INTRODUCTION TO YOUNG TABLEAUX

In this note we present (without proofs) the rules necessary to construct irreducible representations (irreps) of the group $S U(N)$ i.e. the group of $N \times N$ complex unitary matrices $\left(U U^{\dagger}=1\right)$ with unit determinant $(\operatorname{det}(U)=1)$.

- The complex multiplet $\psi_{i}(i=1, . ., N)$ which belong to the fundamental representation of $S U(N)$ (i.e. the lower dimension non trivial representation, $\psi_{i} \rightarrow U_{i j} \psi_{j}$) is represented by a box:

$$
\psi_{i} \equiv \square \equiv \mathbf{N}
$$

- A Young tableau is a diagram of left-justified rows of boxes where any row is not longer than the row on top of it, e.g.

- Any column cannot contain more than N boxes.
- Any column with exactly N boxes can be crossed out since it correspond to the trivial representation (the singlet),

$$
N\left\{\begin{array}{l}
\square \\
\square \\
\vdots \\
\square
\end{array} \equiv \mathbf{1}, \quad N\left\{\begin{array}{l}
\square \square \\
\square \\
\vdots
\end{array} \equiv \square\right.\right.
$$

- Any Young tableau which respects the rules above correspond to an irrep of $S U(N)$ (and vice-versa).
- The complex conjugate of a given irrep is represented by a tableaux obtained by switching any column of k boxes with a column of $(N-k)$ boxes, e.g.

- From the previous rule: the complex conjugate multiplet $\bar{\psi}_{i}(i=1, . ., N)\left(\bar{\psi}_{i} \rightarrow\right.$ $\left.\bar{\psi}_{j} U_{j i}^{\dagger}=U_{i j}^{*} \bar{\psi}_{j}\right)$ is represented by a column of $N-1$ boxes:

$$
\bar{\psi}_{i} \equiv N-1\left\{\begin{array}{l}
\square \\
\vdots \\
\vdots \\
\square
\end{array} \equiv \overline{\mathbf{N}}\right.
$$

- The dimension d of a Young tableau (i.e. the dimension of the associated irrep) can be obtained by the following ratio: $d=n u m / d e n$.
- Numerator: start writing the number N in the top left box of the Young tableau. Moving to the right, write the number increased by a unit at each step. Moving to the bottom, write the number decreased by a unit at each step. The numerator is obtained by the product of the entries in each box. E.g.
- Denominator: write in each box the number of boxes being to its right plus the number of boxes being below it plus a unit (the hook length). The denominator is obtained by the product of the entries in each box. E.g.
- Any irrep of $S U(N)$ can be constructed starting from the fundamental irrep. The direct product of irreps can be decomposed in a direct sum of irreps with the following rules.
- Write the two tableaux which correspond to the direct product of irreps and label successive rows of the second tableau with indices a, b, c, \ldots, e.g.

$$
\square \otimes \begin{array}{|l|l|l|}
\hline a & a & a \\
\hline b & b \\
\hline c & \\
\hline
\end{array}
$$

- Attach the boxes from the second to the first tableau, one a time following the order a, b, c, \ldots, in all the possible way. The resulting diagrams should be valid Young tableaux with no two (or more) a in the same column (neither b or c or ...).
- Two generated tableaux with the same shape but labels distributed differently have to be kept. If two tableaux are identical only one has to be kept.
- Counting the labels from the first row from right to left, then the second row (from right to left) and so on, at any given box position there should be no more b than a, more c than b and so on (if it is not the case discard the tableau). E.g. the tableau | \square | b |
| :---: | :---: |
| has to be discarded. | |
- The adjoint representation is the irrep with dimension equal to the dimension of the group (i.e. $N^{2}-1$) and can be constructed by a direct product of the fundamental representation and its complex conjugate:
$\overline{\mathbf{N}} \otimes \mathbf{N} \equiv N-1\left\{\begin{array}{c}\square \\ \square \\ \vdots\end{array}\right.$

$\oplus \quad N\left\{\begin{array}{l}\square \\ \square \\ \square\end{array}=\left(\mathbf{N}^{\mathbf{2}}-\mathbf{1}\right) \oplus \mathbf{1}\right.$.
From the conjugation rule above it is clear that the adjoint representation is self conjugate $\overline{\mathbf{N}^{2}-\mathbf{1}}=\mathbf{N}^{2}-\mathbf{1}$

Examples

- $\mathrm{SU}(2)$ (any irrep is self conjugate)

$$
\square \otimes \square=\square \square \square, \quad(2 \otimes 2=3 \otimes 1)
$$

$$
\begin{gathered}
\square \square \boxed{a \mid a}=\left(\begin{array}{l}
\square \mid a
\end{array} \square \square \square\right) \otimes \square=\square \square \square \square \square \square \square \square \\
(3 \otimes 3=5 \oplus \mathbf{3} \oplus \mathbf{1})
\end{gathered}
$$

$$
\left(\mathbf{2} \mathbf{j}_{1}+\mathbf{1}\right) \otimes\left(\mathbf{2} \mathbf{j}_{2}+\mathbf{1}\right)=\oplus_{J=\left|j_{1}-j_{2}\right|}^{j_{1}+j_{2}}(\mathbf{2} \mathbf{J}+\mathbf{1})
$$

- $\operatorname{SU}(3)$

$$
\begin{aligned}
& \square \otimes \square=\square \square \square, \quad(\overline{3} \otimes 3=8 \oplus 1) ;
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{|c|c|}
\square|a| a \\
\hline b
\end{array} \oplus \begin{array}{|}
\square|a| a \\
\hline a \mid b \\
\hline a \mid
\end{array} \oplus \begin{array}{|c|c|}
\hline a \\
\hline b
\end{array} \oplus \begin{array}{|c|}
\hline \frac{a}{a}
\end{array} ; \\
& (8 \otimes 8=27 \oplus 10 \oplus \overline{10} \oplus 8 \oplus 8 \oplus 1) ;
\end{aligned}
$$

