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Abstract

In the present work we discuss some connections between Combinatorial optimization and Statis-
tical physics. In particular, we analyze the so-called Euclidean bipartite matching problem, i.e.,
the matching problem between two different sets of points on an Euclidean domain. We consider
the random version of the problem, where the points are independently and identically distributed
according to a given probability distribution density. The presence of both randomness and Eu-
clidean constraints makes the study of the average properties of the solution highly non trivial.
We first summarize some known results about both matching problems in general and Euclidean
matching problems in particular. We provide a complete and general solution for the one dimen-
sional problem in the case of convex cost functional. Moreover, we propose an ansatz for the average
optimal matching cost in the quadratic case, obtaining both an analytical expression for the finite
size corrections in any dimension d ≥ 3, and the correlation functions in the thermodynamical
limit. Finally, we provide, using a functional approach, a general recipe for the computation of the
correlation function of the optimal matching in any dimension and on a generic domain.
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Chapter 1

Supervisor’s foreword

The Euclidean Matching Problem is a particular combinatorial optimization problem traditionally
considered in the realm of computer science and mathematics.
When, instead of a given instance of an optimization problem, a whole class of problems is

considered, according to a suitable probability distribution, methods, ideas and powerful mathe-
matical tools that physicists have developed in the context of statistical mechanics of systems with
frustration and disorder can be applied and have been shown to be very effective also in this area.
For example, the Random Assignment Problem, in which the costs associated to each couple are

uncorrelated and identically distributed random variables, has been deeply understood in this way.
Its solution represents a sort of mean field approximation for the case, as the one studied here,
where correlations are present, for example, because of the geometry of the underlying ambient
space.
In this thesis, among other results, a new elegant method is introduced to study the effects of

these correlations. It is amusing to discover that a field theory in the continuum is of help to
study the asymptotic properties of a discrete number of points in the limit in which this number
becomes very large. And the relevant continuum field theory is similar to a reduced version of
electromagnetism in which the role of the Gauss law as a constraint is replaced by a transport
condition.
Such a similarity allows to study not only the average optimal cost but also the correlation

function, under very general conditions, for any distribution of points in Euclidean space (of any
dimension). Deep relations among discrete optimization problems, variational methods in the
continuum, probability theory, statistical mechanics of disordered systems, classical field theory
are put into evidence in this work. So that readers from different background can find useful
inspirations to enlarge their view-point.

Sergio Caracciolo
Università degli Studi di Milano

May 2016, Milan, Italy

1



1. Supervisor’s foreword

2



Chapter 2

Introduction

In 1781 Gaspard Monge (1746–1818), published his Mémoire sur la théorie des déblais at des
remblais [14], where he discussed the following, very simple, problem.

“Let us suppose that we have a certain number of mines and the same number of
deposits. We want to associate each mine to one deposit only (where the production of
the considered mine will be transported and stored). How can we perform this matching
in such a way that the total transport cost is minimum?”

Monge made the quite natural assumption that the transport cost from a certain mine to a certain
deposit is a given function of the distance between the mine and the deposit themselves. The
positions of the mines and of the deposits are supposed assigned and therefore the problem is
fixed in all its details. However the problem of finding an optimal matching between mines and
deposits, e.g. given their positions on a chart, is simple in its formulation, but quite difficult to
solve. Indeed, if the number of mines is N , we have N ! ways to match mines and deposits and
we have to select the cheapest one among them. It is evident that, if N is quite large, a brute
force approach is not feasible. Even if we are able to compute the cost of a matching in, let us say,
10−3 seconds, for N = 20 the computation of the cost of all configurations requires 7.7 ·107 years.
It is clear therefore that a smarter approach is needed. Only in 19551 Harold Kuhn proposed an
algorithm, called Hungarian algorithm, that is able to solve the problem in a computation time
that scales as N3 in the size N of the original problem [9]. The Hungarian algorithm proves that
the problem is in the so called P computational complexity class, but still the required computation
time grows quite rapidly as N increases.
At the time of Monge, the idea of an algorithmic solution for the matching problem was in-

teresting by itself, but of no practical use, due to the lack of computational resources. Monge
therefore reformulated the problem in a “continuum” version, in which the matching between
points of different types was replaced by a transport map between two different measures on the
same domain. This map had to minimize a certain cost functional. In measure theory this prob-
lem is called optimal transport problem. The original combinatorial problem took therefore the
new form of an interesting problem, at the edge between measure theory and geometry, and it
started to be extensively analyzed by mathematicians working on these topics. In 1938, Leonid
V. Kantorovič (1912–1986) proposed a new (dual) reformulation of the transport problem, that is
now of paramount importance in measure theory, economics and linear programming and led him
to the Nobel prize in Economics in 1975. During the last decades the interest in the theory of
optimal transport has increased exponentially in the mathematical community, due to the results
of Luigi Ambrosio, Luis Caffarelli, Alessio Figalli, Cédric Villani and others on the existence and
the properties of optimal transport maps (see the recent review paper of Bogachev and Kolesnikov
[1] and the monograph by Villani [15]).
Both the previous approaches (the continuum one and the combinatorial one) assume that no

disorder or randomness is present in the problem (the point positions or the measures are supposed
given). When we find the optimal matching between the two sets of points or the optimal map
between the two measures, the problem is solved. But we can consider the problem under a
different point of view. Let us suppose, for example, that we have two sets of random points on
a certain domain and that we ask for the optimal matching between them in such a way that a

1Remarkably, in 2006 it has been discovered that the problem had been solved by Carl Gustav Jacobi [8]. His
work was published in 1890 in Latin, but was ignored at the time.
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2. Introduction

certain functional is minimized. The specific solution in this case is not of great interest. More
interestingly, we may ask for the average properties of the optimal matching. This new problem,
called in this version random (or stochastic) Euclidean matching problem, is not trivial at all.
Indeed, correlation among the distances is present, due to the Euclidean constraints. Marc Mézard
and Giorgio Parisi treated the Euclidean matching problem in a set of papers published between
1985 and 1988 [10–13]. They considered the so called random assignment problem as first order
approximation. In the random assignment problem, the distances between points are supposed
totally uncorrelated. The random assignment problem is therefore a sort of mean field model of
the Euclidean problem. Subsequently, they introduced correlations as corrections to the mean
field results, sketching the complete computation, that requires an infinite number of steps. Their
results are remarkable for different important reasons. First, they were able to give a complete
solution of the purely random case, obtaining the correct average optimal cost and its distribution.
Second, their results were obtained using statistical physics techniques developed for the study of
disordered systems. Their approach was therefore not rigorous, but the results were completely
confirmed sixteen years later with rigorous probability arguments, inspired again by the theory
of disorderd systems. They showed therefore that the statistical physics methods are extremely
powerful to treat combinatorial problems in the presence of randomness.
In the present thesis we overview the main results obtained on the Euclidean matching problem

in the last fifty years and we present the results of our investigation on this subject. The material
is organized as follows.
In Chapter 3 and Chapter 4 we briefly review optimization theory and some basic results of

physics of disordered systems. From one hand, the availability, in the last decades, of powerful
computational resources encouraged the development of efficient algorithms to solve difficult op-
timization problems on graphs. On the other hand, dating back to the work of Edwards and
Anderson [7] on spin glasses, the physics of disordered systems developed a pletora of powerful
techniques with an impressive impact in many scientific fields and in particular in combinatorial
optimization.
In Chapter 5 we deal with the main subject of the thesis, the Euclidean matching problem. We

follow very different approaches, each one of them able to provide an insight on the problem and
its peculiarities. In particular:

• we solve the one dimensional matching problem with convex cost using measure theory ar-
guments and showing that, in the thermodynamical limit, the solution of the problem is
equivalent to a Brownian bridge process [3], as first pointed out by Boniolo, Caracciolo, and
Sportiello [2];

• we propose an ansatz for the optimal cost in any dimension, obtaining a precise analytical
prediction for its scaling respect to the system size and for the finite size corrections to the
average optimal cost [6];

• we compute the correlation function in any dimension for the optimal transport map in the
thermodynamical limit, using both a generalization of the previous ansatz and a functional
argument that provides a recipe for a very general case [4, 5];

• we develope the computation of Mézard and Parisi for the corrections to the mean field
approximation of the Euclidean matching problem.

The previous results have been partially obtained in collaboration with Carlo Lucibello and Giorgio
Parisi, from University “Sapienza” in Rome.

January 2015, Pisa, Italy
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Chapter 3

Graphs and optimization

3.1. Graph Theory

The matching problem is an important combinatorial problem defined on a graph. Graphs pro-
vide very often a pictorial representation of the mathematical structure underlying combinatorial
optimization problems. On the other hand, graph theory is by itself rich of elegant results that
can give us useful insights on many combinatorial and physical problems. For these reasons, we
present here a very short introduction to the basic definitions and results of graph theory. We will
refer mostly to the standard textbook of Diestel [3].

3.1.1. Fundamental definitions

A graph G = Graph(V; E) is a pair of sets (V, E) such that E⊆ V×V. The elements of V are
called vertices (or nodes), whilst the elements of E are usually called edges. We will denote by1
V = |V| the number of elements of V (V is sometimes called order of G) and we will suppose
always that V ∈ N is finite, unless otherwise specified. Moreover, given a vertex v and an edge
e, we say that v is incident with e if v ∈ e. In this case e is an edge at v and we will write
e→ v. We will call E(v) the set of edges at v and |E(v)| the degree of v. We say that u, v ∈ V
are adjacent if (u, v) ∈ E; we will denote by ∂v the set of adjacent vertices to v. We define the
complete graph KV as the graph with V vertices in which each vertex is adjacent to all the others.
Two graphs G = Graph(V; E) and G′ = Graph(V′; E′) are isomorphic, or G ∼ G′, if a

bijection ϕ : V→ V′ exists such that (u, v) ∈ E⇔ (ϕ(u), ϕ(v)) ∈ E′. Finally, given two graphs
G = Graph(V; E) and G′ = Graph(V′; E′), if V ⊆ V′ and E ⊆ E′, than we say that G is a
subgraph of G′ and G′ is a supergraph of G: in symbols, G ⊆ G′. We say that G is a spanning
subgraph of G′ if and only if V = V′, see Fig. 3.1.1a. A directed graph (or digraph) is a graph
in which we assign an initial vertex and a terminal vertex to each edge in the edge set, see
Fig. 3.1.1b. In digraphs edges are ordered couples of vertices. In particular, if the vertex u and

1In the present work, given a set A of N ∈ N elements, we will use the notation |A| = N for the cardinality of
the set.

(a) Example, in bold, of
spanning subgraph (in this
case, a tree) of a given
graph.

(b) Directed graph with a
loop.

(c) The Petersen’s graph
with a vertex cover (in
blue) and an edge cover (in
red).

Figure 3.1.1.: Three examples of graphs.
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3. Graphs and optimization

the vertex v are respectively the initial vertex and the terminal vertex of the edge (u, v), we write

~e =
−−−→
(u, v).

In a digraph, an edge in which the initial vertex and terminal vertex coincide is called loop.
A vertex cover of G is a subset of V such that any edge of G has at least one endpoint in it. The

vertex covering number cV (G) is the smallest possible size of a vertex cover of G. Similarly, an
edge cover of G is a subset of E such that any vertex of G is the endpoint of at least one element
in it. The edge covering number cE(G) is the smallest possible size of an edge cover of G (see
Fig. 3.1.1c).
Given two graphs G = Graph(V; E) and G′ = Graph(V; E′) with the same vertex set V, we

define
G4G′ := Graph(VG4G′ ; E4E′), (3.1.1)

where
E4E′ := (E∪ E′) \ (E∩ E′)

is the symmetric difference between the two edge sets and VG4G′ is the set of the vertices that are
ends for the edges in E4E′.
A certain graph G = Graph(V; E) can be represented also by a V ×E matrix, called incidence

matrix, B := (bij)ij in such a way that

bij =
{

1 if vi ∈ ej
0 otherwise. (3.1.2)

Similarly, we introduce the more commonly used V ×V adjacency matrix A := (aij)ij , such that

aij =
{

1 if (vi, vj) ∈ E

0 otherwise. (3.1.3)

An undirected graph has a symmetric adjacency matrix, and, therefore, A has a real spectrum,
called spectrum of G. A weighted graph is a graph in which we associate a certain function
w : E→ R to the graph itself. Given an edge e ∈ E, we say that w(e) is the weight of e. For a
given weighted graph G, we can introduce the weighted adjacency matrix as W := (w(eij)aij)ij .

3.1.2. Paths, forests and multipartite graphs

A path P = Graph(VP; EP) in a graph G is a particular subgraph P ⊆ G such that VP =
{v0, . . . , vk} is a set of distinct vertices and the edge set is given by

EP = {(v0, v1), (v1, v2), . . . , (vk−1, vk)}.

We say that the path links v0 and vk and has length k. A graph G is connected if, for any couple
of vertices v, u ∈ V, there exists a path in G linking them. The length δ(v, u) of the shortest path
linking two vertices u and v of G is called distance of u and v on G. The diameter of a graph
diam(G) is given by

diam(G) = max
u,v

δ(u, v). (3.1.4)

If the graph G is not connected then, by definition, diam(G) = +∞. Any graph can be expressed
as union of maximal connected subgraphs, called components, and a connected graph is a graph
with only one component. Given a connected graph G = Graph(V; E), the subset X ⊂ V∪ E
is said to be a separating set if G′ = Graph(V\X; E\X) is not connected. If X contains only
a single vertex, the vertex is said a cutvertex. Similarly if X contains one edge, we say that the
selected edge is a bridge. A graph is called separable if it is not connected or has a cutvertex. In
particular, we will call biconnected a connected graph with no cutvertices.
For k ≥ 3, a cycle C = Graph(VC; EC) in a graph G is a subgraph C ⊆ G such that VC =
{v0, . . . , vk−1} is a set of distinct vertices and

EC = {(v0, v1), (v1, v2), . . . , (vk−2, vk−1), (vk−1, v0)}, (3.1.5)

see Fig. 3.1.2a. We say that such a cycle has length k. The minimum length of a cycle contained
in a certain graph G is called girth of G, whilst the maximum length is called circumference of

8



3.1. Graph Theory

(a) Path (in red) and cycle
(in blue) in a graph.

(b) Example of hypergraph
with two 3-hyperedges and
one 4-hyperedge.

(c) Forest composed by
two trees. Leaves are col-
ored in green.

Figure 3.1.2.: Examples of paths, cycles, separable graphs, trees and forests.

G. A Hamiltonian path in a graph is a path traversing all vertices of the graph exactly once. A
Hamiltonian path that is a cycle is called Hamiltonian cycle. Similarly, an Eulerian path in a
graph is a path traversing all edges of the graph exactly once, whereas an Eulerian path that is a
cycle is called Eulerian cycle
Clearly, not all graphs contain cycles: an acyclic graph is called forest, a connected forest is

called tree. A non-trivial forest (i.e., a forest with |E| 6= 0) has always 1-degree vertices, called
leaves, see Fig. 3.1.2c. Given a tree, sometimes a specific vertex is considered special and called
root of the tree. With reference to the root, we define the height of a vertex as the distance of the
vertex itself from the root.
A graph G = Graph(V; E) is called q-partite (or, less precisely, multipartite) if we can partition

V into q subsets (or classes),

V=
q⋃
i=1

Vi, Vi ∩ Vj = ∅ for i 6= j,

in such a way that every edge in E connects vertices in different classes. We will denote such a
graph as G = Graph(V1, . . . , Vq; E). A q-partite graph is called complete if, given two vertices in
two different classes, there exists an edge connecting them. We will denote the complete q-partite
graph by KV1,...,Vq , Vi := |Vi|. If q = 2 a multipartite graph is called bipartite. Bipartite graphs
have the characterizing property of having no odd cycles.

3.1.3. Euler’s formula and planar graphs

Let us consider now the set SG of the spanning subgraphs of a given graph G = Graph(V; E). The
set SG contains the set SEG of the Eulerian subgraphs, i.e., the subgraphs containing a cycle such
that each edge of the subgraph is used only once. This space has the peculiar property of being
closed under the symmetric difference operation 4. In other words, if G1 ∈ SEG and G2 ∈ SEG , then
G14G2 ∈ SEG . The dimension of SEG respect to the operation 4 is called cyclomatic number L of
the graph G. Indeed, L is the number of cycles in G that cannot be obtained by other subgraphs
through symmetric difference. These cycles are called independent cycles and play a role of a
“basis” in the space of Eulerian subgraphs. Let us call L(G) the set of independent cycles. If a
graph G has κ components, then the following general Euler’s formula can be proved:

V + L = E + κ. (3.1.6)

The relation above is particularly easy to apply for planar graphs. Planar graphs are graph that
can be embedded (i.e., drawn) in the surface of a sphere in such a way that no edge crossing
appears. If such embedding is considered, we can immediately recognize F cycles on the sphere,
called faces. Each face is characterized by a simple property, i.e., it divides the sphere into two
regions in such a way that in one of them there is no paths having both endpoints on the face itself.
The cyclomatic number is then recovered as L = F − 1.

9



3. Graphs and optimization

1

2
3

4

5

6
7

8

1 2 3 4

1 2 3 4

Figure 3.1.3.: On the left, complete graph K8 and an example of perfect matching on it. On the right, complete
bipartite graph K4,4 and an example of perfect bipartite matching on it.

3.1.4. Hypergraphs

In an hypergraph G = HyperGr(V; E) with vertex set V, an edge e ∈ E can connect more than
two vertices, see Fig. 3.1.2b. If the edge e connects k vertices, we say that e is a k-hyperedge and we
write |e| = k. We say that a walk on the hypergraph is an ordered sequence (v0, e1, v1, . . . , ep, vp),
{vi}i=0,...,p ∈ V, {ei}i=1,...,p ∈ E. A path is a walk in which all vertices and all edges are distinct
respectively. A cycle is a path having p ≥ 2 and v0 = vp. An hypergraph is connected if, given
two distinct vertices v, u ∈ V, there exists a walk connecting them. Remarkably, the following
generalization of the Euler’s formula holds for an hypergraph with κ connected components [1]∑

e∈E

|e| − E − V + κ ≥ 0, (3.1.7)

where, as usual, E = |E| and V = |V|.

3.1.5. Matchings on graphs

We can finally introduce the main concept of this dissertation. We say that M = Graph(VM; EM) ⊆
G = Graph(V; E) is a matching of size |EM| in G if, given two edges in M, they have no vertex
in common, see Fig. 3.1.3. The size of the largest matching (maximum matching) in G, m(G), is
called matching number of G. If VM = V we say that M is perfect. The following fundamental
result, proved in 1931 by Dénes Kőnig, holds.

Theorem 3.1.1 (Kőnig’s minimax theorem). Let G be a bipartite graph. Then

cV (G) = m(G). (3.1.8)

In 1935, Philip Hall proposed an equivalent formulation of the theorem above.

Theorem 3.1.2 (Hall’s theorem). A bipartite graph G has a matching if and only if∣∣∣∣∣ ⋃
x∈X

∂x

∣∣∣∣∣ ≥ |X|, ∀X⊆ V1. (3.1.9)

In the following we will denote by ∂GX :=
⋃
x∈X∂x, where the subscript G stress the fact that

we refer to the topology of G.

Corollary 3.1.3 (Marriage theorem). Let G = Graph(V1, V2; E) be a bipartite graph. Then
G admits a perfect matching if and only if the property in Eq. (3.1.9) holds and moreover

|V1| = |V2|. (3.1.10)

If |V1| = |V2| = V , numbering separately the vertices of each class in the graph, a perfect
matching can be expressed as a permutation of V elements. For a proof of the previous statements,
see [9]. Given a matching M on G and a path P ⊂ G, we say that the path P is M-alternating if the
edges of P are alternately in and not in M.

10
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3.2. Optimization problems

In the previous Section we have discussed some fundamental definitions about graphs. Graphs
provides very often a mathematical representation of combinatorial problems and, in particular,
many combinatorial problems can be described in terms of concepts introduced in graph theory.
To proceed further, let us first introduce the definition of optimization problem [13].
An instance of an optimization problem is a couple of mathematical elements, i.e., a space of

feasible solutions F 6= ∅ and a cost function
C: F→ R. (3.2.1)

The target is to find the globally optimal solution, i.e. an element xo ∈ F such that
C[xo] = min

x∈F
C[x]. (3.2.2)

The set of all instances of a certain optimization problem is, by definition, the optimization problem
itself. Observe that the cardinality of Fwas not specified and the existence of xo is, a priori, not
guaranteed.

Linear optimization problems To exemplify the given definitions, let us briefly discuss
here the important class of linear optimization problems [13]. A linear optimization problem can
be stated as follows: let us consider an n×m matrix of integers A = (aij)ij , a vector ofm integers
b ∈ Zm and a vector of n integers c ∈ Zn. We want to find a vector X = (Xi)i=1,...,n ∈ (R+)n
such that

z := cᵀ ·X = min
x∈F

cᵀ · x (3.2.3)

on a certain non-empty space F of feasible solutions, defined as follows
F :=

{
x = (x1, . . . , xn) ∈ (R+)n : A · x = b

}
6= ∅. (3.2.4)

The linear optimisation problem, when stated in the previous form, is said to be in a standard form.

Figure 3.2.1.: An example of 3-
dimensional convex polytope.

To have a solution of our optimization problem it is necessary that
n− rank [A] > 0 (otherwise no point satisfies all the constraints).
We require therefore for simplicity that rank [A] = m < n. In
the space Rn−m, the constraint condition A · x = b, with the
additional constraints xi ≥ 0 ∀i = 1, . . . , n, delimits an (n−m)-
dimensional convex polytope.

3.2.1. Combinatorial optimization
Combinatorial optimization deals with optimization problems in
which the cardinality of F is finite for all instances, |F| ∈ N. In
this case the problem has always at least one solution. However,
in many cases the number of feasible solution is extremely large,
and a brute-force approach is computationally unfeasible. To bet-
ter exemplify these aspects, let us discuss some relevant (classical)
combinatorial optimization problems in more details.

The Travelling Salesman Problem In the Travelling
Salesman Problem (Tsp) a complete graph KN = Graph(V; E)
is given with a weight function w : E→ R+, in such a way that
a weight w(e) ∈ R+ is associated to each edge e of the graph. In the Tsp, the space F is given
by all possible closed paths h = Graph(Vh; Eh) passing only once through each vertex. In other
words, the the space of feasible solution in the Tsp is the set of Hamiltonian cycle on KN . The
cost function is given by

CTsp[h] :=
∑
e∈Eh

w(e). (3.2.5)

A similar formulation of the problem can be given on a generic (connected) graph G. Observe
that, working on KN , |F| = (N−1)!

2 . Therefore the direct inspection of the solution by computing
all possible values of the cost function requires a huge amount of steps even for relatively small
values of N . In a variation of this problem, the Chinese Postman Problem, the set F of feasible
solutions is given by the set of all Eulerian cycles of the considered graph.

11



3. Graphs and optimization

The graph q-coloring problem The graph q-coloring problem (q-Col) is a problem de-
fined on a graph G = Graph(V; E), V := |V|. We want to assign to each vertex v ∈ V a number
(a “color”) qv ∈ {1, . . . , q}, q ∈ N, in such a way that the cost function

Cq-Col[q] :=
∑

(v,u)∈E

δqv,qu (3.2.6)

is minimized. The set F is therefore given by all sets q = {qv}v∈V such that qv ∈ {1, . . . , q}.
The number of feasible solutions is therefore qV .

The k-Sat problem The k-Sat problem is defined on an hypergraph G = HyperGr(V; E),
|V| = V , such that |e| = k ∀e ∈ E. We give a quantity Jve ∈ {−1, 1} for each edge e at
v ∈ V, depending on the edge and on the vertex. We search for the set σ = {σv}v∈V ∈ F,
σv ∈ {−1, 1}V such that

Ck-Sat[σ] =
∑
e∈E

∏
v∈e

1− Jve σv
2 (3.2.7)

is minimized. Again, in this case |F| = 2V is exponential in the size V of the problem. Observe
also that the cost function above, Eq. (3.2.7), reminds immediately a Hamiltonian function for a
spin system on a graph. This analogy will become extremely relevant in the next Chapter.

Matching problems Let us now consider a complete weighted graph K2N = Graph(V; E)
with weight function w : E → R+. In the (monopartite) matching problem we want to find a
perfect matching M ⊆ G such that the cost functional

CM[M] := 1
|EM|

∑
e∈EM

w(e) (3.2.8)

is minimized. If w(e) = 1 ∀e ∈ E the problem is sometimes called cardinality matching problem.
The k-assignment problem is formulated on the complete weighted bipartite graph KN,M . In this
problem we ask for an optimal matching in the graph KN,M of cardinality k ≤ min{N,M}.
The bipartite matching problem, or simply assignment problem, is the N -assignment problem

on the complete bipartite graph KN,N . Observe that, in assignment problems, the matching can be
represented as a permutation of N elements σ ∈ PN , PN set of all permutations of N elements.
Indeed, given the complete bipartite graph KN,N = Graph(V, U; E), we can number the vertices
as V= {v1, . . . , vN} and U = {u1, . . . , uN}, and assume that w : (vi, uj) 7→ wij . The optimal
cost associated to the optimal matching Mo can be expressed therefore as

CM[Mo] = min
σ∈PN

1
N

N∑
i=1

wi σ(i). (3.2.9)

In the assignment problem there are N ! possible solutions. However, we will show that, from the
algorithmic point of view, this problem belongs to the class of “simple” combinatorial problems
and can be solved with quite fast algorithms.

Polynomial and Non-deterministic Polynomial algorithmic classes

Given an instance of an optimization problem, the main target is often to find the optimal solution.
However many different kinds of questions can be asked about an optimization problem. For
example, we may wonder if, for a given constant c, the set

Sc = {x ∈ F: C[x] ≤ c} (3.2.10)

is empty or not. This type of problem is called decision problem. In the theory of computational
complexity [10, 12], each optimization problem is classified according to the running time (number
of computational operations) and memory required to evaluate the decision problem or to find
its solution. In particular, the class of non-deterministic polynomial problems NP is the set of
problems such that, given a feasible solution x and a constant c, it is easy to evaluate if x ∈ Sc
or not. Here “easy” means that the check can be performed by a certain algorithm in a number of
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computational operations that is polynomial in the size of the input. An algorithm is polynomial
if the running time is bounded from above by a certain polynomial in the size of the input and
superpolynomial if such a bound does not exist. We say that a certain optimization problem
belongs to the class P ⊆ NP, or that it is a polynomial-time problem, if there exists a polynomial
algorithm that solves it. It is still unknown whether P = NP or P 6= NP. In NP it is possible to
identify a special set of problems, called NP-complete problems. Every problem in NP can be mapped
in an NP-complete problem with, at most, an additional polynomial computational overhead. It
follows that, if a NP-complete problem is found to be in P, it would follow that P = NP.
Among the problems discussed above, Tsp, q-Col with q > 2 and k-Sat with k > 2, are NP-

complete problems. The assignment problem, instead, belongs to the P computational complexity
class. Indeed, we will show below that a fast algorithm is available for its solution.

3.2.2. Algorithms for assignment

We present now two algorithms for the solution of the assignment problem. Dantzig’s algorithm,
called also simplex method, is a general algorithm for the solution of linear optimization problems.
The assignment problem can be indeed seen as a linear optimization problem, as we will show below,
and therefore the simplex method can be applied to it. The Hungarian algorithm is the classical
algorithm for the solution of the assignment problem: its computational complexity is polynomial
and therefore the assignment problem is in P. Another very important algorithm, derived from the
cavity method, will be discussed in the next Chapter.
Here we consider the assignment problem on a weighted complete bipartite graph

KN,N = Graph(V, U; E), V= {vi}i=1,...,N , U= {ui}i=1,...,N . (3.2.11)

The weight function is such that

w : (vi, uj) 7→ wij ∈ R+. (3.2.12)

A matching M = Graph(VM; EM) ⊂ G on the graph can be represented by a N × N matrix
M = (mij)ij such that

mij =
{

1 if (vi, uj) ∈ EM,
0 otherwise. (3.2.13)

We can therefore identify the set of matchings on the graph KN,N with the space of N×N matrices

F=

M = (mij)i=1,...,N
j=1,...,N

∣∣∣∣∣∣mij ∈ {0, 1} and
N∑
i=1

mij =
N∑
j=1

mij = 1 ∀i, j

 . (3.2.14)

The matching cost for a given M ∈ F is

CM[M] := 1
N

∑
i,j

wijmij . (3.2.15)

It is evident that this is completely equivalent to Eq. (3.2.8). Mo is the optimal matching if and
only if

CM[Mo] := min
M∈F

1
N

∑
i,j

wijmij . (3.2.16)

The simplex method

The algorithmic solution of linear optimization problems is due to G. B. Dantzig that formulated
the celebrated simplex algorithm [2, 13]. Here we will sketch the approach, skipping some details
that the reader can find properly treated in the cited references. As anticipated above, in a
linear optimization problem we search for a vector X = (Xi)i=1,...,n ∈ (R+)n such that cᵀ ·X =
minx∈Fcᵀ ·x, where Fis the space of vectors x ofm real positive elements satisfying the constraint
A·x = b. Here A is a matrix of n×m integers, n > m, b is a vector ofm integers and c is a vector
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3. Graphs and optimization

of n integers. We suppose that rank [A] = m. We can select therefore m linearly independent
columns in A, let us call them B := {aik}k=1,...,m, such that the system

A · x = b, xj = 0 if j 6= ik ∀k = 1, . . .m (3.2.17)

has a unique solution. The problem is now in the form

a1,1

a1,2

a1,3

a1,4

a1,5

a1,6

a2,1

a2,2

a2,3

a2,4

a2,5

a2,6

a3,1

a3,2

a3,3

a3,4

a3,5

a3,6

a4,1

a4,2

a4,3

a4,4

a4,5

a4,6

a5,1

a5,2

a5,3

a5,4

a5,5

a5,6

a6,1

a6,2

a6,3

a6,4

a6,5

a6,6

a7,1

a7,2

a7,3

a7,4

a7,5

a7,6

a8,1

a8,2

a8,3

a8,4

a8,5

a8,6

a9,1

a9,2

a9,3

a9,4

a9,5

a9,6︸ ︷︷ ︸
A

·

x1

x2

x3

0

x5

x6

0

x8

0︸︷︷︸
x

=

b1

b2

b3

b4

b5

b6︸︷︷︸
b

, (3.2.18)

where we have highlighted the submatrix B. If the solution x of the previous problem has xi ≥ 0,
it is called basic feasible solution (bfs). Remarkably, it can be proved that the optimal solution
that we are searching for, is a bfs. bfss have an easy geometrical meaning. Indeed, let us consider
the polytope associated to the matrix A. It can be proved that

x ∈ F and x is bfs⇔ x is a vertex of the polytope. (3.2.19)

For any instance of a linear programming problem there is an optimal bfs. By the previous
operation, let us suppose that a certain bfs x∗ is known and let us suppose also that this bfs
corresponds for the sake of simplicity to the set of columns {ai}i=1,...,m of A, in such a way that
x∗ = (x∗1, . . . , x∗m, 0, . . . , 0). This solution can be the starting pointing of our search for the
optimal solution. From what we said, indeed, an optimal solution can be found among the vertices
of the polytope. The simplex method therefore is such that we move from one vertex to another
through proper pivoting operations, until the optimal vertex is found.
The first step is to write down the simplex tableaux :{

A · x = b
−cᵀ · x + z = 0 ⇒

(
A 0 b
−cᵀ 1 0.

)
(3.2.20)

The structure of the matrix is therefore (in the pictures, m = 6 and n = 9)

a1,1

a1,2

a1,3

a1,4

a1,5

a1,6

−c1

a2,1

a2,2

a2,3

a2,4

a2,5

a2,6

−c2

a3,1

a3,2

a3,3

a3,4

a3,5

a3,6

−c3

a4,1

a4,2

a4,3

a4,4

a4,5

a4,6

−c4

a5,1

a5,2

a5,3

a5,4

a5,5

a5,6

−c5

a6,1

a6,2

a6,3

a6,4

a6,5

a6,6

−c6

a7,1

a7,2

a7,3

a7,4

a7,5

a7,6

−c7

a8,1

a8,2

a8,3

a8,4

a8,5

a8,6

−c8

a9,1

a9,2

a9,3

a9,4

a9,5

a9,6

−c9

0

0

0

0

0

0

1

b1

b2

b3

b4

b5

b6

0

(3.2.21)
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The first m columns of A correspond to the submatrix B associated to the solution x∗ discussed
above, that is our starting point. After a sequence of row operation we can transform the simplex
tableaux in the following way

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

ã7,1

ã7,2

ã7,3

ã7,4

ã7,5

ã7,6

−c̃7

ã8,1

ã8,2

ã8,3

ã8,4

ã8,5

ã8,6

−c̃8

ã9,1

ã9,2

ã9,3

ã9,4

ã9,5

ã9,6

−c̃9

0

0

0

0

0

0

1

x∗
1

x∗
2

x∗
3

x∗
4

x∗
5

x∗
6

zB

(3.2.22)

where zB is the value of z on the current bfs. The solution x∗ appears in the last column,
being x∗i for i = 1, . . . ,m. If all the entries of {c̃i}i=m+1,...,n are positive, then the current
bfs is optimal and zB is the optimal cost. Indeed, if we consider a solution in the form x∗∗ =
(x∗1, . . . , x∗m, xm+1, 0, . . . , 0), we will have for it z = zB + c̃m+1x

∗
m+1 > zB.

If this is not the case, we have to proceed further. We choose a non-zero pivot element ãrc 6= 0
in the simplex tableaux, and we multiply the corresponding row for ã−1

rc . Proper multiples of the
new row are added to the remaining rows of Ã in such a way that the c-th column of the new
matrix has 1 in correspondence of the position (r, c) and zero otherwise. The chosen variable is
a new basic variable and it is called entering variable. It substitute the old r-th basic variable,
called now leaving variable. We switch the r-th column with the current c-th column to obtain a
new simplex tableaux in the form (3.2.22). Due to the fact that the value of z must be minimized,
the entering variable is chosen in a column c in such a way that c̃c < 0 (non-zero values in the
direction of the new selected component decrease z). The condition that the new solution must be
feasible determines a criterion for the row: it can be shown that this condition implies that, being
c the chosen pivot column, the row r must be such that ã−1

rc x
∗
r is minimum among all rows r. The

iteration of this sequence of steps leads to the optimal solution exploring the bfss. Note that the
method requires as starting point a bfs.
Finally, observe that if we have constraints expressed in terms of inequalities, e.g.,

n∑
j=1

aijxj < bi, (3.2.23)

we can introduce a new slack variable si ≥ 0 for each inequality and write it as
∑n
j=1 aijxj+si =

bi. Obviously we can introduce a “dependence” of z from the new variables in a trivial way as
z =

∑n
i=1 cixi + 0 ·

∑
j sj .

The simplex method is, practically, very efficient. However, Klee and Minty [7] proved that there
exist linear problems such that, in the worst case, the convergence time of the simplex algorithm
is exponentially large in the size of the input.

Application to the assignment problem The simplex algorithm can be applied to the
assignment problem quite straightforwardly [2]. Given a matching problem with a cost function as
in Eq. (3.2.15), let us consider the following space of feasible solutions,

F=
{

x ∈
(
R+)N2

|A · x = 1
}
. (3.2.24)

Here 1 is a vector of 2N elements all equal to 1 and A = (aij)ij is a 2N ×N2 matrix such that

aij =


1 if 1 ≤ i ≤ N and (i− 1)N < j ≤ iN ,
1 if N + 1 ≤ i ≤ 2N and j − i+N mod N = 0,
0 otherwise.

(3.2.25)
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3. Graphs and optimization

We search for the vector xo such that

cᵀ · xo = min
x∈F

cᵀ · x. (3.2.26)

Here c = (ci)i is a N2 dimensional column vector such that wij = c(i−1)N+j for i = 1, . . . , N
and j = 1, . . . , N . The vector x = (xi)i can be easily identified with a N ×N matching matrix
M = (mij)ij , putting mij ≡ x(i−1)N+j and Eq. (3.2.18) recovers the constraints in Eq. (3.2.14).
For N = 3, Eq. (3.2.18) has therefore the form

1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1

1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1︸ ︷︷ ︸
A

·

m1,1

m1,2

m1,3

m2,1

m2,2

m2,3

m3,1

m3,2

m3,3︸︷︷︸
x

=

1

1

1

1

1

1︸︷︷︸
1

. (3.2.27)

The Hungarian algorithm

We analyze now in some details the Hungarian algorithm [6] for the solution of the assignment
problem on the complete graph2 KN,N . This algorithm was proposed by Harold W. Kuhn in 1955 [8]
and it has polynomial computational complexity, proving that the assignment problem belongs to
the P computational complexity class. Indeed, the Hungarian algorithm, in the version of Munkres
[11], has time complexity O(N4) in the size N of the input. Dinic and Kronrod [4] and Edmonds
and Karp [5] were later able to decrease the computational complexity to O(N3). Remarkably, the
Hungarian algorithm is deeply connected with the more general theory of the cavity method. The
algorithm is named in honor of two Hungarian mathematicians, Dénes Kőnig and Jenő Egerváry,
that proved the fundamental theoretical results behind the algorithm elaborated by Kuhn.
As above, we consider the complete bipartite graph KN,N = Graph(V, U; E), V= {vi}i=1,...,N ,

U= {uj}j=1,...,N . The target is to find the matching matrix M0 such that the matching cost

CM[M] := 1
N

∑
i,j

wijmij , wij ≥ 0 ∀i, j, (3.2.28)

is minimized. The matrix Mo minimizing the cost above is also a solution for the matching problem
associated with the shifted cost

CM
h0

[M] := 1
N

∑
i,j

wijmij + h0. (3.2.29)

In particular, the cost function in Eq. (3.2.29) is invariant under the gauge transformation

wij 7→ wij − λi − µj , h0 7→ h0 + 1
N

N∑
i=1

λi + 1
N

N∑
j=1

µj . (3.2.30)

2More general polynomial algorithms are available to solve the matching problem on weighted graph KN,M ,
N 6= M .
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u1 u2 u3 u4 u5

v1 v2 v3 v4 v5

Figure 3.2.2.: The complete K5,5 with an equality graph Z (in orange) and the corresponding maximum matching
M (in red) on it. An example of set V∗ (green) with corresponding ∂Z V

∗ (blue) is also depicted.

Gauge transformations work directly on the N ×N weight matrix W = (wij)ij , that becomes the
only object to work on for the solution. The two column vectors of real values λ = (λi)i=1,...,N
and µ = (µi)i=1,...,N identify the gauge transformation. We say that the gauge is proper if

wij 7→ wij − λi − µj ≥ 0, ∀i, j. (3.2.31)

It is said in this case that the set {λ1, . . . , λN , µ1, . . . , µN} is a feasible node-weighting. The
following theorem about proper gauges holds [9].

Theorem 3.2.1 (Egerváry’s theorem). There exists a proper gauge (λo,µo) such that the
cost of the optimal assignment Mo is given by

CM[Mo] =
∑N
i=1 λ

o
i +

∑N
j=1 µ

o
j

N
. (3.2.32)

Moreover, this value is maximal among all possible proper gauges, i.e.,

CM[Mo] = max
(λ,µ) proper

∑N
i=1 λi +

∑N
j=1 µj

N
. (3.2.33)

Let us suppose that a proper gauge transformation has been performed on our matrix

W λ−→
µ

W̃ = W − µ⊗ 1ᵀ − 1⊗ λᵀ, (3.2.34)

where 1 = (1)i=1,...,N is an N -dimensional column vector. We can construct, on the basis of
the new weight matrix W̃, the equality subgraph Z = Graph(V, U; EZ) ⊆ KN,N such that
e ∈ EZ ⇔ w̃(e) = 0, being w̃(e) the weight associated to the edge e by the new weight matrix
W̃. If Z contains a perfect matching Mo ⊆ Z ⊆ KN,N , then Mo is the optimal matching3, having a
matching cost given by the Eq. (3.2.32).
If Z does not contain a perfect matching, we have to perform a new gauge transformation (see

Fig. 3.2.2). We search now in V for a set of vertices V∗ such that |∂Z V
∗| < |V∗|. The existence

of such subset is guaranteed by the Kőnig’s theorem (see the formulation of Hall). We apply then
the following gauge (λ∗,µ∗):

λ∗ = (λ∗i )i : λ∗i =
{
γ if vi ∈ V∗,

0 if vi 6∈ V∗,
(3.2.35)

µ∗ = (µ∗j )j : µ∗j =
{
−γ if uj ∈ ∂Z V

∗,

0 if uj 6∈ ∂Z V
∗,

(3.2.36)

where
γ = min

vi∈V∗
uj 6∈∂Z V

∗

w̃ij . (3.2.37)

The obtained weight matrix can be associated again to a new equality subgraph, in which we search
again for a perfect matching. The algorithm proceeds repeating the last steps (see Fig. 3.2.3) until
a perfect matching is found. The convergence of the algorithm in polynomial time is proved, e.g.,
in [6].

3Observe that different matching solutions are in general possible, but corresponding to the same cost.
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3. Graphs and optimization

The graph KN,N

with weight matrix
W = (wij)ij is given

wij 7→ ŵij := wij − minj wij

ŵij 7→ w̃ij := ŵij − mini ŵij

Construct the equality sub-
graph Z associated to the
obtained weight matrix

Find the maximum
matching M ⊆ Z

Is M
perfect in

KN,N ?

Search for a vertex set
V∗ ∈ V that do not

satisfy Kőnig’s theorem

Apply (λ∗, µ∗)

Perfect matching found

no

yes

Figure 3.2.3.: The Hungarian algorithm, with reference to the description given in the main text.
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Chapter 4

Random optimization problems
and statistical mechanics

4.1. Random optimization problems

In the previous Chapter we discussed optimization problems defined on graphs, and in particular
matching problems. For each of these problems we supposed that the parameters of the problem
(e.g., the weight matrix for the considered graph) were given once and for all. For a given instance
of an optimization problem, the solution can be found running specific algorithms available in the
literature.
However, to study some general properties of a given optimization problem, it is often useful

to consider random instances and study both the complexity of the problem and its solution in
average, for large sizes of the input. This probabilistic approach to combinatorial optimization
problems shed new light on their mathematical properties. Many results have been obtained in
computer science, combinatorics and probability. Remarkably, since a seminal work by Mézard
and Parisi [15], statistical physics has played a central role in this kind of investigations. Indeed,
many techniques developed by physicists for the study of disordered systems and phase transitions,
are tremendously effective in the investigation of random optimization problems and, for many
important problems, some phase-like transitions were identified respect to the parameters of the
problems. These phase transitions are related to changes in the structure of the set of feasible
solutions [3, 13].

The satisfiability transition A first kind of randomization for a combinatorial optimiza-
tion problem defined on a graph can be performed on the graph itself. A typical ensemble of
random graphs is the Erdős–Rényi random graph GV,E . The generic graph of this ensemble has
V vertices and it is obtained selecting uniformly at random E edges among all the

(
V
2
)
possible

edges. The limit V → ∞ is performed assuming E = αV with α is fixed. We can then consider
an optimization problem, e.g., q-Col, on this graph, adopting the cost function in Eq. (3.2.6).
In the case of k-Sat, we can similarly define an ensemble of random hypergraphs with V vertices
and M = αV k-edges, assuming that each k-edge is chosen uniformly at random among the

(
V
k

)
possible k-edges. In the random k-Sat, a second kind of randomness is typically present. Indeed,
the cost function in Eq. (3.2.7) depends on a set of parameters {Jev}: these parameters are usually
chosen to be ±1 with equal probability. Obviously, in this random optimization problems the
solution for a given instance is not relevant, but some average properties are of a certain impor-
tance. For example, both in the random q-Col and in the random k-Sat, we may ask what is
the probability P (α, V ) that an instance with V vertices has a feasible state with zero energy,
i.e., if the problem is satisfiable. This probability depends on the only parameter of the ensemble,
α. Since the seminal works of Cheeseman, Kanefsky, and Taylor [6] and Mitchell, Selman, and
Levesque [18], it became evident that there is, for both the random q-Col and the random k-Sat,
a sharp transition between two regimes, i.e.,

lim
V→∞

P (α, V ) = θ(αs − α), (4.1.1)

where αs is a critical value depending on the problem and θ(x) is the Heaviside function. Eq. (4.1.1)
is now called satisfiability conjecture and many results have been obtained both about upper and
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4. Random optimization problems and statistical mechanics

lower bounds on αs and about its specific value.
In this thesis we will not discuss further the random k-Sat and the random q-Col. Many

extremely interesting results about these problems, as anticipated, were obtained by means of
statistical physics techniques [25]. The interested reader can find more information in the book of
Mézard and Montanari [13].

4.1.1. Random matching problems

Given a certain instance of the matching problem on a weighted graph, we can find a solution of the
problem using, for example, the algorithms discussed in the previous Chapter. Here however we are
interested in the study of the average properties of the random matching problem. In the random
matching problem on the weighted graph G = Graph(V; E), the weights {w(e)}e∈E are supposed
to be random variables with a certain distribution, both in the case G ≡ K2N and in the case
G ≡ KN,N . In the simplest case, all weights are independently and identically distributed (i.i.d.)
random variables with a distribution density ρ(w). The distribution itself defines therefore an
ensemble of random instances and we ask for the typical properties (average optimal cost, optimal
cost distribution. . . ) for a given ensemble in the thermodynamical limit. The simplest case of
independent random variables is already quite difficult to tackle. In the following we will discuss
some results for this particular case. In Chapter 5 we will include Euclidean correlations among
the weights of the graph.
We call random monopartite matching problem (rmmp) the matching problem defined on a

complete graph K2N , whilst in the random bipartite matching problem (rbmp) the problem
is supposed formulated on the complete bipartite graph KN,N . Both the rmmp and the rbmp
have been investigated using purely combinatorial and probabilistic arguments, but also through
statistical physics approaches.

The rbmp: Aldous’ solution and Parisi’s formula

In 2001 Aldous [1] provided a rigorous treatment of the rbmp, or random assignment problem, on
the complete bipartite graph KN,N in the N → ∞ limit. Aldous assumed i.i.d. weights and he
chose a probability distribution density for the weights given by

ρ(w) = θ(w) e−w . (4.1.2)

Due to the importance of his solution, we will give a brief sketch of his results. We want to stress
here that Aldous’ solution was deeply inspired by the so-called cavity method, first introduced in
the study of glassy systems. We will discuss this method later.
Let us consider our weighted complete bipartite graph

KN,N = Graph(V, U; E), V= {v1, . . . , vN}, U= {u1, . . . , uN}, w : (vi, uj) 7→ wij .
(4.1.3)

The quantities wij for i, j = 1, . . . , N , as anticipated, are supposed i.i.d. random variables with
probability distribution density given by Eq. (4.1.2).
Aldous performed an unfolding procedure to construct, from the weighted complete graph KN,N ,

an infinite ordered tree in which each vertex has a fixed degree1 N

T = Graph(VT; ET). (4.1.4)

The construction procedure is the following. Let us select a vertex of KN,N at random and let us
call it φ. For the sake of simplicity, let us suppose that φ ≡ vN : we will write τ(φ) = vN , where τ
is a “folding map”. This vertex will be the root of our tree. We connect now φ to N new vertices,
and we denote them by t1, . . . , tN . Moreover, we associate to each edge (φ, ti) a weight ωφi, in
such a way that

ωφi = ith [{w((τ(φ), ul)}l=1,...,N ] . (4.1.5)

In the notation above, ith [{al}l=1,...,K ] denotes the i-th element, in increasing order, of the set
{al}l=1,...,K . If the i-th weight in the set is, e.g., wNk, we say that τ(ti) = uk.

1The tree is therefore an infinite N-Cayley tree.
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u1 u2 u3 u4 u5

v1 v2 v3 v4 v5 ≡ φ

t1

t11

t111

t112

t113
t114

t12

t121
t122

t123t124

t13

t131t132t133t134

t14

t141
t142

t143
t144

t2

t21

t211

t212

t213

t214

t22

t221

t222

t223

t224

t23

t231

t232

t233

t234

t24

t241

t242

t243

t244
t3

t31
t311

t312

t313

t314

t32

t321

t322

t323

t324

t33

t331
t332

t333
t334

t34

t341
t342 t343 t344

t4

t41

t411 t412 t413
t414

t42

t421
t422

t423

t424

t43

t431

t432

t433

t434

t44

t441

t442

t443

t444

t5

t51

t511

t512

t513

t514

t52

t521

t522

t523

t524

t53
t531

t532

t533

t534

t54

t541

t542

t543

t544

φ

~e

~e1

~e2

~e3

Figure 4.1.1.: Structure of the unfolding map for a K5,5 graph The directed edge ~e is represented in bold with its
children ~e1, ~e2, ~e3.
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Let us take now one of the N vertices generated, let us say tk. We attach to tk N − 1 new
vertices, let us call them tki, i = 1, . . . , N − 1. Again, we associate to each edge (tk, tki) a weight
ωk ki, in such a way that

ωk ki = ith [{w((vj , τ(tk))}j=1,...,N−1] . (4.1.6)

Observe that the weight of the edge (vN , τ(tk)) in KN,N has been excluded: this happens be-
cause the vertex tk is already attached to a vertex (here φ) corresponding to vN . We repeat this
construction for all vertices {tl}l=1,...,N .
We proceed in this way constructing an infinite tree like in Fig. 4.1.1. Each vertex of the tree

has (N − 1) “children” and each “child” is associated to one and only one vertex in the original
graph KN,N . The different “levels” of the tree correspond alternately to vertices in V or in U of
the original graph. Taking the limit N → ∞, an element of the infinite tree at distance d > 0
from the root φ is identified by a sequence of integers number, like

tk, with k = k1k2 · · · kd, ki ∈ {1, . . . , N − 1} (4.1.7)

Denoting by e = (tk, tk′) ∈ ET an edge of the tree, there is only one corresponding edge
(τ(tk), τ(tk′)) ∈ E. The constructed tree is called Poisson–weighted infinite tree, due to the
fact that the weights on the tree are distributed according to Eq. (4.1.2).
An optimal matching on this tree is given by a matching Mo such that

CT[Mo] = min
M

∑
e∈M

w(e), (4.1.8)

where the minimum is taken over all possible matchings M ⊆ T on the tree. Observe that the
previous quantity is formally divergent in the N → ∞ limit. However, the search and the study
of an optimal matching on this graph will be easier than on the original graph, due to the absence
of cycles.
The edges of the graph were not considered, up to now, directed. We specify the direction of an

edge writing
~e =
−−−−→
(tk, tk′), (4.1.9)

meaning that the tail is in tk and the head in tk′ . We call the N − 1 oriented edges having tail in
tk′ the children of ~e =

−−−−→
(tk, tk′). “Cutting” the edge (tk, tk′) we obtain two trees: we say that the

one containing tk′ is the three of the descendants of ~e and we will denote it by T~e.We call T~enc the
forest of N − 1 trees obtained removing from T~e the N − 1 edges incident at tk′ .
Due to the tree-like structure of the graph, we can write a self-consistent equation for the cost

CT~e of the optimal matching on the tree of descendants T~e as

CT~e = min
~ei child of ~e

w(~ei) + CT~einc
+
∑
j 6=i

CT~ej

 . (4.1.10)

This recursive equation must hold due to the fact that we are considering trees. If we introduce

X(~e) := CT~e − CT~enc
, (4.1.11)

difference between the cost of the optimal matching on the descendants’ tree with and without the
edges incident in tk′ , we have

X(~e) = min
~ei child of ~e

w(~ei) + CT~einc
+
∑
j 6=i

CT~ej

−∑
j

CT~ej

= min
~ei child of ~e

[w(~ei)−X(~ei)] .

(4.1.12)

We expect that X(~e) and X(~ei) are identically distributed. In particular, Aldous proved the
following result.
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Theorem 4.1.1. A given edge e ∈ ET is an edge of the optimal matching of the original
problem if and only if the following inequality holds

w(e) < X(~e) +X( ~e). (4.1.13)

Assuming that all weights are i.i.d. random variables, distributed according to Eq. (4.1.2), it
can be proved that X(~e) has a logistic probability distribution density:

pX(x) = 1
4 cosh2 x

2
. (4.1.14)

From this result and from Eq. (4.1.13), the distribution of the weights on the edges of the optimal
matching is

ρo(w) := Pr [w(e) < X(~e) +X( ~e)] = θ(w)e−w +w − 1
4 sinh2 w

2
. (4.1.15)

The average optimal cost of the rbmp follows straightforwardly,

Crbmp := CM N→∞−−−−→
∞∫

0

wρo(w) dw = π2

6 , (4.1.16)

where we denoted by • the average over all instances.
Both Eq. (4.1.15) and Eq. (4.1.16) had been already obtained by Mézard and Parisi [14, 15] in

1985 using the replica method. In the entire construction of Aldous there are, moreover, evident
resemblances with the so called cavity method (see Chapter 5).
Aldous’ results are valid in the N →∞ limit but no information about finite size effects can be

obtained from the arguments above. This information is given by the following theorem, proposed
as a conjecture by Coppersmith and Sorkin [7] in 1999 for the random k-assignment problem and
later independently proved by Linusson and Wästlund [11] and Nair, Prabhakar, and Sharma [20].

Theorem 4.1.2 (Coppersmith–Sorkin formula). Let us consider a complete bipartite graph
KN,M = Graph(V, U; E) and let us associate to each edge e ∈ E a weight w(e), in such a
way that the costs {w(e)}e∈E are a set of i.i.d. random variables with density distribution
given by Eq. (4.1.2). Then the average optimal cost of the k-assignment problem on it is

CkM =
k−1∑
i=0

k−1∑
j=0

I[0,k)(i+ j)
(M − i)(N − j) (4.1.17)

where IA(x) is the indicator function:

IA(x) :=

1 if x ∈ A
0 otherwise.

(4.1.18)

From the previous theorem, the following corollary follows for the assignment problem, conjec-
tured by Parisi [22] in 1998

Corollary 4.1.3 (Parisi’s formula). In the assignment problem, we have

Crbmp
N := CM =

N∑
i=1

1
i2
. (4.1.19)

Apart from the original works, a complete discussion of the previous results can be found in the
monograph by Mézard and Montanari [13].
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Figure 4.2.1.: Ising model on a two-dimensional lattice.

4.2. Disordered systems, spin glasses and assignment

As anticipated in the previous Section, when dealing with random optimization problems we are
not interested in the properties of a specific instance, but in the average properties of the problem,
possibly depending on some parameters (e.g., the size or some fixed parameters in the cost function)
and on the way we introduce randomness in the problem itself.
Statistical physics has developed a plethora of techniques to obtain the average properties of

systems with a huge number of degrees of freedom, even in presence of disorder. In particular, in
disordered systems, disorder is typically introduced in the Hamiltonian function,

H = H(σ,J), (4.2.1)

as a set of parameters J := {Jk}k randomly extracted from a certain probability distribution.
These parameters usually couple with the degrees of freedom σ := {σi}i of the system itself.
Different techniques have been developed to treat properly these systems depending on the fact
that the disorder is considered fixed on the time scale over which the degrees of freedom of the
system fluctuate (quenched disorder) or otherwise (annealed disorder).
Spin glasses play the role of reference frame in which physicists analyze the peculiar effects of

disorder on the behavior of systems with a large number of degrees of freedom. The importance of
spin glasses goes beyond the application to physical systems. In a famous set of seminal papers,
Mézard and Parisi [15] discussed the application of spin glasses methods to some optimization
problems. In particular they studied theTsp and the rmmp, showing the power of these techniques
in the analysis of random optimization problems. Remarkably, the results on random matching
problems, published in 1985, were rigorously proved by Aldous for the rbmp only in 2001, as
explained in Section 4.1.1. To understand their results, however, some concepts of the general
theory are necessary. We will present here a brief survey on spin glass theory [5, 12, 21] and,
subsequently, we will reproduce their argument for the rmmp, neglecting the first order finite size
corrections obtained by Parisi and Ratiéville [24] by means of similar techniques.

4.2.1. Preliminaries: the Ising model

Let us consider a graph G = Graph(V; E), V = |V|, and suppose that we assign to each node
vi ∈ V of G an Ising spin variable σi ∈ {−1, 1} and to each edge e ≡ (vi, vj) ∈ E an interaction
energy −Jσiσj , J ∈ R, depending on the value of the Ising spins on the end points of the edge.
We introduce also an Hamiltonian functional for the graph in the following form:

HG[σ; J, h] := −J
∑
〈ij〉

σiσj − h
V∑
i=1

σi. (4.2.2)

In the previous Hamiltonian, h ∈ R is a fixed real quantity. Moreover, we denoted by
∑
〈ij〉 ≡∑

(vi,vj)∈E. The model defined above is an Ising model on the graph G. If G is a complete graph,
the model is sometimes called Curie–Weiss model, or infinite range Ising model. In the problem
of magnetism, the Ising spins represent microscopic magnetic moments on a certain lattice, coupled
in a ferromagnetic (J > 0) or antiferromagnetic (J < 0) way and in presence of a certain external
uniform magnetic field h. In Eq. (4.2.2) we denoted by σ := {σi}i=1,...,V the generic configuration
of the system.
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In the spirit of Boltzmann–Gibbs statistical mechanics, we can associate a Boltzmann–Gibbs
weight to each configuration σ,

µG[σ;β, J, h] := 1
ZG(β, J, h) e−βHG[σ;J,h], (4.2.3)

where the normalization is given by the partition function of the system

ZG(β, J, h) :=
∑
σ

e−βHG[σ;J,h], (4.2.4)

in such a way that
∑
σ µG[σ;β, J, h] = 1. The parameter β−1 > 0 is the temperature of the

system. Given a function f := f(σ), we introduce the notation

〈f〉 :=
∑
σ

f(σ)µG[σ;β, J, h]. (4.2.5)

It is well known that the partition function plays a central role in the computation of many physical
quantities of interest. For example, the magnetization is given by

mG(β, J, h) := 1
V

V∑
i=1
〈σi〉 = − 1

V

∂ lnZG(β, J, h)
∂h

∈ [−1, 1]. (4.2.6)

If N := V is finite, ZG(β, J, h) is an analytic function of its arguments β, J and h. However,
in the limit N →∞, some singularities may appear in the (β, J, h) space in some points (critical
points) or surfaces (critical surfaces). The existence and location of these singularities is of
paramount interest. Indeed, a lack of analiticity in the partition function the fingerprint of phase
transitions, and critical surfaces identify the interfaces between different macroscopic behaviors
of the system. This modification of the macroscopic behavior can be, in general, characterized by
the sharp change in the value of a certain quantity, that is called order parameter. Unfortunately,
there are no general criteria to identify the proper order parameter for a given system.
To more precise in our exposition, let us consider a ferromagnetic Ising model on the hypercubic

lattice in d dimensions of side L. On this lattice, there are Ld ≡ N vertices and each of them is
connected to its 2d nearest neighbors. If we denote by HN the Hamiltonian (4.2.2) of the system,
the partition function ZN (β, J, h) and the Boltzmann–Gibbs measure µN [σ;β, J, h] can be defined
as above. The magnetization mN (β, J, h), defined as in Eq. (4.2.6), gives a measure of how much
the system is “ordered”. In fact, |mN | ≈ 1 is indicative of the fact that, on average, almost all spins
variables have the same value, whilst |mN | ≈ 0 suggests that the spins are randomly oriented.
Not surprisingly, in the N → ∞ limit the magnetization mN is an order parameter in the sense
specified above. Indeed, for d > 1 and fixed J > 0, the function

m(β, J, h) := lim
N
mN (β, J, h) (4.2.7)

has a branch cut in the (β, h) plane on the axis h = 0 and for β > βc(d, J). Here βc(d, J) is the
critical inverse temperature and it depends on dimensionality. Formally, for d = 1 βc(1, J) =
+∞, whilst for d = 2 a famous duality argument by Kramers and Wannier [10] shows that

βc(2, J) =
ln
(
1 +
√

2
)

2J . (4.2.8)

For d > 2 only numerical estimations of βc are available. The branch cut of m(β, J, h) shows that
ZN (β, J, h) is not analytic in the N →∞ limit. Indeed, for β > βc(d, J), we have that

lim
h→0+

m(β, J, h) 6= lim
h→0−

m(β, J, h) (4.2.9)

and therefore
lim
h→0+

lim
N
µN [σ;β, J, h] 6= lim

h→0−
lim
N
µN [σ;β, J, h]. (4.2.10)

On the critical line two different equilibrium measures coexist and we have a spontaneous symme-
try breaking of the Z2 invariance {σi} 7→ {−σi} satisfied by the Hamiltonian functional (4.2.2)
for h = 0. We say that for β > βc(d, J) and h = 0 we have two different phases, each of them
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identified by the value of the order parameter m. The intuitive concept of pure phase can be more
rigorously formulated in the context of statistical field theory [26]: here we simply state that an
equilibrium measure µ describes a pure phase if, and only if, given two local observables A(x) and
B(x) (where x is a graph site) then in the thermodynamical limit

lim
δ(x,y)→+∞

[〈A(x)B(y)〉 − 〈A(x)〉〈B(y)〉] = 0, (4.2.11)

where δ(x, y) is the distance between the node x and the node y in the graph. The previous
condition is called cluster property. If, however, for a system described by a Hamiltonian H(σ),
ergodicity breaking happens, the phase space is partitioned in Ω pure phases {ωα}α=1,...,Ω. Each
phase has its own Gibbs measure

µα(σ) = Iωα(σ)
Zα

e−βH(σ), Zα =
∑
σ

Iωα(σ) e−βH(σ) . (4.2.12)

We can also define a free energy Fα = −β−1 lnZα corresponding to the phase α.
The Ising model is easily solvable on a one dimensional lattice. In 1944 Lars Onsager announced

his celebrated solution for the Ising model with h = 0 in d = 2, later reformulated in different
ways [19]. Unfortunately, no exact solution is available for d > 2, even in absence of external
magnetic field. The discussion of the different, inspiring solutions proposed for the Ising model
in d = 2 [4, 19] is outside the purposes of the present work. However, to give a qualitative
description of the phase transition in the Ising model, we can adopt a very simple and common
approximation, calledmean field approach. We assume that σi = m+δσi, wherem ≡ m(β, J, h)
is the magnetization in the N → ∞ limit. We can insert this approximate form in the generic
Hamiltonian in Eq. (4.2.2) on the graph G and neglect fluctuations in the non-linear terms. For
the Ising model on a d-dimensional lattice, we have

HN [σ; J, h] = −J
∑
〈ij〉

(m+ δσi) (m+ δσj)− h
N∑
i=1

σi

≈ −2dJNm2 − (2dJm+ h)
N∑
i=1

σi. (4.2.13)

In this approximation it is easily obtained

ZN (β, J, h) = eβ2dNJm2
[2 cosh β (Jmd+ h)]N . (4.2.14)

Therefore the magnetization satisfies the equation

m = tanh β(2dJm+ h). (4.2.15)

From the last equation, we have that a non-vanishing magnetisation can be obtained for h = 0
only if 2dβJ > 1, i.e. for β > 1

2dJ . The critical value obtained from this mean field approximation
is then

βmf
c = 1

2dJ . (4.2.16)

This value is not correct: for example, for d = 2 does not recover the solution in Eq. (4.2.8) ob-
tained through an exact computation. However, the mean field theory qualitatively reproduces the
critical behavior of the original model and correctly predict the existence of a critical temperature.
The mean field theory is able also to give us a hint about what happens at the critical tempera-

ture. If we compute the free energy for the Ising model in this approximation, we have

FN (β, J, h) = − 1
β

lnZN (β, J, h)

≈ −N
β

ln 2 + N

2βmf
c

(
1− β

βmf
c

)
m2 + N

12

(
m

βmf
c

)4
β3 + o

(
m4) (4.2.17)

Note that the functional above has a global minimum in m = 0 for β < βmf
c . This value becomes

a local maximum for β > βmf
c and, in the same regime, two new minima appear, symmetric
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(a) EA-model. (b) SK-model.

Figure 4.2.2.: Pictorial representation of 2-dimensional Edwards–Anderson model and of the Sherrington-
Kirkpatrick model.

respect to m = 0. This fact suggests that, above the critical temperature, the system is in a
zero–magnetization phase. Below the critical temperature, the system “falls” in one of the two
valleys corresponding to nonzero magnetization. This simple observation, proposed for the first
time by Landau, gives a qualitative explanation of the spontaneous symmetry breaking.

4.2.2. Spin glasses

Let us consider an Ising-type model on a graph G = Graph(V; E) with the following Hamiltonian,

HG[σ; J, h] := −
∑
〈ij〉

Jijσiσj − h
∑
i

σi. (4.2.18)

This time, each Jij is supposed to be a random quantity. In particular, each Jij is extracted,
independently from all the others, from a given probability distribution density ρ(J), identical
for all (vi, vj) ∈ E. The set of values J = {Jij} is supposed to be extracted once and for all
for each instance, and therefore we say that the disorder is quenched. Usually both positive and
negative value of Jij are admitted, so we have both ferromagnetic and paramagnetic interactions.
If we consider our system on the hypercubic lattice in d dimensions, the obtained model is called
Edwards–Anderson model (EA-model) in d dimensions. The EA-model is an example of disor-
dered system, and, in particular, of spin glass.
A disordered system is a system characterized by the presence of two elements. First, in disor-

dered systems some randomness appears: in the case of the EA-model, the randomness is obviously
in the fact that the coupling constants are random variables extracted from a certain distribution
function. Second, in a disordered system there is frustration. This concept is slightly more subtle.
A lattice model is frustrated whenever there exists a set of local constraints in conflict each other.
Let us consider for example a cycle of length four in the EA-model in d = 2, in which the product
of the coupling constants J along the cycle is negative. For example, denoting by a black line an
interaction with J < 0 and by a white line an interaction with J > 0, such a cycle can have the
form

It is evident that no configuration of Ising spins is capable of minimizing simultaneously the energy
contribution of all edges separately. The energy landscape of frustrated systems is therefore often
nontrivial and it is not obvious what is the structure of the “minimum energy configuration”.
In disordered systems we are not interested in the properties of a precise realization, but we have

to average, in some sense, on the disorder to extract the useful information. In the case of the
EA-model, we need therefore to average over all possible values of J = {Jij}ij . We will denote by
•̄ the average of a function respect to the possible values of J. How this average must be performed
on thermodynamical functionals, however, is a delicate matter. In fact, it turns out that the free
energy FG for a disordered system on a generic graph G is self averaging [5, 21], i.e.,

lim
|V|→∞

F 2
G

FG
2 = 1, (4.2.19)
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but the partition function is not. The property of being self-averaging is crucial, because we want
that physical observables do not depend from the specific realization. On the other hand, free
energy is fundamental for the computation of all physical quantities.
It follows that we have to compute in general the following configurational average:

FG[J;β] := − lnZG[J;β]
β

= − 1
β

∏
〈ij〉

∫
ρ(Jij) dJij

 lnZG[J;β]. (4.2.20)

Parisi’s solution of the SK model

To perform the integral (4.2.20), a famous and powerful trick, called replica trick, is usually
adopted. The manipulation is based on the following identity:

ln x = lim
n→0

xn − 1
n

, x > 0. (4.2.21)

To proceed with our computation, let us assume that the graph on which the Hamiltonian (4.2.18)
is defined is a complete graph, G ≡ KN . The obtained model is called Sherrington–Kirkpatrick
model (SK-model), and it is an mean field version of the EA-model. In this model the probability
distribution density for the set of parameters {Jij}ij is given by

ρ(J) =
√
N

Γ
√

2π
e−

NJ2
2Γ2 , Γ > 0. (4.2.22)

We want to compute the average free energy density using the replica trick in Eq. (4.2.22) and
in the thermodynamical limit,

βf̄ := lim
n→0
N→∞

1− ZnN
nN

. (4.2.23)

It follows that

Zn =

∏
〈ij〉

∫
ρ(Jij) dJij

 exp

β∑
i<j

Jij

n∑
α=1

σαi σ
α
j + βh

N∑
i=1

n∑
α=1

σαi


= exp

(
Nβ2Γ2n

4

)∏
α

∑
{σα}

 exp

β2Γ2

2n
∑
α<β

(∑
i

σαi σ
β
i

)2

+ βh

N∑
i=1

n∑
α=1

σαi


= exp

(
Nβ2Γ2n

4

)∏
α<β

∫
d qαβ

 exp

Nβ2Γ2

2n
∑
α<β

q2
αβ +N ln z[q]

 ,
(4.2.24)

where we have introduced

z[q] :=
∑

σ1,...,σn

exp

β2Γ2
∑
α<β

qαβσ
ασβ + βh

∑
α

σα

 , q := (qαβ)αβ . (4.2.25)

Observe that z appears as a sort of partition function for a set of n coupled spins, each one
associated to one of the n replica indexes. Being the exponent of the integrand proportional to N ,
we can use the steepest descent method to evaluate the expression. In particular, the extremality
condition respect to the generic element qαβ gives

qαβ = ∂ ln z[q]
∂qαβ

≡
〈
σασβ

〉
z
. (4.2.26)

In Eq. (4.2.26) we have adopted the notation

〈
O
(
σ1, . . . , σn

)〉
z

:= 1
z

∑
σ1,...,σn

O
(
σ1, . . . , σn

)
exp

β2Γ2
∑
α<β

qαβσ
ασβ + βh

∑
α

σα

 .

(4.2.27)
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Let Q := (Qαβ)αβ be the solution of the saddle point condition in Eq. (4.2.26). Calling

S[Q] := −β
2Γ2

2
∑
α 6=β

Q2
αβ + 1

4β
2Γ2 + 1

n
ln z[Q], (4.2.28)

H(αβ)(γδ)(Q) := ∂2S[q]
∂qαβ∂qγδ

∣∣∣∣
q=Q

, (4.2.29)

it follows that

Zn ∼ 1√
det H

1 + nN

−β2Γ2

4
∑
α6=β

Q2
αβ + 1

4β
2Γ2 + 1

n
ln z[Q]

 . (4.2.30)

Notably,Qαβ are not merely a set of variables. Indeed they express a sort of “average superposition”
between replicas, being (as can be directly checked)

Qαβ = 〈σαi σ
β
i 〉R, (4.2.31)

where 〈•〉R is the average respect to the replicated system whose Hamiltonian function is

HR[{σα}α; J, h] :=
n∑
α=1

−∑
i<j

Jijσ
α
i σ

α
j + h

N∑
i=1

σαi

 . (4.2.32)

The variables Qαβ play the role of spin glass order parameters, as we will see. If we suppose
that all replicas are equivalent (replica symmetric hypothesis)

Qαβ = 〈σαi σ
β
i 〉R = 〈σαi 〉R〈σ

β
i 〉R = 〈σi〉2 = q =: qEA, α 6= β. (4.2.33)

The quantity qEA is called Edward–Anderson order parameter. We expect that for β → 0 the
spins are randomly oriented, and therefore qEA = 0, whilst in the β → +∞ limit qEA > 0, having
〈σi〉 6= 0 for each realization.
A careful computation (see Section A.1) shows that

1√
det H

n→0−−−→ 1. (4.2.34)

In our replica symmetric hypothesis we get [21]

− βf̄ = β2J2

4 (1− q)2 + 1√
2π

∫
e−w

2
2 ln [2 cosh (βJ√qw + βh)] dw, (4.2.35)

from which we get

m = 1√
2π

∫
e−w

2
2 tanh (βJ√qw + βh) dw, (4.2.36)

whilst the value of q to be inserted in the previous equation can be obtained from the extremization
condition on Eq. (4.2.35):

q = 1√
2π

∫
e−w

2
2 tanh2 (βJ√qw + βh) dw. (4.2.37)

The replica approach for the Sherrington–Kirkpatrick model seems to give a complete solution.
However, our solution presents an anomalous behavior in the low temperature limit. For exam-
ple, a direct computation of the entropy density s gives

lim
β→+∞

s = lim
β→+∞

β2 ∂f̄

∂β
= − 1

2π . (4.2.38)

The origin of this pathological behavior, and of the instability of the solution analyzed by Almeida
and Thouless [2] (see Subsection A.1), was identified by Parisi [23] in 1983. Parisi showed in
particular that a breaking of the replica symmetry is needed.
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Replica symmetry breaking and Parisi’s solution In the replica symmetric hypothe-
sis, Eq. (4.2.33), the matrix Q = (Qαβ)αβ can be represented in the following way (in the example,
n = 12):

Q =

0
q
q
q
q
q
q
q
q
q
q
q

q
0
q
q
q
q
q
q
q
q
q
q

q
q
0
q
q
q
q
q
q
q
q
q

q
q
q
0
q
q
q
q
q
q
q
q

q
q
q
q
0
q
q
q
q
q
q
q

q
q
q
q
q
0
q
q
q
q
q
q

q
q
q
q
q
q
0
q
q
q
q
q

q
q
q
q
q
q
q
0
q
q
q
q

q
q
q
q
q
q
q
q
0
q
q
q

q
q
q
q
q
q
q
q
q
0
q
q

q
q
q
q
q
q
q
q
q
q
0
q

q
q
q
q
q
q
q
q
q
q
q
0 .

(4.2.39)

We impose Qαα = 0 ∀α. Parisi suggested to break this symmetry in a set of steps. In the first
step we choose an integer m1 such that all replicas are divided into n

m1
groups. If α and β belong

to the same group, then Qαβ = q1, otherwise Qαβ = q0. The matrix Q has, under this hypothesis,
the following form (in the example, n = 12 and m1 = 4):

Q =

0
q1
q1
q1
q0
q0
q0
q0
q0
q0
q0
q0

q1
0
q1
q1
q0
q0
q0
q0
q0
q0
q0
q0

q1
q1
0
q1
q0
q0
q0
q0
q0
q0
q0
q0
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q0
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q0
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q1
q1
0
q1

q0
q0
q0
q0
q0
q0
q0
q0
q1
q1
q1
0

. (4.2.40)

We can proceed further, subdividing each one of the m1 groups of replicas in m2 subgroups, and
so on. We finally obtain a set of integer numbers n ≥ m1 ≥ m2 · · · ≥ 1 and a gradually finer
subdivision of the matrix Q, in which at the k-th step of symmetry breaking we admit k + 1
possible different q values. Pictorially, (in the example below, n = 12, m1 = 4, m2 = 2)
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⇒ · · ·

(4.2.41)
The idea of evaluating the free energy taking into account different levels of replica symmetry
breaking is not justified by a general principle, or a rigorous argument, but only by a deep intuition.
The obtained results are, however, in excellent agreement with the data. For the SK-model,
numerical evidences show that a full rsb is necessary, i.e. we have to proceed in the breaking of
replica symmetry ad infinitum. Note however that a full rsb is not always needed, and some
disordered systems requires only a finite number of steps. It might seem, being n → 0, that an
infinite number of steps is simply impossible. However, we can still proceed in a nonrigorous way
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and note that, at the k-th level of rsb,

1
n

∑
αβ

Qlαβ =
k∑
j=0

(mj −mj+1)qlj , m0 ≡ n, mk+1 ≡ 1, l ∈ N. (4.2.42)

In the previous equation, Qlαβ is simply the l-th power of the element Qαβ of the matrix Q. We
can define a function

ql(x) :=
k∑
i=1

qliI[mi+1,mi](x) (4.2.43)

where I[a,b](x) is the indicator function. In the limit n→ 0 we have that

n ≥ m1 ≥ m2 · · · ≥ 1 −→ 0 ≤ m1 ≤ m2 ≤ · · · ≤ 1, (4.2.44)

and therefore q(x) is defined in the interval [0, 1]. At the same time, mj −mj+1 → −dx and we
can write

1
n

∑
αβ

Qlαβ =
k∑
j=0

(mj −mj+1)qlj
k→+∞−−−−−→ −

1∫
0

ql(x) dx. (4.2.45)

From Eq. (4.2.30) and Eq. (4.2.34), we obtain

− βf̄ ∼ −β
2Γ2

4
∑
α 6=β

Q2
αβ + 1

4β
2Γ2 + 1

n
ln z[Q]. (4.2.46)

Therefore we get for the energy and the susceptibility

ε̄ := ∂β f̄ = −βΓ2

2

(
1 + 1

n

∑
α 6=β Q

2
αβ

)
−→ −βΓ2

2

(
1−

∫ 1
0 q

2(x) dx
)
, (4.2.47a)

χ̄ := ∂hf̄ = β
(

1 + 1
n

∑
α 6=β Qαβ

)
−→ β

(
1−

∫ 1
0 q(x) dx

)
. (4.2.47b)

The complete expression for f̄ in the full rsb scheme can be obtained after some computations
[21]:

βf̄ = −β
2Γ2

4

1 +
1∫

0

q2(x) dx− 2q(1)

− 1√
2π

1∫
0

P
(

0,
√
q(0)w

)
e−w

2
2 dw, (4.2.48)

where the function P (x, h) satisfies the so called Parisi equation:

∂P (x, h)
∂x

= −Γ2

2
dq(x)

dx

[
∂2P (x, h)
∂h2 + x

(
∂P (x, h)
∂h

)]
, P (1, h) = ln (2 cosh βh) .

(4.2.49)
The function q(x) must be found extremizing the functional (4.2.48). This is a quite difficult task
but numerical simulations are in perfect agreement with Parisi’s solution when the limit β → +∞
is taken.
The reason of the success of Parisi’s approach is that, in the thermodynamical limit, the free

energy of a spin glass has a multivalley structure in which many minima separated by infinitely
high barriers appear. The rsb is necessary to probe all these different valleys simultaneously and
this is the intuition behind the procedure. It is said that each valley corresponds to a phase, or
state, and ergodicity breaking occurs. To better understand this concept, let us introduce, for a
certain realization J = {Jij}, an overlap function between states of the system in the form

Ωab := 1
N

N∑
i=1
〈σi〉a〈σi〉b, (4.2.50)

where 〈•〉a denote the average restricted to the state a. The distribution of the overlaps is

%J(Ω) :=
∑
ab

wawbδ(Ω− Ωab), (4.2.51)
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where wa is the probability of being in the state a. In the Ising model, Jij ≡ J > 0, for β → +∞
and h = 0 only two phases are possible and therefore

%(Ω) = δ(Ω− 1)
2 + δ(Ω + 1)

2 . (4.2.52)

In the SK-model we are interested, as usual, to the average over the disorder of %J, distribution of
the overlaps for a given set of parameters J,

%(Ω) := %J(Ω). (4.2.53)

In the full rsb scheme, it can be proved [23] that the momenta of %(Ω) coincide with the average
of the powers of Qαβ , solutions of (4.2.26). In other words,

∫
Ωk%(Ω) d Ω = lim

n→0

1
n(n− 1)

∑
α 6=β

Qkαβ =
1∫

0

qk(x) dx, (4.2.54)

In particular,

∫
Ω%(Ω) d Ω =

1∫
0

q(x) dx =
1∫
−1

q
dx
dq d q ⇒ x(q) =

q∫
−∞

%(Ω) d Ω. (4.2.55)

where we denoted by x(q) the inverse function of q(x). This equation stresses the strong relation
between the matrix of overlaps of replicas Q = (Qαβ)αβ and the matrix of overlaps of states
Ω = (Ωab)ab.

4.2.3. The solution of the random matching problem by replicas

Let us now turn back to random matching problems, and in particular to the rmmp, both to give
an example of analysis of random optimization problems by means of statistical physics techniques,
and to complement the results on the rbmp that will be presented in Subsection 4.1.1. We will
follow, with slight modifications, the original paper by Mézard and Parisi [15].
As explained before, the rmmp is formulated on the complete graph K2N . To each edge e of

the graph, we associate a weight w(e) extracted from a certain probability density function ρ(w),
independently from all other edges. Let us suppose that this distribution is exactly the same given
in Eq. (4.1.2), i.e.,

ρ(w) = θ(w) e−w . (4.2.56)
Labeling by {vi}i=1,...2N the 2N vertices of the graph, we denote the weight of the edge e = (vi, vj)
as wij . The weighted adjacency matrix W = (wij), wij = wji, identifies a realization of our
problem. The cost of a matching on this graph can be expressed as

CM[M] = 1
N

∑
1≤i<j≤2N

mijwij , (4.2.57)

whereas the optimal cost is given by

CM[Mo] := min
M

CM[M] = min
σ∈PN

1
N

N∑
i=1

wi σ(i), (4.2.58)

where PN is the set of all permutations of N elements. As before, the symmetric matrix M =
(mij)ij is such that mij = 1 if the vertices vi and vj are connected, zero otherwise. We assume
mii = 0 ∀i. In a perfect matching on K2N , we have

2N∑
j=1

mij = 1, ∀i = 1, . . . , 2N. (4.2.59)
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Let us start writing down a “partition function” for our “system”, assuming CM[M] as an
“energy” density functional of the “configuration” M, in the form

Z(β) :=
∑

M

2N∏
i=1

δ

1,
2N∑
j=1

mij

 e−βCM[M]

=

2N∏
i=1

2π∫
0

eiλi dλi
2π

∏
j<k

[
1 + e−βN

−1wjk−i(λj+λk)
]
,

(4.2.60)

where we introduced the Kronecker symbol δ (a, b) ≡ δa,b. Observe that the average value of wij
is wij = 1, but the minimum weight in a set of N weights {wi}i=1,...,N is distributed according
to

Pr
[
x ≤ min

i
{wi}

]
=

N∏
i=1

Pr[x ≤ wi] = e−Nx . (4.2.61)

and therefore, mini{wi} = 1
N . The minimum weight appearing in the optimal solution gives a

contribution to the optimal cost scaling as 1
N2 , due to the factor 1

N in front of the expression of
the cost. The “energy scale” of our interest corresponds therefore to “temperature” regimes given
by β−1 ∼ 1

N2 . For this reason, it is convenient to substitute

β 7→ βN2. (4.2.62)

We proceed using the replica approach. For n replicas, we need to compute

n∏
α=1

∏
j<k

[
1 + e−βNwjk−i(λ

α
j

+λα
k

)
]

=
∏
j<k

n∏
α=1

[
1 + e−βNwjk−i(λ

α
j

+λα
k

)
]
. (4.2.63)

As in the SK-model, we can now proceed easily with the average over the disorder. In particular,
for N � 1,

n∏
α=1

[
1 + e−βNwjk−i(λ

α
j

+λα
k

)
]

= 1 + 1
βN

n∑
p=1

1
p

∑
1≤α1<···<αp≤n

e−i
∑p

r=1(λ
αr
j

+λαr
k ) . (4.2.64)

After some computations [15], we get in the large N limit

Zn =
∫ n∏

p=1

∏
α1<···<αp

√
βpd qα1...αp√

2πN
e−

Nβ
2

∑n

p=1
p
∑

α1<···<αp
q2
α1...αp+2N ln z[q]

, (4.2.65)

where

z[q] :=

 n∏
α=1

2π∫
0

eiλα dλα

2π

 exp

i n∑
α=1

λα +
n∑
p=1

∑
α1<···<αp

qα1...αp e−i(λ
α1+···+λαp )

 .
(4.2.66)

The saddle point equation gives

qα1...αp = 2
pβ

〈
e−i(λ

α1+···+λαp )
〉
z
, (4.2.67)

where 〈•〉z is the average computed respect to the measure defined by the partition function z[q].
In the following we will denote by Qα1...αp the solution of the saddle point equation.
In the replica symmetric hypothesis Qα1...αp ≡ Qp,

− βf̄ = −β2

∞∑
p→0

(−1)p−1Q2
p + 2

∞∫
−∞

(
e− ew − e−G(w)

)
dw, G(x) :=

∞∑
p=1

(−1)p−1Qp exp

p! .

(4.2.68)
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Observe that Qp plays the role of an order parameter in this computation. Here, even in the
replica symmetric hypothesis, an infinite number of order parameters is necessary, contrary to
what happens for the SK-model.
The saddle point equation can be rewritten in terms of G(w) as

G(w) = 2
β

+∞∫
−∞

[
1− J0

(
2 e

w+y
2

)]
e−G(y) d y. (4.2.69)

where we have introduced the Bessel function of the first kind

J0(x) :=
∞∑
p=0

(−1)px2p

22p(p!)2 . (4.2.70)

From the expression of f̄ , the average cost at finite temperature 〈CM(β)〉 can be easily obtained:

〈CM(β)〉 = 1
β

+∞∫
−∞

G(w) e−G(w) dw. (4.2.71)

Remarkably, defining Ĝ(x) := G(βx), in the limit β → +∞ we can still write an expression for
the average cost of the ground state, i.e., the average optimal cost of the problem

Crmmp = lim
N→∞

CM[Mo] =
+∞∫
−∞

G̃(w) e−G̃(w) dw = π2

12 , G̃(w) = ln
(
1 + e2w) . (4.2.72)

Moreover, Mézard and Parisi [15] were able to obtain the distribution ρo(w) of the optimal weight
appearing in the matching as

ρo(w) = θ(w)e−2w +w − 1
2 sinh2 w

. (4.2.73)

Observe that this distribution is extremely similar to the one appearing in Eq. (4.1.15) (obtained
for the rbmp). By similar arguments, they also showed that in the rbmp [14]

Crbmp = lim
N→∞

CM[Mo] = π2

6 . (4.2.74)

We stress again that all the results above were derived for the first time using the previous
techniques and, remarkably, through a pretty straightforward approach.

4.3. The cavity method

In the previous Section we have shown, by an example, the power of the replica trick in the analysis
of the properties of the ground state (i.e., the optimal solution) in a random optimization problems.
In the approach above, however, there is no hint about the algorithmic procedure to find a solution
of a given instance of the problem. We might wonder if there is any technique in the theory of
disordered systems that can help us to solve a specific instance, besides the investigation of the
average properties. The cavity method [16, 17], introduced in the context of the theory of spin
glasses, provides an answer to this question.

4.3.1. General theory of the cavity method and belief propagation

The cavity method is a quite general algorithm that successfully treated many random optimization
problems, including the assignment problem. In the present Subsection we introduce this method,
following the pedagogical expositions in [8, 9, 13].
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4.3. The cavity method

We suppose that our system is characterized by N spin-type variables σi ∈ {−1, 1}, i =
1, . . . , N , in such a way that σ = {σi} fixes a configuration of the system itself. We assume also
that a Hamiltonian function for the system is given, in the form

H(σ) =
M∑
a=1

Ea(σ∂a) +
N∑
i=1

Wi(σi). (4.3.1)

In the previous expression Ea is a function of a subset σ∂a ⊆ σ, whilst the functions Wi depends
on one variable σi only (one body term). We can associate to the previous Hamiltonian a factor
graph, that pictorially represents the involved variables and the interactions. The factor graph is
a bipartite graph

FH = Graph(Vσ, VE ; E), |Vσ| = N, |VE | = M, E⊆ Vσ × VE , (4.3.2)

constructed as follows:

• we associate N “variable” vertices Vσ = {i}i to the N variables σ, in such a way that
i↔ σi;

• we associate M “function” vertices VE = {a}a to the M terms {Ea}a in the Hamiltonian
(4.3.2);

• (i, a) ∈ E if and only if σi ∈ σ∂a.

Observe that no edge exists connecting two vertices of the same type. Moreover, for the moment
we consider implicit in the vertex i the representation the possible contribution Wi(σi) to the
Hamiltonian. For example, the Ising model on the two-dimensional lattice with zero magnetic field

H =
∑
〈ij〉

Jijσiσj , (4.3.3)

has the following factor graph

where the square nodes are factor nodes and the circle nodes are variables nodes. The factor graph
is a good starting point to understand the cavity method. Indeed, the cavity method is based on
local modifications of this graph and on the study of the obtained new system with reference to
the old one. This is typically preformed in three ways.
Let us consider a Hamiltonian in the form (4.3.2), and suppose that (i, a) ∈ E in the factor

graph. We can therefore define the following new Hamiltonian from Eq. (4.3.2)

Ha 6−i(σia) =
∑
b6=a

Eb(σ∂b) + Ea(σi↔ia∂a ) +
N∑
i=1

Wi(σi). (4.3.4)

This new Hamiltonian has N + 1 variables, σia = σ ∪ {σia}. In particular, a new variable,
σia , appears. The second term in the Hamiltonian above needs some explanation. The notation
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Ea(σi↔ia∂a ) means that Ea is evaluated on its usual variables except for the variable σi, that must
be replaced with the variable σia . This is the only term where the new variable appears. Observe,
for example, that no one body term is associated to σia . Pictorially, this means that, in the factor
graph, we are “detaching” the node i and the node a, inserting a new node, let us call it ia,
connected to a:

ai

︸ ︷︷ ︸
H(σ)

−→ ai ia

︸ ︷︷ ︸
Ha 6−i(σia )

(4.3.5)

Similarly, we can remove a function vertex, let it be a, obtaining the Hamiltonian

H6a(σ) =
∑
b 6=a

Eb(σ∂b) +
N∑
i=1

Wi(σi). (4.3.6)

The new factor graph has M − 1 function vertices. Pictorially,

ai

︸ ︷︷ ︸
H(σ)

−→ i

︸ ︷︷ ︸
H6a(σ)

(4.3.7)

Finally, we can remove from the original factor graph a variable vertex i, writing the Hamiltonian
with N − 1 + |∂i| spin variables,

H6 i(σ6 i) =
∑

b : σi 6∈σ∂b

Eb(σ∂b) +
∑

b : σi∈σ∂b

Eb(σi↔ib∂b ) +
∑
j 6=i

Wj(σj). (4.3.8)

In the previous Hamiltonian, we have introduced |∂i| variables σib , one for each value of b such
that σi ∈ σ∂b. We denoted by σ6 i := (σ \ {σi}) ∪

⋃
b : σi∈σ∂b{σib}. Pictorially, we have

ai

︸ ︷︷ ︸
H(σ)

−→ a

︸ ︷︷ ︸
H6 i(σ6 i)

(4.3.9)
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The dashed vertices represents the new variables σib . Remember that we do not insert the one
body contribution for these variables.
The introduced three types of alteration of the original factor graph create, in all cases, a local

“cavity” and are indeed a sort of “local perturbation” of the original graph. For each of them,
we can write down the usual thermodynamical functionals. More importantly, we can define three
types of fields on these graphs that will play an important role. Let us first consider the system
described by the Hamiltonian in Eq. (4.3.2). Then we can always write

Pr [σi = σ] ≡ 〈δσiσ〉 = e−βhiσ

2 cosh(βhi)
(4.3.10a)

Formally, hi plays the role of parameter of the distribution in Eq. (4.3.10a) over the site i, but it
is also a sort of local magnetic field, acting on the spin σi. Similarly, let us consider the system
described by Eq. (4.3.4). Then we define the cavity field hi→a such that

Pr [σi = σ] ≡ 〈δσiσ〉i 6−a = e−βhi→aσ

2 cosh(βhi→a) . (4.3.10b)

In the same system, we define the cavity bias ua→i such that

Pr [σia = σ] ≡
〈
δσiaσ

〉
i 6−a = e−βua→iσ

2 cosh(βua→i)
. (4.3.10c)

Up to now, we have simply discussed deformed models of the original one with no reference to
the possible presence of disorder or to the specific structure of the factor graph. To proceed further,
some hypotheses are needed to relate the fields introduced above. In particular, we require that
the so called cavity ansatz holds.

Ansatz (Cavity ansatz). We assume that, in the N →∞ limit, in a pure state the approx-
imations 〈∏

b∈∂i

δσibσ

〉
6 i

'
∏
b∈∂i

〈
δσibσ

〉
6 i
, (4.3.11a)

〈∏
j∈∂a

δσjσ

〉
6a

'
∏
j∈∂a

〈
δσjσ

〉
6a, (4.3.11b)

hold for any variable node i and any factor node a. Moreover,〈
δσiaσ

〉
6 i '

〈
δσiaσ

〉
i 6−a, (4.3.11c)

〈δσiσ〉6a ' 〈δσiσ〉i 6−a. (4.3.11d)

As usual, in the previous expression we denoted by ∂v the set of neighbors of the vertex v in
the factor graph. The cavity ansatz is sometimes called replica symmetric assumption. In other
words, the cavity ansatz requires that, in the cavity factor graphs, the correlations between the
two “sides” of the cavity are almost negligible. This happens exactly when the factor graph is a
tree (in this case, the cavity separates the tree in two, or more, new trees completely uncorrelated)
or if the factor graph has very long cycles and correlations decay fast enough on these long cycles.
With reference to Eqs. (4.3.10), Eqs. (4.3.11) are immediately rewritten as

e−βhi→aσ

2 cosh(βhi→a) ∝ e−βWi(σi)
∏
b∈∂i
b 6=a

e−βub→iσ

2 cosh(βub→i)
, (4.3.12a)

e−βua→iσ

2 cosh(βua→i)
∝
∑
σ∂a

δσiσ e−βEa(σ∂a)
∏
j∈∂a
j 6=i

e−βhj→aσj
2 cosh(βhj→a) . (4.3.12b)
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The previous equations are called cavity equations. IfWi(σi) ≡ wiσi, then they can be rewritten
more simply as

hi→a = wi +
∑
b∈∂i
b 6=a

ub→i, (4.3.13a)

ua→i = 1
2β ln

∑
σ∂a
σi=−1

exp

−βEa(σ∂a)− β
∑
j∈∂a
j 6=i

hj→a


∑
σ∂a
σi=+1

exp

−βEa(σ∂a)− β
∑
j∈∂a
j 6=i

hj→a


. (4.3.13b)

Once that the previous values are found, it is easily seen that the free energy F of the original
system can be written in terms of the free energy Fi 6−a, F6a and F6 i of the system described by
Eq. (4.3.4), Eq. (4.3.6) and Eq. (4.3.8) respectively as

F ' Fi 6−a −
1
β

ln
∑

σ∈{−1,1}

e−β(hi→a+ua→i)σ

4 cosh(βhi→a) cosh(βua→i)
, (4.3.14a)

F ' F6a −
1
β

ln
∑
σ∂a

e−βEa(σ∂a)
∏
i∈∂a

e−βhi→aσi
2 cosh(βua→i)

, (4.3.14b)

F ' F6 i −
1
β

ln
∑

σ∈{−1,1}

e−βWi(σ)
∏
a∈∂i

e−βua→iσ

2 cosh(βua→i)
. (4.3.14c)

From the last equation in particular, and from the cavity equations in Eqs. (4.3.12), we see that,
for a given a ∈ ∂i

Pr[σi = σ] ∝ exp
(
−βW (σi)− βσ

∑
b∈∂i

ub→i

)
= exp [−βσ(ua→i + hi→a)] . (4.3.15)

Belief propagation So far we have discussed the cavity method thinking to a spin system
and we introduced the fields {hi→a, ua→i}(i,a) as a sort of local magnetic fields on the edges.
However, the spirit of the cavity method is quite general. We can indeed formulate an algorithm,
called belief propagation, that can be used to solve combinatorial optimization problem. Suppose
that we have a model in N variables x = {xi}i=1,...,N , taking their values in a finite set, and
suppose also that their joint probability has the form

µ(x) = 1
Z

M∏
a=1

ψa(x∂a), (4.3.16)

where by x∂a ⊆ x we denote a certain subset of the set of variables, depending on a, and by Z
a proper normalization constant. As in the case of our spin system, a probability measure of the
form (4.3.16) can be graphically represented by a factor graph,

Fµ = Graph(Vx, Vψ; E), |Vx| = N, |Vψ| = M, E⊆ Vx × Vψ. (4.3.17)

Each function vertex a ∈ Vψ is associated to the function ψa(x∂a) and each vertex i ∈ Vx is
associated to the variable xi. We have that (i, a) ∈ E if and only if xi ∈ x∂a. Again, we can
define on each edge of this bipartite graph two functions, one for each direction in which the edge
can be crossed. In particular, for an edge e = (i, a), we define the messages

υi→a(x), νa→i(x). (4.3.18)
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The messages are elements in the space of probability distribution functions, subject to the nor-
malization conditions ∑

i∈∂a

υi→a = 1 ∀a,
∑
a∈∂i

νa→i = 1 ∀i. (4.3.19)

Proceeding exactly as in the case of the cavity method, we can write down an iterative “message–
passing” algorithm in which we update a message on an edge on the basis of the values of the
incoming messages on the tail of the directed edge. This means that we can write iterative equations
that are completely equivalent to the cavity equations above. These equations are called belief
propagation equations and they provide the recipe to update the messages. After t steps, we have
that

υt+1
i→a(x) '

∏
b∈∂i\a

νtb→i(x), (4.3.20a)

νt+1
a→i(x) '

∑
x∂a
xi≡x

ψa(x∂a)
∏
j∈∂a
j 6=i

υtj→a(xj). (4.3.20b)

After T iterations, we can write

υTi (xi) '
∏
a∈∂i

νT−1
a→i (xi), (4.3.21)

It can be proved that, if the factor graph Fµ is a tree, Eqs. (4.3.20) converge irrespectively of the
initial conditions, after at most

T ∗ = diam(Fµ) (4.3.22)

steps. Let υ∗i (x), ν∗i (x) be the limiting distributions. We have also that υ∗i and ν∗i are related to
the marginal distribution corresponding to the variable on the site i. Indeed,

υ∗i (xi) ≡
∑
xj 6=xi

µ(x). (4.3.23)

The cavity method presented above is based on the idea that the structure of the factor graph is
tree-like (i.e., there are no small cycles) and variables are weakly correlated at large distances. If
these hypotheses are not satisfied, we cannot expect that the cavity method works. The existence
of strong long-range correlation among the variables suggest the existence of a highly correlated
phase and, therefore, the breaking of ergodicity in the phase space. To solve this fundamental
issue, Mézard and Parisi [16, 17] introduced the one-step replica symmetry breaking (1rsb)
cavity method. The 1rsb cavity method is not a rigorous method and it is still a very active
research topic. We will not discuss it here, despite the fact that it played a fundamental role in the
analysis of important optimization problems. The interested reader can find a modern presentation
of this technique in [13].

4.3.2. Belief propagation for the assignment problem

Let us consider again our main problem, the rbmp, or assignment problem, on the weighted
complete bipartite graph KN,N = Graph(V, U; E). As usual, we associate to each edge a weight,
w : (vi, uj) 7→ wij ∈ R+ and the cost function is

CM[M] = 1
N

∑
ij

mijwij , (4.3.24)

where M = (mij)ij is a matching matrix, such that mij = 1 if the edge (vi, uj) is an edge of the
matching, 0 otherwise. As known, the matching matrix must satisfy the conditions

N∑
i=1

mik =
N∑
j=1

mkj = 1, k = 1, . . . , N. (4.3.25)
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We can write a joint probability in the form of Eq. (4.3.16) for a given matching matrix M,

µ(M) =
∏
ij

δ

(
N∑
i=1

mij , 1
)
δ

 N∑
j=1

mij , 1

 e−βN−1mijwij

Z
, β ∈ R+. (4.3.26)

A factor graph associated to this measure is easily constructed, the variables being the elements
mij of the matrix M. For example, for N = 3 the graph K3,3 is

1 2 3

1 2 3

The corresponding factor graph for can be depicted as follows:

12

23

31

21

32 13

1

11

12

22

2

3
33

3

i j mi j

i
∑

k mik = 1

j
∑

k mk j = 1

e−βN−1mi jwi j

As the reader can see, the graph has many quite small cycles and this suggests that we cannot
apply the cavity approach, at least in its replica symmetric version. We will make however the
assumption that the cavity ansatz still holds. We will justify this strong (and counterintuitive)
statement later. Under this hypothesis and with reference to Eq. (4.3.26) and Eqs. (4.3.20), the
belief propagation equations on the fixed point are

υ(ij)→i(m) ' νj→(ij)(m) e−βN
−1mwij , (4.3.27a)

νi→(ij)(m) '
∑

{mkj}k 6=i

δ

m+
∑
k 6=i

mkj , 1

∏
k 6=i

υ(kj)→j(mkj). (4.3.27b)

To take the β → ∞ limit, let us introduce, for each oriented edge ~eij =
−−−−→
(vi, uj) of the original

complete bipartite graph,

X (~eij) := 1
β

ln
νi→(ij)(1)
νi→(ij)(0) . (4.3.28)

For the same edge e ∈ Ewe define also

X ( ~eij) := 1
β

ln
νj→(ij)(1)
νj→(ij)(0) . (4.3.29)

Through this change of variable the belief propagation equations become

Xt+1 (~eij) = − 1
β

ln
∑
k 6=i

exp
[
−βwkj

N
+ βXt( ~ekj)

]
, (4.3.30a)

Xt+1 ( ~eij) = − 1
β

ln
∑
k 6=j

exp
[
−βwik

N
+ βXt( ~eik)

]
. (4.3.30b)
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Using belief propagation, we are eventually back to solve our problem on the original complete
bipartite graph. Being interested in the ground state, we have to take the β → ∞ limit. We
obtain the so called min-sum algorithm for the assignment problem:

Xt+1(~eij) = min
k 6=i

[
wkjN

−1 −Xt( ~ekj)
]
, (4.3.31a)

Xt+1( ~eij) = min
k 6=j

[
wikN

−1 −Xt(~eik)
]
. (4.3.31b)

For a given edge e ∈ Ewe have two message functions, i.e. X(~e) and X( ~e) and we have to update
both simultaneously. The criterion of occupancy of an edge can be easily identified observing
that, if (ij) is an edge of the optimal graph, νi→(ij)(1) ∼ νj→(ij)(1) ∼ 1 and, by consequence,
νi→(ij)(0) ∼ νj→(ij)(1) ∼ 0, and therefore in this case

X(~eij) +X( ~eij) ≥ 0. (4.3.32)

On the other hand, if eij is not an edge of the optimal matching, at the fixed point X(~eij) +
X( ~eij) ≤ 0. Our belief propagation equations suggest that the problem of finding an optimal
matching on the bipartite complete graph is equivalent to search for an optimal matching on an
infinite tree in the N → ∞ limit: it is indeed enough to write down the belief propagation
equations for the tree introduced by Aldous, see Fig. 4.1.1. Eqs. (4.3.31) are perfectly identical to
Eqs. (4.1.12), and the criterion in Eq. (4.3.32) is equivalent to the one in Eq. 4.1.13 observing that
in our case we have to replace w 7→ wN−1 N→∞−−−−→ 0. This fact partially justifies the success of
the replica symmetric cavity method for the solution of the assignment problem for N → ∞ and
the cavity method is indeed a rigorous approach for the investigation, as Aldous showed. However
the convergence for finite N is not guaranteed. Indeed, Fichera [8] showed that, for finite N , after
a certain time tc the message functions enter in a quasi-periodic regime that however still allows us
to identify the correct solution. Moreover, if there is a nonoptimal matching M = (mij)ij differing
for one cycle from the optimal one Mo = (mo

ij)ij and having

CM[M]− CM[Mo]
N −

∑
ijmijmo

ij

� 1, (4.3.33)

the algorithm converges very slowly.
Up to now, we did not introduce any randomness in the problem. Suppose then that {wij}ij are

i.i.d. random variables, distributed accordingly to the density distribution in Eq. (4.1.2). Compar-
ing Eq. (4.3.31) with Eq. (4.1.12), it is easily seen that the fixed point solution of the previous
equation X(~e) is, up to a rescaling, the same function introduced by Aldous on the infinite tree
that we constructed in Subsection 4.1.1. It is clear that we may reproduce here exactly the same
computations, obtaining the same results. The cavity method is therefore able to provide both an
algorithm for the solution of a given instance of the random assignment, and the correct equations
for its probabilistic analysis.
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Chapter 5

Euclidean Matching Problems

5.1. Euclidean optimization problems

In the previous Chapter we presented some random optimization problems on weighted graphs and
some useful tools for their solution. However, we did not discuss the effect of possible correlations
among the weights associated to the edges of the considered graphs, or we supposed explicitly that
no correlation at all was present.
In the present Chapter we will introduce Euclidean correlations in our problems. Let us suppose

that the problem is defined on a graph G = Graph(V; E). We will assume also that a connected
convex domain Ω ⊂ Rd is given and we will consider a map Φ,

Φ : V→ Ω such that vi ∈ V 7→ Φ(vi) ≡ ξi ∈ Ω. (5.1.1)

The map Φ can be a random point process. We assume that a weight function w : E→ R+ is
given in such a way that

w(eij) ≡ w
(∥∥ξi − ξj∥∥) , eij ≡ (vi, vj). (5.1.2)

In other words, the weight associated to the edge (vi, vj) is a function of the Euclidean distance
‖ξi − ξj‖. Apart from this difference, the Euclidean versions of optimization problems on graphs
are formulated exactly as in the previous Chapter. In this thesis, we will analyze a particular form
of weight function (5.1.2), in particular we will assume

w(eij) ≡ w(p)(eij) ≡ w(p)
ij :=

∥∥ξi − ξj∥∥p, p ∈ R+. (5.1.3)

The asymptotic analysis of the optimal cost with weight functions in the form (5.1.3) has been
widely studied in the hypothesis that the points {ξi}i are randomly generated on Ω [31]. In
particular, the asymptotic of the Tsp problem was firstly analyzed by Beardwood, Halton, and
Hammersley [6], and subsequently by Redmond and Yukich [28]. In particular, let us assume that
we are searching for a subgraph O ⊆ G in a set of suitable subgraph S such that the functional

C[S] = 1
|ES|

∑
e∈ES

w(p)(e), S = Graph(VS; ES) ∈ S, (5.1.4)

is minimized, i.e.,
C[O] = min

S∈S
C[S]. (5.1.5)

The defined functional is homogeneous and translationally invariant, i.e.,

C[S] ξi 7→λξi+r−−−−−−−→ λpC[S], λ ∈ R+, r ∈ Rd. (5.1.6)

Redmond and Yukich [28] proved that the optimal cost (5.1.5) for the Tsp and for the monopartite
matching problem on the complete graph K2N , embedded in the unit hypercube in d dimensions,
scales as N−

p
d for p ≥ 1 for N � 1.

Euclidean optimization problems are of great interest, due to the fact that some optimization
problems are actually defined in the geometric space (consider, for example, the Tsp to be solved
in a certain geographical area). The Euclidean origin of the weights in the graph is not relevant
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5. Euclidean Matching Problems

for the solution of a given instance and the algorithms available in the literature obviously work
perfectly. However, the study in presence of randomness is more complicated. In random Euclidean
optimization problems, randomness is typically introduced in the embedding process of the graph
in Ω. In this case a probability distribution density is given on Ω,

ρ : Ω→ R+,

∫
Ω

ρ(x) dd x = 1. (5.1.7)

We suppose then that N := |V| points, X := {ξi}i=1,...,N ∈ Ω, are independently randomly
generated on Ω. We associate therefore to each vertex vi ∈ V a point ξi at random. In this
way all quantities w(e), generated according to Eq. (5.1.2), are random, but in general an Eu-
clidean correlation appears, due to the correlation among the distances of the points. The average
procedure is therefore more subtle than in the purely uncorrelated case, and the point generation
procedure becomes of paramount importance. Once the points are generated, we can introduce the
empirical measure

ρX(x) = 1
N

N∑
i=1

δ(d) (x− ξi) . (5.1.8)

It can be proved [14] that for N →∞ the empirical measures ρX converges to ρ almost surely.

5.2. Euclidean matching problems

Random Euclidean matching problems on a domain Ω ⊂ Rd will be the main topic of the
following Sections. In the present Section we first fix the notation and the terminology that will
be used throughout this Chapter.

Euclidean monopartite matching problem In the random Euclidean monopartite
matching problem (rEm), we consider a matching problem on the complete graph K2N , assuming
that a point ξi ∈ Ω is associated to each vertex vi ∈ V. The points {ξi}i are supposed randomly
generated on Ω, according to a given probability density function ρ, as in Eq. (5.1.7). We are
interested in the perfect matching Mo ⊆ K2N that minimizes the functional (5.1.4),

C(p,Em)[M] := 1
N

∑
e∈EM

w(p)(e), M = Graph(VM; EM) ∈ S, (5.2.1)

where w(p)(e) is defined in Eq. (5.1.3) and

S := {M | M ⊂ K2N perfect matching}. (5.2.2)

In the following we will denote the optimal matching cost by

C
(p,Em)
N := C(p,Em)[Mo] = min

M∈S
C(p,Em)[M]. (5.2.3)

The average optimal cost will be denoted by

C
(p,rEm)
N,d := C

(p,Em)
N , (5.2.4)

where the average • is on the positions of the points. Observe that the previous quantity strongly
depends on the considered domain Ω, on the number of points N and on the distribution ρ.

Euclidean bipartite matching problem In the random Euclidean bipartite match-
ing problem (rEb), we consider a matching problem on the complete bipartite graph KN,N =
Graph(V, U; E), N := |V| = |U| ∈ N. Randomness can be introduced in two different ways.
We can assume that both vertices in V and vertices in U are associated to points in Ω, ran-
domly and independently generated according to a distribution ρ: in this case we call the problem
random–random Euclidean bipartite matching problem (rr–Eb). If ρ(x) = 1

|Ω| , where |Ω| is
the Lebesgue measure of Ω, the problem is called Poisson–Poisson Euclidean bipartite match-
ing problem. Another possibility is to associate, e.g., the vertices of V to random points on Ω
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5.2. Euclidean matching problems

(a) p = 0.5. (b) p = 1. (c) p = 1.5.

Figure 5.2.1.: Optimal grid–random Euclidean bipartite matching with N = 100 on the square with open boundary
conditions for the same instance. The random points are generated with uniform distribution on the square: in
this case, the matching problem is called also grid–Poisson Euclidean bipartite matching problem. Observe that
for p = 1 there are no intersecting links.

and the vertices of U to a fixed lattice on Ω. If a square lattice is adopted, the problem is called
grid–random Euclidean bipartite matching problem (gr–Eb, see for example Fig. (5.2.1)). If
the points associated to the vertices of V are uniformly distributed on Ω, then we say that the
problem is a grid–Poisson Euclidean bipartite matching problem.
As in the assignment problem, in the Eb we are interested on the perfect matching Mo such that

the functional
C(p,Eb)[M] := 1

N

∑
e∈EM

w(p)(e), M = Graph(VM; EM) ∈ S. (5.2.5)

is minimized. As in the monopartite case, w(p)(e) is given by Eq. (5.1.3) and

S := {M | M ⊂ KN,N perfect matching}. (5.2.6)

Let us denote by V := {vi}i=1,...,N and by U := {ui}i=1,...,N . We can write also w(p)(vi, uj) =
w

(p)
ij . A given matching can be uniquely associated to an element σ ∈ PN of the set of permutations

of N elements, in such a way that

σ ↔ M = Graph(VM; EM) ∈ S⇐⇒ (vi, uσ(i)) ∈ EM. (5.2.7)

In the following we will use quite often this correspondence and the previous functional (5.2.5) will
be written as

C(p,Eb)[σ] := 1
N

N∑
i=1

w
(p)
i σ(i). (5.2.8)

We will denote the optimal matching cost by

C
(p,Eb)
N := min

M∈S
C(p,Eb)[M] = min

σ∈PN
C(p,Eb)[σ]. (5.2.9)

The result of the average on the point positions depends on N , Ω, ρ but also if we are considering
the rr–Eb or the gr–Eb. In the former case we write

C
(p,rr)
N,d := C

(p,Eb)
N (5.2.10)

where the average is performed over both sets of points. In the latter case we have instead

C
(p,gr)
N,d := C

(p,Eb)
N

∣∣∣
U on the grid

, (5.2.11)

where, in the average procedure, one set of vertices is supposed fixed. Observe finally that, although
the Eb appears as a slight variation of the Em, a crucial complication appears. Let us consider
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5. Euclidean Matching Problems

for example an Euclidean matching problem on Ω and a certain partition
⋃
i ωi ⊂ Ω. In a greedy

approach, in the monopartite case, we can always perform an optimal matching procedure inside
each ωi leaving at worst one point unmatched for each element of the partition. In the bipartite
case, instead, it may happen that a relevant fraction of points remains unmatched for each ωi and
therefore they have to be connected with points outside ωi. This suggests that local fluctuations
in the number of points of different type in the Eb can be relevant in the scaling properties of the
average optimal cost in a non trivial way.

Scaling of the average optimal cost The scaling of the average optimal cost for the Em
can be directly obtained in the context of the general theory of Euclidean optimization problems
[31]. In particular, let us consider the unit hypercube in d dimensions,

Ωd := [0, 1]d ⊂ Rd, (5.2.12)

and let us fix the ρ(x) = 1 on this domain. It turns out that, for 0 < p < d, in the Em on Ωd we
have that

C
(p,rEm)
N,d ∼ N−

p
d . (5.2.13)

From a mathematical point of view, the treatment of the scaling of the Eb appears more difficult,
in particular in low dimensions. We will treat exactly this problem for d = 1 later. For d = 2,
Ajtai, Komlós, and Tusnády [2] proved that the average optimal cost scales as

C
(p,rr)
N,2 ∼

(
lnN
N

) p
2

. (5.2.14)

Observe that a logarithmic correction appears respect to the monopartite case: this correction is
indeed due to the relevance of local fluctuations in the number of points of different types. For
d ≥ 3 and p = 1 Dobrić and Yukich [13] proved rigorously that

C
(1,rr)
N,d ∼ N− 1

d . (5.2.15)

The previous result can be justified by an heuristic argument. Given a certain point in Ωd, its
nearest neighbor of different type is at a distance ∼ 1

d√
N
, and therefore we expect

C
(p,rr)
N,d ∼ N−

p
d . (5.2.16)

This result is indeed confirmed by numerical simulations for d ≥ 3. To our knowledge, however, no
further scaling properties of the average optimal costs for Euclidean matching problems are known
from a rigorous point of view. In the following, we will show that, using a proper ansatz, we will
be able not only to derive the correct scaling properties for the Eb in any dimension, but also to
obtain the finite size corrections to the leading terms for d ≥ 2.

5.3. Random Euclidean monopartite matching problem by replicas

The replica approach is, once again, powerful enough to help us in the study of the random Em.
The computation follows directly the method used for the rmmp but, as anticipated, in this context
a correlation between the different weights appears, due to the presence of an Euclidean structure
[21]. The idea, introduced once again by Mézard and Parisi [25], is to consider these correlations as
corrections to the purely random case, namely the rmmp. Mézard and Parisi computed the very
first order corrections, due to correlations among three different weights (two weights are always
uncorrelated). We try here to expand their results. We consider the problem on the complete
graph K2N embedded in the unit hypercube Ωd. We assume also that the points are independently
generated on Ωd with uniform distribution. For a perfect matching M ⊂ K2N , the cost function is
given by Eq. (5.2.3). In particular, let us introduce the adjacency matrix M for the matching M in
the usual way,

M = (mij)1≤i,j≤2N , (5.3.1)
with the constraints

mij ∈ {0, 1}, mij = mji,

2N∑
k=1

mkj =
2N∑
k=1

mik = 1, ∀i, j. (5.3.2)
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The functional in Eq. (5.2.3) can be written as

C(p,Em)[M] ≡ C(p,Em)[M] = 1
N

∑
i<j

mijw
(p)
ij . (5.3.3)

In the following we will denote for simplicity by wij ≡ w(p)
ij ≡ we the weight corresponding to the

edge e = (i, j). As in the rmmp, we start from the following partition function

ZN (β) :=
∑

M
e−βN

p
d

+1
C(p,Em)[M] =

2N∏
i=1

2π∫
0

eiλi dλi
2π

∏
i<j

[
1 + exp

(
−βN

p
dwij − iλi − iλj

)]
.

(5.3.4)
In the previous expression we have properly rescaled the temperature β → βN

p
d+1 to obtain a

finite average cost in the large N limit (note that the average optimal cost scales as N−
p
d in the

Em). As in the purely random case, we have to properly average over the disorder, and therefore
we proceed via a replica trick. The replicated partition function is

ZnN (β) =

 n∏
a=1

2N∏
i=1

2π∫
0

eiλai dλai
2π

 n∏
a=1

∏
i<j

[
1 + exp

(
−βN

p
dwij − iλai − iλaj

)]

=

 n∏
a=1

2N∏
i=1

2π∫
0

eiλai dλai
2π

∏
i<j

[1 + uij(λi,λj)] ,

(5.3.5)

where we have introduced the function

uij(λi,λj) :=
∞∑
r=1

exp
(
−rβN

p
dwij

) ∑
a1<···<ar

exp
[
−i

r∑
m=1

(
λami + λamj

)]
. (5.3.6)

At this point, in the computation for the rmmp the average is performed easily and immediately,
using the fact that the weights are all independent random variables. In this case, however, this is
not true any more, due to the Euclidean constraint. The average is more complicated and we have

∏
i<j

(1 + uij) = 1 +
∞∑
E=1

∑
S∈SE

∏
e∈ES

ue = exp

 ∞∑
E=1

∑
S∈SB

E

∏
e∈ES

ue

 . (5.3.7)

We have introduced the sets

SE = {S = Graph(VS; ES) | S ⊆ K2N and |ES| = E}, |SE | =
(

2N2 −N
E

)
, (5.3.8)

SBE = {S ∈ SE | S is biconnected} ⊂ SE . (5.3.9)

In other words, SE contains all the subsets of different E edges in the set of edges of the complete
graph K2N . The set SBE contains, instead, all distinct biconnected subgraphs of SE . For a given
S ∈ SBE , the average must be performed using the following joint distribution

ρS({we}e∈ES) =
(∏
e∈ES

∫
dd ze

)
E∏
e=1

δ (we − ‖ze‖p)
∏

c∈L(S)

δ(d)

(∑
e∈Ec

ze

)
, (5.3.10)

where L(S) is the set of independent cycles c = Graph(Vc; Ec) in S. To evaluate
∏
e∈ES

ue we
have therefore to compute an integral in the form(∏

e∈ES

∫
dwe e−reβN

p
dwe

)
ρS({we}e∈ES), {re}e ∈ N. (5.3.11)
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In the relevant limit of short links1, the previous quantity can be rewritten as

1
NE−L

(∏
e∈ES

∫
dwe e−reβwe

)
ρS({we}e∈ES) = NL−E

E∏
e=1

e−reβwe , (5.3.12)

where L := |L(S)| is the cyclomatic number. Using the Euler formula, E − L = V − κ, where
κ is the number of components of the graph and V = |ES|, we have that the contribution of
the subgraph S scales as N1−V . Moreover, the set of subgraphs SBE can be partitioned using the
equivalence relation of isomorphism between graphs. Let us call gE the generic equivalence class
containing all distinct biconnected subgraphs of K2N with E edges with the same topology with
E edges and V vertices. Importantly, the average contribution of each element of the class is the
same. The number of elements in gE is2

(2N)!
(2N − V )! ∼ (2N)V for N � 1. (5.3.13)

In the following, we identify gE with its topology. If gE has some additional symmetry under the
exchange of vertices, Eq. (5.3.13) overcounts the number of elements of the equivalence class. A
certain correcting factor taking into account this symmetry, let us call it σ(gE), must be introduced.
Let us consider for example the graph topology

g =

1

2

3

4

For a given set {ξi}i=1,...,N of points, we can arrange them in 4! ways but only 3! are really
different, due to the symmetry under the exchanges 1↔ 3 and 2↔ 4. For this graph σ(g) = 1

4 .
Note that the factor σ(g) does not depend on N . Finally, we can conclude that a given topology
gives a contribution of the order N .
We can therefore rewrite Eq. (5.3.7), up to o

( 1
N

)
terms, as a sum over different biconnected

topologies, each one of order N , with proper symmetry factors∏
i<j

(1 + uij) = exp
[

1
2 + 1

6 + 1
8 + 1

10 + 1
4 + . . .

]
. (5.3.14)

The previous result generalizes an analogue one appearing in [25] in which E ≤ 3 was considered.
Following Mézard and Parisi [25], let us introduce now, using a proper set of Lagrange multipliers
q̂a1,...,ak , the order parameter,

qa1...ak := 1
2N

2N∑
i=1

exp

−i k∑
j=1

λ
aj
i

 , 1 ≤ k ≤ n, (5.3.15)

symmetric under permutation of replica indices. For a given topology g = Graph(V; E) with E
edges and V vertices, we have in the notation above

∑
S∈g

∏
e∈ES

ue = 2VN
∑

r

E∏
e=1

e−reβwe
re!

∑
{a1
i
}i

· · ·
∑
{aE
i
}i

∏
v∈V

qa(v). (5.3.16)

We have denoted by r := {re}e a set of E integers, each one associated to an edge of the graph.
The quantity ∑

{a1
i
}i

· · ·
∑
{aE
i
}i

∏
v∈V

qa(v) (5.3.17)

1We take into account that the occupied links are of the order N−
p
d .

2Indeed, there are
(2N)!

(2N − V )!
different ordered subsets of V vertices in K2N .
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must be read as follows. We associate re replica indices {aei}i = {ae1, . . . , aere} to each edge e and
we construct the set of indices

a(v) :=
⋃

e : v∈e
{aei}i, r(v) := |a(v)| =

∑
e : v∈e

re. (5.3.18)

Pictorially, we have for example

5

1

2 3

4

a(5)

a(1)

a(2) a(3)

a(4)

a 121
a 122

a 123

a23
1 a23

2

a
34 1

a
34 2

a
34 3

a 451
a
15
1

a
15
2

a 131

a 13
1a 15

1 a 15
2a 12

1 a 12
2 a 12

3

a
45
1

a
34
1

a
34
2

a
34
3

a4
5 1

a1
5 1

a1
5 2

a
12 1

a
12 2

a
12 3

a
23 1

a
23 2

a 131

a 231
a 232

a 341
a 342

a 343

The sum then runs over all different sets of replica indices. We proceed however adopting an
important, simplifying hypothesis. We assume that the solution is replica symmetric, i.e., that
the replicas introduced above are indistinguishable, and therefore

qa1...ar ≡ qr ⇒
∑
S∈g

∏
e∈ES

ue = 2VN
∑

r
σ̂n(g; r)

∏
e∈E

e−reβwe
re!

∏
v∈V

qr(v). (5.3.19)

Pictorially, we have

5

1

2 3

4

qr15+r45

qr12+r13+r15

qr12+r23 qr13+r23+r34

qr45+r34

r
12

r23

r 3
4

r45r 15

r13
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In the previous expression we have introduced the combinatorial coefficient σ̂n(g; r), number of
ways to select

∑
e re (not necessarily distinct) replica indices, such that we can choose E sets Re

of them, e edge of the graph, satisfying the property

e ∩ e′ 6= ∅ ⇒ Re ∩Re′ = ∅, |Re| = re. (5.3.20)

Note that σ̂0 = 0. We denote by

σ̂(g; r) := lim
n→0

σ̂n(g; r)
n

. (5.3.21)

The averaged replicated partition function is therefore

Zn =

 n∏
k=1

+∞∫
−∞

d qk
+i∞∫
−i∞

d q̂k

 e−NβS[β;q,q̂], (5.3.22a)

−βS[β; q, q̂] := Σ(q) + 2 ln z(q̂)− 2
n∑
k=1

(
n

k

)
q̂kqk, (5.3.22b)

with

Σ(q) :=
∑

g
2V σ(g)

∑
r
σ̂n(g; r)

∏
e∈E

e−reβwe
re!

∏
v∈V

qr(v)

n→0−−−→ n
∑

g
2V σ(g)

∑
r
σ̂(g; r)

∏
e∈E

e−reβwe
re!

∏
v∈V

qr(v). (5.3.22c)

The sum runs over all biconnected graphs g = Graph(V; E). The purely random link contribution
is related to the E = 1 contribution and omitting all other terms we recover the rmmp as mean
field approximation. Following [24],

2 ln z(q̂) := 2 ln

 n∏
a=1

2π∫
0

eiλa dλa

2π

 exp
(

n∑
r=1

(
n

r

)
q̂r e−i

∑r

j=1
λaj

)
n→0−−−→ 2nβ

+∞∫
−∞

(
e− eβx − e−G(x)

)
dx,

(5.3.22d)

where we have introduced the function

G(x) :=
∞∑
r=1

(−1)r−1 q̂r eβrx

r! (5.3.23)

and we have used the fact that (
n

k

)
n→0−−−→ n

(−1)k−1

k
. (5.3.24)

The saddle point equations can be written as

Qr = β

+∞∫
−∞

eβrx−G(x)

(r − 1)! dx, (5.3.25a)

and

G(x) =
∑

g
2V−1σ(g)

∑
v∈V

∏
e∈E

∫
dwe

∏
ṽ 6=v

∫
dxṽ G′(xṽ) e−G(xṽ)

 ρg({we}e)
β

·

· ∂

∂xv
Kg[{β(xvi + xvj − wij)}]

]∣∣∣∣
xv≡x

. (5.3.25b)
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In the previous expression, we introduced the following auxiliary function, defined on the graph g:

Kg({xe}e) :=
∑

r

[
σ̂(g; r)∏
v r(v)!

∏
e

erexe
re!

]
. (5.3.26)

We can finally write down a general expression for the free energy at finite temperature as

f̄(β) := lim
N→∞
n→0

1− Zn
nNβ

= −2
+∞∫
−∞

(
e− eβx − e−G(x)

)
dx+

+∞∫
−∞

G(x) e−G(x) dx

−
∑

g
2V σ(g)

[(∏
e

∫
dwe

∏
v

∫
dxv G′(xv) e−G(xv)

)
ρg({we}e)

β
Kg[{β(xa + xb − wab)}]

]
.

(5.3.27)

From the previous expression we have that

lim
N
N

p
d C

(p,rEm)
N,d := lim

N
N

p
dmin

M
C(p,Em)[M] = lim

β→∞
f̄(β). (5.3.28)

5.3.1. Mean field approximation
In the mean field approximation only the E = 1 contribution is considered (i.e., different weights
in the complete graph are considered identically and independently distributed). The E = 1
contribution is given by the only graph

g1 = , σ(g1) = 1
2 ,

for which, in Eq. (5.3.25b), we get

2σ(g1)
[∫ dwρg1(w)

β

2∑
i=1

(∫
dxiG′(xi) e−G(xi)

)
∂

∂x
Kg1 [β(xi + x− w)]

]

= 2
∫∫

e−G(y)ρg1(w)
β

∂2

∂x2Kg1 [β(y + x− w)] d y dw. (5.3.29)

On the other hand, we have that3

σ̂n(g1; r) = r!
(
n

r

)
n→0−−−→ n(−1)r−1(r − 1)!. (5.3.30)

and therefore
∂Kg1(x)
∂x

:= −
∞∑
r=1

(−1)r erx

(r!)2 = 1− J0
(
2 e x2

)
, (5.3.31)

where J0(x) is a Bessel function of the first kind. The saddle point equations become

Qr = β

+∞∫
−∞

eβrx−G(x)

(r − 1)! dx, (5.3.32a)

G(x) = −2
∫∫

ρg1(w) e−G(y) ∂

∂x
J0

(
2 exp

(
β(x+ y − w)

2

))
dw d y. (5.3.32b)

In the short-link limit

ρg1(w) ∼ Σd
p
w
d
p−1, Σd := 2π d2

Γ
(
d
2
) . (5.3.33)

3Indeed, we have
(
n
r

)
ways of selecting r replica indices out of n and r! ways of ordering them.
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In the large β limit, we have that

1− J0

(
2 exp

(
βx

2

))
β→∞−−−−→ θ(x) (5.3.34)

and therefore eq. (5.3.32b) becomes

G(x) = 4π d2
pΓ
(
d
2
) ∞∫

0

w
d
p−1 e−G(w−x) dw, (5.3.35)

mean field equation for the function G. It can be numerically solved for given values p, d. The
mean field contribution to the average optimal length is therefore obtained from Eq. (5.3.27) in
the β →∞ limit:

lim
N
N

p
d C

(p,rEm)
N,d,mf =

∞∫
−∞

G(x) e−G(x) dx− 2
+∞∫
−∞

(
θ(x)− e−G(x)

)
dx. (5.3.36)

The previous equation and Eq. (5.3.35) show that, up to a rescaling factor, the mean field solution
for the Em with parameters p, d corresponds to the mean field solution of a rmmp whose weight
distribution has the form ρ(w) ∼ w

d
p−1 for w → 0. Observing that, for α > 0,

f(x) = α

∞∫
0

e−f(y−x) d y ⇒ f(x) = ln (1 + eαx) , (5.3.37)

then for p = d we can write down the explicit solution

G(x) = ln
[

1 + exp
(

2π d2
Γ
(
d
2 + 1

)x)] (5.3.38)

and the average optimal length is

lim
N
N C

(d,rEm)
N,d,mf = d

Σd
π2

12 . (5.3.39)

5.3.2. Polygonal corrections and zero temperature limit
We have shown that the leading contribution to the optimal cost is given by all biconnected graphs.
An analytic treatment for the entire set of these graphs is a formidable task. However, there is
a class of graphs with a special symmetry, i.e., the class of polygons, for which we can attempt a
computation that helps us to obtain a numerical recipe for the polygonal corrections [21]. Observe
that the triangular corrections have been already evaluated by Mézard and Parisi [25] in their
seminal paper on the random Em. The generic polygon PE with E edges has E vertices and

σ(PE) = 1
2E . (5.3.40)

Moreover, the distribution ρPE ({we}e) is given by

ρPE ({we}e) ≡ ρE({we}e) :=
[
E∏
e=1

∫
dd ze δ (we − ‖ze‖p)

]
δ(d)

(
E∑
e=1

ze

)
. (5.3.41)

Here and in the following we will denote by e, e = 1, . . . , E, the e-th edge according to a given
orientation of the polygon. Therefore e and e+1 correspond to consecutive edges. The contribution
of PE to the action is

− βSE [β;Q, Q̂] := 2E
∑

r

σ̂PE (r)
E∏
e=1

e−reβwe
E∏
e=1

Qre+re+1

re!


= 2EΣd

(2π)d
∑

r
σ̂PE (r)

∞∫
0

kd−1
E∏
e=1

Qre+re+1gre(k)
re!

d k, Σd := 2π d2
Γ
(
d
2
) . (5.3.42)

54



5.3. Em via replicas

In the previous we have introduced

gr(k) := Σd
∞∫

0

zd−1e−rβz
p

0F1

[
−
d
2

;−k
2z2

4

]
d z. (5.3.43)

As anticipated, we can proceed in analogy with the computation performed by Parisi and Ratiéville
[27] for the finite size corrections to the rmmp. We introduce the (2n−1)× (2n−1) matrix T(k)
whose elements are given by

Tαα′(k) := δα∩α′=∅Q|α|+|α′|

√
g|α|(k)g|α′|(k). (5.3.44)

Here α is an element of the power set of the replica indices with cardinality |α| and

δα∩α′=∅ =
{

1 if α ∩ α′ = ∅
0 otherwise. (5.3.45)

Therefore the contribution of the polygon PE can be written as

− βSE [β;Q, Q̂] = 2EΣd
(2π)d

∞∫
0

kd−1 tr
[
TE(k)

]
d k. (5.3.46)

The diagonalization of the matrix T(k) can be performed through the classical strategy of Almeida
and Thouless [3], already adopted by [27]. In particular, we analyze eigenvectors with q distin-
guished replica indices. It is possible to show that the contribution of the sectors q ≥ 2 is formally
analogous to the finite size correction in the random monopartite matching problem. The sectors
q = 0 and q = 1 give instead a non-zero contribution, unlike in the purely random case where
their contribution is absent. We present below the proof of the final result.

Derivation of the polygonal contribution An eigenvector c = (cγ)γ of the matrix T must satisfy the
equation ∑

γ

Tαγcγ =
∑

γ : α∩γ=∅

Q|α|+|γ|
√
g|α|(k)g|γ|(k)cγ = λcα. (5.3.47)

In the spirit of the classical approach of Almeida and Thouless [3], we search for eigenvectors cq with q
distinguished replicas, in the form

cqα =
{

0 if |α| < q,

di|α| if α contains q − i+ 1 different indices, i = 1, . . . , q + 1. (5.3.48)

For q ≥ 2, if we consider q − 1 distinguished replicas, it can be proved [23] that the following orthogonality
condition holds:

q−j∑
k=0

( k

q − j
)(|α| − (k + j)

n− q
)
d
q+1−(k+j)
|α| = 0. (5.3.49)

The orthogonality condition provides a relation between all the different values di|α|, showing that we can
keep only one value, say d1

|α|, as independent. Using this assumption, the eigenvalues of the original T(k)
matrix can be evaluated diagonalizing the infinite dimensional matrices N(q)(k) [27] whose elements, in the
n→ 0 limit, are given by

N
(q)
ab

(k) = (−1)b
Γ(a+ b)Γ(b)Qa+b

√
ga(k)gb(k)

Γ(a)Γ(b− q + 1)Γ(b+ q)
. (5.3.50)

In particular, for q = 0 a direct computation gives

N
(0)
ab

(k) =
(n− a

b

)
Qa+bgb(k) n→0−−−→ (−1)b Γ(a+ b)

Γ(a)b!
Qa+b

√
ga(k)gb(k) (5.3.51)

whereas for q = 1 we obtain

N
(1)
ab

(k) =
(n− a

b

) b

b− nQa+b
√
ga(k)gb(k) n→0−−−→ N

(0)
ab

(k) + n

b
N

(0)
ab

+ o(n). (5.3.52)

We have that

tr
[
TE(k)

]
=
∞∑
q=0

[(n
q

)
−
( n

q − 1
)]

tr
[(

N(q)(k)
)E] (5.3.53)

55



5. Euclidean Matching Problems

We proceed distinguishing the case q ≥ 2 from the case q < 2. For q ≥ 2, computing the spectrum of the
matrix N(q) for q ≥ 2 is equivalent to the computation of the spectrum of M(q)(k), that has elements

M
(q)
ab

(k) := (−1)a+b

√
gb+q(k)
ga+q(k)

Γ(a+ 1)Γ(b+ q)
Γ(b+ 1)Γ(a+ q)

N
(q)
b+q a+q(k) = (−1)a+q Γ(a+ b+ 2q)

Γ(a+ 2q)b!
Qa+b+2qgb+q(k).

(5.3.54)
The eigenvalue equation for M(q)(k) has the form

λc
(q)
a =

∞∑
b=1

M
(q)
ab

(k)c(q)
b

= β(−1)q
∫

(−1)ae(a+q)βu

Γ(a+ 2q)
φ(q)(u; k) du, (5.3.55)

where we have introduced

φ(q)(u; k) :=
∞∑
b=1

e(b+q)βu−
G(u)

2

b!
c
(q)
b
gb+q(k). (5.3.56)

The eigenvalue equation in Eq. (5.3.55) can be written as

λφ(q)(u; k) = (−1)q
∫

A(q)(u, v; k)φ(q)(v; k) d v, (5.3.57)

where A(q)(k) = (A(q)(u, v; k))u,v is

A(q)(u, v; k) := βe−
G(u)+G(v)

2 +qβ(u+v)
∞∑
a=1

(−1)aeaβ(u+v)

Γ(a+ 2q)a!
ga+q(k). (5.3.58)

In the n→ 0 limit, from Eq. (5.3.53) we have therefore

∞∑
q=2

[(n
q

)
−
( n

q − 1
)]

tr
[(

N(q)(k)
)E] =

∞∑
q=2

(−1)qE
[(n
q

)
−
( n

q − 1
)]

tr
[(

A(q)(k)
)E]

n→0−−−→ n

∞∑
q=2

(−1)q(E+1) 2q − 1
q(1− q) tr

[(
A(q)(k)

)E]
= n

∞∑
q=1

4q − 1
2q(1− 2q)

tr
[(

A(2q)(k)
)E]+ (−1)En

∞∑
q=1

4q + 1
2q(2q + 1)

tr
[(

A(2q+1)(k)
)E]

. (5.3.59)

Here we used the fact that

(n
q

)
−
( n

q − 1
) n→0−−−→

1 if q = 0,
−1 + n if q = 1,
n(−1)q 2q−1

q(1−q) if q > 1.
(5.3.60)

Let us now evaluate the contributions of the sectors q = 0 and q = 1. We have
1∑
q=0

[(n
q

)
−
( n

q − 1
)]

tr
[(

N(q)(k)
)E] = tr

[(
N(0)(k)

)E]+ (n− 1) tr
[(

N(1)(k)
)E]+ o(n). (5.3.61)

We define the matrices M(0)(k) and M̃(1)(k) as follows

M
(0)
ab

(k) :=(−1)a+b

√
gb(k)
ga(k)

a

b
N

(0)
ba

(k) = (−1)a Γ(a+ b)
Γ(a)b!

Qa+bgb(k), (5.3.62a)

M̃
(1)
ab

(k) :=(−1)a+b

√
gb(k)
ga(k)

a

b
N

(1)
ba

= (−1)a Γ(a+ b)
Γ(a)b!

Qa+bgb(k) + n(−1)a Γ(a+ b)
Γ(a+ 1)b!

Qa+bgb(k). (5.3.62b)

As in the q ≥ 2 case, we can introduce the operator A(0)(k) as follows

A(0)(u, v; k) = βe−
G(u)+G(v)

2

∞∑
a=0

(−1)aeaβ(u+v)ga(k)
Γ(a)a!

= Σde−
G(u)+G(v)

2

∞∫
0

zd−1
0F1

[−
d
2

;−k
2z2

4

]
∂

∂y
J0

(
2eβ

y
2

)∣∣∣
y=u+v−zp

d z. (5.3.63)
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<z

=z

γε

ε

Figure 5.3.1.: Hankel path in the complex plane.

having the same eigenvalues of M(0)(k). Therefore

tr
[(

N(0)(k)
)E] = tr

[(
M(0)(k)

)E] = tr
[(

A(0)(k)
)E]

. (5.3.64)

Similarly, we have that the eigenvalues of M̃(1)(k) are obtained from

λc̃a =
∑
b

M̃
(1)
ab

(k)c̃b =
∑
r′

(−1)a Γ(a+ b)Qa+bgb(k)
Γ(a)b!

(
1 + n

a

)
c̃b =

∫
eauβ−

G(u)
2

Γ(a)

(
1 + n

a

)
φ̃(u; k) du,

(5.3.65)
where φ̃(u; k) is given by

φ̃(u; k) :=
∞∑
b=1

ebβu−
G(u)

2

b!
c̃bgb(k). (5.3.66)

It is natural, therefore, to introduce once again the operator Ã(1)(k) defined as follows

Ã(1)(u, v; k) := βe−
G(u)+G(v)

2

∞∑
a=1

(−1)aeaβ(u+v)

Γ(a)a!
ga(k)

(
1 + n

a

)
= A(0)(u, v; k) + nB(u, v; k). (5.3.67)

The operator B(k) introduced above is

B(u, v; k) := βe−
G(u)+G(v)

2

∞∑
a=1

(−1)aeaβ(u+v)

Γ(a+ 1)a!
ga(k)

= Σdβe−
G(u)+G(v)

2

∞∫
0

zd−1
0F1

[−
d
2

;−k
2z2

4

] [
J0

(
2eβ

u+v−zp
2

)
− 1
]

d z. (5.3.68)

We have then, up to higher orders in n,

tr
[(

N(0)(k)
)E]+ (n− 1) tr

[(
N(1)(k)

)E] = tr
[(

A(0)(k)
)E]+ (n− 1) tr

[(
A(0)(k) + nB(k)

)E]
= n tr

[(
A(0)(k)

)E]+ nE tr
[(

A(0)(k)
)E−1 B(k)

]
(5.3.69)

We need now to calculate the β → ∞ limit, being interested in the optimal cost configuration. Let us
consider the q ≥ 2 contribution. First, we introduce the identity

∞∑
r=1

(−x)r

Γ(r + 2q)r!
= i

2π

∮
γε

e
−ζ−2q ln(−ζ)+ x

ζ d ζ. (5.3.70)

The path γε, in the complex plane, is the Hankel path, represented in Fig. 5.3.1. This identity can be
proved starting from the Hankel representation for the reciprocal gamma function [1]

1
Γ(z)

= i

2π

∮
γε

e−ζ−z ln(−ζ) d ζ. (5.3.71)

Using the identity in Eq. (5.3.70), we can rewrite Eq. (5.3.58) for q ≥ 2 as

A(q)(u, v; k) =

= iβΣd
2π

e−
G(u)+G(v)

2

+∞∫
0

dw
∮
γε

d ζ w
d
p
−1

p
0F1

[−
d
2

;−k
2w

2
p

4

]
eβq(u+v−w)−w−2q ln(−ζ)+ eβ(u+v−w)

ζ .

(5.3.72)
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To compute the β →∞ limit, we perform a saddle point approximation, obtaining{
ζsp = −q,
wsp = u+ v − 2 ln q

β
.

(5.3.73)

The saddle point has fixed position assuming that ln q = tβ for some t. Taking instead q fixed and β →∞,
it is easily seen from Eq. (5.3.58) that

lim
β→∞

A(q)(u, v; k) =
{
∞ for u+ v > 0,
0 for u+ v < 0. (5.3.74)

Indeed, only for u+ v − 2t > 0 the saddle point is inside the range of integration. For this reason, we take
ln q
β

= t fixed, obtaining the limit operator H(t, k),

H(u, v; t, k) := lim
β→∞, q→∞
β−1 ln q=t

A(q)(u, v; k) ≈ Σd
p
e−

G(u)+G(v)
2 x

d
p
−1

0F1

[−
d
2

;−k
2x

2
p

4

]
θ (x)

∣∣∣∣∣
x=u+v−2t

.

(5.3.75)
Observing that

∑∞
q=2

1
βq
→
∫ +∞

0 d t the contribution to the (rescaled) average optimal cost from the q ≥ 2
sectors is

ε
(2)
E

:=
{

2EΣd
E(2π)d

∫∫∞
0 kd−1 tr

[
HE(t, k)

]
d t d k E odd,

0 E even.
(5.3.76)

For the sectors q = 0 and q = 1 the β →∞ limit can be performed quite straightforwardly. In particular,
using Eq. (5.3.34), we obtain the two limit operators H(0, k) and K(k),

A(0)(u, v; k) β→∞−−−−→ −Σde−
G(u)+G(v)

2
x
d
p
−1

p
0F1

[−
d
2

;−k
2x

2
p

4

]
θ(x)

∣∣∣∣∣
x=u+v

≡ −H(u, v; 0, k), (5.3.77a)

B(u, v; k) β→∞−−−−→ −Σdβe−
G(u)+G(v)

2
x
d
p

d
0F1

[ −
d
2 + 1

;−k
2x

2
p

4

]
θ(x)

∣∣∣∣∣
x=u+v

=: −βK(u, v; k). (5.3.77b)

The contribution to the (rescaled) average optimal cost from the sectors q = 0 and q = 1 is

ε
(1)
E

:= (−1)E 2E−1Σd
(2π)d

∞∫
0

kd−1 tr
[
HE−1(0, k)K(k)

]
d k. (5.3.78)

Summarizing, the average optimal cost is given by

lim
N→∞

N
p
d CN = lim

N→∞
N

p
d C

(p,mf)
N (d) +

∞∑
E=3

(
ε
(1)
E + ε

(2)
E

)
+ non-polygonal terms, (5.3.79)

As anticipated, the contribution ε(2)
E has an expression that is totally analogue to the one for the

finite size corrections computed in [27] for the rmmp, whilst ε(1)
E has no equivalent contribution in

that computation. In both expressions above, the function G appears. The saddle point equation
for G is given by Eq. (5.3.25b). However, keeping the polygonal contribution only, we can similarly
write an equation for G in terms of the matrices H(t, k) and K(k) as

G(u) =
∫
ρ(w)e−G(w−u) dw − eG(u)

2

∞∑
E=3

[
δε

(1)
E

δG(u) + δε
(2)
E

δG(u)

]
=
∫
ρ(w)e−G(w−u) dw

−2E−1eG(u)Σd
(2π)d

∞∑
E=3

∞∫
0

kd−1

 (−1)E−1

2

E−1∑
m=0

HE−1−m(0, k)K(k)Hm(0, k)−
∞∫

0

HE(t, k) d t


uu

d k.

(5.3.80)

To proceed further, a numerical evaluation of the previous quantities must be performed. This
numerical investigation has been carried on in [21]. We refer to this work for the numerical details
and additional comments.
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5.4. The Monge–Kantorovič transport problem

In the previous Section we discussed the rEm via a replica approach: similar calculations can be
reproduced for the rEb. The replica method is quite straightforward but sometimes a little bit
involved in the calculation. However, for the bipartite case a different approach is possible, and
moreover it is able to provide us the desired results with a little amount of work. This approach is
not rigorous but very effective, and it is inspired by the theory of Monge and Kantorovič for the
transport problem. The Monge–Kantorovič problem, or optimal transport problem, is a kind of
“continuum version” of the Eb. It is a well studied problem in measure theory and a large amount
of results were obtained in recent years [30].
Let us suppose that two non-negative measures ρR(x) and ρB(y) are given on Rd, such that

the overall mass balance condition is satisfied∫
Rd

d ρR(x) =
∫
Rd

d ρB(y). (5.4.1)

Let us define also the set of maps

M(ρR, ρB) :=

T : Rd → Rd

∣∣∣∣∣∣
∫
Rd

h(T(x)) d ρR(x) =
∫
Rd

h(y) d ρB(y) ∀h ∈ C0(Rd)

 .

(5.4.2)
We suppose also that a cost function

ω : Rd ×Rd → R+ (5.4.3)

is given. In the optimal transport problem, we ask for the map M ∈M(ρR, ρB) such that, given
the cost functional

C[T; ρR, ρB] :=
∫
Rn

ω(x,T(x)) d ρR(x), (5.4.4)

we have that
C[ρR, ρB] := C[M; ρR, ρB] = inf

T∈M(ρR,ρB)
C[T; ρR, ρB]. (5.4.5)

This problem is called transport problem and it was introduced in the 18th century by the French
mathematician Gaspard Monge. In the original problem, Monge [26] considered a finite set of piles
of soil and a finite set of excavation sites, both sets of the same cardinality. He wanted to find a
proper matching to minimize the transportation cost. Monge’s problem was, therefore, an Eb. The
similarity between the continuous problem above and our problem is striking. In particular, the
transport problem appears as a generalization of the Eb, in which empirical measures are replaced
with generic measures on a certain support.
The analogies, however, go beyond the formulation above. In the 1940s Kantorovič [18, 19]

suggested a slightly different approach. He considered the set of transfer plans

MK(ρR, ρB) :=

π : Rd ×Rd → R+

∣∣∣∣∣∣∣
∫

y∈Rd

dπ(x,y) = d ρR(x),
∫

x∈Rd

dπ(x,y) = d ρB(y)

 .

(5.4.6)
and the relaxed cost functional

CK [π; ρR, ρB] :=
∫

Rd×Rd

ω(x,y) dπ(x,y). (5.4.7)

He asked therefore for the optimal transfer plan πo such that

CK [πo; ρR, ρB] := inf
π∈MK(ρR,ρB)

CK [π; ρR, ρB]. (5.4.8)

As mentioned before, this problem is a weak formulation of the original Monge transport problem.
The formulation of Kantorovič opens interesting and nontrivial questions, e.g. about the the exis-
tence of an optimal transport plan [30]. Moreover, the existence of an optimal transport plan πo
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does not guarantee that an optimal map M in the Monge sense exists. In some sense, the optimal
plans of Kantorovič remind us the adjacency matrix M for a matching, but without the constraint
mij ∈ {0, 1}. Quite brutally, we will assume that an optimal map always exists. It can be proved
indeed that, if ω is a continuous function on its support and some additional requirements4 on
ρR(x), both an optimal transport plan and a corresponding optimal map always exist [4]. In the
following we will consider only cost functions in the form ω(x,y) ≡ ω(x− y).
The formulation of Kantorovič is interesting not only because it offers an alternative view on

the problem, but also because it suggests a road for its solution. He introduced indeed a dual
formulation, defining the following space:

K(ω) :=
{

(u, v)|u, v : Rd → R, u, v ∈ C0(Rd), u(x) + v(y) ≤ ω(x− y), (x,y) ∈ Rd ×Rd
}
.

(5.4.9)
He asked for the couple (uo, vo) ∈K(w) that maximizes the following dual cost

ĈK [u, v; ρR, ρB] :=
∫
Rd

u(x) d ρR(x) +
∫
Rd

v(y) d ρB(y). (5.4.10)

It can be proved [15] that, if ω is uniformly continuous, such a couple of functions exists and,
moreover, they satisfy the following relations{

uo(x) = infy∈Rd [w(x− y)− vo(y)]
vo(y) = infx∈Rd [w(x− y)− uo(x)] . (5.4.11)

The correspondence between the previous set of equations and the belief propagation equations
(4.3.31) is remarkable. The relation between the couple of functions (uo, vo) and the optimal map
of the original problem M, is clarified by the following theorem [15].

Theorem 5.4.1 (Strictly convex cost). Let ω ∈ C1(Rd × Rd) a strictly convex function,
i.e.,

ω(αx1 + (1− α)x2) < αω(x1) + (1− α)ω(x2), α ∈ (0, 1). (5.4.12)

Then an optimal map M for the original plan exists almost everywhere and it satisfies the
following differential equation

∇ω (x−M(x)) = ∇uo(x). (5.4.13)

Moreover,
ĈK [uo, vo; ρR, ρB] = C[M; ρR, ρB]. (5.4.14)

If the cost function ω is not strictly convex (e.g., ω(x) = |x|), then the uniqueness of the map
is not guaranteed.
If the cost function ω is strictly convex, we can also write a differential equation for M in the

form of a change-of-variable formula (sometimes called Jacobian equation)

d ρR(x) = d ρB(M(x)) det JM(x), (5.4.15)

where JM(x) is the Jacobian matrix for the map M. This formula does not hold in general for
non convex costs. Note that the optimal map is not usually “smooth” and the meaning of the
Jacobian matrix itself must be clarified. The validity conditions of the Jacobian equation (5.4.15)
are pointed out in the following theorem5

Theorem 5.4.2 (Jacobian equation). Let be ρR, ρB two non-negative measures on Rd. Let
us assume that

• d ρR(x) = ρR(x) dd x, where ρR(x) ∈ L1(Rd);
4In particular, it is required that ρR(x) has no atoms. In measure theory, given a measurable space (m,Σ)
with m measure on the σ-algebra Σ, A ⊂ Σ is called atom if m(A) > 0 and ∀B ⊂ A measurable such that
m(B) < m(A), m(B) = 0.

5A more general statement can be found in the monograph by Villani [30, Chapter 11].
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• M ∈M(ρR, ρB);

• ∃Σ ⊂ Rd such that ρR(x) = 0 almost everywhere outside Σ and M is injective on Σ;

• M is approximately differentiable6 on Σ almost everywhere.

If ∇M(x) is the approximate gradient of M, then by definition JM(x) := det |∇M(x)| and
Eq. (5.4.15) holds.

Working with strictly convex potentials and compact submanifolds of Rd, the hypotheses of the
previous theorem are satisfied. As an important particular case, let us consider the following cost
function:

ω(x− y) := ‖x− y‖2, x,y ∈ Rd, (5.4.16)
where ‖•‖ is the Euclidean norm. The cost is strictly convex. We suppose also that two measures
are given on Rd such that

d ρR(x) := ρR(x) dd x, d ρB(y) := ρB(y) dd y, (5.4.17)

such that ρR(x), ρB(x) ∈ L1(Rd). The optimal map is a minimum of the following functional

L[M, λ] :=
∫
Rd

[
‖x−M(x)‖2 + λ(x) (ρB(M(x)) det JM(x)− ρR(x))

]
dd x (5.4.18)

where λ(x) is a Lagrange multiplier. A direct computation of the Euler–Lagrange equations gives
that

M(x) = ∇φ(x) (5.4.19)
for a certain (convex) potential φ. In other words, in the quadratic case, the optimal map can be
expressed as a gradient of a convex potential. The Jacobian equation assumes the well known
form of a Monge–Ampère equation,

ρR(x) = ρB(∇φ(x)) det H[φ](x), (5.4.20)

where H[φ] is the Hessian matrix of φ. This equation will be extremely useful in the what follows.

5.5. Ansatz for the Euclidean matching problem

Inspired by the Monge–Kantorovič theory of optimal transport, and in particular by the Monge–
Ampère equation, we try to obtain useful information on the discrete problem for any dimension,
through a proper regularization procedures, under the assumption of a quadratic cost. In particular,
let us consider the random Eb on the unit hypercube,

Ω ≡ Ωd = [0, 1]d ⊂ Rd. (5.5.1)

We suppose that two sets of N points, let us call them R = {ri}i=1,...N and B = {bi}i=1,...N ,
are generated with uniform distribution on the hypercube, ρ(x) = 1 (Poisson–Poisson matching
problem). As usual, we randomly associate the vertices of the complete bipartite graph KN,N :=
Graph(V, U; E) to the points on Ωd, let be

vi ∈ V 7→ ri ∈ R, i = 1, . . . N, (5.5.2a)
ui ∈ U 7→ bi ∈ B, i = 1, . . . N. (5.5.2b)

We want to find the optimal map Mo : Ωd → Ωd that minimizes the following functional:

C(2,Eb)[M] := 1
N

N∑
i=1
‖M(ri)− ri‖2. (5.5.3)

6See, for example, [30] for a rigorous definition of approximate differentiability and approximate gradient.
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The distance ‖•‖ is the Euclidean distance on the domain Ω evaluated with periodic boundary
conditions. This means that, to be precise, we are considering the matching problem on the d–
dimensional flat hypertorus, Td. The map Mo must be searched in the set of suitable maps, given
by

S= {M : Ωd → Ωd|∃σ ∈ PN such that M(ri) = bσ(i) ∀i}. (5.5.4)
We can associate to the set R and to the set B two empirical measures respectively

ρR(x) := 1
N

N∑
i=1

δ (x− ri) , (5.5.5a)

ρB(x) := 1
N

N∑
i=1

δ (x− bi) , (5.5.5b)

such that ρR(x), ρB(x) N→∞−−−−→ ρ(x) = 1 weakly. The difference between the two densities

%(x) := ρR(x)− ρB(x) (5.5.6)

has corresponding Fourier modes given by

%̂(k) :=
N∑
i=1

e−2πik·ri − e−2πik·bi

N
, k ∈ Zd. (5.5.7)

A suitable map M ∈ S is therefore a map between the two atomic densities (5.5.5) that minimizes
the following transport functional

C[M; ρR, ρB] :=
∫
Ωd

‖x−M(x)‖2ρR(x) dd x. (5.5.8)

The functional in Eq. (5.5.8) is identical to the the cost in Eq. (5.5.3). An optimal map Mo is
such that

C[Mo; ρR, ρB] = min
M∈S

C[M; ρR, ρB]. (5.5.9)

Neglecting for a moment the high nonregularity of our measures, we have that, for a quadratic cost
as in Eq. (5.5.8), the optimal map can be expressed as a gradient of a scalar function ϕ(x), see
Eq. (5.4.19). We write therefore

M(x) := x + µ(x), µ(x) = ∇ϕ(x). (5.5.10)

We impose also the Monge–Ampère equation (5.4.20),

ρR(x) = ρB (x +∇ϕ(x)) det
(
I + ∂2ϕ(x)

∂xi∂xj

)
, (5.5.11)

where I = (δij)ij . In the limit N → ∞ we expect that the optimal map has |µ(x)| � 1.
Indeed, the two empirical measures converge weakly to the same uniform measure and therefore
Mo(x)→ x. Under this working hypothesis, the Monge–Ampère equation can be linearized as a
simple Poisson equation,

∆ϕ(x) = %(x). (5.5.12)
The previous equation has only one non trivial solution on the d-dimensional hypertorus and
therefore identifies uniquely the optimal map. Substituting in the equation (5.5.8) the solution,
we have that for the optimal map Mo

C(2,Eb)[M0] ' C[Mo; ρR, ρB] =
∑

k∈Zd\{0}

|%̂(k)|2

4π2‖k‖2
. (5.5.13)

Our hypothesis is that the previous quantity, for N � 1, captures the leading terms of the exact
optimal cost of our original matching problem. In particular, observing that

|%̂(k)|2 = 2
N

(5.5.14)
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Figure 5.5.1.: Numerical simulations for d = 1. We averaged the optimal cost of the Eb given by an exact algorithm
[12] for system sizes up to N = 2048. The fit was performed using a fitting function in the form of Eq. (5.5.17).

we obtain our expression for the average optimal cost [11]

C
(2,rr)
N,d ' 1

2π2N

∑
k∈Zd\{0}

1
‖k‖2

. (5.5.15)

One dimensional case Let us consider the quadratic random Eb in dimension d = 1. In
low dimensions, that is for d = 1, 2, fluctuations of the density of points are dominant and the
scaling of the cost is expected to be anomalous. Moreover, for d = 1 the optimal cost is also not
self-averaging [17]. The one-dimensional case is the simplest application of our formula and we
obtain straightforwardly

C
(2,rr)
N,1 = 1

6N + o

(
1
N

)
. (5.5.16)

This result is exact. In the next Section we will prove the equivalent result for the gr–Eb using
a different approach. We numerically checked the validity of our prediction. In Fig. 5.5.1 we show
the perfect agreement of numerical results with our formula. In particular, the fit for N C

(2,rr)
N,1

was performed using the three parameters fit function

F1(N) = c1 + c
(1)
1
N

+ c
(2)
1
N2 . (5.5.17)

From a least square fit we obtained the coefficient c1 = 0.166668(3), in perfect agreement with
our analytical prediction. Once verified the validity our theoretical result, we used it to extrapolate
the subleading coefficient c(1)

1 , fixing c1 ≡ 1
6 and using the fitting function F1(N) with two free

parameters (see Table 5.1).

Higher dimensions For d ≥ 2 the sum in Eq. (5.5.15) diverges. To regularize it, let us
introduce a proper cut-off in the momentum space, i.e., let us consider only the element of the sum
with

‖k‖ ≤ 2π
`
, ` := 1

d
√
N
. (5.5.18)

The cut-off above has a clear meaning. Indeed, for finite N , ` is the characteristic length of the
system, being of the order of the distance between two points of different type. Clearly 2π`−1 →
+∞ for N → +∞. We introduce a regularizing smooth function Φ(x) such that Φ(0) = 1 and
limx→+∞ Φ(x) = 0. The function has to decrease rapidly enough to make the series∑

n∈Zd\{0}

1
‖n‖2

Φ
(

2π‖n‖
2π`−1

)
(5.5.19)
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converge. Let us denote by

Nd(r) :=
∣∣{x ∈ Zd \ {0}|‖x‖ < r}

∣∣, (5.5.20)

the number of lattice points (excluded the origin) in a ball of radius r centred in the origin in
dimension d. Then, for arbitrary a ∈ (0, 1), we can write

∑
k∈Zd\{0}

1
‖k‖2

Φ
(
‖k‖
d
√
N

)
= lim
R→∞

R∫
a

1
k2 Φ

(
k√
N

)[
∂Nd(k)
∂k

− Σdkd−1
]

d k

+N
d−2
d Σd

∞∫
a
d√
N

Φ (k) kd−3 d k ' lim
R→∞

R∫
a

1
k2

[
∂Nd(k)
∂k

− Σdkd−1
]

d k

+N
d−2
d Σd

∞∫
a
d√
N

Φ (k) kd−3 d k. (5.5.21)

To proceed further, we have to distinguish the d = 2 case from the d > 2 case. Let us start
from d = 2. In Eq. (5.5.21) we have

R∫
a

[
∂N2(k)
∂k

− 2πk
]

d k
k2 = N2(k)− πk2

k2

∣∣∣∣R
a

+
R∫
a

N2(k)− πk2

2k3 d k. (5.5.22)

Both the first and the second term are finite in the R → ∞ limit due to the result of Hardy and
Ramanujan [16]

N2(k)− πk2 ≤ 1 + 2
√

2πk. (5.5.23)
Therefore we have

∑
k∈Z2\{0}

1
‖k‖2

Φ
(
‖k‖√
N

)
'

+∞∫
a

N2(k)− πk2

2k3 d k + 2π log
√
N

a
+ 2π

∞∫
1

Φ(k)
k

d k. (5.5.24)

Eq. (5.5.15) for the case d = 2 can then be rewritten as

C
(2,rr)
N,2 ' lnN

2πN + c
(1)
2
N

, (5.5.25)

where c(1)
2 is some constant. To our knowledge the result

lim
N→∞

N C
(2,rr)
N,2

lnN = 1
2π (5.5.26)

is new to the literature. The validity of Eq. (5.5.25) has been confirmed by numerical simulations.
In Fig. 5.5.2 we fitted our numerical data for N C

(2,rr)
N,2 using the function

F2(N) = c2 lnN + c
(1)
2 + c

(2)
2

lnN . (5.5.27)

The 1
lnN correction was suggested by the plot in Fig. 5.5.2b. From a least square fit we obtained

2πc2 = 1.0004(6), (5.5.28)

in perfect agreement with our analytical prediction. Once verified the theoretical prediction for c2,
we used it to extrapolate the subleading coefficient c(1)

2 , fixing c2 = 1
2π and fitting the other two

parameters (see Table 5.1).
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Figure 5.5.2.: Numerical simulations for d = 2.

Dimension

d = 1 d = 2 d = 3 d = 4 d = 5
1

2π2 ζd(1) 1
6

1
2π −0.45157 . . . −0.28091 . . . −0.21423 . . .

cd 0.166668(3) 0.15921(6) 0.66251(2) 0.571284(6) 0.584786(2)

c
(1)
d −0.1645(13) 0.1332(5) −0.4489(16) −0.282(4) −0.2139(13)

Table 5.1.: Results of numerical simulations for p = 2. In the first line the analytical predictions for c1, c2 and
c
(1)
d

for d > 2 are presented.

For d ≥ 3, the last term in Eq. (5.5.21) is finite but cannot be explicitly computed since it
depends on the choice of the regularizing function Φ. Unfortunately, it corresponds exactly to the
leading term in the cost. We write therefore

cd = Σd
∞∫

0

Φ (k) kd−3 d k. (5.5.29)

We name instead

Ξd :=
+∞∫
0

[
∂Nd(k)
∂k

− Σd kd−1
]

d k
k2 . (5.5.30)

It can be shown that Ξd = ζd(1), where ζd(1) is the analytic continuation to the point s = 1 of
the Epstein zeta function

ζd(s) :=
∑

k∈Zd\{0}

1
‖k‖2s

for <s > d

2 . (5.5.31)

After some computations [11] we obtained the result

Ξd = ζd(1) = π

 2
2− d − 1 +

+∞∫
1

(
1 + z

d
2−2
) (

Θd(z)− 1
)

d z

 . (5.5.32)

In the previous expression, Θ(z) is defined by

Θ(z) :=
+∞∑

n=−∞
e−πn

2z ≡ ϑ3(0; iz), (5.5.33)
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Figure 5.5.3.: Numerical simulations for d > 2. We verified the validity of Eq. (5.5.35) with numerical simulations
on systems with sizes up to N = 10648 in dimension d = 3, N = 14641 in dimension d = 4 and N = 32768 in
dimension d = 5. The scaling exponents γd are readily confirmed to be the exact ones.

where ϑ3(τ ; z) is the third Jacobi theta function. Therefore we finally have that for d > 2,

C
(2,rr)
N,d ' cdN−

2
d + ζd(1)

2π2N
+ o

(
1
N

)
. (5.5.34)

The expression for ζd(1) is given by Eq. (5.5.32), while cd has to be determined numerically. Note
that for d→ +∞ we recover the correct mean field scaling behavior already analyzed by Houdayer,
Boutet de Monvel, and Martin [17] for the average optimal cost C

(mf)
N of the random assignment

problem. Observe indeed that

d
√
N2 C

(2,rr)
N (d) ' cd + ζd(1)

2π2Nγd
, γd := 1− 2

d

d→∞−−−→ 1. (5.5.35)

However, for finite d, the scaling behavior can be very different from the mean field one [27]
that Houdayer, Boutet de Monvel, and Martin [17] used to fit the Euclidean optimal cost. The
predictions above were confirmed by proper numerical simulations (see Fig. 5.5.3). We fitted our
numerical data for d

√
N2 C

(2,rr)
N,d using the function

Fd(N) = cd + c
(1)
d N−γd +

c
(2)
d

N
. (5.5.36)
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5.5.1. Correlation functions for the rEb
Let us now discuss a different aspect of the rEb. Let us consider again the optimal matching field

µo(ri) := bσo(i) − ri, (5.5.37)

with σo ∈ PN optimal permutation that minimizes the functional in Eq. (5.5.3). Eq. (5.5.3) can
be written, in particular, as

C(2,Eb)[µ] := 1
N

N∑
i=1
‖µ(ri)‖2 ≡ C(2,Eb)[σ], µ = bσ(i) − ri σ ∈ PN . (5.5.38)

Let us analyze the correlation function of the optimal matching field in the Eb with quadratic
cost, defined as

Cd(x) := µo(ri) · µo(rj)
∣∣∣
ri−rj=x

. (5.5.39)

To avoid boundary effects, we will work on the unit hypertorus Td (i.e., we will consider periodic
boundary conditions) and we will assume that the random points are generated with uniform
distribution on the hypertorus.
To obtain the quantity in Eq. (5.5.39), we will generalize our ansatz, following [10]. The gen-

eralization is quite straightforward. Using the Poisson equation (5.5.12), obtained by a proper
linearization of the Monge–Ampére equation in the large N limit, we can write down an expression
for the correlation function assuming that

µo(x) = ∇ϕ(x), ∆ϕ(x) = %(x). (5.5.40)

Here % is given by Eq. (5.5.6). As mentioned above, being
∫

Ωd %(x) dd x = 0, Eq. (5.5.12) has a
unique solution on the compact manifold Td, given by

ϕ(x) =
∫
Td

%(y)Gd(y,x) dd y, (5.5.41)

where Gd is the Green’s function for the Laplace operator ∆ on the flat hypertorus Td, i.e.,

∆yGd(x,y) = δ(d)(x− y)− 1. (5.5.42)

In a Fourier mode expansion, we can write

Gd(x,y) ≡ Gd(x− y) = −
∑

n∈Zd\{0}

e2πin·(x−y)

4π2‖n‖2
. (5.5.43)

We have finally that

Cd(x− y) :=∇φ(x) · ∇φ(y)

=
∫∫
∇zGd(z− x) · ∇wGd(w− y)%(z)%(w) dd z dd w

(5.5.44)

where we used the fact that periodic boundary conditions are assumed and Eq. (5.5.41) holds.
We distinguish now two different cases. In the rr–Eb (here Poisson–Poisson Eb) both the points

of R and the points of B are random points uniformly distributed on the considered domain. In
this case

%(x)%(y) = 2δ
(d)(x− y)− 1

N
, (5.5.45)

and therefore the correlation function is

Crr
d (x− y) = − 2

N
Gd(x− y). (5.5.46)

In the gr–Eb (here grid–Poisson Eb) we suppose that N = Ld, for some natural L ∈ N, and that
one set of points, e.g. the set R = {ri}i=1,...,N , is fixed on the vertices of an hypercubic lattice,
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in such a way that {ri}i=1,...,N =
{
k
L |k ∈ [0, L]d ∩Nd

}
. The set B = {bi}i=1,...,N ⊂ Ωd is

instead obtained as before, considering the points uniformly randomly generated. In this case we
have

%(x)%(y) = 1
N
δ(d)(x− y) + N2 −N

N2 +
∑
ij

δ(d) (x− ri) δ(d) (y− rj)
N2

−
∑
i

δ(d) (x− ri) + δ(d) (y− ri)
N

. (5.5.47)

The correlation function is therefore

Cgr
d (x− y) = − 1

N
Gd(x− y). (5.5.48)

We will consider also the correlation function for the normalized transport field, i.e., the following
quantity:

cd(x− y) = µo(x)
‖µo(x)‖ ·

µo(y)
‖µo(y)‖ , (5.5.49)

Note that µo(x)‖µo(x)‖−1 lives on the d-dimensional unit sphere. To compute the correlation
function (5.5.49) for the normalized field in the rr case, we assume a Gaussian behavior for the
joint probability distribution of two values of the optimal transport field, and therefore we have

crrd (x− y) =
∫∫

µ1 · µ2
‖µ1‖‖µ2‖

e− 1
2µ

T ·Σ−1(x,y)·µ(
2π
√

det Σ
)d dd µ1 dd µ2, (5.5.50)

where
µ =

(
µ1
µ2

)
(5.5.51)

and Σ(x,y) is the covariance matrix,

Σ(x,y) :=
(
µo(x) · µo(x) µo(x) · µo(y)
µo(y) · µo(x) µo(y) · µo(y)

)
≡
(

Crr
d (0) Crr

d (x− y)
Crr
d (x− y) Crr

d (0)

)
. (5.5.52)

The case d = 1 is peculiar and was first solved by Boniolo, Caracciolo, and Sportiello [7]. Let us
consider d ≥ 2 and introduce

A := Crr
d (0)

det Σ(x,y) , (5.5.53a)

B := Crr
d (x− y)

det Σ(x,y) . (5.5.53b)

Observe that
lim
N→∞

B

A
= lim
N→∞

Crr
d (x− y)
Crr
d (0) = 0. (5.5.54)

Indeed, NCrr
d (x) is finite for x 6= 0, whereas NCrr

d (0) ∼ N1− 2
d for d > 2, NCrr

d (0) ∼ lnN
for d = 2. We have therefore that, in the notation above,

det Σ = 1
A2 −B2 (5.5.55)

and

crrd (x,y) = B

A

2Γ2 (d+1
2
)

dΓ2
(
d
2
) (

1− B2

A2

) d
2

2F1

[ d+1
2

d+1
2

d
2 + 1

; B
2

A2

]
N→∞−−−−→
B
A→0

2
d

(
Γ
(
d+1

2
)

Γ
(
d
2
) )2

Crr
d (x− y)
C

(2,rr)
N,d

. (5.5.56)
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In the previous expression, we have introduced the hypergeometric function

2F1

[
a b

c
; z
]

:=
∞∑
n=0

(a)n(b)n
(c)n

zn

n! , (a)n := Γ (a+ 1)
Γ (a− n+ 1) . (5.5.57)

In the gr case, the correlation function for the normalized field has the same expression, i.e.,

cgrd (x− y) = 2
d

(
Γ
(
d+1

2
)

Γ
(
d
2
) )2

Cgr
d (x− y)
C

(2,gr)
N,d

. (5.5.58)

Finally, for d ≥ 2 we can compute also the so called wall-to-wall correlation function. In the
rr case it is given by

W rr
d (r) :=

d∏
i=2

 1∫
0

dxi

 crrd (r, x2, . . . , xd) = −4
d

(
Γ
(
d+1

2
)

Γ
(
d
2
) )2

G1(r)
C

(2,rr)
N,d

. (5.5.59)

Similarly, the computation for the gr case gives

W gr
d (r) :=

d∏
i=2

 1∫
0

dxi

 cgpd (r, x2, . . . , xd) = −2
d

(
Γ
(
d+1

2
)

Γ
(
d
2
) )2

G1(r)
C

(2,gr)
N,d

. (5.5.60)

Let us now analyze in details the solutions for different values of d.

One dimensional case In Section 5.6 we discuss an exact solution of the one dimensional
matching problem in the gr case. Let us consider now the rr case, remembering that similar
considerations can be carried on for the gr case. We have that

G1(r) = −
∑
n6=0

e2πinr

4π2n2 = − 1
12 + |r|2 (1− |r|) . (5.5.61)

It follows from Eq. (5.5.46) that

Crr
1 (x− y) = 1− 6|x− y| (1− |x− y|)

6N . (5.5.62)

Note that the average optimal cost is

Crr
1 (0) = C

(2,rr)
N,1 = 1

6N . (5.5.63)

In the gr case the results of Section 5.6 are easily recovered. Boniolo, Caracciolo, and Sportiello
[7] obtained the correlation function for the normalized matching field as

crr1 (x) = cgr1 (x) = 2
π

arctan
[

1− 6x(1− x)√
12x(1− x) (1− 3x(1− x))

]
. (5.5.64)

Two dimensional case For d = 2, we have that

G2(r) = −
∑
n6=0

1
4π2‖n‖2

e2πin·r . (5.5.65)

The Green’s function G2 can be expressed in terms of first Jacobi theta functions [20]. From
Eq. (5.5.46) we have simply

Crr
2 (x) = −2G2(x)

N
. (5.5.66)

In the gr case, we have as usual

Cgr
2 (x− y) = 1

2C
rr
2 (x− y). (5.5.67)
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Figure 5.5.4.: Laplacian Green’s function G2(r), r = (x, y), on T2.

Observe that the previous expressions contains no free parameters and therefore a direct comparison
with numerical data is possible. We present our numerical results both from the gr case and the
rr case in Fig. 5.5.5a. As explained in Section 5.5, a proper regularization led to the correct scaling
for the average optimal cost,

C
(2,rr)
N,2 = Crr

2 (0) = 1
N

(
lnN
2π + c

(1,rr)
2

)
+ o

(
1
N

)
, c

(1,rr)
2 ≡ c(1)

2 = 0.1332(5). (5.5.68)

A numerical fit of the optimal costs for d = 2 for the gr Ebmp gives

C
(2,gr)
N,2 = Cgr

2 (0) = 1
2N

(
lnN
2π + c

(1,gr)
2

)
+ o

(
1
N

)
, c

(1,gr)
2 = 0.3758(5). (5.5.69)

The correlation function (5.5.49) for the normalised matching field in the rr case has the
expression (5.5.56),

crr2 (x− y) = π

4
Crr

2 (x− y)
C

(2,rr)
N,2

. (5.5.70)

The only free parameter in this quantity is C
(2,rr)
N,2 . Inserting the value obtained in Section 5.5,

Eq. (5.5.68), we have the theoretical prediction in Fig. 5.5.5b. Similarly, we can write down the
form of the correlation function for the normalized transport field in the gr case, cgr2 (x− y). In
particular, using Eq. (5.5.69) in Eq. (5.5.58) for d = 2, we obtain the theoretical curve depicted
in Fig. (5.5.5b), where, once again, an excellent agreement is found with numerical data.
Finally, let us compute the wall-to-wall correlation function. The theoretical prediction in the

rr case is given by Eq. (5.5.59),

W rr
2 (r) = − πG1(r)

2N C
(2,rr)
N,2

. (5.5.71)

In the gr case, instead, we have

W gr
2 (r) = − πG1(r)

4N C
(2,gr)
N,2

. (5.5.72)

Numerical results both for the rr case and for the gr case are presented in Fig. 5.5.5c and
Fig. 5.5.5d. The values of the average optimal cost in the corresponding cases, Eq. (5.5.68) and
Eq. (5.5.68), fix completely the expression of the wall-to-wall correlation function.
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Figure 5.5.5.: Correlation functions for the Euclidean bipartite matching problem in two dimensions and numerical
results.
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Figure 5.5.6.: Wall-to-wall correlation function in three dimensions for the rr matching and the gr matching with
d = 3 and N = 8000 on the unit flat hypertorus.

Three-dimensional case For d = 3 Eq. (5.5.43) and Eq. (5.5.46) give

Crr
3 (x− y) = 1

2π2N

∑
n∈Z3\{0}

e2πin·(x−y)

‖n‖2
. (5.5.73)

From the correlation function Crr
3 (x), the wall to wall correlation function can be obtained as

before in the form
W rr

3 (r) = − 16G1(r)
3πN C

(2,rr)
N,3

. (5.5.74)

As in the previous cases, C(2,rr)
N,3 ≡ Crr

3 (0) can be evaluated from the cost fit and it is equal to

C
(2,rr)
N,3 = 0.66251(2)N− 2

3 − 0.45157 . . .
N

+ o

(
1
N

)
(5.5.75)

(see Table 5.1). Following the same procedure of the rr case, we can compute the wall-to-wall
correlation function for on the unit hypercube in the three-dimensional case for the gr matching
problem. Reproducing the computations of the d = 2 case we have

W gp
3 (r) = − 8G1(r)

3πN C
(2,gr)
N,3

. (5.5.76)

From a direct cost evaluation, we obtain

C
(2,gr)
N,3 = 0.4893(4)N− 2

3 − 0.23(5)
N

+ o

(
1
N

)
. (5.5.77)

The prediction obtained and the numerical data are presented in Fig. 5.5.6.

5.6. One dimensional gr–rEb: exact solution for convex weights

5.6.1. Preliminaries
In this Section we give special attention to the rEb on the line and on the circumference. The
low dimensionality allows us to give an exact solution to the problem in the case of convex cost
functions. In particular, for the sake of simplicity, we will consider the gr–Eb in one dimension
both with open boundary conditions (obc) and with periodic boundary conditions (pbc) on the
interval Ω1 = [0, 1]. A similar treatment of the rr–Eb can be performed. In the gr–Eb we
suppose that we work on the complete graph KN,N = Graph(V, U; E), in which the first set of
vertices is associated to a set of fixed points on the interval. In particular

vi ∈ V 7→ ri ≡
2i− 1

2N , i = 1, . . . , N, (5.6.1)
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whilst the set of vertices U is associated to a set of N points, {bi}i=1,...,N , randomly generated in
the interval, such that ui ∈ U 7→ bi. We will suppose the U-vertices indexed in such a way that
i ≤ j ⇒ bi ≤ bj . Finally, along with the functional C(p,Eb),

C(p,Eb)[σ] = 1
N

N∑
i=1

w
(p)
i σ(i), C

(p,gr)
N,1 := min

σ∈PN
C(p,Eb)[σ], (5.6.2a)

we will consider also

C̃(p,Eb)[σ] = p

√√√√ 1
N

N∑
i=1

w
(p)
i σ(i), C̃

(p,gr)
N,1 := min

σ∈PN
C̃(p,Eb)[σ], (5.6.2b)

in which p > 1 and the function w(p) : [0, 1]→ [0, 1] is given by:

w(p)(x) =
{
|x|p for obc,
|x|p θ

( 1
2 − |x|

)
+ (1− |x|)p θ

(
|x| − 1

2
)

for pbc. (5.6.3)

Before any analytical consideration on the optimal cost, let us discuss the structure of the optimal
matching. The point configurations in our problem are of this type:

Let us consider for a moment the cost functional (5.6.2) assuming p ∈ (0,+∞). It can be easily
seen that, in the hypothesis p > 1, the optimal matching, let us say the optimal permutation σo,
is always ordered, i.e.

σo(i) =
{
i for obc,
i+ λ mod N for pbc, for a certain λ ∈ {0, 1, . . . , N − 1}. (5.6.4)

The optimal matching can be pictorially represented as

This simple fact follows directly from the convexity of the weight function w(p) for p > 1. Indeed,
it can be proved by direct inspection in the N = 2 case that the ordered solution minimizes the
cost functional among all possibilities. If instead 0 < p < 1, the weight function w(p) is concave
and the ordered solution is not necessarily the optimal one. The optimal matching σo has to satisfy
a different requirement, i.e., it must be uncrossing, or nested [7]: given two intervals [ri, bσo(i)]
and [rj , bσo(j)], i 6= j, either [ri, bσo(i)] ∩ [rj , bσo(j)] = ∅ or one of the two intervals is a subset
of the other one. Pictorially, drawing arcs connecting matched pairs above the line, they must be
uncrossing, as in the picture below:

Clearly many nested solutions are possible: the uncrossing condition is necessary for the optimal
solution in the p ∈ (0, 1) case but not sufficient to identify it. This simple fact in the discrete
case, appears as a no crossing rule for the optimal map in the one dimensional Monge–Kantorovič
transport problem in presence of concave cost functions [22]. Remarkably, for p = 1 it is possible
to have instances in which the same optimal cost is obtained by different matching solutions.
The observation above on the properties of the solution for p > 1 solves completely the problem.

Indeed, we can perform a simple probabilistic argument to obtain the correct average optimal cost
and its distribution in the large N limit both on the line and on the circumference [7]. Here we will
perform a different calculation following our paper [8], again inspired by the Monge–Kantorovič
theory.
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(a) Optimal matching for p = 2. (b) Optimal matching field for p = 2.

(c) Optimal matching for p = 1
2 . (d) Optimal matching field for p = 1

2 .

Figure 5.6.1.: Grid–Poisson Euclidean matching problem on the same set of N = 200 points on the circumference.
In figures 5.6.1a and 5.6.1c, arcs join each red point to the corresponding blue point in the optimal matching.
In figures 5.6.1b and 5.6.1d we represented, for each red point, the corresponding optimal matching field on it
as a radial segment. The matching field is supposed as a field from a red point to a blue point. The lenght
is proportional to the lenght of the arc joining the red point to the matched blue point, whilst the segment is
directed outwards if the matching field is oriented clockwise, inwords otherwise. It is evident that the structure
of the optimal matching for p > 1 and p ∈ (0, 1) is very different.
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5.6.2. General solution

Let us consider the interval Ω1 := [0, 1] ⊂ R and let us suppose also that two different measures
are given on it, i.e., the uniform (Lebesgue) measure

d ρ0(x) := dx, (5.6.5)

and a non uniform measure dn(x) with measure density ν(x),

d ρ(x) := ρ(x) dx = dx+ dx
∞∑
k=1

[
ρ̂(1)(k) cos (2πkx) + ρ̂(2)(k) sin (2πkx)

]
. (5.6.6)

We ask for the optimal map Mo : Ω1 → Ω1 in the set

S :=

M : Ω1 → Ω1

∣∣∣∣∣∣∣
∫
A

dx =
∫

M−1(A)

d ρ(x) ∀A ⊂ Ω measurable

 (5.6.7)

that minimizes the following functional

C(p)[M ; ρ] :=
1∫

0

w(p) (x−M(x)) d ρ(x), p ∈ R+. (5.6.8)

or the functional

C̃(p)[M ; ρ] := p

√√√√√ 1∫
0

w(p) (x−M(x)) d ρ(x), p ∈ R+. (5.6.9)

In the hypothesis p > 1 the Jacobian equations (5.4.15) can be rewritten as a change-of-variable
formula:

d ρ(x) = dM(x). (5.6.10)
Adopting pbc,

M(0) = M(1)− 1, (5.6.11)
and the solution of (5.6.10) determines the optimal map up to a constant as

Mo(x) = x+Mo(0) + ϕ(x). (5.6.12)

In the previous equation we have introduced

ϕ(x) :=
∞∑
k=1

ρ̂(1)(k) sin (kπx) cos (kπx)
πk

+
∞∑
k=1

ρ(2)(k) sin2 (kπx)
πk

. (5.6.13)

Note that ϕ(0) = ϕ(1) = 0. The value of M(0) must be determined requiring that the functional
(5.6.8) is minimum, i.e., imposing

p

1∫
0

sign (M(0) + ϕ(x)) |M(0) + ϕ(x)|p−1 d ρ(x) = 0. (5.6.14)

If instead obc are considered, then M(0) = 0 and the solution is obtained explicitly ∀p > 1.
Let us now suppose that the measure d ρ(x) is obtained as a limit measure of a random atomic

measure of the form

d ρ(x) := dx
N

N∑
i=1

δ (x− bi) = d
(

1
N

N∑
i=1

θ (x− bi)
)
, (5.6.15)
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where B = {bi}i=1,...,N is a set of N points uniformly randomly distributed in Ω1. With this
hypothesis, we expect that

C
(p,gr)
N,1 = min

M∈S
C(p)[M ; ρ] and C̃

(p,gr)
N,1 = min

M∈S
C̃(p)[M ; ρ], (5.6.16)

where • denote the average over the positions of the points. The measure in Eq. (5.6.15) can be
written as

ρ(x) =
∞∑
k=1

√
2
N

Zk
πk

sin (πkx) + x+ 1
N

N∑
i=1

bi − 1. (5.6.17)

where we have introduced

Zk ≡ Zk(x) := 1
N

N∑
i=1

zi(x), zi(x) := −
√

2N cos (2πkbi + πkx) . (5.6.18)

Observe now that Zk(x) is a sum of independent identically distributed random variables. Applying
the central limit theorem, we have that Zk(x) is normally distributed as

Zk ∼N(0, 1) ∀k ∈ N. (5.6.19)

Remarkably the previous distribution does not depend on x. Moreover, the Zk and Zl are indepen-
dent random variables for k 6= l, being Gaussian distributed and 〈ZlZk〉 = 0, where the average
〈•〉 is intended over the possible values {bi}i. In Eq. (5.6.17) the Karhunen–Loève expansion
for the Brownian bridge [5] on the interval [0, 1] appears:

B(x) =
∞∑
k=1

√
2Zk
πk

sin(πkx), Zk ∼N(0, 1) ∀k ∈ N. (5.6.20)

The Brownian bridge is continuous time stochastic process defined as

B(t) := W(t)− tW(1), t ∈ [0, 1], (5.6.21)

where W(t) is a Wiener process (see Appendix B). It follows that ρ(x) can be written, for large
N and up to irrelevant additive constants, as

d ρ(x) ' d
(

B(x)√
N

+ x

)
, (5.6.22)

and therefore we cannot associate a density measure to it, due to the fact that the Brownian bridge
is not differentiable.

Periodic boundary conditions Considering pbc, we have

Mo(x) ≡M (p)
o (x) = M (p)

o (0) + x+ B(x)√
N
, x ∈ [0, 1]. (5.6.23)

Denoting by
µ(p)
o (x) := M (p)

o (x)− x, (5.6.24)
it follows that ∀p > 1 [8]

µ
(p)
o (x)µ(p)

o (y) = c
(p,pbc)
1
N

− φ (x− y)
N

. (5.6.25)

where c(p,pbc)
1 is a constant depending on p and

φ(x) := |x|1− |x|2 . (5.6.26)

This implies also that
min
M∈S

C(p)[M ; ρ] = O
(
N−

p
2

)
, (5.6.27)
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For p = 2, Eq. (5.6.14) becomes

M (2)(0) = − 1√
N

1∫
0

B(x) ◦ d B(x)− 1√
N

1∫
0

B(x) dx = − 1√
N

1∫
0

B(x) dx (5.6.28)

where the first integral is intended in the Stratonovič sense. We can therefore directly compute

C
(2,gr)
N,1 = c

(2,pbc)
1
N

= 1
12N . (5.6.29)

If we consider the transport cost functional

C̃(p)[M ; ρ] := p

√√√√√ 1∫
0

|x−M(x)|p d ρ(x) (5.6.30)

the matching problem has the same solution M̃ (p)
o ≡ M

(p)
o obtained for the cost (5.6.8) for all

values of p, due to the fact that the function f(x) = p
√
x is monotone. However, for the functional

cost (5.6.30), in the p→∞ limit, we have

lim
p→∞

C̃(p)[M (p)
o ; ρ] = lim

p→∞

 1∫
0

∣∣∣∣B(x)√
N

+ M̃ (p)
o (0)

∣∣∣∣p dx


1
p

= sup
x∈[0,1]

∣∣∣∣B(x)√
N

+ M̃ (∞)
o (0)

∣∣∣∣
(5.6.31)

obtaining

lim
p→∞

M̃ (∞)
o (0) = −

supx∈[0,1] B(x) + infx∈[0,1] B(x)
2
√
N

. (5.6.32)

The correlation function can be directly found using the known joint distributions for the Brownian
bridge and its sup and for the sup and inf of a Brownian bridge (see Appendix B). After some
calculations we obtain, for p =∞,

µ
(∞)
o (x)µ(∞)

o (x+ r) = 12− π2

24N − φ(r)
N

. (5.6.33)

The value c(∞,pbc)
1 := 12−π2

24 = 0.0887665 . . . is very close to the value obtained for p = 2,
c
(2,pbc)
1 = 1

12 = 0.083̄. In figure 5.6.2b we plot the values of c(p,pbc)
1 as function of p.

The optimal cost in the p → ∞ limit can be instead evaluated as the average spread of the
Brownian bridge. Denoting

ξ := sup
x∈[0,1]

B(x)− inf
x∈[0,1]

B(x), (5.6.34)

the distribution of the spread ξ is given by [14]

Pr (ξ < u) = ϑ
(

e−2u2
)

+ u
d

duϑ
(

e−2u2
)
, (5.6.35)

where

ϑ(x) = 1 + 2
∞∑
n=1

xn
2
. (5.6.36)

From Eq. (5.6.35) the distribution of the optimal cost in the p → ∞ limit is easily derived.
Moreover,

√
N C̃

(p,gr)
N,1

N→∞−−−−→
p→∞

1
2

√
π

2 . (5.6.37)

In Fig. 5.6.2c we plotted

ρ̃p(u) := d
du Pr

(√
N C̃(p) < u

)
(5.6.38)
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Figure 5.6.2.: One dimensional gr–Eb on the circumference.
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for different values of p, showing that the distribution approaches the predicted one for p→∞.
Let us now introduce the normalized matching field

σ(p)(x) := µ
(p)
o (x)∣∣∣µ(p)
o (x)

∣∣∣ = sign(µ(p)
o (x)). (5.6.39)

The correlation function σ(p)(x)σ(p)(y) can be computed from the covariance matrix observing
that the process is Gaussian and it is given by

σ(p)(x)σ(p)(x+ r) = 2
π

arctan c
(p,pbc)
1 − φ(r)√

φ(r)
(

2c(p,pbc)
1 − φ(r)

) . (5.6.40)

Open boundary conditions If obc are considered, then M (p)(0) = 0 ∀p ∈ (1,+∞) and
we have simply,

Mo(x) = x+ 1√
N

B(x), x ∈ [0, 1]. (5.6.41)

Defining as above

µo(x) := Mo(x)− x = 1√
N

B(x), x ∈ [0, 1], (5.6.42)

it can be easily seen that

〈µo(x)µo(x+ r)〉 =
1∫

0

µo(x)µo(x+ r) dx = 1
6N + φ (r)

N
, (5.6.43)

where the average 〈•〉 is intended on the position x, whilst we denoted by • the average over
different realizations of the problem as usual. Here the function φ is the same function defined in
Eq. (5.6.26). The distribution of µo(x) is the one of a Brownian bridge process, but it can be also
computed directly from the discrete configuration [7], using the fact that the optimal matching is
ordered. Indeed, considering that the optimal permutation in this case is simply σo(i) = i, the
probability density distribution for the position of the i-th b-point is:

Pr (bi ∈ d b) =
(
N

i

)
yi(1− b)N−i i

b
d b, (5.6.44)

where we used the short-hand notation x ∈ d z ⇔ x ∈ [z, z + d z]. In the N → ∞ limit, a
nontrivial result is obtained introducing the variable µ(x)

µ(x) := x− i

N
, (5.6.45)

expressing the rescaled (signed) matching field between the b-point in [b, b + d b] and its corre-
sponding r-point in the optimal matching. After some calculations, we obtain a distribution for
the variable µ(x) depending on the position on the interval x ∈ [0, 1]:

Pr (µ(x) ∈ dµ) = e−
µ2

2Nx(1−x)√
2πNx(1− x)

dµ. (5.6.46)

The distribution (5.6.46) is the one of a (rescaled) Brownian bridge on the interval [0, 1]. The
joint distribution of the process can be derived similarly. In particular, the covariance matrix for
the 2-points joint distribution has the form, for x, y ∈ [0, 1],

Σ2 = 1
N

(
2φ(x) φ(x) + φ(y)− φ(y − x)

φ(x) + φ(y)− φ(y − x) 2φ(y)

)
. (5.6.47)
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Figure 5.6.3.: One dimensional gr–Eb on the interval.

Averaging over the positions x, y and fixing the distance r := |y − x|, we have

〈Σ2(r)〉 = 1
N

( 1
6

1
6 − φ(r)

1
6 − φ(r) 1

6

)
. (5.6.48)

Eq. (5.6.43) follows immediately.
Introducing the normalized variable

σ(x) := µo(x)
|µo(x)| = sign(µo(x)), (5.6.49)

Boniolo, Caracciolo, and Sportiello [7] computed also the correlation function

σ(x)σ(y) = 2
π

arctan

√
min(x, y)(1−max(x, y))

|y − x|
⇒

1−x∫
0

σ(y)σ(x+ y) d y = 1−
√
x

1 +
√
x
.

(5.6.50)
Both formulas were confirmed numerically. The average cost of the matching is

N
p
2 C

(p,gr)
N

N→∞−−−−→
1∫

0

|B(x)|p dx = 1
2 p2 (p+ 1)

Γ
(p

2 + 1
)
. (5.6.51)

The optimal cost
√
N C̃

(p,gr)
N,1 in the N →∞ limit can be written as

√
N C̃

(p,gr)
N,1

N→∞−−−−→ p

√√√√√ 1∫
0

|B(x)|p dx. (5.6.52)
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Although the previous expression is difficult to evaluate exactly for finite p [29], the calculation
can be easily performed in the relevant limit p→∞, being

√
N C̃

(p,gr)
N,1

p→∞−−−→ sup
x∈[0,1]

|B(x)|. (5.6.53)

The distribution of the sup of the absolute value of the Brownian bridge is the well known Kol-
mogorov distribution [14]

Pr
(

sup
x∈[0,1]

|B(x)| < u

)
=

+∞∑
k=−∞

(−1)k e−2k2u2
(5.6.54)

and therefore
√
N C̃

(p,gr)
N,1

N→∞−−−−→
√
π

2 ln 2. (5.6.55)

In Fig. 5.6.3c we plotted

ρ̃p(u) := d
du

[
Pr
(√

N C̃
(p,gr)
N < u

)]
(5.6.56)

for different values of p. Observe that ρ̃p approaches the Kolmogorov distribution in the large p
limit.

Universality If we consider the problem of a matching of N random b-points to N lattice
r-points on the interval [0, N ], the correlation function assumes the form

C(τ) =
〈
µ

(p)
o (x)µ(p)

o (x+ r)
〉

= c(p)N − |r|2

(
1− |r|

N

)
, (5.6.57)

both in the case of obc and in the case of pbc. It follows that for N → ∞ the correlation
function has a divergent part, C(0) = c(p)N , depending through c(p) on the specific details of the
problem (e.g., the boundary conditions adopted or the value of p), a universal finite part − |r|2 and
a (universal) finite size correction r2

2N . This fact suggests that all Euclidean matching problems
in one dimension with strictly convex cost functionals belong to the same universality class and
that the specific details of the model determine only the value of the constant c(p) in the divergent
contribution C(0).

5.7. Functional approach to the quadratic rEb

The approaches presented in Section 5.5 and Section 5.6 can be further generalized. We can indeed
recover all the results above adopting a general approach proposed in [9]. In this general framework,
two sets of N points, let us call them R := {ri}i=1,...,N and B := {bi}i=1,...,N , are considered
on a domain Ω ⊆ Rd in d dimensions. The domain is supposed to be connected and bounded. As
usual, we want to find the permutation σo that minimizes the functional

C(2,Eb)[σ] := 1
N

N∑
i=1

w
(2)
i σ(i), w

(2)
ij := ‖ri − bj‖2, (5.7.1)

in the set of all permutations of N elements PN . The 2N points are extracted independently with
a given probability distribution density ρ(x) on the domain Ω (not necessarily the uniform one)
and as usual we are interested in the quantity

C
(2,rr)
N := min

σ∈PN
C(2,Eb)[σ]. (5.7.2)

We associate both to the set R and to the set B an empirical measure, let us call them ρR and
ρB respectively, as in Eqs. (5.5.5). We define the functional

C(2,Eb)[µ] :=
∫
Ω

‖µ(x)‖2ρR(x) dd x (5.7.3)
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5. Euclidean Matching Problems

for a map µ : Ω→ Rd. The previous functional provides a correct matching cost, Eq. (5.7.1), if,
and only if, a permutation σ ∈ PN exists such that

µ(ri) = bσ(i) − ri, ∀i = 1, . . . , N. (5.7.4)

This additional constraint implies∫
Ω

δ(d) (x− y− µ(y)) ρR(y) dd y = ρB(x). (5.7.5)

We can write down a partition function for our problem introducing a proper Lagrange multiplier
ϕ(x) to impose the constraint in Eq. (5.7.5):

Z(β) ∝
∫

[Dµ]
+i∞∫
−i∞

[Dϕ] e−βS[µ,ϕ], (5.7.6)

the optimal solution being recovered for β → +∞. The exponent in the functional integral is

S[µ, ϕ] := 1
2 C(2,Eb)[µ] +

∫
Ω

[ϕ(x)ρB(x)− ϕ(x + µ(x))ρR(x)] dd x

= 1
2 C(2,Eb)[µ]−

∫
Ω

[ϕ(x)%(x) + ρR(x)µ(x) · ∇ϕ(x)] dd x+ s[µ, ϕ], (5.7.7)

where s[µ, ϕ] = O
(
‖µ‖2ϕ

)
are higher order nonlinear terms in the fields obtained from the

Taylor series expansion of ϕ(x + µ) around µ = 0. We have introduced also

%(x) := ρR(x)− ρB(x). (5.7.8)

Observing that ρR(x) is almost surely zero everywhere on the boundary, the Euler–Lagrange
equations are

%(x) = ∇ · (ρR(x)µ(x))− δs[µ, ϕ]
δϕ(x) , (5.7.9a)

ρR(x)µ(x) = ρR(x)∇ϕ(x)− 1
2
δs[µ, ϕ]
δµ(x) . (5.7.9b)

In the limitN →∞ both ρR(x) and ρB(x) both converge (in weak sense) to ρ(x), and the optimal
field µo is trivially µo(x) ≡ 0 ∀x ∈ Ω. For N � 1 we expect that the relevant contribution
is given by small values of ‖µo‖ and the nonlinear terms in s are higher order corrections to the
leading quadratic terms. The saddle point equations simplify as

%(x) = ∇ · (ρ(x)µ(x)) , (5.7.10a)
µ(x) = ∇ϕ(x). (5.7.10b)

It is remarkable that Eq. (5.7.10b) reproduces the known result in measure theory that the trans-
port field is a gradient but, in our approach, this is specified as the gradient of the introduced
Lagrange multiplier. We impose Neumann boundary conditions

∇n(x)ϕ(x)
∣∣
x∈∂Ω ≡ ∇ϕ(x) · n(x)|x∈∂Ω = 0, (5.7.11)

where n(x) is the normal unit vector to the boundary in x ∈ ∂Ω. Indeed, this condition guarantees
that the shape of the boundary is not modified in the N →∞ limit. The potential ϕ is therefore
the solution of the following problem

∇ · [ρ(x)∇ϕ(x)] = %(x) (5.7.12)
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5.7. Functional approach to the quadratic rEb

on the domain Ω with boundary conditions given by Eq. (5.7.11). To solve Eq. (5.7.12), we
introduce the modified Green’s function Gρ(x,y) of the operator ∇ · [ρ(x)∇•] on Ω,

∇x · [ρ(x)∇xGρ(x,y)] = δ(d) (x− y)− 1
|Ω| , with ∂Gρ(x,y)

∂n(x)

∣∣∣∣
x∈∂Ω

= 0. (5.7.13)

In Eq. (5.7.13), |Ω| is the Lebesgue measure of Ω.
The expression for µo(x), solution of the saddle point equations, becomes

µo(x) =
∫
Ω

∇xGρ(x,y)%(y) dd y. (5.7.14)

Averaging over the disorder, we obtain easily the following two-point correlation function

C(x,y) := µo(x) · µo(y) =
∫∫

ΩN (x)×ΩN (y)

[
%(z)%(w)∇xGρ(x, z) · ∇yGρ(y,w)

]
dd z dd w

= 2
N

∫
ΩN (x,y)

[ρ(z)∇xGρ(x, z) · ∇yGρ(y, z)] dd z

− 2
N

∫∫
ΩN (x)×ΩN (y)

[ρ(z)ρ(w)∇xGρ(x, z) · ∇yGρ(y,w)] dd z dd w, (5.7.15)

We used the following general result

%(z)%(w) = 2ρ(z)
N

[
δ(d) (z−w)− ρ(w)

]
. (5.7.16)

We introduced also the following sets

ΩN (x) :={y ∈ Ω: ‖x− y‖ > αδN}, (5.7.17a)
ΩN (x,y) :={z ∈ Ω: ‖x− z‖ > αδN and ‖y− z‖ > αδN}, α ∈ R+. (5.7.17b)

Here δN is the scaling law in N of the average distance between two nearest neighbor points
randomly generated on Ω accordingly to ρ(x). In other words, we introduced a cut-off to take into
account the discrete original nature of the problem and avoid divergences. Observe that δN → 0
as N →∞. The results of the computation may depend upon the regularizing parameter α.
Eq. (5.7.15) provides a recipe for the calculation of the average optimal cost and for the corre-

lation function. In particular, in our approximation we have that

C
(2,rr)
N '

∫
Ω

C(x,x)ρ(x) dd x. (5.7.18)

If no regularization is required (α = 0) the previous expression simplifies and we obtain

C
(2,rr)
N,d ' 2

N

∫∫
Ω×Ω

ρ(x)
[
ρ(y)Gρ(x,y)− Gρ(x,x)

|Ω|

]
dd x dd y. (5.7.19)

For d = 1 the previous expression have a simpler form. Suppose that Ω = [a, b] ⊂ R, and a cer-
tain probability density distribution ρ(x) on Ω is given. In this case Eq. (5.7.15) and Eq. (5.7.18)
have the form

C(x, y) = 2
N

Φρ(min{x, y})− Φρ(x)Φρ(y)
ρ(x)ρ(y) , (5.7.20a)

C
(2,rr)
N,1 = 2

N

b∫
a

Φρ(x)(1− Φρ(x))
ρ(x) dx, (5.7.20b)

where we have introduced the cumulative function

Φρ(x) :=
x∫
a

ρ(ξ) d ξ. (5.7.21)

83



5. Euclidean Matching Problems

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

x

N
C

1

NC1(x, x)

NC1(x,−x)

0 0.5 1 1.5

·10−3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

·10−3

N−1

C
(2

,r
r
)

N
,1

Figure 5.7.1.: rEb on the real line with points generated using a semi-circle distribution, Eq. (5.7.23). On the left,
correlation function C(x, x) and C(x,−x) for N = 3000, obtained averaging over 5000 instances of the problem.
We compare with the theoretical predictions obtained from Eq. (5.7.20a). On the right, the average optimal cost
obtained averaging over 5000 instances. We compare with the theoretical prediction obtained from Eq. (5.7.20b),
presented in Eq. (5.7.24).

Matching problem on the interval As application of Eqs. (5.7.20), let us assume, for
example,

Ω ≡ [−1, 1] (5.7.22)
and a semicircle distribution on it,

ρ(x) = 2
√

1− x2

π
x ∈ [−1, 1], (5.7.23a)

Φρ(x) = 1 + x
√

1− x2 − arccosx
π

. (5.7.23b)

Applying Eqs. (5.7.20) we obtain immediately both the correlation function and the average
optimal cost. In particular,

C
(2,rr)
N,1 = 1

N

(
π2

6 −
5
8

)
+ o

(
1
N

)
. (5.7.24)

In Fig. 5.7.1 we compare the numerical results with the analytical predictions.
Observe also that Eq. (5.7.20a) provides the correct correlation function for the rEb on Ω ≡

[0, 1] with ρ(x) = θ(x)θ(1− x). We have

C1(x, y) =
{

2min{x,y}−xy
N (x, y) ∈ [0, 1]2

0 otherwise,
(5.7.25a)

C
(2,rr)
N,1 = 1

3N + o

(
1
N

)
. (5.7.25b)

Matching problem on the unit square Let us now consider the unit square,

Ω ≡ Ω2 = [0, 1]2, (5.7.26)
with uniform distribution, ρ(x) = 1. Using Eq. (5.7.15) we can compute C(x,y) as function of
the modified Green’s function of the Laplacian on the square with Neumann boundary condition
Gs(x,y). However, it can be seen that NC(x,x)→∞ for N →∞ and we need to regularize the
correlation function proceeding as in the case of the computation on the torus [9]. We eventually
obtain

C
(2,rr)
N,2 = lnN

2πN + c
(1)
2
N

+ o

(
1
N

)
. (5.7.27)
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Figure 5.7.2.: Eb on the square. The geometrical meaning of the variable r in Eq. (5.7.28) is also depicted.
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Figure 5.7.3.: Matching problem on the square. On the left, correlation function between points on the diagonals
of the square, see Eq. (5.7.28), obtained for N = 3000 and averaging over 2 · 104 instances. We compare with
our analytical prediction. On the right, we compare our theoretical prediction for the averagge optimal cost,
Eq. (5.7.27), with numerical results obtained averaging over 2 · 104 instances. In particular, the value of c(1)
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obtained by a fit procedure, obtaining c(1)

2 = 0.677(1).
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Figure 5.7.4.: Optimal gr Euclidean bipartite matching with N = 225 and p = 2 on the torus.

The leading term is exactly the same obtained for the rEb on the 2-dimensional torus. In Fig. 5.7.3
we plotted the numerical results for the average optimal cost, comparing with the prediction in
Eq. (5.7.27). Moreover, we compare also our numerical results with the theoretical prediction for
c2(r), defined as follows (see also Fig. 5.7.2)

xr := (r, r), yr := (r, 1− r), c2(r) := NC2(xr,yr). (5.7.28)

Matching problem on the flat hypertorus Finally, let us consider Ω ≡ Td := Rd/Zd.
We can restate the results above for this case simply substituting the Neumann boundary conditions
in Eq. (5.7.12) and Eq. (5.7.13) with periodic boundary conditions. The Euclidean distance
between the points x = (xi)i=1,...,d and y = (yi)i=1,...,d in Ω must be understood as the geodetic
distance on the flat hypertorus. Assuming uniform distribution, ρ(x) = 1, and δN = 0, we obtain
our previous results

C(x,y) = − 2
N
Gd(x− y), C

(2,rr)
N,d = − 2

N
Gd(0), (5.7.29)

where, as above, Gd(x) is the Green’s function of the Laplacian on Td. As we know, the quantity
Gd(0) is divergent for d ≥ 2, but a proper regularization can be performed, as already explained.
We therefore completely recover our results in Section 5.5.
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Chapter 6

Conclusions and perspectives

In this thesis we discussed many variants of the random (or stochastic) Euclidean matching problem,
a matching problem between points randomly generated on a certain Euclidean domain. We
supposed the cost of the matching depending on the Euclidean distances of the matched points
only. In particular, we tried to evaluate the average optimal cost of the optimal matching. We
introduced also the concept of correlation function for the optimal matching, a quantity that,
in this optimization problem, is meaningful because of the underlying Euclidean support. We
investigated both these quantities (average optimal cost and correlation function) with different
methods, inspired by very different research area of mathematics and physics. We stressed the
inspiring analogy between some currently hot research topics in measure theory and recent results
in statistical physics and theory of optimization problems. In some specific cases, we were able
to obtain closed formulas for the average optimal cost or its finite size corrections, and we gave a
general recipe for the evaluation of the cost and the correlation function in full generality in the
quadratic case. Finally, we were able to find a very interesting connection between the solution of
the problem with convex costs in d = 1 and the Brownian bridge process. In this sense, the theory
of stochastic processes plays also an important role in the study of the random Euclidean bipartite
matching problem.
There are still many open problems related to the random Euclidean matching problem that

deserve a careful investigation.
A first observation is that many obtained results are not, strictly speaking, rigorous from the

mathematical point of view, despite the fact that an excellent agreement with the numerical sim-
ulations was found. A rigorous derivation of our results, therefore, can be a quite important and
challenging project for further research on this topic.
Another important task is a better evaluation of the corrections to the mean field contributions

in the replica approach sketched in Section 5.3. Indeed, we presented the computation for the
polygonal contribution, but a more general solution is required, in particular taking care of the
delicate zero temperature limit, to obtain a better approximation of the average optimal cost.
Finally, the study performed in the Chapter 5 concerns the random Euclidean matching problem

with convex cost functions. The concave case is an elusive problem, and, even in one dimension,
our approaches fail. The properties of the optimal matching in the concave problem, and the
possible correspondence with a different stochastic process in one dimension, deserve, without any
doubt, a deeper investigation.
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Appendix A

Additional classical results on glasses

A.1. Instability of the replica symmetric solution

A question that arises about the replica symmetric solution for the SK-model is if it is stable
respect to fluctuations. From a mathematical point of view, the solution is stable if the Hessian
matrix H(q) in Eq. (4.2.29) is positive definite in the replica symmetric solution in Eq. (4.2.33),
Qαβ = q. The simplest way to verify the stability is therefore by solving the eigenvalue problem

H(Q)η = λη, (A.1.1)

and verify that all eigenvalues are positive. This analysis was performed for the first time by
Almeida and Thouless [1]. We will not reproduce here all the steps of their computation, but we
will present only the main results. By direct computation we can obtain the following expression
for the Hessian matrix

H(αβ)(γδ) = δαγδβδ − β2Γ2 (〈σασβσγσδ〉
z
−
〈
σασβ

〉
z

〈
σγσδ

〉
z

)
. (A.1.2)

In other words, the structure of the Hessian matrix is the following

H(αβ)(αβ) = 1− β2Γ2
(

1−
〈
σασβ

〉2
z

)
≡ a, (A.1.3a)

H(αβ)(αγ) = −β2Γ2 (〈σβσγ〉
z
−
〈
σασβ

〉
z
〈σασγ〉z

)
≡ b, (A.1.3b)

H(αβ)(γδ) = −β2Γ2 (〈σασβσγσδ〉
z
−
〈
σασβ

〉
z

〈
σγσδ

〉
z

)
≡ c, (A.1.3c)

The Hessiam matrix has therefore a particular symmetric form of the type (here n = 4)
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. (A.1.4)

In the paramagnetic phase, being q = 0, a direct computation shows that b = c = 0 and a = 1,
so the solution is stable.
In the ferromagnetic phase, Almeida and Thouless [1] first assumed an eigenvector symmetric

under the exchange of replica indexes, i.e., in the form

ηαβ = η, ∀α, β. (A.1.5)
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Under this assumption, they found the following corresponding eigenvalue:

λ1 = 1− a− 4b+ 3c± |1− a+ 4b− 3c|
2 . (A.1.6)

They proved also that the eigenvalue λ2 obtained for the n− 1 eigenvectors in the form

ηαβ ≡ η0(δαθ + δβθ) + η1 (A.1.7)

for a certain θ (i.e., in each eigenvector one replica is “special”), is such that λ2
n→0−−−→ λ1. The

third eigenvalue λ3 is obtained assuming that there are two replicas, of indices ν, θ, such that

ηθν ≡ η1, ηθα = ηνα ≡ η2, ηαβ ≡ η3, ∀α, β. (A.1.8)

There are n(n−3)
2 eigenvectors in this form. Again, they proved that the corresponding eigenvalue

is
λ3 = a− 2b+ c. (A.1.9)

It can be seen that, for Qαβ ≡ q, λ1 = limn→0 λ2 is always positive. However

λ3 = a− 2b+ c > 0⇒ 1
β2Γ2 >

1√
2π

∫
e−w

2
2 sech2 (βΓ√qw + βh) dw. (A.1.10)

The previous inequality defines a region in the (β, h) space in which the replica symmetric solution
is unstable, corresponding to values (β, h) that violate the inequality. The curve obtained imposing
the equality is called Almeida–Thouless line (AT-line).

A.2. The TAP approach for glasses

A different but instructive approach to the study of the SK-model was proposed in 1977 by Thouless,
Anderson, and Palmer [5]. They obtained a set of equations for the local magnetisation in the SK-
model. Given a certain realisation of the SK-model, the free energy can be written as

− βF [β; h; J] := ln

∑
{σi}

exp

β∑
i 6=j

Jijσiσj + β
∑
i

hiσi

 . (A.2.1)

In the previous equation, we denoted by h := {hi}i=1,...,N a set of local magnetic field, and by
J := {Jij}ij the set of coupling constants. Note that here we suppose that the external magnetic
field depends on the site position. As known from the general theory, the local magnetisation
is given by mi := 〈σi〉 = −∂hiF , F free energy. Let us now perform a Legendre transform,
introducing

G[β; m; J] = max
h1,...,hN

[
F [β; h; J] +

∑
i

mihi

]
, (A.2.2)

where m := {mi}i. The new functional is a constrained free energy, in the form

− βG[β; m; J] = ln

∑
{σi}

exp

β∑
i 6=j

Jijσiσj + β
∑
i

hi(mi)(σi −mi)

 , (A.2.3)

where hi(mi) are such that 〈σi〉 = mi. Let us now expand the previous functional around β = 0
(infinite temperature). We obtain

− βG[β; m; J] =
N∑
i=1

[
1−mi

2 ln
(

1−mi

2

)
− 1 +mi

2 ln
(

1 +mi

2

)]
+ β

∑
ij

Jijmimj + β2

2
∑
ij

J2
ij(1−m2

i )(1−m2
j ) + o(β2). (A.2.4)
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Plefka [4] showed that, for the SK-model, the additional terms in o(β2) can be neglected in the
N → +∞. The minimum condition respect to mi, ∂miG = 0, gives the celebrated Thouless–
Anderson–Palmer equations (TAP-equations):

mi = tanh

β
∑
j 6=i

Jijmj + hi −mi

∑
j 6=i

J2
ijβ(1−mj)2

 (A.2.5)

In the previous expression an additional term appears respect to the equation for the mean field
magnetization in the Ising model (4.2.14), i.e. the so called Onsager reaction

hOi := −mi

∑
j 6=i

J2
ijβ(1−mj)2. (A.2.6)

This additional term is not negligible in the spin glass case due to the fact that Jij ∼ 1√
N

and not
Jij ∼ 1

N as in the ferromagnetic case.

A.3. The cavity method for spin glasses on a Bethe lattice

The cavity method was originally conceived for the analysis of the ground state of spin glasses on
particular lattices. In this Section, therefore, we start from this problem, to identify properly the
physics behind the algorithm that the method inspired, following the seminal paper of Mézard and
Parisi [3].
Let us first introduce the so called Bethe lattice. The Bethe lattice BkN = Graph(V; E) is a

random graph of N � 0 vertices with fixed connectivity k+ 1. For example, B2
N has the structure

The Bethe lattice BkN has cycles1 of typical length lnN , and therefore we expect that we can
consider the (k + 1)-Cayley tree as the limiting graph of a Bethe lattice BkN having N →∞.
We define now a spin model on the Bethe lattice, associating to each vertex vi ∈ Va spin variable

σi ∈ {−1, 1}, and to each edge (vi, vj) a random coupling Jij . In particular, we suppose that
{Jij}ij are identically and independently distributed random variables with a certain probability
distribution density ρ(J). The spin glass Hamiltonian is simply

HBk
N

[σ; J] = −
∑
〈ij〉

Jijσiσj . (A.3.1)

To find the global ground state (ggs) energy CN of the system, we benefit of the tree-like structure
of the graph. Indeed, let us consider a new graph GkN,q ⊆ BkN obtained from BkN decreasing the
degree of q > k spins {σ1, . . . , σq} from k+1 to k. This spins are called cavity spins and surround
a “cavity” in the graph. For example, G2

N,5 has the shape

1Note that in the literature it is common to identify a Bethe lattice with a Cayley tree, that indeed it is a tree
with no cycles.
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σ1

σ2

σ3 σ4

σ5

We suppose now the values of these spins σ1, . . . , σq fixed and that the ggs energy of this new
system, let us call it CN (σ1, . . . , σq), is related to the old one in the following way

CN (σ1, . . . , σq)− CN =
q∑
i=1

hiσi, (A.3.2)

for a proper set {hi}i=1,...,q of local cavity fields. Due to the random nature of the system, we
assume that {hi}i are i.i.d. random variables as well, with distribution %(h). Now suppose that
a new spin σ0 is added to the lattice and coupled to k cavity spins σ1, . . . , σk by J1, . . . , Jk
respectively,

σ1

σ2

σ3 σ4

σ5
σ0

We fix the value of σ0 and change the value of σ1, . . . , σk in such a way that the new ggs energy
is minimized. The energy εi of each link (σi, σ0) is minimized taking

εi = min
σi

[(−hi − Jiσ0)σi] =: −a(Ji, hi)− σ0b(Ji, hi). (A.3.3)

In this notation, it is clear that the final cavity field on σ0 is

h0 =
k∑
i=1

b(Ji, hi). (A.3.4)

It follows that the recursion relation

%(h) =
k∏
i=1

(∫
%(hi) dhi

)
δ

(
h−

k∑
i=1

b(Ji, hi)
)

(A.3.5)
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References

holds. Suppose now that we are able to solve the previous equation for %. Then, denoting by δε1
the energy shift of the ggs due to a site addition, we have

δε10 = −
k+1∏
i=1

(∫
%(hi) dhi

)k+1∑
j=1

a(Jj , hj) +

∣∣∣∣∣∣
k+1∑
j=1

b(Jj , hj)

∣∣∣∣∣∣
. (A.3.6)

Let us consider back the graph GkN,q and let us add, this time, an edge, e.g. connecting σ1 and σ2,

σ1

σ2

σ3 σ4

σ5

Again, the energy shift of the ggs δε2 due to the addition of an edge can be written as

δε2 = −
2∏
i=1

(∫
%(hi) dhi

)
max
σ1,σ2

(h1σ1 + h2σ2 + J12σ1σ2). (A.3.7)

We have now two expression for the shifts in energy due to local alterations of the graph, a vertex
addition and an edge addition. The importance of these to quantities is due to the fact that Mézard
and Parisi [2] proved that

lim
N→∞

CN

N
= δε1 − k + 1

2 δε2. (A.3.8)

Note that the tree-like structure of the Bethe lattice plays a fundamental role in the derivation of
the equations above, allowing us to write recursive relations. The cavity method suggests that, at
least on a tree-like graph, we can obtain information about the ground state evaluating the shift
in energy after a local modification of the graph and writing down proper self-consistent equations
for the distributions of the random quantities. The method, in the formulation presented here,
works however only in the replica symmetric hypothesis. In other words, we assume that there are
no local ground states, i.e., local minima in energy whose corresponding configurations can be
obtained from the global minimum ones only by an infinite number of spin flips. This eventuality
is not so rare and, in this case, it might be necessary to break the replica symmetry to correctly
reproduce the ggs energy.
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Appendix B

The Wiener process and
the Brownian bridge process

In the present Appendix we will introduce some fundamental properties of the Wiener process and
of the Brownian bridge process. Excellent books on the subject are available in the literature (see,
for example, the book of Rogers and Williams [5] or the monograph of Mörters and Peres [3]).
Here we summarize the main properties, presenting also some useful probability distributions for
the Wiener process and the Brownian bridge process.

B.1. Wiener process and Brownian bridge process

Let us suppose that Ω is the sample space of the process and that F corresponds to the set of
events, σ-algebra over Ω. Recall that a σ-algebra on a certain set A is a collection Σ of subset of
A such that A ∈ Σ, a ∈ Σ ⇒ A \ a ∈ Σ and a, b ∈ Σ ⇒ a ∪ b ∈ Σ. If C is a set of subsets of
A, then σ(C) is the smallest σ-algebra on A containing C. Let us suppose also that a probability
P : F→ R+ is given on the space of events. In this space, we denote by E(•) the expected value
of a certain quantity f : Ω→ R,

E(f) :=
∫
Ω

P(ω)f(ω) dω. (B.1.1)

Similarly, if G⊂ F is a sub σ-algebra of F, E(f |G) :=
∫
Ω
f(ω)P(ω|G) dω.

A Wiener process W, or standard Brownian process W : R+ → R on this probability space
is such that

• ∀ω ∈ Ω W(0) = 0, i.e., any realization of the process starts in the origin;

• the map t→W(t) is continuous ∀t ∈ R+ and ∀ω ∈ Ω;

• ∀t, τ ∈ R+ the increment W(t+ τ)−W(t) is independent from W(u), u ∈ [0, t];

• the increment W(t + τ) −W(t), ∀t, τ ∈ R+, is normally distributed with zero mean and
variance τ .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.05

0

t

W
(t)

Figure B.1.1.: A realization of a Wiener process.
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Figure B.1.2.: A realization of a Brownian bridge process.

This set of properties uniquely identifies the Wiener process: it can be proved that such a pro-
cess exists. A Wiener process can be introduced also using different probabilistic terminologies
connected to its main properties that follow directly from the definition.

Definition B.1.1 (Gaussian process). A Gaussian process is a certain stochastic process
X(t) : T ⊆ R→ R such that, given a set of n element {t1, . . . , tn} ∈ T , the joint distribution
of (X(t1), . . . ,X(tn)) is a multivariate Gaussian distribution. It follows that we have to
specify only the mean µ(t) := E(X(t)) and the covariance E (X(t)X(t′)).
TheWiener process is a Gaussian process with mean E(W(t)) = 0 and covariance E (W(t)W(t′)) =

min{t, t′}. Most importantly, if a continuous process satisfies the previous relations, it is a Wiener
process.

Definition B.1.2 (Martingale). Let us consider a probability space (Ω,F,P) as above.
We say that a family {Ft : t ∈ R+}, sub σ-algebras of F, is a filtration if, for s < t,

Fs ⊆ Ft ⊆ σ

(⋃
τ

Fτ

)
⊆ F, (B.1.2)

A certain process X(t), t ∈ R+ on our probability space is said to be adapted to the filtration
if X(t) is measurable on Ft. Given an adapted process such that E (X(t)) < +∞ ∀t and
E (X(t)|Fs) = X(s) for s < t almost surely, then the process is called martingale.
The Wiener process is a martingale, due to the fact that, denoting by Ws := σ ({W(τ) : τ ≤ s})

the filtration of the probability space, E (W(t)−W(s)|Ws) = 0 ⇒ E (X(t)|Ws) = X(s) directly
from the defining properties of the Wiener process.

Definition B.1.3 (Markov process). An adapted process X(t), t ∈ R+, with filtration
{Fs}s∈R+ , is Markov process if there exists a Markov kernel pX(τ,X(s), A) for A open
subset of R, such that

Pr (X(t) ∈ A|Fs) = pX(t− s,X(s), A). (B.1.3)

The Wiener process is a Markov process, having

pW(τ, y, (x, x+ dx)) = 1√
2πτ

exp
(
− (x− y)2

2τ

)
dx =: ρ(x− y; τ) dx. (B.1.4)

It is well known that the probability density ρ(x, τ) is the fundamental solution of the heat equation

∂tρ(x, t) = 1
2∂

2
xρ(x, t), (B.1.5)

obtained by Einstein in his celebrated work on Brownian diffusion.
A stochastic process strictly related to the Wiener process is the Brownian bridge process. A

Brownian bridge B(t) is a Gaussian process on the unit interval [0, 1] such that E(B(t)) = 0 and
E(B(s)B(t)) = min{s, t}− st. It can be written in terms of a Wiener process on the unit interval
as

B(t) := W(t)− tW(1), t ∈ [0, 1]. (B.1.6)
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It can be proved that the previous process can be obtained simply conditioning a Wiener process
to be equal to zero for t = 1. We can introduce also the Gaussian stochastic process

B(−1)(t) :=
t∫

0

B(s) d s, t ∈ [0, 1]. (B.1.7)

It is easily proved that

E
(

B(−1)(t)
)

= 0, E
([

B(−1)(1)
]2)

= 1
12 . (B.1.8)

Finally, the zero-area Brownian bridge can be defined as

B0(t) = B(t)− B(−1)(1). (B.1.9)

The previous process has

E
(
B0(t)

)
= 0, E

(
B0(s)B0(t)

)
= 1

2

(
|s− t| − 1

2

)2
− 1

24 . (B.1.10)

B.2. Probability distributions

Many mathematical results are available for the probability distributions of some interesting quan-
tities related to the Wiener process or the Brownian bridge process on the unit interval. We collect
here some of these results, without proving them (for further details and more general results, see
the detailed paper of Beghin and Orsingher [1]). The probability analysis performed is usually car-
ried on through the so-called reflection principle. Using the reflection principle, it can be proved
that

Pr
(

sup
τ∈(0,t)

W(τ) > W

)
= 2

∞∫
W

e− z
2

2t
√

2πt
d z. (B.2.1)

Similarly we have

Pr
(

sup
τ∈(0,t)

W(τ) > W |W(t) = w

)
=
{

exp
(
− 2W (W−w)

t

)
W > w,

1 W < w.
(B.2.2)

It follows that, if w = 0 and t = 1 we have the probability distribution for the sup of the Brownian
bridge process,

Pr
(

sup
τ∈(0,1)

B(τ) > B

)
= e−2B2

. (B.2.3)

For the absolute value of the Wiener process we have that

Pr
(

sup
τ∈(0,t)

|W(τ)| < W |W(t) = w

)
=
∑
k∈Z

(−1)k exp
(
−2kW (kW − w)

t

)
. (B.2.4)

For w = 0 and t = 1 we have

Pr
(

sup
τ∈(0,1)

|B(τ)| < B

)
=
∑
k∈Z

(−1)k exp
(
−2k2B2) . (B.2.5)

Darling [2] proved that for the zero-area Brownian bridge the following distribution holds:

Pr
(
B0(t) < B

)
= 4
√
π

3

∞∑
n=1

1
αn

ψ

(√
8B

3αn

)
, B > 0, (B.2.6)

where 0 < α1 < · · · < αn < . . . are the zeros of the combination of Bessel functions

f(α) := J 1
3
(α) + J− 1

3
(α), (B.2.7)
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whilst ψ(x) is the solution of the following integral equation:

∞∫
0

e−λx ψ(x) dx = e−λ
2
3 . (B.2.8)

The theorem of Darling is not trivial at all, both in the derivation and in the final result. The
explicit treatment of the probability distribution density is indeed quite involved. More implicit
results on the Laplace transform of the probability distribution of B(−1) have been obtained by
Perman and Wellner [4], but we do not present them here.
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