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1. Introduction

In the last twenty years, after the first article by Bak, Tang and Wiesenfeld [1] on Self-
Organized criticality (SOC), a large amount of work has been done trying to better
understand different features of this class of models. The most studied among them is
the Abelian Sandpile Model (ASM), that was actually proposed as first archetype of SOC
in [1], and the attention has been focused mainly on the comprehension of the critical
properties, in particular the determination of the critical exponents of the avalanches.
During my PhD I worked on the Abelian Sandpile Model using unconventional approaches
and focusing on not-standard features of the model, related with the pattern formation
that can be seen in the evolution of particularly chosen configurations under deterministic
conditions, that happened to catch the attention of the scientific community only in the
last few years.

1.1 Shape formation in cellular automata

Since the appearance of the masterpiece by D’Arcy [2], there have been many attempts
to understand the complexity and variety of shapes appearing in Nature at macroscopic
scales, in terms of the fundamental laws which govern the dynamics at microscopic level.
Because of the second law of thermodynamics, the necessary self-organization can emerge
only in non-equilibrium statistical mechanics.

In the context of a continuous evolution in a differential manifold, the definition of
a shape implies a boundary and thus a discontinuity. This explains why catastrophe
theory, the mathematical treatment of continuous actions producing a discontinuous re-
sult, has been developed in strict connection to the problem of Morphogenesis [3]. More
quantitative results, and modelisations in terms of microscopic dynamics, have been
obtained by the introduction of stochasticity, as for example in the diffusion-limited ag-
gregation [4, 5, 6, 7], where self-similar patterns with fractal scaling dimension emerge [8],
which suggest a relation with scaling studies in non-equilibrium.

Cellular automata, that is, dynamical systems with discretized time, space and inter-
nal states, were originally introduced by Ulam and von Neumann in the 1940s, and then
commonly used as a simplified description of non-equilibrium phenomena like crystal
growth, Navier-Stokes equations and transport processes [9]. They often exhibit intrigu-
ing patterns and, in this regular discrete setting, shapes refer to sharply bounded regions
in which periodic patterns appear. Despite very simple local evolution rules, very com-
plex structures can be generated, and a scale unrelated to the lattice discretization can
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be produced spontaneously by the system evolution. The well-known Conway’s Game of
Life, which can even emulate an universal Turing machine, is an example of this emerg-
ing complexity, but a detailed characterization of such structures is usually not easy
(see [10, 11], also for a historical introduction on cellular automata).

Cellular automata are defined through a set of configurations and an intrinsic evo-
lution law, and a given automaton may be studied under different evolution dynamics.
These dynamics may be roughly divided into two classes: stochastic and deterministic
ones. As emphasized above, it is the ingredient of stochasticity that, in parallel to what
emerges in critical phenomena for non-equilibrium statistical mechanics, suggests the
possibility of obtaining probability laws which are “scale-free”, that is, in which correla-
tions among different spatially-separated parts do not decrease exponentially, at a scale
related to the lattice discretization, but instead have an algebraic decay.

In equilibrium statistical mechanics, we expect criticality only at a fine-tuned value of
a thermodynamic parameter (e.g., the temperature), if we have spontaneous symmetry
breaking of a discrete group, and criticality for a subset of the degrees of freedom, in
the whole ordered phase, if we have a continuous group and Goldstone bosons. In non-
equilibrium systems the theoretical picture is less clear. Apparently, the non-equilibrium
ingredient has often the tendency of increasing the scale-free region of parameters, or even
automatically set the system in a scale-free point, without tuning of parameters, possibly
by making all the “mass” operators irrelevant under the flow of the Renormalization
Group (while, for equilibrium systems having a “magnetic” order parameter m, the
temperature T and external field h always correspond to relevant operators). Such a
feature is called Self-Organized Criticality.

A further feature of lattice automata is the possibility of producing allometry, that is
a growth uniform and constant in all the parts of a pattern as to keep the whole shape
substantially unchanged. Such a feature requires some coordination and communication
between different parts, and is thus at variance with diffusion-limited aggregation and
other models of growing objects studied in physics literature so far, e.g. the Eden model,
KPZ deposition and invasion-percolation [12, 13, 14], which are mainly models of aggre-
gation, where growth occurs by accretion on the surface of the object, and inner parts
do not evolve significantly. The lattice automaton discussed in [15], where this feature
is discussed and outlined very clearly through an explicit model realization, is indeed a
variant of the Abelian Sandpile Model, the general class of models that we will investigate
in this thesis.

Another distinguished property of automata is that allometry emerges from a deter-
ministic dynamics of the automaton, and thus we do not have a theoretical explanation in
terms of stochastic processes, and steady-state distributions solving the master equation
associated to a Markov chain. The theoretical approach followed in [15] is to investi-
gate, at a coarse-grained level, the properties of what we may call a discrete-valued Heat
Equation, strictly related to the intrinsic evolution law of the automaton (and not to the
dynamics).

While the ordinary massless Heat Equation, formally solved within the realm of linear
algebra, is automatically scale-free, the discretization in target space, and its counterpart,
which is allowing for a tolerance offset in the resulting vector, produces a non-linearity.
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It is the interplay of these two ingredients that ultimately allows to have non-trivial
shapes (through the non-trivial effects of non-linearity), on extended regions (through
the absence of scale caused by the linear Heat Equation at leading order).

This phenomenology — of introducing a “small” non-linearity, through discretization,
in a classical real-valued scale-free equation, and analyzing the possible emergence of
morphogenesis — has a possibility of being realized in other models besides the Abelian
Sandpile. Note however a subtlety here: in order to have a well-posed problem, it is
crucial to find a discretization that preserves the unicity of the solution. In the case
of the ASM, this relies on a non-trivial property of the model, namely, the unicity of
the relaxation process, and ultimately the “abelianity” of the sandpile, that allows to
perform a single relaxation in place of a sequence of maps in a non-commutative monoid,
as is the case for a generic automaton.

1.2 The many faces of the Abelian Sandpile Model

As anticipated in the first paragraph, in this thesis we will concentrate on a particularly
simple cellular automaton, the Abelian Sandpile Model (ASM). This model, now existing
since about 20 years, was first proposed by Bak, Tang and Wiesenfeld in [1]. It has
shown to be ubiquitous, as a toy model for a variety of features in Physics, Mathematics
and Computer Science, including but not restricted to the ones described in the section
above.

As all cellular automata, it has an intrinsic evolution law, and may be studied un-
der different dynamics. These dynamics may be roughly divided into stochastic and
deterministic ones. Thus we address explicit studies of the ASM under stochastic or
deterministic dynamics as the Stochastic Abelian Sandpile and the Deterministic Abelian
Sandpile respectively. We will give particular importance to the deterministic dynam-
ics in the sandpile, although some particular stochastic dynamics will be part of the
discussion.

The Stochastic Abelian Sandpile has been the first variant studied in physics litera-
ture. It is in this framework that it was proposed in the work of Bak, Tang and Wiesenfeld
as first example of a model showing SOC1 in 1987 because it shows scaling laws with-
out any fine-tuning of an external control parameter. this article has truly triggered
an avalanche. Indeed a huge number of articles has been published on SOC, the BTW
article alone collected 1924 citations2. With the aim of determine the critical exponents
of the model a great work has been done collecting statistics of the model under stochas-
tic evolution, see [17]. Just a few years later,thanks to the work of Dhar, the algebraic
properties of the sandpile were pointed out in [18, 19], where he first elucidated the group
structure underlying the model, that allows to determine the statistic of the Recurrent
configurations of the model, that happens to be uniform. In a subsequent work together
in collaboration with Ruelle et.al. [20] Dhar dealt in deep with the algebraic aspects of

1A good introductory reading on Self Organized Criticality is the book How nature works[16] by Bak,
which underlines the ubiquitous of SOC in nature, social sciences, economics and many other fields.

2Citations data at the 17th November 2011 as counted on the http://prl.aps.org

http://prl.aps.org
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the sandpile, introducing some useful methods to determine the Smith normal form of
the group.

The model was then studied by Creutz [21, 22], he was the first “looking” at the
configurations and thus noting the particular and interesting shapes emerging in the
identity configuration. He observed in particular how this configuration seemed to display
self-similarity and a fractal structure [23, 24].

Afterwards the height correlation of the model has been widely studied in a number
of papers [25, 26, 27]. A connection with conformal Field theory came first when the
equivalence of the ASM with the q → 0 limit of the q-state Potts Model was established
[28]; thus two-dimensional ASM corresponds to a conformal field theory with central
charge c = −2. This equivalence gives also a Monte Carlo algorithm to generate random
spanning trees. Connections between ASM and the underlying CFT theory have been
further studied by Ruelle et.al. in [29, 30, 31, 32, 33] and then more recently in [34, 35,
36, 37].

The connection with uniform spanning trees and the Kirchhoff theorem explains a
posteriori the arising of self-organized criticality, i.e. the appearance of long-range be-
havior with no need of tuning any parameter. Indeed, uniform spanning trees on reg-
ular 2-dimensional lattices are a c = −2 logarithmic Conformal Field Theory (CFT) in
[30], and have no parameter at all, being a peculiar limit q → 0 of the Potts model in
Fortuin-Kasteleyn formulation [38], or a limit of zero curvature in the OSP(1|2) non-
linear σ-model [39]. If instead one considers the larger ensemble of spanning forests, in
a parameter t counting the components (or describing the curvature of the OSP(1|2)
supersphere), the theory in two dimensions is scale-invariant for three values: at t = 0
(the spanning trees, or the endpoint of the ferromagnetic critical line of Potts), at the
infinite-temperature point t = ∞, and at some non-universal negative t corresponding
to the endpoint of the anti-ferromagnetic critical line of Potts, being tc = −1/4 on the
square lattice. Through the correspondence with the non-linear σ-model, one can deduce
at a perturbative level that the system is asymptotically free at t = 0+, i.e. that the
“coarse-graining” of a system with parameter t > 0, by a given scale factor Λ, “looks
like” a system at parameter t′ > t, but the functional dependence of ln

(
t′(t; Λ)/t

)
is only

quadratic in t for t→ 0, instead of linear, as in the generic case [39, 40].

The Deterministic Abelian Sandpile Model, especially at earlier times, has been stud-
ied in Mathematics and computer-science literature under the name of Chip-Firing Game
[41, 42]. A particularly interesting result of chip-firing game in connection with tutte
polynomials has been obtained by Merino in [43], allowing to determine properties of the
recurrent configurations of the model.

1.3 Overview

As anticipated in section 1.1, in this thesis we want to study the ASM in connection
with its capability to produce interesting patterns. it is a surprising example of model
that shows the emergence of patterns but maintains the property of being analytically
tractable. Then it is qualitatively different from other typical growth models –like Eden
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model, the diffusion limit aggregation, or the surface deposition [13, 4, 14]– indeed while
in these models the growth of the patterns is confined on the surfaces and the inner
structures, once formed, are frozen and do not evolve anymore, in the ASM the patterns
formed grow in size but at the same time the internal structures aquire structure, as it
has been noted in [15, 44, 45, 46].

There have been several earlier studies of the spatial patterns in sandpile models.
The first of them was by Liu et.al. [47]. The asymptotic shape of the boundaries of the
patterns produced in centrally seeded sandpile model on different periodic backgrounds
was discussed in [48]. Borgne et.al. [49] obtained bounds on the rate of growth of
these boundaries, and later these bounds were improved by Fey et.al. [50] and Levine
et.al. [51]. An analysis of different periodic structures found in the patterns were first
carriedout by Ostojic [52] who also first noted the exact quadratic nature of the toppling
function within a patch. Wilson et.al. [53] have developed a very efficient algorithm to
generate patterns for a large numbers of particles added, which allows them to generate
pictures of patterns with N up to 226.

There are other models, which are related to the Abelian Sandpile Model, e.g., the
Internal Diffusion-Limited Aggregation (IDLA) [54], Eulerian walkers (also called the
rotor-router model) [55, 56, 57], and the infinitely-divisible sandpile [51], which also
show similar structure. For the IDLA, Gravner and Quastel showed that the asymptotic
shape of the growth pattern is related to the classical Stefan problem in hydrodynamics,
and determined the exact radius of the pattern with a single point source [58]. Levine
and Peres have studied patterns with multiple sources in these models, and proved the
existence of a limit shape[59]. Limiting shapes for the non-Abelian sandpile has recently
been studied by Fey et.al. [60].

The results of our investigation toward a comprehension of the patterns emerging in
the ASM are reported along the thesis.

In chapter 3 we will introduce some new algebraic operators, a†i and Πi in addition
to ai, over the space of the sandpile configurations, that will be in the following basic
ingredients in the creation of patterns in the sandpile. We derive some Temperley-Lieb
like relations they satisfy. At the end of the chapter we show how do they are closely
related to multitopplings and which consequences has that relation on the action of Πi

on recurrent configurations.

In chapter 4 we search for a closed formula to characterize the Identity configuration
of the ASM. At this scope we study the ASM on the square lattice, in different geometries,
and in a variant with directed edges, the F-lattice or pseudo-Manhattan lattice. Cylinders,
through their extra symmetry, allow an easy characterization of the identity which is a
homogeneous function. In the directed version, the pseudo-Manhattan lattice, we see a
remarkable exact self-similar structure at different sizes, which results in the possibility
to give a closed formula for the identity, this work has been published in [61]

In chapter 5 we reach the cardinal point of our study, here we present the theory
of strings and patches. The regions of a configuration periodic in space, called patches,
are the ingredients of pattern formation. In [15], a condition on the shape of patch
interfaces has been established, and proven at a coarse-grained level. We discuss how
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this result is strengthened by avoiding the coarsening, and describe the emerging fine-
level structures, including linear interfaces and rigid domain walls with a residual one-
dimensional translational invariance. These structures, that we shall call strings, are
macroscopically extended in their periodic direction, while showing thickness in a full
range of scales between the microscopic lattice spacing and the macroscopic volume size.
We first explore the relations among these objects and then we present full classification of
them, which leads to the construction and explanation of a Sierpíski triangular structure,
which displays patterns of all the possible patches.



2. The Abelian Sandpile Model.

The state of the art

It has been more than 20 years since Bak, Tang and Wiesenfeld’s landmark papers on
self-organized criticality (SOC) appeared [1]. The concept of self-organized criticality has
been invoked to describe a large variety of different systems. We shall describe the model
object of our interest: the Abelian Sandpile Model (ASM). The sandpile model was first
proposed as a paradigm of SOC and it is certainly the simplest, and best understood,
theoretical model of SOC: it is a non-equilibrium system, driven at a slow steady rate,
with local threshold relaxation rules, which shows in the steady state relaxation events
in bursts of a wide range of sizes, and long-range spatio-temporal correlations. The
ASM consists of a special subclass of the sandpile models that exhibits, in the way we
will discuss later, the mathematical structure of an abelian group, and its statistics is
connected to that of spanning trees on the relative graph. There are a number of review
articles on this subject, taking into account the connection of the model with the theme of
SOC and its inner mathematical properties: Dhar [62], Priezzhev [63] and Redig[64, 65].

Here we present a review of the Sandpile Model theory based on the material than can
be found therein with particular emphasis on mathematical aspects and on its stochastic
dynamics; some further development given by us complete the review. This material will
be necessary for the comprehension of the studies we discuss in the following chapters.

2.1 General properties

The ASM is defined as follows [18, 62]: we consider any (directed) graph G = (V,E)
with |V | = N and vertices labeled by integers i = 1, . . . , N , at each site we define a
nonnegative integer height variable zi, called the height of the sandpile, and a threshold
value z̄i ∈ N+. We define an allowed configuration of the sandpile as a set z ∈ NN

of integer heights z = {zi}i∈V such that zi ≥ 0 ∀i ∈ V ; an allowed configuration {zi}
is said to be stable if zi < z̄i ∀i ∈ V . Therefore the set S of stable configurations is
S =

⊗
i∈V {0, . . . , z̄i}. If we call S± ⊂ Zn the sets respectively such that zi ≥ 0 for all

i ∈ V , and zi < z̄i for all i ∈ V . Then S+ is te set of allowed configurations and is stable
if it is in S := S+ ∩ S−. The involution zi → z̄i − zi − 1 exchanges S+ and S−.

The stochastic time evolution of the sandpile is defined in term of the toppling matrix
∆ according to the following rules:
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1. Adding a particle: Select one of the sites randomly, the probability that the site
i is picked being some given value pi, and add a grain of sand there. Obviously∑

i pi = 1. On addition of the grain at site i, zi increases by 1, while the height at
the other sites remains unchanged.

2. Toppling : If for any site i it happens that zi ≥ z̄i, then the site is said to be
unstable, it topples, and lose some sand grains to other sites. This sand grain’s
transfer is defined in terms of an N ×N integer valued toppling matrix ∆, which
properties will be specified in (2.2). On toppling at site i, the configuration z is
updated globally according to the rule:

zj → zj −∆ij ∀j ∈ V (2.1)

If the toppling results in some other sites becoming unstable, they are also toppled
simultaneously (it will be clear in the following that the order of toppling is unim-
portant). The process continues until all sites become stable1 (we will see later
under which conditions on the set of threshold values and ∆ the final stability is
guaranteed)

At each time step of the stochastic evolution, we first add a particle, as specified in rule 1,
then we relax the configuration, that means to perform the necessary topplings to reach
a stable configuration as stated in rule 2.

The toppling matrix ∆ has the following properties:

∆ii > 0, ∀i ∈ V (2.2a)

∆ij ≤ 0, ∀i 6= j (2.2b)

b−i :=
∑

j

∆ij ≥ 0, ∀i (2.2c)

For future convenience we also define the integers

b+i :=
∑

j∈V

∆T
ij ≥ 0 (2.3)

for any vertex i.
We will adopt a vector notation for the collection of elements ~∆i = {∆ij}j=1,...,N .

With this notation it is possible to rewrite the toppling rule (2.1) for the toppling at site
i as

z → z − ~∆i (2.4)

These conditions just ensure that on toppling at site i, zi must decrease, height at
other sites j can only increase and there is no creation of sand in the toppling process.
In some sites could be possible to lose some sand during a toppling.

If the graph G is undirected, the toppling matrix ∆ is symmetric and b−i = b+i = bi.

1this process will be called an avalanche
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Figure 2.1 A graphical representation of the general ASM. Each node denotes
a site. On topplings at any site, one particle is transferred along each arrow
directed outward from the site, each arrow corresponding to a unit in −∆ij .

The graph, in general directed and with multiple edges, is thus identified by the
non-diagonal part of −∆, seen as an adjacency matrix, while the non-zero values b±i are
regarded as (in- or out-coming) connections to the border, and the sites i with nonzero
b±i are said to be on the border, see fig. 2.1. In particular, b−i is the total sand lost in the
toppling process on i, so that, pictorially, we can think of this lost sand as dropping out
of some boundary. Clearly, in the formulation on an arbitrary graph, as presented here,
this concept of boundary does not need to correspond to any geometrical structure. We
note that no stationary state of the sandpile is possible unless the particles can leave the
system.

As an example, the original BTW model [1] is defined on an undirected graph which
is a rectangular domain of the Z2 lattice. We have in this case

∆ij =





+4 if i = j
−1 if i, j are nearest-neighbors

0 otherwise
(2.5)

In this case the connections with the border are given, on the sides of the rectangle, by
bi = 1, while on the corners by bi = 2. In this framework to be on the boundary (or in a
corner) has a direct correspondence with the geometrical structure of the lattice.

We assume, without loss of generality, that z̄i = ∆ii (this amounts to a particular
choice of the origin of the zi variables). Then we know that if a site i is stable, and the
initial conditions for the heights are zi(t = 0) ≥ 0 ∀i ∈ V , at all times the allowed values
for zi are the ones for which holds 0 ≤ zi < z̄i. This procedure define a Markov chain
on the space of stable configurations, with a given equilibrium measure. So running the
stochastic dynamics for long times, that means after a large amount of sand added, the
system reaches the stationary state.
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As stated in rule 2, if a configuration is unstable which is if there is at least a vertex
i where the configuration z has zi ≥ z̄i, the vertex i topples and the configuration z is
updated following the rule 2.4. The new configuration reached after a toppling at site i
is tiz = z − ~∆i, where we call ti the toppling operator at site i.

The collection of topplings needed to produce a stable configuration is called an
avalanche. We shall assume that an avalanche always stops after a finite number of
steps, which is to say that the diffusion is strictly dissipative. The size of avalanches can
be studied statistically for interesting graphs (e.g. for a partition of Z2). In many cases
of interest it seems to have a power law tail, which is signal of existence of long-range
correlations in the system, see [17].

We shall denote by R(z) the stable configuration obtained from the relaxation of the
configuration z, so R(z) ∈ S and

z ∈ S ⇔ z = R(z) . (2.6)

Given two configurations z and w we introduce the configuration z +w which has at
each vertex i the height zi+wi. Call e(i) the configuration which has non-vanishing height

only at the site i where it has height 1, that is e
(i)
j = δij . Of course each configuration z

can be obtained by deposing zi particles at the vertex i

zie
(i) = e(i) + e(i) + · · ·+ e(i)︸ ︷︷ ︸

zi

(2.7)

so that summing on every vertex i, this means

z =
∑

i∈V

zie
(i) . (2.8)

2.1.1 Abelian structure

Let âi be the operator which adds a particle at the vertex i

âiz := z + e(i) (2.9)

then if z is not stable at the vertex j,

tj âiz = âitjz (2.10)

is easily verified.
Let now ai be the addition of a particle at the vertex i followed by a sequence of

topplings which makes the configuration stable. The stable configuration

aiz = R(e(i) + z) (2.11)

is independent from the sequence of topplings, because topplings commute. Indeed, the
final configuration of a sequence of topplings does not depend from the order of unstable
vertices chosen for each intermediate toppling. For this reason the model is said to be
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abelian sandpile ASM. More precisely, if the configuration z is such that zi > z̄i and
zj > z̄j then

titjz = tjtiz (2.12)

can be easily verified. Let us consider an unstable configuration with two unstable sites
α and β, toppling first the site α leaves β unstable thanks to (2.2b), and, after the
toppling of β, we get a configuration in which z → z − (~∆α + ~∆β) this expression is
clearly symmetrical under exchange of α and β. Thus we get the same final configuration
irrespective of whether α or β is toppled first. By repeated use of this argument we see
that, in an avalanche, the same final state is reached irrespective of the sequence chosen
for the unstable sites to topple. similar reasoning apply for toppling of a site α followed
by addition of a sand grain in β, so this gives the same result of the reverse ordered
operation.

It is clear now that applying two operators ai and aj the configurations ajaiz and
aiajz coincide

aiajz = ajaiz = R(e(i) + e(j) + z) (2.13)

so that ai and aj do commute, or in other word

[ai, aj ] = 0 ∀i, j ∈ V (2.14)

Note that, while this property seems very general, it is not shared with most of the other
SOC models, even other sandpile models, for example when the toppling condition de-
pends on the gradient, in this case the order of toppling would matter, being the toppling
rule not local and dependent on the actual height’s values of the whole configuration.

Given two configurations z and z′ we define an abelian composition z⊕ z′ as the sum
of the local height variables, followed by a relaxation process

z ⊕ z′ = R(z + z′) =

(
∏

i∈V

azi

i

)
z′ =

(
∏

i∈V

a
z′i
i

)
z (2.15)

and thus, for a configuration z, we define multiplication by a positive integer k ∈ N:

k z = z ⊕ · · · ⊕ z︸ ︷︷ ︸
k

(2.16)

The operators ai’s have some interesting properties. For example, on a square lattice,
when 4 grains are added at a given site, this is forced to topple once and a grain is added
to each of his neighbors. Thus:

a4
j = aj1aj2aj3aj4 (2.17)

where j1, j2, j3, j4 are the nearest-neighbors of j.
In the general case one has, instead of (2.17),

a∆ii

i =
∏

j 6=i

a
−∆ij

j . (2.18)
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action of a1

action of a2

action of ai

action of aj

Figure 2.2 graphical representation of the combined action of ai and aj.

by definition, because if we add z̄i particles at the vertex i, after its toppling these
particles move on the nearest-neighbor vertices, and, since now on, the relaxation to
the stable configuration will be identical. Using the abelian property, in any product of
operators ai, we can collect together occurrences of the same operator , and using the
reduction rule (2.18), it is possible to reduce the power of ai to be always less than ∆ii.
The ai are therefore the generators of a finite abelian semi-group (in which the associative
property follow from their definition) subject to the relation (2.18); these relations define
completely the semi-group.

Let now consider the repeated action of some given operator ai on some configuration
C. Since the number of possible states is finite, the orbit of ai must close on itself, at
some stage, so that an+p

i C = ani C for some positive period p, and non negative integer n.
The first configuration that occurs twice in the orbit is not necessary C, so that the orbit
consists of a sequence of transient configurations, followed by a cycle. If this orbit does
not exhaust all configurations, we can take a configuration outside this orbit and repeat
the process. So the space of all configurations is broken up into disconnected parts, each
one containing one limit cycle.

Under the action of ai the transient configurations are unattainable once the system
has reached one of the periodic configurations. In principle the recurrent configurations
might still be reachable as a result of the action of some other operator, say aj , but
the abelian property implies that if C is a configuration part of one of the limit cycles
of ai, then so is ajC, in fact apiC = C implies that api ajC = aja

p
iC = ajC. Thus the

transient configurations with respect to an operator a1 are also transient with respect
to the other operators aj1, aj2 , . . . , and hence occur with zero probability in the steady
state. The abelian property thus implies that aj maps the cycles of ai into cycles of ai,
and moreover that all this cycles have the same period fig. 2.2. Repeating our previous
argument we can show that the action of aj on a cycle is finally closed on itself to yield
a torus, possibly with some transient cycles, which may be also discarded. Continuing
with the same arguments for the other cycles and other generators leads to the conclusion
that the set of all the configurations in the various cycles form a set of multi-dimensional
tori under the action of the a’s.

The configurations that belong to a cycle are said to be recurrent, and can be defined,
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if we allow addition of sand with non zero probability in any site (pi > 0 ∀i), as the
configurations reachable by any other configuration with addition of sand followed by
relaxation. We denote the set of all recurrent configurations as R.

Given the natural partial ordering, C 4 C ′ iff zi ≤ z′i for all i, then R is in a sense
“higher” than T , more precisely

∄ (C,C ′) ∈ T ×R : C ≻ C ′ ; (2.19)

∀C ∈ T ∃C ′ ∈ R : C ≺ C ′ . (2.20)

In particular, the maximally-filled configuration Cmax ≡ zmax = {z̄i − 1} is in R, and
higher than any other stable configuration.

2.2 The abelian group

The set R of recurrent configurations is special. Indeed in R it is possible to define the
inverse operator a−1

i for all i, as each configuration in a cycle has exactly one incoming
arrow corresponding to the operator ai. Thus the ai operators generate a group. The
action of the ai’s on the states correspond to translations of the torus. From the symmetry
of the torus under translations, it is clear that all recurrent states occur in the steady
state with the same probability.

This analysis, which is valid for every finite abelian group, leaves open the possibility
that some recurrent configurations are not reachable from each other, in which case there
would be some mutually disconnected tori. However, such a situation cannot happen if
we allow addition of sand at all sites with non zero probabilities (pi > 0 ∀i). Let us define
zmax as the configuration in which all sites have their maximal height, zi = ∆ii − 1 ∀i.
The configuration zmax is reachable from every other configuration, is therefore recurrent,
and since inverses ai’s exist for configurations in R, every configuration is reachable from
zmax implying that every configuration lie in the same torus.

Let G be the group generated by operators {ai}i=1,...,N . This is a finite group because
the operators ai’s, due to (2.18), satisfy the closure relation:

N∏

i=1

a
∆ji

i = I ∀i = 1, . . . , N (2.21)

the order of G, denoted as |G|, is equal to the number of recurrent configurations. This
is a consequence of the fact that if C and C ′ are any two recurrent configurations, then
there is an element g ∈ G such that C ′ = gC. We thus have:

|G| = |R| (2.22)

Given the group structure, the semi-group operation (2.15) is raised to a group op-
eration, in particular the composition of whatever z with the set R acts as a translation
on this toroidal geometry. A further consequence is that, for any recurrent configuration
z, the inverse configuration −z is defined, and k z is defined for k ∈ Z too.
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The identity of this abelian group, denoted by Id r, is called recurrent identity or
Creutz identity after Creutz first studies in [22, 21] and is the only stable recurrent
configuration such that

∀z ∈ R Id r ⊕ z = z (2.23)

2.3 The evolution operator and the steady state

We consider a vector space V whose basis vectors are the different configurations of R.
The state of the system at time t will be given by a vector

|P (t)〉 =
∑

C

Prob(C, t) |C〉 , (2.24)

where Prob(C, t) is the probability that the system is in the configuration C at time t.
The operators ai can be defined to act on the vector space V through their operation on
the basis vectors.

The time evolution is Markovian, and governed by the equation

|P (t+ 1)〉 = W |P (t)〉 (2.25)

where

W =

N∑

i=1

piai (2.26)

To solve the time evolution in general, we have to diagonalize the evolution operator
W . Being mutually commuting, the ai may be simultaneously diagonalized, and this
also diagonalizes W . Let |{φ}〉 be the simultaneous eigenvector of {ai}, with eigenvalues
{eiφi}, for i = 1, . . . N . Then

ai
∣∣{φ}

〉
= eiφi

∣∣{φ}
〉

∀i = 1, . . . , N. (2.27)

We recall that the a operators now satisfy the relation (2.21). Applying the l.h.s. of
this relation to the eigenvector |{φ}〉 gives exp(i

∑
j ∆kjφj) = 1, for every k, so that∑

j ∆kjφj = 2πmk, or inverting,

φj = 2π
∑

k

[
∆−1

]
jk
mk , (2.28)

where ∆−1 is the inverse of ∆, and the mk’s are arbitrary integers.
The particular eigenstate |{0}〉 (φj = 0 for all j) is invariant under the action of all

the a’s, ai |{0}〉 = |{0}〉. Thus |{0}〉 must be the stationary state of the system since

∑

i

piai |{0}〉 =
∑

i

pi |{0}〉 = |{0}〉 . (2.29)

We now see explicitly that the steady state is independent of the values of the pi’s
and that in the steady state, all recurrent configurations occur with equal probability.
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2.4 Recurrent and transient configurations

Given a stable configuration of the sandpile, how can we distinguish between transient
and recurrent configurations? A first observation is that there are some forbidden sub-
configuration that can never be created by addiction of sand and relaxation, if not already
present in the initial state. The simplest example on the square lattice case is a config-
uration with two adjacent sites of height 0, 0 0 . Since zi ≥ 0, a site of height 0 can
only be created as a result of toppling at one of the two sites (toppling from anywhere
else can only increase his height). But a toppling of either of this sites results in a height
of at least 1 in the other. Thus any configuration which contains two adjacent 0’s is
transient. With the same argument it is easy to prove that the following configurations
can never appear in a recurrent configuration:

0

0

0             0                                 0             1             0                       0             3             0

Figure 2.3 Examples of forbidden subconfigurations

In general a forbidden subconfiguration (FSC) is a set F of r sites (r ≥ 1), such that
the height zj of each site j in F is less of the number of neighbors than j in F , precisely:

zi <
∑

j∈Fr{i}

(−∆ij) ∀i ∈ F (2.30)

The proof of this assertion is by induction on the number of sites in F . For example the
creation of the 0 1 0 subconfiguration must involve toppling at one of end sites,

but then the subconfiguration must have had a 0 0 before the toppling, and this was
shown before to be forbidden.

An interesting consequence of the existence of forbidden configurations is the follow-
ing: consider an ASM on an undirected graph, with Nb bonds between sites, then in any
recurrent configuration the number of sand grains is greater or equal to Nb. Here we do
not count the boundary bonds, corresponding to particles leaving the system. To prove
this, we note that if the inequality is not true for any configuration, it must have a FSC
in it.

2.4.1 The multiplication by identity test

Consider the product over sites i of equations (2.17)

∏

i

a∆ii

i =
∏

i

∏

j 6=i

a
−∆ij

j =
∏

i

a
−

P

j 6=i ∆ji

i (2.31)
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On the set R, the inverses of the formal operators ai are defined, so that we can simplify
common factors in (2.31), recognize the expression for b+i , and get

∏

i

a
b+i
i = I (2.32)

so that
∏
i a
b+i
i z = z is a necessary condition for z to be recurrent (but it is also suffi-

cient, as no transient configuration is found twice in the same realization of the Markov
chain), and goes under the name of identity test. If we denote by b+ the configuration

b+ =
∑

i∈V

b+i e
(i) (2.33)

the identity test means that
z ∈ R⇔ z = z ⊕ b+ (2.34)

In the next section we will see how to obtain the same result in an easier and faster way,
without actually perform the composition.

This relation gives information also on the recurrent identity itself. Indeed it says
that if b+ ∈ R then b+ = Id r. Otherwise there must be a positive integer ksuch that

∀ℓ ∈ N : ℓ ≥ k b+ ⊕ b+ ⊕ · · · ⊕ b+︸ ︷︷ ︸
ℓ

= Id r (2.35)

then
Id r = kb+. (2.36)

2.4.2 Burning test

There is a simple recursive procedure to discover if a configuration is recurrent, checking
mechanically if it has any FSC. We consider at each step a test set, say T , of sites. In
the beginning T consists of all the sites of the lattice we are considering; we first test the
hypothesis that T is a FSC using the inequalities (2.30). If these inequalities are satisfied
for all sites in T , then the hypothesis is true, T has a FSC, and the configuration in
exam is transient. Otherwise there are some sites for which the inequalities are violated,
these sites cannot be part of any FSC, in fact the inequalities will remain unsatisfied
even though T is replaced by a smaller subset of sites. We delete these sites from T and
we have a new subset T ′, we say we burn these sites while the remaining are unburnt ; at
this point we repeat the procedure to check whether T ′ is a FSC. We follow this scheme
until we cannot burn anymore site. If we we are left with a finite subset F of unburnt
sites this is a FSC and the configuration is transient, if the set of unburnt sites eventually
becomes empty the configuration in exam is found to be recurrent. We call the procedure
just presented the burning test.

In the burning test it does not matter in which order the sites are burnt. It is however
useful to introduce the concept of time of burning and to add to the graph a site, named
sink, which is connected to all the “boundary” sites with as many links as the number
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of lost particles in a toppling by the boundary sites in exam, it never topples and only
collects sand. There is a natural way to choose a time of burning for each site. At time
t = 0, all the sites in T (0) = T are unburnt except the sink. At any time t a site is called
burnable iff the inequality (2.30) is unsatisfied with respect to the set T (t) reached at that
time, then a burnable site at time t becomes burnt at time t+ 1, and so remains for the
successive times. With this prescription we label each site of the graph with a burning
time, depending just on the configuration in exam.

We want now to draw a path for the “fire” to propagate to the whole graph, starting
from the sink. Take an arbitrary site i, except the sink. Let τi + 1 be the time step
at which this is burnt, then the burning rule implies that at time τi at least one of his
neighbor sites has been burnt. Let ri be the number of such neighbors and let us write:

ξi =

ri∑′

j=1

(−∆ij) (2.37)

where the primed summation runs over all unburnt neighbors of i at time τi. Then we
have zi ≥ ξi since the site i is burnable at time τi; but, since it was not burnable at time
τi − 1 we must also have:

zi < ξi +K (2.38)

where K is the number of bonds linking i to his neighbors which were unburnt at time
τi. During the burning test we say that fire reaches the site i by one of the K bonds.
Obviously when K = 1 there is just one possibility so there are no problems, and we say
that the fire reaches i from the only site possible. If K > 1 we have to select one bond
through which the fire reaches i depending on his height zi. For this purpose we order
the bonds converging on the site i in some sequence (e.g. {(i, i1), (i, i2), (i, i3), . . .}), the
order is arbitrary and can be chosen independently on each site i. Now we can write
zi = ξi+ s−1 for some s > 0, we say that fire reaches i using the s-th link in the ordered
list of the possible ones. This procedure gives a unique path for the fire to reach each
site i, given the configuration of heights in the sandpile and the prescription on the order
of bonds converging on each site. The set of bonds along which fire propagates, connects
the sink with each site in the graph, and there are no loops in each path. Thus the set
just obtained is a spanning tree on the graph G′ = G+ {sink}.

So choosing a particular prescription for a given graph we can obtain for each config-
uration a unique spanning tree. For example on a square lattice we have four bonds for
each site, let us call them N-E-S-W, where the cardinal points denotes the direction of
incidence, we can choose the prescription N>E>S>W and obtain for a recurrent config-
uration the corresponding spanning tree. In fig. 2.4 is shown a burning test for a 4 × 4
square lattice, with prescription NESW, with

�
�
�
�are denoted the sites such that, con-

nected together, represent the sink, with
�
�
�

�
�
�

the sites burnt at the given time of each step
of the algorithm and with , the bonds through which the fire could have reached
the site but were rejected.

Let us note a few facts about the burning test before going on to the next section.
Although all recurrent configurations were shown in [18] to pass the burning test; con-
versely, it was shown in [28] only for sandpiles with symmetric toppling rules –which is
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Figure 2.4 Example of burning test acting on a given configuration, at each
time is displayed the progress in the algorithm until at t=6 all sites become
“burnt”
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if the same amount of sand is transferred to site j when site i topples as it is transferred
to i when j topples– that all stable configurations which pass the test are recurrent.
However, the burning test is not valid in general, indeed there exist simple asymmetric
sandpiles having stable configurations which pass the test but are not recurrent; i.e. in
the ASM with toppling matrix ∆ =

(
4 −3
−1 2

)
, then there are det∆ = 5 recurrent config-

urations (2, 0), (3, 0), (1, 1), (2, 1) and (3, 1) and satisfy the burning test, but (1, 0) passes
the burning test even if it is not recurrent. A site like 2 which has more incoming arrows
than outgoing arrows is called greedy or selfish. In this case when adding a frame identity
to the configuration, then some sites topple twice, and this makes the burning test fail
as it assumes that under multiplication by the identity operator (2.32), each site topples
only once.

This gap has been filled by Speer that in [66] introduced the script test, which is
a generalization of the burning test valid in case of asymmetric sandpiles. Sandpile
configurations which pass the script test are precisely the recurrent configurations of a
sandpile. Furthermore, for sandpiles without greedy sites, the script test reduces to the
burning test even for unsymmetrical sandpiles.

2.5 Algebraic aspects

We want to report some features of the abelian group G associated to the ASM. In
particular we determine scalar function, invariant under toppling, and the rank of the
group for the square lattice.

First we recall that any finite abelian group G can be expressed as a product of cyclic
groups in the following form:

G ∼= Zd1 × Zd2 × · · · × Zdg
(2.39)

That is, the group is isomorphic to the direct product of g cyclic groups of order
d1, d2, . . . , dg. Moreover the integers d1 ≥ d2 ≥ . . . ≥ dg > 1 can be chosen such that di
is an integer multiple of di+1 and, under this condition, the decomposition is unique. In
the following we determine the canonical decomposition of the group.

2.5.1 Toppling invariants

The space of all configurations S+ constitutes a commutative semigroup over the vertex-
set of the ambient graph, with the addition between configurations defined as a sitewise
addition of heights with relaxation, if necessary, see (2.15). We define an equivalence
relation on this semigroup by saying that two configurations z and z′ are equivalent iff
there exists |V | = N integers nj, j = 1, . . . N , such that:

z′i = zi −
∑

j

∆ijnj ∀i ∈ V (2.40)

This equivalence is said equivalence under toppling, and each equivalence class with re-
spect to (2.40) contains one and only one recurrent configuration. One can associate to
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each configuration z a recurrent configuration C[z] defining:

C[z] =
∏

i

azi

i C
∗ (2.41)

where C∗ is a given recurrent configuration. If z and z′ are in the same equivalence class,
then C[z] = C[z′], indeed we have that:

C[z′] =
∏

i

a
zi−

P

j ∆ijnj

i C∗ =
(∏

i

azi

)(∏

ij

a∆ijnj

)
C∗

=
(∏

i

azi

)(∏

j

(∏

i

a∆ij
)nj

)
C∗ =

∏

i

aziC∗ = C[zi].
(2.42)

Using the relation (2.40) two stable configurations can be equivalent under toppling.
As a consequence of this equivalence relation and the existence of a unique recurrent
representative for each equivalence class we will denote a class by [z], being [z] = [w]
if z and w are equivalent under toppling. Furthermore the set of all configurations is a
superlattice whose fundamental cell is the set R, the rows of ∆ are the principal vectors
of the superlattice and det∆ is the volume of the fundamental cell, that is the number
of stable recurrent configurations |R|.

We define toppling invariants as scalar functions over the space S+ of all the config-
urations of the sandpile, such that their value is the same for configurations equivalent
under toppling. Given the toppling matrix ∆ for anN sites sandpile, we defineN rational
functions Qi, i ∈ {1, . . . , N}, as follows

Qi(z) =
∑

j

∆−1
ij zj mod1 (2.43)

It is straightforward to prove that the functions Qi are toppling invariants, indeed a
toppling at site k changes C ≡ {zi} into C ′ ≡ {zi−∆ik}, and the linearity of the Qi’s in
the height variables permits to write:

Qi(C
′) = Qi(C)−

∑

j

∆−1
ij ∆jk = Qi(C) mod 1 (2.44)

These functions are rational-valued but they can be made integer-valued by multiplica-
tion upon an adequate integer. So these functions can be used to label the recurrent
configurations. Thus the space of recurrent configurations R can be replaced by the set
of N -uples (Q1, Q2, . . . , QN ), but this labeling is generally overcomplete, they being not
all independent.

It is desirable to isolate a minimal set of invariants, and this can be done for an
arbitrary ASM using the classical theory of Smith normal form for integer matrices [67].

Any nonsingular N ×N integer matrix ∆ can be written in the form:

∆ = ADB (2.45)
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where A and B are N × N integer matrices with determinant ±1, and D is a diagonal
matrix

Dij = diδij (2.46)

where the eigenvalues di are defined as follows:

1. di is a multiple of di+1 for all i = 1 to N − 1

2. di = ei−1/ei where ei stands for the greatest common divisor of the determinants
of all the (N − i)× (N − i) submatrices of ∆ (note that eN = 1)

The matrix D is uniquely determined by ∆ but the matrices A and B are far from unique.
The di are called the elementary divisors of ∆.

In terms of the decomposition (2.45), we define the set of scalar functions Ii(C) by

Ii(C) =
∑

j

(A−1)ijzj mod di (2.47)

Due to the unimodularity of A (fact that guarantees the existence of an integer inverse
matrix for A), these functions are integer-valued, and are toppling invariant, explicitly,
given the equivalence under toppling relation (2.40), we have:

Ii[z
′] =

∑

j

(A−1)ijzj −
∑

jk

(A−1)ij∆jknk (2.48)

= Ii[z]−
∑

jkℓm

(A−1)ijAjℓDℓmBmknk = (2.49)

= Ii[z]−
∑

jk

DijBjknk (2.50)

= Ii[z]− di
∑

k

Biknk = Ii[z] mod di (2.51)

Only the Ii for which di 6= 1 are nontrivial, and we note that this invariants are far from
unique, because they are defined in the term of A which is not unique itself. The Ii’s can
also be written in term of the Qi’s as follows:

Ii[C] =
∑

j

diBijQj [C] (2.52)

We now show that the set of nontrivial invariants is always minimal and complete.
Let g be the number of di > 1, we associate at each recurrent configuration a g-uple
(I1, I2, . . . , Ig) where 0 ≤ Ii < di. The total number of distinct g-uple is

∏g
i=1 di = |G|.

We first show that this mapping from the set of recurrent configurations to g-uples is
one-to-one. Let us define operators ei by the equation

ei =

N∏

j=1

a
Aji

j 1 ≤ i ≤ g (2.53)
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Acting on a fixed configuration C∗ = {zj}, ei yields a new configuration, equivalent
under toppling to the configuration {zj + Aji}. If the g-uple corresponding to C∗ is
(I∗1 , I

∗
2 , . . . , I

∗
g ), from (2.47) follows that eiC

∗ has toppling invariants Ik = I∗k + δik. By
operating with this operators {ei} sufficiently many times on C∗, all |G| values for the
g-uple (I1, I2, . . . , Ig) are obtainable. Thus there is at least one recurrent configuration
corresponding to any g-uple (I1, I2, . . . , Ig). As the total number of recurrent configura-
tions equals the number of g-uples (2.22), we see that there is a one to one correspondence
between the g-uples (I1, I2, . . . , Ig) and the recurrent configurations of the ASM.

To express the operators aj in terms of ei, we need to invert the transformation (2.53).
This is easily seen to be:

aj =

g∏

i=1

e
(A−1)ij

i 1 ≤ j ≤ N (2.54)

Thus the operators ei generate the whole of G. Since ei acting on a configuration increases
Ii by one, leaving the other invariants unchanged, and since Ii is only defined modulo di,
we see that

edi

i = I for i 1 to g (2.55)

Note that the definition (2.53) makes sense for i between g + 1 and N , and implies
relations among the aj operators.

This shows that G has a canonical decomposition as a product of cyclic groups as
in (2.39), with di’s defined in (2.46). We thus have shown that the generators and the
group structure of G can be entirely determined from its toppling matrix ∆, through its
normal decomposition (2.45).

The invariants {Ii} also provide a simple additive representation of the group G.
We define a binary operation of “addition” (denoted by ⊕) on the space of recurrent
configurations by adding heights sitewise, and then allowing the resulting configuration
to relax see (2.15). From the linearity of the Ii’s in the height variables, and their
invariance under toppling, it is clear that under this addition of configurations, the Ii’s
also simply add. Thus for any recurrent configurations C1 and C2 one has

Ii(C1 ⊕C2) = Ii(C1) + Ii(C2) mod di (2.56)

The Ii’s provide a complete labeling of R. There is a unique recurrent configuration,
denoted by Id r, for which all Ii(Id r) are zero. Also, each recurrent C has a unique inverse
−C, also recurrent, and determined by Ii(−C) = −Ii(C) mod di. Therefore the addition
⊕ is a group law on R, with identity given by Id r. M. Creutz first gave an algorithm to
compute this configuration in [22, 21].

There is a one-to-one correspondence between recurrent configurations of ASM and
elements of the group G: we associate to the group element g ∈ G, the recurrent config-
uration gCid, and from (2.56) follows that for all g, g′ ∈ G

gId r ⊕ g
′Id r = (gg′)Id r (2.57)

Thus the set of recurrent configurations with the operation ⊕ form a group which is
isomorphic to the multiplicative group G, result first proved in [22, 21]. The invariants
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{Ii} provide a simple labeling of the recurrent configurations. Since a recurrent config-
uration can also be uniquely determined by its height variables {zi}, the existence of
forbidden configuration (2.30) in ASM’s implies that this heights satisfy many inequality
constraints.

2.5.2 Rank of G for a rectangular lattice

For a general toppling matrix ∆, it is difficult to say much more about the group structure
of G. To obtain some useful results we now consider the toppling matrix ∆ of a finite
L1 × L2 bi-dimensional square lattice. In this framework is more convenient to label
the sites not by a single index i running from 1 to N = L1L2, but by two Cartesian
coordinates (x, y), with 1 ≤ x ≤ L1 and 1 ≤ y ≤ L2. The toppling matrix is the discrete
Laplacian as defined in (2.5), given by ∆(x, y;x, y) = 4, ∆(x, y;x′, y′) = −1 if the sites
are nearest-neighbors (i.e. |x−x′|+|y−y′| = 1), and zero otherwise. We assume, without
loss of generality, that L1 ≥ L2. The relations (2.17) satisfied by operators a(x, y), using
the fact that the operators has an inverse on R, can be rewritten in the form

a(x+ 1, y) = a4(x, y)a−1(x, y + 1)a−1(x, y − 1)a−1(x− 1, y) (2.58)

where we adopt the convention that

a(x, 0) = a(x,L2 + 1) = a(0, y) = a(L1 + 1, y) = I ∀x, y (2.59)

The equations (2.58) can be recursively solved to express any operator a(x, y) as a product
of powers of a(1, y). Therefore the group G can be generated by the L2 operators a(1, y).
Denoting the rank of G (minimal number of generators) by g, this implies that

g ≤ L2 (2.60)

In the special case of a linear chain, L2 = 1, we see that g = 1, and thus G is cyclic.
Equations (2.58) permits also to express a(L1 + 1, y) in term of powers of a(1, y) say

a(L1 + 1, y) =
∏

y′

a(1, y′)nyy′ (2.61)

where the nyy′ are integers which depend on L1 and L2 and which can be eventually
determined by solving the linear recurrence relation (2.58). The condition (2.59), a(L1 +
1, y) = I then leads to the closure relations

L2∏

y′

a(1, y′)nyy′ = I ∀y = 1, . . . , L2 (2.62)

The equations (2.62) give a presentation of G, the structure of which can be determined
from the normal form decomposition of the L2 × L2 integer matrix nyy′ . This is consid-
erably easier to handle that the normal form decomposition of the much larger matrix
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∆ needed for an arbitrary ASM. Even though this is a real computational improvement,
the calculation for arbitrary L1 is not trivial.

In the particular case of square-shaped lattice, where L1 = L2 = L, using the above
algorithm is possible to find the structure of G, and to prove that for an L × L square
lattice we have

g = L for L1 = L2 = L (2.63)

2.6 Generalized toppling rules

The two basic rules of the ASM are the addition rule and the toppling rule. The addition
rule has a general formulation, and, in the identification of a Markov Chain, it is flexible
because of the possibility to make different choices for the rates pi, at which particles
are added on each site. On the other hand the toppling rule is not in the most general
formulation. Indeed a toppling rule took the form of a single-variable check, labeled by
a site index i, zi < z̄i which, if failing causes an “instability” in the height profile, which
relaxes with a constant shift z → z− ~∆i such that the total mass can only decrease, with
some conditions that ensure both the finiteness of the relaxation process, and the fact
that the result has no ambiguity in the case of multiple violated disequalities at some
intermediate steps.

Theorem 1. Given an ASM on a graph G = (E,V ) and a toppling matrix ∆, if C̃
is unstable, consider the set S of sequences (i1, . . . , iN(s)) such that tiN(s)

. . . ti2ti1C̃ is a
valid sequence of topplings, and produces a stable configuration C(s), some facts are true:

(0) S is non-empty;

(1) C(s) = C(s′) for each s, s′ ∈ S, i.e. the final stable configuration does not depend
upon possible choices of who topples when;

(2) N(s) = N(s′) = N(C̃) ∀s, s′ ∈ S

(3) ∀s, s′ ∈ S ∃π ∈ SN(s) : i
(s)
α = i

(s′)
π(α) for α = 1, . . . , N(C̃), i.e. the toppling

sequences differ only by a permutation.

Proof. Here we prove (3), given (1) and (0) As a restatement of (3), we have that one
can define a vector ~n(C̃) ∈ N|V | as the number of occurrence of each site in any of the
sequence of S. Then, we have that the final configuration is

C = C̃ + ∆ · ~n (2.64)

The fact that ~n is unique is trivially proven. Indeed, as S is non-empty, we have a first
candidate ~n0, and thus a solution of the non-homogeneous linear system (in ~n)

∆ · ~n = C − C̃.
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If there was another solution ~n1, then we would have that ~n′ = ~n1 − ~n0 is a solution of
the homogeneous system

∆ · ~n′ = 0.

But ∆ is a square matrix of the form Laplacian+mass, such that the spectrum is all
positive (we saw how it is a strictly-dissipative diffusion kernel), so it can not have non-
zero vectors in its kernel. This proves the uniqueness of ~n, i.e. (3). But (3) is stronger
than (2), and the fact that C = C̃ + ∆ · ~n also implies (1). So the theorem is proven.

The standard toppling rule can be shortly rewritten as:

if ∃i ∈ V | zi ≥ z̄i = ∆ii =⇒ z → z + ~∆i (2.65)

Pictorially, on a square lattice, we can draw the heights at a given site i and at its
nearest-neighbors i1, i2, i3, i4 as

zi1
zi4 zi zi2

zi3

(2.66)

and an example of typical toppling is

0

0 4 0

0

−→
1

1 0 1

1

(2.67)

where the initial value of zi is equal to z̄i = 4, being the only site unstable, it requires
the toppling shown in figure.

A straightforward generalization of this prescription is to consider a site stable or
unstable not just for “ultra-local” (i.e. single-site) properties (the overcoming of the site
threshold) but also for local properties that depend on the heights at more than one
sites. Similarly, we would have toppling rules ~∆α = {∆αj}j∈V with more than a single
positive entry. Still we want to preserve the exchange properties of toppling procedures
which led to the abelianity of the drop operators ai, and this could be in principle such a
severe constraint that we could not find essentially any new possibility. As we show now,
by direct construction, this is not the case. We can define some cluster-toppling rules,
labeled by whole subsets I ⊆ V of the set of sites, instead that by a single site, and, for
any subset I, we introduce the toppling rule

if ∀i ∈ I zi ≥
∑

α∈I

∆iα =⇒ zk → zk −
∑

α∈I

∆αk ∀k (2.68)

These rules clearly define some sandpile model, that, under some constraints on the choice
of toppling clusters set L = {I}, we will prove later to be abelian. But, before this, we
address the simpler issue of checking for the finiteness of the space of configurations. It
is trivial to see that if, for any site i, there is no single site set {i} ∈ L, but only an
arbitrary number of “large” clusters I ∈ L, |I| ≥ 2, i ∈ I, then all the configurations of
height

zi = n ∈ N, zj = 0 j 6= i (2.69)
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are allowed and stable, thus a necessary condition for having a finite set of stable config-
urations is

{i} ∈ L ∀i ∈ V (2.70)

this is also sufficient, as even in the standard ASM we have a number
∏
z̄i of stable

configurations, and this number can only decrease when adding new toppling rules.
We define Lstd the set of toppling cluster for the standard toppling rules, that is

Lstd =
{
{i}i∈V

}
(2.71)

So we ask whether a given set L of cluster-toppling give rise to a finite abelian sandpile.
Say I(1) and I(2) are two clusters in L

Theorem 2. Given an ASM on a graph G = (E,V ), with a symmetric toppling matrix
∆, {~∆I}I∈L and L ⊇ Lstd. A necessary and sufficient condition for the sandpile to be
abelian is that

each component of I(1) r I(2) ∈ L ∀I(1), I(2) ∈ L (2.72)

Proof. Let us call J = I(1) ∩ I(2), then there are two cases:

(a) J = ∅

(b) J 6= ∅

In case (a) the compatibility is obvious, indeed if we make the toppling for I(1) then
the heights in I(2) can only increase for the properties of the toppling matrix ∆. After
the topplings also of the sites in I(2) have been done, the final height configuration will
be

z′k = zk −
∑

i∈I(1)

∆ik −
∑

j∈I(2)

∆jk (2.73)

this expression is clearly symmetric under the exchange of I(1) and I(2).
In case (b) we shortly recall the toppling rule for I(1) and I(2) (2.68)

if ∀i ∈ I(1) zi ≥
∑

α∈I(1)

∆iα =⇒ zk → zk −
∑

α∈I(1)

∆αk ∀k (2.74a)

if ∀i ∈ I(2) zi ≥
∑

α∈I(2)

∆iα =⇒ zk → zk −
∑

α∈I(2)

∆αk ∀k (2.74b)

now we note that we can split the sums in the contribution from J and the one from the
remaining sites of each subset

∑

α∈I(1)

=
∑

α∈I(1)rJ

+
∑

α∈J

∑

α∈I(2)

=
∑

α∈I(2)rJ

+
∑

α∈J
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Now we can topple first I(1) and so update the configuration z → z′ as follows

z′i = zi +
∑

α∈I(1)rJ

∆αi +
∑

α∈J

∆αi ∀i ∈ V

At this point, for the updated configuration the following relations are valid

∀i ∈ I(2) r J z′i =zi −
∑

α∈I(1)rJ

∆αi −
∑

α∈J

∆αi ≥ (2.75a)

≥
∑

α∈I(2)rJ

∆iα +
∑

α∈J

∆iα −
∑

α∈I(1)rJ

∆αi −
∑

α∈J

∆αi ≥ (2.75b)

≥
∑

α∈I(2)rJ

∆iα −
∑

α∈I(1)rJ

∆αi ≥ (2.75c)

≥
∑

α∈I(2)rJ

∆iα (2.75d)

in line (2.75b) we used the symmetry property of the toppling matrix to cancel out
the second and the fourth terms, in line (2.75c) we used the property the off-diagonal
elements ∆ij to be negative or equal to zero to obtain the inequality in the last line,
indeed if A > B and ci ≥ 0, then A+

∑
ci > B a fortiori.

In case it does not exist the toppling rule for I(2) r J , there exists a configuration
of heights (the minimal heights such that both I(1) and I(2) are unstable) such that
toppling first I(1) or I(2) leads immediately after a single toppling to two distinct stable
configurations, so we see that necessary part of the theorem holds. As a consequence, as
L ⊇ Lstd, given I ∈ L we have that all the I ′ ⊆ I are in L, and thus all of its components.
In particular disconnected I’s are simply redundant, and we can restrict L to contain
only connected clusters without loss of generality.

Conversely, if I(2) r J ∈ L (and I(1) r J ∈ L by symmetry), in the two “histories” in
which we toppled I(1) or I(2), we can still topple I(2) rJ ∈ L and I(1) rJ ∈ L respectively
and put them back on the same track, i.e.

tI(1)rJtI(2) ≡ tI(2)rJtI(1) (2.76)

as operators when applied to configurations C such that both I(1) and I(2) are unstable.

We want also to produce a proof similar to that for standard toppling rule in theorem
1 for the cluster-toppling ASM.

Let suppose we have G = (E,V ), and the induced toppling matrix ∆, and a set
L of connected subsets of V , with L ⊇ Lstd =

{
{i}i∈V

}
. Call ~∆i = {∆ij}j∈V , and

~∆I =
∑

i∈I
~∆i. A toppling tI changes z into z − ~∆I .

Theorem 3. If C̃ is unstable w.r.t. (2.68) given the framework above, consider the set S
of sequences s = (I1, . . . , IN(s)) such that tIN(s)

. . . tI2tI1C̃ is a valid sequence of topplings

and produces a stable configuration C(C̃; s). Some facts are true:
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(0) S is non-empty;

(1) C(C̃; s) = C(C̃; s′) ∀s, s′ ∈ S;

(2)
∑N(s)

α=1 |I
(s)
α | =

∑N(s′)
α=1 |I

(s′)
α | ∀s, s′ ∈ S;

(3) defining ~χI =

{
1 i ∈ I
0 i /∈ I

,
∑N(s)

α=1 ~χI(s)α
is the same for all the sequences and is

some vector ~n(C̃)

Proof. (of (3) and (2) given (1) and (0)) Again, the final stable configuration is C =
C̃+∆ ·~n, and the uniqueness of ~n is proven along the same line as the proof for standard
ASM. Then, as (3) is a strengthening of (2), the theorem is proven. remark however some
qualitative difference with the simplest case of ordinary ASM: it can be that N(s) 6=
N(s′), and s and s′ do not differ simply by a permutation (e.g., in the relaxation of
3 4 3 by t3t12 or by t1t3t2), and analogously the kernel

∑

j

nI ~∆Ij = 0 ∀I ∈ L

is non-empty for L ) Lstd, as ∆ is rectangular (e.g. n12 = a, n1 = n2 = −a, nI = 0
otherwise is a null vector of ∆). Only in the basis of Lstd we have a unique solution, and
of course the versor êI , in Z|L|, reads ~χI in this basis.

We present for clarity the example case in which the rule is defined for all the 2-
clusters, dimers. In this case, given G = (E,V ) we have the set of toppling clusters

L =
{
{i, j}ij∈E

}
∪
{
{i}i∈V

}
, (2.77)

and the general rule (2.68) becomes:

if





ij ∈ E
zi ≥ ∆ii + ∆ij

zj ≥ ∆jj + ∆ij

=⇒ zk → zk −∆ik −∆jk ∀k, (2.78)

we can now pictorially draw on a square lattice the heights for a given cluster, formed
by the sites i and j, and its nearest-neighbors i1, i2, i3, j1, j2, j3 as

zi1 zj1
zi3 zi zj zj2

zi2 zj3

(2.79)

so a typical 2-cluster toppling is:

0 0

0 3 3 0

0 0

−→
1 1

1 0 0 1

1 1

(2.80)
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in which in the initial state both the sites i and j have height equal to z̄i − 1 = 3 and
become unstable with respect to the (2.78), it is therefore necessary to topple the sites
obtaining the final configuration. We note that doing a single cluster-toppling is the
same as making two consecutive normal topplings, at condition that we permit negative
height in the intermediate steps and force the toppling also in the case it is not necessary
(zi = 3), in fact:

0 0

0 3 3 0

0 0

−→
1 0

1 -1 4 0

1 0

−→
1 1

1 0 0 1

1 1

(2.81)

and in the case zi ≥ 4 or zj ≥ 4 or both, the same result would have been obtained, any
possible rule we choose to use, as proved in 2. This fact can be better understood recalling
the relations (2.17) satisfied by the operators ai and aj , with i and j corresponding to
the ones in (2.79):

a4
i = ai1ai2ai3aj (2.82a)

a4
j = aj1aj2aj3ai (2.82b)

If we restrict the attention on recurrent configurations where inverses of ai exist it is
possible to multiply side by side the two equalities obtaining:

a4
i a

4
j = ai1ai2ai3ajaj1aj2aj3ai (2.83)

and dividing (in group sense) each side by ai and aj we have the following equality:

a3
i a

3
j = ai1ai2ai3aj1aj2aj3 (2.84)

that is the same of (2.82) for the cluster toppling rule, furthermore this rule generalizes
for arbitrary subsets of V . This permit us to state that the different toppling rules
we have introduced bring to the same group presentation (and then to the same group
structure) for the abelian group associated to the recurrent configurations of the ASM.

We recall now that for the model with the standard toppling rule we have an easy
characterization for the subsets F of the graph that are forbidden subconfiguration (FSC),
that is:

if ∀i ∈ F zi <
∑

j 6=i
j∈F

(−∆ij) =⇒ F is a FSC (2.85)

As obvious with the new rules just introduced, some forbidden subconfigurations of the
standard ASM can become reachable by adding sand and toppling, e.g. the simplest
forbidden configuration in the case of standard toppling rules, 0 0 , is easily reachable
if we allow the 2-cluster toppling rule, in fact it can simply turn up as result of the basic
2-cluster toppling 3 3 → 0 0 . It is also possible to characterize the forbidden
subconfigurations with respect to a given I-toppling rule, we have:

if ∀I ⊆ F
k∑

j=1

zij <
∑

j∈FrI
ℓ∈I

(−∆ℓj) =⇒ F is a FSC (2.86)
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this yielding to the possibility that a transient configuration with respect to a L′ toppling
rule becomes recurrent for a L′′ toppling rule, with L′′ ⊃ L′.

Furthermore some configurations stable with respect to a L′ toppling rule become
unstable if we allow L′ to increase up to L′′, e.g. the basic unstable configuration 3 3
for the dimer-toppling rule is perfectly stable in the framework of toppling only for zi ≥ z̄i.
Moreover the fact that the group structure of the associated group remains unchanged
under the addition of the new toppling rules, yields the number of group elements g ∈ G
to be the same in the two cases, this forces the number of recurrent configurations to
be the same, as the order of group associated, i.e. as many stable recurrent becomes
unstable, as transient become recurrent, for each enlargement of L.

In this framework, we see how, remaining unchanged the number of recurrent con-
figurations and growing up the number of unstable configurations, since the set of L-
stable configurations becomes a subset of the original set of stable configurations S =
{0, 1, 2, 3}|V |, in some sense the transient configurations that become allowed must cor-
respond to some newly unstable configurations. This kind of symmetry between the two
sets, yields to suppose the existence of a bijection between unstable configurations for
L′′ toppling rules and transient configurations for L′ toppling rules, with L′′ ⊃ L′. This
procedure of enlarging the set of unstable configuration, and at the same time to shrink
the set of transient configuration yields to the possibility to completely suppress the set
of the transient configurations and to have that the recurrent configurations become all
the stable configurations. This situation is reached by letting

L = {all the subsets of V } (2.87)

An interesting example is the lattice 3× 1 in which the number of configurations is not
huge and we can directly check this statement.

L = Lstd

0 0 0

0 0 1 2
3

0 01 2
3

0 1 0
︸ ︷︷ ︸
8 transients

L = Lstd ∪ {i1, i2}

0 1 0

0 0 1 2
3

︸ ︷︷ ︸
4 recurrents

3 3 0 1
2 3

︸ ︷︷ ︸
4 unstables

L = Lstd ∪ Lmax

0 0 0

0 0 1 2
3

︸ ︷︷ ︸
8 recurrents

0 01 2
3

0 1 0

3 3 3

3 3 0 1
2

3 30 1
2

3 2 3
︸ ︷︷ ︸
8 unstables
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ASM as a monoid.

In this chapter we give a further insight in the algebraic structure of the ASM.
We start in the first section recalling some notions on a number of known facts but
using the formalism we will use further on. We will introduce from the beginning new
operators, defined by means of antitoppling rules, that we will call a†i ’s and are the

symmetric counterpart of the operators ai . Such operators were already introduced by
Manna et.al. in [68] as hole addition then followed by hole avalanches in order to reach a
stable configuration. Also inverse avalanches has been introduced before, in [69], to get
back to the recurrent configuration after the deletion of a particle in a configuration of
the ASM.

The transition monoid corresponding to the dynamics ruled by the toppling rules
alone, in the set of stable configurations, is abelian; this is a property which seems at
the basis of our understanding of the model. By including also antitoppling rules, and
the operators a†i ’s, we introduce and investigate a larger monoid, which is not abelian
anymore. We prove a number of algebraic properties of this monoid, and describe their
practical implications on the emerging structures of the model.

We shows in the last section the structure of Markov chains dynamics involving both
ai and a†i , elucidating the role played by the relations among the operators in the evolution
of the dynamics.

Part of the results here presented have been submitted to be published in [70].

3.1 The extended configuration space

3.1.1 Algebraic formalism

Let the integer n be the size of the system. It is often useful to think at the system as
a graph with n sites, and the set of toppling rules in terms of the adjacency structure of
the graph, thus we will call sites the indices i ∈ V ≡ {1, . . . , n}. Consider vectors z ∈ Zn,
where we will use the partial ordering � such that u � v if ui ≤ vi for each i ∈ V . We
will define the positive cone Ω as the subset of w ∈ Zn such that w � 0, where 0 has
vanishing entries for all i.

An abelian sandpile A = A(∆, z, z) is identified by a triple (∆, z, z), that we now
describe. The vectors z and z are the collection of upper- and lower-thresholds, {zi} and
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{zi} respectively, and are constrained to the condition zi − zi > 0 for all i. Define the
spaces

S+ = {z ∈ Zn | z � z} =
n

O

i=1

{zi, zi + 1, . . .} ; (3.1)

S− = {z ∈ Zn | z � z} =
n

O

i=1

{. . . , zi − 1, zi} ; (3.2)

S = {z ∈ Zn | z � z � z} =
n

O

i=1

{zi, . . . , zi} = S+ ∩ S− . (3.3)

Thus S+ and −S− are translations of Ω, while S is a multidimensional interval, and has
finite cardinality.

We also have a n × n toppling matrix ∆, with integer entries, that should satisfy
zi − zi + 1 ≥ ∆ii > 0, and ∆ij ≤ 0 for i 6= j. We say that the sandpile is tight if
zi − zi + 1 = ∆ii for all i. Here we restrict our study at tight sandpiles1.

We further require dissipativity, that is b−i =
∑

j ∆ij ≥ 0. As seen below, b−i is the
amount of mass that leaves the system after a toppling at i. The requirement that the
toppling matrix is irreducible2 ensures that the avalanches are finite (and that det∆ > 0).
For future utility, we also define b+j =

∑
i ∆ij, which is the difference between the amount

of mass that leave the site j in a toppling and the mass that is there added if all other
sites would make a toppling. A site j where b+i < 0 is said to be greedy or selfish. Clearly∑

i b
−
i =

∑
i b

+
i , so also the b+i ’s are, on average, higher than zero, however positivity on

the b+i ’s is not implied directly by the positivity of the b−i ’s. We require b+i ≥ 0 as an
extra condition, whose utility will be clear only in the following. A sandpile is said to be
unoriented if ∆ = ∆T (and thus b− = b+).

The above conditions complete the list of constraints characterizing valid triples
(∆, z, z). The special case of the BTW sandpile corresponds to ∆ being the discretized
Laplacian on the square lattice, ∆ii = 4, ∆ij = −1 if d(i, j) = 1 and ∆ij = 0 if d(i, j) > 1,
where d(i, j) is the Euclidean distance between the sites i and j, and zi = 3, zi = 0 for
all i.

The matrix ∆ is the collection of the toppling rules, and is conveniently seen as a set
of vectors ~∆i = {∆ij}1≤j≤n. Denote by ti the action of a toppling at i. If such a toppling
occurs, the configuration z is transformed according to

tiz = z − ~∆i . (3.4)

A site i is positively-unstable (or just unstable) if zi > zi. In this case, and only in this
case, a toppling can be performed at i. Note that, after the toppling, it is still zi ≥ zi
(more precisely, zi > zi−∆ii), while zj’s for j 6= i have not decreased, thus the topplings
leave stable the space S+. The relaxation operator R is the map from S+ to S, coinciding
with the identity on S, that associates to a configuration z ∈ S+ the unique configuration

1For tight sandpiles S+ and S− are equal to S+ =
Nn

i=1{zi − ∆ii + 1, zi − ∆ii + 2, . . .} and S− =
Nn

i=1{. . . , zi + ∆ii − 2, zi + ∆ii − 1}
2This means that for every j0 there exists a sequence (j0, j1, . . . , jℓ) such that ∆ja ja+1

< 0 for all
0 ≤ a < ℓ, and b−jℓ

> 0.
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R(z) ∈ S resulting from the application of topplings at unstable sites. Unicity relies on
the abelianity of the toppling rules.

A site i is negatively-unstable if zi < zi. In this case, an antitoppling can be performed
at i, with the rule

t†iz = z + ~∆i . (3.5)

We use deliberately the symbol t†i instead of t−1
i because, although the effect of the

linear transformation (3.5) is just the inverse of the effect of (3.4), the if conditions for
applicability of the two operators are different.

Now antitopplings leave stable the spaces S−. The antirelaxation operator R† is the
map from S− to S, coinciding with the identity on S, that associates to a configuration
z ∈ S− the unique configuration R†(z) ∈ S resulting from the application of antitopplings
at negatively-unstable sites. As a matter of fact, the involution

ι : z → z + z − z (3.6)

exchanges the role of operators with and without the † suffix, i.e., for the operators above
and all the others introduced later on, we have A†(z) ≡ ιA(ιz).

Note that, for a configuration z ∈ Zn, we cannot exchange in general the ordering of
topplings and antitopplings (i.e., if i and j are respectively positively- and negatively-

unstable for z, j might be stable for tiz, and i might be stable for t†jz). Consistently, we
do not define any relaxation-like operator from Zn to S.

Remark, however, that the definition of R can be trivially extended in order to map
unambiguously Zn to S−, by letting it produce a toppling only on unstable sites, and,
analogously, R† to Zn to S+ (and both R†R and RR† map Zn to S, but R†(R(z)) 6=
R(R†(z)) in general).

On the space Zn we can of course take linear combinations, and define the sum of
two configurations, z + w, and the multiplication by scalars k ∈ Z, kz. For generic z
and z these operations do not leave stable any of the subsets S± and S. But sum and
difference, z + w and z − w, are binary operations in the following spaces:

z + w : S+ × Ω→ S+ ; (3.7)

z − w : S− × Ω→ S− . (3.8)

Thus, in particular, the two maps R(z + w) and R†(z − w) can act from S × Ω into S.
This suggests to give a special name and symbol to the simplest family of these binary
operations, seen as operators on S. Call ei the canonical basis of Zn, i.e. (ei)j = δi,j .
Define the operators âi such that âiz = z + ei, and introduce the operators of sand
addition and removal

ai = Râi ; a†i = R†â−1
i . (3.9)

The ai’s commute among themselves, i.e., for every z, aiajz = ajaiz = R(z + ei + ej).

Similarly, the a†i ’s commute among themselves. More generally, for any z ∈ Zn and
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w ∈ Ω, R(R(z) +w) = R(z + w), and R†(R†(z)− w) = R†(z − w), this implying

R(z + w) =
( n∏

i=1

(ai)
wi

)
z ; R†(z − w) =

( n∏

i=1

(a†i )
wi

)
z . (3.10)

This can be seen by induction in i, asR(z+(w′+ei)) = R(R(z+ei)+w
′) = R((aiz)+w

′)).
For later convenience, for w ∈ Ω, we introduce the shortcuts

aw =
n∏

i=1

(ai)
wi = R( · + w) ; a†w =

n∏

i=1

(a†i )
wi = R†( · − w) ; (3.11)

(note that the order in the products does not matter).
These properties have an important consequence on the structure of the Markov

Chain dynamics under which ASM has been studied when introduced by Bak et.al. At
each integer time t a site i(t) is chosen at random, and z(t+1) = ai(t)z(t). As long as we
are interested in the configuration z(tfin) for a unique final time tfin, for a given initial
state z(0), it is not necessary to follow the entire evolution z(t), for 0 ≤ t ≤ tfin, but it is
enough to take the vector w =

∑
t ei(t), and evaluate R(z(0) +w). Thus, the final result

of the time evolution depends on the set {i(t)}0≤t<tmax of moves at all times, in a way
which is invariant under permutations.

Note however that, similarly to topplings with antitopplings, also the operators of
sand addition and removal do not commute among themselves, i.e. aia

†
jz 6= a†jaiz in

general, even for z ∈ S. Therefore, in a Markov process involving both ai’s and a†i ’s,
in order to know the final configuration, it is necessary to follow the full trace of the
time evolution. We will briefly describe and investigate a dynamics of this kind, for the
sandpile on a square lattice, in Section 3.4. Furthermore, see [68] for a first extensive
investigation of a dynamics in this family.

Beside the commutativity relations aiaj = ajai (and conjugated ones), there is a
collection of n relations, encoded by the toppling matrix: for any i, when acting on
configurations such that zi > zi −∆ii, (respectively, such that zi < zi + ∆ii), we have

a∆ii

i =
∏

j 6=i

a
−∆ij

j ; (a†i )
∆ii =

∏

j 6=i

(a†j)
−∆ij . (3.12)

This because tiâ
∆ii

i =
∏
j 6=i â

−∆ij

j on such configurations, and the site i is certainly

positively-unstable after the application of â∆ii

i .

In the previous paragraphs we only considered sums z + w, in which one of the two
configurations is taken from a space among S, or S±, and the other one from Ω, or other
spaces with no dependence from z and z.

In such a situation, we have a clear covariance of the notations under an overall
translation of the coordinates. Indeed, for any r ∈ Zn, under the map z → z + r, we
have an isomorphism between the sandpile A(∆, z, z) and A(∆, z + r, z + r). We call a
gauge invariance of the model the covariance explicitated above, and a gauge fixing any
special choice of offset vector r.
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As always, a gauge fixing reduces the apparent number of parameters in the model.
Some special choices simplify the notations in certain contexts. For example, we can set
z = 0, so that S+ ≡ Ω, that we call the z = 0 gauge, or zi = ∆ii − 1,that we call the
positive-cone gauge.

In particular, the positive-cone gauge is the most natural one in the Abelian Sandpile
in which antitoppling are not considered, as in this case the parameters z do not play
any role. Conversely, the covariant formalism is the only formulation that does not break
explicitly the involution symmetry implied by (3.6).

3.1.2 Further aspects of the theory

There exists a natural equivalence relation on vectors z ∈ Zn, that partitions this set into
det∆ classes, which are affine subspaces of Zn, all isomorphic under translation. This
notion was first introduced and studied in [20]. We recall here only briefly the easiest
facts.

We say that z ∼ w if there exists T ∈ Zn such that z − w = T∆. In particular,
as z − tiz = −(z − t†iz) = ~∆i = ei∆, we have z ∼ R(z) ∼ R†(z). Analogously, as

â∆ii

i z−
(∏

j 6=i â
−∆ij

j

)
z = −ei∆, we get a∆ii

i z ∼
(∏

j 6=i a
−∆ij

j

)
z for all i, as it should at the

light of (3.12). The dissipativity condition on the toppling matrix ensure that det∆ 6= 0.
Thus ∆−1 exists, and it is evident that z ∼ w if and only if z∆−1 −w∆−1 ∈ Zn. So, the

fractional parts Q
(frac)
i (z) = (z∆−1)i−⌊(z∆

−1)i⌋, called the charges of the configuration

z, completely identify the equivalence class of z. As a corollary, Q
(frac)
i (z) = Q

(frac)
i (tiz) =

Q
(frac)
i (t†iz) (when ti or t†i are applicable to z). For future convenience, we also define

Q(z) = (z∆−1), so that Q
(frac)
i = Qi − ⌊Qi⌋.

The set S of stable configurations is divided into the two subsets of stable transient
and stable recurrent configurations, S = T ∪R. Several equivalent characterizations of
recurrency exist, some of which extend naturally to S+, and even to the full space Zn

(this is also our choice).
In particular, we give three definitions, all valid in Zn. Under all definitions, a con-

figuration is transient if it is not recurrent.

Definition 1. A configuration z is recurrent by identity test if there exists a permutation
σ ∈ Sn such that tσ(n) · · · tσ(2)tσ(1)(z + b+) = z is a valid toppling sequence.

Definition 2. A configuration z is recurrent by toppling covering if there exists a config-
uration u, such that z = tik · · · ti1u is a valid toppling sequence, and at least one toppling
is performed at each site.

Definition 3. A configuration z is recurrent by absence of FSC’s if, for every set I of
sites, there exists i ∈ I such that zi > zi −

∑
j∈I ∆ji.

The reasonings of the following paragraphs will prove, among other things, that these
three definitions are equivalent.

First we note that a configuration recurrent by identity test is also recurrent by
toppling covering (one can take u = z + b+).
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Note that, if u = R(v) and v is recurrent by toppling covering, also u is recurrent
by toppling covering. Furthermore, as after a toppling ti one has zi > zi − ∆ii, all
the recurrent configurations, either by toppling covering or by identity test, are in fact
contained in S+. This last reasoning is a first example of forbidden sub-configuration
(FSC), whose generalization involves more than one site at a time. For z ∈ Zn, and
I ⊆ [n], define z|I as the restriction to the components zi with index i ∈ I.

For a set I, define the vector fmax(I) ∈ ZI as

(
fmax(I)

)
i
= zi −

∑

j∈I

∆ji . (3.13)

We say that the pair (I, z|I) is a forbidden sub-configuration for z if z � fmax(I). It is
straightforward to recognize that z is recurrent for absence of FSC’s if and only if, for
all I, z|I 6� fmax(I), thus legitimating the terminology.

A collection of the pairs (I, fmax(I)) with smallest |I| in the BTW sandpile is as
follows:

−1 0 0 0
0

0 1 0 1
0

0 · · · 0 1 1 0 · · · 1
1

1
1

· · ·

The connection between the definitions of recurrent by toppling covering and by absence
of FSC’s is given by the following statement, slightly more general that what would suffice
at this purpose

Proposition 1. Let u ∈ S′
+ and v = tiktik−1

· · · ti1u. Define A =
⋃

1≤a≤k{ia}. Then, for
all B such that |B rA| ≤ 1, v|B 6� fmax(B).

This proposition implies as a corollary (for |B r A| = 0) that configurations which
are recurrent by toppling covering are also recurrent by absence of FSC’s. The case
|B rA| = 1 also emerges naturally from the proof.

Proof. The claim v|B 6� fmax(B) can be restated as the existence of s ∈ B such that
vs > fmax(B)s. We will produce a valid choice for s.

If |B rA| = 1, choose as s the only site in B and not in A. Let u′ = u and τ(s) = 0
in this case. Otherwise, for all i ∈ B, call τ(i) the maximum 1 ≤ a ≤ k such that ia = i,
then choose as s the index realising the minimum of τ(i), i.e., the site of B that has
performed its last toppling more far in the past. Call u′ = tiτ(s)

· · · ti1u, the configuration
obtained after the last toppling in s.

Note that, as u ∈ S′
+ and this space is stable under topplings, u′s ≥ zs −∆ss + 1. In

the remaining part of the avalanche, no more topplings occur at s. Furthermore, all the
other sites j ∈ B do topple at least once, at a = τ(j). Thus we have

vs = u′s −
k∑

a=τ(s)+1

∆ias ≥ zs −∆ss + 1−
k∑

a=τ(s)+1

∆ias

= zs −
∑

i∈B

∆is + 1−
∑

τ(s)<a≤k
a6∈{τ(j)}j∈B

∆ias ≥ zs −
∑

i∈B

∆is + 1 .
(3.14)
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The comparison with the definition (3.13) of fmax(B) allows to conclude. �

For a sandpile A(∆, z, z), call A|I the sandpile described by the toppling matrix ∆I,I the
principal minor of ∆ corresponding to the rows and columns in I, and by the threshold
vectors z|I and z|I . Also call b+(I) the vector b+ associated to ∆I,I . The observation
that ultimately allows to relate the definitions of recurrency by absence of FSC’s and by
identity test is the fact that

fmax(I) + b+(I) = z|I . (3.15)

A first remark in this direction is that, if I = [n] is not a FSC for z, we can at least start
the avalanche in the definition of recurrent by identity test, i.e. we have at least one site
i = σ(1) which is unstable. Indeed, we have at least one i such that zi > fmax([n])i.
Then, by (3.15), (z + b+)i > fmax([n])i + b+i = zi.

As (3.15) holds for any set I, the reasoning above works for any restricted sandpile
A|I . Suppose to have a configuration z(I) which is recurrent in A|I by absence of FSC’s.
Then we have at least one site i ∈ I which is unstable, because we have at least one i

such that z
(I)
i > fmax(I)i, and (z(I) + b+(I))i > fmax(I)i + b+(I)i = zi.

This allows to construct an induction. Let I ′ = I r i, v(I′) = (tiz
(I))|I′ and z(I′) =

R(v(I′)). For j ∈ I ′, v
(I′)
j = z

(I)
j −∆ij ≥ z

(I)
j . Remark that the definition of fmax(J) is

the same on any restricted sandpile AI with I ⊇ J . Thus, as z(I) is recurrent for absence
of FSC’s, and this property is preserved under relaxation (by Proposition 1), also z(I′)

is recurrent by absence of FSC’s, on A|I′ . This, together with equation (3.15), gives the
induction step.

In summary, we can perform the complete avalanche tσ(n) · · · tσ(1), algorithmically, by

initialising z(0) = z + b+ and I0 = [n], and, for a = 0, . . . , n − 1, ia is any site i at which
z(a) is unstable (which is proven to exist by the reasoning above), Ia+1 = Ia r ia, and
z(a+1) = R(tiaz

(a)).

This completes the equivalence of our three definitions of recurrent configurations,
thus from now on we will omit to specify the defining property.

A directed graph can be associated to a sandpile, such that −∆ij directed edges connect
i to j. This completely encodes the off-diagonal part of ∆. The remaining parameters, in
particular b+ and b−, can be encoded through directed edges incoming from, our outgoing
to, a special ‘sink’ vertex. This can be done unambiguously if b+i ≥ 0 for all i. In the
undirected case, ∆ = ∆T, a bijection due to Majumdar and Dhar [28], called Burning
Test, relates stable recurrent configurations to spanning trees. A generalization, called
Script Algorithm and due to Speer [66] relates stable recurrent configurations to directed
spanning trees rooted at the sink vertex. Through Kirchhoff Matrix-Tree Theorem, one
thus gets in this case that the number of stable recurrent configurations is det∆.

The configuration p = z + 1−R(z + 1) has two interesting properties: pi ≥ 1 for all
i, and p ∼ 0. This implies that, for every z ∈ Zn, the iteration of the map z → R(z + p)
must reach a fixed point, in R, the subset of S containing recurrent configurations (this
would be true also with b+ instead of p, but slightly harder to prove). Indeed, calling
c = maxi(zi − zi + 1), as R(R(· · · R(z + p) · · · + p) + p) = R(z + c p), and z + c p is
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unstable at all sites, R(z + c p) is both stable and recurrent (by toppling covering), so it
must be in R.

This reasoning proves that each equivalence class has at least one representative in
R. In the case b+ ∈ Ω, as both the cardinality of R and the number of classes are
det ∆, each equivalence class must have a unique representative in R. In particular, the
representative in R of 0 is called the recurrent identity, and we denote it with the symbol
Id r. This configuration can be found as the fixed point of the map z →R(z+b+), started
from 0 (see [22, 21]), or of the map z → R(z + p), or, under the mild assumption that
z ∈ Ω, more directly, with no need of iterations, by the relation

Id r = R(z + (z −R(z + z))) . (3.16)

(introduced in [49]). In fact, as z −R(z + z) ∈ Ω, z + (z −R(z + z)) is recurrent, thus
its relaxation is in R.

In the z = 0 gauge, the operation u⊕v := R(u+v) sends S×S into S, and thus defines a
semigroup on this space. Furthermore, this operation also sends S×R→ R, R×S → R,
and, as a corollary, R×R→ R.

The charges behave linearly under this operation: Q(u ⊕ v) − Q(u) − Q(v) ∈ Zn.
The unicity of representatives in R of the equivalence classes allows then to construct
inverses, for the action on this space, and thus to promote ⊕ to a group action on R, of
which Id r is the group identity. This structure was first introduced by Creutz [22, 21],
and then investigated in several papers [20, 49, 71].

The covariance of the notations allows to define the operation ⊕ in general. We have

u⊕ v := R(u+ v − z) ; u⊕† v := R†(u+ v − z) . (3.17)

Note however that now the charges behave in an affine way, and only the translated ver-
sions, Q′(u) = Q(u)−Q(z) and Q′′(u) = Q(u)−Q(z) respectively for the two operations,
have no offset. In particular, the two groups induced by ⊕ and ⊕†, as well as the two sets
R and R†, are isomorphic but not element-wise coincident, as the only natural bijection
among the two makes use of the involution ι.

Call M =M[ai , a
†
i ] the transition monoid generated by the ai’s and a†i ’s acting on our

set of configurations (see [72] for an introduction to the theory). A generic element in
M has the form

A = a†
i11
· · · a†

i1
ℓ(1)

a
i21
· · · a

i2
ℓ(2)

a†
i31
· · · a†

i3
ℓ(3)

· · · a
i2k
1
· · · a

i2k
ℓ(2k)

. (3.18)

These monomials, for different sets of indices, are not all different among each others (we
recall thatM, seen as a transition monoid acting on Zn, has all the relations aiaj = ajai,

and a†ia
†
j = a†ja

†
i , while acting on S has also all the relations (3.12). Define

w(A) = −ei11 · · · − ei1ℓ(1)
+ ei21 · · · + ei2

ℓ(2)
− ei31 · · · − ei3ℓ(3)

· · · + ei2k
1
· · ·+ ei2k

ℓ(2k)
, (3.19)

which is thus independent on the ordering of the operators within A (that, recall, is
composed of non-commutative operators). For A and A′ two operators of the form above
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then we have ~w(AA′) = ~w(A) + ~w(A′), while, analyzing the charges defined for the
configurations, we have for any z ∈ Zn, Q(frac)(Az) − Q(frac)(w(A)) − Q(frac)(z) ∈ Zn.
Thus, we have a collection of sub-monoids MH of M associated to a given sandpile A,
which are in correspondence with the subgroups H ≤ G of the group of translations on
the torus, G ∼= Zd1 × Zd2 × · · · × Zdg

describing the structure of the set R of stable
recurrent configurations.

In particular, the smallest of these sub-monoids, that we callM0, is in correspondence
with the trivial subgroup on the torus composed of the identity element alone, and
contains all and only the operators A with w(A) ∼ 0. This is the sub-monoid of operators
that leave stable the equivalence classes, i.e. Az ∼ z.

The simplest operators in M0 are the set of a†iai , and aia
†
i , for any i. Slightly

less simple combinations are a†waw and awa
†
w, for generic w ∈ Ω. Indeed, the fact that

these operators are elements inM0 has been one of the motivations behind the study of
relations as in Theorems 4 and 5. The study of a dynamics involving the operators a†iai
is suggested in Section 3.4.

We have also other sub-monoids, that do not follow under the characterization above.
In particular, of course, we have the two commutative sub-monoidsM+ andM−, gener-
ated by the sand addition operators alone, {ai}, or by the sand removal operators alone,

{a†i}, respectively, together with their sub-monoids M±
H , again in correspondence with

subgroups of the torus. The monoidsM+
0 andM−

0 contain the identities of the sandpile
(e.g., if b+i ≥ 0 for all i, ab+ ∈ M

+
0 ). Remark however how in general all monomials in

M±
0 different from the identity have ‘large degree’ (e.g., of order L for the BTW sandpile

on a L×L domain), while inM0 the simplest non-trivial elements, a†iai , have degree 2.

3.2 Statement of results

Two new theoretical results are extensively required for the analysis of interesting dy-
namics. The first one is the following

Theorem 4. For every i ∈ V , acting on S+,

aia
†
iai = ai ; (3.20)

and, acting on S−,
a†iaia

†
i = a†i . (3.21)

Proof. The two equations are related by the involution, so we only prove (3.20). I.e.,

for all z ∈ S+, aia
†
iaiz = aiz. First of all, as, for z ∈ S+ and w ∈ Ω, awz = awR(z),

we can restrict our attention to z ∈ S. If zi < zi we have a†iaiz = z, and our relation
follows. If zi = zi, the avalanche due to the action of ai performs at least one toppling
at i. By Proposition 1, y = aiz has no FSC’s with I = {i} or I = {i, j}. That is, either
yi > zi−∆ii, or yi = zi−∆ii and, for all j 6= i, yj ≥ zj−∆jj−∆ij. By direct inspection,

in the first case aia
†
iy = âiâ

−1
i y = y and in the second case aia

†
iy = ti âit

†
i â

−1
i y = y. In

both cases, our relation follows. �
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As a matter of fact, Theorem 4 is in fact the tip of an iceberg of a much more general
family of identities, with operators ai and a†i replaced by aw and a†w, for w ∈ Ω, that
will be discussed in the next Section. Let us note here how, acting on S+, the identity
awa

†
waw = aw holds for simple reasons if w is recurrent, due to the fact that awa

†
wawz ∼

awz, both sides of the equation are stable recurrent, and there exists a unique stable
recurrent representative in each equivalence class.

An immediate corollary of Theorem 4 is the following

Corollary 1. For every i ∈ V , acting on S, Πi ≡ a†iai and Π†
i ≡ aia

†
i are idempotents,

i.e., Π2
i = Πi , and Π†2

i = Π†
i .

Indeed, the set S = S+ ∩ S− is left stable by the action of the monoid. It is enough
to multiply equation (3.20) by a†i , from the left or from the right respectively for the two

claims, or, alternatively, multiply (3.21) by ai , from the right or from the left respectively.

The simplicity of Corollary 1 may suggest that abelianity is restored at the level of
these idempotent combinations, Πi . This is not the case. No pairs of distinct oper-

ators in the set {a†1a1, . . . , a
†
nan, a1a

†
1, . . . , ana

†
n} commute with each other, in general.

Nonetheless, a few interesting facts are found.

For a finite set I ⊆ V , call NI = {a†iai}i∈I . For X ⊆ Zn, call NI [X] the set of y ∈ Zn

such there exists a configuration x ∈ X and a finite sequence (i1, . . . , ik) of elements in

I such that a†ikaika
†
ik−1

aik−1
· · · a†i1ai1x = y, that is NI [X] is the set of possible images of

X under the action of products of operators in NI .

The second new theoretical result of this paper is

Theorem 5. Consider a sandpile A(∆, z, z) such that ∆ = ∆T and ∆ij ∈ {0,−1} for
i 6= j. For any I ⊆ V , and any z ∈ S+, there exists a unique state y(z, I) in NI [{z}]

such that a†iaiy = y for all i ∈ I. For any state x ∈ NI [{z}], we also have y ∈ NI [{x}].

Thus, this theorem shows that certain collections of idempotents have a well-charac-
terised set of common fixed points. The portion of this set accessible from any configu-
ration z has cardinality exactly 1.

Furthermore, the statement of this theorem can be translated in terms of Markov
Chains. Consider a Markov Chain in which the initial state is z(0) = z, and at each

time t an element a†itait ∈ NI is chosen (with non-zero probabilities for all elements), and

z(t + 1) = a†itaitz(t). Then the theorem states that this Markov Chain is absorbent, on
an unique state y, and in particular, no matter the evolution up to some time t, y is still
accessible from z(t) (and in fact it will be reached at some time). A dynamics of this
kind will be described in Section 3.4.

The theorem above will be proven in Section 3.3. Furthermore, the state y(z, I) will
be shown to have a further characterization, in terms of a multitoppling Abelian Sandpile
associated to the original system.
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3.2.1 Generalization of Theorem 4

As anticipated in the previous Section, theorem 4 is only a particular case of a wider
class of identities. Our aim is to prove the Theorem 7 which states

awa
†
wawz = awz . (3.22)

In order to achieve this result, we start with a lemma.
Let z ∈ S+, and define T (z) = {T |T ∈ Ω, z − T∆ ∈ S}. This set is non-empty, as it

contains the vector T ∗(z) defined as R(z) = z − T ∗∆.

Lemma 2. For all T ∈ T (z), T � T ∗.

Proof. This is a consequence of abelianity. Call X(1) the set of unstable sites of z ≡ z(1),

and T (1) as T
(1)
i = 1 if i ∈ X(1) and 0 otherwise. For z − T∆ ∈ S, one needs T � T (1).

Call z(2) = z(1) − T (1)∆. Note that z(2) ∈ S+. Clearly, T ∈ T (z(1)) if and only if
T − T (1) ∈ T (z(2)). Repeating the resoning above for z(2) leads that, for z − T∆ ∈ S,
one needs T � T (1) + T (2). This analysis corresponds to the implementation of the
relaxation operator “in parallel”. Iterating, up to when the avalanche stops, leads to
T � T (1) + T (2) + · · · = T ∗, as was to be proven. �

Lemma 3. If z ∈ R, T ∈ Ω, and y = z + T∆ ∈ S, then T = 0 and y = z.

Proof. Assume by absurd that T ≻ 0. Call m = maxi(Ti) ≥ 1 and Xm the set of sites
realising the maximum. We prove that Xm is a FSC for z. Indeed, for i ∈ Xm,

fmax(Xm)i = zi −
∑

j∈Xm

∆ji , (3.23)

while

zi = yi −
∑

j

Tj∆ji = yi −m
∑

j∈Xm

∆ji −
∑

j 6∈Xm

Tj∆ji

≤ zi −m
∑

j∈Xm

∆ji −
∑

j 6∈Xm

(m− 1)∆ji = zi −
∑

j∈Xm

∆ji − (m− 1)b+i .
(3.24)

Where the last equality comes by adding and subtracting
∑

j∈Xm
∆ji and substituting

b+i where necessary. Then we know that m ≥ 1 and b+i ≥ 0 and comparing with (3.23),
we conclude. �

Theorem 6. For w ∈ Ω and z ∈ R,

awa
†
wz = z . (3.25)

Proof. Let T (1) and T (2) the vectors such that y = a†wz = z−w+T (1)∆ and x = awy =
y−T (2)∆ = z+(T (1)−T (2))∆. As T (1) ∈ T (y+w) (because (y+w)−T (1)∆ = z ∈ S), and
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by definition T (2) = T ∗(y+w), by Lemma 2 we have that T (2) � T (1), i.e. T (1)−T (2) ∈ Ω.
Finally, as z ∈ R, by Lemma 3 we have that x = z, as was to be proven. �

Now we give three main theorems, the first of them is the natural generalization of
Theorem 4 whose proof is the aim of this section. We first prove their mutual equivalence.
Then, we will deduce one of them from the Theorem 6 above.

Theorem 7. For w ∈ Ω and z ∈ S+,

awa
†
wawz = awz . (3.26)

Theorem 8. For u, v ∈ Ω and z ∈ S+,

au ava
†
vav z = ava

†
vav au z . (3.27)

Theorem 9. For u, v ∈ Ω and z ∈ S+, calling w = u+ v,

aua
†
uau ava

†
vav z = awa

†
waw z . (3.28)

Proof of the equivalences. Theorem 7 implies Theorem 8, by abelianity of the
ai’s.

Consider Theorem 8, specialized to z = 0,

au ava
†
vav 0 = ava

†
vav au 0 , (3.29)

which is trivially rewritten as
au v = ava

†
vav u . (3.30)

and recalling that av u = au v
av u = ava

†
vav u . (3.31)

which is theorem 7
Theorem 7 implies Theorem 9, again by abelianity of the ai’s.
Theorem 6 implies Theorem 7, again specializing to the case of z = 0. Indeed

aua
†
uau ava

†
vav 0 = aua

†
uau v . (3.32)

while
awa

†
waw 0 = w = u+ v = au v . (3.33)

And this concludes the equivalences. �

WE observe that Theorem (7) has already been proved in the previous Section in the
special case w = ei, and there is also pointed out how it is trivially valid in the case of
w ∈ R and s ∈ S+.
Proof of Theorem 7. Let us call z(1) = awz, and T (1) the corresponding toppling
vector, z(1) = z + w − T (1)∆.

Let us call X+ and X0 the sets of sites for which T (1) > 0 and T (1) = 0, respectively,
and call w+ and w0 the vectors

w+
i =

{
wi i ∈ X+

0 i ∈ X0
w0
i =

{
0 i ∈ X+

wi i ∈ X0
(3.34)
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We observe that z(1) has no FSC’s contained in X+.

The theorem is equivalent to

awa
†
wz

(1) = z(1) . (3.35)

For all i,

z
(1)
i = zi + wi −

∑

j

T
(1)
j ∆ji , (3.36)

and in particular, if i ∈ X0, all summands −T
(1)
j ∆ji are non-negative. We write (3.35)

as

awa
†
w+a

†
w0z

(1) = z(1) . (3.37)

The action of a†
w0 on z(1) is trivial, thanks to the observation above. Calling z(2) =

z(1) − w0, the action of a
w0 on z(2) is trivial for the same reason, and we have

a
w0aw+a

†
w+z

(2) = a
w0z

(2) . (3.38)

We will prove the stronger

a
w+a

†
w+z

(2) = z(2) . (3.39)

Define z(3) = z(2)−w+ +T (2)∆, and z(4) = z(3) +w+−T (3)∆. Using Lemma 2, through a
reasoning analogous to the one done in the proof of Theorem 6, we get T (3) � T (2) � T (1),
and the theorem is proven if we find T (3) = T (2). The inequalities above imply in

particular that T
(2)
j = T

(3)
j = 0 if j ∈ X0. Thus, the identity (3.39) is equivalent to its

restriction to the induced sandpile on the set X+. But, as z(2)|X+ = z(1)|X+ is recurrent,
the restriction of equation (3.39) is in fact the statement of Theorem 6. This concludes
the proof. �

Corollary 4. The following relations hold and are equivalent for u, v,w ∈ Ω and z ∈ S−;
here w = u+ v
For w ∈ Ω and z ∈ S−,

a†uaua
†
uz = a†uz ; (3.40)

a†u a
†
vava

†
v z = a†vava

†
v a

†
u z ; (3.41)

a†uaua
†
u a

†
vava

†
v z = a†wawa

†
w z . (3.42)

Proof. The relations are related by the involution, (3.6), the the statement of Theo-

rems 7,8 and 9, so they are trivially proved. �

3.3 Multitopplings in Abelian Sandpiles

We recall in this Section the theory of multitoppling already introduced in Section 2.6
with a notation consistent to the rest of this chapter in order to obtain a proof for
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Theorem 5. Consider an ordinary ASM A(∆, z, z). For simplicity of notations, we set in
the positive-cone gauge, so that site i is unstable if zi ≥ ∆ii.

For a non-empty set I ⊆ [n], call ~∆I =
∑

i∈I
~∆i. A multitoppling operator tI can be

associated to a set I. First of all, z is unstable for toppling I if zj � (∆I)j for all j ∈ I
(note how, in the positive-cone gauge, this coincides with the ordinary definition when
|I| = 1). Then, if the configuration is unstable, it is legitimate to perform the toppling
tIz = z − ~∆I . Also note that the dissipativity condition on ∆ implies that, for all j ∈ I,
(∆I)j ≥ 0, while for all j 6∈ I, (∆I)j ≤ 0.

Consider a collection L of non-empty subsets of [n]. The interest in multitoppling
rules for the Abelian Sandpile Model is in the following fact

Proposition 2. Suppose that, for every I, J ∈ L, the sets I ′ = I r J and J ′ = J r I are
either empty or in L. Then, if z is unstable for both I and J , tIz is unstable for J ′ and
tJz is unstable for I ′.

As clearly tJ ′tIz = tI′tJz, it easily follows

Corollary 5. In the conditions of Proposition 2, the operator R is unambiguous.

Antitopplings t†I and antirelaxation R† are defined just as in the ordinary case, e.g.
through the involution ι, which is still defined as in (3.6). A configuration is stable if no
toppling or antitoppling can occur (this coincides with the definition of S in the ordinary
case). Note that, if L does not contain the atomic set {i}, S is either empty or of infinite
cardinality (because, if z ∈ S, also z + c ~ei ∈ S for any c ∈ Z). In order to exclude this
pathological case, we will assume in the following that L includes the set L0 =

{
{i}
}
i∈[n]

of all atomic subsets, i.e. single-site topplings. In this case, as stability w.r.t. L is a more
severe requirement than stability w.r.t. L′ ⊂ L, we have that S is a subset of the set
S0 of stable configurations in the associated sandpile with only single-site topplings, and
thus of finite cardinality. As we will see later on, for any set L as in Proposition 2 the
set S is non-empty, and actually contains a set isomorphic to R, thus it has cardinality
bounded below by |R0| = det ∆, an above by |S0| =

∏
i(zi − zi + 1).

If we require both that L ⊇ L0, and satisfies the hypotheses of Proposition 2, we
get that L is a down set in the lattice of subsets, that is, for all I ∈ L and H ⊆ L
non-empty, also H ∈ L (this is trivially seen: with notations as in Proposition 2, take I
and J = I rH).

For a multitoppling sandpile A = A(L), we will call A0 = A(L0) the associated
single-site toppling sandpile.

The concept of recurrent configuration is rewritten in the context of multitoppling
rules. The various alternate definitions are modified.

Definition 4. A configuration z is recurrent by identity test if there exists an ordered
sequence (I1, . . . , Ik) of subsets of [n], constituting a partition of [n] (i.e. for all i ∈ [n]
there exists a unique a such that i ∈ Ia), such that tIk · · · tI2tI1(z + ~b+) = z is a valid
toppling sequence.



3.3 Multitopplings in Abelian Sandpiles 45

Definition 5. A configuration z is recurrent by toppling covering if there exists a con-
figuration u, such that z = tIk · · · tI1u is a valid toppling sequence, and each site i is
contained in at least one of the Ia’s.

Definition 6. A configuration z is recurrent by absence of FSC’s if, for every set I of
sites, there exists J ∈ L with L = I ∩ J 6= ∅, and zj ≥

∑
i∈IrL∆ij for all j ∈ L.

All the reasonings are the direct generalization of the ones already given in Section 3.1.2.
We just report here the appropriate modifications in Proposition 1 (recall that in our
gauge Ω ≡ S′

+, and is left stable by the topplings).

Proposition 3. Let u ∈ Ω and v = tIktIk−1
· · · tI1u. Define A =

⋃
1≤a≤k Ia. For any

set B, there exists a non-empty set H ⊆ B, such that B ⊆ H ∪ A, and, for all s ∈ H,
vs > −

∑
i∈(A∩B)rH ∆is.

Proof. We will produce explicitly a valid choice of H. If B + A, let H = B r A and
u′ = u. Note that (B ∩ A) r H = B ∩ A in this case. If B ⊇ A, for all i ∈ B, call τ(i)
the maximum 1 ≤ a ≤ k such that i ∈ Ia, then call τ = maxi τ(i), and J = Iτ(i), i.e., the
multitoppling that covered any portion of B more far in the past. Call u′ = tIτ · · · tI1u,
the configuration obtained after this last multitoppling. Note that all the entries of u′ are
non-negative. In the remaining part of the avalanche, for some non-empty set H ⊆ J , no
more topplings occur. Conversely, all the sites j ∈ (A ∩ B) rH do topple at least once
(possibly in a multitoppling event). Thus we have, for each s ∈ H,

vs ≥ −
∑

i∈(B∩A)rH

∆is , (3.43)

as was to be proven. �

We should modify the concept of forbidden sub-configuration along the same lines. We
want to produce pairs (I, f) such that, if z is recurrent by toppling covering, z|I 6= f . For
a given I, a vector f has the property above if, for all J ∈ L, J ⊆ I, f |J � −

∑
k∈IrJ

~∆k|J .
Note that the fact that L is a down set has been used to restrict the set of J ’s to analyse.

A collection of the forbidden pairs (I, f) with smallest |I|, such that no other f ′ exists
with f ′ ≻ f and (I, f ′) a forbidden pair, in the BTW sandpile with multitoppling rules
on all pairs of adjacent sites, is as follows:

−1 0 0 0 0
0

0 · · · 1
0

0
1

0
1

1
0

· · ·

Note that, at difference with the single-site sandpile, in general there is not a unique
fmax(I) such that (I, f) is a forbidden pair if and only if f � fmax(I).

At the level of the monoid M[ai , a
†
i ], we have some extra relations associated to

multitoppling rules. For example, consider the action on S+. While in the single-site
sandpile we have relations (3.12), in the multitoppling case we also have relations of the
form, for each I ∈ L, ∏

j∈I

a
(∆I)j

j =
∏

j 6∈I

a
−(∆I)j

j . (3.44)
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Note that multiplying left-hand and right-hand sides of relations (3.12) for all j ∈ I we
would have got a weaker relation, in which the two sides of (3.44) are multiplied by

∏

i∈I
j∈Iri

a
−∆ij

j , (3.45)

(recall that at the level of the monoid it is not legitimate to take inverses of ai’s, and
that, in the equations above, all the exponents are indeed non-negative).

At the level of the equivalence relation ∼, and thus of charges ~Q(z), nothing changes.
In particular, it is easy to see that u ∼ v in A if and only if u ∼ v in A0. This also leads
to the fact that there is exactly one stable recurrent configuration per equivalence class,
and that ⊕ defines a group structure over R, just as in the single-site toppling sandpile
A0 = A(L0) associated to the multitoppling sandpile A = A(L).

Note however that the set R is different from the set R0 of stable recurrent con-
figurations for A0, and the fact that they have the same cardinality results from subtle
compensations between stable/unstable and recurrent/transient configurations.

A natural bijection between R and R0, preserving the group structure, is obtained
by associating to z ∈ R0 the configuration R(z) ∈ R, where R is the complete (multi-
toppling) relaxation.

In the case of a tight sandpile, to which we restricted in this chapter, the set R†,
containing the conjugate of the stable recurrent configurations in the single-toppling
sandpile A0, coincides with the set of recurrent configurations of the sandpile in which L
contains all the subsets of [n]. In this case, there are no stable transient configurations,
and the condition for z being stable w.r.t. any toppling I, i.e. z|I 6� ~∆I for all non-empty
I ⊆ [n], is related, by conjugation, to the condition of not having FSC’s in A0, i.e.,
(ι z)|I 6� fmax(I) (because fmax(I) = (z − ~∆I)|I , and, applying the definition of ι, we
should recall that the multitoppling sandpile is formulated in the positive-cone gauge).

Now consider an ‘anomalous’ relaxation process, ρI , which may perform a multitoppling
rule I only at the first step, if possible, and then perform a single-toppling relaxation
with R0. Such a process is unambiguous, but different processes may not commute, i.e.
ρI(ρJ(z)) 6= ρJ(ρI(z)) in general.

Nonetheless, take a whatever semi-infinite sequence (I1, I2, I3, . . .) of elements in Lr
L0, such that all elements in LrL0, occur infinitely-many times. It is easy to see that, for
all z, there exists a truncation time t = t(z) such that, for all s ≥ t, ρIsρIs−1 · · · ρI1(z) =
R(z), and in particular ρIR(z) = R(z) for all I ∈ L.

The interest in these processes ρI is in the fact that their action is strongly related
to the action of the idempotents Πi = a†iai . Before stating and proving this relation
in precise terms, it is instructive to investigate first how this works in the case of the
BTW model. One easily recognizes that Πiz = z if zi < 3, or zi = 3 and zj < 3 for all
the neighbors j of i. In the first case, no topplings or antitopplings are involved, while
in the second case exactly one toppling and one antitoppling at i occur. Conversely, if
zi = 3 and zj = 3 for some neighbor j, ai causes an avalanche for which a valid sequence
of topplings may start with (i, j, . . .), i.e. aiz = tik · · · ti3tjtiz for some (i3, . . . , ik). The
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effect of the two initial topplings is identical to the effect of a multitoppling at a pair
{i, j}. And, crucially, also the if condition coincides with the one for a configuration
to be unstable w.r.t. the multitoppling at {i, j}. Thus, a configuration z ∈ Zn is left
stable by the application of Πi if and only if it is stable w.r.t. both the toppling i and
the multitopplings {i, j} for all j neighbors of i. This proves Theorem 5 in the case of
the BTW sandpile, and characterizes y(z, I) as the result of the relaxation of z, in the
multitoppling sandpile for which Lr L0 =

{
{i, j}

}
i ∈ I, |j − i| = 1

.

The proof in the general setting, that we present below, is completely analogous.

Proof of Theorem 5. One finds that Πiz = z if zi < zi, or zi = zi and zj ≤ zj + ∆ij

for all j 6= i. Again, in the first case no topplings or antitopplings are involved, while in
the second case exactly one toppling and one antitoppling at i occur.

Conversely, if the conditions above are violated, ai causes an avalanche for which
a valid sequence of topplings may start with (i, j, . . .), and the effect of the two initial
topplings is identical to the effect of a multitoppling at a pair {i, j}.

The if condition for the multitoppling {i, j} to occur is that zi > zi + ∆ji and
zj > zj + ∆ij. The condition for the avalanche to involve topplings at i and j is zi = zi
and zj > zj +∆ij. These two sets of conditions are certainly simultaneously not satisfied
if ∆ij = 0, thus we can restrict our attention to sites j such that ∆ij < 0. In this case,
the two sets coincide if and only if ∆ji = −1. Thus, in order to make the sets coincide
for all sites i, we need that ∆ is symmetric, and all the non-zero off-diagonal entries are
−1, as required in the theorem hypotheses.

The configuration y(z, I) is the result of the relaxation of z, in the multitoppling
sandpile for which Lr L0 =

{
{i, j}

}
i∈I,∆ij=−1

. �

3.4 Wild Orchids:

a Markov Chain dynamics involving both sand addi-

tion and removal

In this section we discuss a dynamics involving the operators ai and a†i . To keep the
visualization simple, all our examples are variations of the BTW model, on portions of
the square lattice and with heights in the range {0, 1, 2, 3}.

The dynamics starts from the maximally filled configuration, zi = 3 for all i, and acts
with the idempotent combinations Πi = a†iai at randomly-chosen sites.

As we know from Theorem 5, this dynamics is absorbent on a unique configuration,
identified with the multitoppling relaxation of the initial configuration, when pairs of
adjacent sites both with height 3 are unstable.

Interesting features emerge at short times, when the configuration takes the form of
a “web of strings”, satisfying a classification theorem and a collection of incidence rules,
first explained in [73], that are presented in chapter 5.

On the other extremum of the dynamics, at the fixed point we have configurations
that we call Wild Orchids and show remarkable regularities, in the form of ‘patches’,
that is, a local two-dimensional periodicity on portions of the domain, a phenomenology
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first investigated in [52], which will be studied in chapter 5. When more patches are
present, they follow an incidence rule first proven in [15]. Furthermore, being the final
configuration stable for the dimer multitoppling rule, the sites i with height equal to 3
are isolated.

If the initial domain is an elliptic portion of the square lattice, a specially higher
regularity emerges. Say that the linear dimension of the domain is of order L, and the
slope of the symmetry axes is a “small” rational p/q (with both p and q of O(1) in L).
Then, in the limit L→∞, we observe the emergence of a very simple structure of patches
and strings: we have a unique patch, crossed by strings of a unique type, parallel to one
of the two symmetry axes. This fact is in agreement with the general theory developed
in [52, 15, 73], as the toppling vector at a coarsened level is a quadratic form in the
coordinates x and y, that should vanish at the boundary of the domain, and the contour
lines of quadratic forms are conics, i.e. plane algebraic curves of degree 2.

In Figure 3.1 we present configurations obtained with the procedure described above,
starting with the maximally-filled configuration, zi = 3 for all i, on portions of the square
lattice of various shapes: a disk, an ellipse, a smooth domain which is not a conic (it is
an algebraic curve of degree 3), and a square. These figures show clearly the properties
described above.
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Figure 3.1 Configurations obtained with the procedure described in Section 3.4.
Top, middle and bottom row correspond to t = 32, t = 1024, and to the fixed
point of the dynamics, the Wild Orchid. The columns show different domains.
From left to right: a circle; an ellipse with axes rotated by arctan1/3 w.r.t. the
cartesian axes, and ratio 2 between height and width; a typical algebraic curve
of degree 3, more precisely 4x2 +4y2 +3xy+2x2y+x3 = 7 and a square. Color
code is given in fig. 5.1
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4. Identity characterization

In this chapter we will present the derivation of an Explicit formula for the Identity
configuration of the Abelian Sandpile Model in a particular directed lattice, the Pseudo-
Manhattan lattice, that is known in literature also under the name of F-lattice [15]. This
is the first explicit characterization of an Identity configuration for the ASM.

The results presented in this chapter are published in [61].

4.1 Introduction

4.1.1 Identity and patterns

The main reason of our study of the Identity configurations, that can be seen in fig. 4.1,
comes from the fact that in this configuration it is possible to find intriguing and in-
teresting patterns that cover the different part of it, in some kind of triangular shapes
that resemble to be scale invariant. Since the first studies of Creutz [22, 21] there has
been much interest on this identity configuration, Creutz itself shows in a later paper
[74] how many interesting properties can be found in the ASM, and bring as example the
calculation of the identity configuration.

What we want to stress is the emergence, in the identity, of patches covered with
periodic patterns, which are scale invariant. Sometimes this patches are crossed by
unidimensional defects; these defects and the patches themselves will be treated in detail
in chapter 5. This kind of patterns which are shown in the identity are similar to the
ones showed when adding particles on the sandpile on a single site, as has been studied
by Dhar et. al. in [15]. These features are some of the reason that pushed us toward the
study of this particular configuration of the sandpile.

4.1.2 ASM: some mathematics

As already discussed in chapter 2 the ASM has a deep mathematical structure. In
particular thanks to the Markov dynamics, the subspace of Recurrent configurations R
emerges and here a mathematical group structure can be defined.

Indeed the set R has an underlying abelian structure, for which a presentation is
explicitly constructed in terms of the matrix ∆, through the (heavy) study of its Smith
normal form. Shortcuts of the construction of the presentation and more explicit ana-
lytical results have been achieved in the special case of a rectangular Lx × Ly portion of
the square lattice, and still stronger results are obtained for the case of Lx = Ly [20].
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Figure 4.1 Identities on square geometry L×L on the BTW for different sizes,
from left to right and up to down, L equal to 32, 64, 128 and 256. Different
colors correspond to different height with the key of fig. 5.1.

Call ãi the operator which adds a particle at site i to a configuration C, and ai the
formal operator which applies ãi, followed by a sequence of topplings which makes the
configuration stable. Remarkably, the final configuration aiC is independent from the
sequence of topplings, and also, applying two operators, the two configurations ajaiC
and aiajC coincide, so that at a formal level ai and aj do commute.

More precisely, if ai acting on C consists of the fall of a particle in i, ãi, and the
sequence of topplings ti1 , . . . , tik on sites i1, . . . , ik, the univocal definition of ai and the
commutation of ai and aj follow from the two facts:

zj ≥ z̄j : tj ãiC = ãitjC ; (4.1)

zi ≥ z̄i and zj ≥ z̄j : titjC = tjtiC . (4.2)
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Another consequence is that, instead of doing all the topplings immediately, we can
postpone some of them after the following ã’s, and still get the same result. Similar
manipulations show that the relation

a∆ii

i =
∏

j 6=i

a
−∆ij

j (4.3)

holds when applied to an arbitrary configuration.
These facts lead to the definition of an abelian semi-group operation between two

configurations, as the sum of the local height variables zi, followed by a relaxation pro-
cess [22, 21, 23]:

C ⊕ C ′ =

(∏

i

azi

i

)
C ′ =

(∏

i

a
z′i
i

)
C . (4.4)

For a configuration C, we define multiplication by a positive integer:

k C = C ⊕ · · · ⊕ C︸ ︷︷ ︸
k

. (4.5)

The set R of recurrent configurations is special, as each operator ai has an inverse in this
set, so the operation above, restricted R, is raised to a group operation, the structure of
the group of recurrent configuration of a graph has been studied in [71]. According to
the Fundamental Theorem of Finite Abelian Groups, any such group must be a “discrete
thorus” T = Zd1 × Zd2 × · · · × Zdg

, for some integers d1 ≥ d2 ≥ · · · ≥ dg, and such that
dα+1 divides dα for each α = 1, . . . , g−1. The values dα, called elementary divisors of ∆,
and a set of generators eα with the proper periodicities, can be constructed through the
Smith Normal form decomposition [20]. The composition of whatever C = {zi} with the
set R acts then as a translation on T . A further consequence is that, for any recurrent
configuration C, the inverse configuration (−C) is defined, so that k C is defined for
k ∈ Z.

Consider the product over sites i of equations (4.3)

∏

i

a∆ii

i =
∏

i

∏

j 6=i

a
−∆ij

j =
∏

i

a
−

P

j 6=i ∆ji

i (4.6)

On the set R, the inverses of the formal operators ai are defined, so that we can simplify
common factors in (4.6), recognize the expression for b+, and get

∏

i

a
b+i
i = I (4.7)

so that
∏
i a
b+i
i C = C is a necessary condition for C to be recurrent (but it is also sufficient,

as no transient configuration is found twice in the same realization of the Markov chain),
and goes under the name of identity test.

This condition turns into an equivalent and computationally-cheaper procedure, called
burning test see section 2.4.2, of which a side product, in case of positive answer, is a
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Figure 4.2 Left: a portion of the square lattice. Right: a portion of the directed
square lattice we considered in this work, with in- and out-edges alternated
cyclically, and white and gray faces with arrows oriented clockwise and counter-
clockwise.

spanning arborescence rooted on the vertices of the border. So, the burning test provides
us a bijection between the two ensembles, of recurrent sandpile configurations and rooted
arborescences with roots on the border. This is in agreement with Kirchhoff Matrix-Tree
theorem, which states that the number of such arborescences is given by det ∆, while the
number of recurrent configurations is known to be det ∆ as the first step of the procedure
which determines the elementary divisors dα [25, 28].

If, for the graph identified by ∆, a planar embedding exists, with all sites i such that
b+i > 0 on the most external face, then the planar dual of a rooted arborescence coming
from the burning test is a spanning tree on the planar-dual graph.

This is clear for the undirected case ∆ = ∆T , and needs no more words. If the
graph is directed, the arborescence is directed in the natural way, while the dual tree is
constrained in some complicated way (some combinations of edge-occupations are forced
to fixed values). However, the graphical picture simplifies if, on the planar embedding, in-
coming and out-coming edges are cyclically alternating (and all plaquettes have consistent
clockwise or counter-clockwise perimeters), and all sites with either b+ or b− positive are
on the most external face, with in- and out-going arrows cyclically alternating (cfr. for
example Figure 4.2). We will call a directed graph of this kind a planar alternating
directed graph.

4.2 Identities

Given the algebraic relation (4.7), and the semi-group operation (4.4), one could define
the frame configuration Id f as the one with zi = b+i for all i, and realize that it acts as
an identity on recurrent configurations, Id f ⊕ C = C if C ∈ R. Conversely, in general it
does not leave unchanged a transient configuration, and in particular, as, for any relevant
extensive graph, Id f is itself transient, we have that Id f ⊕ Id f , and Id f ⊕ Id f ⊕ Id f , and
so on, are all different, up to some number of repetitions k at which the configuration
is sufficiently filled up with particles to be recurrent. We call Id r this configuration,
and k(∆) the minimum number of repetitions of Id f required in the ASM identified by
∆ (we name it the filling number of ∆). The configuration Id r is the identity in the
abelian group Zd1 × · · · × Zdg

described above, and together with a set of generators eα,
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L 2 4 6 8 10 12 14 16 18 20 22 ⊲

kL 1 4 7 13 19 27 35 46 58 71 87 ◮

⊲ 24 26 28 30 32 34 36 38 40 42 44 ⊲

◮ 103 119 138 156 180 198 226 248 276 305 334 ◮

⊲ 46 48 50 52 54 56 58 60 62 64
◮ 367 397 430 464 499 538 572 615 653 699

Table 4.1 Values of kL for the BTW Abelian Sandpile on square geometries of
even size, for L = 2, . . . , 64.

completely identifies in a constructive way the group structure of the statistical ensemble.
The relevance of this configuration has been stressed first by M. Creutz [22, 21, 23, 74],
so that we shall call it Creutz identity. Some exact results on the decomposition of the
identity in different parts have been achieved by Le Borgne and Rossin in [49]. See fig. 4.3
and fig. 4.1 for some examples.

Unfortunately, despite many efforts, it has not been possible to give a closed-formula
recipe for this identity state on given large lattices, not even in the case of a L × L
square, and the direct numerical investigation of these configurations at various sizes has
produced peculiar puzzling pictures [24].

In a large-side limit, we have the formation of curvilinear triangular regions of exten-
sive size (of order L), filled with regular patterns, and occasionally crossed by straigth
“defect lines”, of widths of order 1, which, furthermore, occasionally meet at Y-shaped
“scattering points”, satisfying peculiar conservation laws [73] and in chapter 5.

Similar features emerge also for the filling numbers, e.g. on the square lattice of size L,
the index kL ≡ k(∆

(L)) is not badly fitted, for even L, by a parabola kL ≃ L
2/6 + o(L2),

but showing fluctuations due to unpredictable number-theoretical properties of L. The
challenging sequence of these numbers, for L up to 64, is given in Table 4.1. It should
be noted that, conversely, odd sizes 2L+ 1 are related to 2L through a property proven
in [20, sec. 7].

The determination of Id r for a given graph is a procedure polynomial in the size of the
graph. E.g. one could prove that k(∆) is sub-exponential, and that relaxing C ⊕ C ′ for
C and C ′ both stable is polynomial, then one can produce the powers 2s Id f recursively
in s, up to get twice the same configuration. Better algorithms exist however, see for
example [22, 21, 23].

Still, one would like to have a better understanding of these identity configurations.
This motivates to the study of the ASM on different regular graphs, such that they
resemble as much as possible the original model, but simplify the problem in some regards
so that the family (over L) of resulting identities can be understood theoretically.

We explore some possible different regular graphs, where is defined an ASM, and
we choose the best candidates among them following a few principles:(1) we wish to
simplify the problem in some structural way; (2) we want to preserve the property of the
L× L lattice, discussed in [20, sec. 4] that allows to reconstruct the elementary divisors
of ∆ through a suitable matrix nyy′ , which appears when producing a presentation of
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Figure 4.3 The top-left corners of the identities Id (L)
r for L = 50 and L = 100

in the BTW model (the other quadrants are related by symmetry). Heights
from 0 to 3 correspond to gray tones from dark to light. The smaller-size
identity is partially reproduced at the corner of the larger one, in a fashion
which resembles the results of Theorem 6.
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the group, in terms of O(L) generators ai of the whole set L2; (3) we want to preserve
planarity, and the interpretation of dual spanning subgraphs as spanning trees on the
dual lattice, i.e. we want to use either planar undirected graphs, or planar alternating
directed graphs (according to our definition above).

4.3 A prolog: cylindric geometries

A first possible simplification comes from working on a cylindrical geometry. We call
respectively periodic, open and closed the three natural conditions on the boundaries of
a Lx×Ly rectangle. For example, in the BTW Model, for site (i, 1), in the three cases of
periodic, open and closed boundary conditions on the bottom horizontal side we would
have the toppling rules

periodic: zi,1 → zi,1 − 4; zi±1,1 → zi±1,1 + 1;

zi,2 → zi,2 + 1; zi,Ly → zi,Ly + 1;

open: zi,1 → zi,1 − 4; zi±1,1 → zi±1,1 + 1;

zi,2 → zi,2 + 1;

closed: zi,1 → zi,1 − 3; zi±1,1 → zi±1,1 + 1;

zi,2 → zi,2 + 1;

The external face, with b±i 6= 0, is in correspondence of open boundaries, so, as we want a
single external face, if we take periodic boundary conditions in one direction (say, along
x), the only possible choice in this framework is to take closed and open conditions on
the two sides in the y direction.

Our notation is that z̄i takes the same value everywhere: on open boundaries, b−i
and b+i are determined accordingly, while on closed boundaries either we add some extra
“loop” edges, or we take z̄i −∆ii > 0.

The cylindric geometry has all the non-trivial features of the original ASM for what
concerns group structures, polynomial bound on the relaxation time in the group ac-
tion, connection with spanning trees, and so on (even the finite-size corrections to the
continuum-limit CFT are not more severe on a Lx×Ly cylinder than on a Lx×Ly open-
boundary rectangle), but, for what concerns the determination of Id r through relaxation
of kId f , the system behaves as a quasi-unidimensional one, and Id r is in general trivially
determined.

Furthermore, in many cases Id r is just the maximally-filled configuration Cmax. This
fact is easily proven, either by checking that Id r ⊕ Id f = Id r, which is easy in the quasi-
1-dimensional formulation (or in other words, by exploiting the translation symmetry in
one direction), or with a simple burning-test argument, in the cases in which on each site
there is a single incoming edge from sites nearer to the border. Figure 4.4 shows a few
examples.

Such a peculiar property has a desiderable consequence on the issue of inversion of a
recurrent configuration. Indeed, if C and C ′ are in R, we have that

(−C)⊕ C ′ = Id r ⊕ (−C)⊕ C ′ = (Id r − C)⊕ C ′ (4.8)
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Figure 4.4 Reduction to a quasi-1-dimensional system for the ASM on cylindric
geometry, on a few examples all having Id r coinciding with Cmax. From top to
bottom: a portion of the square lattice, in the two orientations; of the hexagonal
lattice, in the two orientations, of Manhattan and pseudo-Manhattan lattices.
Plain edges correspond to ∆ij = ∆ji = −1, while a directed edge (from i to j)
with k arrows correspond to ∆ij = −k. In-(out-)coming bold arrows correspond
to b− (b+) equal to 1, while the lozenge-shaped double-arrows correspond to
b− = b+ = 1. A loop with k arrows on i corresponds to z̄i−∆ii = k, otherwise
z̄i = ∆ii.
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where, if C = {zi}, (−C) = {z̃i} is the inverse configuration we seek, but Id r − C is
simply the configuration with z̃i = z̄i − zi − 1, and has all non-negative heights.

4.4 Pseudo-Manhattan Lattice

From this section on, we will concentrate on square geometries, on the square lattice with
edges having a given orientation, and all vertices having in- and out-degree equal to 2.

For this reason, we can work with z̄i = 2, so that S = {0, 1}V instead of {0, 1, 2, 3}V

(a kind of simplification, as from “CMYK” colour printing to “black and white”). In this
step we lose in general a bit of symmetry: e.g. on a square of size 2L we have still the
four rotations, but we lose the reflections, which are arrow-reversing, while on a square
of size 2L+ 1 we lose rotations of an angle π/2, and only have rotation of π.

Square lattices with oriented edges have already been considered in Statistical Me-
chanics, especially in the variant called “Manhattan Lattice” (i.e. with horizontal edges
oriented east- and west-bound alternately on consecutive rows, and coherently within a
row, and similarly for vertical edges), cfr. for example [75]. However this lattice in two
dimensions is not a planar alternating directed graph, and the results for the related
ASM model will be discussed only briefly in last section.

We start by analysing a less common variant, which is better behaving for what
concerns the ASM model, and which we call pseudo-Manhattan lattice (it appears, for
example, in the totally unrelated paper [76]). In this case, the horizontal edges are
oriented east- and west-bound alternately in both directions (i.e. in a chequer design),
and similarly for vertical edges. As a result, all plaquettes have cyclically oriented edges.
A small portion of this lattice is shown in Figure 4.2, where it is depicted indeed as the
prototype planar alternating directed graph. Conventionally, in all our examples (unless
otherwise specified) we fix the orientations at the top-right corner to be as in the top-right
corner of Figure 4.2.

Quite recently, in [15, 44, 45, 46] both Manhattan and pseudo-Manhattan lattices
have been considered as an interesting variant of the ASM model (the latter under the
name of F-lattice), with motivations analogous to ours. This corroborates our claim that
these variants are natural simplifications of certain features in the original BTW model.

The main feature of the Creutz identities, on square portions of the pseudo-Manhattan
lattice with even side, is self-similarity for sides best approximating the ratio 1/3, up to
a trivial part, as illustrated in Figure 4.5.

The precise statement is in the following Theorem 6. Call Id
(L)
r the set of heights in

the Creutz identity for the square of side 2L, encoded as a L× L matrix for one of the
four portions related by rotation symmetry. Say that index (1, 1) is at a corner of the
lattice, and index (L,L) is in the middle. We have

Theorem 6. Say L = 3ℓ+ s, with s = 1, 2, 3. Then, Id
(L)
r is determined from Id

(ℓ)
r and

a closed formula, and thus, recursively, by a deterministic telescopic procedure in at most
⌊log3 L⌋ steps.

For s = 1 or 3, we have
(
Id

(L)
r

)
ij

=
(
Id

(ℓ)
r

)
ij

if i, j ≤ ℓ, otherwise
(
Id

(L)
r

)
ij

= 0 iff,
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Figure 4.5 The top-right corners of the identities Id (L)
r for L = 21 and L = 64

(remark: 64 = 3 · 21 + 1). The smaller-size one is exactly reproduced at the
corner of the larger one, while the rest of the latter has an evident regular
structure, according to theorem 6.
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s = 1 :
ℓ ℓ− 1 3 ℓ− 1

ℓ
ℓ

ℓ

Id
(ℓ)
r

s = 2 :
ℓ ℓ 3 ℓ− 1

ℓℓ+ 1

ℓ

Id
(ℓ)
r
T

s = 3 :
ℓ ℓ+ 1 3 ℓ− 1

ℓℓ+ 2

ℓ

Id
(ℓ)
r

Figure 4.6 The non-recursive part of the identities Id (L)
r (top-right corners) for

L = 3ℓ+ s, and s ∈ {1, 2, 3}, illustrating the set described by (4.9). For s = 2,
we show the transposed of Id r. Black and white stand respectively for zi = 0
and 1; gray regiorns corresponds to chequered parts, starting with white on the
cells cutted by π/4-inclination lines.

for i+ j + s even,

i < ℓ, |L− ℓ− j| − i > 0; (4.9a)

j > ℓ, |2ℓ+ 1− i|+ j < 2ℓ+ s; (4.9b)

i ≤ 2ℓ, j = L− ℓ; (4.9c)

and, for i+ j + s odd,

i > ℓ, |L− ℓ− i| − j > 0; (4.9d)

i > ℓ− 1, |2ℓ+ s− j|+ i < 2ℓ; (4.9e)

If s = 2 the same holds with i and j transposed in Id
(L)
r and Id

(ℓ)
r (but not in (4.9)).

Furthermore, kL = L(L+1)
2 .

The statement of equations (4.9) is graphically represented in Figure 4.6.

The understanding of the Creutz identity on square portions of the pseudo-Manhattan
lattice is completed by the following theorem, relating the identity at side 2L+ 1 to the

one at side 2L. We encoded the identity at even sides in a L×L matrix Id
(L)
r , exploiting

the rotation symmetry, such that the extended 2L× 2L matrix has the property

(Id (L)
r )i,j = (Id (L)

r )2L+1−j,i . (4.10)

We can similarly encode the identity at odd sides in a structure of almost 1/4 of the

volume, namely a (L+ 1)× (L+ 1) matrix Îd
(L)
r , using the fact that

(Îd
(L)

r )i,j = (Îd
(L)

r )2L+2−i,j = (Îd
(L)

r )i,2L+2−j . (4.11)



62 Identity characterization

Theorem 7. We have (Îd
(L)
r )i,j = (Id

(L)
r )i,j if i, j ≤ L, (Îd

(L)
r )L+1,j = 0 if L− j is odd

and 1 if it is even, and, for i ≤ L, (Îd
(L)
r )i,L+1 = 0 if L− i is even and 1 if it is odd.

The statement of this theorem is illustrated in Figure 4.7.

The proof of Theorem 7, given Theorem 6, is easily achieved through arguments
completely analogous to the ones of [20, sec. 7]. We postpone the (harder) proof of
Theorem 6 to the discussion of the equivalence with Theorem 9 below.

There are some similarities and differences with the identities in the BTW model. In
that case, besides the evident height-2 square in the middle, there arise some curvilinear
triangolar structures, mostly homogeneous at height 3, but some others “texturized”,
so that there exists a variety of patterns which appear extensively at large sizes (in
the metaphor of CMYK offset printing, like the way in which composite colours are
produced!). A first attempt of classification of these structures appears in [52]; some
progresses were made by [73] and a wider discussion on the classification, coming to a
complete list, is given in chapter 5. In our case, we only have “black and white”, but,
as four zeroes in a square are a forbidden configuration (as well as many others too
dense with zeroes), we can not have extesive regions of zeroes (black, in our drawings of
fig. 4.5). A big square in the middle is still there, rotated of 45 degrees, while triangoloids
are replaced by exact “45-45-90” right triangles in a “texturized gray” coming from a
chequered pattern. Indeed, to our knowledge, such a regular structure as in theorem 6
was not deducible a priori (in particular, not before the publication of [15]), and our
initial motivation was to study the emergence of patterns in a 2-colour case.

The statement of Theorem 6 would suggest to look for similar features also in the
BTW model. It turns out that, while in the directed case the ⌊(L − 1)/3⌋ size is fully
contained in the corner of the L size, in the BTW the ⌊L/2⌋ size is partially contained
in the corner of the L size, in an empirical way which strongly fluctuates with L, but is
in most cases more than 50% (cfr. figure 4.3 for an example).

The heuristics in the case of the Manhattan lattice, under various boundary prescrip-
tions, are somewhat intermediate: the continuum-limit configuration exists and coincides
with the one for the pseudo-Manhattan, but the ⌊(L − 1)/3⌋ corners are only partially
reproduced by the size-ℓ identities.

How could one prove Theorem 6? An elegant algebraic property of the identity is
that it is the only recurrent configuration for which all the “charges” are zero (see [20],
eqs. (3.3) and (3.4)). More precisely, and in a slightly different notation, given a whatever
ordering of the sites, and any site i, and calling Ai,j the minor (i, j) of a matrix A, we
have

Qj(C) :=
∑

i

zi(−1)i+j det ∆i,j (4.12)

andQj(Id r) = qj det∆ with qj ∈ Z, with Id r being the only stable recurrent configuration
with this property.

A possible proof direction (that we do not follow in this chapter) could have been
as follows. An algebraic restatement of the expression for the charges is achieved in
Grassmann calculus, through the introduction of a pair of anticommuting variables ψ̄i,
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Figure 4.7 The recurrent identity on the pseudo-Manhattan lattice of side 50
(up) and 51 (down), an example of how the identity on side 2L+ 1 is trivially
deduced from the one on side 2L.
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ψi per site. Then, by Grassmann Gaussian integration, we have that

(−1)i+j det ∆i,j =

∫
D(ψ, ψ̄) ψ̄iψj e

ψ̄∆ψ (4.13)

where there is a contribution b−k ψ̄kψk in the exponential for each site on the border, and
a contribution (ψ̄h − ψ̄k)ψk if a particle falls into h after a toppling in k, i.e. ∆hk = −1
(we are pedantic on this because the asymmetry of ∆ could create confusion on who’s
who with ψ̄ and ψ).

So the configurations in the same equivalence class of the identity are the only ones
such that, for each i, the “expectation value”

〈(∑

j

zjψ̄j

)
ψi

〉
:=

∫
D(ψ, ψ̄) (

∑
j zjψ̄j)ψi e

ψ̄∆ψ

∫
D(ψ, ψ̄) eψ̄∆ψ

(4.14)

is integer-valued.
Furthermore, expressions as in the right hand side of (4.13) are related, through

Kirchhoff theorem, to the combinatorics of a collection of directed spanning trees, all
rooted on the boundary, with the exception of a single tree which instead contains both
i and j, and the path on the tree from i to j is directed consistently.

So, a possible approach by combinatorial bijections could be to prove that, for any j,
there is a suitable correspondence among the forests as above, and a number qj of copies
of the original ensemble of rooted forests.

Such a task is easily performed, even for a generic (oriented) graph, for what concerns
the frame identity Id f , for which all charges qj are 1. Unfortunately, for what concerns
Id r, and with an eye to the proof performed in the following section, it seems difficult
to pursue this project at least in the case of the pseudo-Manhattan lattice on a square
geometry. Indeed, if the relaxation of kLId f to Id r requires tj topplings on site j, it is
easy to see that qj(Id r) = kL− tj, and from the explicit expressions for kL and the values
of the topplings (the latter are in the following Theorem 9) we see that the values of the
charges qj are integers of order L2.

4.5 Proof of the theorem

Here we perform the direct proof of Theorem 6. It is fully constructive, a bit technical,
and maybe not specially illuminating for what concerns the algebraic aspects of the
problem, but still, it makes the job.

Now, in order to better exploit the geometry of our square lattice, we label a site

through a pair ij denoting its coordinates. We can introduce the matrix T
(L)
ij , which tells

how many topplings site ij performed in the relaxation of kLId f into Id r. Exploiting the
rotational symmetry, we take it simply L × L instead of 2L × 2L, with (i, j) = (1, 1)

for the site at the corner, analogously to what we have done for (Id
(L)
r )ij . Of course,

although we call T (L) and Id
(L)
r “matrices”, they have a single site-index, and are indeed

vectors, for example, under the action of ∆.
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Clearly, T is a restatement of Id r, as

(Id (L)
r )ij = kL b

+
ij −∆ij,i′j′ T

(L)
i′j′ (4.15)

so that Id r is determined from T , but also vice-versa, as ∆ is invertible. Actually, through
the locality of ∆, one can avoid matrix inversion if one has some “boundary condition”
information on T , and the exact expression for Id r, e.g. if one knows T on two consecutive
rows and two consecutive columns (and we have a guess of this kind, as we discuss in the
following).

The constraint that (Id r)ij ∈ {0, 1} gives that T is locally a parabola with small
curvature. Moreover, in the regions corresponding to homogeneous portions of Id r, T
must correspond to a discretized parabola through easy formulas. The telescopic nature

of (Id
(L)
r , Id

(⌊L−1
3

⌋)
r , . . .) has its origin in an analogous statement for (T (L), T (⌊L−1

3
⌋), . . .),

and on the fact that kL has a simple formula. As we will see, these facts are easier to
prove.

We start by defining a variation of T which takes in account explicitly both the
height-1 square in the middle of Id r, and the spurious effects on the border. Define
k̃(L) = ⌊(L− 1)(L+ 2)/4⌋ (which is approximatively kL/2), and introduce

T̂
(L)
ij := T

(L)
ij − k̃(L)b+ij −

(L−i+1
2

)
−
(L−j+1

2

)
. (4.16)

A first theorem is that

Theorem 8.

T̂
(L)
iL = T̂

(L)
Lj = 0 ; (4.17a)

T̂
(L)
ij = 0 for i+ j > L+ ℓ; (4.17b)

T̂
(L)
ij ≤ 0 for all i, j. (4.17c)

This implicitly restates the claim about the middle square of height 1 in Id r, and is
in accord with the upper bound on the curvature of T given by (Id r)ij ≤ 1. With abuse

of notations, we denote by T̂
(ℓ)
ij also the L× L matrix corresponding to T̂

(ℓ)
ij in the ℓ× ℓ

corner with i, j ≤ ℓ, and zero elsewhere. Then the rephrasing of the full Theorem 6 is

Theorem 9. If M
(L)
ij = −(T̂

(L)
L−i L−j − T̂

(ℓ)
L−i L−j) for s = 1, 3 and the transpose of the

latter for s = 2, defining θ(n) = 1 for n > 0 and 0 otherwise, and the “quadratic + parity”
function q(n) on positive integers

q(n) = θ(n)

(
n2 + 2n+

1− (−1)n

2

)

=





0 n ≤ 0 ;
(n+ 1)2/4 n positive odd;
n(n+ 2)/4 n positive even;

(4.18)
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then M (L) is a deterministic function 1, piecewise “quadratic + parity” on a finite number
of triagular patches

M
(L)
ij =

(
j + 1

2

)
+

(
i+ 1

2

)
+ max

(
0,
⌊
ℓ+1−|i−ℓ|−|j−L−ℓ|

2

⌋)

+ θ(L− ℓ− i)

(
j − L+ ℓ+ 1

2

)
+ θ(L− ℓ− j)

(
i− L+ ℓ+ 1

2

)

− q(i− j − L− ℓ− 1)− q(j − i− L− ℓ− 1)

− q(j + i− L+ ℓ)− q(i+ j − L− ℓ− 1) .

(4.19)

Clearly Theorem 8 is contained in Theorem 9, just by direct inspection of the sum-
mands in (4.19). The equivalence among Theorems 6 and 9 is achieved still by direct
inspection of (4.19), with the help of some simple lemmas. First remark that the use of
−T̂ instead of T makes us work “in false colours”, i.e. effectively interchanges z into 1−z
in Id r. Then, defining ∇2

xf(i, j) := f(i+ 1, j) + f(i− 1, j)− 2f(i, j), and analogously ∇2
y

with ±1 on j, we have that

∇2
x,yq(±i± j − a) =

{
1 ±i± j − a ≥ 0 and even;
0 otherwise;

(4.20)

and that ∇2
x max(0, j − a) = 1 at j = a only, while ∇2

y max(0, j − a) = 0 always (this
reproduces the ℓ extra zeroes out of the triangles depicted in figure 4.6).

So, the explicit checks above can lead to the conclusion that equation (4.15) holds at
every L for the expressions for T and Id r given, in a special form, i.e. subtracting the
equation for size L with the one for size ℓ, but on the L× L system. The latter is then
easily related to the one on the ℓ×ℓ system, at the light of equation (4.17a), which allows
to state that there are no different contributions from having splitted the four quadrants
of T̂ (ℓ). Thus, equation (4.17a), guessing the exact expression for Tij on the edges of
each quadrant by mean of a simple formula, is crucial to the possibility of having the
telescopic reconstruction procedure.

In other words, even without doing the tedious checks, we have seen how, by a series
of manipulations corresponding to the subtraction of ℓ× ℓ corners to the L×L matrices,
the proof is restricted to the analysis of the “deterministic” part, with i > ℓ or j > ℓ. As,
in this case, all the involved functions depend on L through its congruence modulo 2, or
3, or 4, it suffices to check numerically the theorems for 12 consecutive sizes in order to
have that the theorem must hold for all sizes. We did the explicit check for sizes up to
L = 64.

The only thing that we need in order to conclude that the conjectured expression Id r

corresponds to the identity is to prove that it is indeed a recurrent configuration. Again,
we do that in two steps, in order to divide the behaviour on the self-similar ℓ× ℓ corner
and on the deterministic part.

First, remark that in Id
(L)
r the internal border of the quadrant (the sites ij with i

or j = L) is burnt in the Burning Test even without exploiting the other mirror images.

1The formula here present is different from the one presented in [61], this one is the correction.
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This is true because, at every L and on both borders, we have a substructure of the form

which is burnt through the following cascade (we put the burning times, and denote with
arrows from x to y a toppling occurring in x which triggers the toppling in y)

13 13 13 1312 12 12

10 10 10 1411 11 11

16 17 20 21

15 18 19 22

9 9 9 138 8 12

6 67 7

5 54

2 3

1

···

···

We choose to show just an example, instead of giving the explicit formula, but it should
be clear from the pictures above that a general-L regular procedure exists.

So, Id r satisfies the burning test if and only if the deterministic part of Id r (the L×L
square minus the ℓ × ℓ corner) satisfies the burning test with the border of the corner
having a bij = 1 every two sites. This check must be performed only on the deterministic
part, and again is done in a straightforward way, or, with conceptual economy, implied
by the explicit numerical check on 6 consecutive sizes. This completes the proof of all
the three theorems. �

4.6 Manhattan Lattice

For the Manhattan lattice, we performed an investigation similar to the one above for the
pseudo-Manhattan one, although, as we already said, the motivations are less strong, as
this lattice is not planar alternating. A small-size example of Creutz identity, compared
to the pseudo-Manhattan one, is shown in Figure 4.8.

The numerics gave positive and negative results. The positive results concern the
filling number kL, that, according to extensive tests (up to L ≃ 100) we conjecture to be

kL =

{
1
4 L(L+ 2) L even
1
4 (L+ 1)2 L odd

(4.21)

Furthermore, the whole quadrant except for the ℓ× (ℓ− 1) corner seems to be determin-
istically described by a set of rules analogous to equations (4.9) (again, ℓ = ⌊(L+1)/3⌋),
and, as in (4.9), depending from the congruence of L modulo 3, and a transposition
involved if s = 2.
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Figure 4.8 The recurrent identity on a portion of side 50 of the square lattice,
with pseudo-Manhattan (up) and Manhattan (down) orientation.



4.7 Conclusions 69

The negative result is that the telescopic exact self-similarity between side L and
side ℓ seems to be lost in this case. As we said, this property relies crucially on the
simplicity of the toppling matrix on the boundary of the quadrants, which seems to be
an accidental fact of the pseudo-Manhattan lattice, and has few chances to show any
universality. For this reason we did not attempt to state and prove any theorem in the
fashion of Theorem 6 in this case.

4.7 Conclusions

Here we have studied, numerically and analytically, the shape of the Creutz identity
sandpile configurations, for variants of the ASM, with directed edges on a square lattice
(pseudo-Manhattan and Manhattan), and square geometry. An original motivation for
this study was the fact that heights are valued in {0, 1} (while the original BTW sandpile
has heights in {0, 1, 2, 3}), and we conjectured that this could led to simplifications. The
results have been even simpler than expected, and qualitatively different from the ones
in the BTW model.

In the BTW model, the exact configuration seems to be unpredictable: although
some general “coarse-grained” triangoloid shapes seem to have a definite large-volume
limit, similar in the square geometry and in the one rotated by π/4, here and there
perturbations arise in the configuration, along lines and of a width of order 1 in lattice
spacing. We discuss the role of these structures in various aspects of the ASM in the
paper [73] and in chapter 5.

The triangoloids have precise shapes depending from their position in the geometry,
and are smaller and smaller towards the corners. Understanding analytically at least
the limit shape (i.e. neglecting all the sub-extensive perturbations of the regular-pattern
regions) is a task, at our knowledge, still not completed, although some first important
results have been obtained in [52]; further achievements in this direction have come with
the work of Levine and Peres [59, 77], both in the similar context of understanding the
relaxation of a large pile in a single site (see in particular the image at page 10 of Levine
thesis, and the one at

http://www.math.cornell.edu/ l̃evine/gallery/invertedsandpile1m10x.png,

and, for the directed model, the one at page 20 of

newton.kias.re.kr/ ñspcs08/Presentation/Dhar.pdf ).

In our Manhattan-like lattices on square geometry, however, we show how the sit-
uation is much simpler, and drastically different. Triangoloids are replaced by exact
triangles, all of the same shape (namely, shaped as half-squares), and with straight sides.
All the sides of the triangles are a fraction 1

23−k of the side of the lattice (in the limit),
where the integer k is a “generation” index depending on how near to a corner we are,
and indeed each quadrant of the configuration is self-similar under scaling of a factor
1/3. The corresponding “infinite-volume” limit configuration is depicted in Figure 4.9.
A restatement of the self-similarity structure, in a language resembling the z → 1/z2

conformal transformation in Ostojic [52] and Levine and Peres [59], is the fact that, un-
der the map z → ln z, a quadrant of the identity (centered at the corner) is mapped in
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ln 3

π
2

Figure 4.9 Up: the limit Creutz Identity configuration on our Manhattan and
pseudo-Manhattan lattices. White regions correspond to have height 1 almost
everywhere. Gray regions correspond to have height 0 and 1 in a chequered
pattern almost everywhere. Down: the image of a quadrant under the map
z → ln z.
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a quasi–doubly-periodic structure.
Also the filling numbers (i.e. the minimal number of frame identities relaxing to the

recurrent identity) have simple parabolic formulas, while in the original BTW model a
parabola is not exact, but only a good fitting formula.

These features reach the extreme consequences in the pseudo-Manhattan lattice,
where the exact configuration at some size is deterministically obtained, through a ratio-
1/3 telescopic formula. These facts are not only shown numerically, but also proven
directly in a combinatorial way.

In chapter 5 and in the article [73], we describe how it is possible to achieve a complete
comprehension of the shape of generic triangoloids that appear in many deterministic
protocols of the ASM, see in particular section 5.6.
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5. Pattern formation.

Strings, backgrounds and their

classification.

It has been spent a huge amount of efforts in the study of Abelian Sandpile Model, as
prototype of Self Organized Criticality. These studies have mainly dealt with the critical
exponents of avalanches produced in sandpiles driven slowly in their critical steady state
through a stochastic dynamics. Recently the attention on the sandpile model has grown
also in other aspects, different from the study of critical exponents. Indeed in particular
deterministic protocols has been possible to see beautiful and intriguing patterns with
shapes and defects.

In recent works of Dhar and collaborators [15, 44, 45, 46] is studied the emergence of
patterns in some given periodic configurations after the addition of sand on a single site;
they study also the case of multiple sites, the effect of the presence of sinks and of noise,
and finally they determine the asymptotic shapes in some interesting cases. The studies
presented take place first on the standard undirected square lattice, which is the space
of definition of the classic BTW model, but a complete formula determining the detailed
shapes of the patterns is given only for particular lattices called the F-lattice (which we
investigate under the name of pseudo-Manhattan lattice in chapter 4 when studying the
recurrent identity) and the Manhattan lattice.

Here we investigate some experimental protocols on the standard square lattice based
on the action of the operators Πi introduced in chapter 3, these protocols produce a full
family of patches and strings, over a number of backgrounds. The relation between these
objects are given and their classification is fully given through a recursive procedure.
Afterwards we present a protocol to produce Sierpiński triangoloids whose fundamental
elements are these patches and strings, these triangoloids are the key structure arising in
the classification of strings and backgrounds.

Part of the results here presented are published in the article [73].

5.1 Introduction

While the main structural properties of the ASM can be discussed on arbitrary graphs [18],
for the subject at hand here we shall need some extra ingredients (among which a notion
of translation), that, for the sake of simplicity, suggest us to concentrate on the original
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3
2
1
0

Figure 5.1 A string with momentum (6, 1), in a background pattern with pe-
riodicities V =

(
(2, 1), (0, 2)

)
. String and background unit cells are shown in

gray. The density in the string tile is ρ = (18 ·3+8 ·2+4 ·1+7 ·0)/(62+12) = 2.

realization on the square lattice [1], within a rectangular region Λ ∈ Z2.

So in this setting, we write i ∼ j if i and j are first neighbors. The configurations
are vectors z ≡ {zi}i∈Λ ∈ NΛ (zi is the number of sand-grains at vertex i). Let z̄ = 4,
the degree of vertices in the bulk, and say that a configuration z is stable if zi < z̄ for all
i ∈ Λ. Otherwise, it is unstable on a non-empty set of sites, and undergoes a relaxation
process whose elementary steps are called topplings: if i is unstable, we can decrease zi
by z̄, and increase zj by one, for all j ∼ i. The sequence of topplings needed to produce
a stable configuration is called an avalanche.

Avalanches always stop after a finite number of steps, which is to say that the diffusion
is strictly dissipative. Indeed, the total amount of sanwid is preserved by topplings at
sites far from the boundary of Λ, and strictly decreased by topplings at boundary sites.
The stable configuration R(z) obtained from the relaxation of z, is univocally defined,
as all valid stabilizing sequences of topplings only differ by permutations.

We call a stable configuration recurrent if it can be obtained through an avalanche
involving all sites in Λ, and transient otherwise (Section 3.1.2). Recurrent configurations
have the structure of an Abelian group (Section 2.2) under the operation z ⊕ w :=
R(z + w). We have only a partial knowledge of the group identity for each Λ (see e.g.
[22, 49]; recently a complete characterization has been achieved for a simplified directed
lattice, the F-lattice [61]) nonetheless they are easily obtained on a computer and they
provide a first example of the intriguing complex patches in which we are interested. The
maximally-filled configuration zmax, with (zmax)i = z̄ − 1 = 3 for all i and density equal
to 3, is recurrent. More generally, for large Λ, recurrent configurations must have average
density ρ(z) = |Λ|−1

∑
i zi ≥ 2 + o(1) (this bound is tight). So structures with density

ρ > 2, ρ = 2 and ρ < 2 are said respectively recurrent, marginal and transient.

We call patch a region filled with a periodic pattern. The density ρ of a patch is the
average of zi within a unit tile. Neighboring patches may have an interface, periodic in
one dimension, along a vector which is principal for both patches. Let us suppose that
in a deterministic protocol [15] we generate a region filled with polygonal patches, glued
together with such a kind of interfaces. At a vertex where ℓ ≥ 3 patches meet, label
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cyclically with α = 1, . . . , ℓ these patches, call ρα the corresponding densities, and θα the
angles of the interfaces between the patch α and α+ 1 (subscripts α = ℓ+ 1 ≡ 1). These
quantities are proven to satisfy the relation in Q + iQ

ℓ∑

α=1

(ρα+1 − ρα) exp(2iθα) = 0 (5.1)

which has non-trivial solutions only for ℓ ≥ 4 [15].
We call string a one-dimensional periodic defect line, with periodicity vector k =

(kx, ky) ∈ Z21, that we call momentum, in a background patch, periodic in both direc-
tions, and has k as a periodicity vector. The background on the two sides may possibly
have a periodicity offset. See fig. 5.1.

5.2 Experimental protocols for strings and patches

Consider a two-dimensional lattice Λ, with vertex-set isomorphic to Z2, and edge-set
sharing the periodicity of Z2, so that each vertex has z̄ neighbors in Λ. (The exclusion,
made here, of the possibility of an internal basis, as e.g. in the honeycomb lattice, is
done only in order to keep a light notation.) Take as toppling rules ~∆i and threshold
parameters z̄i the ones induced by the lattice.

Now consider a simply-connected domain Ω ∈ R2. Then, for ǫ sufficiently small,
consider the ASM model on Gǫ := Ω ∩ ǫΛ. Various portions of the boundary may have
open or closed boundary conditions. A site ~n ∈ Ω ∩ ǫΛ with b neighbors out of Ω has
z̄~n = z̄ and b~n = b in case of open conditions, and z̄~n = z̄− b and b~n = 0 in case of closed
conditions. The system dissipates mass at the open portion of the boundary of Ω, or in
more and more far regions of Ω, if the latter is not compact.

Then, call an experimental protocol P a configuration z(ǫ) obtained through the
deterministic evolution of a given (ǫ-dependent) initial condition w(ǫ) on Gǫ.

For pairs (~x, ǫ) ∈ Ω×R+, define some function ~x′ǫ(~x) ∈ Gǫ such that |~x′ǫ − ~x| = O(ǫ),
and consider the local coordinate system, for i ∈ ǫΛ and ‘near’ to ~x: i = ~x′ǫ + ǫ~n, with
~n ∈ Z2 and |~n|ǫ≪ 1.

We say that the point ~x has a weak (thermodynamic) limit under protocol P, if a
function x′ǫ(x) as above exists such that, for ǫ arbitrarily small, a subset of [0, ǫ] with
measure O(ǫ) exists, in which the description of z(ǫ) through a local coordinate system
near x is independent from ǫ, and determined by some explicit formula in ~n.

We say that the point ~x has a strong (thermodynamic) limit under protocol P, if
the same holds as above, except for the fact that the ‘good’ behavior should concern the
whole interval. In other words, besides some value L, for all sizes the behavior of z(ǫ)
near x is determined (instead of just a finite fraction).

A number of protocols have been considered in the literature, mostly for BTW, among
them:

1. the determination of the recurrent identity [22, 21, 49].

1Here and in the following, bold letters k, v, . . . are vectors in Z2 if not otherwise stated.
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2. the relaxation of ⌊ǫ−2⌋δi0 + u, where u is a periodic configuration [52, 15, 50].

All these protocols, for various choices of lattice Λ and domain Ω, seem to show a ‘weak’
thermodynamic limit almost everywhere (and even a strong limit, but only in some
regions and with trivial patterns). Instead, for comparison, the same protocols in a
peculiar variant of the ASM on a directed square lattice (called F -lattice or Pseudo-
Manhattan lattice) show a strong limit everywhere [15, 61].

The possibility of having at least a weak limit comes from the fact that the problem
has the form of a discrete integer-valued Laplacian, i.e., for a given unstable configuration2

w determined by the protocol, one has to find the stable configuration z = R(w) and the
integer-valued vector T such that

∆T + z = w . (5.2)

Remark that also the problem of determining the recurrent identity is in this class, as
Id r = R(kb), as stated in (2.36), where b has a definite thermodynamic limit, and k ∼ ǫ−2.

If it was not for the requirement that T is integer-valued (and its counterpart, the pos-
sibility for an offset z in the resulting configuration), the equation above would describe
a simple Laplacian problem on a lattice, formally solved by methods of Green functions,
for which even the perturbative series of lattice corrections is well understood. These
new ingredients, being an aspect of the non-linearity of the problem, are responsible for
the emerging interesting behaviors.

5.2.1 Master protocol

Before introducing the details of the master protocol, we recall some notions on the ASM,
introduced in chapter 3. We have the sand-addition operators ãi’s and the toppling
operators ti’s, as defined in section 2.1.1, they are clearly invertible. So it is possible
to introduce the sand-removing operators ã−1

i ’s and the antitoppling operators t−1
i ’s, as

done in Section 3.1.1 equation (3.5). As a consequence, besides the standard relaxation
operator R which is defined by means of topplings, we have an anti-relaxation operator
R†, which maps Zn to S+, and S− to S, by performing a sequence of antitopplings.

As a corollary, within the space of stable configurations, the toppling / antitoppling

operators Πi = a†iai act as projectors, translating the configurations inside their equiv-
alence class. In each class there is a single stable configuration which is invariant under
the application of any Πi, result that we proven in Theorem 5.

We now define the master protocol (for definiteness in the BTW case and starting
from the maximally filled configuration, but extensions are immediate). Take Λ to be the
square lattice, and Ω to be a polygon with L sides of slope λ1, . . . , λL and open boundary
conditions. Consider a string of points (~x1, . . . , ~xt) in Ω, and, for any ǫ, the corresponding
nearest points in Ω ∩ ǫΛ.

Then, almost surely (w.r.t. Lebesgue measure in Ωt), the configuration obtained act-
ing with Πxt · · ·Πx1 on the maximally-filled configuration has a strong limit everywhere

2We use here the notation of chapter 2
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except that at the corners of the domain, and is constituted by a web of strings, in a
maximally-filled background, meeting at scattering vertices (with momentum conserva-
tion), and obtained through a simple geometric construction, iterative in t′ = 1, . . . , t.
Strings may end up on the boundary, without momentum conservation, but only in a
neighborhood (of size related to t) of the corners. Top-left image in fig. 5.5 and fig. 5.2
are examples of such configurations.

This protocol explores the transient configurations on the given equivalence class [z]
of the recurrent representative. Indeed taking into account the action of ai followed by
a†i on a given configuration z an easy calculation shows that the two configurations are
toppling equivalent. Call T the toppling vector associated to the action of ai and U the
one for a†i then we have

Πiz = z −
∑

j

~∆j(Tj − Uj) (5.3)

that is, the two configuration are equivalent under toppling and belong to the same class.
Let now describe in detail the action of the operators Πi’s on a particular example:

consider a rectangular region Λ, and the maximally filled configuration zmax. We split the
action of Πi in two parts, first the addition of the grain followed by the relaxation, then
the removal followed by the anti-relaxation. So add one grain of sand at some vertex
j and then relax the configuration, R(zmax + ei); the resulting configuration an inner
rectangle, of strings (1, 0) and (0, 1), equidistant from the border of Λ and having j on its
perimeter, the corners of this rectangle are connected to the corners of Λ with strings (1, 1)
and (−1, 1). This picture has exactly one defect at j, manifested as a single extra grain,
w.r.t. the underlying periodic structure, see Fig. 5.2. The configuration R(zmax + ei) is
obviously recurrent. Now remove this extra grain in j and anti-relax the configuration, if
necessary, the configuration is now transient. Repeat the procedure at some new vertex
j′, say in the region below the inner rectangle. In the resulting configuration new strings
(2, 1) and (−2, 1) appear. Iterating this procedure, with Λ large enough, strings with
higher and higher momenta generated. Furthermore, given that the unit tiles of strings
with different momenta are classified, this protocol is completely predictable, for arbitrary
Λ, through a purely geometric construction.

Briefly, in a given recurrent background, with translation vectors V = (v1,v2), one
and only one string of momentum k = m1v1 + m2v2 = mV can be produced, if
gcd(m1,m2) = 1, and no strings of momentum k exists for k not of the form above.
V and V ′ are equivalent descriptions of the background periodicity iff V ′ = MV , with
M ∈ SL(2,Z). Accordingly, m′ = mM−1. Furthermore strings can meet in tri-vertices

only if they satisfy the relation k = p + q with det

(
px py
qx qy

)
= v1 ∧ v2.

It is possible to generalize the master protocol following three directions, each one
corresponding to the changing of a particular feature of the starting configuration:

1. we can change the slope of the sides of the polygons;

2. we can change the boundary conditions of the boundary to be open or periodic;

3. we can change the background pattern of the configuration.
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Figure 5.2 On the left, the configuration obtained after relaxation from zmax

plus an extra grain of sand exactly at the vertex where a defect appears. On
the right, the result after removing the defect and the addition of one more
grain.

Figure 5.3 Construction of the string k = (5, 3) through the master protocol
with slopes k and periodic boundary up and down.

(1) When dealing with the master protocol on a general polygon Ω, the strings are
created by the interaction of the avalanche started by Πi with each side. Indeed when
the operator Πi acts on a site i in a recurrent patch lying on the border of Λ with slope
ℓ, then a string of momentum ℓ is detached from that side. The string is placed so that
it intersects the point i.
This property allows to generate any string, with different slopes and in (almost) any
point of Λ, simply changing the slopes of the sides and the application points. If a
recurrent patch has two consecutive sides with slopes ℓ1 and ℓ2 on the open borders of
λ, acting with Πi generates both the strings of different slope, so they must intersect. In
case they have ℓ1 ∧ ℓ2 = 1 they satisfy the scattering relations and meet in a scattering
vertex generating the string ℓ3 = ℓ1 + ℓ2. The creation of the vertex in terms of the
single strings is explained in Section 5.5 and is shown in fig. 5.4 and fig. 5.20.

(2) An open boundary is essential in order to create the strings, when acting with the
Πi’s. If we have periodic boundary conditions on two opposite sides, then they do not
generate any string, in particular a string can cross them going from one of these sides to
the other. This feature allows to generate one shot any string we want. It suffices to take
the parallelogram with two opposite sides of slope k and two horizontal sides. Then we
assign open boundary condition to the sides of slope k and periodic boundary conditions
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Figure 5.4 Determination of scattering vertices through the master protocol
with open boundaries in a rhomboidal geometry for a background Φ(3, 1), here
we use the function (5.10) to identify a background from its associated string
on the maximally filled background. The slopes are p = (2, 3) and q = (3, 0),
which corresponds to the smallest horizontal vector linear combination of v1

and v2 of the background. The protocol generates 4 scattering vertices in the
top figure, acting with Πi on the perimeter of the inner rhombus. Successive
action of the operator add a higher momentum string q such that the new
scattering vertex k′ → k + q adds to k→ p + q.
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Figure 5.5 Illustration of the Cheshire cat effect. Top left: a realization of the
master protocol, in a rectangular geometry (Lx, Ly) = (200, 240) on the max-
imally filled background. The sequence of Πi’s positions, randomly chosen, is(
(64, 85), (58, 212), (118, 96), (141, 145), (145, 223), (6, 102), (192, 95), (16, 201),

(188, 89), (57, 30)
)
. Bottom right: an arbitrary recurrent drawing, such that

the height is 3 in all the positions above (the image is a low-resolution reproduc-
tion of the artwork for the 1951 Disney animated film “Alice in Wonderland”).
Bottom left: after applying the same sequence of Πi’s to this configuration, it
results in essentially the same geometric structure of network of strings, with
suitable local modifications when the dark parts of the drawing are crossed.
This modifications do not translate the positions of the strings, as if the cat
had the property of being invisible to the master protocol. A magnified detail
showing clearly this property is visible in the top-right images.
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on the horizontal sides. The action of a single Πi generates two strings of slope k, one
crossing the point i and the second symmetric w.r.t. the axis parallel to k. These strings
are “infinite” along the direction of the periodicity. An example of the result of such a
protocol can be seen in fig. 5.3 where the use of periodic boundary conditions allow to
create, one shot, the desired string.

(3) We have presented the protocol starting from the maximally filled configuration,
the first reason pushing us to use it is that the avalanches produced when acting with
Πi touch all the sites of the system, when we first start the protocol. However this
configuration is not the only one, among recurrent periodic configuration, that displays
this property. Other background configurations can be chosen as long as they are periodic,
recurrent and allow avalanches touching all the sites V , the patches defined in Section
5.4 have these properties and will be studied in this framework, and there it will be
elucidated the role of zmax as primitive background in the classification of these structures.
Repeating then the same protocol, but acting with Πi’s only on sites where their action
is not trivial3, it is possible to produce a web of string, just as starting from zmax, in any
allowed background. We must check carefully the slopes of the polygon, indeed they have
to correspond to some strings, thus being an integer linear combination of the vectors
generating the background with coprime components. When strings meet in vertices, the
value of the cross product of the incident strings has not to be 1 anymore but v1 ∧ v2

being v1 and v2 the generators of the translation for the background.

A final remark: we note that, using as starting configuration, not of the maximally
filled configuration or a configuration filled with a unique recurrent periodic patch, but a
recurrent configuration with patches composed of the recurrent backgrounds defined in
Section 5.4, then the action of Πi on sites i with height z̄i − 1, still generates the web of
strings as in the other cases. The difference arises when strings overlap a patch that was
not maximally filled. In these zones the resulting string is perturbed, usually being the
string in the maximally filled background decreased as it was decreased w.r.t. zmax the
patch; and it comes back to normality when reaching the maximally filled space, we call
this effect the Cheshire cat effect. A scheme of what happen, and a concrete example, is
given in fig. 5.5.

5.2.2 Wild Orchids

In Section 3.4 we described an experimental protocol which is a Markov Process defined
on the space of stable configurations S. Starting from the maximally filled configuration
zmax at each time we randomly choose a site i and we act with the idempotent combination
Πi = a†iai .

In Theorem 5 is proved that this process converges to a fixed configuration, τ , that
we have called Wild Orchid and is illustrated in fig. 5.6 and in fig. 3.1. Obviously τ is
left unchanged by the the action of the Πi’s, which is

Πiτ = τ ∀i ∈ V (5.4)

3The sites we are interested in are the ones on the border of the framing polygons described in Section
5.4
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Theorem 5 makes use of the connection between this particular Markov Chain and the
multitoppling rules, see Section 2.6, where we consider toppling cluster’s set L of (2.77)

L =
{
{i, j}ij∈E

}
∪
{
{i}i∈V

}
,

that induces the toppling rule given in (2.78)

if





ij ∈ E
zi ≥ ∆ii + ∆ij

zj ≥ ∆jj + ∆ij

=⇒ zk → zk −∆ik −∆jk ∀k.

It is easy to see that the action of Πi is trivial unless the site i is part of an unstable
cluster E in the sense of (2.78). So acting with Πi correspond to a local change of the
toppling rule, as described in Section 3.3.

Figure 5.6 The two Wild Orchids resulting from the convergence of the Markov
Chain dynamics on a circle of diameter D = 200 on the left and a square of
side L = 200 on the right.

5.3 First results

In this section we report about the results obtained in the investigations carried out with
the help of the methods introduced in the previous Section.

In a given recurrent background, with translation vectors V = (v1,v2), one and only
one string of momentum k = m1v1 +m2v2 = mV can be produced, if gcd(m1,m2) = 1,
and no strings of momentum k exists for k not of the form above. V and V ′ are equivalent
descriptions of the background periodicity iff V ′ = MV , with M ∈ SL(2,Z). Accordingly,
m′ = mM−1. And indeed, sets of m ∈ Z2 with given gcd’s are the only proper subsets
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invariant under the action of SL(2,Z). The gcd constraint arises in the classification of
the elementary strings, because, when d = gcd(kx, ky) > 1, the corresponding periodic
ribbon is just constituted of d parallel strings with momentum k/d.

The unit tile of each string, as well as of each patch, is symmetric under 180-degree
rotations. In particular, momenta k and −k describe the same string. The tile of a string
of momentum k fits within a square having k as one of the sides, so that each string is
a row of identically filled squares. This is a non-empty statement: the tile could have
required rectangular boxes of larger aspect ratio, and even an aspect ratio depending on
momentum and background.

A string of momentum k has an energy E, defined as the difference of sand-grains, in
the framing unit box of side k, w.r.t. zmax. We have the relation E = |k|2, or, in other
words, the unit tile has exactly marginal density, ρ = 2, irrespectively of the density of
the surrounding background (as seen, e.g., in Fig. 5.1).

Two strings, respectively of momentum p and q, can collapse in a single one of
momentum k (see Fig. 5.7). In this process momentum is conserved: p + q = k. More
precisely, the strings join together in such a way that the square boxes surrounding the
unit cells meet at an extended scattering vertex, a triangle of sides of lengths equal to
|k|, |p| and |q|, rotated by π/2 w.r.t. the corresponding momenta: given this geometrical
construction, momentum conservation rephrases as the oriented perimeter of the triangle
being a closed polygonal chain.

Local momentum conservation and the k↔ −k symmetry are reminiscent of equilib-
rium of tensions, in a planar network of tight material strings, from which the name.

On networks, this local conservation is extended to a global constraint. Choose an
orthogonal frame (x, t), and orient momenta in the direction of increasing t. Then, sec-
tions at fixed t are all crossed by the same total momentum. Rigid extended domain
walls between periodic patterns, satisfying similar local and global conservations, appear
in certain tiling models [78, 79, 80], which remarkably show a Yang-Baxter integrable
structure, where the corresponding strings are usefully interpreted as world-lines of par-
ticles in the (x, t)-frame. Note, however, that, at variance with these models, in the ASM
we have an infinite tower of excitations, for a given background, and infinitely many
different backgrounds too.

In the maximally-filled background, because of the (D4 dihedral) symmetry, we can
restrict without loss of generality to study strings of momentum k with both components
positive. For each such k with gcd(kx, ky) = 1, simple modularity reasonings show that
there exists a unique ordered pair of momenta p and q, with non-negative components,
such that p+q = k and the matrix

( px py
qx qy

)
is in SL(2,Z), see Appendix A for more details

on its structure. We write in this case k← (p,q). For example, (10, 3) ←
(
(7, 2), (3, 1)

)
.

The endpoint of p, starting from the top-left corner of the k framing box, is the (unique)
lattice point which is nearest to the top-side of the box. This alternative definition
generalizes to non-trivial backgrounds, and the m1v1 +m2v2 sublattice.

Let us go back to the problem of ℓ interfaces which meet at a given corner, but allow
now, besides interfaces between patches, incident strings. Following the analysis of [15],
and therefore using the graph-vector T = {Ti}, where Ti is the number of topplings at i
in the relaxation of the starting configuration, and study its characteristics in a region
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Figure 5.7 A scattering involving strings with momenta (4, 0), (2, 1) and (6, 1),
on the background pattern of Fig. 5.1 (also symbol code is as in Fig. 5.1).

that, in the starting configuration, was uniformly filled with a patch. However, now we
allow for toppling distributions which are piecewise both quadratic and linear (the linear
term was neglected in [15], as subleading in the coarsening).

For any relevant direction α, allow for a patch interface, or a string, or both. Call
Ẽ(α) the difference for unit length (not for period), in the total number of grains of sand
w.r.t. zmax, due to presence of a string, i.e. Ẽ(α) = E(α)/|k(α)|, or the contribution from
a non-zero impact parameter in the interface. It can be shown, by reasonings as in [15],
that the difference between the extrapolated toppling profile for two contiguous patches,
at a polar coordinate (r, θ), must be of the form

T
(α+1)
r,θ − T

(α)
r,θ =

r2

2
(ρα+1 − ρα) sin2(θ − θα)

+ r Ẽ(α) sin(θ − θα) +O(1) .

(5.5)

Then, by summing over α and matching separately the quadratic and linear terms, we
conclude that, for each θ,

{ ∑ℓ
α=1 (ρα+1 − ρα) sin2(θ − θα) = 0

∑ℓ
α=1 Ẽ

(α) sin(θ − θα) = 0
(5.6)

so that, besides the anticipated equation (5.1) for patches alone, that was deduced in [15],
we obtain

ℓ∑

α=1

Ẽ(α) exp(iθα) = 0 (5.7)

which describes the string and interface-offset contributions.
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Figure 5.8 From left to right, the recurrent, marginal and transient patches
constructed from the propagator k = (3, 2) ←

(
(2, 1), (1, 1)

)
in the maximally

filled background, having densities ρ = 2 and 2 ± 1/12 (symbol code is as in
Fig. 5.1).

In (5.1), the first non-trivial value for ℓ is 4 [15]. In our generalization, 4 is the
minimal value for the number of patches plus the number of strings, and thus includes
new possibilities: a scattering event, with three incident strings in a single background, as
in Fig. 5.7, and the case of two strings and two patches, producing diagrams reminiscent
of total reflection and refraction in optics, so that the specialization of (5.7) can be read
as a Snell’s law for ASM strings. For the case of three strings on a common background
B, we get

ℓ∑

α=1

E(α)

|k(α)|2
k(α) = 0 (5.8)

which shows that momentum conservation implies a dispersion relation of the formE(α) =
cB|k

(α)|2, and viceversa.

The classification of the strings preludes to a classification of the patches. To any
string of momentum k, univocally decomposed as k ← (p,q), we can associate three
patches, respectively recurrent, marginal and transient, through a geometrical construc-
tion, involving p and q, sketched in an example in Fig. 5.8, a full construction procedure
is given in the next Section.

Reflection and refraction events also appear. Let us have a triple k,p and q such
that k ← (p,q), then consider a single string of momentum k′ = mp + q (for m a large
integer), and in the scattering of mp + q into q and m parallel p strings. A consequence
of the recursive construction of the string textures, the string of momentum k′ is forced
to look as a strip-shaped patch of m-period width, of the marginal tile associated to p,
crossed by a ‘soft’ string, that reflects twice per period k′, up to ultimately leaving the
marginal patch, through a refraction, and propagates in the recurrent background.

We will show in the next section how the interplay between strings and patches,
both at the level of classification and of evolution in deterministic protocols, is the key-
ingredient to clarify allometry in pattern formation for the ASM, and to design new
protocols in which short-scale defects are totally absent. The resulting structure is a
fractal, a Sierpiński triangoloid whose structure is elucidated in Section 5.6, where the
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theoretical formula (5.1) has infinitely many distinct realizations.

5.4 Patches and strings on the Z2 lattice

Consider Z2 and the ASM defined on its vertices, a pictorial representation of the model
is obtained considering the dual lattice, which is obviously itself, and filling each pla-
quette with a color corresponding to the height of its relative point in the direct lattice,
an example of such a representation is given in fig. 5.1 where it is shown the legend
color↔height.

Let define P as the space of all possible backgrounds, or patches and Σ as the space
of all possible strings; then Σ =

⋃
B∈P ΣB, where ΣB is the space of all possible strings

on a given background B ∈ P.

We call B ∈ P a background if it is a height configuration which corresponds in
the dual lattice to a tiling of Z2 with wallpaper group 2222 and regular hexagonal tiles,
with borders on the lattice which identify a contour of height 3. A wallpaper group is
a type of topologically discrete group of isometries of the euclidean plane that contains
two linearly independent translations4. These translations identify a lattice, in such a
way that the lattice points, corresponding to all the possible translations, are in the form
{mv1 +nv2 | m,n ∈ Z} with v1 and v2 fixed vectors. It is now clear that the translation
symmetry can be specified by two vectors, nevertheless the choice of these vectors is not
unique, in fact any pair5 (av1+bv2, cv1+dv2) with ad−bc = ±1 creates the same lattice.
We choose v1 and v2 in such a way that the vectors v1, v2 and −v1 − v2 determine an
acute triangle, and we call these the canonical generators (in exceptional cases there
could be an ambiguity and v1, v2 and −v1 − v2 originate a triangle with π/2 angle). A
background is fully determined by the following objects:

- the framing polygon F (B), which is the border of the tile;

- the filling of the framing polygon H(B), the height function inside the tile;

- the translation vectors v1,v2
6;

- the triple points, 6 for every tile, placed on the intersection point of three adjacent
tiles.

These parameters for a given background are not independent, e.g. the triple points can
be obtained directly from F (B) together with the translation vectors, furthermore we
will say briefly tile understanding it as the framing polygon together with the filling.
Furthermore we call the size of a background the volume of its framing polygon, which
is |F (B)|.

4for more details see appendix D
5Each pair also define a parallelogram, whose area is constant, equal to the magnitude of the cross

product.
6In the following we will use v3 in addition to v1 and v2 with the constraint v1 + v2 + v3 = 0
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(a) (b) (c) (d)

Figure 5.9 Examples of backgrounds with different properties highlighted.
Framing polygons are drawn with yellow lines, triple points are represented
as blue dots and vectors v1, v2 and −v3 are showed in every case. In (a) is
shown the maximally filled background, it is a limit case where the triple points
are at the intersection of four framing polygons and they are only 4 per tile,
while in the typical case, they are 6 per tile and at the intersection of 3 of them,
as it is in (b), (c) and (d).

We call P ∈ Σ a string if it is a one-dimensional periodic defect line on a given
background, that is described by the frieze group 22∞. It is fully determined by the
following objects:

- the habitat background B(P ), where the string is settled;

- the periodicity vector k(P ), that identifies also a framing box of sides k(P ) and
ik(P );

- the framing polygon F (P ), which is the shape of the border of the tile producing
the defect;

- the filling H(P ), the height function of the string’s tile;

- the blue cells, points with height 2 placed at the connection between the framing
polygons of the background and of the string so that the height 3 contour from
opposite sides of the string become disconnected7.

The difference on tiles’ size8 between habitat background and strings allows to distinguish
two different types of strings. Type I strings are those with |F (P )| < |F (B(P ))| and type
II string those with |F (P )| > |F (B(P ))|. Type I strings have blue cells placed at the
connection points between a tile of the string and two of the background, taken from
the two opposite sides of the string and respectively at position ik. Type II strings have
blue cells at the connections between a tile of the background and two of the string.
Furthermore type I strings correspond to the generators of the background, hence they
are only three, their momentum being k = vα. The framing box for a string has vertices
in the center of the four corner background tiles of the string, they sit on the square of
sides k(P )× ik(P ).

7the name blue cells comes from the color for sites of height 2 used in our representation
8We call tile size the area of the corresponding framing polygon and we denote it by |F (·)|
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Type I Type II

k

ik

k

ik

Figure 5.10 Type I and Type II strings, in grey are the framing polygons of
the background, in black the framing polygons of the strings, black dots are the
points from which to draw the framing box, in dashed lines, and grey squares
are the blue cells.

The spaces P and Σ are graduated spaces (on N) with |F (B)| and |F (P )|. In this
framework, the maximally filled configuration (see fig. 5.9) is the fundamental back-
ground, and it has |F (B)| = 1, moreover in all lattices the maximally filled configuration
is a valid background and has the smallest possible |F (B)|. Then the construction of
the strings in this background, and the duality background-strings that will be discussed
later(5.16), allow to fill the list of all possible backgrounds and strings.

Let us call L(v1,v2) = span{v1,v2} ≡ {(m1v1 +m2v2) | m1,m2 ∈ Z}. If a string P
has habitat B, and B has translation vectors v1 and v2, then k(P ) ∈ L(v1,v2) and its
component m1 and m2 are coprime, so we define a subset of L(v1,v2) where the strings
actually live, LΣ(v1,v2) ≡ {(m1v1 + m2v2) | m1,m2 ∈ Z|m1,m2 coprime}. We define
the function:

A : Σ → LΣ(v1,v2)× LΣ(v1,v2)
P → (p,q)

(5.9)

that maps a string P into an ordered pair (p,q) ∈ LΣ(v1,v2) × LΣ(v1,v2) such that
p + q = k(P ) and p ∧ q = v1 ∧ v2 where v1 and v2 are the translation vectors of
B(P ). The existence and unicity of this pair is provided by properties of SL(2,Z) (this
is proved in lemma 15 ). The existence of this function allows to associate an element

A =

(
mxp myp

mxq myq

)
∈ SL(2,Z) to every string, in such a way that the periodicity vector

of the corresponding string is given by k(A) = (1, 1)A

(
v1

v2

)
, where v1,v2 are generators

of the background.
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We define the function
Φ : Σ(ν) → P(ν)

P → B
(5.10)

that maps a string P into the associated background B such that:

- F (B) = F (P );

- H(B) = H(P ).

The translation vectors have to be chosen differently if P is a type I or a type II strings.
In fact for type I strings we have:

- v1(B) = ik = iwα, where wα where α = 1, 2, 3 are the translation vectors of the
habitat background;

- v2(B) = i(wβ − ik), where β 6= α and the sign in front of ik is negative if k ∧wβ

is positive, positive otherwise9.

While for type II strings we have:

- v1(B) = ik;

- v2(B) = i(p + ik), where p is given by A(P ).

These properties completely determine the background. Applying Φ to a type I string
the v1 and v2 given through this procedure are not the canonical generators, however
the canonical generators belong to L(v1,v2), and are the suitable pair that preserves the
wedge product and generates an acute triangle. Clearly different strings can lead to the
same background (see fig. 5.11), only three of these strings are of type II and the others
of type I.

We define the functions

Ψ̂1,2,3 : P(ν) → Σ(ν′) (ν ′ < ν)
B → P1,2,3

(5.11)

that return the three fundamental type I strings with habitat background B(P1,2,3) = B.
The strings Pα have periodicity vectors vα and framing polygons F (Pα) obtained as the
empty spaces resulting when two strips of F (B) with slope vα are translated one with
respect of the other of ivα. Furthermore given Pα ∈ Σ(ν′) with ν ′ < ν and being F (Pα)
and the triple points already known, then H(Pα) is also known, since the hierarchical
construction of Σ. In this process the limit case in which |F (Pα)| = 0 can occur, this is
the case when F (P ) is square shaped, indeed it exists a periodicity vector vα parallel to
a side of the square (perpendicular to the others) and the procedure to obtain F (Pα), of
the relative string, results in a zero size framing polygon, however there is no problem in

9We want |v1(B)∧v2(B)| = |F (P )| and we know |F (P )| = |k|2−|F (B(P ))|, with |F (B(P ))| = w1∧w2.
So we have |v1(B)∧ v2(B)| = ik ∧ i(wβ ± ik) = k ∧wβ ± k ∧ k = k ∧wβ ± |k|2, the last two summands
have to subtract each other, but |k|2 is always positive, so its sign has to change as the sign of k ∧ wβ

changes.
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Figure 5.11 Background corresponding to a framing polygon of large size
|F (B)| = 160, that is a Φ(P ) for the three strings of fig. 5.12.

placing the blue cells. These strings are limit cases, and they do not correspond to any
background through Φ, when needed we will read this situation as a lack of background.

We introduce the functions

Φ̂1,2,3 : P(ν) → Σ(ν)

B → P1,2,3
(5.12)

that return the three type II strings associated to a framing polygon of a given back-
ground. They are given by the following properties:

- F (P1,2,3) = F (B);

- H(P1,2,3) = H(B);

- k1,2,3 = iv1,2,3(B).

- B(P1,2,3) = Φ(Ψ1,2,3(B));

In the case of zero size Ψα(B) then the corresponding Pα has no habitat background and
do not exist as proper type II string, although it appears in the Sierpiński construction,
where the lack of background means it is placed at the border of the ASM configuration.
We note that Φ̂α and Φ satisfy the following relation

ΦΦ̂α = IP (5.13)

Moreover we observe that, given B′ = ΦΨ̂α(B) for some B ∈ P then it exists a string P
with B′ as habitat background such that Φ(P ) = B. Similarly, given P ′ = Ψ̂αΦ(P ) for
some P ∈ Σ then P is a string on the background associated to P ′ through Φ.
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Figure 5.12 Three different type II strings corresponding to the same framing
polygon.
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Figure 5.13 The three fundamental strings on the background shown in fig. 5.11.

.
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We define the functions

Ψ1,2,3 : Σ(ν) → P(ν′) (ν > ν ′)
P → B1,2,3

(5.14)

which return the three backgrounds where P is a type II string. This function is defined
by

Ψα = ΦΨ̂1,2,3Φ (5.15)

In other words, this means that, given a string P , the fundamental type I strings of the
associated background through (5.10) generate the backgrounds where P lives as a type
II string.

We have now all the ingredients to prove the duality connection which exists between
strings and backgrounds in the following theorem.

Theorem 10. Let us take two couples (P,B(P )) and (P ′, B(P ′)) in Σ × P such that
the size of their tiles is greater than zero and with B(P ′) = Φ(P ) and P ′ such that
F (P ′) = F (B(P )). Then it exists a duality relation between them, which is made explicit
by the following function:

J : Σ× P → Σ× P
(P0, B0) → (P1, B1)

(5.16)

with B0 = B(P0) and B1 = B(P1). The action of J is given as follow:

- B1 = Φ(P0)

- k(P1) = ik(P0)

- F (P1) = F (B0)

- H(P1) = H(B0)

Proof. Given the definition of J , (P0, B0) has a type I string iff (P1, B1) has a type II
string (and viceversa), this is clear cause to the interchange of framing polygons at each
use of J and the definition of type I or type II strings in relation to the comparison of
sizes of F (P ) and F (B(P )).

To complete the statement J being a duality relation we need to check that J is an
involution, that is J 2 = I. The action of J 2 can be summarized as follow:

(P0, B0)
J
−−−→ (P1, B1)

J
−−−→ (P2, B2) (5.17)

If (P2, B2) = (P0, B0) then J 2 = I.
At a level of framing polygons and fillings, the identity is trivial. In fact given the

actions of Φ and J , the tiles are exchanged twice so they do not actually change from
(B0, P0) to (B2, P2).

It suffices now to check the equality for the periodicity vectors of the strings and
the translation vectors of the backgrounds in order to complete the construction. The
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periodicity vector of the string is multiplied by i at each step, resulting in a final minus
sign10, so P0 = P2.

It remains to analyze the translation vectors of the background. We distinguish two
cases: P0 a type I or a type II string.

Let us first consider the case of P0 type II string, then the relation (5.9) gives the
decomposition k0 = p + q and B1 = Φ(P0), so in particular v1(B1) = ik0 and v2(B1) =
i(p + ik0), now B2 = Φ(P1), P1 is a type I string and v1(B1) ∧ v2(B1) > 011, therefore
v1(B2) = i(ik0) = −k0 and v2(B2) = i(ip − k0 − i(ik0)) = −p. This two vectors, −k0

and −p are in L(v1(B0),v2(B0)) by definition and their wedge product is −k ∧ −p =
(p + q) ∧ p = q ∧ p = v1(B0) ∧ v2(B0) so they generate the same background of v1(B0)
and v2(B0) that is B2 = B0.

If instead P0 is a type I string we can assume without loss of generality k0 = v1(B0)
and we have k0 ∧ v2(B0) = v1(B0) ∧ v2(B0) > 0. So B1 = Φ(P0), with v1(B1) =
ik0 and v2(B1) = i(v2(B0) − ik0). P1 is a type II string, but given the translation
vectors of the background it has a type I description, in fact k1 = ik0 = v1(B1), and
v1(B1) ∧ v2(B1) < 0, now B2 = Φ(P1) and in particular v1(B2) = −k0 = −v1(B0) and
v2(B2) = i(i(v2(B0)− ik0) + i ik0) = −v2(B0), so B2 = B0, and J is an involution. �

The whole demonstration process is sketched in table 5.1.

Examples of couples (P,B) ↔ J (P,B) are given in the images of fig. 5.12 in corre-
spondence with the ones of fig. 5.13. J is not defined for zero size string, although they
can be associated with particular structures sitting on the size of the configuration, and
in this sense having no background, this discussion will be resumed in Section 5.6.

We finally remark the unique properties of the maximally filled background Bmax

picked up together with its string (1, 1)Bmax (indeed (1, 0)Bmax and (0, 1)Bmax have zero
size and are not object of the theorem), the crucial point is the equality between tiles’ sizes
of the string and the background, 1. Cause to this equality the couple ((1, 1)Bmax , zmax)
is self-dual which is

((1, 1)Bmax , Bmax) = J ((1, 1)Bmax , Bmax). (5.18)

This property will a key in the understanding of self-similarity of particular Sierpiński
structures in Section 5.6.

5.5 Strings construction and vertices

Given a background B, its space of strings ΣB is composed of the three fundamental
type I strings given by Ψ̂α(B) and a full list of type II strings with periodicity vectors
in LΣ(v1,v2). As LΣ(v1,v2) is generated by two among v1,v2 and v3, being this a
redundant set of gerators, then ΣB is generated through a recursive procedure by the
three Ψ̂α(B). We focus our discussion on a fixed background B and we denote each string
only by its periodicity vector.

10k and −k indentify the same string.
11v1(B1) ∧ v2(B1) = ik0 ∧ i(p + ik0) = (p + q) ∧ p + k0 ∧ k0 = v1(B0) ∧ v2(B0) + |k0|

2 > 0
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P0 type II string

Periodicity vectors Generators

k0 = p + q P0

Φ

��
88

88
88

88
88

B0

�
�
�

���
�
�

v1(B0)
v2(B0)

k1 = ik0 P1

Φ

��
88

88
88

88
88

B1

�
�
�

���
�
�

v1(B1) = ik0

v2(B1) = i(p + ik0)

k2 = −k0 P2 B2
v1(B2) = −k0

v2(B2) = −p

(5.19)

P0 type I string

Periodicity vectors Generators

k0 = v1(B0) P0

Φ

��
88

88
88

88
88

B0

�
�
�

���
�
�

v1(B0)
v2(B0)

k1 = ik0 P1

Φ

��
88

88
88

88
88

B1

�
�
�

���
�
�

v1(B1) = ik0

v2(B1) = i(v2(B0)− ik0)

k2 = −k0 P2 B2
v1(B2) = −v1(B0)
v2(B2) = −v2(B0)

(5.20)

Table 5.1 Scheme of the action of J on strings of type I and type II
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−v1

−v2

−v3

v1

v2

v3

Figure 5.14 Division of the plane by means of generators v1,v2 and v3 consid-
ering the 2-fold rotational symmetry, which identifies v and −v.

The three v1,v2 and v3 naturally divide the plane in three sectors, delimited by
(vα,vα+1), we take v4 = v1. Cause to the 2-fold rotational symmetry saying that v

and −v identify the same string, and being v3 = −v1 − v2, each sector can be further
divided so that we have 6 sub-sectors, (vα,vβ). Thus in each sector (vα,vβ) we have a
subset of the type two strings LΣ(vα,vβ), with slope between the two vectors, that can
be expressed in term of vα and vβ). Indeed each string k is expressed through (5.9) as
sum of p and q with |p|, |q| < |k|; the subsequent application of A to the vectors obtained
step by step creates a succession of decreasing strings that finishes when fundamental
strings are reached.

Procedure 11 (k ← (p,q)). We describe how higher momentum strings k are built in
terms of their components (p,q) = A(k), on a given habitat background.

Reasoning in terms of framing boxes, the framing box of the string, k × ik, can be
tessellated by means of sub-framing boxes p × ip and q × iq; let us call A,B,C,D the
vertices of k × ik as in fig. 5.15, then p × ip sits on D and B while q × iq on A and C.
This construction yields to some region with definition problems, i.e. regions covered by
different framing boxes or regions uncovered. Being q 6= p it is |q| > |p| (or vice versa),
then the two q framing boxes overlap in a central region of size roughly |q − p|. The
recursive construction of q itself as q ← (p,q − p) forces the overlap region to be the
same.
Recursively this procedure allows to express the framing box of k in terms of fram-
ing boxes of the fundamental strings, a problematic overlap region remains, as well as
uncovered regions of size O(

√
|F (B)|), the white regions in fig. 5.15.

The formulation of this same construction in terms of framing polygons and height
functions, that we shortly call tile, solves these problems. Let start by identifying the
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A

B

C

D
p

p

q

q

q − p

k

Figure 5.15 Construction of k ← (p, q) by means of framing boxes, framing
boxes p× ip and q × iq are the dashed lines.

four background tiles at corners of k × ik, and labeling them A,B,C,D as we did for
the framing boxes; now we place the framing polygons for p and q starting from B,D
and A,C respectively, just as if they were usual strings. Now look at the just formed
sides of k (AB and DC), the construction forces the two different strings departing on
A(D) and B(C) to end in the same background tile, without any gap. At this point the
tile for k is completely tessellated, we need only to give a prescription to place the blue
cells. Where p and q face the background tiles, the standard blue cells are placed; in
addition to these, the symmetric of the corners blue cells with respect to the center of
sub-framing polygon are positioned. The overlap region appearing in this construction
corresponds now exactly to the framing polygon of q − p, and all the blue cells already
placed are kept.
The tile of k is the connected inner region once deleted the corners blue cells; this region
is composed of two p tiles , two q tiles and two background tiles, connected by the blue
cells. An example of this construction is shown in fig. 5.16 and in fig. 5.18.

Strings, on a given background, can interact in scattering vertices. In a vertex three
strings meet together following strict rules and satisfying the relation (5.7). A vertex
k → p + q must be such that the momentum, or in other word the periodicity, is
conserved; so it is k = p + q, furthermore they have to be such that p ∧ q = v1 ∧ v2

such a triple of vectors is given for any allowed string k by A(k). The minimal triple
of periodicity vectors satisfying this request is v1,v2 and −v3, these correspond to the
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A

B

C

D

Figure 5.16 Construction of k ← (p, q) by means of framing polygons, it is
shown also the vertex k→ p+q. Here p = (4−4), q = (9,−2) and k = (13,−6),
the habitat background is Φ(2,−5)

three fundamental strings Ψ̂α(B) of the background. The vertex corresponding to the
minimal triple is the fundamental scattering vertex, in fig. 5.17 it is shown for the Φ(2,−5)
background where it is (5, 2) → (1, 6) + (4,−4).

Higher momentum vertices are completely described by means of tiles, in particular,
the procedure used to explain the construction k← (p,q) is the key to predict pointwise
the shape of the vertex.

Procedure 12 (p + q → k). We describe how to construct the scattering vertex in a
process p + q → k where the strings satisfy (p,q) = A(k).

First, we note that, reasoning by framing boxes, naturally emerges a vertex triangle
whose sides are the three ik, ip and iq one for each scattering string, the area of this
triangle 1

2v1 ∧ v2, given the condition on the wedge product on p and q. The strings are
defined up to the framing box connected to the vertex triangle, thus leaving part of the
area of the triangle undefined. Let us suppose without loss of generality to have a vertex
k → p + q with |k| > |q| > |p| and k ← (p,q) through (5.9), then k has the two p and
q tiles closing the framing polygon at points B,C as in fig. 5.16; their position perfectly
fits with a string p departing from B and a string q departing from C. This construction
places the outgoing strings in the proper order of increasing slope, given p ∧ q > 0. The
blue cells placement is straight forward, indeed it suffices to place all the blue cells for
every string connected to the vertex; so the two background tiles corresponding to the
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Figure 5.17 The fundamental scattering in the Φ(2,−5) background, (5, 2) →
(1, 6) + (4,−4).

triangle vertices adjacent to ik have a single blue cell each one, in the usual position for
k, p and q respectively, the tile connecting ip and iq has two blue cells corresponding to
the strings placed, and this complete the construction.

This construction shows how the fundamental scattering vertex is characterized by
having a minimal perimeter vertex triangle, which is equal to the sum of the length of the
strings participating in the vertex among which the choice v1,v2 and v3 is the minimum;
the structure of the vertex is obtained placing three background tiles at iv1, iv2 and iv3

one with respect of the other. A detailed example can be seen in fig. 5.16, additionally
in fig. 5.19 it is displayed a net of strings and vertices, and at each vertex it is possible
to see the triangles made by the incoming framing boxes, as well as the perfect fitting of
the various framing polygons just as described in procedure 12.

The volume of the framing box is |k|2 = |F (P )| + |F (B(P ))|, the volume of framing
polygon is |k|2 − |F (B(P ))|. Density inside the framing box is ρ = 2, the lost mass in
H(P ) plus the lost mass in H(B(P )) is |k|2 − 2. In H(P ) the lost mass is |F (P )| − 1.

The density of a framing polygon is ρ = 2 + 1
|F (P )| this can be deduced recursively

from the following proposition.

Proposition 13. Given the set LΣ(v1,v2) of type II strings in background B, where
v1,v2 and v3 are the generators of the background and correspond to the three type I
strings; then ∀k ∈ LΣ(v1,v2) generated through the procedure 11 the volume of its framing
polygon is given by

|F (k)| = |k|2 − F (B) (5.21)

Proof. For the three generators we have that

|F (vα)| = |vα|
2 − F (B) . (5.22)

Procedure 11 generates strings in terms of their component, in doing this it creates a
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framing polygon F (k) such that

F (k) = 2(F (p) + F (q) + F (B))− F (p − q) . (5.23)

Suppose now that the smaller strings satisfy the relation |F (k)| = |k|2 − F (B) then we
can write

|F (k)| = 2(F (p) + F (q) + F (B))− F (p− q)
= 2|p|2 + 2|q|2 − F (B)− |p− q|2

= |p + q|2 − F (B)
= |k|2 − F (B) .

(5.24)

Being all the strings generated in terms of the generators which satisfy the relation (5.22),
that is true for every string. �

Now a few words on the construction of the different backgrounds and strings. First
of all let stress once more that the background with the smallest unit tile is the maximally
filled background, this is why we start from it in the construction of the various strings
using the procedure 11. At this point using the function Φ, Ψ and their hatted partners,
it is possible to explore the space of all the background and configurations, being now
the properties of the “bigger” backgrounds and strings based on the properties of the
generators v1, v2 and v3 of Bmax which are derived by direct inspection.

5.5.1 Patches from strings

Given a string P we have a unique (recurrent) background associated to it through the
function Φ defined in (5.10). Nevertheless this is not the only possible patch associated
to a string.

Figure 5.18 Scattering vertex (8,−4) → (5,−2) + (3,−2) in the background
Φ(2,−1).
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Figure 5.19 Complex scattering event in the Φ(2,−5) background, with genera-
tors v1 = (4,−4), v2 = (1, 6) and v3 = −v1−v2 = (−5,−2). From left to right
the three vertices are 3v1 +v2 → (2v1 +v2)+v1 then 2v1 +v2 → (v1 +v2)+v1

and last (2v1 + v2) + (v1 + v2)→ 3v1 + 2v2
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Figure 5.20 Master protocol with hexagonal open boundaries with the back-
ground Φ(2,−5). The corresponding strings net is composed only by the three
type I strings and the fundamental scattering vertices.
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For example the strings with not coprime momentum components, that can be written
as bk for some proper string k and positive integer b, display as a packing of b strings.
These packing can be obtained in two different different ways:

1. as a packing of framing boxes

2. as a packing of framing polygons

in both cases with blue cells at the suitable positions.

In case (1), when the packing is at a framing boxes level (see second image in fig. 5.8)
then the density of the patch is the same of the string, which is ρ = ρmarg = 2. This
happens to create a situation in which the burning test works in a sufficiently little patch
but it does not if the patch is too big; the limit size is 3, which means that packing a
triangular patch with framing box of a string with three tiles per side create a recurrent
patch, whether for four or more tiles the patches is not recurrent anymore.

In case (2), when the packing is at a framing polygon’s level (see third image in
fig. 5.8) then the density of the patch is less than the density of the string, the precise
value being ρ = ρmarg −

1
|F (P )| . This happens to create a situation in which the patch is

transient whatever size it has.

5.6 The Sierpiński triangle

The Sierpiński triangle is a structure that arises naturally in many deterministic protocols
of the ASM, for example in the patterns covering the identity or the ones growing when
adding sand in a single site. It is our aim to prove that the projection on the recurrent
space of certain regular configurations (realized as a large triangular patch, with a tran-
sient background, surrounded by three suitably chosen recurrent backgrounds) is a fractal
of Sierpiński type, i.e. is composed of several different patches, alternately recurrent and
transient, organized with the same adjacency structure of a Sierpiński triangle (transient
patches are sufficiently small to ensure overall that the configuration is recurrent), and
it is exactly the same occurring in the previously seen protocols.

The study of this projection by means of strings, patches and the theory presented
in the previous paragraph, will make clear how the Sierpiński triangle is a one shot
realization of the whole zoo of strings and backgrounds we want to classify.

Let us introduce T , the space of transient periodic configurations. We define a func-
tion T that associates a transient tessellation to a given background and an integer n

T : P × N → T
(B,n) → T (B)n = TB,n

(5.25)

TB,n is a rectangular configuration composed of four regions, one of which triangular with
sides corresponding to the generators of B, covered with different patches.
Three non parallel lines of slope k1, k2 and k3 split the plane in 7 regions, among these
regions only one is finite and it is a triangle see fig. 5.21. We want to inscribe the triangle
into a rectangle with sides parallel to the xy axes, the surface of it belong to 4 of the
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regions splitting the plane, the triangle itself and the three semi-infinite regions lying
on the triangle’s sides. There can occur a special case when the triangle has vertical or
horizontal sides, then the rectangle lies on this side, and its surface belongs to only three
different regions12.
The configuration TB,n is a rectangle with sides parallel to xy with an inscribed triangle,
so we need the filling of only four different regions, in order to completely characterize
it.

0

1

2

3

12

23

31

k1

k2

k3

0
1

2

3

12

2331

k1
k2

k3

Figure 5.21 Triangle construction by means of three lines k1, k2 and k3. The
grey zone 0 is the triangle, then three semi-infinite zones lying on the sides of
the triangle are labelled 1, 2 and 3; finally there are three angles 12, 23 and
31. The triangle is inscribed in a rectangle, dashed line, covered in general by
patches 0, 1, 2 and 3. In the limit case shown on the right, just 0, 1 and 2 suffice
for the covering.

The triangular region is filled with background tiles with framing polygons F (B) and
fillings H(B) arranged along translation vectors k1, k2 and k3 given by

k1 = iv1,k2 = iv2 and k3 = v3, (5.26)

where the vα are the generators of B; thus each side of the triangle is composed of n
tiles and at every point connecting these tiles we place a blue cell. The outer regions 1,2
and 3 in fig. 5.21, one for each kα, are filled with the background Ψα(B) relative to the
string Φ̂α(B) of momentum kα. Given the construction, the triangle results in a packing
of type II strings, the three Φ̂α(B), facing at each side of the triangle the appropriate
habitat background Ψα(B).

As discussed when introducing Ψ̂α in (5.11), the limit case of zero size framing polygon
can occur for some particular type I strings, it corresponds to a lack of background for

12Only two regions, if there are two sides, one horizontal and one vertical.
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the relative type II string Φ̂α(B); this absence of background actually means that the
side of the triangle sits on the side of the rectangular configuration, with slope kα for
which |F (Ψα(B))| = 0, and it corresponds to the case when a triangle’s side is vertical
or horizontal.

The TB,n’s are not transient configurations for every value of n. Indeed for n = 1, 2, 3
the configuration is recurrent, and it satisfies the burning test13. When 4 or more tiles
compose the side of the triangle, its interior part do not satisfy the burning test anymore,
being TB,n transient for n ≥ 4. The transient features of TB,n lies entirely in the triangular
region, being the background patches recurrent by construction, in the following we will
refer to this triangular region as TrB,n.

Proposition 14. Given n ∈ (N) and a background B ∈ P, then T (B,n) = TB,n is
transient for n ≥ 4 and it is possible to project it on its recurrent representative [TB,n]
adding exactly

a(s) =
s(s+ 1)

2
(5.27)

where s = ⌊(n − 1)/3⌋, is called the number of steps.
The nested structure of [TB,n] is Sierpiński like and completely determined in terms of
B and n by ~p = (ns; ps, . . . , p1) ∈ {1, 2, 3}

s+1. A summary of the structures is shown in
fig. 5.2

5.6.1 Proof

The mechanism which projects TB,n on its recurrent representative is the key under-
standing the emergence of the Sierpiński structure. As discussed when we introduced the
identity of the sandpile group in Section 4.2 the recurrent configuration equivalent to a
any given z ∈ S can be found by [z] = Id r⊕ z. Being Id r itself reachable as sum of frame
identities Id f , the same is for the recurrent configuration equivalent to TB,n, [TB,n], we
are searching for. Hence the projection procedure consists in the addition of a suitable
number of frame identities to TB,n

[TB,n] = TB,n ⊕ a(s)Id f . (5.28)

First we note that the addition of a frame identity do not perturb the outer background
patches, since these are recurrent, so we need to study in detail the projection mechanism
only for the inner triangular region TrB,n.

Let us consider TrB,n with n ≫ 4, then the addition of a frame identity transforms

its structure as follow: a string Φ̂α(B) composed of n− 3 period is detached at each side
of TrB,n that decrease into TrB,n−3, at the corners of the structure three new triangular

regions TrB′
α,1 appear with B′

α = Φ(Ψ̂α(B)+Ψ̂α+1(B)) at the connection points between
three or more different regions are present blue cells, this prescriptions leave some empty
space, which is filled by the background B. The addition of a further frame identity

13Building the triangle with sides of 1, 2 or 3 tiles, each of the tiles of the triangle is in contact with
the exterior, and in this condition the burning test works.



106 Pattern formation.

step 1 step 2 step 7

Figure 5.22 Starting from TrB,31, where B is the background b) in fig. 5.9, here
are shown the first two steps of the projection mechanism, then a further generic
step (s = 7)) corresponding to the addition of a(7) = 28 frame identities.

detaches an additional string Φ̂α(B) from the triangular region, now reduced to TrB,n−6.

This string is placed in direct contact with the previous and a string Ψ̂α(B) + Ψ̂α+1(B)
cross the B filled region connecting Φ̂α(B) to Φ̂α+1(B) of the adjacent side. An ulterior
frame identity has to be added so that the strings can reach the exterior backgrounds
or the TrB′

α,1 respectively. The addition of this two frame identities is a complete step.

After the second step TrB,n−3 goes into TrB,n−6, two parallel strings Φ̂α(B) of n − 6
periods connect the triangular region to the outer background, the first and the last of
this periods have blue cells only in the internal side except the points where they connect
with the TrB’s, and the triangular corner regions grow by one period becoming TrB′

α,2,
the remaining space is filled by B. Let stress that, given the duality relation (5.16), when
s strings Φ̂α(B) with n periods detach from TrB,n parallel to its side, the situation can

be equally described as n− 1 parallel strings Ψ̂α(B) of s periods leaving perpendicularly
to the side toward the outer background. The generic step s follows an evolution similar
to that of the first two steps, we need to add s frame identities to reach step s from s−1,
and the total number of frame identities to reach it is

a(s) = 1 + 2 + · · ·+ s =

(
s+ 1

2

)
=
s(s+ 1)

2
(5.29)

The result after s steps is composed of three triangular regions TrB′
α,s at the corners,

themselves projected on their recurrent representative [TrB′
α,s] if s ≥ 4, a packing of

n − 3s − 1 strings Ψ̂α(B) for s periods connecting the outer backgrounds to the inner
triangular region, reduced now to TrB,n−3s, and the remaining space is filled with B.

The procedure ends when TrB,n−3s is recurrent, this correspond to n′ = n − 3s ≤ 3
and so we have three cases n′ = 1, 2, 3. When n′ = 1, the remaining TrB,1 is actually just
a tile of the background B, and being n−3s−1 = n′−1 = 0 there are no strings crossing
B at all, so the empty space, left when the corner triangular regions TrB′

α,s are placed,
is completely filled by the background B. When n′ = 2 we are left with a triangle TrB,2
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TrB′′
α,3

TrB′
α,10

B

Figure 5.23 [TBα,31] being 31↔ (3; 1, 1), this Sierpiński has two breaking levels,
with no string crossing, and the minimum size triangular unbroken structures
have sides composed by three tiles.



108 Pattern formation.

at the center of the triangular structure and the three strings Ψ̂α(B) departing from it
toward the outer backgrounds at each side of TrB,2, the remaining space filled with B.
When n′ = 3 we are left with TrB,3 at the center of the triangular structure and two

parallel strings Ψ̂α(B) departing at each of its sides toward the exterior. The structures
with one string Ψ̂α(B) at each side of TrB,1 are called y and the ones with two parallel
string at each side take the name of Y structures, see fig. 5.2.

Given TB,n the number of steps needed to reach the equivalent recurrent configuration
[TB,n] depends only on the number of periods and is s = ⌊(n− 1)/3⌋, therefore the exact
number of frame identities to be added is a(s) = s(s + 1)/2. The complete nested
structure of the Sierpiński can be deduced from the number n of periods for TB,n, the
recursive procedure starts taking n = n0 then checking step by step if a further breaking
level s is possible, ns+1 = ⌊ns−1

3 ⌋ > 0 and the interior structure of [TB,ns ] depends on
ps = ns−1 − 3ns, ps = 1 corresponds to an imperturbed background B, ps = 2 to y and
ps = 3 to Y.

This procedure gives a bijection that associates a vector ~p = (ns; ps, . . . , p1) in
{1, 2, 3}s+1 to every [TrB,n] for a suitable s, that corresponds to the breaking level of
the Sierpiński; ~p contains explicitly all the information about the inner structure of the
fractal. In table 5.2 the structure of every Sierpiński is given in terms of ~p.

The geometry of the triangoloid after the projection depends on both B and n (or ~p).
Indeed after each breaking it is possible to describe exactly the shape of the curve. The
breaking level is given through ~p in particular by the value s of its size; at a breaking level s
the background B has an interface B ↔ TrB′

α
that is described by a curve that emerges

recursively in the breaking mechanism. The curve has piecewise rational slope given
by the corresponding string in background B and has monotone increasing(decreasing)
slope. The sequence of slopes in each stretch i of the curve can be written as linear
combination of vα and vα+1 the generators of B (slopes of the fundamental strings Ψ̂α(B)
and Ψ̂α+1(B) such that B′

α = Φ(Ψ̂α(B) + Ψ̂α+1(B))), so that ki =
(
Cs1
)
i
vα +

(
Cs2
)
i
vα+1

and
(
~Cs
)
i
defines the curve at each breaking level s. At each level s, i runs from 1 to 2s−1,

at the variation of s this is the sequence of Mersenne numbers14; given s ∈ N+, we obtain(
~Cs
)
i
recursively: we add the auxiliary components

(
~Cs
)
0

= (1, 0) and
(
~Cs
)
2s = (0, 1) to

the other components so ~C0 has just these two components. Now it is possible to give
the recursive step through

(
~Cs+1

)
2i

=
(
~Cs
)
i

if j = 2i even (5.30)
(
~Cs+1

)
2i−1

=
(
~Cs
)
i
+
(
~Cs
)
i−1

if j = 2i− 1 odd. (5.31)

In the following table are shown the first three recursive steps where the first and last
element of each row correspond to the auxiliary components:

Applying ~C to the vectors generators of the square lattice v1 = (1, 0) and v2 = (0, 1)
it is possible generate the set Z2

gcd=1 of all vectors invariant under SL(2,Z). The set of

14The sequence of Mersenne numbershttp://oeis.org/A000225 , are of the form Mn ≡ 2n − 1 where
n is an integer. The Mersenne numbers consist of all 1s in base-2, and are therefore binary repunits.
Sometimes Mersenne numbers are considered to be only the ones with n prime.

''http://oeis.org/A000225'
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1=(1;) 2=(2;) 3=(3;)

4=(1;1) 5=(1;2) 6=(1;3) 7=(2;1) 8=(2;2) 9=(2;3) 10=(3;1) 11=(3;2) 12=(3;3)

13=(1;1,1) 14=(1;1,2) 15=(1;1,3) 16=(1;2,1) 17=(1;2,2) 18=(1;2,3) 19=(1;3,1) 20=(1;3,2) 21=(1;3,3)

22=(2;1,1) 23=(2;1,2) 24=(2;1,3) 25=(2;2,1) 26=(2;2,2) 27=(2;2,3) 28=(2;3,1) 29=(2;3,2) 30=(2;3,3)

31=(3;1,1) 32=(3;1,2) 33=(3;1,3) 34=(3;2,1) 35=(3;2,2) 36=(3;2,3) 37=(3;3,1) 38=(3;3,2) 39=(3;3,3)

40=(1;1,1,1) 41=(1;1,1,2) 42=(1;1,1,3) 43=(1;1,2,1) 44=(1;1,2,2) 45=(1;1,2,3) 46=(1;1,3,1) 47=(1;1,3,2) 48=(1;1,3,3)

Table 5.2 The periodic table of geometric Sierpiński structures, for periods
1 ≤ n ≤ 48, dark and light blue regions represent transient and recurrent
patches, respectively, while red lines correspond to fundamental strings of the
corresponding background. For each period number n is given the structure ~p.
The single y structure consists in the intersection of three strings, while the
double Y structure is the intersection of six.



110 Pattern formation.

~C0: (1,0) (0,1)

~C1: (1,0) (1,1) (0,1)

~C2: (1,0) (2,1) (1,1) (1,2) (0,1)

~C3: (1,0) (3,1) (2,1) (3,2) (1,1) (2,3) (1,2) (1,3) (0,1)

Table 5.3 Composition of ~C in the first three recursive steps.

a

ia

b

ib

c

ic

a+ic

b+ia

b+ia

c+ib

c+ib

a+ic

a

ia

b
ib

c
ic

Figure 5.24 Breaking mechanism from a geometric point of view. Here is evident
how the procedure lead to a Bezier curve.

points Z2
gcd=1 is called the Euclid’s Orchard, they are the subset of points of the square

lattice visible from the origin. The name Euclid’s orchard is derived from the Euclidean
algorithm to find the m.c.d. of two numbers. If the orchard is projected relative to the
origin onto the plane x+y=1 (or, equivalently, drawn in perspective from a viewpoint at
the origin) the tops of the trees form a graph of Thomae’s function.

The set of points of the Euclid’s Orchard can be reached by a continuous non inter-
secting curve, which is at each level the one connecting, in order, the points generated
through the recursive procedure which gives the exact slope of the Sierpiński triangoloid.
We call this curve Eℓ at each level ℓ and. As shown in fig. 5.26 the points touched within
this procedure are not equidistant from the origin at a given level; nevertheless this curve
have an interesting property, not only at each level the curve is non intersecting, but also
different level curves do not intersect as can be seen in fig. 5.27

As last remark we note that the convergence of the Sierpiński slope curve is pretty fast
as can be seen in fig. 5.28, and reasoning about the self similarity of the curve generated
by the ~C it is possible to confirm that the curve converges in the limit ℓ → ∞ to the
generalized Bezier curve for c = 1

3 whose structure is elucidated in appendix C.
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5.6.2 The fundamental Sierpiński

As explained in the case of the duality relation, the maximally filled background Bmax

together with its string (1, 1)Bmax has the particular property (5.18). Similar consid-
eration on the size of the background and string tile that moved us in considering
((1, 1)Bmax , Bmax) as the starting configuration when producing the possibles backgrounds
and strings suggest to use Bmax and study [TBmax,n]. Choosing Bmax to produce the
Sierpiński configuration means to begin with a twice degenerate triangle, with a π/2
angle, that in inscribed in a square. The triangle being filled with (1, 1)Bmax strings fully
packed. In the breaking procedure, one see that while usually the packed configuration
till size 3 are recurrent, being transient only for p ≥ 4, here p = 3 is already transient,
shifting of one the argument on the relation between the number of periods and the
Sierpiński structure. Then the auto-duality play a role in the breaking structure, in such
a way that the degenerate triangoloid produces the same structure st size 1/3 in the π/2
corner. These structures can be seen in fig. 5.25 If we want to study with more preci-
sion the structure of the Sierpiński it is reasonable to focus on the biggest triangoloid
composing the fundamental, which results from TBα,n used in fig. 5.23. In fig. 5.29 it is
shown such a Sierpiński for p = 1093.

5.7 Conclusions

The patterns and patches that emerge naturally in some configurations of the sandpile,
under attainable under specific protocol in a completely deterministic procedure. This
allowed to study in details their structure discovering the detailed features of these ob-
jects.

We describe a framework that shows how backgrounds and strings are related via a
duality relation 10 in such a way that they are both expression of the same framing poly-
gon. This comprehension allows to create a complete catalogue of patches and strings,
starting from the maximally filled configuration zmax which corresponds to the maximally
filled background, which is the one of minimum size. (TABLE)

In fig. 5.33 is displayed the family of strings in the maximally filled background up
to |kx| equal to 7, thanks to the particular symmetries of this background these strings
suffice to create the whole sett of strings with component of modulus less than 8.

At last is introduced the Sierpiński of the sandpile. Its internal structure is completely
deduced, not only at a coarse grained level, but the actual value of every single site is
given in terms of framing polygons and strings, a few examples of this are shown in
fig. 5.31 andfig. 5.32.

The Sierpiński mechanism of hierarchical classification of patches, as well as the de-
scription of strings, hold generically for sandpiles on periodic two-dimensional lattices,
that can eventually have different symmetry properties. The triangoloid structure is uni-
versal, and, as can be easily inferred, may lead to a dihedrally-symmetric Sierpiński in the
case of sandpile on the triangular lattice (thus with heights in the range 0,. . . ,5= z̄ − 1).
In fig. 5.25 is shown the fundamental Sierpiński triangoloid for the square lattice, and in
fig. 5.29 the Sierpiński relative to the Φ(1, 2) background is shown up the breaking level
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Figure 5.25 The Sierpiński corresponding to the height 2 triangle with a π/2
angle, inscribed in a square. Here are shown in the first row periods p = 9, 39, 93
corresponding to ~p = (1; 1), ~p = (1; 1, 1, 1) and ~p = (3; 1, 1, 1), in the second
row there is p = 606 corresponding to ~p = (2; 1, 1, 1, 1, 1).
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Figure 5.26 Sequence of ki ∈ Z2
gcd=1 generated by the procedure giving the

curve Eℓ relative to v1 = (1, 0) and v2 = (0, 1) at different breaking levels
ℓ = 3, 5, 7.

6; while in fig. 5.30 is shown the Sierpiński triangoloid in the triangular lattice, in which
are evident the symmetries added.
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Figure 5.27 The curves Eℓ are displayed for different breaking levels ℓ with
different colors, at each successive level no intersection appears between the
curves.
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s = 1 s = 2 s = 3

s = 5 s = 7 s = 10

Figure 5.28 Curves Eℓ generated by the sequence of ki relative to v1 = (0, 1)
and v2 = (1, 1), the maximally filled background, for different breaking levels
s = 1, 2, 3 and 5, 7, 10, to show how fast it converges.
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Figure 5.29 The Sierpiński in the square lattice relative to bagkground Φ(1, 2)
corresponding to periods p = 1093 corresponding to ~p = (1; 1, 1, 1, 1, 1, 1).
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Figure 5.30 Here we illustrate the triangoloid at the magic period number
p = 283 corresponding to ~p = (3; 1, 1, 1, 1), in the maximally-filled background,
as obtained through the protocol introduced in section 5.6. Color code is white
for z = 5, and darker graytones for z = 4, 3, 1 in this order. Note that, due to
the initial height function in the transient patch, and the recursive mechanism
of the Sierpiński, some height values (namely z = 0 and 2) do not appear in
the configuration.
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Figure 5.31 Explanation figure for the Sierpiński nesting. Here are highlighted
tiles for both the recurrent backgrounds and the ‘transient’ patches, with break-
ing level 1.
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Figure 5.32 Explanation figure for the Sierpiński nesting. Here are highlighted
tiles for both the recurrent backgrounds and the ‘transient’ patches, with break-
ing level 2.
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ky

0

1

2

3

4

5

6

kx 0 1 2 3 4 5 6 7

Figure 5.33 Classification of the strings on the maximally filled background. In
yellow is shown the framing box. Here yellow circles sits on the blue cells.



6. Conclusions

We want here to give a brief summary of the results reported in this thesis , with particular
emphasis on the connections they share and the possible future improvements that they
could lead.

As stated in the introduction, the purpose of this work was to study the emergence
of patterns in deterministic protocols of the ASM. The first step has been to introduce
in chapter 3 a new algebraic structure in the sandpile. The components of this algebra
are the standard operators ai and the operators a†i , both acting on the space of stable
configurations S. The ai’s add a particle at site i and then, in case of unstable sites,
relax the configuration by means of topplings, while the a†i ’s act in a symmetric way,
i.e. they delete a particle in i and then anti-relax the configuration in case of sites with
negative height. The action of these operators is not commutative, indeed a†iai 6= aia

†
i ,

but when acting on stable configurations it is easy to check they satisfy a Temperley-Lieb
like relation aia

†
iai = ai and a†iaia

†
i = a†i , and in its more general formulation we prove in

Theorem 7 and its Corollary 4 that, for u ∈ Ω when acting on z ∈ R, these operators
satisfy

au(a†)uau = au (6.1)

(a†)uau(a†)u = (a†)u (6.2)

Using these operators then we define some projector operators Πi = a†iai for which a
number of relations is proven to be true. These operators when acting on a recurrent
configuration can take it into a transient configuration equivalent under toppling.

It is possible to define a Markov Chain on each equivalence class [z] where at each
time-step we act with Πi on a random vertex. Such a Markov chain is in relation to
the allowance of multitopplings ( defined earlier in section 2.6) in the sandpile dynamics
and thus it converges. The final configuration reached is the result of the relaxation of
the initial configuration z under the multisite toppling rules, and thus must be such that
the maximally filled vertices are isolated. If, as initial configuration, we chose z = zmax,
then the final configuration shows the emergence of interesting patterns, in particular if
we choose a circular geometry it converges to a uniform tessellation of the plane, except
some border noise.

Then in chapter 4 we present a study, numerical and analytical, of the shape of the
Creutz identity sandpile configurations, for variants of the ASM, with directed edges
on a square lattice (pseudo-Manhattan and Manhattan), and square geometry. Reasons
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for this study was the fact that in this directed graph, the heights are valued in {0, 1}
(while the original BTW sandpile has heights in {0, 1, 2, 3}), and we conjectured that
this could led to simplifications. We found even simpler results than what we expected,
and qualitatively different from the ones in the BTW model.

In the BTW model, the exact configuration seems to be unpredictable: although some
general “coarse-grained” triangoloid shapes seem to have a definite large-volume limit,
similar in the square geometry and in the one rotated by π/4, here and there perturbations
arise in the configuration, along lines and of a width of order 1 in lattice spacing. We
have discussed the role of these structures, both patches and lines of perturbation, in
successive chapter.

The triangoloids have precise shapes depending from their position in the geometry,
and are smaller and smaller towards the corners. Understanding analytically at least
the limit shape (i.e. neglecting all the sub-extensive perturbations of the regular-pattern
regions) is a task, at our knowledge, still not completed, although some first important
results have been obtained by Ostoijc in [52], and further achievements in this direction
have come with the work of Levine and Peres [59, 77], both in the similar context of
understanding the relaxation of a large pile in a single site

In the Manhattan-like lattices on square geometry,on which we focused, we show how
the situation is much simpler, and drastically different. Triangoloids are replaced by
exact triangles, all of the same shape (namely, shaped as half-squares), and with straight
sides. All the sides of the triangles are a fraction 1

23−k of the side of the lattice (in the
limit), where the integer k is a “generation” index depending on how near to a corner we
are, and indeed each quadrant of the configuration is self-similar under scaling of a factor
1/3. The corresponding “infinite-volume” limit configuration is sketched in Figure 4.9.
A restatement of the self-similarity structure, in a language resembling the z → 1/z2

conformal transformation in Ostojic [52] and Levine and Peres [59], is the fact that,
under the map z → ln z, a quadrant of the identity (centered at the corner) is mapped
in a quasi–doubly-periodic structure.

Also the filling numbers (i.e. the minimal number of frame identities relaxing to the
recurrent identity) have simple parabolic formulas, while in the original BTW model a
parabola is not exact, but only a good fitting formula.

These features reach the extreme consequences in the pseudo-Manhattan lattice,
where the exact configuration at given sizes is deterministically obtained, through a
ratio-1/3 telescopic formula. These work is presented in a paper [61]

Finally in chapter 5 we describe different experimental protocols producing patterns
in the sandpile, and then we describe and explain the different pattern structure in terms
of strings and patches. Indeed complex and beautiful patterns can be generated in the
ASM and interest on them derive from some peculiar properties they display that are
described in the introduction, like allometry. We enumerate a number of deterministic
protocols: the generation of the Creutz Identity configuration, the Markov Chain defined
by action of the operators Πi converging on the Wild Orchids configurations, the Master
protocol on the maximally filled configuration or any given allowed background based on
the action of the Πi and finally the construction of the fundamental Sierpiński triangoloid
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of a given period. On the plane we classify patches, or backgrounds, patterns periodic
in two-dimensions described in term of wallpaper group 2222, and structures periodic
in just one dimension, that we call strings, and are described in terms of Frieze group
22∞. Strings can be classified in terms of their habitat background and their principal
periodic vector k, that we call momentum. We derive a simple relation between the
momentum of a string and its density of particles, E, which is reminiscent of a dispersion
relation, E = |k|2. Strings interact: they can merge and split and within these processes
momentum is conserved,

∑
a ka = 0. The role of the modular group SL(2,Z) is essential

behind these laws.
We present a number of functions connection backgrounds with strings, both deriving

from and living in the background, this framework allows to identify a duality relation
between strings and background proven in Proposition 10 where the action of the duality
relation J has been made explicit. Then we describe in details the construction of the
scattering vertices and of higher momentum strings in terms of generating strings as
k← (p,q) in Section 5.5.

Finally we describe in every detail the construction of the Sierpiński triangoloid. In
the infinite limit, the Siepiński structure collect all the possible string and patches, or-
dered in momentum as described by the function ~Cs with s the breaking level of the
Siepiński, which is defined through a recursive formula in (5.30). The mechanism of
construction of the triangoloid is based on the projection on the space of Recurrent con-
figurations of TB,n, which is composed by three recurrent backgrounds and a triangular,
transient, patch made by strings derived from B. The projected configuration [TB,n] is
built for every number of periods n in terms of patches and strings, site by site.

Of all the possible Siepiński, there exist a fundamental one which collect all the
possible strings of the sandpile model. in fig. 5.29 is shown the one or the square lattice,
while in fig. 5.30 is shown the one for the triangular lattice.
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A. SL(2, Z)

a summary

Consider the following question: given a positive rational number, determine an equiva-
lent expression in the form of a (finite) continued fraction, where only the symbols “1”
and “+” are allowed. For example,

25

9
= 1 + 1 +

1

1 + 1
1+1+1+ 1

1+1

= 1 + 1 + 1/(1 + 1/(1 + 1 + 1 + 1/(1 + 1))) .

(A.1)

Note that the expression on the second line is redundant: the positions of the symbols
“1” and the parentheses are reconstructed univocally from the string of “+” and “/”,
i.e., by a word in the alphabet {+, /}, namely in this case

w25/9 = (+,+, /,+, /,+,+,+, /,+) . (A.2)

Note that this is a Fibonacci word, i.e., in a minimal word, the symbol “/” cannot appear
in two consecutive positions (because 1/(1/x) = x). In order to have more compact
notations, we can write k as a shortcut for 1 + 1 + · · · + 1 (k summands). Analogously,
the Fibonacci word can be equivalently encoded by the length of sequences of consecutive
“+”. For our example,

25

9
= 2 +

1

1 + 1
3+ 1

1+1

; w̃25/9 = (2, 1, 3, 1) . (A.3)

If the number is positive and not rational, the continued fraction, as well as the associated
word, are infinite.

Such a structure has some resemblance with the famous decomposition of fractions
used in ancient Egypt, and, for brevity, we will call it an Egyptian continued fraction.

The procedure to determine the finite continued fraction in the rational case is uni-
vocal and elementary, and based on the fact that, calling

[
a
b

]
the continued-fraction

expression associated to a
b , one has

[a
b

]
=

{
1 +

[
a−b
b

]
if a ≥ b,

1

[ b
a ]

if 0 < a < b. (A.4)
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The procedure stops when a = 0. Note that, at each step, either the denominator
decreases, or the numerator decreases, while the denominator remains constant, thus the
procedure is guaranteed to stop in a finite number of steps.

Now consider the problem of determining the greatest common divisor of two integers,
gcd(a, b). An algorithm, discussed by Euclid in the Elements, is based on the “halting
condition” gcd(0, b) = b, and the lemmas gcd(a, b) = gcd(b, a) = gcd(a+ b, b), used as a
substitutional rule

gcd(a, b) =

{
gcd(a− b, b) if a ≥ b,
gcd(b, a) if 0 < a < b.

(A.5)

The structure is completely analogous to the one shown above for continued fractions.
The argument for the fact that the Euclid gcd algorithm halts in a finite number of steps
is identical.

Similarly, the shortcut of using integers k instead of strings of 1+1+· · ·+1 corresponds,
in Euclid algorithm, to replace the largest integer by the remainder of the integer division
by the smallest integer (and k is the quotient of the division).

Both Egyptian fractions and Euclid gcd algorithm exist in variants in which the values
are in Z, and minus signs are allowed. For example

25

9
= 1 + 1 + 1−

1

1 + 1 + 1 + 1 + 1
1+1

. (A.6)

Here we used the fact that 25
9 is “more near to 3 (from below) than to 2 (from above)”.

The use of minus signs is an improvement in a very special sense: the resulting expression
is not guaranteed to use a smaller number of symbols overall w.r.t. the positive case, it
is only guaranteed to (possibly) decrease the number of nested fractions. On the Euclid
gcd side, this corresponds to (half) the number of steps, under the speed-up of using
division remainders.

Define the greatest common divisor for generic integers, by letting gcd(a, b) = gcd(|a|, |b|)
and gcd(a, 0) = |a|. Thus, gcd is a function from Z2 to N, and Z2 r 0 is the dis-
joint union of the sets {Z2

gcd=k}k≥1, preimages of N+ w.r.t. gcd. The Euclid lemmas
gcd(a, b) = gcd(b, a) = gcd(a + b, b) are still valid, and determine symmetry properties
of the sets Z2

gcd=k. A further lemma is gcd(ca, cb) = c gcd(a, b), implying that the study

of Z2
gcd=1, a set called Euclid’s orchard, covers all the cases simultaneously. The two

lemmas above (combined with the parity rule gcd(a, b) = gcd(|a|, |b|)) read

(x, y) ∈ Z2
gcd=1 iff ( 1 1

0 1 ) (x, y) ∈ Z2
gcd=1 ; (A.7)

(x, y) ∈ Z2
gcd=1 iff

(
0 1
−1 0

)
(x, y) ∈ Z2

gcd=1 . (A.8)

I.e., the Euclid’s orchard is invariant under the action of the matrices T = ( 1 1
0 1 ) and

S =
(

0 1
−1 0

)
. These matrices have both determinant 1. In fact, they generate the whole

group of integer-valued matrices with determinant 1, namely SL(2,Z).
From the Euclid’s Algorithm for the g.c.d. and the egyptian algorithm for the con-

tinuous fractions can be deduced an algorithm that decompose the matrices in SL(2,Z)
in terms of the generating matrices for SL(2,Z). This procedure is displayed in section
A.2.
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A.1 Some simple properties of SL(2, Z)

We start with this elementary fact:

Lemma 15. Given two positive integers ~k = (kx, ky), relatively prime, there exists one
and only one quadruplet of non-negative integers (~p, ~q) =

(
(px, py), (qx, qy)

)
such that

~k = ~p+ ~q ; M(~p, ~q) =

(
px py
qx qy

)
∈ SL(2,Z) . (A.9)

Define the canonical pair of ~k, the pair (~p, ~q) solving the problem above for vector ~k.

Proof. It is trivially seen that the only canonical pair of (1, 1) is
(
(1, 0), (0, 1)

)
, and

that, if r
(
(kx, ky)

)
= (ky, kx), and (~p, ~q) is a canonical pair of ~k, a canonical pair of r(~k) is

(r(~q), r(~p)). So we can restrict our attention to kx > ky ≥ 1. It is again trivially seen that
the only canonical pair of (k, 1) is

(
(1, 0), (k − 1, 1)

)
. So we can investigate kx > ky ≥ 2.

In this case, it will come out that the entries of M(~p, ~q) are strictly positive.
Indeed, remark that M(~p, ~q) ∈ SL(2,Z) is equivalent to M(~k, ~q) ∈ SL(2,Z), so in

particular we must have

−qxky ≡ 1 (mod kx) ; (A.10)

qykx ≡ 1 (mod ky) . (A.11)

Clearly, for ~k = ~p+ ~q to hold with all non-negative entries, we must have qx, px ≤ kx and
qy, py ≤ ky. As kx and ky are relatively prime, the set of values {qykx}qx∈{1,...,ky−1} is a
permutation of the set {1, . . . , ky − 1}, and thus there exists one and only one solution
for qy in the range {0, . . . , ky}, and is always attained in the range {1, . . . , ky − 1}. An
identical reasoning holds for qx. This completes the proof. �

A further fact is easily determined:

Lemma 16. A matrix

M(~p, ~q) =

(
px py
qx qy

)
∈ SL(2,N) , (A.12)

distinct from the identity matrix, has the property that one and only one among M(~p−~q, ~q)
and M(~p, ~q − ~p) is in SL(2,N).

Proof. The fact that the two matrices cannot be both viable is clear, from the fact that
~p− ~q 6= ~0, as the vectors are not collinear.

So, what we have to prove is the existence property, i.e. that the fact that one among
±(~p− ~q) is in N2, leading to the equation

(px − qx)(py − qy) ≥ 0 . (A.13)

Remark that px, qy 6= 0, otherwise the determinant would be −pyqx ≤ 0, so we can divide
by px. Solving the equation detM = 1 w.r.t. qy gives

(px − qx)(py − qy) =
1

px
(px − qx)(pypx − pyqx − 1) (A.14)
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Figure A.1 The first portion (of side 100) of the set Z̃2, represented as a set of
white cells in Z2.
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Figure A.2 The portion of the set Z̃2 as in Figure A.1, sheared in the x direc-
tion, and with cells deformed into hexagons accordingly. The presence of six
isomorphic sectors is here evident.
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Figure A.3 (Color) The levels in Ω̃, w.r.t. vectors (±1, 0) and (0,±1), for in-
tegers of absolute value up to 200. White cells correspond to pairs (x, y) 6∈ Ω̃.
For the rest, color code is: magenta, yellow, green, cyan, blue, red, orange, for
levels from 0 to 6. The directions that asymptotically maximize the growth of
the level with the radius are ±2±1/2.
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If py = 0, we have qx−px

px
, but detM = 1 forces px = qy = 1, so the only negative case is

the identity matrix. Otherwise we can write

1

pxpy
(pypx − pyqx)(pypx − pyqx − 1) .

The product of two consecutive integers is always non-negative. This completes the proof.
�

We say that a pair (~p, ~q), distinct from ((1, 0), (0, 1)), is of “GS” type (greater-smaller)
if M(~p − ~q, ~q) ∈ SL(2,N), and of “SG” type in the other case.

For ~k 6= (1, 0), (1, 1), remark that, if (~p, ~q) is the canonical pair of ~k and it is of GS
type, then (~p − ~q, ~q) is the canonical pair of ~p, while similarly, if it is of SG type, then
(~p, ~q − ~p) is the canonical pair of ~q.figure

A.2 Modular group Γ

The set of all Möbius transformations of the form

τ ′ =
aτ + b

cτ + d
(A.15)

where a, b, c and d are integers with ad − bc = 1, is called the modular group and it is
denoted by Γ. The group can be represented by 2× 2 matrices

A =

(
a b
c d

)
with detA = 1 (A.16)

provided we identify each matrix with its negative, since A and −A represent the same
transformation. Ordinarily we will make no distinction between the matrix and the

transformation. If A =

(
a b
c d

)
we write

Aτ =

(
aτ b
cτ d

)
. (A.17)

The first theorem shows that Γ is generated by two transformations,

Tτ = τ + 1 and Sτ = −
1

τ
(A.18)

Theorem 17. The modular group Γ is generated by the two matrices

T =

(
1 1
0 1

)
and S =

(
0 −1
1 0

)
(A.19)

That is, every A in Γ can be expressed in the form

A = T n1ST n2S · · ·T nk (A.20)

where ni are integers. This representation is not unique.
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Proof. Consider first a particular example, say

A =

(
4 9
11 25

)
(A.21)

We will express A as a product of powers of S and T . Since S2 = 1, only the first power
of S will occur.

Consider the matrix product

AT n =

(
4 9
11 25

)(
1 n
0 1

)
=

(
4 4n+ 9
11 11n+ 25

)
(A.22)

Note that the first column remains unchanged. By a suitable choice of n we can make
|11n + 25| < 11. For example, taking n = −2 we find 11n+ 25 = 3 and

AT−2 =

(
4 1
11 3

)
(A.23)

Thus by multiplying A by a suitable power of T we get a matrix

(
a b
c d

)
with |d| < |c|.

Next, multiply by S on the right:

AT−2S =

(
4 1
11 3

)(
0 −1
1 0

)
=

(
1 −4
3 −11

)
(A.24)

this interchanges the two columns and changes the sign of the second column. Again,
multiplication by a suitable power of T gives us a matrix with |d| < |c|. In this case we
can use either T 4 or T 3. Choosing T 4 we find

AT−2ST 4 =

(
1 −4
3 −11

)(
1 4
0 1

)
=

(
1 0
3 1

)
(A.25)

Multiplication by S gives

AT−2ST 4S =

(
0 −1
1 −3

)
(A.26)

Now we m ultiply by T 3 to get

AT−2ST 4ST 3 =

(
0 −1
1 −3

)(
1 3
0 1

)
=

(
0 −1
1 0

)
= S (A.27)

Solving for A we find
A = ST−3ST−4ST 2 (A.28)

At each stage there may be more than one power of T that makes |d| < |c| so the process
is not unique.

To prove the theorem in general it suffices to consider the matrices A =

(
a b
c d

)
in

Γ with c ≥ 0. We use the induction on c.
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If c = 0 then a = d = ±1

A =

(
±1 b
0 ±1

)
=

(
1 ±b
0 1

)
= T±b (A.29)

Thus A is a power of T .
If c = 1 then ad− b = 1 so b = ad− 1 and

A =

(
a ad− 1
1 d

)
=

(
1 a
0 1

)(
0 −1
1 0

)(
1 d
0 1

)
= T aST d (A.30)

Now we assume the theorem has been proved for all matrices A with lower left element
< c for some c ≥ 1. Since ad − bc = 1 we have we have gcd(c, d) = 11. Dividing d by c
we get

d = cq + r, where 0 < r < c (A.31)

Then

AT−q =

(
a b
c d

)(
1 −q
0 1

)
=

(
a −aq + b
c r

)
(A.32)

and

AT−qS =

(
a −aq + b
c r

)(
0 −1
1 0

)
=

(
−aq + b −a

r −c

)
(A.33)

By the induction hypothesis, the last matrix is a product of power of S and T , so A is
too. This complete the proof.

1If ad − bc = 1 then gcd(ad, bc) = 1 but if ∃g > 1 s.t. gcd(d, c) = g then gcd(amg, bng) = g, so g = 1
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B. Complex notation for vectors

in R2

In this thesis we deal mostly with systems on regular two-dimensional lattices, and thus
makes use of tensor calculus in two dimensions. As well known, the natural isomorphism
R2 ≃ C leads to convenient notations, in particular if one has to analyze the behavior of
the quantities of interest w.r.t. rotations.

A vector a = (ax, ay) ∈ R2 will be identified with a complex number a = ax+iay ∈ C.
Then, the ordinary definitions of scalar and vector product

a · b := axbx + ayby ; (B.1)

a ∧ b := axby − aybx = det
(
ax ay

bx by

)
; (B.2)

are rephrased in the complex notation as

āb = (a · b) + i(a ∧ b) (B.3)

so that

a · b = 1
2 (āb+ ab̄) ; (B.4)

a ∧ b = 1
2i (āb− ab̄) . (B.5)

Multiplication of vectors in complex notation by a real-positive number corresponds to
a dilation, while multiplication by a phase corresponds to a rotation. In particular,
multiplying by i corresponds to rotate by π/2 the vector. As a consequence we have in
particular

(ia) · b = a ∧ b ; (ia) ∧ b = −a · b . (B.6)

Already in ordinary “real” notation, it is easy to determine if a polynomial P (x, y) has
definite behavior under dilation: P (λx, λy) = λkP (x, y) if and only if P is homogeneous
of degree k. Writing z = x+iy, a polynomial P (z, z̄) has definite behavior under rotation,
P (eiθz, e−iθ z̄) = eiθℓP (z, z̄), if and only if P is of the form P (z, z̄) = zℓP (z̄z), for ℓ ≥ 0,
or of the form P (z, z̄) = z̄−ℓP (z̄z), for ℓ ≤ 0. We call ℓ the angular momentum of the
quantity. Note that the angular momentum is a scalar in two dimensions.

If a polynomial P has definite behavior both under dilation and rotation, then it is

proportional to the monomial z̄
k−ℓ
2 z

k+ℓ
2 . In particular, −k ≤ ℓ ≤ k, and k and ℓ have the

same parity.
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A generic homogeneous polynomial of degree k can thus be decomposed as a linear
combination of monomials with definite (k, ℓ), for ℓ = −k,−k+2, . . . , k. If the polynomial
is real-valued, the coefficients of the monomial (k, ℓ) and (k,−ℓ) are complex-conjugate,
and, if k is even, the coefficient of (k, 0) is real.

In particular, a generic real-symmetric quadratic form

~xTω~x =
(
x y

)(ωxx ωxy
ωxy ωyy

)(
x

y

)

= x2ωxx + 2xyωxy + y2ωyy ,

(B.7)

is decomposed into a part with angular momentum zero (related to the trace of matrix
ω), and a part with angular momentum ±2 (related to the traceless part of ω), i.e.,
writing (B.7) in terms of z = x+ iy, one has

~xTω~x =
1

4

(
ω2z̄

2 + 2(trω)z̄z + ω̄2z
2
)
, (B.8)

with
ω2 = (ωxx − ωyy) + 2iωxy . (B.9)

In fact, said tangentially, the customary Pauli matrices

σ1 = ( 0 1
1 0 ) ; σ2 =

(
0 −i
i 0

)
; σ3 =

(
1 0
0 −1

)
; (B.10)

encode the matrix ω as

2ω = (trω)I + (ωxx − ωyy)σ3 + 2ωxyσ1 . (B.11)

The effect of applying a rotation Rθ =
(

cos θ sin θ
− sin θ cos θ

)
to the vector (x, y) corresponds

to act on ω with the adjoint, i.e. to transform ω → R−θ ωRθ. The parameter trω
remains unchanged (it is a scalar) under rotations), while the vector of parameters (ωxx−
ωyy, 2ωxy) changes with the (left) action of R2θ, i.e., it has angular momentum 2.



C. Generalized quadratic Bézier

curve

A quadratic Bézier curve is a simple algebraic parametric curve in the plane, determined
by three points: the two endpoints (say, at positions xA and xB , and a single control
point (say, at position xC). Then, the curve is the image of the interval t ∈ [0, 1], under
the map

fACB(t) = (1− t)2 xA + 2t(1− t)xC + t2 xB . (C.1)

This curve (together with the cubic variant, having two control points), is widely used in
computer vector graphics, because of its peculiar properties: on one side, it is smooth, and
its natural parameters encode in a simple way both position and slope at the endpoints
(the slopes are along the segments AC and BC) – actually, in the rotated and translated
system such that the x-coordinates of (A,C,B) are respectively (−a, 0, a), it is just a
parabola; on the other side, it is represented by postscript printers in an efficient way,
through a recursive algorithm, based on the following remarkable property:

Proposition 4. Define

xC′ := 1
2 xA + 1

2 xC ; (C.2a)

xC′′ := 1
2 xB + 1

2 xC ; (C.2b)

xD := 1
2 xC′ + 1

2 xC′′ . (C.2c)

Then

fACB(t) =

{
fAC′D(2t) 0 ≤ t ≤ 1

2 ;
fDC′′B(2t− 1) 1

2 ≤ t ≤ 1.
(C.3)

The proof is by elementary algebra. As a corollary, the support γACB of the curve
fACB(t) (i.e., without caring of the “time” parametrization t) is such that

γACB = γAC′D ∪ γDC′′B , (C.4)

and, for any pair of triplets (A,B,C) and (A′, B′, C ′), the curve γA′C′B′ is the image of
γACB under the only affine transformation of the plane mapping (A,B,C) to (A′, B′, C ′)
(in order). Also, γACB = γBCA (because fACB(t) = fBCA(1− t)).
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Figure C.1 The generalized Bézier curve corresponding to our case c = 1
3 , with

xA, xB and xC being three of the four vertices of a square. The construction
lines of the recursion are shown.

Requiring only these last three properties leads to a generalization of quadratic Bézier
curves with a single real parameter c ∈ [0, 1]. Equations (C.2) are generalized to

xC′ := (1− c)xA + c xC ; (C.5a)

xC′′ := (1− c)xB + c xC ; (C.5b)

xD := 1
2 xC′ + 1

2 xC′′ . (C.5c)

The Bézier case corresponds to c = 1
2 . The geometric construction of Sierpiński profiles,

elucidated in Section 5.6 and in particular in Proposition 14 corresponds to the case
c = 1

3 .
We call the bisection points of level k the set of points of the curve which are endpoints

of the portions obtained applying the recursive property (C.4), for k steps. We call
bisection points the union over k of the sets above. This set is dense along the curve (it
has roughly the same structure of rational points of the form a/2k on the unit interval).
See Figure C.1 for a drawing of the curve, that illustrates also this set of points. The
bisection points of level k correspond to the incidence points of patches on the boundary
of a triangoloid with k breaking levels.

As we explain in a moment, at all values different from c = 1
2 the curve we obtain is not

C∞ at all bisection points, where it behaves locally as f(x) ∼ |x|γ , with γ = ln 1−c
2 / ln c.

Thus the algebraic parametrization of the quadratic Bézier is rather exceptional in this
family. In particular, we will also determine that c = 1

3 is the smallest value of c such
that the curve is C1 (i.e., the first derivative is continuous everywhere), and thus it has
a special “threshold” significance.

Given the covariance of the curve under affine transformations, we can equally well
assume that (xA, xB , xC) =

(
(−1, 1), (1, 1), (0, 1 − 1/c)

)
, a choice which leads to the

simplification xD = (0, 0), and the curve is symmetric w.r.t. the vertical axis passing
through this point.

Let us consider a neighbourhood of xD. Call x
(k)
B and x

(k)
C the endpoints and control

points of the portion of the curve adjacent to xD on the right, at the k-th level of the
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recursion. The initial condition is (x
(0)
B , x

(0)
C ) = ((1, 1), (1 − c, 0)), and the recursion

corresponds to the linear transformation

(
x

(k+1)
B

x
(k+1)
C

)
=

(
1−c
2 c
0 c

)(
x

(k)
B

x
(k)
C

)
. (C.6)

For generic values of c, diagonalizing the matrix gives

x
(k)
B =

((
1 + 2c(1−c)

1−3c

) (
1−c
2

)k
− 2c(1−c)

1−3c c
k

(
1−c
2

)k

)
. (C.7)

Clearly, the sequence of x
(k)
B is contained in the curve, and accumulates to xD. Thus,

assuming self-consistently a Lipschitz regularity, we can deduce from (C.7) the behaviour
of the curve in a right-neighbourhood of xD.

A simple analysis for large k (i.e., approaching xD) gives that, if c < 1−c
2 (that is,

c < 1
3 ), the first summand dominates in the x-coordinate, and we have a discontinuity of

the first derivative in xD, by 2(1−3c)
1−c−2c2

. Conversely, if we have c > 1
3 , the second summand

dominates in the x-coordinate, and in a right-neighbourhood of xD the curve goes like

f(x) ∼ x
ln 1−c

2
ln c . (C.8)

The exponent γ = ln 1−c
2 / ln c is a complicated expression, and we expect only sporadic

pairs (c, γ) which are ‘simple’1. One of these pairs is c = 1/2, that gives γ = ln 1
4/ ln 1

2 = 2,
i.e., the expected exact parabolic behaviour.

For the value c = 1
3 the treatment above is not valid (as can be recognized also from

the presence of 1− 3c denominators in (C.7)). What happens is that the matrix in (C.6)
is not diagonalizable, because it is a Jordan block (actually, it is just 1

3 ( 1 1
0 1 )). Repeating

the reasoning with this explicit matrix gives

x
(k)
B = 3−k

(
1 + 2

3k, 1
)

(C.9)

from which we get that in a right-neighbourhood of xD the curve goes like

f(x) ∼ −
x

lnx
. (C.10)

In this case the first derivative is still continuous, and the second derivative has an
integrable singularity of the form ∼ 1

x(lnx)2
.

The features of this generalized Bézier curve for different values of c are illustrated
through graphical examples in Figure C.2.

1Although, of course, for generic γ = a/b rational, c is algebraic and given by the root of ca = ( 1−c
2

)b

in the appropriate range.
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c = 1/2

c = 1/3
c = 2/5

c = 2/7

c ≃ 2/3

Figure C.2 The generalized Bézier curve for various values of c. Special values
include c = 1

2 (the ordinary Bézier curve, a parabola), c = 1
3 (our special

case of Sierpiński triangoloids, and also the threshold value at which the curve
becomes not C1), and the curious point c = 0.6478... (root of 2c4 + c − 1 = 0,
accidentally near to 2/3), for which at all bisection points the curve behaves as
f(x) ∼ a0 + a1x+ a4x

4 + o(x4).



D. Tessellation

The tessellation, or tiling, of the plane, which is the problem of covering the plane with
a given set of elementary tiles, is a subject which emerges spontaneously in nature.
Mankind has always been fascinated by it, so that we encounter a number of examples
of tessellation in arts. Here we give a brief historical and artistic introduction, then we
present the mathematical treatment as given in Grunbaum and Shephard [81]. This is a
crucial ingredient for the comprehension of the periodic structures arising in the Abelian
Sandpile Model and their mathematical treatment.

D.1 Graphics and design

Tessellation and tiling emerge in many objects in nature. The honeycomb of honey bees is
a spectacular example of a hexagonal tessellation of the space, other tilings of the plane
are formed from the breaking lines of a dried mud pond, they can also be recognized
in the structures taken by the seeds in a sunflower or the grains of a corn cob on its
surface. Finally in the geological formation, such as crystal, some periodic structure
in 3-dimensions grow, a cross-section of these structure can be seen as a tessellation
of the plane, this is the case at Giant’s Causeway in Northern Ireland where basalt
columns resulting from an ancient volcanic eruption emerge at the surface resulting in
an hexagonal paving of the sea shore.

Since the origin of the civilization, when man started building houses and palaces,
he need to cover the floors and the walls placing stones he chose so that the result was
agreeable and he was already doing tilings and tessellation in the sense we use these
words. Patterns, that is designs repeating motif in a kind of systematic way, must have
had a similar origin, as old as that one. Ancient cultures have made large use of tilings.
For examples Romans and other Mediterranean people used to produce mosaics to display
scenes of life or portraits in their houses; Moors used symmetry to produce the amazing
tilings that cover roofs and walls of the chambers in their palaces, examples of such tilings
can be seen in the Alhambra in Granada or in the Alcazar Seville in Spain, see fig. D.1.
Patterns are also present in a huge number of artifacts through the ages, and many of
them, from places distant in time and space, present surprising similarities in the overall
composition. This fact has a mathematical reason, that will become clear throughout
this appendix.

From many points of view, an extension of the various ideas on the tilings is natural
and useful. We shall consider a tiling to be any partition of the plane into regions
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(a) (b)

(c) (d)

Figure D.1 Example of several tilings made by moors. (a) (b) (c) from the
Alcazar and (d) from the Alhambra.

regardless whether this partition is realized, or could be, by physical objects. In this
sense we understand that there are tilings, or tessellation, all around us, both man-made
and in the nature (cells in a membrane, design of a spider-web, the honeycomb of a bee,
and so on).

In the past, there have been many attempts to describe, systematize and devise
notations for various types of tilings and patterns. However without a mathematical
basis such an attempt could not succeed, despite the sometimes prodigious effort devote
to them. In the last century a dutch artist M. C. Escher (1898-1972), trying to improve his
ability in producing interlocking design, and obtaining at first him only primitive results,
understood the key role of mathematics in the game. He understood that the types of
design he was interested in were governed by groups of symmetries and thus studied the
literature available; his results were surprising from an artistic point of view as can be
seen for an example in fig. D.2 and more widely in the collection present in [82]. In his
notebooks were found references to some mathematical works by Polya [83], but He also
pointed out the importance of a visual approach to the problem, although systematic and
with mathematical basis; at this purpose he studied and copied the Moorish tile patterns
he found in the Alhambra, Granada, Spain. A detailed description of the notebooks can
be found in [84].
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Figure D.2 Example of Escher’s tilings.

Tiling and patterns are fascinating subjects. In them visual appeal and ease of under-
standing combine with possibilities of applying both informally creative and systematic
approaches. They concern topics and idea equally useful in art, practical design, crys-
tallographic investigation or mathematical research. Furthermore the art of designing
tilings is clearly extremely old and well developed. By contrast, the science of tilings and
patterns, by which we mean the study of their mathematical properties, is comparatively
recent and many part of the subject remains unexplored. We present here a mathemati-
cal treatment that allows to understand the use of this theory we made in classification
of pattern in the Abelian Sandpile Model.

D.2 Tiles, tilings and patches

A plane tiling T is a countable family of closed sets T = {T1, T2, . . .} which cover the
plane without gaps or overlaps. More explicitly, the union of the sets T1, T2, . . . (which
are known as the tiles of T ) is to be the whole plane, and the interiors of the sets Ti are
pairwise disjoint. By “the plane” we mean the familiar Euclidean plane of elementary
geometry.

Either of these two conditions can be imposed separately: a family of sets in the plane
which has no overlaps is called a packing, and a family of sets which covers the plane
with no gaps is called a covering.

The definition of tiles just given is way too general for our purpose. Indeed it excludes
tiles with zero area, but nevertheless it admits tilings in which some tiles have bizarre
shape and properties. We restrict our attention on tiles which are a (closed) topological
disk, by this we mean any set whose boundary is a single simple closed curve.

From the definition of tiling we see that the intersection of any finite set of tiles in T

(containing at least two tiles) necessarily has zero area. For most of the tiles considered,
this intersection may be empty or a collection of isolated points and arcs. In these case
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the point will be called vertices and the arcs edges. In particular if the tiles are topological
disks, then the simple curve which forms the boundary of a tile is divided into a number
of parts by the vertices of the tiling, each arc being an edge of the tile. Each edge of
the tiling coincides with the edges of the two tiles that lie on each side of it. We are
interested on tiles with a finite number of vertices. An edge connects two vertices (called
the endpoints of the edge) and each vertex is the endpoint for a number of vertices. This
number is the valence of the vertex, and it is at least three. If every vertex of a tiling
T has the same valence j, we say that T is a j − valent tiling. The vertices, edges and
tiles of tiling are called its elements.

Later we consider the special case in which the tiling is composed by polygons. The
usual terminology for polygons has vertices and edges, but in order not to create con-
fusion, we will refer to them as corners and sides of the polygon. In case the corners
and sides coincide of the polygon coincide with vertices and edges of the tiling, we say
that the tiling by polygons is edge-to-edge. Two tiles are called adjacent if they have an
edge in common, and then each is called an adjacent of the other. Two tiles are called
neighbors if their intersection is nonempty. Similarly two edges are adjacent if they have
a common endpoint. The word incident is used to denote the relation of a tile to each
of its vertices and edges, and also of an edge and each of its endpoints. The relation of
incidence is considered to be symmetric.

We shall say that two tilings T1 and T2 are congruent if T1 may be made to coincide
with T2 by a rigid motion of the plane, possibly including also reflections. Then we say
two tilings to be equal or the same if one of them can be changed in scale (magnified or
contracted equally through the plane) so as to be congruent to the other. Equivalently
we say that two tiling are equal if there is a similarity transformation of the plane that
maps one of the tilings into the other. For example, if T1 and T2 are two tilings, each
by congruent regular hexagons fig. D.3(c) then T1 and T2 are necessarily equal; for this
reason we are justified in referring to the tiling by regular hexagons. But T1 and T2 are
congruent only if the hexagons in T1 are the same size of those in T2.

By a patch of tiles in a given tiling we mean a finite number of tiles of the tiling with
the property that their union is a topological disk - in other words is connected, simply
connected, and cannot be disconnected by deletion of a single point.

For the most part of tilings of our interest we shall be concerned with monohedral
tilings. The word “monohedral” means that every tile in the tiling T is congruent to one
fixed set T , or more simply that all the tiles have the same size and shape. The set T is
called the prototile of T , and we say that the prototile T admits the tiling T . Familiar
examples of tiling satisfying all our restrictions are appear in fig. D.3, these are the
regular tilings, they are monohedral and their prototiles are regular polygons. Although
it seems an easy problem, the study of monohedral tilings is far from being easy, and for
example there is not an algorithm to determine whether a given set T is the prototile of a
monohedral tiling. The terminology we have introduced can be extended in the obvious
way. By a dihedral tiling T we mean one in which every tile Ti is congruent to one or the
other of two distinct prototiles T and T ′. In a similar way we define trihedral, 4-hedral,
. . . , n-hedral tilings in which there are 3, 4, . . . , n distinct prototiles. If the tiling T uses
a set S of prototiles, we shall say that S admits the tiling T
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(a) (b) (c)

Figure D.3 The three regular tilings (36), (44) and (63).

D.3 Symmetry, transitivity and regularity

Many important properties of tilings depend upon the idea of symmetry. An isometry
or congruence transformation is any mapping of the Euclidean space E2 in itself which
preserves all the distances. Thus if the mapping is denoted by σ : E2 → E2, and A and
B are any two points, the distance between A and B is equal to the distance of their
images σ(A) and σ(B). It is possible to show that very isometry is one of four types:

1. Rotation about a opint O through a given angle θ. The point O is called the center
of rotation. In the particular case when θ = π, the line joining A to σ(A) will, for
all A, be bisected in O, and in this case the mapping is sometimes called half-turn,
central reflection or reflection in the point O.

2. Translation in a given direction through a given distance d.

3. Reflection in a given line L, the mirror or line of reflection.

4. Glide reflection in which reflection in a line L is combined with a translation through
a given distance d parallel to L.

Isometries of type (1) and (2) are usually called direct because if points ABCform vertices
of a triangle named in a clockwise direction, then the same is true of their images under
the isometry σ. If however σ is of type (3) or (4) then the images of the points ABC will
form at he vertices of a triangle named in counter clockwise direction. These are called
indirect or reflective isometries.

For any isometry σ and any set S we write σS for the image of S under σ. By a
symmetry of a set S we mean an isometry σ which maps S onto itself, that is σS = S. For
example any rotation about the center of a circular disk is a symmetry of the disk, and
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also the reflections in any line through the center of the disk. In the case of a square, the
reflections in the two diagonals and the two axes of the sides are symmetries and so are
rotations through angles π/2, π and 3π/2 about its center O, which is called a center of
4-fold rotational symmetry. More in general, if a rotation through 2π/n around a point
O is a symmetry of a given set, then O will be referred as a center of n-fold rotational
symmetry.

There is an isometry which maps every point onto itself, this is known as the iden-
tity isometry and is a symmetry of every set. When dealing with rotations we do not
distinguish between counterclockwise rotation of θ and clockwise rotation of 2π − θ, nor
between a rotation of θ and a rotation of θ+2kπ, for any integer k. AS symmetries they
are regarded as identical, this because only the final result of the mapping does matter,
not the means of arriving at the result.

For any T we denote by S(T ) the set of symmetries of T . This set has algebraic
properties, the symmetries can be combined by applying them consecutively and the
result is another symmetry. Because of this algebraic property S(T ) is known as a group,
and the number of symmetries in S(T ) is called the order of the group.

It is convenient to introduce some notation for groups that occur frequently. We shall
use c1 or e for the group with only one isometry (the identity), and cn (n ≥ 2) for the
group consisting of rotations through angle 2πj/n (j = 0, 1, . . . , n−1) about a fixed point.
This is called the cyclic group of order n and is the symmetry group of the “n-harmed
swastika”. Finally, we use dn (n ≥ 1) for the group which include all the symmetries
of cn together with reflections in n lines equally inclined to one another. This is called
the dihedral group of order 2n; for n ≥ 3 is the symmetry group of the regular n-gon.
When n = 1, the group d1 (of order 2) consists of just the identity and the reflection on
a line; when n = 2, the group d2 (of order 4) consists of the identity, reflections on two
perpendicular lines and rotation through angle π around the point in which the two lines
of reflection meet. The rotation group d∞ consists of all rotations about a point and all
the reflections in lines through that point; it is the symmetry group of a circular disk.
Note that the groups cn and dn (n ≥ 1) each have a property of leaving at least one
point of the plane fixed; in fact these are only the groups that can occur as symmetry
groups S(T ) of compact (that is closed and bounded) sets T .

We extend the definition of symmetry in a natural way to structures more complicated
than single sets. Thus in the case of a tiling T we say that an isometry σ is a symmetry
of T if it maps every tile of T onto a tile of T . An easy and informal way to think of
a symmetry of a tiling is the following. Imagine we have drawn the tiling on an infinite
piece of paper, and hen traced it onto a transparent sheet. A symmetry corresponds
to a motion of the latter (including the possibility to turn it over) such that, after the
motion, the tracing fits exactly over the original drawing. The idea of a symmetry can
be extended to more general situations. Suppose, for example, we have a marked tiling,
one in which there is a marking motif on each tile. Then a symmetry of the marked
tiling is an isometry which not only maps the tiles of T onto tiles of T , but also maps
each marking on a tile of T onto a marking on the image tile. Thus in the informal
interpretation above, we do not only trace tiles, we trace marks too. The same argument
apply for a colored tiling.
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Figure D.4 A lattice Λ of points in the plane and some parallelograms whose
corners coincide with points of Λ. Each of these parallelograms is the prototile
of the corresponding tiling whose vertices coincide with Λ. In fact any parallel-
ogram may be chosen as long as the only points it contains are its vertices, and
no lattice point lies in its interior or on its boundary. All such parallelograms
have equal area.

For any tiling T , we extend the notation introduced above and write S(T ) for the
group of symmetries of T . It is, of course, possible for S(T ) to be the identity alone or
it may have many symmetries. This facts can be used as a basis classification, we will
discuss this in more detail in D.4.

If a tiling admits any symmetry in addition to the identity symmetry then it will
be called symmetric. If its symmetry group contains at least two translations in non-
parallel directions then the tiling will be called periodic. many of the tilings we shall
meet are periodic and they will be very easily described. Let us represent the two non-
parallel translations by vectors a, b. Then clearly S(T ) contains all the translations
na+mb where n and m are integers. All these translations arise by combining n of the
translations a and m of the translations b. Starting from any fixed point O the set of
images of O under the translations na+mb forms a lattice. The most familiar example of
lattice is the set of points in the Euclidean plane with integer coordinates. This is known
as the unit square lattice, see fig. D.4; we have already met it as the set of vertices of the
regular tiling (44) in fig. D.3. More generally, a lattice can be regarded as consisting of
the vertices of a parallelogram tiling. Thus with every periodic tiling T is associated a
lattice, and the points of the lattice can be regarded as the vertices of a parallelogram
tiling P see fig. D.4; the tiles of P are known as period parallelograms. If we know
the configuration formed by the tiles, edges and vertices of T that are contained in one
of the parallelograms of P, then the rest of T can be constructed by repeating this
configuration in every parallelogram of P. Not periodic tiling are possible, for example
tilings with just one translation vector, or tilings with only rotational symmetry.

Let T be a tile of the tiling T . Then every symmetry of T which maps T onto
itself is clearly a symmetry of T . But the converse is not true, in general. Hence we
must distinguish between S(T ), the group of symmetries of the tile T , and S(T |T ), the
group of symmetries of the tile T which are also symmetries of the tiling T . For brevity
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we shall often refer we shall often refer to S(T |T ) as the induced tile group or as the
stabilizer of T in T .

Two tiles T1 and T2 of a tiling T are said to be equivalent in the symmetry group
S(T ) contains a transformation that maps T1 onto T2; the collection of all tiles of T

that are equivalent to T1 is called the transitivity class of T1. If all tiles of T form
one transitivity class we say that T is tile-transitive or isohedral, the regular tilings are
isohedral. The distinction between isohedral tilings and monohedral tilings (in which
each tile has the same shape) may seem slight, but it is very significant1. If T is a tiling
with exactly k transitivity classes then T is called k-isohedral. Generally, of course, if
the tiles are of n different shapes then there will be at least n transitivity classes. In the
case of a non symmetric tiling, every tile is a transitivity class on its own.

The idea of transitivity and equivalence is applicable to other elements of a tiling
also. If the symmetry group S(T ) of T contains operations that map every vertex of T

onto any other vertex, then we say that the vertices form one transitivity class, or that
the tiling is isogonal. In an analogous manner to that defined above, we may say that a
tiling is k-isogonal if its vertices forma k transitivity classes, where k ≥ 1 is any integer.

Amonogonal tiling is one in which every vertex, together with its incident edges,
forms a figure congruent to that of any other vertex and its incident edges. The distinc-
tion between isogonal and monogonal tilings is analogous to that between isohedral and
monohedral tilings. Isotoxal tilings are tilings in which every edge can be mapped onto
any other edge by a symmetry of he tiling.

In order to define a regular tiling we again use the concept of transitivity, but in a
very strong sense. By a flag in a tiling we mean a triple (V,E, T ) consisting of a vertex
V , an edge E and a tile T which are mutually incident. We see that if T has n edges
and n vertices then it belongs precisely to 2n flags, indeed we can choose E in n different
ways, and then V may be choose to be one of the two endpoints of E. A tiling T is called
regular if its symmetry group S(T ) is transitive on the flags of T . It can be shown that
the tiles of a regular tiling are necessarily regular polygons but, this is not a sufficient
condition to have a regular lattice. In fact there are only three regular tilings, namely
those shown in fig. D.3

D.4 Symmetry groups of tiling: strip group and wallpaper

group.

Here we call “elements” the reflections, glide-reflections, rotations and translations in
S(T ). In Table D.1 we explain in detail the symbol we use to represent the elements
diagrammatically.

A diagram in which the elements have been represented in this manner serves to
define the group S(T ) precisely. we shall call it a group-diagram for S(T ).
The representation of the translations by arrows differs from that of the other elements
in two important respects:

1i.e. the problem of classifying the monohedral tilings is unsolved, whereas it is possible to classify all
the isohedral tilings.
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Symbol Meaning

Line of reflection
Line of a glide-reflection.

♦ Center of a 2-fold rotation (reflec-
tion on a point).

△ Center of a 3-fold rotation.
� Center of a 4-fold rotation.
7 Center of a 6-fold rotation.

Vector indicating the translation in
the group.

Table D.1 Symbols used in the representations of the symmetry in the diagrams.

1. Only the magnitude and the direction of the arrow (vector) is important; unlike
the lines of reflection and glide-reflection and centers of rotation, its actual position
relative to the tiling is irrelevant. Thus it may be moved parallel to itself and it
will still represent the same translation. Technically it is known as a free vector,
that is, one that does not act at a particular fixed point or along a fixed line.

2. If S(T ) contains a translation, then it must contain an infinity of such. However,
on the group diagram it is only necessary to indicate at most two. If the translations
in S(T ) are all parallel then they can be represented as the set of vectors {na}
where a is a fixed vector and n runs through the integers, positive negative and
zero. Hence we need to use only one arrow (representing a or −a) to specify
all the translations in S(T ). If, on the other hand, S(T ) contains non-parallel
translations, then the tiling is periodic and the set of all the translations may be
written as {na+mb}, where a and b are fixed vectors and n, m run independently
through the integers. Thus the translations in S(T ) can be specified by just two
arrows, one corresponding to a and one to b. However it should be observed that,
as we have seen, the choice pf a and b is not unique. (The vectors a, b corresponding
to any two adjacent sides of the parallelogram in fig. D.4 yield the same lattice and
therefore the same set of translations)

Because of these properties it is convenient to regard two group diagrams as the same
if they can be made identical by movement (rigid motion) or by altering one’s choice
of vectors corresponding to translations as described above. In other words, we shall
not distinguish between diagrams corresponding to the same group - or between group
diagrams that differ trivially.

In classifying symmetry groups, the most important concept is that of isomorphism.
We say that two symmetry groups S(T1) and S(T2) are isomorphic if the group diagram
of one can be made to coincide with the group diagram of the other by applying a suitable
affinity. An affinity (or affine transformation) is defined as any mapping of the plane onto
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itself representable by linear equations of the form

x′ = px+ qy + c
y′ = rx+ sy + d,

(D.1)

with ps − qr 6= 0. Geometrically any lattice can be brought into coincidence with any
other lattice by applying a suitable affinity. Thus an affinity can be described as built up
by successively applying a rigid motion, a change of scale, and a shear (that is a change
of angles between axes).

If S(T1) and S(T2) are isomorphic, then we shall say that T1 and T2 are of the same
symmetry type. It is perhaps surprising that although the number of symmetry groups
S(T ) is clearly infinite, if we restrict attention to those tilings whose tile are topological
disks, the number of symmetry types is very limited. In fact when S(T ) contains no
translations, it must be one of the types cn or dn defined in section D.3, and if it does
contain translations then it must be one of 24 types. In fig. D.5,fig. D.6,fig. D.7 and
fig. D.8 we display the group diagrams of all these types. We remark here a useful fact
if one is trying to evaluate symmetries empirically: every symmetry in S(T ) is also a
symmetry of the group diagram of S(T ). Thus, for example, every group diagram is
necessarily symmetric with respect of every line of reflection it contains. If we start with
a line of reflection and a center of n-fold rotation not lying on it, then using this principle
we can generate a large part, or possibly all, of the group diagram. The enumeration
problem can therefore be solved by carrying out this procedure systematically, starting
by various group elements and doing in a way that does not miss any possibility. Let
point out that a group diagram possess more symmetries than the tiling from which it
originated.

It must be emphasized that this analysis and claim for completeness only hold when
the tiles are topological disks, otherwise many other symmetry types are possible. a
detailed derivation of the 7 frieze groups and the 17 crystallographic groups can be found
in [85]. There you can find also a key to determine the type of symmetry group of a
given tiling or pattern, other keys can be found in [86, 87].

Now let us consider the groups S(T ) in more detail. It is convenient to begin con-
sidering three cases distinguished by the existence or other wise of translations in S(T ):

1. S(T ) contains no translations. The non-trivial symmetries are necessarily rota-
tions and reflection and not glide-reflections. One possibility is that S(T ) contains
rotations only, and then is of the type cn, the cyclic group of order n, for some
value of n. If it contains more than one reflection then the corresponding lines
of reflections cannot be parallel (for otherwise S(T ) would contain a translation)
and therefore they meet in a point P . The product of the two reflections will be
a rotation around P through an angle 2ν, where ν is tha angle between the lines
of reflection. The fact that the tiles are topological disks implies that ν must be a
rational multiple of π. Hence S(T ) is of finite order, it is of type dn, the dihedral
group of order 2n , for some value of n. Since we conventionally use c1 and d1 for
the identity group and the group containing only one reflection, we can assert that
any symmetry group S(T ) without translations is of type cn or dn with n ≥ 1. In
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any case it is noted that there is at least one point of the plane (the center of the
tiling) that is left fixed by every symmetry of T .

p2mm/∗2∞∞

p2mg/2∗∞

p2/22∞

p1m1/∗∞∞

p11m/∞∗

p11g/∞x

p1/2∞∞

Figure D.5 The seven frieze groups. Symbols are given in Crystallo-
graphic/Orbifold notation.

2. S(T ) contains translations, all of which are parallel to a given direction L. Here
S(T ) can contain reflections in lines perpendicular to L, and also at most one
reflection in a line parallel to L. the only rotations that can occur are 2-fold,
through angle π, and, if these exist, their centers must lie at equal distances on
a line parallel to L. Only seven different types of groups like this can arise, they
are shown in fig. D.5. The seven groups are denoted by p1, p11g, p11m, p1m1,
p2, p2mg and p2mm using the notation explained in D.4.1. They also occur as
symmetry group of strip patterns and for this reason they are called strip groups
or frieze groups. Any symmetry of the resulting plane tiling must superimpose the
strip onto itself.

3. S(T ) contains translations in non parallel directions. Here the tiling T is periodic
and S(T ) can contain reflections, glide-reflections and rotations. It turns out the
the only rotations that can occur are of orders 2, 3, 4 or 6 and that there are only 17
distinct types of groups in all. These are indicates in fig. D.6, fig. D.7 and fig. D.8.

These 17 types are known as wallpaper groups, periodic groups or (plane) crystal-
lographic groups. The latter name arose because they are analogous to the three-
dimensional groups of crystallography. It is believed that the wallpaper groups
terminology arose as a result of an early paper [88]. Associated with each group is
a symbol first introduced by crystallographers and now so universally adopted that
is known as the international symbol see [87, 89], a brief introduction to these sym-
bols will be given in D.4.1 and then another very useful terminology, the orbifold
notation, is introduced in D.4.2.
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pmg/22∗ pmm/∗2222

p2/2222 pgg/22x

pm/∗∗ cm/x∗

p1/o pg/xx

Figure D.6 The seventeen wallpapers groups. Symbols are given in Crystallo-
graphic/Orbifold notation.
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p4m/∗442

p4/442 p4g/4∗2

p31m/3∗3 p3m1/∗333

cmm/2∗22 p3/333

Figure D.7 The seventeen wallpapers groups. Symbols are given in Crystallo-
graphic/Orbifold notation.
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p6/632 p6m/∗632

Figure D.8 The seventeen wallpapers groups. Symbols are given in Crystallo-
graphic/Orbifold notation.

In table D.2, at the end of this appendix, we list the seven frieze groups and 17 wallpa-
per groups together with information on the kind ond number of transitivity classes of
symmetry elements in each. The symbols given in crystallographic notation for the frieze
groups, have to be intended implicitly with only one translation vector, and more used
are the orbifold notation symbols.

D.4.1 Crystallographic notation

Crystallography has 230 space groups to distinguish, far more than the 17 wallpaper
groups, but many of the symmetries in the groups are the same. Thus we can use a
similar notation for both kinds of groups, that of Carl Hermann and Charles-Victor
Mauguin. An example of a full wallpaper name in Hermann-Mauguin style (also called
IUC notation) is p31m, with four letters or digits; more usual is a shortened name like
cmm or pg.

For wallpaper groups the full notation begins with either p or c, for a primitive cell or
a face-centered cell ; these are explained below. This is followed by a digit, n, indicating
the highest order of rotational symmetry: 1-fold (none), 2-fold, 3-fold, 4-fold, or 6-fold.
The next two symbols indicate symmetries relative to one translation axis of the pattern,
referred to as the ”main” one; if there is a mirror perpendicular to a translation axis
we choose that axis as the main one (or if there are two, one of them). The symbols
are either m, g, or 1, for mirror, glide reflection, or none. The axis of the mirror or
glide reflection is perpendicular to the main axis for the first letter, and either parallel or
tilted 180◦/n (when n > 2) for the second letter. Many groups include other symmetries
implied by the given ones. The short notation drops digits or an m that can be deduced,
so long as that leaves no confusion with another group.

A primitive cell is a minimal region repeated by lattice translations. All but two
wallpaper symmetry groups are described with respect to primitive cell axes, a coordinate
basis using the translation vectors of the lattice. In the remaining two cases symmetry
description is with respect to centered cells that are larger than the primitive cell, and
hence have internal repetition; the directions of their sides is different from those of the
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translation vectors spanning a primitive cell. Hermann-Mauguin notation for crystal
space groups uses additional cell types.

Examples

• p2 (p211): Primitive cell, 2-fold rotation symmetry, no mirrors or glide reflections.

• p4g (p4gm): Primitive cell, 4-fold rotation, glide reflection perpendicular to main
axis, mirror axis at 45◦.

• cmm (c2mm): Centered cell, 2-fold rotation, mirror axes both perpendicular and
parallel to main axis.

• p31m (p31m): Primitive cell, 3-fold rotation, mirror axis at 60◦.

D.4.2 Orbifold notation

Orbifold notation for wallpaper groups, introduced by John Horton Conway [90, 91] is
based not on crystallography, but on topology. We first fold the infinite periodic tiling
of the plane into its essence, an orbifold, then describe that with a few symbols:

• A digit, n, indicates a center of n-fold rotation corresponding to a cone point on
the orbifold. By the crystallographic restriction theorem, n must be 2, 3, 4, or 6.

• An asterisk, ∗, indicates a mirror symmetry corresponding to a boundary of the
orbifold. It interacts with the digits as follows:

1. Digits before ∗ denote centers of pure rotation (cyclic group).

2. Digits after ∗ denote centers of rotation with mirrors through them, corre-
sponding to “corners” on the boundary of the orbifold (dihedral group).

• A cross, x, occurs when a glide reflection is present and indicates a cross-cap on
the orbifold. Sometimes pure mirrors combine with lattice translation to produce
glides, we do not take into account for these glides in the notation.

• the symbol∞ indicates infinite rotational symmetry around a line; it can only occur
for group of symmetries of Euclidean 3-space. By abuse of language, we might say
that such a group is a subgroup of symmetries of the Euclidean plane with only
one independent translation. The frieze groups occur in this way.

• The “no symmetry” symbol, o, stands alone, and indicates we have only lattice
translations with no other symmetry. The orbifold with this symbol is a torus; in
general the symbol o denotes a handle on the orbifold.

Consider the group denoted in crystallographic notation by cmm, you can see it in
fig. D.7; in Conway’s notation, this will be 2 ∗ 22. The 2 before the ∗ says we have a
2-fold rotation center with no mirror through it. The ∗ itself says we have a mirror. The
first 2 after the ∗ says we have a 2-fold rotation center on a mirror. The final 2 says we
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have an independent second 2-fold rotation center on a mirror, one that is not a duplicate
of the first one under symmetries.

The group denoted by pgg will be 22x. We have two pure 2-fold rotation centers,
and a glide reflection axis. Contrast this with pmg, Conway 22∗, where crystallographic
notation mentions a glide, but one that is implicit in the other symmetries of the orbifold.

D.4.3 Why there are exactly seventeen groups

The orbifold notation gives us a tool to determine the number of wallpaper groups via
a simple enumeration. An orbifold can be viewed as a polygon with face, edges, and
vertices, which can be unfolded to form a possibly infinite set of polygons which tile
either the sphere, the plane or the hyperbolic plane. When it tiles the plane it will give a
wallpaper group and when it tiles the sphere or hyperbolic plane it gives either a spherical
symmetry group or Hyperbolic symmetry group. The type of space the polygons tile can
be found by calculating the Euler characteristic, χ = V −E +F , where V is the number
of corners (vertices), E is the number of edges and F is the number of faces. If the Euler
characteristic is positive then the orbifold has a elliptic (spherical) structure; if it is zero
then it has a parabolic structure, i.e. a wallpaper group; and if it is negative it will have
a hyperbolic structure. When the full set of possible orbifolds is enumerated it is found
that only 17 have Euler characteristic 0.

When an orbifold replicates by symmetry to fill the plane, its features create a struc-
ture of vertices, edges, and polygon faces, which must be consistent with the Euler char-
acteristic. Reversing the process, we can assign numbers to the features of the orbifold,
but fractions, rather than whole numbers. Because the orbifold itself is a quotient of the
full surface by the symmetry group, the orbifold Euler characteristic is a quotient of the
surface Euler characteristic by the order of the symmetry group.

The orbifold Euler characteristic is 2 minus the sum of the feature values, assigned
as follows:

• A digit n before a ∗ counts as n−1
n .

• A digit n after a ∗ counts as n−1
2n .

• Both ∗ and x count as 1.

• The “no symmetry” o counts as 2.

For a wallpaper group, the sum for the characteristic must be zero; thus the feature sum
must be 2.
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Symbol (1) f or w (2) Number of transitivity classes (3)

Rotations of period

Crystal-
lographic
notation

Orbifold

notation

Glide-
Reflections

Reflections 2 3 4 6

p1 ∞∞ f 0 0 0 0 0 0
p11g ∞x f 1 0 0 0 0 0
p11m ∞∗ f 0 1 0 0 0 0
p1m1 ∗∞∞ f 0 2 0 0 0 0
p2 22∞ f 0 0 2 0 0 0
p2mg 2∗∞ f 1 1 1 0 0 0
p2mm ∗22∞ f 0 3 2 0 0 0
p1 o w 0 0 0 0 0 0
pg xx w 2 0 0 0 0 0
pm ∗∗ w 0 2 0 0 0 0
cm x∗ w 1 1 0 0 0 0
p2 2222 w 0 0 4 0 0 0

pgg 22x w 2 0 2 0 0 0
pmg 22∗ w 1 1 2 0 0 0
pmm ∗2222 w 0 4 4 0 0 0
cmm 2∗22 w 2 2 2 0 0 0
p3 333 w 0 0 0 3 0 0
p3lm 3∗3 w 1 1 0 2 0 0
p3ml ∗333 w 1 1 0 1 0 0
p4 442 w 0 0 1 0 2 0
p4g 4∗2 w 2 1 1 0 1 0
p4m ∗442 w 1 3 1 0 2 0
p6 632 w 0 0 1 1 0 1
p6m ∗632 w 2 2 1 1 0 1

Table D.2 Frieze and Wallpaper Groups: (1) symbols in Crystallographic no-
tation and orbifold notation; (2) indicates whether it is a frize or a wallpaper
group; (3) give the number of transitivity classes of elements of the each kind.
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