,l(z)

zk
=

(

1 + zl(k−1)−k

(
Fk,l(z)

zk

)l−1
)k−1

. (5.16)

Calling n the number of hyperedges in a hypertree, the number of border legs in terms
on n is k + n(l(k − 1) − k), so not every monomial appears in (5.12):

Fk,l(z) = ∑
n>0

∑
σ(k+n(l(k−1)−k))

zk+n(l(k−1)−k) . (5.17)

It is then natural to consider

f (k,l)(x) =
Fk,l(z)

zk

∣
∣
∣
∣
∣

x=zl(k−1)−k

= ∑
n≥0

f
(k,l)
n xn (5.18)

so that f
(k,l)
n coincides exactly with the number we want to compute. Expressing (5.16)

in terms of f (k,l)(x) we have to solve the following non linear equation

f (k,l)(x) = (1 + x( f (k,l)(x))l−1)k−1 . (5.19)
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+

k − 1
k − 1

Figure 5.5: On top the graphical explanation of equation (5.14). The k − 1 objects
attached to the vertex of the rightmost leg (in red) can be part of a hyperedge or a
border leg. This binary choice produces the factor (z + F∗

k,l(z))k−1 on the right hand
side of the equation. On bottom the illustration of equation (5.15). We remove the
hyperedge (in red) containing the rightmost vertex and substitute the hyperedge with
l − 1 border legs (here l = 3). This operation brings the term 1/z for every leg that was
not rooted.

The values of f
(k,l)
n that solve (5.19) are

f
(k,l)
n =

((k − 1)(l − 1)n + k − 2)!(k − 1)

n!((k − 1)(l − 1)n + k − n − 1)!
, (5.20)

and before demonstrating that it is the solution, we can easily check the agreement with

already known results that appear as particular cases. f
(k,l)
n reduces to the enumeration

of trees with coordination k if l = 2. To make contact with our previous results, define
k = h + 2. We have:

f
(h+2,2)
n =

((h + 1)n + h)! (h + 1)

n!((h + 1)(n + 1) − n)!
(5.21)

that expressed in terms of the number of vertices V = n + 1 coincides with the general-
ized Catalan number Ah,n discussed in section 4.3.1, the properly combinatorial factor
to count non-intersecting trees with border legs on the plane. The series of factorial
k = 2 instead is the enumeration of hypertrees with vertices of coordination 2. The
dual of a hypergraph is simply obtained by swapping the roles of hyperedges and ver-
tices, and the dual of a l-uniform hypertree with coordination 2 is a tree with vertices
of coordination l. Correctly we have

f
(2,l)
n =

1

(l − 2)n + 1

(
(l − 1)n

n

)

. (5.22)

56



Now we will prove that f (k,l)(x) = ∑n≥0 f
(k,l)
n xn with f

(k,l)
n as in (5.20) satisfies (5.19)

by direct substitution. Note that f (k+1,l+1)(x) depends on l only through the product
kl = s. So we we introduce f̃ ((k−1)(l−1),k−1)(x) as a synonymous of f (k,l)(x), that is

f̃ (s,k)(x) = ∑
n≥0

f̃
(s,k)
n xn = ∑

n≥0

(sn + k − 1)! k

n!(sn + k − n)!
xn (5.23)

and (5.19) turns into
f̃ (s,k)(x) = (1 + x( f̃ (s,k)(x))s/k)k . (5.24)

In this form the problem is easier. We recognize that f̃ (s,k)(x) = (Bs(x))k, where Bs(x)
is the generalized binomial series

Bs(x) = ∑
n≥0

(
sn + 1

n

)
1

sn + 1
xn , (5.25)

and Bs(x) has the remarkable property that

(Bs(x))k = ∑
n≥0

(
sn + k

n

)
k

sn + k
xn . (5.26)

For a proof see chapter 7 of [54]. Thus f̃ (s,k)(x) = f̃ (s,h)(x) f̃ (s,k−h)(x) and in particular
( f̃ (s,k)(x))1/k = f̃ (s,1)(x). Thanks to this property, equation (5.24) for generic s and k is
equivalent to its specialization k = 1:

f̃ (s,1)(x) = 1 + x( f̃ (s,1)(x))s. (5.27)

There are now two ways to conclude. Either we recognize that f̃ (s,1)(x) = f (2,s+1)(x),
that is, the “hyper-Catalan” numbers of equation (5.22), which we already know solv-

ing equation (5.27). Alternatively, remark that from the explicit expression for f̃
(s,k)
n we

have f̃
(s,1)
n+1 = f̃

(s,s)
n . With this relation, equation (5.27) reduces to an identity. In either

ways, we have proved that (5.20) is the expression for the number of l-hypertrees of
degree k with border legs on the boundary of the upper plane.

5.2.2 Computation of the partition function and critical behaviour

With the combinatorial results of section 5.2.1, we know how to keep track of the shrink-
ing of the hypertrees and how to count the hyperlink patterns left after the shrinking.
An example of the shrinking procedure and the resulting one-vertex planar hypergraph
is depicted in figure 5.6.

The partition function (5.9) then is:

Zh-tree(g) = ∑
n≥0

gn(l−1)+1 f
(k,l)
n

k + n(l(k − 1) − k)
C

l,
k+n(l(k−1)−k)

l

. (5.28)
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Figure 5.6: The shrinking procedure and the resulting one-vertex planar hypergraph.
In dark gray the region to be shrinked.

The factor k + n(l(k − 1) − k) at the denominator is introduced for accounting for the
cyclic symmetry of the border legs of the hypertree on a disk and n(l − 1) + 1 is the
number of vertices of the hypergraph.

The sum in (5.28) is restricted to n such that k + n(l(k − 1) − k) is a multiple of l, or
equivalently

n(k − 1) + k/l(1 − n) ∈ Z+ ,

since otherwise the legs of the hypertree cannot be contracted together to form hyper-
link patterns, and the ensemble is empty. We first notice that n = 0 can be achieved
only if k/l is integer, and this respects the fact that we can contract together the legs at-
tached to a single vertex only if the number of legs is a multiple of l. Then the allowed
values of n can be parametrized as

n = β(i − 1) + 1 ,

{
i = 0, 1, 2, 3, . . . if β = 1
i = 1, 2, 3, . . . otherwise

(5.29)

where β = l/ gcd(k, l), the denominator of k/l. Trading the sum over n for the sum
over i with the convention of equation (5.29) for the values of i, (5.28) becomes:

Zh-tree(g) = ∑
i

g(β(i−1)+1)(l−1)+1
f
(k,l)
β(i−1)+1

k + (β(i − 1) + 1)(l(k − 1) − k)
·

·C
l,

k+(β(i−1)+1)(l(k−1)−k)
l

(5.30)

As in the case of spanning trees, for a given value of k and l this sum organizes into a
hypergeometric series pFq with p = q + 1 and from the argument of this function, we
read the radius of convergence.
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We checked that formula (5.30) reduces to the partition function of spanning trees
(5.3) for l = 2, and the cases β = 1, β 6= 1 corresponds respectively to k even and odd.

As above, we compute the critical coupling and the string susceptibility exponent

in the thermodynamic limit of large n. Cl,m and f
(k,l)
n have the following asymptotic:

Cl,m ∼
(

ll

(l − 1)l−1

)m

m−3/2

√

l

2π(l − 1)3
(5.31)

f
(k,l)
n ∼

(

(k − 1)(l − 1)(k−1)(l−1)

((k − 1)(l − 1) − 1)(k−1)(l−1)−1

)n

n−5/2 (k − 1)((k − 1)(l − 1))k−3/2

((k − 1)(l − 1) − 1)k−1/2(l(k − 1) − k)
.

(5.32)
If n is large we can sum the asymptotic of the summand in (5.28) over n without restric-
tions. Omitting irrelevant numerical factors we end with:

Zh-tree(g) ∼ ∑
n

(
g

gc

)(l−1)n

n−4. (5.33)

where the critical coupling is

gc =
(l − 1)(l(k−1)−k)/l

((k − 1)(l − 1))k−1

(

((k − 1)(l − 1) − 1)(k−1)(l−1)−1

ll(k−1)−k

) 1
l−1

. (5.34)

From (5.33) we get that spanning hypertrees on random hypergraphs have a critical
exponent γ = −1, so being in the same universality class of spanning trees.

5.3 Hamiltonian cycles

A Hamiltonian cycle through a graph is a cycle that visits each node exactly once. In
this section we will consider the statistical model of Hamiltonian cycles over random
planar graphs.

Using the prescription of random matrix theory, we define the partition function for
this model as:

ZHC(g) = ∑
G

gV(G) 1

|Aut(G)| ∑
H∈H(G)

(5.35)

where G is the ensemble of cubic planar graphs and H(G) is the set of Hamiltonian
cycles over G. According to our purposes, the important remark is that a Hamiltonian
cycle, being a cycle, divides a planar graph in two components, an inner and an outer
one. This is done in such a way that a planar graph that admits a Hamiltonian cycle
is nothing but the intertwining of two link patterns, one in the region enclosed by the
space-filling cycle, and one out of it (see figure 5.7).
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=

Figure 5.7: A cubic random planar graph with 2n = 20 vertices that possesses a Hamil-
tonian cycle over it (marked in bold), is equal to two sequences of link patterns defined
as the inner (marked in blue) and outer (marked in red) configurations of the cycle.

Remember from section 1.1.1 that the enumeration of link patterns is done by Cata-
lan numbers. Then, calling 2n the number of vertices and m the number of internal link
patterns enclosed by the Hamiltonian cycle, (5.35) can be written as:

ZHC(g) = ∑
n≥0

g2n
n

∑
m=0

(
2n

2m

)
Cm Cn−m

2n
. (5.36)

By convention the trivial graph with a single node has one Hamiltonian cycle. Cm and
Cn−m in (5.36) corresponds respectively to the enumeration of all possible configura-
tions in and out of the Hamiltonian cycle, while the binomial coefficient derives from
the possibility of choosing the 2m vertices among the total 2n to produce the same link
pattern. In the large volume limit, equation (5.36) becomes

ZHC(g) ∼ ∑
n

∑
m

g2n (2n − 1)!

m!(m + 1)!(n − m)!(n − m + 1)!
(5.37)

=
4√
π

∑
n

(2g2n)
(2n − 1)!Γ( 1

2(3 + 2n))

n!(n + 1)!(n + 2)!
(5.38)

Now we perform a Stirling approximation of the factorials and obtain:

ZHC(g) ∼ ∑
n

(4g)2n n−4 , (5.39)

from which we read the critical coupling gc and the string susceptibility exponent γ:

gc =
1

4
; γ = −1 . (5.40)

We conclude that this model is in the same universality class of spanning trees.
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5.4 Discussions

In the present chapter we showed how some statistical models can be easily solved
when defined on random planar graphs. Indeed simple combinatorics is all we need to
compute exactly their partition function and obtain the critical coupling and the critical
exponent γ. First we showed directly that spanning trees have γ = −1, as argued
from the random matrix solution of section 4.5.2. Then we found that also spanning
hypertrees and Hamiltonian cycles have both γ = −1. Using KPZ relation this value
of the string susceptibility is related to a conformal field theory on flat 2D space with a
central charge c = −2. This is an example of how the combined use of tools for studying
models on random lattices and the KPZ relation allow to investigate the universality
classes on flat space.

The field theory c = −2 is an example of logarithmic CFTs, a CFT with logarithmic
singularities in the correlation functions which lead to interesting consequences [55, 56],
and is the continuum limit of a lot of discrete models. We have directly shown that
spanning hypertrees and Hamiltonian cycles are among those. Other important models
on random lattices that can be mapped by KPZ to c = −2, are dense polymers and the
bosonic string in minus two dimensions. Indeed dense polymers are solved on random
planar lattices in [27] using a mixture of random matrix and combinatorial techniques,
and the authors find coherently with KPZ prediction, γ = −1. The bosonic string
embedded in a space with dimension d = −2 possesses γ = −1 too [57]. We remark
that if the belonging of trees and Hamiltonian cycles to c = −2 is already known2, the
general result for hypertrees is not, and our computation is an important evidence for
their critical behaviour.

We have been able to solve the models presented here with the same combinatorial
approach, thanks to some common features shared by these models. The key point in
the solution was the possibility of separating an inner and an outer region in a given
configuration, in a way that the patterns had cyclic symmetry. For spanning trees and
their generalization to hypertrees this division was made by the cycle along the tree,
while in Hamiltonian cycles it was made by the space-filling cycle. Then, a model that
possesses the feature of having an inner and an outer region, whose configurations are
respectively enumerated by ψin(n) and ψout(n), functions of the size n of the graph, can
be described by

Z(g) ≃ ∑
n

ψin(n) ψout(n)

n
gn . (5.41)

Further, if both ψin(n) and ψout(n) behave as n−3/2 in the large volume limit, it will be
in the universality class of spanning trees.

2For a discussion on Hamiltonian cycles see [58]
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Chapter 6

Spanning trees on random lattices of
arbitrary genus

The purpose of this chapter is to extend the analysis done for trees on random planar
lattices to lattices of arbitrary genus. Considering ensembles of graphs of positive genus
in addition to the planar ones arises very naturally in the context of random matrix
theory. Indeed we showed in section 1.15 that matrix integrals organize the partition
function as a topological expansion, equation (1.18).

After having solved the model on random lattices of arbitrary genera, and exposed
a method to visualize the graphs that constitute the leading contribution to the partition
function, we will discuss the problem of studying the all-genus partition function for
spanning trees, that is the sum over genus of the partition function for fixed genus.
The work presented in this chapter is entirely original, and relies on the results about
the enumeration of maps presented in chapter 3 and on the methods to simplify the
diagrammatics exposed in [21].

6.1 Analysis at fixed genus

The extension of the partition function (5.2) for spanning trees on random planar graphs
to arbitrary genus h is simply

Ztree
h (g, N) = ∑

T
gV(T ) ∑

G≻T
h(G)=h

N−2h

|Aut(G/T )| (6.1)

where T is a tree of coordination k = h + 2, and now G are connected graphs of genus
h that have T as a spanning tree over them.

This partition function can be computed by means of a combinatorial method sim-
ilar to the one exposed in section 5.1 for planar lattices. Following the procedure of
shrinking as in the planar case, the generalization to arbitrary genus will be simply ob-
tained by replacing Cn in (5.3) with the number of all possible pairings of the half-edges
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of a one-vertex graph respecting the topology of the surface (see figure 6.1). Turning
to the dual graph, this corresponds to the number ǫh(n) of unicellular maps of genus h

introduced in chapter 3.

Figure 6.1: A spanning tree over a graph embedded in a surface of genus 3. The gray
region encloses the tree with its leaves to be shrinked. After the shrinking we have a
one-vertex graph on that surface.

Then equation (6.1) can be written in terms of the number n of edges of the one-
vertex graph G/T , that corresponds to half the number of border legs of the tree in G.
We have

Ztree
h (g, N) = ∑

n>0

A′
h, 2n−2

h
ǫh(n)N−2hg

2n−2
h . (6.2)

ǫh(n) can be written as a sum over integer partitions of h that can be evaluated
easily for the first values of h, formula (3.21). For example in the case of spanning trees
on random graphs embedded in the torus and in the surface with two handles, the
partition function results

Ztree
1 (g, N) =

(1 − 16g2)K
(

16g
8g+1

)

− (8g + 1)E
(

16g
8g+1

)

288πg2
√

8g + 1N2
(6.3)

Ztree
2 (g, N) =

1

2880πg2(8g − 1)3(8g + 1)5/2N4

(

(102144g6 − 9276g4 + 174g2 − 1)·

· E

(
16g

8g + 1

)

− (8g − 1)(6(4480g4 + 618g2 − 21)g2 + 1)K

(
16g

8g + 1

))

(6.4)

where E and K are the complete elliptic integral of the second and of the first kind.
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6.1.1 Thermodynamic limit

We can easily obtain the thermodynamic limit of (6.2) by approximating the summand
with Stirling formula and using the asymptotic of ǫh(n), equation (3.22). We have

Ztree
h (g, N) ∼ ∑

V

(
g

gc

)V

V−4+3h (6.5)

where V is the area of the graph. The value of the critical coupling gc is the same
found for spanning trees on planar graphs, equation (5.6). The fact that gc does not
depend on the topology is coherent with the general behaviour of the partition function.
Indeed define γstr(h) = γ + h(2− γ), then general results from the continuum Liouville
theories of matter models coupled to 2D gravity state that the partition function should
behave for non trivial genus as [5]:

Zh ∼ (gc − g)2−γstr(h) . (6.6)

This implies

Zh ∼ ∑
V

V−3+γstr(h)

(
g

gc

)V

. (6.7)

Given the value of the string susceptibility computed on random planar graphs, equa-
tion (6.7) in our case predicts that the exponent of the volume is −4 + 3h, in agreement
with (6.5). This is also consistent with the KPZ relation (4.1) generalized in the case of
arbitrary genus [59, 44]:

γstr(h) = 2 − 1 − h

12

(

25 − c +
√

(1 − c)(25 − c)

)

. (6.8)

for γ = −1 and c = −2. We can also directly check that for h = 1, 2 the explicit
expressions (6.3) and (6.4) for g near gc behaves respectively as log(g − gc) and (g −
gc)−3.

Furthermore our procedure is validated also by comparison with known results for
other models related to spanning trees when the topology is not trivial. Indeed, the
bosonic string in a space of dimension d = −2 [57], and those for the gravitational
O(n = −2) loop–gas model [27] are in agreement with our results.

6.1.2 Partition function as sum over triangulations

We now present another method to compute the thermodynamic limit of the partition
function at fixed genus. This second approach, despite being more complicated, has the
advantage of isolating the class of diagrams that contributes to the partition function.
The idea underlying the method presented here is that the diagrammatics can be con-
siderably simplified if we omit link patterns and parallel edges in a one-vertex graph.
We will now explain how to make these simplifications using the tools to reduce the
diagrammatics described in [21].
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Given a graph G on a surface of genus h and a spanning tree T over it, call G ′

the graph G/T in which we contract the tree. G ′ is a one-vertex graph built with non
contractible arcs and link patterns. The former are elements of the non trivial part of
the homotopy group based on the vertex, while the latter can be contracted to points.
Next remove link patterns form G ′ and call G ′′ the resulting graph. Then call G ′′′ the
graph obtained from G ′′ by removing parallel edges (by parallel edges we mean edges
with the same winding number and no other non contractible arc in between).

Out task now is to replace the sum over G in the partition function of spanning trees
with a sum over G ′′′. To explain how to do so, we first introduce a representation of Ztree

h

as a Cauchy integral. The function Ah(z), defined in section 4.3.1 as the generating
function of the generalized Catalan numbers Ah,n, is such that the substitution z−2n →
Ah, 2n−2

h
g

2n−2
h can be implemented by the following Cauchy integral:

∮
dz

2πiz
z2(Ah(gzh) − 1)z−2n = Ah, 2n−2

h
(1 − δ 2n−2

h ,0)g
2n−2

h . (6.9)

If we do not introduce the numbers ǫh(n), the partition function Ztree
h can be written as:

Ztree
h (g, N) = N−2h ∑

G ′

1

|Aut(G ′)|A
h,

2E(G′)−2
h

g
2E(G′)−2

h , (6.10)

where G ′ are one-vertex graphs of genus h. If we then call a(z) = z(Ah(gzh) − 1), Ztree
h

can be written also as a Cauchy integral:

Ztree
h (g, N) = N−2h

∮
dz

2πi
a(z) ∑

G ′

1

|Aut(G ′)|

(
1

z

)2E(G ′)

. (6.11)

In this form the partition function is suitable for being written as a sum over the graphs
G ′′ in which we have removed link patterns (for an example of the removal of link
patterns in a one-vertex graph embedded in the torus, see figure 6.2(a)).

We can trade the sum over G ′ for a sum over G ′′, if we replace also the term z−1 in
the integrand of (6.11) with q(z), defined as

q(z) := z−1C(z−2) , (6.12)

where C(x) is the generating function of Catalan numbers, equation (1.11). This cor-
responds to dress each half-edge of a diagrams G ′′ with a link pattern of arbitrary size
(possibly zero). Note that the cyclic symmetry of the edges is crucial for this operation.
At this intermediate step the partition function looks like

Ztree
h (g, N) = N−2h

∮
dz

2πi
a(z) ∑

G ′′

1

|Aut(G ′′)|q(z)2E(G ′′) . (6.13)

Next, replacing the sum over G ′′ with the sum over G ′′′ amounts to a resummation
of parallel edges, since G ′′′ are generated from G ′′ by shrinking multiple edges to single
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(a) The removal of link patterns (in blue) from a graph G ′ embedded in the torus. This leaves us with its
correspondent graph G ′′ with only non contractible arcs (in red).

(b) The procedure of removing parallel edges form a graph in G ′′ that lead to a graph in G ′′′. Parallel edges
are colored with the same shade.

Figure 6.2: The two steps for replacing G′ with G′′′.
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ones. The resummation consists in replacing the integrand q2(z) in (6.13) with Q−(z),

Q−(z) := ∑
l≥1

q2l =
q2(z)

1 − q2(z)

=
1

2




1

√

1 − 4
z2

− 1



 . (6.14)

The trading of multiple edges for single ones is illustrated in figure 6.2(b).
Our final formula for the partition function then is

Ztree
h (g, N) = N−2h

∮
dz

2πi
a(z) ∑

G ′′′

1

|Aut(G ′′′)|Q−(z)E(G ′′′) . (6.15)

The integral now is over a circle between the two branch cuts of the integrand (figure
6.3). Indeed Q−(z) has a branch cut in (−2, 2), while a(z) in the region of the real line
that depends on h and g ((hg)−1/h/(h + 1)(h+1)/h, +∞), according to (4.16).

ℜz

ℑz

−2 2

Figure 6.3: The circle over which the integral in equation 6.15 is performed. It is be-
tween the branch cuts of Q−(z) and a(z).

Note that diagrams in G ′′′ have only faces with at least three sides, because a face
with one side is contractible and is a link pattern, while faces with two sides correspond
to parallel edges, and both of these structures have been removed.

We now want to investigate the thermodynamic limit of (6.15). When g → gc the
two branch cuts of the integrand merge together and Q−(z) becomes singular. Then
in this limit, the leading term in the sum (6.15) will be produced by the class of graphs
that maximize the number of edges, that is triangulations1. Recall that we have already
computed the sum over one-vertex triangulations of a genus h surface weighted by the
inverse of the order of their automorphism, formula (3.19). Remember also that the
number of edges in these triangulations is fixed to 6h − 3. So when g approaches its
critical value, the partition function can be written as:

Ztree
h (g, N) ∼ 1

N2h

2

12h

(6h− 5)!

h!(3h− 3)!

∮
dz

2πi
a(z) Q−(z)6h−3 . (6.16)

1In section 6.2.3 we will give a systematic perturbative expansion in the variable 1/V, summing over
polygons of increasing sides.
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To compute this quantity we expand the integrand: a(z) is related to the generating
function of the generalized Catalan numbers and thus can be expanded as a sum over
Ah,n. Near the critical point, by removing a non-singular term, we can substitute the
propagator Q−(z) with

Q0(z) =
1

2




1

√

1 − 4
z2



 (6.17)

and express it as a binomial series in 1/z.
Performing the Cauchy integral we are left with

Ztree
h (g, N) ∼ 26

(N2 · 12 · 26)h

(6h− 5)!

h!(3h− 3)!Γ(3h− 3/2) ∑
V≥1

(2hg)V((h + 1)V)!

(hV + 1)!V!( hV
2 + 1)!

·

· Γ

(

3h− 1

2
+

hV

2

)

=
2√
π

(
1√
12N

)2h 1

h! ∑
V≥1

(2hg)V((h + 1)V)!

(hV + 1)!V!( hV
2 + 1)!

Γ

(

3h− 1

2
+

hV

2

)

. (6.18)

The sum over V is intended on values that satisfy hV even. Notice how the factorials
combine to give a simple term in h.

Perform Stirling approximation in (6.18), we end with the same large volume limit
obtained above using the asymptotic of ǫh(n), equation (6.5), giving a consistency check
of the two approaches.

6.2 All genus partition function

Now we are interested in summing the partition function (6.2) over h to describe the
contribution of all genus surfaces

Z(g, N) = ∑
h≥0

Zh(g, N) . (6.19)

Looking at the result in the large volume limit, equation (6.18), we note that summing
over genus will produce a divergent series, since the summand doesn’t go to zero for
large h. The fact that perturbation theory leads to a divergent series is a common feature
of the topological expansion of matrix models.

We start by reviewing some aspects of divergent series.

6.2.1 Divergent series and Borel summability

In this section we shall review briefly asymptotic series and Borel summability, and in
the end discuss our case. A function f (x) analytic in a sector S = {x ∈ C : | arg(x)| ≤
α/2, |x| < |x0|} possesses an asymptotic expansion in S

f (x) ≈
∞

∑
k=0

fkxk (6.20)
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if to every order N there exists a bound of the form

∣
∣
∣
∣
∣
f (x) −

N

∑
k=0

fkxk

∣
∣
∣
∣
∣
≤ CN+1|x|N+1 for all N ∈ Z+ . (6.21)

This means that, though the series diverges, its partial sums can be made an arbitrarily
good approximation to f for |x| small enough. But in general the function f (x) is not
unique, since we can always add a function that is smaller than minN CN |x|n in S. For
example we can add e−1/x for ℜx > 0, which has a Taylor series that at the origin
converges to the zero function. However under certain conditions of maximality of the
sector of analiticity S, the function f is unique. Indeed if we consider for definiteness
the following asymptotic

fk ∼ A−k(βk)! , (6.22)

that is the typical large order behaviour of perturbation theory leading to a divergent
series in quantum mechanics and field theory, then under the condition α > βπ the
function f (x) = ∑k fkxk is unique [60]. In this case there are summation methods that
allow to reconstruct the function from the expansion. One of these methods relies on
the Borel transform B f (x) of f (x) defined as

B f (x) =
∞

∑
k=0

bkxk with bk =
fk

(βk)!
. (6.23)

Under the assumption (6.22), the series that defines B f (x) has a finite radius of con-
vergence |A| and the Borel transform possesses a pole in x = A. Using the integral
representation of the Gamma function

Γ(x) =
∫ +∞

0
ds e−ssx−1 , (6.24)

f (x) can be expressed as

f (x) =
∞

∑
k=0

fkxk =
∞

∑
k=0

(βk)!bkxk =
∞

∑
k=0

∫ +∞

0
ds e−ssβkbkxk . (6.25)

Now we formally interchange the order of summation and integration to obtain

f (x) =
∫ +∞

0
ds e−sB f (xsβ) . (6.26)

For x > 0 this integral is convergent if A < 0 so that no singularity occur in the
path from 0 to ∞. In this case (6.26) is used to define the sum of the divergent se-
ries ∑k fkxk. More precisely this equation should be read from right to left: upon a
change of variables, the integral is a Laplace transform and then we can use Laplace
method for x → 0+ to make an asymptotic expansion and obtain the series in (6.20)
with fk = A−k(βk)!.
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As an example consider for A < 0 the case β = 1, that is

f (x) =
∞

∑
k=0

A−kk!xk . (6.27)

The Borel transform of f is

B f (x) =
∞

∑
k=0

( x

A

)k
=

A

A − x
, (6.28)

and the series converges only for |x| < |A|. Then according to (6.26) we have to inte-
grate the Borel transform, thus formally extending its definition, to obtain the following
expression for f (x)

f (x) =
∫ +∞

0
ds e−s A

A − xs
=

e−A/xEi(A/x)

x
(6.29)

where Ei is the exponential integral function which has a branch point at the origin. We
have in this way associated a value to the divergent series (6.27) for A < 0 in a sense
that if we perform the Taylor expansion of the function (6.29) we obtain a series whose
coefficients are A−kk!.

If instead we consider the case A > 0 we cannot run the integral (6.26) along the real
axis, so the non alternating series ∑k fkxk is said to be not Borel summable. However
we could use a Borel-inspired approach to compute f (x), where we deform the path of
integration in order to avoid the singularity s = (A/x)1/β. If we call the integrals above
and under the singularity f+(x) and f−(x), then one can show that the discontinuity of
f gives information about the large order behaviour of fk

fk ∼
∫ ∞

0

ds

sk+1
( f+(s) − f−(s)) . (6.30)

The difference f+(x) − f−(x) is of exponential order and does not have an expansion
in x, so the ambiguity of choosing the contour of integration from origin to infinity in
the case A > 0 is related to the presence of non-perturbative effects [5].

In random matrix theory it happens that the topological expansion of the most in-
teresting models, such as pure gravity or the unitary minimal models, is not Borel
summable. In that case formula (6.30) joint with the Painlevè differential equation2

satisfied by the full partition function, allows to access to the large order behaviour. For
a thorough discussion on this method, see [5], where it is proved that every minimal
model (p, q) coupled to 2D quantum gravity has a topological expansion that behaves
as (2h)! for h large.

Coherently we find the same large order behaviour from our explicit expression for
the genus h partition function, formula (6.18). Further we note that in our case the

2 Painlevè equations arise in random matrix theory when one considers the solution of a matrix integral
with the technique of orthogonal polynomials and N and g scale in an appropriate way (double scaling
limit). We do not treat these aspects in this thesis and we refer to [22, 5] for a review.
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summand is positive definite so the all genus partition function (6.19), like the one of
pure gravity, is not Borel summable.

Remark that here we are in a privileged position with respect to the usual situation
one can encounter for the topological expansion of matrix integrals. Indeed we have
more than a general functional form of the partition function usually obtained from
the Painlevè equation: our combinatorial approach has furnished us with directly the
exact expression of the partition function at every genus. However the non summa-
bility of the series, makes dealing with it difficult. A possible prescription to compute
equation (6.19) could be using the Borel regularization in a region where the series is
Borel summable (imaginary values of N) and then continue analytically the result to
the region of interest. This procedure unfortunately is hard to follow, since we cannot
make any approximation on the summand, because terms small in some region of the
complex plane can become important when we use analytic continuation, and then we
would have to handle very cumbersome expressions.

Instead we will study the exponential generating function for spanning trees at fixed
genus, that, being regularized, does not share the problematic issues of the generating
function. We will show how to compute it at leading order and to derive the phase di-
agram. Then we will also present a method to have control over the subleading orders.

6.2.2 Critical behaviour of the exponential generating function

The purpose of this section is to study the regularized series

Zreg(g, N) = ∑
h≥0

Ztree
h

(2h)!
. (6.31)

In the large volume limit, we can approximate the integrand using equation (6.18)

Zreg(g, N) ∼ ∑
h≥1

2√
π

(
1√
12N

)2h 1

h!(2h)! ∑
V≥1

(2hg)V((h + 1)V)!

(hV + 1)!V!( hV
2 + 1)!

Γ

(

3h− 1

2
+

hV

2

)

.

(6.32)
The sum over h starts from 1 because the summand does not reproduce at h = 0 the
planar partition function, but this is not relevant in the interpretation of (6.32), since we
are interested in the large order behaviour that lead to the critical structure. We remark
that among the factors that regularize the series, (2h)! is the most natural one, since
in that case Zreg can be considered as an exponential generating function for spanning
trees at fixed genus, and is within the typical framework of Borel sums.

The computation of this partition function proceeds as follows. First we express
the Gamma function which entangles h and V in (6.32), with its integral form (6.24).
Note that this is actually the same trick used in Borel regularization in section 6.2.1, but
applied to a different factor.

All remaining factors depend either only on V or only on h. Then, we use Stirling
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formula to approximate both kinds of factors. We end with:

Zreg(g, N) ∼ 3h
√

h + 1

4π3/2

∫ ∞

0
dse−s s−

3
2 ∑

h≥1

(
9s3

16N2

)h
1

Γ
(
3h + 3

2

) ∑
V≥1

(g̃s
h
2 )V 1

Γ
(

hV
2 + 7

2

)

(6.33)
where g̃ = g/gc.

The two series can be summed separately. For simplicity call x and y the terms
raised to respectively the power 3h and V in (6.33) and call the sum over genus and
vertices φ1(x) and φ2(x):

φ1(x) = ∑
h≥1

x3h

Γ
(
3h + 3

2

) ; φ2(y) = ∑
V≥1

yV

Γ
(
V + 7

2

) . (6.34)

φ1(x) is a Hypergeometric function, but if we write this sum as

φ1(x) =
1

3 ∑
h≥0

(

xh

Γ
(
h + 3

2

) +
(xω)h

Γ
(
h + 3

2

) +
(xω2)h

Γ
(
h + 3

2

)

)

− 2

π
(6.35)

with ω = e
2πi

3 being a cubic root of the unit, we can exploit the simpler series

∑
h≥0

xh

Γ
(
h + 3

2

) =
exerf(

√
x)√

x

to have an expression easier to handle. When x is large, the Error Function approaches
1, so in this regime we can approximate φ1(x) with ex/(3

√
x). Conversely when x is

small, φ1(x) can be approximated with its value near the origin, 16x3/(105
√

π).
An analogous treatment can be made for the series on V. For convenience we fix

the value of the coordination to 4, h = 2. Other cases are easily related to this one by
the same trick used for the sum over genus. We have:

φ2(y) =
eyerf(

√
y)

y
5
2

− 8

15
√

y
− 2√

πy2
− 4

3
√

πy
(6.36)

Again we can use the approximation of the Error Function and trade φ2(y) for eyy−
5
2

if y is large and for 16y/(105
√

π) if y is small. To compute the integral over s, we ap-
proximate the integrand properly and then just solve simple integrals. Being interested
in finding the critical regime, we can forget about numerical coefficients and write this
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approximation for equation (6.33):

Zreg(g, N) ∼
∫ ∞

0
ds e−ss−

3
2 φ1

( a

N2/3
s
)

φ2(g̃s)

∼
∫ ∞

0
ds e−ss−

3
2 ·







16

105
√

π

( a

N2/3
s
)3

if
a

N2/3
s ≪ 1

easN−2/3

asN−2/3
if

a

N2/3
s ≫ 1

·

·







16

105
√

π
(g̃s)3 if g̃s ≪ 1

eg̃s

√
g̃s

if g̃s ≫ 1
(6.37)

where we call a the combination (3/4)2/3.
Since we consider N ∼ O(1) or large, g̃ ∼ O(1), we actually have only three possible

regimes:

1. small s:
a

N2/3
s ≪ 1 and g̃s ≪ 1

2. large s:
a

N2/3
s ≫ 1 and g̃s ≫ 1

3. quasi planar:
a

N2/3
s ≪ 1 and g̃s ≫ 1

These three regimes correspond respectively to integration regions (0, 1), (1, N2/3

a ), and

( N2/3

a , ∞).
The integral in the first region poses no problem, the one in the second is convergent

for g̃ ≤ 1, and from the convergence of the third piece, we extract the critical curve:

1 − g̃ − a

N2/3
= 0 (6.38)

In figure 6.4 we depict the N2/3 vs. g̃ phase diagram. The convergence region filled
corresponds to 1 − g̃ − a

N2/3 ≥ 0, and it includes also the boundary, the critical curve
(6.38).

We have already mentioned that we choose to regularize with (2h)! because we had
not an indication of a preferable one and then the partition function could be seen as an
exponential generating function. But this is not the only possible choice.

In fact we need a factor behaving like h2h for large h to make the series convergent.
So every term with this asymptotic, like (2h + c)! with arbitrary c, or like (h!)2, could
be equally used. The derivation makes clear that choosing a different regularization
would not alter our picture of the critical behaviour.

As a last remark, we note that another good choice of regularization is dividing by
Γ(h+ 1

3 )Γ(h+ 2
3 ). In this case we can perform the calculations without the need of using
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1

N2/3

g̃

Convergence

Divergence

Figure 6.4: The N2/3 vs. g̃ phase diagram. The region filled is where the integral con-
verges. The boundary of this region is the critical curve, equation (6.38). Of course this
analysis is not valid for values of N2/3 near the origin.

Stirling formula on the series on genus, since:

Γ

(

h +
1

3

)

Γ

(

h +
2

3

)

Γ(h + 1) =
2π

33h+1/2
Γ(3h + 1) .

Using

∑
h≥0

Γ
(
3h + 1 + V − 3

2

)

Γ(3h + 1)
xh = (1 − x)1/2−VΓ

(

V − 3

2

)

together with the trick of expressing the sum involving only h multiples of 3 with the
cubic roots of the unity, we get for h = 2:

Zreg(g, N) ∼
√

3

π3 ∑
V≥1

(4g)V (3V)!Γ(V − 3
2 )

(2V + 1)!V!(V + 1)!

(

− 1 +
1

3

((

1 − a

N2/3

)1/2−V
+

+
(

1 − a

N2/3
e−2πi/3

)1/2−V
+

(

1 − a

N2/3
e2πi/3

)1/2−V))

(6.39)

Here we easily see how g and N combine. The sum on V is a combination of Hyperge-
ometric functions and the convergence request leads us to the same critical behaviour
discussed above.

74



6.2.3 Subleading corrections as sums over polygons

In section (6.1.2) we showed that when we are restricting to the class of diagrams with
no parallel edges and link patterns, the thermodynamic limit (6.18) is obtained by con-
sidering only graphs with faces of degree 3. Using the method outlined in that section,
it is clear that the subleading corrections in 1/V to the partition function will be or-
ganized as a sum over graphs with polygonal faces of increasing number of sides. If
for example we consider the case of a one-vertex graph with a pentagonal face and a
triangular one embedded in a surface of genus h, we have that the entangling Gamma
function in (6.18) changes from Γ(3h− 1

2 + hV
2 ) to Γ(3h− 3

2 + hV
2 ), reducing by one the

power of V, as can be easily understood using Stirling formula.
In section 6.2.2 we considered the leading order of the exponential generating func-

tion (6.31). The purpose of this section is showing how to perform a systematic expan-
sion of this partition function in the size of the graphs.

Let us start from the expression of the partition function at fixed genus represented
as a Cauchy integral, equation (6.15), and introduce the shortcut Ik

− for:

Ik
− =

∮
dz

2πi
a(z) Q−(z)k . (6.40)

Then equation (6.15) looks like

Ztree
h (g, N) = N−2h ∑

G ′′′

1

|Aut(G ′′′)| I
E(G′′′)
− . (6.41)

In section 6.1.2 we noted that when the size of the graph is large we can trade Q− for
Q0 or equivalently I− for I0, I0 defined as (6.40) with Q0 in place of Q−. That allowed us
to use the binomial series and easily compute the partition function in this limit. Now
we can’t do this approximation since we want to have more control on the size, but
without it the computation of the Cauchy integral of equation (6.40) would be difficult.
Furthermore using I0 in place of I− would help us to make contact with the analysis
done in the thermodynamic limit. For these reasons, we will show first how to replace
I− for I0 also when we are not at the thermodynamic limit at the price of introduce an
ad hoc weight for the graphs.

Weighting the diagrams

In this paragraph we would like to derive a method to replace I− with I0. More gener-
ally, define Ic as

Ic =
∮

dz

2πi
a(z)

(

Q−(z) +
1 + c

2

)

(6.42)

and the corresponding partition function as

Ztree
h (c,~α) = N−2h ∑

G ′′′

1

|Aut(G ′′′)|



 ∏
f ∈ F(G ′′′)

α| f |(c)



 I
E(G ′′′)
c (6.43)

75



where | f | is the number of sides of face f ∈ F(G′′′) and the dependence on N and g is
understood. Then we would like to use (6.43) in place of our former partition function
(6.41), that corresponds to Ztree

h (−1,~e) where~e is the vector with every component equal
to 1. This can be done if we ask that for a given value of c, ~α satisfies the consistency
requirement

Ztree
h (c,~α) = Ztree

h (−1,~e) . (6.44)

Once ~α has been determined, we can use (6.43) as the partition function of spanning
trees at fixed genus. So trading I− for Ic amounts to perform a weighted sum over
graphs, with weights~α that depend on the degree of the faces of the graph.

The computation of ~α proceeds as follows. Associate to the graphs of the sum in
(6.43) two types of edges (say red and blue), one for Q− and one for (1 + c)/2. Graphs
from the expansion of Ztree

h (−1,~e) will be built with only Q− lines. Equation (6.44)

states that the spurious contributions of (1 + c)/2 lines to graphs in Ztree
h (c,~α) must

sum up to zero.
As an example we show how the consistency requirement looks like for h = 1,

where the diagrammatics is very simple, since we only have a graph with one face of
four sides and one with two faces of three sides. For c = 0, equation (6.44) turns into

1

4
α4

(

I2
− + 2I−

1

2

)

+
1

6
α2

3

(

I3
− + 3I2

−
1

2
+ 3I−

1

4

)

=
1

4
I2
− +

1

6
I3
− , (6.45)

that gives α3 = 1, α4 = 0. This means that we can use I0 at genus 1 if we omit squares
in the diagrammatics.

To generalize this example and compute ~α, fix a graph from Ztree
h (−1,~e) expan-

sion with triangles and one polygon P , built with only Q− lines. The same graph
in Ztree

h (c,~α) can be decorated with (1 + c)/2 lines. Grouping their contribution to-
gether means that we can form arbitrary subpolygons of P , each cut being weighted by
(1 + c)/2, and each face by the corresponding αk. Of course, the number of cuts equals
the number of faces minus one. Call (p1, . . . , pk) the set of subpolygons and lj is the
number of sides of pj, then we can write the following equation for~α:

∑
(p1,...,pk)

(
k

∏
j=1

αlj

) (
c + 1

2

)k−1

= 1 (6.46)

This equation can be solved easily if the number of sides of P is small. The first cases
are

• : α3 = 1

• : α4 + 2α2
3

1+c
2 = 1 ⇒ α4 = −c

• : α5 + 5α3α4
1+c

2 + 5α3
3

(
1+c

2

)2
= 1 ⇒ α5 = 1 − 5 1+c

2

(
1+c

2 − c
)

and these equations can be represented graphically as
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• α3 =

• α4 +2α2
3 =

• α5 +5α3α4 +5α3
3 =

Red lines correspond to Q− lines, while blue lines are the spurious decorations and
bring a factor (1 + c)/2 raised to their number. The general expression of the k-th
element of~α for c = 0 is found to be, for k ≥ 0,

{

α2k+3 = Ck

(
− 1

4

)k

α2k+4 = 0
(6.47)

where Cn are the Catalan numbers (see section 1.1.1), encountered many times in this
thesis. αk is nonvanishing for odd k only, stating that polygons with even number of
sides don’t contribute when we use I0.

First terms of the expansion

Now that we have the formula for ~α(c = 0), we can use the partition function (6.43)
with I0 in place of I−.

We can directly sum over genus and compute the corrections to the leading order of
the regularized partition function studied in section 6.2.2. Since the approximation as a
sum over triangulations is valid only in positive genus, we will sum only over h > 0.

Using formula (3.18) for the number of monochromatic unicellular maps, we can
write the partition function a sum over partitions µ = ∏l lnl of the number of half-
edges 2n. Indeed recall that a partition µ = ∏l lnl corresponds to a graph with nl faces
of degree l, and from Euler formula satisfies L(µ) = ∑l nl = E + 1 − 2h. So the number
of edges and the genus can be written in terms of the parts of µ as n = (∑l lnl)/2 and
h = (∑l(l/2 − 1)nl + 1)/2. We then have

Zh>0
reg (g, N) = ∑

h≥1

1

N2h(2h)! ∑
n≥3

∑
µ ⊢2n

c2n
2n,µ

2n
(∏

l

αnl

l )In
0

= ∑
µ

1

2N ∏
l




I

l
2
0 αl

(2N)
l
2−1l





nl

1

nl !

(
∑l lnl

2 − 1
)

!
(

∑l(
l
2 − 1)nl + 1

)

!
∑

(i1,...,iL(µ))²h

L(µ)

∏
k=1

(
µk

2ik + 1

)

(6.48)

If we restrict the sum in (6.48) over partitions µ = 3n3 by setting l = 3 and summing
over n3, we have a sum over triangulations. Since α3 = 1 this is:

Ztriang(g, N) = ∑
n3≥1

1

2N

(

I3/2
0

3
√

2N

)n3
1

n3!

Γ
(

3
2 n3

)

Γ
(

n3
2 + 2

)

(
n3

2+n3
4

)

33n3/4−1/2 , (6.49)
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and rewriting this formula as a sum over the genus h = (2 + n3)/4, we end with

Ztriang(g, N) = ∑
h

2 I6h−3
0

12hN2h

(6h− 5)!

(2h)!h!(3h− 3)!
. (6.50)

Expanding I0 and simplifying, we recognise exactly the thermodynamic limit of the
partition function, formula (6.32).

The expansion in 1/V will be achieved by considering partitions which have tri-
angles and an increasing number of polygons with a higher number of sides. Indeed
a k-gone in addition to triangles brings a factor of Ik−3

0 in the denominator. We can
compute explicitly an expansion in terms of 1/I2

0

Zh>0
reg (g, N) = Ztriang ∑

l≥0

Kl

I2l
o

. (6.51)

Note that if we use the integral representation of the Gamma function in equation (6.51),
the term containing V factorizes and the series on V does not depend on l. The coef-
ficient Kl can be easily computed by considering (6.48) with an increasing number of
polygons with odd number of sides greater than 3 and dividing the result by Ztriang. In
table 6.1 we present the first terms. We insert also θ functions which ensure that certain
series of polygons cannot be embedded in every surface. The denominator of every Kl

is (6h − 5)(6h − 7) · · · (6h − 3 − 2l) and is precisely what we have in the numerator if

we expand the corresponding term I6h−3−2l
0 , so the subleading corrections to the par-

tition function are polynomials in h with the degree increasing with l, multiplied by θ
functions. Unfortunately we don’t see any emerging general structure.

6.3 Discussions

Spanning trees on random lattices are easy to solve, even when the topology is not triv-
ial. Indeed as we showed in this chapter the counting of their configurations can be
done by enumerating unicellular maps, and this is all we need to compute the partition
function exactly with a full control on the size. In this sense spanning trees are also eas-
ier to solve than the empty model, pure gravity, since the general procedure in random
matrix theory to solve models on positive genus is using techniques from orthogonal
polynomials or loop equations, both considerably harder than our approach. The solu-
tion at fixed genus we presented is validated by comparison of the critical exponents
with already known results in literature and our previous work.

In this chapter we tried also to address the computation of the all genus partition
function, but the difficulty of studying this non Borel summable series, led us to study
its regularized version first, the exponential generating function. In this case we have
been able to compute the phase diagram in the thermodynamic limit and thanks to our
procedure of simplification of the diagrammatics, we could also give a recipe to have
control over the subleading orders.
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K1
3(5 − 12h)(−1 + n)θ(h− 2)

10(−5 + 6h)

K2 2 ;
1

2800(−7 + 6h)(−5 + 6h)
3(3625 + 2h(−12179 + 6h·

·(3449 + 12h(−187 + 42h))))θ(h− 2)

K3 3 ; 2 + − 1

1008000(2h− 3)(6h− 7)(6h− 5)
(h− 2)(9h(3h(4h(864h·

; ·(28h− 199) + 455263) − 2160181) + 3117815)+
−2712500)θ(h− 3)

Table 6.1: First values of the coefficient of the perturbative expansion in 1
I2l
0

. In the sec-

ond column there are the polygons (beside triangles) one has to consider to increase the
power of 1/I2

0 . K1 correspond to the first subleading order and is obtained considering
all triangles but one pentagon (partition of length 5) in the sum over partitions in equa-
tion (6.48). K2 corresponds to the sum of two contributions, one from the addition of
two pentagons and one from the presence of a heptagon. K3 is the sum of three contri-
butions, one where we add three pentagons, one with a pentagon and a heptagon, and
one with a nonagon.

We remark however that a study of the generating function for spanning trees at
fixed genus could be interesting in the context of non perturbative 2D quantum grav-
ity. Indeed it is a debated issue if non perturbative matrix models coincide with non
perturbative 2D quantum gravity. This amounts to ask if we can trust the resummation
of the topological expansion as non perturbative quantum gravity. In the non Borel
summable case, it has been conjectured that since perturbation series does not define
a unique function, the matrix model does not define the sum over topologies beyond
perturbation series. For example it has been shown in the case of pure gravity that the
real solution of the Painlevè equation has unphysical properties, in disagreement with
what obtained by other methods [5]. Then our explicit expression of every order in per-
turbation theory can help to understand better this question, that usually is addressed
only by considerations on the solutions of the Painlevè equations. This could be an
interesting development of our work.
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Conclusion and outlook

In this thesis we studied spanning trees and forests on random lattices. We first re-
viewed some aspects of random matrix theory, a modern set of tools to deal with mod-
els on fluctuating surfaces. Despite nowadays there is not so much enthusiasm on 2D
quantum gravity and random matrices as when this study started, statistical models on
random lattices are still worth to study in the light of their connection with combina-
torics and models on flat lattices. Both these connections are elucidated in this thesis
and the conclusions we can guess from them are the motivations of our work.

The original contribution we developed is the study of the singularities of spanning
forests on random lattices pursued in chapter 4. It is based on the random matrix ap-
proach derived in [21] and the solution of the O(−2) loop-gas model [18]. We obtained
two critical values for the fugacity of the trees t = 0 and t = −1, both corresponding to a
central charge c = −2 on flat space. The statement at t = 0 is consistent with asymptotic
freedom and with the criticality of trees, while the interpretation of the point t = −1 is
not clear.

The rest of our results relies on combinatorics, following a recent trend in statistical
mechanics of fluctuating surfaces, that have seen an increasing number of combinato-
rial methods entering the field of 2D quantum gravity, witnessing a combined work
of mathematicians and physicists in this research area. In chapter 5 we directly stud-
ied spanning trees, spanning hypertrees and Hamiltonian cycles by enumerating their
configurations, and we obtained that all these models have a central charge c = −2 on
flat space. The results obtained for trees are a review of what obtained in [21], while
Hamiltonian cycles and spanning hypertrees are original contributions. We remark that
our derivation is easy and self-contained, giving the possibility of a refined control of
the finite size. The analysis of spanning hypertrees is of particular interest since no
matrix integral can represent hypergraphs. Spanning trees on random lattices of arbi-
trary genus are treated for the first time in this thesis with our combinatorial model.
Our derivation confirms that spanning trees are intrinsically easier than pure gravity,
reducing the problem to the enumeration of unicellular maps. Our methods then allow
a full analysis of the exponential generating function of spanning trees at given genus.

Spanning trees and forests are a vast topic with both combinatorial and physical in-
terest, and our work is only a modest contribution toward their comprehension. There
are indeed a lot of possible developments that can naturally follow what is done in this
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thesis.
First, our analysis of the singularities of spanning forests done in chapter 4 needs

more evidences to be properly understood. It would be interesting solving the model
on random lattices of coordination four, and confront the results with what obtained
on the fixed square lattice. This could help us in interpreting the role of the critical
point t = −1 and give more insights in the antiferromagnetic phase of the Potts model.
Another helpful computation would be directly solving the model at t = −1. This task
could be done using the form of the partition function in terms of embedding-activities.
Indeed the problem posed in this way is equivalent to count planar graphs without any
embedding-active internal edge and could be addressed with a combinatorial model.

The combinatorial method presented here for spanning trees has been derived in
[21] and there generalised in the case of forests, but some open questions remain. In
chapter 5 we stressed that the form of the functions that enumerates the inner and outer
configurations of the models presented had the general feature of having the asymp-
totic n−3/2 when the size of the graph n is large. This suggests that the thermodynamic
limit could be investigated approximating this functions with the Lèvy distribution,
and then tools of Lèvy calculus could be used to address the general problem of solv-
ing spanning forests.

Our study of spanning trees on lattices of arbitrary genus is still incomplete for what
concerns the computation of the exact non Borel-regularized all genus partition func-
tion. This solution can be interesting in the context of non perturbative 2D quantum
gravity.

Another possible development of the work done for spanning trees on random pla-
nar graphs, could be investigating their connection with Stochastic Loewner Evolution
(SLE). Uniform spanning trees on a regular 2D lattice with boundary, and a specific
boundary condition, allow for the definition of stochastic curves, whose continuum
limit is described by SLE. Then we could study the random planar graph variant of this
model where we consider random triangulations, instead of the Riemann sphere, of a
surface homotopic to a disk.

81



Appendix A

Basic notions about graphs and
maps

In this thesis we have generally used the words graphs and maps as synonyms to in-
dicate graphs embedded in a surface, but between these two words there is a subtle
difference that we will explain here, after having recalled some notions about graphs.

A.1 Graphs

A graph is a pair G = (V, E), where V is a finite set whose elements are called vertices
and E is a collection of subsets of V with two elements, called edges. Vertices v, w con-
nected by e = {v, w} are said adjacent. A graph is complete if every pair of vertices is
adjacent. In a graphical representation, vertices are points and edges are lines connect-
ing two vertices. The number of edges incident to a vertex is called the coordination
number (or degree) of v.

A graph G′ = (V ′, E′) is called a subgraph of G if V ′ ⊆ V and E′ ⊆ E. When V ′ = V,
the subgraph is said to be spanning.

A walk ω connecting ω0 with ωk in G is a sequence

(ω0, e1, ω1, e2, . . . , ek, ωk) with ωi ∈ V, ei ∈ E

and {ωi−1, ωi} = ei for 1 ≤ i ≤ k. A walk is said a loop if ω0 ≡ ωk, a path if ω0, . . . , ωk

are distinct vertices and e1, . . . , ek are distinct edges, a cycle if ω0, . . . , ωk−1 with k ≥ 2
are distinct vertices, ωk ≡ ω0, and e1, . . . , ek are distinct edges. We allow graphs with
multiple edges and loops (multi-graphs) as well as vertices of coordination 1 and 2. If
e is an edge of G, we denote by G/e the graph obtained by deleting e and by G\e the
graph in which we contract e, i.e. we identify its two endpoints (see figure A.1 ).

A graph is connected if every pair of vertices is joined by at least one path on G. We
will call the number of connected components K(G).

A forest is a graph that contains no cycles. A tree is a connected forest and then
connected components of forests are trees. In figure A.2 there are the graphical repre-
sentations of a graph with a spanning tree and a spanning forest over it.
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deletion

contraction

Figure A.1: Deletion and contraction of the edge marked in blue.

Figure A.2: A graph, together with a spanning tree (middle) and a spanning forest with
three connected components (right) over it.
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A.2 Maps

Now we turn to the embedding of graphs. We will follow mainly the exposition pre-
sented in [61], and we refer to [34] for a rigorous and extensive treatment of the topics
discussed in this section.

A combinatorial map, or map for short, is a graph drawn on a surface. By a surface
we mean a compact oriented two-dimensional manifold without boundary. Surfaces
are classified according to their genus, that is their number of handles or holes: a surface
can only be homeomorphic to the sphere or to a connected sum of tori.

The difference between a graph and a map is difficult to catch since when we deal
with graphs, we draw them. But the drawing provides graphs with an additional struc-
ture. To explain this fact, let us define precisely what is a map. A map is a graph drawn
on (or embedded into) a surface in such a way that it has non intersecting edges and
cutting along these edges produces a disjoint union of sets which are homeomorphic to
open disks, called faces. Analogously to the degree of a vertex, we define the degree of
a face as the number of its boundary edges.

Further, two maps are isomorphic if there exists an orientation preserving homeo-
morphism (a topological symmetry of the surface) which takes one map into the other1.

Maps can be viewed as two-dimensional cellular complexes, specified by 0-cell, ver-
tices, 1-cell, edges, and 2-cell, faces. Then the Euler characteristic χ of a map is defined
as

χ = 2 − 2h = |V| − |E| + |F| (A.1)

where |V|, |E| and |F| are respectively the cardinality of the set of vertices, edges and
faces of the map. It depends only on the genus h of the surface in which the map is
embedded. If we consider maps not connected, they are drawn on several surfaces (one
for each connected component) and the Euler characteristic of the map is 2K − 2h =
|V| − |E| + |F|, where K is the number of connected components.

Different maps can correspond to a single graph, even if the maps have different
genus, as in figure A.3.

Maps that can be drawn on the sphere are said to be planar. Every planar map can
be drawn on the plane without edge crossing from the stereographic projection and the
face that contains the point at infinity is called external.

A.2.1 Fat-graphs

The additional information that allows to obtain a map from a graph is the cyclic order-
ing of edges near a vertex. Indeed when we draw a graph we fix this ordering and this
is all we need to determine its embedding.

A convenient way to specify a cyclic ordering of the edges is using the fat-graphs
representation in which edges are drawn as opposite oriented double lines. Then these
double lines will meet at a vertex in such a way that the ordering is now fixed: if we

1These topological symmetries form a group called the mapping class group of the oriented genus-h
surface, generated by transformations called Dehn twists [62].
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Figure A.3: The complete graph K4 drawn on the sphere and on the torus corresponds
to two maps of different genus.

arrive at a vertex on an oriented line, we leave it by the first line on the right. The lines
form disjoint cycles that correspond to the faces of the map (see figure A.4).

Figure A.4: On the left, three edges that meet at a vertex defining a cyclic ordering. On
the right, a face.

A.2.2 Automorphism group

The automorphism group Aut(G) of the map G is the collection of all functions from G to
itself such that:

1. The set of vertices is mapped to itself

2. The set of edges is mapped to itself

3. The cyclic ordering that defines faces is preserved at every vertex.

A map G can be considered as obtained from contracting half-edges attached to single
vertices. Then the order of Aut(G) is given by the following formula

1

|Aut(G)| = C ∏
i

1

iVi Vi!
(A.2)
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where C is the combinatorial factor labelling how many distinct contractions of the
half-edges lead to the same graph and iVi Vi! is the order of the automorphism group
of the set of stars to be contracted to produce such map. For example the order of the
automorphism group of the one-vertex map in figure A.5 is 6: there is only one way to
obtain it contracting a one-vertex map with 6 half-edges (C = 1), and V3 = 1, Vi = 0 for
every i 6= 3.

A.2.3 Dual map

The dual map G∗ of a map G is embedded in the same surface and is constructed as-
sociating to every face of G a dual vertex and to every edge a dual edge in such a way
that they connect dual vertices on the two sides of the edges of G. The automorphism
group of a graph and of its dual is the same. Note that G∗∗ = G. For an example of the
dual map of a one-vertex map embedded in the torus, see figure A.5.

=

=

Figure A.5: At the left top corner there is a one-vertex map of genus 1 with 3 edges.
We can draw it on the torus, as at the top of the middle column, where the torus is as
usual seen as the quotient space of the square where black and white arrows indicate
how to glue the sides. This map has two faces both of degree 3 corresponding to the
filled and non filled region. Then we construct the dual map by inserting a dual vertex
(white circle) in every face. Dual edges are represented as shaded lines and connect
dual vertices on the two sides of the edges of the one-vertex map. The figure at the
bottom of the middle column is the resulting dual map with one face, drawn on the
torus. If we draw it on the plane as in the right bottom corner, non-planarity imposes
that its edges intersect not only in their endpoints.
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Appendix B

The Tutte polynomial

The Tutte polynomial of a graph is a polynomial in two variables which plays an impor-
tant role in graph theory since it encodes a lot of information about the graph. Given a
graph G = (V, E) we define the Tutte polynomial of G as

TG(x, y) = ∑
A⊆E

(x − 1)K(A)−K(E)(y − 1)K(A)+|A|−|V| (B.1)

where the sum is over all spanning subgraphs (V, A) and K(E) and K(A) denotes re-
spectively the number of connected components of G and (V, A).

As an example we compute the Tutte polynomial for the cycle graph with four
vertices, G = C4. As depicted in figure B.1 this graph has 16 spanning subgraphs1.
The subgraph with no edges counts as (x − 1)3, the four subgraphs with one edge as
(x − 1)2, the six with two edges as (x − 1), the four with three edges as 4 and the one
with four edges as (y − 1). Then the Tutte polynomial of C4 is

TC4
(x, y) = (x − 1)3 + 4(x − 1)2 + 6(x − 1) + 4 + (y − 1) = x3 + x2 + x + y . (B.2)

The definition of the Tutte polynomial implies that if a graph G is the disjoint union
of two graphs G = G1 ∪ G2 then TG(x, y) = TG1

(x, y) × TG2
(x, y). Then in what follows

we will restrict to the class of connected graphs (K(E) = 1). We refer to [63] for a
complete description of the Tutte polynomial and its properties. Here we will discuss
the relation of the Tutte polynomial to the partition function of the Potts model and of
spanning forests, and then illustrate the spanning trees expansion.

B.1 Relation with the Potts model and spanning forests

From its definition (B.1), the Tutte polynomial is easily related to the partition function
of the Potts model in the Fortuin-Kasteleyn representation introduced in section 1.3.2,

ZFK
G (q,~v) = ∑

A⊆E

qk(A) ∏
(ij)∈A

vij . (B.3)

1In general a graph with |E| edges has 2|E| spanning subgraphs corresponding to the binary choice of
taking or not and edge in the subgraph.

87



Figure B.1: The 16 spanning subgraphs of C4. Elements of the subgraphs are marked in
red.

Indeed we have

TG(x, y) = (x − 1)−1(y − 1)−|V|ZFK
G ((x − 1)(y − 1), y − 1) (B.4)

where we give a uniform weight y − 1 to the edges of the subgraph.
Specializations of the Tutte polynomial permit to obtain a lot of precise information

about a graph. In particular evaluations of TG(x, y) at x = 1, y = 1 or both give the gen-
erating functions for connected spanning subgraphs, spanning forests and spanning
trees. From (B.4) these correspond to three q → 0 limit of the Potts model [16]. Setting
x = 1 in (B.1) we have

TG(1, y) = ∑
A⊆E

0K(A)−1(y − 1)K(A)+|A|−|V|

= ∑
A⊆E

K(A)=1

(y − 1)1−|V|+|A| . (B.5)

This corresponds to the generating function of connected spanning subgraphs

CG(~v) = ∑
A⊆E

K(A)=1

∏
(ij)∈A

vij (B.6)

since CG(y− 1) = (y− 1)|V|−1TG(1, y). Using (B.4) we see that if we take the limit q → 0
with v fixed in (B.3) we have

lim
q→0

q−1ZFK
G (q,~v) = CG(~v) . (B.7)
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Consider now the evaluation at y = 1:

TG(x, 1) = ∑
A⊆E

(x − 1)K(A)−10K(A)+|A|−|V| . (B.8)

This corresponds to a sum over spanning forests with a weight x − 1 per connected
component since the cyclomatic number (the number of independent cycles) c(A) =
K(A) + |A| − |V| is forced to be equal to zero. If we define more generally the generat-
ing function for spanning forests as

Zforest
G (t, ~w) = ∑

A⊆E
c(A)=0

tK(A) ∏
(ij)∈A

wij , (B.9)

then
(x − 1)TG(x, 1)|x=t+1 = Zforest

G (t, 1) . (B.10)

In the Fortuin-Kasteleyn representation the generating function for spanning forests
is achieved by considering the limit q → 0,~v → 0 with fixed ~w = ~v/q

lim
q→0

q−|V|ZFK
G (q, q~w) = ∑

A⊆E
c(A)=0

∏
(ij)∈A

wij = Zforest
G (1, ~w) . (B.11)

Let us note also that if we have a uniform coupling w in the formula above, then w can
be regarded as the inverse of the fugacity of the trees:

Zforest
G (t, 1) = t|V|Zforest

G

(

1,
1

t

)

. (B.12)

As a last specialization that is of interest for our purposes we consider the generat-
ing polynomial of spanning trees. Starting from CG(~v), we redefine the weight of edges
~v → λ~v and then take the limit λ → 0. This selects from connected spanning subgraphs
those having the fewer number of edges: trees, that have |A| = |V| − 1. Then we define
the generating function of spanning trees as

Ztree
G (~v) = lim

λ→0
λ1−|V|CG(λ~v) = ∑

A⊆E
|A|=|V|−1

∏
(ij)∈A

vij . (B.13)

Alternatively we can obtain this partition function from that of spanning forests
Zforest

G (1, ~w) where we replace ~w by λ~w and take the limit λ → ∞

Ztree
G (~w) = lim

λ→∞
λ1−|V|Zforest

G (1, λ~w) . (B.14)
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B.2 Spanning trees expansion

The first definition given by Tutte of his polynomial was a generating function of span-
ning trees counted according to their activities (if the graph is connected, as we are
assuming) [64]. To explain his definition we have to give some preliminary notions.

Consider a graph G and a spanning tree T over it. Call an edge internal if it belongs
to T and external otherwise. Define the fundamental cycle of an external edge e as
the set of edges f such that T\{ f } ∪ {e} is a spanning tree. Analogously define the
fundamental cocycle of an internal edge e as the set of edges f such that T\{e} ∪ { f } is
a spanning tree. Recall from section A.1 that the notation T\{e} means the deletion of
the edge e in the graph T. See figure B.2 for examples of fundamental cycle and cocycle.

(a) A graph with
a spanning tree
marked in bold.

(b) The fundamental cycle of an external edge
marked in blue.

(c) The fundamental cocycle of an internal
edge marked in red.

Figure B.2: Examples of fundamental cycle and cocycle for edges of the graph in figure
B.2(a).

Note that the fundamental cycle of an external edge e contains only internal edges
apart from e and the fundamental cocycle of an internal edge e′ contains only external
edges apart from e′. Further, if e is external and e′ is internal, then e′ is in the fundamen-
tal cycle of e if and only if e is in the fundamental cocycle of e′.

Given a graph G, choose an arbitrary fixed linear order of the edge set E, that is
number increasingly the edges from first to last. Then take a spanning tree T over it.
We say that an external edge is active if it is minimal in its fundamental cycle. In a
similar way an internal edge is active if minimal in its fundamental cocycle.

Then the spanning trees expansion of the Tutte polynomial (B.1) is

TG(x, y) = ∑
T≺G

xi(T)ye(T) (B.15)
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where the sum T ≺ G means over spanning trees T of G and i(T) and e(T) are respec-
tively the number of active internal and external edges. This result is quite surprising
since it states that the sum in (B.15) does not depend on the linear order chosen to assign
activities. For a proof of this theorem we refer to [63].

Remark that using the spanning trees expansion of the Tutte polynomial, the parti-
tion function for unrooted spanning forests with a weight one to edges (B.10) becomes

Zforest
G (t, 1) = t ∑

T≺G

(1 + t)i(T) . (B.16)

Here we do not have to count external active edges and we weight the configurations
with (1 + t) to the number of internal active edges.

However this notion of activity is not the only possible one. The choice of a linear
order is not convenient to be used in the context of random planar graphs, in which we
are interested in. We present then the notion due to O. Bernardi that characterizes the
Tutte polynomial using the embeddings of the graphs.

B.2.1 Definition for embedded graphs

If we turn to embedded graphs2 the notion of activities can be changed in such a way
to not depend anymore on the linear ordering and to be automatically encoded in the
drawing of a graph on a surface.

Consider a graph G with a distinguished half-edge (root), and a spanning tree T
embedded on a surface. Starting from the root, consider a walk around the tree that
follows internal edges and crosses external edges. Then number the edges according
to the their order of appearance around the tree. We call this ordering the (G, T)-order.
We say now that an external edge is embedding-active if it is minimal in its funda-
mental cycle according to the (G, T)-order. Analogously we define an internal edge
embedding-active if minimal in its fundamental cocycle according to this ordering.

For the determination of the embedding-active edges of a rooted version of the
graph presented in figure B.2(a), see figure B.3.

Now we can express the Tutte polynomial of a graph G that have G as any of its
rooted embeddings, as [65]

TG(x, y) = ∑
T≺G

xI(T)yE(T) (B.17)

where I(T) and E(T) are respectively the number of internal and external embedding-
active edges chosen according to the (G, T)-order. For example figure B.3 corresponds
to a term xy3 in the Tutte polynomial of that graph. We remark that (B.17) does not
depend on the choice of the rooted embedding.

When we consider the ensemble of random planar graphs, as generated by random
matrices, we have an explicit embedding structure that, upon the choice of a root, estab-
lish the embedding-active edges. For an example of counting embedding-active edges

2For the difference between a graph and an embedded graph (called also map), see section A.2.
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1⋆

2⋆

3 4 5⋆

6⋆
7

Figure B.3: The walk along the tree that starts from the root (red half-edge) is marked
in blue. We order the edges according to their order of appearance around the tree and
mark the resulting embedding-active edges with a star.

in a rooted random planar graph see figure B.4. This embedded graph corresponds to
a term x4y3 in the summand of (B.17).

1⋆

2⋆

3

4

5

6

7

8

9

10⋆

11⋆

12

13

14⋆

15⋆

16⋆

17

18

Figure B.4: A rooted cubic random planar graph with embedding-active edges marked
with a star. It has 4 internal and 3 external embedding-active edges. As before the root
is in red and the walk along the tree in blue. The external edges form link patterns on
the boundary of the upper half-plane.

We remark that on random planar graphs we can understand the general form of
configurations that have internal or external embedding-active edges. Indeed notice
that drawing the edge containing the root first gives a hierarchical structure where we
can distinguish parental relations between edges. For example we will say that in fig-
ure (B.4) the edges 9 and 14 are born from 8. Moreover we can orient the arcs forming a
link pattern, say from right to left, without altering their counting in order to consider
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only matching of an half-arc with other on its left. We will say that an external edge
will go out of a an internal edge and goes into another one (or the same) according to
this orientation. Then the only possible configurations that lead to an external (resp.
internal) embedding-active edge are the ones depicted in figure B.5(a) (resp. B.5(b)).
The deep reason underlying the simplification of the possible configurations is a conse-
quence of the interplay of the degrees of freedom of the lattice and of the matter model,
the reason why we could study the combinatorial models of chapters 5 and 6.

e

f

(a) An external edge f going out of an internal edge e (dark bold) is
active if and only if it goes into an internal edge equal to e, or born
from e on the left of f .

no

(b) An internal edge is active if and only if all the external edges
composing its fundamental cocycle are oriented as going out of
edges born from (or equal to) itself.

Figure B.5: The configurations that lead to internal and external embedding-active
edges on random planar graphs. Filled regions correspond to arbitrary configurations
and the the root is marked in red.

If we rewrite the partition function for spanning forests on a graph G (B.16) using
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embedding-activities, we have

Zforest
G (t, 1) = t ∑

T≺G

(1 + t)I(T) . (B.18)

Then we can sum over random planar graphs this partition function where G is re-
placed by the embedded graph G for which the sum in the r.h.s. is naturally defined:
for every G we have to choose a root and, given its spanning trees, count the internal
embedding-active edges.
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