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Introduction

Until the introduction of the first spin glass model by Edwards and Anderson
[EA75] in 1975, the research area of disordered systems has undergone a huge
progress, thanks to the introduction of new analytical techniques and numerical
tools, as long as the development of novel concepts and ideas. In particular, the
rich phenomenology found by the extensive study of mean field spin glass mod-
els, not only proved to be the basis for an explanation of many different physi-
cal phenomena and permitted to strengthen the traditional relationship between
physics and mathematics, but also it allowed physicist to apply those concepts
to research areas that were thought to be completely disconnected from physics
before, such as theoretical computer science, biology, engineering, economics and
finance. Therefore, on the analytical level, disordered systems techniques proved
to be an excellent tool in order to give a physical insights on different areas of
knowledge and many times they were able to solve long-standing issues of the
field paving the way to the development of rigorous proofs by the mathematician
community. Those continuous interactions and exchange of ideas between differ-
ent communities guaranteed, on the numerical level, the birth of new, performing
algorithms.

In this thesis we will analyze combinatorial optimization problems, that are one
of those multidisciplinary applications we were alluding, from a physics point of
view. This thesis is organized as follows

• Part I: Preliminaries

– Chapter 1: Phase transitions in pure and disordered systems.
Here we give some basic definitions in order to set up the notation that
will be used throughout all this thesis work. In particular we remind
some essential definitions of graph and random graph theory and we
introduce basilar concepts and techniques of statistical physics such as
mean-field, Bethe-Peierls approximation and Belief Propagation. We
will also deal with preliminary definitions in spin glass theory. In the
final section of this chapter the main topic of the thesis, that is combi-
natorial optimization, is introduced.

– Chapter 2: The Sherrington-Kirkpatrick model.
In this chapter we will develop the replica formalism for the Sherrington-
Kirkpatrick model, which historically was the first analyzed using repli-
cas. This can be an useful introduction to whom has not ever seen
replicas in action. We will describe the results coming from the replica
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symmetric solutions and how it fails in the spin glass phase. We will
explain how and when replica symmetry breaking occurs, studying
both the negative entropy problem and performing a stability analy-
sis of the solution. Then we will introduce Parisi’s correct scheme of
replica symmetry breaking, discussing the phase diagram of the model,
as long as physical consequences.

• Part II: Mean Field

– Chapter 3: Finite-size corrections in random matching problems.
This is the first original chapter of this thesis work. We will mainly
deal with the computation of the finite-size corrections in the random
assignment problem, which was one of the first combinatorial opti-
mization problems that was studied by means of the replica technique.
Here we present how the choice of the disorder distribution affects the
finite-size corrections to the average cost. We have found that correc-
tions are smaller in the case of a pure power law probability distribu-
tion, i.e. ρ(w) ∼ wr. In this case, only analytical corrections are present,
that is in inverse powers of the number of points. On the contrary, and
interestingly enough, the exponent of the leading correction changes as
a function of r whenever ρ(w) ∼ wr(η0 + η1 w+ . . . ) with η1 6= 0. These
results were published in [Car+17]. Similar conclusions can be derived
for the random matching problem case. The form of the finite-size cor-
rection is quite much complicated because of a non-trivial determinant
contribution. This contribution can be interpreted as the sum over odd
loops of the graph, a form which is reminiscent of the finite-size correc-
tions of many other diluited models. We remark here that analogous
equations arise when computing Gaussian fluctuations around instan-
tons for determining the large order behavior of perturbation theory
in quantum field theory [MPR17]. Combined with cavity arguments,
instantons could be an useful approach in computing finite-size correc-
tions in diluted models without resorting to replicas.

– Chapter 4: The random fractional matching problem.
We study here the random fractional matching problem, which is a re-
laxation of the random matching problem analyzed in Chapter 3. We
show how this slight modification to the problem does not modify the
average optimal cost but only finite-size corrections [Luc+18]. In addi-
tion we show that the determinant contribution of the random match-
ing problem completely disappears. We will also consider a “loopy”
variation of the model which was extensively studied by the mathe-
matical community.

– Chapter 5: Replica-cavity connection
Here shall investigate the key connection between replica and cavity
quantities in random-link combinatorial optimization problems. This
is of interest because for both the random-link 2-factor and the random-
link traveling salesman problem one encounters some technical prob-
lems when dealing with replicas, whereas there are no such issues
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using the cavity method. Since the replica method is the best-suited
approach for computing finite-size corrections to average quantities of
interest, one still does not know how to compute them in such two
models. We prove here a relation that has been mentioned in [MP86b]
and we show that it is valid for the random-link matching, the 2-factor
and traveling salesman problem. Our approach is based on the use of
Belief Propagation equations.

• Part III: Finite Dimension

– Chapter 6: Euclidean TSP in one dimension.
Encouraged by some recent results on the bipartite Euclidean matching
problems in 2 dimensions we started studying a much more challeng-
ing problem from the point of view of complexity theory: the Traveling
Salesman Problem (TSP). We started by studying it in one dimension,
both on the fully connected [Car+18b] and complete bipartite topolo-
gies [Car+18a]. Here both problems will be solved when the cost is a
convex and an increasing function of the Euclidean distance between
points unveiling that for every realization of the disorder the solution
is always of the same “shape”. This shows also that in one dimen-
sion, the TSP is polynomial. In the fully connected case we will also
completely solve the problem in the increasing but concave case and
in the decreasing case. The scaling of the cost will be showed to be
the same of previously studied combinatorial optimization problems.
In particular in the bipartite case, where the an anomalous scaling of
the cost is present due to the local difference of the number of red and
blue points, we establish a very general connection with the assignment
problem, namely the average optimal cost of the one-dimensional TSP
tends, for large number of points, to 2 times the average optimal cost
of the assignment.

– Chapter 7: The Euclidean 2-factor problem in one dimension.
From the analytical findings of Chapter 6 many results follow for the
Euclidean 2-factor problem in one dimension [CDGM18a]. This prob-
lem can be seen as a relaxation of the TSP since one does not have the
constraint of having only one loop in a configuration. We will show
how even if it is a one-dimensional model, it is not a completely triv-
ial one, since, when the cost is a convex and increasing function with
a power p = 2 of the Euclidean distance between points, there ap-
pears an exponential number of possible solutions, differently to what
happens in previously studied models. We will derive some upper
bounds to the average optimal cost and we compare the analytical re-
sults with numerical simulations. In Appendix E we will sketch how
to derive in the p > 1 generic case, not only those upper bounds, but
also the average optimal cost in the assignment and TSP using Selberg
integrals [CDGM18b]. Their use in the context of combinatorial opti-
mization were substantially ignored and there were no explicit formula
in the generic p > 1 case even in the well-studied matching case.
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– Chapter 8: Going to higher dimension.
In this Chapter the analogy between the bipartite Euclidean TSP and
the assignment problem found in Chapter 6 will be extended in 2 di-
mensions and discussed in higher ones [Cap+18]. In those cases the
Euclidean TSP is really an “hard” problem from the point of view of
complexity theory. The results will be justified by a scale argument
and confirmed by extensive numerical simulations. Also the 2-factor
problem will be discussed.

• Part IV: Conclusions

– Chapter 9: Conclusions and perspectives
In this final Chapter we will discuss the results obtained in this thesis
and we will highlight several possible directions of future work.
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Part I

Preliminaries
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Chapter 1

Phase Transitions in pure and
disordered systems

In this chapter we shall give a very basic introduction to concepts and techniques
used in statistical physics that are useful to treat disordered systems. The same
physical and mathematical ideas turn out to have numerous multidisciplinary
applications. After a brief list of definitions of graph theory (section 1.1) which
has the task of fixing the notation once and for all, I will discuss the concepts of
mean field and Bethe-Peierls approximations in section 1.2, then I will recall some
basic notions of spin glass theory in section 1.3. In the last section 1.4 I will finally
introduce the main topic of my thesis work: combinatorial optimization.

1.1 Graph Theory preamble

It is essential to recall some basic definitions of graph theory. A graph is an ordered
pair G = (V , E) where V is a set of elements called vertices (or nodes) and E is a
set of pairs of vertices called edges. We will denote the cardinality of the set of
vertices by |V| = N and with (i, j) an edge that connects vertex i with vertex j. A
graph is said to be undirected if the edges have no orientation, i.e. the edge set E
is a set of unordered pairs of vertices and directed otherwise. A graph is simple if
there are no multiple edges between two vertices and there are no self-loop i.e. edges
that connects a vertices to itself (i, i). From now on we will focus on simple and
undirected graphs if not otherwise stated. A graph is weighted if it is assigned, to
every edge of the graph, a real number. We will say that two vertices i and j are
adjacent (or neighbors) is there is an edge e ∈ E such that e = (i, j), i.e. it connects
i with j. The neighborhood of a vertex i is the set ∂i that contains all the vertices
adjacent to i i.e. ∂i = {j ∈ V ; (i, j) ∈ E}. The connectivity (or degree) of a vertex i
is the cardinality of its neighborhood |∂i|. Note that for every graph G it holds
∑N

i=1 |∂i| = 2 |E|. A vertex which has degree zero is called isolated vertex whereas
a vertex with degree one is called a leaf. A graph is k-regular if |∂i| = k for every
i ∈ V . A graph is bipartite if its vertex set can be partitioned into two set V1 and
V2 such that for every edge e = (i, j) ∈ E one has i ∈ V1 and j ∈ V2. The adjacency
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(a) The complete bipartite graph KN,M with
N = M = 5.

(b) The complete graph KN with N = 16.

Figure 1.1

matrix of a graph G is defined as

Aij =

{
1 if (i, j) ∈ E
0 otherwise .

(1.1)

The adjacency matrix is symmetric by construction AT = A and has the property

N

∑
j=1

Aij = |∂i| . (1.2)

If the graph is bipartite with, for simplicity, the same cardinality N of the two sets
of vertices the adjacency matrix can be written in the block form

A =

(
0 B

BT 0

)
. (1.3)

where B is a N× N matrix containing the only non-zero entries corresponding to
edges connecting the two different types of points. Of course B uniquely identifies
the adjacency matrix A.

At this point it is interesting to introduce two types of graphs that will be
used extensively throughout this thesis. The complete graph of N vertices KN
is a graph such that which every pair of vertices is connected by an edge (the
adjacency matrix is composed by all 1 beside the zeros on the diagonal). The
complete bipartite graph KN,M is a bipartite graph with |V1| = N and |V2| = M that
is complete, i.e. it has every possible edge between the two sets of vertices (the
matrix B in (1.3) is composed by all 1).

A walk of length k in a graph G is an alternating sequence of vertices and edges
(non necessarily distinct) v0 e1 v1 . . . vk−1 ek vk starting and ending on a vertex such
that en = (vn−1, vn) with n = 1, . . . , k. Of course in simple graphs the edge that
connects vertex vn−1 with vn is uniquely identified, so that one can write simply
a sequence of vertices. A trail is a walk such that all of the edges are distinct.
A path is a walk such that all of the vertices and edges are distinct. A graph is
connected if there is a path connecting every pairs of vertices and it is disconnected
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if is not connected. The distance between two vertices is the length of the shortest
path joining them (if there is no path joining them by convention the distance
is infinite). We will also say that a vertex j is the k-th neighbour of a vertex i if
it is at a distance k from i. A walk is closed if the starting and ending vertex is
the same. A closed trail is called circuit. A closed path is called cycle (or loop).
A circuit that passes through all the edges of the graph is called Eulerian. If a
graph has a Eulerian circuit it is called Eulerian. A cycle that passes through all
the vertices is called Hamiltonian. If a graph has a Hamiltonian cycle the graph is
called Hamiltonian. If the graph contains no cycles the graph is a called a forest;
if in addition it is connected the graph is called a tree. A forest is a collection of
trees.

A subgraph of a graph G = (V , E) is a graph G ′ = (V ′, E ′) such that V ′ ⊆ V and
E ′ ⊆ E . A subgraph G ′ of a graph G is said to be spanning (or a factor) if V ′ = V .
It is in general interesting to look at specific spanning subgraphs of a graph G. A
factor which is k-regular is called k-factor. The adjacency matrix A of a k-factor on
a simple graph has exactly k entries 1 in each row and therefore in each column,
i.e. has to satisfy the constraints

|V|
∑
j=1

Aij = k , i ∈ [|V|]

Aij ∈ {0, 1} , Aij ≤ Gij

(1.4)

where G is the adjacency matrix of the whole graph G. A 1-factor is also called
a (perfect) matching. If the graph G = KN,N then an 1-factor is usually called an
assignment. A 2-factor is a loop covering of the graph. An Hamiltonian cycle can be
seen as a 2-factor with only one cycle. If the spanning subgraph is a tree (forest)
the subgraph is called a spanning tree (forest).

1.1.1 Random Graphs

It is often useful, not only on a purely mathematical level, but also from a physics
point of view, to introduce graphs generated according to a certain probability
distribution, the so-called random graphs [Bol98]. More precisely a random graph
is a couple GP = (G, P) where G is a set of graphs and P is a probability law
defined over G. In general one is interested in studying typical properties of the
ensemble and not in a particular realization. This can be done by averaging over
the ensemble of graphs, i.e. given an observable F to perform

〈F〉 ≡ ∑
G∈G

P[G]F(G) . (1.5)

Three popular models of random graphs with N vertices are the following

• Gilbert ensemble GN,NE : G is the set of graphs of N vertices with a fixed
number of edges NE. The probability law is uniform over all the set G, that
is

P[G] =
(
(N

2 )

NE

)−1

. (1.6)
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• Erdős-Rényi (ER) ensemble GN,p: here every possible edge of the graph is in-
cluded with a probability p independent from every other edge. The prob-
ability to extract a graph with NE edges is binomial

P[G] =
(
(N

2 )

NE

)
pNE (1− p)(

N
2 )−NE . (1.7)

• Random Regular Graphs (RRG) GN, c: the graph is extracted with uniform
measure from the set G of all possible c-regular graphs.

We will now analyze some basic properties of these three ensembles. The basic
difference between the Gilbert and the ER ensemble is that in the second one there
are no correlation between the links. As a neat result the number of edges is itself
a random variable with mean

〈NE〉 = p
(

N
2

)
. (1.8)

In the ER ensemble when N goes to infinity, different (typical) properties of the
graph can be derived according to different choices of the scaling of p with N.
For example when p ' N−α with α > 1, the graph is almost surely a forest,
for p ' ln N/N becomes connected, whereas when p ' (ln N + ln(ln N)) /N
the typical graph becomes Hamiltonian [Bol98, HW06]. Here we will simply set
p = c/N. The same applies to the Gilbert ensemble: in the following we will set
NE = cN/2; this will be useful because in the limit N → ∞ the Gilbert and the
ER ensemble share common properties. One important observable to look at is
the degree distribution pk(N), that is the probability that, for a random vertex of
the graph, the degree is equal to k

pk(N) =

(
N − 1

k

)( c
N

)k (
1− c

N

)N−1−k
(1.9)

which still follows a binomial distribution. When N tends to infinity, with c finite,
the degree distribution tends to a Poisson distribution

pk =
ck

k!
e−c (1.10)

with parameter c which therefore can be identified with the mean degree or con-
nectivity of the graph 〈k〉 = c. Since the typical degree of the graph stays finite
in the thermodynamic limit (and in the RRG case it is fixed by definition), these
graphs are called sparse random graphs. The Gilbert and ER random graphs are
also called Poissonian, because their degree distribution follows a Poisson distri-
bution. Another quantity of interest is the degree distribution p̃k of a vertex which
is an end of a randomly chosen edge of the random graph. This will be of course
equal to the probability to extract a vertex with degree k times the number of
possible ways k of arrange an edge on this vertex times a normalization

p̃k =
kpk

c
=

ck−1

(k− 1)!
e−c . (1.11)
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Figure 1.2. Fraction of vertices belonging to the giant component as a function of the
mean degree, see equation (1.15).

The average degree of these vertices (also called edge perspective degree) is trivially
∑k k p̃k = c + 1, i.e. the randomly selected edge plus one contribution coming
from c excess edges. Of course this result differs from the RRG case, for which
the excess edge contribution is always c− 1. Another important property of these
three ensembles of random graphs is the fact that they are locally tree-like. To see
this explicitly let us compute for N → ∞ the probability of having a subgraph
with n vertices which is a tree. Since a tree with n vertices has n− 1 edges, this
probability is proportional to

N!
(N − n)!

( c
N

)n−1
= Nck−1 + O(1) , (1.12)

i.e. it scales linearly with the size of the graph. If one instead wants to compute
the probability to have a subgraph which is a loop of length n, one needs to add
to a tree of n vertices one link, that is to multiply the previous quantity by a factor
c/N. This probability is therefore depressed by a factor N. If one adds other
edges between the vertices of the loop this probability is even lower. This does
not mean that loops are not present in principle, but they diverge with N. In fact,
using the tree-like property, the (average) number of vertices within a distance l
from a center vertex grows as cl ; when this quantity becomes of order N some
loops can appear. Therefore the length of the loops scales logarithmically with N

l ∼ ln N
ln c

. (1.13)

One last thing to cite is how the graph changes by varying the mean connectivity
c. Intuitively one expects a phase transition tuning c: for c � 0 the typical graph
is formed by an high number of isolated vertices, whereas as we increase c the
number of connected components decrease. It is interesting therefore to study the
size of the largest component M(c) in the typical realization of a ER or Gilbert
random graph. An important result of Erdős and Rényi states that, the size of the
largest component behaves for N → ∞ as

M(c) =





ln N
a + O(ln ln N) for c < 1 ,

O(N2/3) for c = 1 ,
f N + O(

√
N) for c > 1 ,

(1.14)
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where a ≡ c− 1− ln c and f satisfies the following transcendental equation

1− f = e−c f . (1.15)

For c > 1 a giant component appears, since it contains an extensive number f N
of vertices. For the analogies with percolation [SA14] this phase transition is also
called percolation transition. It is easy to derive equation (1.15) using a simple
argument. In order to evaluate the probability 1− f that a vertex i is not part
of the giant component we need to impose that i is not connected to no vertex j
which is not in the giant component. We have two possibilities: in the first case i is
connected to j and j does not belong to the giant component, or i is not connected
to j. In the first case the probability is p(1− f ) whereas in the second is simply
1− p. Since there are N − 1 vertices j, the total probability is

1− f = (1− p f )N−1 , (1.16)

which is equal to (1.15) in the limit N → ∞. f (c) is plotted in Fig. 1.2.
We refer to [MMZ01, EMH04] for the analysis of large deviations properties

of sparse random graph and their connection with the Potts model of statistical
physics.

1.2 Models on Graphs

In this section we want to study and develop general statistical techniques for
models defined on graphs. To do this it is essential the notion of factor graph,
which is a very useful formalism in order to keep things as general as possible, as
we shall see in a while. A factor graph is simply a bipartite graph G = (V ,F , E)
where V is the first set of vertices called variable nodes and F the second one,
usually denominated function nodes. It is convention to use the variables i, j, . . .
and a, b, . . . to identify variable and function nodes respectively. The factor graph
formalism is very useful in statistical physics for the following reason: one can
associate to variable nodes the degrees of freedom of the problem under consid-
eration (e.g. spin variables), whereas the function nodes represent interactions
between them. A one-body interaction (external field) is simply modeled by a
function node a with connectivity |∂a| = 1 whereas a two-body interaction is
characterized by having |∂a| = 2. Multi-spins interactions are characterized by
∂a > 2. From now on, we shall not include anymore external fields in the set of
function nodes F , since they will be added by hand; we will also set |V| = N and
|F | = M.

In statistical physics one usually has a model with N variables or spins σ ≡
σ1, . . . , σN , which are taking values in some set χ (either discrete or continuous).
One then has a joint distribution of these variables which we assume to take the
general form [MM09]

µ(σ) ≡ 1
Z

N

∏
i=1

ψi(σi)
M

∏
a=1

ψa(σ∂a) . (1.17)

where σ∂a is the set of all spins (variable nodes) which are neighbors of the
function node a. In general, if S is a set of variable nodes, we will denote by
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σS ≡ {σi ; i ∈ S}. As we have anticipated, in (1.17) we have isolated, for conve-
nience, the one-body interactions ψi(σi) from higher ones which are encoded in
the function ψa(σ∂a) with |∂a| ≥ 2. The functions ψi and ψa are non-negative by
definition and assume real values; ψi is usually called bias, because it is the equiv-
alent of a magnetic field on site i, whereas ψa is called compatibility function. Z is
instead a normalization (the partition function). A particular feature of the joint
probability distribution (1.17), is that two variable nodes interact only through the
variable nodes which are interposed between them. In mathematical terms, if we
have three disjoint sets of variables A, B, S ⊆ [N] such that there is no path going
from A to B without passing through S (S separates A and B), then the variables
σA and σB are conditionally independent

µ(σA∪B|σS) = µ(σA|σS)µ(σB|σS) . (1.18)

This is also called global Markov property for obvious reasons. Intuitively, when one
conditions over the variables belonging to the set S one is graphically canceling
all the σS, so that the resulting graph is disconnected and σA is independent from
σB. The great advantage of (1.17) is that one can determine the model by simply
giving the form of the bias and of the compatibility functions. A very simple
example is given by the p−spin Ising model in which every interaction a ∈ F has
degree |∂a| = p

ψi(σi) = eβhiσi

ψa(σ∂a) = eβJaσi1 ...σip
(1.19a)

where β is the inverse temperature, hi is the local magnetic field and Ja is the
magnitude of the p-body interaction. A simple picture of this factor graph repre-
sentation is given in Fig. 1.3 for the p = 2 case on a two-dimensional lattice. One
usually represents graphically variable nodes with circles, function nodes with
black squares, and site-dependent magnetic fields with squares hatched inside. In
general the representation (1.17) can be expressed in the usual Boltzmann-Gibbs
way by defining an Hamiltonian which is expressed in terms of ψi and ψa as

H(σ) = − 1
β

[
∑

a
ln ψa(σ∂a) + ∑

i
ln ψi(σi)

]
(1.20)

The principal target of statistical physics is to compute the partition function
of the system (from which we can derive all other physical quantities of interest),
or at least, marginals in an efficient way. For example the one-point marginal µi
and the marginal corresponding to the a-th function node µa

µi(σi) = ∑
σ\σi

µ(σ) , (1.21a)

µa(σ∂a) = ∑
σ\σ∂a

µ(σ) , (1.21b)

where we have used the symbol ∑ to denote the sum, or the integral over all
values that the variable nodes can assume in χ. It is evident that computing
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Figure 1.3. Factor Graph representation of the 2d Ising model with external magnetic
fields (represented by a square hatched inside).

(1.21), for example in the Ising model case, requires 2N−1 steps, which exponential
in N, this being usually a very large number. Therefore one is forced to resort to
some type of approximation. Those types of approximation are the subject of the
following subsections.

1.2.1 The “naive” mean field approximation

The first approximation one can have in mind is to write the total joint probability
distribution µ as a product of beliefs bi

µ(σ) ≈
N

∏
i=1

bi(σi) , (1.22)

with 0 ≤ bi(σi) ≤ 1 for every i = [N] and

∑
σi

bi(σi) = 1 . (1.23)

What we are really doing here is neglecting interactions and approximate the
system as if every spin lives in an effective local magnetic field parametrized by
bi(σi). In addition we are implicitly saying that µi(σi) ≈ bi(σi), i.e. bi(σi) is our
“belief” of what the true marginal is. This (very crude) approximation is called
naive mean field approximation (MF). Obviously (1.22) is not the true form of the
equilibrium probability distribution. But what we can do is to minimize the Gibbs
free energy

G[µ] ≡∑
σ

µ(σ)H(σ) +
1
β ∑

σ

µ(σ) ln µ(σ) , (1.24)

subject to constraint (1.23) in the particular subspace of probability distribution
specified by (1.22). This variational procedure provides the optimal choices for
the beliefs bi(σi). Let us do a simple, well-known example: the Ising model on a
generic graph G

H(σ) = − ∑
(i,j)∈G

Jijσiσj −∑
i

hiσi (1.25)
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Since in this case the spins have only two degrees of freedom σi = ±1 the only
parametrization possible for the beliefs is

bi(σi) =
1 + mi σi

2
, (1.26)

where mi are N variational parameters that physically represent local magnetiza-
tions

mi = 〈σi〉MF ≡∑
i

σi bi(σi) . (1.27)

Inserting (1.26) into (1.24) we get

G[mi] =− ∑
(i,j)∈G

Jijmimj −∑
i

himi

+
1
β ∑

i

[
1−mi

2
ln
(

1−mi

2

)
+

1 + mi

2
ln
(

1 + mi

2

)]
.

(1.28)

Differentiating the Gibbs free energy with respect to mi we find the famous mean
field equations for the local magnetizations

mi = tanh

[
β

(
∑
j∈∂i

Jijmj + hi

)]
. (1.29)

When the graph G is an hypercubic lattice in d dimensions with all the interactions
being uniform and ferromagnetic (Jij = J > 0) and with hi = h (so that the
magnetizations are uniform) we have

m = tanh [β (2dJm + h)] . (1.30)

When h = 0 this equation of state predicts a phase transition at the critical tem-
perature Tc = 2dJ and a non zero value of the total magnetization m at T < Tc.
This is clearly a wrong prediction in one dimension, where the Ising model has
no phase transition. In d = 2 the critical temperature predicted by the mean
field approximation is Tc = 4J, to be compared with Onsager’s exact solution
Tc = 2J/ ln(1 +

√
2) ' 2.269J. It can be shown that the critical exponents pre-

dicted by the mean field approximation are correct only for d > du where the
upper critical dimension du = 4 in this case. Nonetheless we remind that this
approximation is exact in the limit d → ∞ i.e. when the spins are located on the
vertices of a complete graph KN . The ferromagnetic fully-connected Ising model
is called Curie-Weiss model; its Hamiltonian is

H(σ) = − J
2N ∑

i 6=j
σiσj − h ∑

i
σi . (1.31)

Using a Gaussian transformation (as we will often do), the partition function of
this model can be written as

Z =

√
βJN
2π

∫
dm e−N

[
− βJ

2 m2+ln(2 cosh(βJm+βh))
]

, (1.32)

so that using the saddle-point approximation we recover (1.29) by performing the
derivative of the exponent.
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1.2.2 The Bethe-Peierls approximation

One can do better than naive mean field since it completely neglects correlations.
In first approximation, we can take into account correlations through variables
that are involved in the same interaction, which we expect to be the ones more
correlated between each other. The factorization

µ(σ) ≈
N

∏
i=1

bi(σi)
1−|∂i|

M

∏
a=1

ba(σ∂a) , (1.33)

with the conditions 0 ≤ bi, ba ≤ 1 and

∑
σ∂a\i

ba(σ∂a) = bi(σi) , (1.34a)

∑
σi

bi(σi) = 1 , (1.34b)

is called the Bethe-Peierls approximation. The factor bi(σi)
−|∂i| was added to avoid

over-counting of σi. The question is the same as before: how much the beliefs
bi(σi) and ba(σ∂a) are similar to the true marginals respectively µi(σi) and µa(σ∂a)?
The general variational procedure is always the same: one defines a Lagrangian
which is function of the beliefs and of the Lagrange multipliers that impose con-
straints on them. Then one takes derivatives of this Lagrangian and finds the
beliefs that extremize it. We remind to [Lup17] for these details. To give a flavor
of what’s going on, let us take, as before, the (pairwise) Ising model case; the
beliefs satisfying conditions (1.34) are

bi(σi) =
1 + miσi

2
, (1.35a)

b(ij)(σi, σj) =
1 + miσj + mjσj + mijσiσj

4
. (1.35b)

Now we have M additional variational parameters mij with respect to naive mean
field: we are extending the domain in the space of probability distributions where
we want to find a minimum of the Gibbs free energy. On the hypercubic lattice,
the Bethe-Peierls approximation predicts a phase transition at the critical temper-
ature

Tc = 2J
[

ln
(

d
d− 1

)]−1

, (1.36)

i.e. it correctly predicts no phase transition in d = 1 and it gives a critical tem-
perature Tc = 2J/ ln 2 ' 2.885J in d = 2 which is still higher than the exact result
Tc = 2J/ ln(1 +

√
2) ' 2.269J but better than the naive mean field estimate.

Let us now see when the Bethe-Peierls approximation is exact. Note that (1.33),
in general, is even not normalized! Since we have considered correlations involv-
ing variables connected to the same function node a, it is clear that we are simply
saying that two variables i, j ∈ ∂a interact only through a and with no one else, so
that in general

µ(σ∂a\i|σi) = ∏
k∈∂a\i

µ(σk|σi) , (1.37)
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i.e. they are conditionally independent only via a. This means that for every
couple of variables i and j there is only one path joining them. With this reasoning
we expect that, if the factor graph is a tree, the Bethe-Peierls is exact, i.e.

µ(σ) =
N

∏
i=1

µi(σi)
1−|∂i|

M

∏
a=1

µa(σ∂a) . (1.38)

We can prove this result by induction on the number of interactions. For M = 1
equation (1.38) is trivially satisfied. Let us suppose now that (1.38) is valid on
the tree T which is composed of M− 1 function nodes and let us prove that this
is valid also for the tree T ′ which has the same interactions of T plus one, that
we will call a, which is attached to the vertex i. Thanks to the global Markov
property (1.18), the joint probability distribution of all the variables σ′ in the tree
T ′ is

µT ′(σ
′) = µT (σ)µ(σ∂a\i|σi) = µT (σ)

µa(σ∂a)

µi(σi)
, (1.39)

which is in the same form of (1.38) because the factor µa(σ∂a) takes into account
the new interaction a whereas the factor µi(σi) takes into account the change
of the degree of i when a is attached to the tree T . Of course on tree graphical
models things are easy; however the Bethe-Peierls approximation could work well
whenever on the factor graph the correlations between distant variables decay
fast enough. One important example is that of random (factor) graph with the
property to be locally tree-like as happens for the Gilbert, ER and RRG ensemble,
in which typical loops are of the size ln N as we have examined in subsection 1.1.1.

Finally we mention that having found the beliefs that minimize the Gibbs free
energy, one can compute all the quantities of interests from the Bethe free energy
which is written as

βFB(b) =∑
a

∑
σ∂a

ba(σ∂a) ln
ba(σ∂a)

ψa(σ∂a)
+ ∑

i
(1− |∂i|)∑

σi

bi(σi) ln bi(σi)

−∑
i

∑
σi

bi(σi) ln ψi(σi)
(1.40)

1.2.3 Belief Propagation

Suppose we have a tree graphical model. We can introduce two quantities Zi→a(σi)
and Ẑa→i(σi) defined on a certain edge (i, a) of the factor graph called cavity parti-
tion functions. Zi→a(σi) is the partition function for the subtree rooted at i having
removed interaction a and conditioned over the value of variable i to be σi. Analo-
gously Ẑa→i(σi) is the partition function for the subtree rooted at i having removed
all the interactions b ∈ ∂i\a and conditioned over the value of variable i to be σi.
Those quantities satisfy the recursion relations

Zi→a(σi) = ψi(σi) ∏
b∈∂i\a

Ẑb→i(σi) (1.41a)

Ẑa→i(σi) = ∑
σ∂a\i

ψa(σ∂a) ∏
j∈∂a\i

Zj→a(σj) . (1.41b)
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νi→a(σi)

ν̂b→i(σi) ν̂b→i(σi)

i

a

b

(a)

ν̂a→i(σi)

νj→a(σj) ν̂b→i(σi)

a

i

j

(b)

Figure 1.4. Parts of the graph involved in the computation of νi→a(σi) (left panel) and
ν̂a→i(σi) (right panel). These quantities are written in the BP equations (1.44) in func-
tion respectively of ν̂b→i(σi) and νj→a(σj) (displayed also in the figures), with b ∈ ∂i\a
and j ∈ ∂a\i.

Since we are on a tree, the marginals (1.21) can be written easily as a product of
cavity partition functions. Therefore we get

µi(σi) =
1
Z

ψi(σi) ∏
b∈∂i

Ẑb→i(σi) (1.42a)

µa(σ∂a) =
1
Z

ψa(σ∂a) ∏
j∈∂a

Zj→a(σj) , (1.42b)

We can also introduce two quantities νi→a(σi) and ν̂a→i(σi) defined on a certain
edge (i, a) of the factor graph called cavity marginals or messages defined as

νi→a(σi) =
Zi→a

∑σi
Zi→a

(1.43a)

ν̂a→i(σi) =
Ẑa→i

∑σi
Ẑa→i

(1.43b)

More precisely, νi→a(σi) is the marginal of variable σi in a modified graphical
model in which we have removed interaction a; ν̂a→i(σi) is instead the marginal
of σi when all function nodes b ∈ ∂i\a are removed from the factor graph. One
can write iterative equations for the cavity marginals analogous to 1.41 which are
called Belief-Propagation equations (BP)

νi→a(σi) =
1

zi→a
ψi(σi) ∏

b∈∂i\a
ν̂b→i(σi) (1.44a)

ν̂a→i(σi) =
1

ẑa→i
∑

σ∂a\i

ψa(σ∂a) ∏
j∈∂a\i

νj→a(σj) (1.44b)
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where zi→a and ẑa→i are normalization constants. These equations can also be
used as an algorithm, called message passing, since they can be solved iteratively
starting from the leaves and iterating into the core of the tree; the use of equa-
tions (1.44) are preferred to (1.41) because they involve quantities that are nor-
malized. The time needed scales is at most Mkqk where k = maxa |∂a| and q is
the (maximum) number of degrees of freedom a variable can take. Nevertheless
BP equations can be used over all types of graphs. One can prove, in addition,
that the BP equations are the same self-consistent one derives with the variational
approach, and therefore the BP fixed point are in biunivocal relation with station-
ary point of the Bethe free energy. In terms of messages equations (1.42) can be
rewritten as

µi(σi) =
1
zi

ψi(σi) ∏
b∈∂i

ν̂b→i(σi) (1.45a)

µa(σ∂a) =
1
za

ψa(σ∂a) ∏
j∈∂a

νj→a(σj) . (1.45b)

In (1.45) we have also introduced new normalizations zi and za; they are given by

zi = ∑
σi

ψi(σi) ∏
b∈∂i

ν̂b→i(σi) (1.46a)

za = ∑
σ∂a

ψa(σ∂a) ∏
j∈∂a

νj→a(σj) . (1.46b)

Note that the one point marginal, using BP equations can be written simply as

µi(σi) =
1

zia
ν̂b→i (σi) νi→b(σi) , ∀b ∈ ∂i (1.47)

where
zia =

zi

zi→a
= ∑

σi

νi→a(σi)ν̂a→i(σi) . (1.48)

Marginalizing (1.45b) one obtains an analogous expression for the same marginal
and normalization but this time expressed as

zia =
za

ẑa→i
. (1.49)

These relations turn out to be useful in evaluating the Bethe free energy (1.40) in
terms of local contributions written in terms of messages. The partition function
in fact can be written as

Z = zi ∏
b∈∂i

∑
σi

Ẑb→i(σi) (1.50)

as can be directly inspected by expressing the definition of zi (1.46a) in terms of
cavity partition functions (1.43b). Plugging again the definitions (1.43) into ẑi→a
and ẑa→i and using BP equations (1.41) we get the essential relations

zi→a =
∑σi

Zi→a(σi)

∏b∈∂i\a ∑σi
Ẑb→i(σi)

, (1.51a)

ẑa→i =
∑σi

Ẑa→i(σi)

∏j∈∂a\i ∑σj
Zj→a(σj)

. (1.51b)
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Starting from (1.50), and repetitively using (1.51) together with (1.48) and (1.49),
the partition function can be written as

Z = zi ∏
b∈∂i

ẑb→i ∏
j∈∂b\i

zj→b ∏
c∈∂j\b

ẑc→j · · · = ∏i zi ∏a za

∏(i,a) zia
(1.52)

so that the Bethe free energy is

− βFB(ν, ν̂) = ∑
i

ln zi + ∑
a

ln za − ∑
(i,a)

ln zia . (1.53)

The terms comparing in the Bethe free energy (1.53) have a direct physical inter-
pretation. Clearly Fi = ln zi is a site term, that measures the free energy change
when the site i and all its edges are added; Fa = ln za is a local interaction term
that gives the free energy change when the function node a is added to the factor
graph. Finally Fia = ln zia is an edge term, which takes into account the fact that
in adding vertex i and a, the edge (i, a) is counted twice.

1.3 Spin Glasses

Until now, apart for a short digression on random graphs, we have described
“pure” models, with the classical example of the Ising model and its mean-field
version, which are by now paradigmatic models describing the phenomenology
of the ferromagnetic-paramagnetic phase transition.

However, life is not perfect. In real world, in fact, materials are always char-
acterized by the presence of some kind of disorder. To make a few examples,
disorder can be induced because of the presence of impurities or defects in the
lattice or because of randomness in the position of the spins. When the disor-
der is relevant [Har74], it affects completely the low-temperature behavior of the
material, producing interesting new phenomenons. The materials exhibiting this
low-temperature phase were called random magnets or spin-glasses. At the micro-
scopical level the spin-glass phase is characterized by configurations in which
the spins are frozen in certain random directions in space. In order to produce
such a phase, disorder must fulfill two requirements. Firstly the disorder must
be quenched, i.e. it is fixed or, at least, it evolves on a time scale much larger
than the typical one of the spins. Secondly it must produce frustration, that is it
must generate competing interactions between the spins. The simplest example
of frustration is depicted in Fig. (1.5), where we have a triangular plaquette with
two interactions being ferromagnetic and one antiferromagnetic. In this case the
ground state of the system becomes degenerate, since one cannot satisfy all the
interaction by choosing a direction for the three Ising spins. When this happens
the plaquette is said to be frustrated [Frö85]. A plaquette P of arbitrary length is
frustrated if

τP = ∏
(i,j)∈∂P

Jij < 0 , (1.54)

i.e. the product of all interaction on the plaquette is negative.
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Figure 1.5. The simplest example of frustration.

It is important to stress that not any disorder induces frustration. When this
happens, the disorder is said to be irrelevant. To make an example consider the
Mattis model, which is simply an Ising model on the complete graph, the interac-
tion being chosen as

Jij = ξiξ j , (1.55)

and ξi = ±1 with equal probability. Every plaquette P is not frustrated because

∏
(i,j)∈∂P

ξiξ j = 1 , (1.56)

since the variable ξi appears twice for every site i in the plaquette. In general, for
an Ising model with random two-body interactions, disorder is irrelevant if there
exist a set of variables ε i = ±1 such that with a gauge transformation of the spins
and coupling

σ′i = ε i σi ,
J′ij = Jij ε i ε j ,

(1.57)

frustration can be avoided from every plaquette. In the simple example of the
Mattis model these variables are identified simply by ε i = ξi.

Experimentally the first samples that were used to study the effects of quenched
disorder and frustration were diluted magnetic alloys. These are materials where
small quantity of impurities (usually iron or manganese) were inserted at random
locations in a substrate consisting of a noble metal, such as gold, silver or cop-
per. The magnetic moments of the d-shell electrons of the impurities polarize the
s-shell conduction electrons of the substrate; this polarization can be positive or
negative, depending to the distance from the impurity. The effective interaction
between magnetic moments can be modeled by the so called Ruderman - Kittel -
Kasuya - Yosida (RKKY) interaction

Jxy = J0
cos (2kF · r + φ0)

r3 , (1.58)

where kF is the Fermi wave vector, r is the distance between the sites x and y and
J0, φ0 are constants depending on the material. Due to the random position of the
impurities (which play the role of quenched disorder), it is clear that frustration
effects are created by the random strength and sign of the interactions between
magnetic moments.

Spin glass behaviors were observed in many materials in which the conditions
of quenched disorder and frustration are fulfilled. The interactions need not even
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to be magnetic: spin-glass phenomenons have been observed also in ferroelectric-
antiferroelectric mixtures, where the electric dipole plays an analogous role of the
magnetic moment. This universal behavior of spin-glasses has encouraged peo-
ple to construct simple statistical-mechanical models that maintain the essential
physical features we want to study. These models, that we will introduce in the
next subsection, have proved to be able to justify at the theoretical level many sur-
prising effects spin-glasses exhibit, such as memory effects (e.g. aging), slowdown
of the dynamics and chaos in temperature. All these phenomenons suggests that
the spin-glass phase is characterized by the presence of many metastable states,
separated by high energetic barriers proportional to the volume of the sample.

1.3.1 The Edwards Anderson model and its mean field version

In this subsection we will describe the models that were introduced to explain
spin glass behavior. Let us start by placing N spins on a generic graph G = (V , E)
with vertex set V and edge set E . Then for every bond of the lattice (i, j) ∈ E we
extract an interaction according to probability distribution P(Jij) and we assign to
this instance an energy of the Ising-type

HJ [σ] = − ∑
(i,j)∈E

Jij σi σj −∑
i∈V

hi σi . (1.59)

We have inserted an additional index J to the Hamiltonian, in order to stress the
dependence on the particular realization of the disorder. When the graph G is a
d-dimensional hypercubic lattice, the model is called the Edwards-Anderson model.
This was firstly introduced in [EA75] in 1975, as a simple generalization of Ising
model to disordered systems. Typical probability distributions that are usually
chosen for the couplings are for example the Gaussian one

P(Jij) =
1√

2π J2
e−

(Jij−J0)
2

2J2 , (1.60)

or the bimodal
P(Jij) = pδ

(
Jij − 1

)
+ (1− p)δ

(
Jij + 1

)
. (1.61)

We shall denote by a bar · the average over the disordered couplings of a phys-
ical quantity AJ

AJ ≡
∫

∏
(i,j)∈E

dJij P(Jij) AJ . (1.62)

The first problem to deal with is how to treat disorder. In principle every physical
quantity AJ will depend on the particular realization of the disorder. However
common experience on macroscopic samples shows that, measuring the same
observables on two different samples in the same external conditions, one must
obtain the same result. If this is the case, the observable AJ is said to be self-
averaging. In mathematical terms, a self-averaging quantity can be identified, in
the thermodynamic limit, by its average over the disorder,

A ≡ lim
N→∞

AJ , (1.63)
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since its variance

A2
J − AJ

2
= O

(
1
N

)
(1.64)

vanishes in the thermodynamic limit. An example of a self-averaging quantity is
the free energy density

f J ≡ −
1

Nβ
ln ZJ , (1.65)

where ZJ is the partition function of the system

ZJ = ∑
σ

e−βHJ [σ] . (1.66)

Note also that ZJ is not a self-averaging quantity. The second problem to take into
account is how to average over the disorder the free energy density

f = − 1
Nβ

ln ZJ . (1.67)

On first impact this job looks somewhat difficult to accomplish, since we have to
average the logarithm of the partition function. One could be tempted to replace
the previous average by

fann ≡ −
1

Nβ
ln ZJ , (1.68)

which is tremendously easier. However the two average, of course, give differ-
ent results. Expression (1.67) is called quenched average whereas (1.68) is called
annealed average. Looking at the two definitions above, one has a clear indication
of the physical difference between the two. In the quenched average (1.67) one
first sums over spins degrees of freedom, then one takes the logarithm and then
one averages the disorder out. Therefore from the point of view of the spins,
disorder is fixed, i.e. quenched. Instead, for the annealed average (1.68), spins
and disorder fluctuate together. The two terms, quenched and annealed, are bor-
rowed from metallurgy. Quenching indicates a very rapid cooling of the sample.
Indeed this technique is used to increase the hardness of metallic materials, since
quenching can reduce their crystal grain size. Annealing instead suggests a slow
cooling of the sample. Indeed the word “annealing” appears also in the name of
a celebrated Monte-Carlo algorithm, the simulated annealing [KGV83], in which, in
order to sample correctly phase space, one decreases slowly the temperature, in
order to avoid the possibility of remaining stuck in local minima. The annealed
approximation (1.68) of the true quenched average (1.67), can work reasonably
well at high temperature, where thermal fluctuations destroy the effects coming
from frustration. At low temperature, however, it fails completely. Nonetheless,
for the convexity properties of the logarithm

f ≤ fann , (1.69)

so that the annealed approximation gives an upper bound to the true value, giving
a quick idea of what is going on at high temperatures.
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In order to deal with quenched averages, one has to introduce some kind of
representation of the logarithm. This is what the replica trick does which is the
identity

ln ZJ = lim
n→0

Zn
J − 1

n
= lim

n→0

ln Zn
J

n
. (1.70)

In the replica method one introduces an integer number n of identical copies of the
system and evaluates the average of the replicated partition function Zn

J , which
has the same difficulty of computing an annealed average. The price to pay is
that one must then perform the limit of vanishing number of replicas, trying to
continue analytically the result obtained previously for integer n. In principle one
can also use more exotic expression of the logarithm. One interesting integral
representation (that will be also used extensively throughout this thesis) is

ln ZJ =
∫ +∞

0

dt
t

[
e−t − e−ZJ t

]
. (1.71)

Then one expands the exponential e−ZJ t and performs the average of every term
of the series. Note that this expression does not involve no zero replicas limit, but
instead, one needs an information coming from all the average of integer powers
of the partition function.

The replica method was applied to the study of the Edwards-Anderson model,
but its solution is still lacking and it is still a matter of debate if there is a spin
glass phase in d = 3 with external field. The infinite range version of the Edwards-
Anderson model is called Sherrington-Kirkpatrick model (SK), and it appeared only
some months after the paper of Edwards and Anderson [SK75, KS78]. The Hamil-
tonian of the SK model is

HJ [σ] = −∑
i<j

Jij σi σj − h
N

∑
i=1

σi . (1.72)

The application of the replica method to this model certified the success of the
replica method. In the next chapter we will analyze in detail its complete solution
found by Giorgio Parisi in a series of papers [Par79a, Par79b, Par80a, Par80b].
In the following we will describe briefly which is the phenomenology that is
obtained in infinite dimensions.

1.3.2 Pure states

In our study of spin glasses in infinite dimensions we will see that, in the N → ∞
limit, below a certain critical temperature Tc, the space of spin states is divided
in many valleys, with infinite barriers separating them, i.e. we will have ergodicity
breaking. Therefore, the system will explore only a small part of the all free energy
landscape and the Gibbs measure splits into disconnected subcomponents 〈·〉α

〈·〉 = ∑
α

wα 〈·〉α , (1.73)

called pure states, since they cannot themselves be decomposed into other subcom-
ponents [Par88]. In the previous equation α runs over all the valleys and wα is the
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statistical weight of valley α. Clearly it can be written as

wα =
Zα

Z
, (1.74)

where
Zα = ∑

σ∈α

e−βH[σ] , (1.75)

is the partition function of all degrees of freedom belonging to valley α. Pure states
satisfy the so called clustering property, i.e. the connected correlation function
vanishes in the limit of large distances

〈
σi σj

〉
c ≡

〈
σi σj

〉
− 〈σi〉

〈
σj
〉 |i−j|→∞−→ 0 . (1.76)

The whole Gibbs measure, in general does not satisfy it.
To make a concrete example, consider the case of the Ising model under the

Curie critical temperature. We have only two pure states: the one with positive
magnetization 〈·〉+ and the one with negative magnetization 〈·〉−. In absence of
an external magnetic field the probability of such components is equal, so that

〈·〉 = 1
2
〈·〉+ +

1
2
〈·〉− . (1.77)

One can select the state with positive (or negative) magnetization by simply ap-
plying a positive (or negative) magnetic field. In spin glasses things are much
more complicated, since under the spin glass critical temperature there will be an
extensive number of valleys into which spins could freeze and one does not know,
in general, how to apply such an external field in order to select only one state.
In addition, at variance with usual non disordered systems, symmetry breaking
occurs at all temperature below Tc. This means that starting from a temperature
T < Tc and decreasing it of an infinitesimal amount dT, every valley α, found
at temperature T splits into several valleys at temperature T − dT. Therefore in
the spin glass phase the system is critical at all temperatures T < Tc and the free
energy is always a non-analytic function.

1.3.3 Overlaps and order parameters

As I have said previously, in the spin glass phase every spin is frozen along a
certain (random) direction and the free energy landscape splits in many valleys
separated by infinitely high barriers. The total magnetization of the system

m =
1
N

N

∑
i=1
〈σi〉 , (1.78)

where 〈σi〉 is the thermal average of the spin i, does not distinguish between
the paramagnetic phase and the spin-glass phase since it vanishes in both cases.
A parameter which distinguish between these phases in a dynamical way is the
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Figure 1.6. The probability distribution of the overlaps P(q) in different phases.

Edwards-Anderson (EA) order parameter [EA75, FH93], defined in terms of time
averages 〈·〉t as

qEA ≡ lim
t→∞

lim
N→∞

1
N

N

∑
i=1
〈σi(t0)σi(t0 + t)〉t , (1.79)

where t0 is a time reference. Note how the order of the limits is of great impor-
tance. In fact performing the thermodynamic limit first, one does not allow the
system, if there is ergodicity breaking, to explore all the free energy landscape,
making qEA non-vanishing. If the limits were inverted, the system has the pos-
sibility to escape from barriers, so that for symmetry arguments the final result
would be always zero in both paramagnetic and spin glass phases. Note that this
definition can depend on the sample, since we have performed no disorder av-
erage. However one can prove [MPV87] that in the N → ∞ limit, qEA is indeed
a self-averaging quantity (so that one can substitute the sum over sites with the
disorder average). In terms of ensemble averages qEA reads

qEA =
1
N

N

∑
i=1

∑
α

wα 〈σi〉2α = ∑
α

wα qαα , (1.80)

i.e. qEA represents physically the average over the valleys of the square of the sin-
gle valley magnetization. In the second equality of (1.80), the EA order parameter
has been rewritten in terms of qαα

qαα =
1
N

N

∑
i=1
〈σi〉2α , (1.81)

which is called self-overlap. Indeed it is part of a much more general quantity
called overlap

qαβ ≡
1
N

N

∑
i=1
〈σi〉α 〈σi〉β , (1.82)
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which measures the degree of similarity between two states1 α and β. Indeed one
can define the overlap qστ among two configurations σ, τ as

qστ ≡
1
N

N

∑
i=1

σiτi , (1.83)

and see that the overlap between two states α and β, can be written in terms of
the overlap among configurations belonging to the states

qαβ =
1

ZαZβ
∑
σ∈α

∑
τ∈β

e−βH[σ]e−βH[τ]qστ . (1.84)

The overlap qαβ can assume values between −1 and 1 depending on the degree
of correlation of two states: if they are not correlated their overlap is zero; the
maximum value of correlation is instead achieved when α = β, i.e. by the self-
overlap (1.81). The overlap qστ induces a metric over the ensemble of states in the
system through the Hamming distance given by

dστ ≡
1− qστ

2
. (1.85)

Having defined the overlap between different states, one can introduce another
order parameter which takes into account “inter-valley” contributions (which are
absent in the EA order parameter) and which measures, for a given sample, the
mean square local equilibrium magnetization

qJ =
1
N

N

∑
i=1
〈σi〉2 = ∑

αβ

wαwβ qαβ (1.86)

Differently from the EA order parameter, this quantity can be proved to be non
self-averaging. These two quantities, qEA and q ≡ qJ , are of great importance,
because they can be related to experimentally measurable quantities, as we will
see in the next chapter. For the moment let us say that their difference

∆ ≡ qEA − q , (1.87)

is such that ∆ = 0 when there is only one pure state, and it is ∆ > 0 when there
is ergodicity breaking.

Since in the spin glass phase there will be an enormous number of pure states
it is convenient to introduce a distribution of their overlap

P(q) = PJ(q) = ∑
αβ

wαwβ δ(q− qαβ) . (1.88)

In the paramagnetic phase, where we have only one pure state, the distribution
P(q) has only a delta function in the origin, see Fig. 1.6a. In the ferromagnetic
phase, where we have two pure states, instead, the P(q) develops a delta function
in m2 (given by the overlap q++ and q−−), and another delta function in −m2

1The words “states“ and “valleys” have the same meaning.
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(given by the mixed overlaps q+− and q−+), as in Fig. 1.6b. In the spin glass
phase, see Fig. 1.6c, between the two delta functions in ±qmax, the distribution
of the overlaps develops a continuous part, due to the possibility of having many
different overlaps among different states. In this manner the distribution of the
overlaps P(q) can be regarded as the true order parameter for spin glasses. The
fact that the order parameter is a function, is necessary because one needs an
infinite number of parameters to describe the spin glass phase, at variance to what
happens in ordinary phase transitions. As we will see, P(q) can be evaluated in
mean field by means of the replica method.

1.4 Combinatorial Optimization

Beside condensed matter, spin glasses were also useful for many multidisciplinary
applications in different areas of knowledge. One of the major of these applica-
tions include optimization [MM11]. Optimization is ubiquitous also in daily life
problems. To make an example, suppose you are a courier and every day you
have to deliver, starting from a storehouse, N packages in N different places of
your city returning, at the end of the day, to the starting point. The head of your
shipping company takes care not only of the satisfaction of the customers, but
also is very much interested in minimizing the costs of expeditions, in order to
maximize the profits. In order to satisfy your boss, you need to construct a cost
function which you should minimize given the locations of your expeditions. This
function can be constructed on the base of the relevance of the many variables
involved; for example, in first approximation, you might think that the costs in-
volved depend only on the total distance traveled and the satisfaction of your
customers can be measured as the average time spent for an expedition. Minimiz-
ing the total distance traveled might be a very good idea in order to fulfill both
the (frustrating) requests. However this might be a very crude approximation if
the city in which you are living is, for example, Rome, where traffic jams are the
most relevant variable.

Another example of application comes from machine learning. In the most
simple case, you want to construct a device such that it is capable to distinguish
if in a picture, given as input, there is a cat or a dog. One can use in this case
a particular neural network called perceptron, which takes as input the N pixels ξi
of a picture, and associates an output +1, if the picture is a dog, and −1 if it is
a cat. The particular mapping from the input to the ±1 output is specified by
N parameters Ji called synapses, which has to be chosen in an optimal way in
order to realize the right mapping. So your strategy is the following: you collect
pictures of different cats and dogs (the so-called training set) and a teacher trains
your neural network giving him correct examples of which picture is of a cat
and which is of a dog. During the training process one has to tune the synapses
in such a way that all the examples we have proposed possess the correct label.
Therefore in the training one must look for the configuration (or configurations)
of synapses J∗i that minimize again a cost function, which in this case counts the
number of errors the neural networks does on the training set.

These two are very simple examples, but optimization problems are really
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used everywhere, from the physical design of computers, to cryptography, from
their use in economics and financial markets to robotics, automatized systems
and artificial intelligence. Let us now define, from the mathematical point of
view, what an optimization problem is. We define an optimization problem as a
couple (S , E) composed by a space of configurations S and a function E which
associates a cost to each configuration. If the space of configuration contains a
finite number of elements the optimization problem is said to be combinatorial.
The final goal is to find the configuration that minimizes the cost function

x∗ = Argmin
x∈S

E(x) (1.89)

and the minimum cost itself

E(x∗) = min
x∈S

E(x) . (1.90)

For every optimization problem, one can also formulate a decision version in which
it is asked if there is or there is not a configuration of cost less than a given value
C. In the following we will always work with optimization problems defined on
a weighted graph G = (V , E) with weights we ≥ 0, for every e ∈ E . We define
an instance of an optimization problem as a realization of the graph G and of
the weights. In this thesis we are interested in configurations S = {I} that are
particular sets of spanning subgraphs I ⊆ G of the graph G. Of course we have to
ensure that in G the set of spanning subgraph S we are looking at is non-empty.
Given a spanning subgraph I ∈ S , we will associate to it a cost of the type

E(I) = ∑
e∈I

we . (1.91)

The optimization problem consists in finding the minimum spanning subgraph
I∗ and its cost. Depending on the class of spanning subgraph S we are interested
in, the combinatorial optimization problem has a different name. We list here
some examples of combinatorial optimization problems

• Minimum Spanning Tree (MST): here the set of spanning subgraph S is given
by all the spanning trees; the weighted graph G must be connected.

• Matching Problem: here we look for all the 1-factors or perfect matching of
the graph G which we denote by M1. If G = KN,N the problem is called
assignment problem.

• 2-matching or 2-factor Problem: S is the set of all 2-factors that will be denoted
byM2.

• Traveling Salesman Problem (TSP): S is the set of all the Hamiltonian cycles,
which we will denote by H.

In particular the last three problems will be discussed extensively throughout in
this thesis. We say that an algorithm solves a combinatorial optimization prob-
lem if for every instance possible it gives the optimal configuration. The size of
a combinatorial optimization problem is a quantity that identifies the amount of
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memory needed to store an instance; e.g. the number of vertices |V| = N of
the graph G. Complexity theory, which dates back to the Eulerian circuit problem
solved by Euler in 1736, classifies combinatorial optimization problems according
to their “level of hardness” (i.e. to the time it needs to be solved) and how this
time changes varying the size of the problem. Intuitively a problem is “harder” if
it needs more time to be solved, but this definition of course must not depend nor
on the computer nor on the compiler used. The precise definition of ”hardness” or
complexity will require too much formalism and we remand to references [HW06,
MM11] for the details. Here we will adopt an intuitive and simple point of view.
Since the complexity of a problem of a fixed size will change even from instance
to instance, the theory of complexity is based on the worst possible instance, that is
on the instance that needs the most time to be solved. This is useful also because
once a given algorithm has been proved to scale with the size in a certain way, then
every other instance will be solved at most in the same time. The first complexity
class we mention is the P or polynomial one where there are problems which can be
solved by an algorithm in a time that scales polynomially with the size. Examples
of combinatorial optimization problems in this class are the MST and the match-
ing problem. The NP or non-deterministic polynomial class contains all the problems
that can be solved in polynomial time by a non-deterministic algorithm. Basically
this means that if someone gives you the optimal configuration, you can compute
its cost polynomially. In is obvious that P⊆NP. The NP-complete class instead con-
tains all the problems that are at least as hard as the NP ones. Examples are the
TSP and the graph partitioning problem. Basically in the NP-complete class the
best algorithm known scales exponentially with the size. From these definitions,
it follows that if one NP-complete problem can be solved in polynomial time, then
P=NP. Proving whether P=NP or P 6=NP is one of the millennium problems2.

The interest in the physics community on combinatorial optimization prob-
lems came in particular from their random version, in which some parameters of
the cost function itself are random variables. The simplest way to introduce ran-
domness is to consider the weights we independent and identically distributed
random variables. In this case the problem under consideration is renamed with
the prefix “random”, e.g. random matching problem (RMP), random 2-factor prob-
lem, random traveling salesman problem (RTSP). Random-link matching problems
along with the random-link traveling salesman problem have been the first class
of optimization problems to be studied by statistical physics techniques [Orl85,
MP86a], the link probability distribution ρ(w) being controlled near the origin, by
the exponent r

ρr(w) ∼ wr . (1.92)

Indeed, as we shall see, the behavior of the distribution ρ(w) near the origin is the
only relevant information in the limit of large number of vertices N [MP85]. Since
there are no correlations between variables these models can be see as mean-field
ones. In order to study their finite-dimensional counterparts, one has to introduce
correlations between the weights. Consider when the graph G with |V| = N is
embedded in Rd, that is for each i ∈ [N] = 1, 2, . . . , N we associate a point xi ∈ Rd,
and for e = (i, j) with i, j ∈ [N] we introduce a cost which is a function of their

2see http://www.claymath.org/millennium-problems/p-vs-np.

Http://www.claymath.org/millennium-problems/p-vs-np
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(a) Assignment with N = 2000.
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(b) TSP with N = 2000.

Figure 1.7. Optimal assignment (left panel) and TSP (right one) for two different random
instances throwing points in the square and using p = 1 as introduced respectively
in (1.94) and (1.93).

Euclidean distance
we = |xi − xj|p (1.93)

with p ∈ R. When we deal with a bipartite graph, as for example the complete
bipartite one KN,N , we shall distinguish with a different letter the two sets of
vertices in Rd that is the red {ri}i∈[N] and the blue {bi}i∈[N] points. The edges
connect red with blue points with a cost again of the type

we = |ri − bj|p . (1.94)

The random Euclidean versions of the previously mentioned problems are obtained
by generating randomly and uniformly the positions of points in a space Ωd of
dimension d, which we will suppose to be, for definiteness, the d-dimensional hy-
percube [0, 1]d. As shown in [MP88] the random-link limit is achieved by sending
both d and p to infinity with their ratio fixed

d
p
= r + 1 , (1.95)

where r is the same defined in (1.92).
In Fig. 1.7a we have depicted the optimal solution of an instance of a random

Euclidean assignment problem on the complete bipartite graph G = KN,N and
for Ωd = [0, 1]d with d = 2, whereas in Fig. 1.7b we report the optimal solution
of a random Euclidean TSP instance on the complete graph G = KN in the same
2-dimensional space. In both mean-field and Euclidean random versions we have
introduced, one is interested in evaluating average properties of the solution and,
in particular, the average optimal cost (aoc)

E ≡ E(I∗) , (1.96)
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where we have denoted by a bar the average over all possible realizations of the
disorder. Clearly, this is at variance with the point of view of computational
complexity where one focuses on the worst case scenario. In general, the typical
instance of a random combinatorial optimization problem (RCOP) can be very
different from the worst case [Mer02]. However one can generate really hard in-
stances tuning certain parameters of the model and observe abrupt changes of the
typical computational complexity. One important example is the perceptron (with
Ising-type synapses Wi = ±1) that was mentioned before, the tuning parameter
being the capacity α = M/N defined as the ratio between the size of the training
set and the number of synapses. When α is small, the problem is underconstrained,
so that we expect that there are an exponential number of configurations for the
synapses Ji giving zero errors on the training set. On the other hand when α is
large the problem is overconstrained and we expect the teacher to be the only so-
lution. In both those cases any smart algorithm is able to find easily a solution.
The real hard instances are selected when α is close to a critical value αc which is
nor to small nor too large. At this critical value the system undergoes a first order
phase transition to perfect generalization (i.e. for every α > αc the only solution
is the teacher) [GD89, Gyö90, STS90]. Another archetypal examples which show
similar phenomenology are the random k-sat problem [MZ97, Mon+99] and the
previously mentioned TSP [GW96]. Away from these critical values of parameters
typical instances are, instead, easy to solve.

This sudden change of behavior can be seen as phase transitions in physical
systems [MMZ01] and, for this reason, can be studied with techniques developed
in statistical mechanics. The general way of describing a random combinatorial
optimization problem is to consider the cost function E as the energy of a ficti-
tious physical system at a certain temperature [KGV83, Sou86, FA86]. Finding the
minimum of the cost function is perfectly equivalent to study the low temperature
properties of this physical system. This approach has been tremendously fruitful:
it turned out that, specially in mean field cases, the general theory of spin glasses
and disordered systems could help not only to calculate those quantities at the an-
alytical level using techniques like replica and cavity method [MPV87], but also to
shed light on the design of new algorithms to find their solution. Celebrated is the
result for the asymptotic value of the average optimal cost in the random assign-
ment problem obtained by Mézard and Parisi [MP85] using the replica method.
The same result was obtained later via the cavity method [MP86b, PR02].

The interplay between physics and optimization, is not unilateral. Many
physics models have ground states that can be mapped into combinatorial op-
timization problems. An important and known example is the 2-dimensional
spin glass whose ground state corresponds to find the minimum matching of the
frustrated plaquettes [Frö85], therefore providing a polynomial algorithm able to
find it. Other two important examples are the connections between the coloring
problem with the antiferromagnetic Potts model and the maximal-flow problem
(polynomial) with the random field Ising model (Rfim).
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Chapter 2

The Sherrington-Kirkpatrick
Model

In this chapter we will analyze in detail the Sherrington-Kirkpatrick model, i.e.
the mean field model for spin glasses we have introduced in section 1.3. We
will solve the model using replicas [MPV87, Dot00, Nis01] discussing the phase
diagram of the model and the physical implications of the results.

For completeness, it is useful to cite here that a different point of view on spin
glasses is given by the work of Thouless Anderson and Palmer [TAP77] which
derived the so called known as TAP equations, i.e. self-consistent equations for
the local magnetization of a given sample. From those equations they were able
to predict how physical quantities behave for low temperatures and near the spin
glass transition point well before the celebrated Parisi’s solution using the replica
method. TAP equations contain much more information than the ones we will
derive with the replica method since their solutions (which are exponential in N)
may correspond to metastable states [BM80]. The cavity method [MPV86], then,
was developed not only to derive TAP equations from a different point of view,
but also as an alternative to replicas. After its application on the SK model it was
used not only to build a solid theory on spin glasses with finite connectivity, but
also to construct new algorithms for optimization problems. The “cavity method”
is the statistical physics name for “belief propagation” we have encountered in the
previous chapter.

2.1 The Replicated partition function

As we have anticipated in section 1.3, in order to perform the average over the
disorder of the logarithm of the partition function, one uses the replica trick (1.70),
introducing n non-interacting copies of the systems, performing the average over
the disorder for n integers, and then performing the analytical continuation for
n → 0. All these technical computations are at the base of the replica method.
The replicated partition function for SK model is

Zn = ∑
{σa

i }
eβ ∑i<j Jij ∑a σa

i σa
j +βh ∑i ∑a σa

i , (2.1)
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where we have dropped, for simplicity, the index dependence J of the partition
function. We extract the couplings according to a Gaussian probability distribu-
tion with mean and variance scaling with N respectively as

Jij =
J0

N

J2
ij − Jij

2
=

J2

N

(2.2)

in order to assure that that all is well defined in the thermodynamic limit. The
average over the disorder is now simple to perform and we get

Zn = e
β2 J2 Nn

4 ∑
{σa

i }
e

β2 J2
2N ∑a<b(∑i σa

i σb
i )

2
+

βJ0
2N ∑a(∑i σa

i )
2
+βh ∑a ∑i σa

i . (2.3)

In order to perform the sum over the spins independently from site to site we
insert Gaussian integrals using the formula

e
b2
4a =

√
a
π

∫
dx e−ax2+bx , (2.4)

which is called Hubbard-Stratonovich transformation (HS). Since we have to quan-
tities squared we have to introduce two types of integrals namely

e
β2 J2
2N (∑i σa

i σb
i )

2

=

√
Nβ2 J2

2π

∫
dqab e−

Nβ2 J2
2 q2

ab+β2 J2qab ∑i σa
i σb

i (2.5a)

e
βJ0
2N (∑i σa

i )
2

=

√
NβJ0

2π

∫
dma e−

NβJ0
2 m2

a+βJ0ma ∑i σa
i (2.5b)

Dropping for simplicity the irrelevant constants in front of the integrals we obtain

Zn =
∫

∏
a<b

dqab

∫
∏

a
dma e−NS[q,m] , (2.6)

where we have defined an action S [q, m]

S[q, m] ≡ β2 J2

2 ∑
a<b

q2
ab +

βJ0

2 ∑
a

m2
a −

β2 J2n
4
− lnZ [q, m] , (2.7)

and a one site partition function

Z [q, m] ≡∑
σ

e−βH[σ] = ∑
{σa}

eβ2 J2 ∑a<b qab σaσb+β ∑a(J0ma+h)σa
. (2.8)

The neat result is that we have decoupled the sites, but at the price to insert an
interaction between replicas given by the the new Hamiltonian

H[σ] = −βJ2 ∑
a<b

qab σaσb −∑
a
(J0ma + h) σa (2.9)

Note that this result is valid, at the leading order in N, for every disorder dis-
tribution, since higher moments need to scale with an higher power in N in the
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denominator. This is valid in general on fully connected topologies thanks to the
central limit theorem. This result is not valid, instead, in dilute systems (i.e. mod-
els defined on graph with finite connectivity in the thermodynamic limit), where
one needs all sets of multi-overlaps qa1 ...ap with p ≥ 1 to describe them. To give
an example, on might look at [Mot87, GDD90] (and references therein) where it
was studied using replicas, spin glasses on tree graphs and on RRG topologies.
We will show some other examples of this in Part II of this thesis, where we will
analyze random-link combinatorial optimization problems such as the RMP or
the RTSP.

2.1.1 Saddle point equations

The average of the replicated partition function (2.6) is now in the right form to
apply the saddle-point method. However, in order to do that, we have to exchange
the order of the limits N → ∞ and n→ 0. In fact, if we want to do things correctly,
we need to perform the n → 0 limit first and only then the N → ∞ one. It has
been proved rigorously by Hemmen and Palmer [HP79] that this change of limit
can be done in the SK model. The averaged free energy density is therefore given
by

β f = lim
n→0

min
q, m

S [q, m]

n
. (2.10)

The saddle-point equations are

ma = 〈σa〉Z (2.11a)

qab = 〈σaσb〉Z , (2.11b)

where 〈·〉Z is the average with respect to the weight e−βH. The variables that one
has introduced for technical convenience now acquire physical meaning. In fact
one can prove, repeating the replica computation, that equations (2.11a), (2.11b)
can be rewritten as

ma = 〈σa
i 〉 (2.12a)

qab = 〈σa
i σb

i 〉 , (2.12b)

where now the average 〈·〉 is with respect to the original replicated Hamiltonian.
Physically ma can be identified with the usual ferromagnetic order parameter and
qab with the spin glass order parameter.

2.2 RS Ansatz

The saddle-point equations (2.11a), (2.11b) are in general too difficult to solve. It
is reasonable to search solutions in a subspace of the whole saddle-points giving
an ansatz, or an explicit dependence of the saddle-points on replica indices. On
physical grounds we expect that this dependence should not affect the physics of
the system, because replicas have been introduced artificially. It seems natural to
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(a) Red lines are the plot of the right hand side
of (2.17b) with T = 0.1, 0.25, 0.5, 1, 2 (from
top to bottom).
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(b) The blue lines are the solutions of (2.17b)
for h = 0. The red curve are the solutions
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Figure 2.1. In (a) is represented the graphical solution of equation (2.17b) for J0 = h = 0
and J = 1. For T = J = 1 the right hand side of (2.17b) is tangent to the straight line.
In (b) the overlap is plotted as a function of temperature for J0 = 0, J = 1 and for
several values of the external magnetic field.

assume that

ma = m (2.13a)
qab = q(1− δab) (2.13b)

which is called the replica symmetric ansatz (RS). The tricky part to compute is the
one-site partition function. The sum over spins can be performed using an HS
transformation

lnZ = −nβ2 J2

2
q + ln ∑

{σa}
e

β2 J2
2 q(∑a σa)2+β(J0m+h)∑a σa

' −nβ2 J2

2
q + n

∫
Dz ln 2 cosh [β (J

√
q z + J0m + h)]

(2.14)

where Dz is the Gaussian measure 1

Dz ≡ e−z2/2
√

2π
. (2.15)

In this way the averaged free energy density (2.10) becomes

β f RS = −β2 J2

4
(1− q)2 +

βJ0

2
m2 −

∫
Dz ln 2 cosh [β (J

√
q z + J0m + h)] . (2.16)

Note that, in the limit n → 0, the coefficient of the q2 terms has changed sign.
This is due to the fact that the number of replica pairs changes sign at n = 1.
This implies that one has to maximize with respect to q the free energy density.
The coefficient of m2, instead, is not affected by this limit, so that one continues

1This notation will be used throughout this thesis.
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Figure 2.2. Phase Diagram and the dAT line (shown in red).

to minimize the free energy with respect to this parameter. The saddle-point
equations now become

m =
∫

Dz tanh [β (J
√

q z + J0m + h)] (2.17a)

q =
∫

Dz tanh2 [β (J
√

q z + J0m + h)] (2.17b)

2.2.1 Phase Diagram

By studying the RS saddle-point equations (2.17a), (2.17b) one can obtain phase
boundaries predicted by the RS ansatz. Let us start by analyzing the case in which
there is no external magnetic field h = 0.

If the mean of the disorder distribution is J0 = 0, for symmetry arguments the
magnetization vanishes and there is no ferromagnetic phase. In addition, q = 0
is always a solution. In order to find the temperature below which there can be
a solution with q > 0 (spin glass phase), we expand for small q the free energy
density, obtaining

β f RS = −β2 J2

4
− ln 2− β2 J2

4
(
1− β2 J2) q2 + O

(
q3) . (2.18)

Imposing that the coefficient of q2 vanishes at the critical point, we find that

TSG = J . (2.19)

We plot in Fig. 2.1a a graphical solution of the saddle-point equation (2.1a) with
J = 1. In (2.1b) we plot the overlap as a function of temperature, not only for
h = 0, but also for non-vanishing magnetic field, and still J0 = 0. For h = 0
and T → TSG the non trivial solution for the overlap vanishes linearly as q '
1− T/TSG.
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If J0 > 0 it is possible to have a ferromagnetic solution m > 0. Expanding the
saddle-point equations (2.17a), (2.17b) we find

m = βJ0m + O (q) (2.20a)

q = β2 J2q + β2 J2
0 m2 , (2.20b)

from which we find that the boundary between the ferromagnetic phase and the
paramagnetic phase is

Tc = J0 . (2.21)

The boundary between the paramagnetic phase and the spin glass phase is still
given by (2.19), until temperature (2.21) is reached. These two phase boundaries
are represented with a blue full line in Fig. (2.2a). The last boundary, between
the spin glass and the ferromagnetic phase, can only be obtained numerically,
and it is represented as a dashed blue line in the same figure. However this last
phase boundary is wrong, because the RS ansatz fails in the region below the line
plotted in red. Only taking into account replica symmetry breaking (RSB) we will
see that the true solution is given by the vertical black line J0 = J [Tou80]; between
the spin glass and the ferromagnetic phase, there will be a mixed phase region,
characterized by ferromagnetic order, but with RSB.

2.2.2 The negative entropy problem

To check our results, let us evaluate the entropy at zero temperature, for J0 = h =
0. The free energy density is in this case

β f RS = −β2 J2

4
(1− q)2 −

∫
Dz ln 2 cosh [βJ

√
q z] . (2.22)

For small temperature, the saddle-point equation (2.17b) gives

q = 1−
√

2
π

T
J
+ O

(
T2) . (2.23)

Inserting this expression into (2.22) we have

f RS = −
√

2
π

J +
T

2π
+ O

(
T2) , (2.24)

from which we derive that the ground-state entropy is

lim
T→0

SRS(T) = −
1

2π
, (2.25)

which is clearly unphysical. From this result we understand that something must
be wrong with the RS ansatz (2.13).
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2.2.3 Stability Analysis

In this subsection we will perform the stability analysis of the RS saddle-point,
finding the line separating the regions where the RS ansatz is correct from the one
where it is wrong. This line is called the de Almeida-Thouless line (dAT), from the
name of the authors that originally performed this calculation [AT78]. We will
resume it, for simplicity, in the simple case J0 = 0, where there is no ma order
parameter and then we will describe what happens in the general case. To check
the stability of the RS saddle-point q we need to compute the Hessian matrix.
Performing the derivatives we get

G(ab)(cd) ≡
1

β2 J2
∂2S

∂qab∂qcd

∣∣∣∣
RS

= δ(ab)(cd) − β2 J2
(
〈σaσbσcσd〉Z − 〈σaσb〉Z 〈σcσd〉Z

)

(2.26)
The RS saddle-point will be stable if, every of the 1

2 n(n− 1) eigenvalues of this
matrix is non-negative. There are three different entries of the matrix G(ab)(cd)

P ≡ G(ab)(ab) = 1− β2 J2
(

1− 〈σaσb〉2Z
)

,

Q ≡ G(ab)(ac) = −β2 J2
(
〈σbσc〉Z − 〈σaσb〉2Z

)
, b 6= c ,

R ≡ G(ab)(cd) = −β2 J2
(
〈σaσbσcσd〉Z − 〈σaσb〉2Z

)
, (a, b) 6= (c, d) .

(2.27)

P, Q and R appear in one line of the matrix G(ab)(cd) respectively 1, 2(n − 2)
and 1

2 (n− 2)(n− 3) times. In these expressions we identify with q = 〈σaσb〉Z and
with

r ≡ 〈σaσbσcσd〉Z =
∫

Dz tanh4 [β (J
√

q z + h)] . (2.28)

The eigenvalues of the matrix G(ab)(cd) can be studied for generic n and the eigen-
value equation is

∑
c<d

G(ab)(cd)ηcd = ληab . (2.29)

One can classify the eigenvectors in three different ways (each one forming a
"sector") depending on the symmetry it has in replica space.

• Longitudinal sector: since the lines of G(ab)(cd) have the same sum, surely
there has to be the eigenvector that is completely symmetric under permu-
tations

η
(1)
ab = η , a 6= b . (2.30)

The corresponding eigenvalue (which is non-degenerate) is

λ1(n) = P + 2(n− 2)Q +
1
2
(n− 2)(n− 3)R . (2.31)

• Anomalous sector: the second type of eigenvectors are those that are com-
pletely symmetric except for one of the replica indices (for example 1)

η
(2)
ab = η

(2)
1 , a = 1 or b = 1

η
(2)
ab = η

(2)
2 , a, b 6= 1 .

(2.32)
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Imposing orthogonality of η
(2)
ab with η

(1)
ab we find the corresponding eigen-

value to be
λ2(n) = P + (n− 4)Q− (n− 3)R , (2.33)

which is (n− 1) times degenerate.

• Replicon sector: here there are the eigenvectors that are completely symmet-
ric except for two of the replica indices (for example 1 and 2)

η
(3)
12 = η

(3)
1 ,

η
(3)
1a = η

(3)
2a = η

(3)
2 , a 6= 1

η
(3)
ab = η

(3)
3 , a, b 6= 1, 2 .

(2.34)

Imposing orthogonality of η
(3)
ab with both η

(1)
ab and η

(2)
ab we find the corre-

sponding eigenvalue to be

λ3 = P− 2Q + R , (2.35)

which is 1
2 n(n− 3) times degenerate.

We have found the whole possible eigenvalues, since summing the dimensions of
the three subspaces we get 1

2 n(n− 1). Next we can perform the zero n limit and
we have

λ1 = λ2 = P− 4Q + 3R
λ3 = P− 2Q + R ,

(2.36)

The simplest case where one can check stability is in the paramagnetic phase,
were both q = r = 0. It directly follows that the only non vanishing element is
P, the diagonal one, and therefore λ1 = λ2 = λ3 = P = 1− β2 J2 > 0, i.e. T > J,
which is exactly the boundary of the paramagnetic phase we have derived before.
We conclude that, for J0 = 0, the RS ansatz is stable in the paramagnetic phase.
Extending the following stability study to J0 > 0 one finds that the whole para-
magnetic phase is correctly described by RS. In the ferromagnetic and spin-glass
phase, instead, one finds that λ1 = λ2 > 0 for every value of T, h and J0. Prob-
lems arise examining the third eigenvalue λ3 which is called the replicon [BM78].
It turns out that there is a region in the (T, h, J0) space such that the condition
λ3 > 0 is violated. For J0 = 0, the dAT line of instability λ3 = 0, can be expressed
as ∫

Dz sech4 [β (J
√

q z + h)] =
T2

J2 . (2.37)

We plot this line in the (T/J, h/J) plane in Fig. 2.2b. Several properties of this line
are deducible. In the limit of small external magnetic field we have

TSG − TAT(h)
TSG

'
(

3
4

)1/3 (h
J

)2/3

, (2.38)

whereas in the large h limit we have

TAT(h) '
4J

2
√

2π
e−

h2

2J2 . (2.39)
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︸ ︷︷ ︸
2RSB

=⇒ . . .

Figure 2.3. Parisi’s scheme of RSB

This means that, no matter how strong the magnetic field is, there is always a
non-vanishing temperature TAT(h) under which there is RSB. This is a feature of
fully connected models. Defining instead the problem on a finite connectivity
system, such as on a Bethe lattice, one finds that for T = 0 there is a critical value
of the magnetic field hc < ∞ such that for h > hc RSB does not occur. This sug-
gests that going in finite dimension the effects of RSB level off. A long-standing
question is if in finite dimension (the EA model) the dAT line completely disap-
pears or survives. Even after the great efforts in numerical simulations, with the
construction of specifically designed computers (Janus collaboration), a definite
answer to this question has not been found yet; at the present state there are two
antagonist theories for spin glasses in finite dimension: the Parisi’s RSB picture
(that we will describe in the next section) and the droplet picture developed by
McMillan [McM84], Bray and Moore [BM87] and Fisher and Huse [FH86, FH87,
FH88].

In the (J0/J, T/J) plane, it suffices to say that the equation of the stability line
is modified by simply making the substitution h → J0m; its plot is reported, for
J0/J ≥ 1 in Fig. 2.2a in red. For J0/J ≤ 1 the dAT line simply coincides with
the paramagnetic spin glass phase boundary. One last thing to notice is that no
RSB occurs in ma, since the expression of the replicon eigenvalue does not change
when J0 6= 0.

2.3 Breaking the Replica Symmetry

After the failure of RS ansatz people started to search a new parametrization of
the overlap matrix qab. Unfortunately there is no standard procedure to find the
correct one, and the number of possible parametrizations are infinite. The first
proposal has been made by Bray and Moore [BM78], which subdivided the repli-
cas in two groups of size m1 and n−m1 giving 3 different values of the overlaps (2
for the diagonal blocks and 1 for the off-diagonal one). No solution different from
the RS one has been found in this way. The first step in the right direction was
done by Blandin [DDG06], who proposed to break replica symmetry by grouping
replicas into different blocks of size m1 = 2, assigning two different values q1 and
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q0 for the diagonal and off-diagonal blocks respectively. The parametrization of
Blandin was generalized by Parisi [Par79b], which used the block size m1 as a
variational parameter. In other terms Parisi proposed an ansatz of this form

qab =





q1, if I
(

a
m1

)
= I

(
b

m1

)
,

q0, if I
(

a
m1

)
6= I

(
b

m1

)
,

0, if a = b ,

(2.40)

where 1 ≤ m1 ≤ n and I(x) is the integer valued function which is equal to
the smallest integer larger than or equal to x. This parametrization is known as
one-step replica symmetry breaking (1RSB), see Fig. 2.3. Denoting with Sn the
permutation group of n elements, it is evident that the overlap matrix qab is left
invariant under the Sn subgroup (Sm1)

⊗n/m1 ⊗ Sm1 , where (Sm1)
⊗n/m1 is the di-

rect product of n/m1 groups Sm1 . Note that, before doing the n → 0 limit, n/m1
must be an integer. This ansatz was found to have the same issues of the RS
result (namely the negative entropy problem and a negative eigenvalue in the
replicon sector), but comparison with numerical simulations showed that there
where several improvements compared to the RS ansatz. This suggested to im-
prove the 1RSB results by breaking replica symmetry with multiple steps [Par79a],
approximating the true solution better and better at each step [Par80a]. For ex-
ample, the two-step replica symmetry breaking (2RSB) consists in dividing ev-
ery group of m1 replicas into m1/m2 blocks of m2 replicas, see Fig. 2.3. The
generalization to k-steps (kRSB) is immediate. We introduce a set of integers
n = m0 ≥ m1 ≥ · · · ≥ mk ≥ mk+1 = 1 such that mi/mi+1, i = 0, . . . k are integers.
The overlap matrix is then parametrized as follows

qab =

{
qi, if I

(
a

mi

)
= I

(
b

mi

)
and I

(
a

mi+1

)
6= I

(
b

mi+1

)
,

0, if a = b ,
(2.41)

where i = 0, . . . , k. It was found that, in order to obtain the right solution, one
must send the number of breaking k to infinity. In this limit one obtains the
so called full-replica symmetry breaking (fRSB) solution. As we will see, in this
limit the overlap becomes a function of the interval [0, 1] [Par80b, Par83] and this
particular parametrization will have consequences of the structure of the states
of the spin glass phase. The Parisi solution has been proved rigorously to give
the correct result by the work of Guerra and Toninelli [GT02, Gue03] and Tala-
grand [Tal06] who also proved the uniqueness of the analytical continuation from
an integer to a real number of replicas when one performs the n→ 0 limit.

2.3.1 1RSB

We start by examining the 1RSB ansatz given by (2.40). We remind that there is
no need to break replica symmetry for the magnetizations parameters ma = m.
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Figure 2.4. Plot of q0 and q1(left panel) and of m1 (right panel) vs T/J obtained solving
numerically the 1RSB saddle-point equations. In the left panel it is also shown in red
the overlap q obtained using RS.

The Hamiltonian (2.9) is therefore

−βH =
β2 J2

2


q0

(
n

∑
a=1

σa

)2

+ (q1 − q0)
n/m1

∑
i=1

(
m1

∑
ai=1

σai

)2

− nq1




+ β(J0m + h)
n

∑
a=1

σa .

(2.42)

As usual, for every squared term we introduce an Hubbard-Stratonovich trans-
formation in order to linearize it

e−βH[σ] = e−
nβ2 J2

2 q1

∫
Du

∫ n/m1

∏
i=1

Dvi eβ ∑
n/m1
i=1 [J

√
q0 u+J0m+h+J

√
q1−q0 vi]∑

m1
ai=1 σai

= e−
nβ2 J2

2 q1

∫
Du
[∫

Dv eβ[J
√

q0 u+J0m+h+J
√

q1−q0 v]∑
m1
a=1 σa

]n/m1
(2.43)

Introducing the quantity

Ξ ≡ β
[

J
√

q0u + J
√

q1 − q0 v + J0m + h
]

, (2.44)

and summing over all the spins we get

lnZ = −nβ2 J2

2
q1 + ln

∫
Du
[∫

Dv (2 cosh Ξ)m1

]n/m1

' −nβ2 J2

2
q1 +

n
m1

∫
Du ln

∫
Dv (2 cosh Ξ)m1 .

(2.45)

The quadratic term in the free energy is

lim
n→0

1
n ∑

a<b
q2

ab = lim
n→0

1
2n

[
n2q2

0 +
n

m1
m2

1(q
2
1 − q2

0)− nq2
1

]

=
1
2
[
(m1 − 1)q2

1 −m1q2
0
]

.

(2.46)
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Note that in the limit n → 0 the parameter m1 that initially was an integer satis-
fying 1 ≤ m1 ≤ n now becomes a continuous parameter defined on the interval
0 ≤ m1 ≤ 1. The same holds for the other variational parameters q0, q1 and m.
The 1RSB free energy is therefore

β f 1RSB =
β2 J2

4
[
(m1 − 1)q2

1 −m1q2
0 + 2q1 − 1

]
+

βJ0

2
m2

− 1
m1

∫
Du ln

∫
Dv (2 cosh Ξ)m1 .

(2.47)

The next step is to perform derivatives with respect to m, q0, q1 and m1. We report
here the first three since they are more useful for physical interpretation

m =
∫

Du
∫

Dv (cosh Ξ)m1 tanh Ξ∫
Dv (cosh Ξ)m1

, (2.48a)

q0 =
∫

Du
[∫

Dv (cosh Ξ)m1 tanh Ξ∫
Dv (cosh Ξ)m1

]2

, (2.48b)

q1 =
∫

Du
∫

Dv (cosh Ξ)m1 tanh2 Ξ∫
Dv (cosh Ξ)m1

. (2.48c)

One can interpret these equations as follows. In the first one, the integrand of Du
represents the magnetization within a block of the 1RSB matrix, as can be verified
using the saddle-point equation (2.11a) in the RSB framework. Then this value
is averaged over all blocks using the usual Gaussian weight. Using the saddle-
point equation for qab (2.11b) one can verify that the equation for q0 is obtained
assuming that the spins σa and σb belong to different blocks in the 1RSB overlap
matrix. Indeed the argument of Du in (2.48b) is the product of the magnetizations
of two different blocks. In the same way q1 can be obtained assuming that σa and
σb belong to the same block as can be readily seen in equation (2.48c). From the
Schwarz inequality it follows also that

q0 ≤ q1 . (2.49)

Let us now examine what 1RSB predicts when J0 = h = 0. In this case m vanishes
for every temperature confirming that there cannot be a ferromagnetic phase, as
happens in the RS ansatz. The parameter q1 is zero (and therefore also q0) when
T ≥ TSG and correspondingly also m1 = 0. In the paramagnetic phase 1RSB
reproduces exactly the RS results. For T < TSG the parameter q1 can instead be
positive, and correspondingly m1 decreases with temperature. Coherently with
the stability analysis the spin glass transition predicted by 1RSB is the same of RS.
In Fig. 2.4 we plot the behavior of the 1RSB parameters as function of T/J whereas
in Fig. 2.5 we plot the energy and entropy vs temperature obtained using the RS
and 1RSB ansatz.

The results found by 1RSB suffers, however, of the same problems of RS,
namely the negative entropy problem and replicon instability. For J0 = h = T = 0
the entropy increases from −1/2π ≈ −0.159 of the RS to S1RSB(0) ≈ −0.01 of
1RSB, as can be seen in Fig. 2.5b. Also the replicon, even if still negative, de-
creases in absolute value. This suggests that even though 1RSB is still wrong for
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Figure 2.5. Energy (left panel) and entropy (right panel) vs T/J for J0 = h = 0 obtained
numerically using the RS ansatz (red line) and 1RSB ansatz (blue line). In the entropy
plot the black and dashed line is the prediction S ' T2 ln 2 of [TAP77] using TAP
equations for T → 0.

the SK model, this is a better approximation to the solution. Therefore one can
try to iterate this procedure via multiple breaking of replica symmetry.

2.3.2 fRSB

We generalize the computation of the previous subsection to generic k using the
parametrization of the overlap matrix given in (2.41) and then we send k → ∞.
The Hamiltonian (2.9) is

−βH =
β2 J2

2


q0

(
n

∑
a=1

σa

)2

+
k

∑
j=1

(qj − qj−1)
n/mj

∑
i=1

( mj

∑
ai=1

σai

)2

− nqk




+ β(J0m + h)
n

∑
a=1

σa .

(2.50)

Introducing several Hubbard-Stratonovich transformation we get

e−βH[σ] =e−
nβ2 J2

2 qk

∫
Dz0

k

∏
j=1

∫ n/mj

∏
i=1

Dzi
j eβ[J

√
q0 z0+J0m+h]∑n

a=1 σa

eβJ ∑k
j=1
√

qj−qj−1 ∑
n/mj
i=1 zi

j ∑
mj
a=1 σai .

(2.51)

Next we use the general decomposition of the sums ∑mh
a=1 • = ∑

mh/mh+1
i=1 ∑

mh+1
ai=1 •

and ∑mh/ml
i=1 • = ∑

mh/mh+1
j=1 ∑

mh+1/ml
ij=1 • for every h = 0, . . . , k and l = h + 1, . . . , k to

regroup the integrals. At the first step (i.e. h = 0) we obtain

e−βH[σ] = e−
nβ2 J2

2 qk

∫
Dz0

[∫
Dz1

k

∏
j=2

∫ m1/mj

∏
i=1

Dzi
j eβ[J

√
q0 z0+J

√
q1−q0 z1+J0m+h]∑

m1
a=1 σa

eβJ ∑k
j=2
√

qj−qj−1 ∑
m1/mj
i=1 zi

j ∑
mj
a=1 σai

]n/m1

.

(2.52)
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Iterating this procedure other k− 1 times we obtain

e−βH[σ] = e−
nβ2 J2

2 qk

∫
Dz0



∫

Dz1

[∫
Dz2 . . .

[∫
Dzk eΞ ∑

mk
a=1 σa

]mk−1/mk

. . .

]m1/m2



n/m1

(2.53)

where we have redefined the quantity

Ξ ≡ β

[
J
√

q0 z0 + J
k

∑
j=1

√
qj − qj−1 zj + J0m + h

]
. (2.54)

Performing the sum over the spins and expanding for n small we obtain

lnZ = −nβ2 J2

2
qk + ln

∫
Dz0 Ln/m1(z0) ' −

nβ2 J2

2
qk +

n
m1

∫
Dz0 ln L(z0) , (2.55)

where we have defined L(z0) to be

L(z0) ≡
∫

Dz1

[∫
Dz2 . . .

[∫
Dzk (2 cosh Ξ)mk

]mk−1/mk

. . .

]m1/m2

. (2.56)

The quadratic term in the free energy instead reads

lim
n→0

1
n ∑

a<b
q2

ab = lim
n→0

1
2n

[
n2q2

0 + n
k

∑
j=1

mj(q2
j − q2

j−1)− nq2
k

]

=
1
2

k

∑
j=0

(mj −mj+1) q2
j ,

(2.57)

having identified m0 = n and mk+1 = 1. In general for every function f of the
overlaps we have

lim
n→0

1
n ∑

a<b
f (qab) =

1
2

k

∑
j=0

(mj −mj+1) f (qj) . (2.58)

The free energy of the kRSB ansatz is therefore

β f kRSB =
β2 J2

4

[
k

∑
j=0

(mj −mj+1) q2
j + 2qk − 1

]
+

βJ0

2
m2 − 1

m1

∫
Dz0 ln L(z0) (2.59)

which correctly reduces to (2.47) for k = 1. The parameters mi are now con-
tinuous, assuming values in the interval [0, 1] and they are ordered as follows
0 = m0 ≤ m1 ≤ · · · ≤ mk ≤ mk+1 = 1. For finite k the overlap parameters satisfy
qi ≤ qi+1. The next step is to derive the saddle-point equations for all the param-
eters and look to fixed point solutions. This is a really difficult task. However for
k sufficiently low, one can solve numerically these equations and one finds that
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the situations gets better and better increasing the value of k. For k = 3, for exam-
ple, the zero-temperature entropy reduces in modulus to S3RSB(0) = −0.001. One
therefore looks for a stable solution in the k → ∞ limit. In the infinite k limit one
has an infinite set of parameters qi: the overlap becomes a continuous function
q(x) defined as the limit of the step-wise function

q(x) = qi 0 ≤ mi ≤ x ≤ mi+1 ≤ 1 (2.60)

for i = 0, . . . , k. The function q(x) has the property dq/dx ≥ 0. In the infinite
k limit one can replace mj − mj+1 → −dx so that the quadratic term in the free
energy (2.59) is

lim
k→∞

k

∑
j=0

(mj −mj+1) q2
j = −

∫ 1

0
dx q2(x) . (2.61)

More work is required to find the limit in the last term of (2.59). The easiest
derivation is that of Parisi [Par80a] and Duplantier [Dup81] which is based on the
following identity

∫
Dz f (uz + v) =

∫
Dz euz d

dv f (v) = e
u2
2

d2

dv2 f (v) , (2.62)

based on the fact that the Gaussian is the Green function of the Heat equation.
The L(z) term has exactly the same linear dependence on z. Therefore one can
write a recursive relation

g(n, h) ≡
∫

Dz0 Ln/m1(z0) = e
J2
2 q0

∂2

∂h2 [g(m1, h)]n/m1 , (2.63)

in which the generic term is

g(mi, h) = e
J2
2 (qi−qi−1)

∂2

∂h2 [g(mi+1, h)]mi/mi+1 , i = 0, . . . , k , (2.64)

with q−1 = 0 and initial condition

g(mk+1, h) ≡ 2 cosh [β (J0m + h)] . (2.65)

Sending n → 0 and k → ∞ equation (2.64) becomes a differential equation since
mi −mi+1 → dx

g(x + dx, h) = e−
J2
2 dq(x) ∂2

∂h2 [g(x, h)]1+d ln x , (2.66)

i.e.
∂g
∂x

= − J2

2
dq
dx

∂2g
∂h2 +

g ln g
x

, (2.67)

with boundary condition given by g(1, h) = 2 cosh [β (J0m + h)]. Taking the limit
n→ 0 and k→ ∞ in (2.63) we have

1
n

ln g(n, h) ' lim
x→0

e
J2
2 q(0) ∂2

∂h2
ln g(x, h)

x
. (2.68)
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Figure 2.6. Behavior of the overlap q(x) and its distribution P(q) (shown in the inset) for
τ � 1.

Defining

f (x, h) ≡ ln g(x, h)
x

, (2.69)

the previous equation can rewritten as

lim
n→0

1
n

ln g(n, h) =
∫

Du f
(

0, J
√

q(0) u + h
)

. (2.70)

The fRSB free energy is therefore

β f fRSB = −β2 J2

4

[
1 +

∫ 1

0
dx q2(x)− 2q(1)

]
+

βJ0

2
m2 −

∫
Du f

(
0, J
√

q(0) u + h
)

,

(2.71)

where f satisfies the Parisi equation [Par80a], which is a non-linear antiparabolic
partial differential equation

∂ f
∂x

= − J2

2
dq
dx

[
∂2 f
∂x2 + x

(
∂ f
∂h

)2
]

, (2.72)

with boundary condition

f (1, h) = ln 2 cosh [β (J0m + h)] . (2.73)

Note that for q(x) = q constant we recover as it should the RS result. The stability
of the fRSB has been checked by De Dominicis and Kondor [DDK83] who showed
that the Parisi’s solution is marginally stable since the replicon goes to 0 for k→ ∞.
In this sense the SK model is critical for every temperature below the spin glass
one. One can easily find the behavior of the overlap when we are near the spin-
glass critical temperature. In this case q(x) is expected to be small so one can
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expand the free energy (2.10) [BM78]. One gets the following general behavior for
τ ≡ (TSG − T)/TSG → 0 and small fields

q(x) =





qm , 0 ≤ x ≤ xm
x
2 , xm ≤ x ≤ xM

qM , xM ≤ x ≤ 1

(2.74)

with xm = 2qm, xM = 2qM and

qm ' h2/3

qM ' τ
(2.75)

i.e. qM is qualitatively independent on the external magnetic field. When h →
hdAT, qm → qM, so that the RS solution becomes exact, as it should. In addition
qm → qM agrees with equation (2.38) derived in the context of the stability analy-
sis. We plot in Fig. 2.6a these qualitative behavior. In turns out that qualitatively
the previous picture continue to be true also at lower temperature, but with a
generic function of x between xm and xM. Within this framework one can evalu-
ate all the physical quantities of interest, for example the energy for J0 = h = 0

E = −βJ2

2

(
1 +

2
n ∑

a<b
q2

ab

)
= −βJ2

2

(
1−

∫ 1

0
dx q2(x)

)
, (2.76)

and the magnetic susceptibility

χ = β

(
1 +

2
n ∑

a<b
qab

)
= β

(
1−

∫ 1

0
dx q(x)

)
(2.77)

Particularly interesting is the susceptibility because it allows to derive the vertical
phase boundary derived by [Tou80] between the ferromagnetic and the spin glass
phase of Fig. (2.2a). For h = 0 and τ � 1, χ is constant

χ = β (1− τ) + O(τ2) =
1
J

. (2.78)

It turns out that this result is valid for every T ≤ TSG. One can see [Nis01]
that the quadratic term of the expansion of the free energy in powers of m is
proportional to (χ−1 − J0), signaling a phase transition when J = J0. The plot of
the susceptibility as a function of temperature is shown in Fig. 2.7a.

2.4 Replicas and Physics

The breaking of the replica symmetry may seem strange at first sight, because
replicas have been introduced by our own hand with a subtle mathematical trick
(1.70). It is important therefore to understand the physical meaning of replica
symmetry breaking evaluating analytically some experimental measurable quan-
tities [MPV87]. On the other hand it is also important how one can give an ex-
perimental evidence of RSB [Par02]. In the first subsection we will answer to the
first question, showing how the probability distribution of the overlaps over states
defined in (1.88) is equal to the corresponding one between two replicas [Par83].
In the next subsection we will answer to the second question.
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2.4.1 Overlap Distribution

In this subsection we will see how to evaluate the distribution of the overlaps,
defined in (1.88), using the replica method. Let us consider

q(1)J =
1
N ∑

i
〈σi〉2 . (2.79)

Now we can use the decomposition in pure states (1.73) in order to have

q(1)J =
1
N ∑

i
∑
αβ

wαwβ 〈σi〉α 〈σi〉β = ∑
αβ

wαwβ qαβ =
∫

dq PJ(q) q , (2.80)

i.e. q(1)J can be written as the first moment of the overlap distribution. Then we
take the following quantity

q(2)J =
1

N2 ∑
i1i2

〈σi1 σi2〉2 , (2.81)

and using the same technique we get

q(2)J =
1

N2 ∑
i1i2

∑
αβ

wαwβ 〈σi1 σi2〉α 〈σi1 σi2〉β '∑
αβ

wαwβ q2
αβ =

∫
dq PJ(q) q2 (2.82)

where, in the second equality we have used the clustering property of pure states
(1.76), that is valid in the large N limit. In general we can perform a similar
computation for q(k)J

q(k)J ≡
1

Nk ∑
i1 ...ik

〈σi1 . . . σik〉
2 '

∫
dq PJ(q) qk , (2.83)

which is related to the k-th moment of the overlap distribution. Performing the
sample average we have

q(k) ≡ q(k)J =
∫

dq P(q) qk . (2.84)

The important point is that the above multi-point correlation function can be eval-
uated using also the replica approach. In the case k = 1 we have just performed
the computation in subsection 2.1.1. Fixing two replicas a 6= b, we get

q(1) = lim
n→0

∑
{σc

i }

(
1
N ∑

i
σa

i σb
i

)
e−β ∑c H[σc] = lim

n→0
〈σa

i σb
i 〉 = lim

n→0
qab , (2.85)

where qab is the saddle-point overlap matrix. In a similar way we can derive an
analogous result for k generic

q(k) = lim
n→0
〈σa

i1
. . . σa

ik
σb

i1
. . . σb

ik
〉 = lim

n→0
qk

ab . (2.86)
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This result is certainly true when we have replica symmetry. However, when we
have replica symmetry breaking, we have many saddle-point solutions, connected
by permutation transformations of rows and columns of qab. We have, therefore,
to take into account all saddle-points solutions, i.e. to sum over all rows and
columns of qab

q(k) = lim
n→0

1
n(n− 1) ∑

a 6=b
qk

ab . (2.87)

Comparing equation (2.84) with (2.87) we obtain the replica representation of the
overlap distribution

P(q) = lim
n→0

1
n(n− 1) ∑

a 6=b
δ (q− qab) . (2.88)

This equation is very important because it tells us that the fraction of elements in
the saddle-point matrix qab equal to q is related to the probability that two pure
states have overlap q. The EA order parameter can be written in terms of the
replica overlap as

qEA = max
a, b

qab = max
x

q(x) . (2.89)

We can therefore use the various ansatz used in the replica approach to acquire
informations over the states. In the RS ansatz, for example, the distribution of
overlaps is composed by only a delta function whereas in the 1RSB we will have
two

P(q) = (1−m1)δ(q− q1) + m1δ(q− q0) . (2.90)

In the fRSB we will instead have, using (2.58)

P(q) = − lim
k→∞

k

∑
j=0

(mj −mj+1) δ(q− qj) =
∫ 1

0
dx δ(q− q(x)) , (2.91)

so that, if the function q(x) is monotonous we can write the previous equation as

P(q) =
dx(q)

dq
. (2.92)

x(q), which is the cumulative of P(q), gives the probability of finding two pure
states with an overlap smaller or equal to q. In the fRSB ansatz q(x) becomes a
function, so that P(q) develops a continuous part p(q) between qm and qM. In
particular, when τ � 1, we can use the explicit solution derived in equation (2.74)
we have

P(q) = xmδ(q− qm) + (1− xM)δ(q− qM) + p(q) , (2.93)

where p(q) = 2. Plots of P(q) near the spin glass critical temperature are depicted
in the inset of Fig. 2.6a for h = 0 and of Fig. (2.6b) for 0 < h < hAT.
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(a) The red and blue lines are respectively
the RS and 1RSB results for the field-
cooled susceptibility. The dashed black
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susceptibilities, whereas (b) and (d)
are the zero field-cooled susceptibili-
ties. Reprinted from [NKH79].

Figure 2.7. Plot of the susceptibility as a function of temperature for the SK model (left
panel) and for a sample of CuMn at different concentration of Mn impurities (right
panel). The similarities between theoretical and experimental results are impressive.

2.4.2 Susceptibilities

What one measures experimentally are susceptibilities [BY86]. Defining the local
magnetization mi = 〈σi〉, the single site susceptibility is defined as

χii ≡
∂mi

∂hi
= β

(
1−m2

i
)

, (2.94)

where we have used the fluctuation-dissipation theorem in the second equality.
Averaging over all sites and over the disorder we obtain the equilibrium suscepti-
bility

χ =
1
N

N

∑
i=1

χii = β (1− qJ) = β

(
1−

∫
dx P(q) q

)
, (2.95)

where qJ has been defined in (1.86). Actually this quantity is the same of (2.77).
This susceptibility can be measured cooling a sample in a small magnetic field
and it is also called for this reason field cooled susceptibility. Thanks to the external
magnetic field, the system can jump over barriers and change state, allowing to
better align with the field itself. Cooling the sample applying an even smaller
field forces the system to remain in the same state. In this manner one measures
experimentally the so called zero field-cooled susceptibility, which is related to the
EA order parameter via

χZFC ≡ β (1− qEA) = β
(

1−max
x

q(x)
)

. (2.96)

The difference in these two susceptibilities under the critical temperature is re-
sponsible of the phenomenon of RSB. The comparison between analytical and
experimental data for these susceptibilities is highlighted in Fig. 2.7. For other
experimental results see [DJN99].
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2.4.3 Ultrametricity

It is clear that the hierarchical way through which one construct the Parisi RSB
scheme must reflect in some way in the structure of of the pure states. The distri-
bution function P(q) is insufficient to characterize and describe such non-trivial
structure, because only one overlap between two replicas (or states) is involved.
Therefore it is needed to inspect the properties of the joint probability distribution
of more than one overlaps in order to study correlations between states [Méz+84].
The easiest case is the case of three overlaps q1, q2 and q3

P(q1, q2, q3) = ∑
αβγ

wαwβwγδ(q1 − qαβ)δ(q2 − qαγ)δ(q3 − qβγ) , (2.97)

which can be written in terms of replicas as

P(q1, q2, q3) = lim
n→0

1
n(n− 1)(n− 2) ∑

a 6=b 6=c
a 6=c

δ(q1 − qab)δ(q2 − qac)δ(q3 − qbc) . (2.98)

Using the fRSB ansatz, one can see that this probability is zero unless almost two
overlaps are equal and in the case there is one that is different from the other two,
this must be the smallest one. This means that the spin glass states are such that
all the triangles are all equilateral or isosceles, with the different side which must
be the smaller one. A space with this property is said to be ultrametric [RTV86,
Méz+84, MV85]. In such a space, the usual triangular inequality dab ≤ dac + dbc is
replaced by

dab ≤ max(dac, dbc) , (2.99)

which, for the overlaps reads

qab ≥ min(qac, qbc) , (2.100)
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Part II

Mean-Field
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Chapter 3

Finite-size corrections in random
matching problems

3.1 Introduction and main results

In this chapter we will focus on the study of the finite-size corrections of random
matching problems in the mean field case, i.e. when the weights we ≥ 0 defined
on every edge e of the graph G are chosen to be independent and identically
distributed random variables. We remind that the we have denoted by M1 the
set of all perfect matchings of the graph G. Here we discuss in particular the
case of the random assignment problem (RAP), in which the graph G is chosen to
be the complete bipartite one KN,N . In this case a perfect matching π ∈ M1 is
a permutation in the symmetric group SN and can be represented by a square
matrix with entries πij ∈ {0, 1} for all i ∈ [N] and j ∈ [N] such that

πij =

{
1 for e = (i, j) ∈ π

0 otherwise,
(3.1)

with the constraints
N

∑
i=1

πij =
N

∑
i=1

πji = 1 ∀j ∈ [N]. (3.2)

The matching cost associated with π can be written as

E(π) =
N

∑
i=1

N

∑
j=1

πijwij. (3.3)

Only at the end of the chapter we present analogous computations for the com-
plete graph case G = K2N ; this variation will be called simply random matching
problem (RMP). From the point of view of computational complexity, matching
problems are simple problems, being in the P complexity class, as Kuhn [Kuh55]
proved with his celebrated Hungarian algorithm for the assignment problem. Very
fast algorithms are nowadays available both to find perfect matchings and to solve
the matching problem on a generic graph [Edm65, EK72, MV80, LP09].
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Both the RMP and the RAP have been solved by Mézard and Parisi [MP85]
by means of the replica trick. The random assignment problem and the random
matching problem have also been generalized to the Euclidean case, in which
the weights w are functions of the distances between points associated with the
vertices of the graph and the points are assumed to be randomly generated on a
certain Euclidean domain [Sho85, MP88, Yuk98, LPS17]. Due to the underlying
Euclidean structure, dimensionality plays an important role in the scaling of the
optimal cost of random Euclidean matching problems [MP88, Car+14], and cor-
relation functions can be introduced and calculated [BCS14, CS15b]. Euclidean
matching problems proved to be deeply connected with Gaussian stochastic pro-
cesses [BCS14, CS14] and with the theory of optimal transport [CS15a]. In the lat-
ter context, Ambrosio, Stra, and Trevisan [AST18] rigorously derived the asymp-
totic behavior of the average optimal cost for the two-dimensional random Eu-
clidean assignment problem, previously obtained in Ref. [Car+14] using a proper
scaling ansatz. For a recent review on random Euclidean matching problems, see
Ref. [Sic17].

Remarkably enough, after the seminal works of Kirkpatrick, Gelatt, and Vec-
chi [KGV83], Orland [Orl85], and Mézard and Parisi, the application of statistical
physics techniques to random optimization problems proved to be extremely suc-
cessful in the study of the typical properties of the solutions, such as the large N
behavior of the average optimal cost

E ≡ E(π∗) = min
π∈M1

N

∑
i=1

N

∑
j=1

πij wij, (3.4)

but also in the development of algorithms to solve a given instance of the prob-
lem [Bap+13]. In formulating a combinatorial problem as a model in statistical
mechanics, an artificial inverse temperature β is introduced to define a Boltzmann
weight exp (−βE) for each configuration. Of course, configurations of minimal
energy are the only ones to contribute in the limit of infinite β. For example, in
the assignment problem, the corresponding partition function for each instance is

Z[w] = ∑
π

[
N

∏
j=1

δ

(
1−

N

∑
i=1

πij

)
δ

(
1−

N

∑
i=1

πji

)]
e−βE(π), (3.5)

where the “energy” E(π) is given by (3.3). Thermodynamic information is ob-
tained from the average total free energy

F ≡ − ln Z
β

, (3.6)

E =
∂

∂β
βF. (3.7)

In the following we will assume the weights wij to be independent and iden-
tically distributed random variables with probability distribution density ρr(w)
such that, in the neighborhood of the origin, ρr can be written as

ρr(w) = wr
∞

∑
k=0

ηk(r)wk, r > −1, η0(r) 6= 0. (3.8)
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In the previous expression, ηk(r) are coefficients (possibly dependent on r) of the
Maclaurin series expansion of the function ρr(w)w−r, which is supposed to be
analytic in the neighborhood of the origin. The constraint r > −1 is required
to guarantee the integrability of the distribution near the origin. By the general
analysis performed in Refs. [Orl85, MP85], which we will resume in Section 3.2,
the average cost, in the asymptotic regime of an infinite number N of couples of
matched points, will depend on the power r that appears in Eq. (3.8) only, aside
from a trivial overall rescaling related to η0. More precisely, if Er is the average
optimal cost obtained using the law ρr, then

Êr = lim
N→∞

1
N

r
r+1

Er =
r + 1

[η0Γ(r + 1)]
1

r+1
J(r+1)
r (3.9a)

where

J(α)r ≡
∫ +∞

−∞
Ĝr(−u)Dα

u Ĝr(u)du (3.9b)

(we will later specify the meaning of the fractional order derivative Dα
u). The

function Ĝr(y) is the solution of the integral equation

Ĝr(l) =
∫ +∞

−l

(l + y)r

Γ(r + 1)
e−Ĝr(y) dy (3.9c)

and it is analytically known for r = 0 and, after a proper rescaling of its variable,
in the r → ∞ limit.

Our main results concern the finite-size corrections to the average optimal
costs, and they will be presented in Section 3.3, extending the classical achieve-
ments in Refs. [MP87, PR02]. In particular, we obtain the expansion (the sum is
absent for r < 0)

Êr(N) = Êr +
brc+1

∑
k=1

∆F̂(k)
r + ∆F̂T

r + ∆F̂F
r + o

(
1
N

)
, (3.10a)

where brc is the integer part of r, and the corrections have the structure

∆F̂(k)
r =

∆φ
(k)
r

N
k

r+1
, r ≥ 0, 1 ≤ k ≤ brc+ 1, (3.10b)

∆F̂T
r =− 1

N
Γ(2r + 2)J(0)r

(r + 1)η
1

r+1
0 [Γ(r + 1)]

2r+3
r+1

(3.10c)

∆F̂F
r =− 1

N
1

2 [η0Γ(r + 1)]
1

r+1

1

J(r+3)
r

, (3.10d)

∆φ
(k)
r being independent of N. In particular, for r > 0, we have that, provided

η1 6= 0, the first finite-size correction is given by

∆F̂(1)
r = − η1

N
1

r+1

r + 1

η0[η0Γ(r + 1)]
2

r+1
J(r)r . (3.10e)
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In our discussion, we will consider in particular two probability distribution
densities, namely, the Gamma distribution

ρΓ
r (w) ≡ wre−wθ(w)

Γ(r + 1)
, (3.11)

defined on R+, and the power-law distribution

ρP
r (w) ≡ (r + 1)wrθ(w)θ(1− w), (3.12)

defined on the compact interval [0, 1]. In the previous expressions we have de-
noted by θ(w) the Heaviside theta function on the real line. Observe that, for the
distribution ρΓ

r , we have

ηΓ
k (r) =

1
Γ(r + 1)

(−1)k

k!
, k ≥ 0, (3.13)

whereas in the case of ρP
r ,

ηP
k (r) = (r + 1) δk,0, k ≥ 0. (3.14)

The case r = 0 has already been considered by Mézard and Parisi [MP87] and
subsequently revised and corrected by Parisi and Ratiéville [PR02]. In the case
analyzed in their works, the contributions ∆F̂(1)

0 , ∆F̂T
0 , and ∆F̂F

0 are of the same
order. This is not true anymore for a generic distribution with r 6= 0. As antic-
ipated, a relevant consequence of our evaluation is that, if η1 6= 0, for r > 0 the
most important correction comes from ∆F̂(1)

r and scales as N−
1

r+1 . It follows that,
in order to extrapolate to the limit of an infinite number of points, the best choice
for the law for random links (in the sense of the one that provides results closer
to the asymptotic regime) is the pure power law ρP

r , where only analytic correc-
tions in inverse power of N are present. Such a remark is even more pertinent in
the limit when r → ∞ at a fixed number of points, where the corrections ∆F̂(k)

r
become of the same order of the leading term. Indeed, the two limits r → ∞ and
N → ∞ commute only if the law ρP

r is considered.
The rest of the chapter is organized as follows. In Section 3.2 we review,

in full generality, the calculation of the replicated partition function of the ran-
dom assignment problem. In Section 3.3 we evaluate the finite-size corrections,
discussing the different contributions and proving Eqs. (3.10). In Section 3.4 we
evaluate the relevant r → ∞ case, pointing out the non-commutativity of this limit
with the thermodynamic limit. In Section 3.5 we provide the numerical values of
the necessary integrals and we compare our prediction with numerical simula-
tions for different values of r. In Section 3.6 we simply sketch the computation
for the RMP case.

3.2 The replicated action

In the present section we perform a survey of the classical replica computation for
the RAP, following the seminal works of Mézard and Parisi [MP85, MP87] (for a
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slightly different approach see also Ref. [Orl85]), but we do not adopt their choice
to replace β with β/2. As anticipated previously, the computation of the average
of ln Z goes through the replica trick [EA75]

ln Z = lim
n→0

Zn − 1
n

. (3.15)

In other words, in order to compute ln Z we introduce n noninteracting replicas
of the initial system, denoted by the index a ∈ [n]. For each i ∈ [N], 2n repli-
cated fields {λa

i , µa
i }a=1,...,n appear to impose the constraints in Eq. (3.2), using the

relation ∫ 2π

0
eikλdλ = 2πδk 0. (3.16)

We obtain

Zn[w] =

[
n

∏
a=1

N

∏
i=1

∫ 2π

0

dλa
i

2π

∫ 2π

0

dµa
i

2π
ei(λa

i +µa
i )

]
N

∏
i,j=1

n

∏
a=1

[
1 + e−i(λa

j +µa
i )−βwij

]
. (3.17)

Let P([n]) be the set of subsets of the set [n] and for each subset α ∈ P([n]) let |α|
be its cardinality. Then

n

∏
a=1

[
1 + e−i(λa

j +µa
i )−βwij

]
= ∑

α∈P([n])
e−β|α|wij−i ∑a∈α(λ

a
j +µa

i )

= 1 +
n

∑
p=1

e−β p wij ∑
α∈P([n])
|α|=p

e−i ∑a∈α(λ
a
j +µa

i ),
(3.18)

where we have extracted the contribution from the empty set in the sum, which is
1, and we have partitioned the contribution from each subset of replicas in terms
of their cardinality. This expression is suitable for the average on the costs. From
the law ρr we want to extract the leading term for large β of the contribution of
each subset α ∈ P([n]) with |α| = p. In particular, we define

gα ≡ gp ≡
∫ +∞

0
ρr(w)e−βpwdw. (3.19)

Due to the fact that short links only participate in the optimal configuration, ap-
proximating ρr(w) ∼ η0wr, we obtain that the minimal cost for each matched
vertex is of the order N−

1
r+1 so the total energy E and the free energy should scale

as N
r

r+1 , that is, the limits

lim
N→∞

1
N

r
r+1

F =F̂, (3.20)

lim
N→∞

1
N

r
r+1

E =Ê (3.21)

are finite. This regime can be obtained by considering in the thermodynamic limit

β = β̂N
1

r+1 , (3.22)
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where β̂ is kept fixed. As a consequence we set

ĝp ≡ Ngp = N
∫ +∞

0
ρr(w)e−pβ̂N

1
r+1 wdw =

+∞

∑
k=0

1

N
k

r+1

ηkΓ(k + r + 1)
(β̂p)k+r+1

. (3.23)

The replicated partition function can be written therefore as

Zn =

[
n

∏
a=1

N

∏
i=1

∫ 2π

0

dλa
i

2π

∫ 2π

0

dµa
i

2π
ei(λa

i +µa
i )

]
N

∏
i, j=1

(
1 +

Tij

N

)

=

[
n

∏
a=1

N

∏
i=1

∫ 2π

0

dλa
i

2π

∫ 2π

0

dµa
i

2π
ei(λa

i +µa
i )

]
e

1
N ∑N

i, j=1

(
Tij−

T2
ij

2N

)
+o
(

1
N2

)

,

(3.24)

with
Tij ≡ ∑′

α∈P([n])
ĝα e−i ∑a∈α(λ

a
j +µa

i ) (3.25)

where in the sum ∑′ on subsets the empty set is excluded. If we introduce, for
each subset α ∈ P([n]), the quantities

xα + i yα√
2

:=
N

∑
k=1

e−i ∑a∈α λa
k (3.26a)

xα − i yα√
2

:=
N

∑
k=1

e−i ∑a∈α µa
k (3.26b)

we can write

N

∑
i=1

N

∑
j=1

Tij = ∑′

α∈P([n])
ĝα

x2
α + y2

α

2
, (3.27a)

N

∑
i=1

N

∑
j=1

T2
ij = ∑′

α, β∈P([n])
ĝα ĝβ

x2
α∪β + y2

α∪β

2
. (3.27b)

As observed by Mézard and Parisi [MP87] and Parisi and Ratiéville [PR02], in
Eq. (3.27b) we can constrain the sum on the right-hand side to the couples α, β ∈
P([n]) such that α ∩ β = ∅. Indeed, let us consider α, β ∈ P([n]) and α ∩ β 6= ∅.
Then, defining α4β ≡ (α ∪ β) \ (α ∩ β), we have that

x2
α∪β + y2

α∪β

2
= ∑

l,k
exp

[
−2i ∑

a∈α∩β

(λa
l + µa

k)− i ∑
b∈α4β

(
λb

l + µb
k

)]
. (3.27c)

Due to Eq. (3.16) and to the presence of the coefficients exp
(
−2iλa

l − 2iµa
k

)
, the

contribution of the term above will eventually be suppressed because of the inte-
gration over the Lagrange multipliers in the partition function. We can therefore
simplify our calculation by substituting immediately

N

∑
i=1

N

∑
j=1

T2
ij = ∑′

α,β∈P([n])
α∩β=∅

ĝα ĝβ

x2
α∪β + y2

α∪β

2
. (3.27d)
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We perform now a Hubbard–Stratonovich transformation, neglecting o(N−2) terms
in the exponent in Eq. (3.24), obtaining

e
1
N ∑N

i,j=1

(
Tij−

T2
ij

2N

)

=

[
∏′

α∈P([n])

∫∫ NdXαdYα

2πĝα
exαXα+yαYα

]
×

× exp


−N ∑′

α∈P([n])

X2
α + Y2

α

2ĝα
− ∑′

α,β∈P([n])
α∩β=∅

ĝα ĝβ

X2
α∪β + Y2

α∪β

4ĝ2
α∪β


 ,

(3.28)

up to higher order terms in the exponent. Now, let us observe that

xαXα + yαYα =

(
N

∑
i=1

e−i ∑a∈α λa
i

)
Xα − i Yα√

2
+

(
N

∑
i=1

e−i ∑a∈α µa
i

)
Xα + i Yα√

2
. (3.29)

Introducing the function of vα,

z[vα] ≡
[

n

∏
a=1

∫ 2π

0

dλa

2π
eiλa

]
exp

[
vαe−i ∑b∈α λb

]
, (3.30)

and the order parameters

Qα ≡
Xα + iYα√

2
, (3.31)

we can write

Zn =

[
∏′

α∈P([n])

N
2π ĝα

∫∫
dQαdQ∗α

]
e−NS[Q]−N∆ST [Q], (3.32a)

with

S[Q] = ∑′

α∈P([n])

( |Qα|2
ĝα
− ln z [Qα]− ln z [Q∗α]

)
, (3.32b)

∆ST[Q] = ∑′

α,β∈P([n])
α∩β=∅

ĝα ĝβ

|Qα∪β|2
2Nĝ2

α∪β

, (3.32c)

a form that is suitable to be evaluated, in the asymptotic limit for large N, by
means of the saddle-point method. It is immediately clear that ∆ST contains a
contribution to the action that is O(N−1) and therefore it can be neglected in the
evaluation of the leading contribution. It follows that the stationarity equations
are of the form

Q∗α
ĝα

=
d ln z[Qα]

dQα
, (3.33a)

Qα

ĝα
=

d ln z[Q∗α]
dQ∗α

. (3.33b)
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The application of the saddle-point method gives

Zn ' e−NS[Qsp]−N∆ST [Qsp]− 1
2 ln det Ω[Qsp], (3.34)

where Ω is the Hessian matrix of S[Q] and Qsp is the saddle-point solution. As
we will show below, the contribution ln det Ω[Qsp] provides finite-size corrections
to the leading contribution of the same order of the corrections in N∆ST[Qsp].
Notice also how in describing the RAP a whole set of multi-overlaps Qα and Q∗α
is needed, differently to what happens in fully connected systems as in the SK
model analyzed in Chap. 2, where only the first two moments ma and qab are
needed. The RAP is a first example of diluite or sparse system: even if the problem
is defined on a fully connected graph, the interactions contributing to the solution
are only a tiny fraction of the total number of edges. Therefore, the effective graph
obtained by cutting all the “most weighted” edges, is locally tree-like and this is
the reason why belief propagation, which is exact on tree graphs, gives correct
result also for the RAP, and in general, for the random-link models we analyze in
this and subsequent chapters of Part II.

3.2.1 Replica symmetric ansatz and limit of vanishing number of repli-
cas

To proceed with our calculation, we adopt, as usual in the literature, a RS ansatz
for the solution of the saddle-point equations. A RS solution is of the form

Qα = Q∗α = q|α|. (3.35)

In particular this implies that Yα = 0. In order to analytically continue to n → 0
the value at the saddle-point of S in Eq. (3.32b), let us first remark that under the
assumption in Eq. (3.35)

∑′

α∈P([n])

|Qα|2
ĝα

=
n

∑
k=1

(
n
k

)
q2

k
ĝk

= n
∞

∑
k=1

(−1)k−1

k
q2

k
ĝk

+ o(n). (3.36)

Moreover, as shown in Appendix A.1,

∑′

α∈P([n])
ln z[Qα] = n

∫ +∞

−∞
dl
[
e−el − e−G(l)

]
, (3.37)

where

G(l) ≡
∞

∑
k=1

(−1)k−1qk
elk

k!
. (3.38)

In conclusion, under the RS ansatz in Eq. (3.35), the functional to be minimized is

β̂F̂ =
∞

∑
k=1

(−1)k−1

k
q2

k
ĝk
− 2

∫ +∞

−∞
dl
[
e−el − e−G(l)

]
. (3.39)

A variation with respect to qk gives the saddle-point equation

1
k

qk

ĝk
=
∫ +∞

−∞
dy e−G(y) eyk

k!
(3.40)
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which is to say

G(l) =
∞

∑
k=1

(−1)k−1qk
elk

k!
=
∫ +∞

−∞
dy e−G(y)

∞

∑
k=1

(−1)k−1kĝk
e(y+l) k

(k!)2 . (3.41)

This implies that
∞

∑
k=1

(−1)k−1

k
q2

k
ĝk

=
∞

∑
k=1

(−1)k−1qk

∫ +∞

−∞
dy e−G(y) eyk

k!
=
∫ +∞

−∞
dy G(y)e−G(y) . (3.42)

These formulas are for a general law ρr. Observe also that the expression of ĝp is
not specified. For finite r and N → ∞, Eq. (3.23) simplifies as

lim
N→∞

ĝp =
η0Γ(r + 1)
(β̂p)r+1

. (3.43)

We will restrict the analysis to the case in which Eq. (3.43) holds. Then Eq. (3.41)
becomes

Gr(l) =
η0Γ(r + 1)

β̂r+1

∫ +∞

−∞
dy Br(l + y)e−Gr(y), (3.44)

with

Br(x) ≡
∞

∑
k=1

(−1)k−1 exk

kr(k!)2 . (3.45)

In Eq. (3.44), and in the following, we introduce the subindex r to stress the
dependence of G and of the thermodynamical functionals on r. The average cost
is therefore

Êr =
∂

∂β̂
β̂F̂r =

r + 1
β̂

∫ +∞

−∞
dy Gr(y)e−Gr(y) . (3.46)

Using the fact that (see Appendix A.2)

lim
δ→∞

1
δr Br(δx) =

xrθ(x)
Γ(r + 1)

, (3.47)

if we introduce

Ĝr(l) ≡ Gr

(
β̂

[η0Γ(r + 1)]
1

r+1
l

)
(3.48)

in the limit β̂ → +∞, the function Ĝr satisfies Eq. (3.9c) and the value of Êr is the
one reported in Eq. (3.9a). In particular, at fixed r, if we consider the two laws ρP

r
and ρΓ

r , the ratio between the corresponding average optimal costs is given by

λr ≡
ÊP

r

ÊΓ
r
=

(
ηΓ

0

ηP
0

) 1
r+1

= [Γ(r + 2)]−
1

r+1 . (3.49)

In the case r = 0, we have the classical result by Mézard and Parisi [MP85]

Ĝ0(l) = ln(1 + el), (3.50a)

Ê0 =
1

η0(0)

∫ +∞

−∞

ln(1 + ey)

1 + ey dy =
1

η0(0)
π2

6
, (3.50b)

a result that was later obtained with a cavity approach by Aldous [Ald01]. For
the evaluation of the integral, see Appendix A.4.
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3.3 Finite size corrections

The evaluation of the first-order corrections for a finite number of points has been
considered in Refs. [MP87, PR02] in the r = 0 case. For this particular choice
and assuming a distribution law ρΓ

0 , a much stronger conjecture was proposed
by Parisi [Par98] and later proved by Linusson and Wästlund [LW04] and Nair,
Prabhakar, and Sharma [NPS05], that is, for every N,

ÊΓ
0 (N) = HN,2 ≡

N

∑
k=1

1
k2 . (3.51)

For large N, Parisi’s formula implies

ÊΓ
0 (N) =

π2

6
− 1

N
+ o

(
1
N

)
. (3.52)

Using instead the law ρP
0 (uniform distribution on the interval) we have [MP87,

PR02]

ÊP
0 (N) =

π2

6
− 1 + 2ζ(3)

N
+ o

(
1
N

)
(3.53)

from which we see that corrections for both laws are analytic, with the same
inverse power of N, but different coefficients.

In their study of the finite-size corrections, the authors of Ref. [PR02] show
that, in their particular case, there are two kind of finite-size corrections. The first
one comes from the application of the saddle-point method, giving a series of
corrections in the inverse powers of N. This contribution is the sum of two terms.
The first term in this expansion corresponds to the contribution of the ∆ST term
given in Eq. (3.32c) appearing in the exponent in Eq. (3.34). The second term is
related to the fluctuations, also appearing in Eq. (3.34), involving the Hessian of
S. The second kind of corrections, instead, is due to the particular form of the law
ρr(w) for the random links and in particular to the series expansion in Eq. (3.23).
This contribution can be seen at the level of the action S in Eq. (3.32b), being

|Qα|2
ĝα
≈ |Qα|2

(β̂|α|)r+1

η0Γ(r + 1)
− |Qα|2

(r + 1)

N
1

r+1

η1

η2
0

(β̂|α|)r

Γ(r + 1)
+ O

(
N−

2
r+1

)
. (3.54)

In full generality, the expansion of 1/ĝα generates a sum over terms each one of
order N−

k
r+1 with k ≥ 1. All these corrections are o(N−1) for r ∈ (−1, 0), whereas

the corrections obtained from the contributions with 1 ≤ k ≤ r + 1 are of the same
order as the analytic term, or greater, for r ≥ 0. In particular, if η1 6= 0, for r > 0
the k = 1 term provides the leading correction, scaling as N−

1
r+1 . It is also evident

that all these corrections are absent if ηk = 0 for k ≥ 1, as it happens in the case
of the ρP

r law.
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3.3.1 Correction due to η1

Let us consider the r ≥ 0 case and let us restrict ourselves to the k = 1 term, of
order N−

1
r+1 in Eq. (3.10). Its contribution to the total free energy is given by

β̂∆F̂(1)
r = − r + 1

N
1

r+1

η1

η2
0

∞

∑
p=1

(−1)p−1

p
(β̂p)r

Γ(r + 1)
q2

p, (3.55)

where we already made a RS assumption and considered the n → 0 limit. Im-
posing the saddle-point relation in Eq. (3.40) and using the limit in Eq. (3.43), we
obtain

N
1

r+1 ∆F̂(1)
r = −η1(r + 1)

β̂2η0

∫ +∞

−∞
dy e−Gr(y)

∞

∑
p=1

(−1)p−1qpepy

p p!

= −η1(r + 1)
β̂2η0

∫ +∞

−∞
dy e−Gr(y)

∫ y

−∞
du Gr(u)

= − η1(r + 1)

η0 [η0Γ(r + 1)]
2

r+1

∫ +∞

−∞
dy e−Ĝr(y)

∫ y

−∞
du Ĝr(u).

(3.56)

To put the expression above in the form presented in Eq. (3.10e), observe that

∫ +∞

−∞
dy e−Ĝr(y)

∫ y

−∞
du Ĝr(u) =

∫ +∞

−∞
du Ĝr(−u)

∫ +∞

−∞
dy e−Ĝr(y) θ(y + u)

=
∫ +∞

−∞
Ĝr(−u)Dr

u Ĝr(u)du ≡ J(r)r ,
(3.57)

a structure that can be more useful for numerical evaluation, at least for r integer.
In this equation we have used Eq. (A.12) and we have introduced the Riemann–
Liouville fractional derivative

Dα
t f (t) ≡ dbαc+1

dtbαc+1

∫ t

−∞
dτ

(t− τ)bαc−α

Γ(bαc − α + 1)
f (τ) ,

α ≥ 0, f ∈ Lp(Ω) ∀p ∈
[

1,
1

bαc − α + 1

)
,

(3.58)

where Ω ≡ (−∞, t) is the domain of integration (see Refs. [SKM93, Pod99] for
further details).

3.3.2 Correction due to the saddle-point approximation

Let us now consider the corrections due to the saddle-point approximation. The
first contribution is expressed by ∆ST, given in Eq. (3.32c). In the RS hypothesis,
we have that

∑′

α,β∈P([n])
α∩β=∅

ĝα ĝβ

|Qα∪β|2
2Nĝ2

α∪β

=
1

2N

∞

∑
s=1

∞

∑
t=1

(
n

s, t, n− s− t

)
ĝs ĝt

ĝ2
s+t

q2
s+t. (3.59)
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We can write the corresponding correction to the free energy as

∆F̂T
r =

1
2β̂N

∞

∑
s=1

∞

∑
t=1

(−1)s+t−1 (s + t− 1)!
s! t!

ĝs ĝt

ĝ2
s+t

q2
s+t. (3.60)

In Appendix A.5 we show that the previous quantity can be written as

∆F̂T
r = − Γ(2r + 2)

Nη
1

r+1
0 Γ2+ 1

r+1 (r + 1)

1
r + 1

∫ +∞

−∞
du Ĝr(−u)Ĝr(u)

= − Γ(2r + 2)

Nη
1

r+1
0 Γ2+ 1

r+1 (r + 1)

J(0)r

r + 1
.

(3.61)

Another type of finite-size correction comes from the fluctuations around the
saddle-point [PR02, Section B.3], related to the Hessian matrix Ω appearing in
Eq. (3.34). The evaluation of the contribution of the Hessian matrix is not trivial
and it has been discussed by Mézard and Parisi [MP87] and later by Parisi and
Ratiéville [PR02]. They proved that the whole contribution comes from a volume
factor due to a non trivial metric Ω̂ obtained from Ω imposing the RS assumption.
The volume factor arises because of the invariance of the action

Qα → Qα ei ∑a∈α θα , (3.62)

which makes the RS saddle point(3.35) n times degenerate. The metric Ω̂ is such
that

ln
√

det Ω = ln
√

det Ω̂. (3.63)

The n× n matrix Ω̂ can be written as

Ω̂ = na1Π + (a0 − a1)In, (3.64)

where In is the n× n identity matrix and we have introduced the quantities

a0 ≡
∞

∑
p=1

(
n− 1
p− 1

) q2
p

ĝp
, (3.65a)

a1 ≡
∞

∑
p=2

(
n− 2
p− 2

) q2
p

ĝp
, (3.65b)

and Π is a projection matrix on the constant vector defined as

Π ≡ Jn

n
, (3.66)

where Jn is the n × n matrix with all entries equal to 1. The matrix Π has one
eigenvalue equal to 1 and n− 1 eigenvalues equal to 0. It follows that, because
the two matrices Π and In obviously commute, Ω̂ has one eigenvalue equal to
a0 + (n− 1)a1 and n− 1 eigenvalues equal to a0 − a1. Its determinant is therefore
simply given by

det Ω̂ = (a0 − a1)
n−1[a0 + (n− 1)a1]. (3.67)
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In the limit of n→ 0 we easily get

a0 =
∞

∑
p=1

(−1)p−1 q2
p

ĝp
=

∞

∑
p=1

(−1)p−1 pqp

∫ +∞

−∞
dy e−Gr(y) epy

p!

=
∫ +∞

−∞
dy e−Gr(y) dGr(y)

dy
=
∫ +∞

−∞
e−Ĝr(y) dĜr(y)

dy
dy

= e−Ĝr(−∞) − e−Ĝr(+∞) = 1

(3.68)

for all values of r. Similarly,

a1 = −
∞

∑
p=2

(−1)p−1(p− 1)
q2

p

ĝp
= −

∞

∑
p=1

(−1)p−1(p− 1)
q2

p

ĝp
(3.69)

so

a0 − a1 =
∞

∑
p=1

(−1)p−1 p
q2

p

ĝp
=

∞

∑
p=1

(−1)p−1 p2qp

∫ +∞

−∞
dy e−Gr(y) epy

p!

=
∫ +∞

−∞
dy e−Gr(y) d2

dy2 Gr(y) =
[η0Γ(r + 1)]

1
r+1

β̂

∫ +∞

−∞
dy e−Ĝr(y) d2

dy2 Ĝr(y).

(3.70)

Therefore,
√

det Ω̂ = 1 +
n
2

[
a1

a0 − a1
+ ln(a0 − a1)

]
+ o(n). (3.71)

In conclusion, integrating by parts and using Eq. (A.14), we obtain

∆F̂F
r = − lim

β̂→∞

1
nNβ̂

ln
√

det Ω̂ = − 1

2N [η0Γ(r + 1)]
1

r+1

1

J(r+3)
r

. (3.72)

3.3.3 Application: the r = 0 case

The results obtained in the r = 0 case, analyzed by Parisi and Ratiéville [PR02],
can be easily recovered. From the general expression in Eq. (3.10), by setting r = 0,
we get

∆F̂0 ≡ ∆F̂(1)
0 + ∆F̂T

0 + ∆F̂F
0 = − 1

η0(0)N

[(
1 +

η1(0)
η0(0)

)
J(0)0

η0(0)
+

1

2J(3)0

]

= − 1
η0(0)N

[(
1 +

η1(0)
η0(0)

)
2ζ(3)
η0(0)

+ 1
]

,

(3.73)

where we have used the results discussed in the Appendix A.4 for the two inte-
grals involved in the expression above. Eqs. (3.52) and (3.53) are obtained using
Eqs. (3.13) and (3.14), respectively.
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3.4 The limiting case r → +∞

In this section we concentrate on the limiting case in which r → +∞. We can
easily verify that, in the weak sense,

lim
r→+∞

ρP
r (w) = δ(w− 1) (3.74)

so all the weights become equal to unity. We expect therefore that

lim
r→+∞

ÊP
r (N) = 1, (3.75)

independently of N. The average cost obtained using ρΓ
r instead diverges and it

is therefore more interesting to consider the modified law

ρ
γ
r (w) ≡ (r + 1)r+1

Γ(r + 1)
wre−(r+1)wθ(w)

r→∞−−→ δ(w− 1). (3.76)

According to our general discussion, we have that

η
γ
k (r) =

(r + 1)k+r+1

Γ(r + 1)
(−1)k

k!
, k ≥ 0, (3.77)

implying that, independently of N,

Êγ
r (N) =

1
r + 1

ÊΓ
r (N) (3.78)

and therefore

Êγ
r =

Γ(r + 2)
1

r+1

r + 1
ÊP

r (3.79)

in the limit of infinite N. In particular,

lim
r→+∞

Êγ
r =

1
e

. (3.80)

It follows that, even though the two laws ρP and ργ both converge to the same
limiting distribution, according to our formulas, the corresponding average costs
are not the same. This is due to the fact that the two limits N → +∞ and r → +∞
do not commute for the law ργ, because of the presence of O(N−

k
r+1 ) corrections

that give a leading contribution if the r → ∞ limit is taken first.
To look into more details in the r → +∞ limit, we find it convenient, when

looking at the saddle-point solution, to perform a change of variables, following
the approach in Refs. [HBM98, PR01], that is, writing

Gr(x) ≡ Ĝr

[
Γ

1
r+1 (r + 2)

(
1
2
+

x
r + 1

)]
(3.81)

then Eq. (3.9c) becomes

Gr(x) =
∫ +∞

−x−r−1
dt
(

1 +
x + t
r + 1

)r

e−Gr(t) , (3.82)
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so, in the r → +∞ limit

G∞(x) = ex
∫ +∞

−∞
dt et−G∞(t) . (3.83)

If we set G∞(x) = aex, with

a =
∫ +∞

−∞
dt et−G∞(t) (3.84)

we recover

a =
∫ +∞

−∞
dt et−aet

=
∫ +∞

0
dz e−az =

1
a
⇒ G∞(x) = ex. (3.85)

From Eq. (3.9a) with the change of variable in Eq. (3.81), we get

Êr =

(
r + 1
η0(r)

) 1
r+1 ∫ +∞

−∞
dx Gr(x)e−Gr(x), (3.86)

so

Ê∞ = lim
r→+∞

(
r + 1
η0(r)

) 1
r+1

= lim
r→+∞

η0(r)
− 1

r+1 =

{
1 for ρP

r ,
1
e for ρ

γ
r ,

(3.87)

in agreement with the previous results. Let us now evaluate the integrals appear-
ing in the finite-size corrections in Eq. (3.10). Let us first start with the ∆FT

r and
the ∆FF

r corrections. From the definition, for large r,

J(0)r =
∫ +∞

−∞
Ĝr(y)Ĝr(−y)dy

=
∫ +∞

−∞
dy
∫ ∞

−y
dt1

(t1 + y)r

Γ(r + 1)
e−Ĝr(t1)

∫ ∞

y
dt2

(t2 + y)r

Γ(r + 1)
e−Ĝr(t2)

= Γ
1

r+1 (r + 2)
∫ +∞

−∞
dt1

∫ +∞

−∞
dt2 Kr(t1, t2) e−Gr(t1)−Gr(t2)

(3.88)

where

Kr(t1, t2) ≡
∫ x2

−x1−r−1

(t + t1 + r + 1)r(t2 − t)r

(r + 1)2r+1 dt

=

(
1 +

x1 + x2

r + 1

)2r+1 Γ2(r + 1)
Γ(2r + 2)

(3.89)

and therefore for large r,

J(0)r ' Γ
1

r+1 (r + 2)
Γ2(r + 1)
Γ(2r + 2)

(∫ +∞

−∞
ex−ex

dx
)2

= Γ
1

r+1 (r + 2)
Γ2(r + 1)
Γ(2r + 2)

' Γ2+ 1
r+1 (r + 1)

Γ(2r + 2)
,

(3.90)

so we get
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∆F̂T
r ' −

1

Nη
1

r+1
0 (r)r

(3.91)

a contribution that vanishes as r−1 both for the law ρP
r and for the law ρ

γ
r (indeed

we know that, in this case, all corrections must vanish when r → ∞ at fixed N).
In particular, if we consider the law ρΓ

r , we have, in the r → ∞ limit

∆F̂T
∞ = − 1

eN
. (3.92)

Similarly, for large r, we have that

1

J(r+3)
r

=
Γ(r + 2)

1
r+1

r + 1

[∫ +∞

−∞
dx e−Gr(x) d2

dx2Gr(x)
]−1

=
1
e

(3.93)

and therefore

∆F̂F
r ' −

1

2Nη
1

r+1
0 (r)r

=
∆F̂T

r
2

. (3.94)

Instead, if we consider ∆F̂(1)
r , we have that

J(r)r =

[
Γ(r + 2)

1
r+1

r + 1

]2 ∫ +∞

−∞
du e−Gr(u)

∫ u

−∞
dv Gr(v)

r→∞−−→ 1
e2

∫ +∞

−∞
du e−eu

∫ u

−∞
dv ev =

1
e2 ,

(3.95)



3.5 Numerical results 69

finally obtaining

∆F̂(1)
r ' − η1(r)

N
1

r+1 η
1+ 2

r+1
0 (r)r

(3.96)

so that, considering the law ρ
γ
r , if we send r → ∞ before taking the limit N → ∞,

∆F̂(1)
+∞ ∼ O(1) and we get a new contribution to the average optimal cost

Ê = Ê∞ +
∞

∑
k=1

∆F̂(k)
∞ =

1
e
+

1
e2 + . . . (3.97)

a series where we miss the contributions of order N
k

r+1 for k ≥ 2, and that we
know will sum to 1.

3.5 Numerical results

In this section we discuss some numerical results. First, we present a numerical
study of our theoretical predictions obtained in the previous sections. Second, we
compare with numerical simulations, in which the random assignment problem
is solved using an exact algorithm.

The evaluation of all quantities in Eq. (3.10) depends on the solution of Eq. (3.9c).
We solved numerically this equation for general r by a simple iterative procedure.
In particular, for r > 0 we generated a grid of 2K− 1 equispaced points in an inter-
val [−ymax, ymax] and we used a discretized version of the saddle-point equation
in Eq. (3.9c) in the form

Ĝ[s+1]
r (yi) =

ymax

K

2K

∑
k=2K−i

(yi + yk)
re−Ĝ[s]

r (yk)

Γ(r + 1)
, (3.98)

with yi =
i−K

K ymax, , i = 0, 1, . . . , 2K. We imposed as the initial function Ĝ[0]
r of the

iterative procedure

Ĝ[0]
r (yi) ≡ Ĝ0(yi) = ln (1 + eyi) . (3.99)

We observed that the quantity

∆G[s]
r =

2K

∑
i=0

∣∣∣Ĝ[s]
r (yi)− Ĝ[s−1]

r (yi)
∣∣∣ (3.100)

decays exponentially with s and therefore convergence is very fast. For our com-
putation, we used typically 30 iterations.

For r < 0 the term (l + y)r in the saddle-point equation is divergent in y = −l
and Eq. (3.98) cannot be adopted. We have therefore rewritten the saddle-point
equation using an integration by parts, obtaining

Ĝr(l) =
∫ +∞

−l
dy

(l + y)r+1 e−Ĝr(y)

Γ(r + 2)
dĜr(y)

dy
. (3.101)
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r η
1

r+1
0 Êr (Nη2

0)
1

r+1
η0∆F̂(1)

r
η1

Nη
1

r+1
0 ∆F̂T

r Nη
1

r+1
0 ∆F̂F

r

-0.5 1.125775489 -2.777285153 -3.917446075 -1.192663973
-0.4 1.334614017 -2.952484269 -3.665262242 -1.250475151
-0.3 1.471169704 -2.921791666 -3.324960744 -1.222990786
-0.2 1.558280634 -2.784084499 -2.984917100 -1.157857158
-0.1 1.612502443 -2.600804197 -2.675513663 -1.079610016

0 1.644934067 -2.404113806 -2.404113806 -1
0.1 1.662818967 -2.215821874 -2.168528577 -0.924257491
0.2 1.671039856 -2.038915744 -1.966713438 -0.854501434
0.3 1.672729262 -1.877696614 -1.792481703 -0.791231720
0.4 1.670005231 -1.732453452 -1.641566768 -0.734262435
0.5 1.664311154 -1.602337915 -1.510248399 -0.683113178
0.6 1.656639222 -1.486024319 -1.395391897 -0.637204338
0.7 1.647677145 -1.382051819 -1.294397704 -0.595951390
0.8 1.637905005 -1.288993419 -1.205124002 -0.558807473
0.9 1.627659755 -1.205532353 -1.125808312 -0.525279810
1 1.617178636 -1.130489992 -1.054997763 -0.494933215
2 1.519733739 -0.670341811 -0.626403698 -0.303146650
3 1.446919560 -0.461144035 -0.431759755 -0.211631545
4 1.393163419 -0.346056113 -0.324185048 -0.159938240
5 1.352087648 -0.274505368 -0.257174804 -0.127356338
6 1.319651066 -0.226200326 -0.211931870 -0.105200594
7 1.293333076 -0.191617643 -0.179566694 -0.089276830
8 1.271505390 -0.165752490 -0.155385461 -0.077340947
9 1.253073980 -0.145742887 -0.136697943 -0.068095120
10 1.237277174 -0.129842072 -0.121861122 -0.060741591

Table 3.1. Numerical values of the rescaled corrections appearing in Eqs. (3.10) for differ-
ent values of r.

After discretizing the previous equation, we used the same algorithm described
for the r ≥ 0 case (for a discussion on the uniqueness of the solution of Eq. (3.9c),
see Ref. [Sal15]). In Table 3.1 we present our numerical results for the quantities

η
1

r+1
0 Êr, (Nη2

0)
1

r+1
η0∆F̂(1)

r

η1
, Nη

1
r+1
0 ∆F̂T

r , Nη
1

r+1
0 ∆F̂F

r

for different values of r. Observe that the quantities appearing in the expansion in
Eqs. (3.10) can be calculated using these values for any ρr at given r, in addition
to simple prefactors depending on the chosen distribution ρr.

In order to test our analysis for correction terms, we performed a direct sam-
pling on a set of instances. Previous simulations have been reported, for exam-
ple, in Refs. [MP85, Bru+91, HBM98, LO93]. In our setting, each realization of
the matching problem has been solved by a C++ implementation of the Jonker-
Volgenant algorithm [JV87].

We first evaluated the asymptotic average optimal costs ÊP
r and ÊΓ

r , obtained,
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r ÊP
r λrÊΓ

r ÊP
r [HBM98] ÊP

r [LO93] Th. prediction
-0.5 4.5011(3) 4.504(1) – – 4.503101957
-0.4 3.12611(5) 3.1268(2) – – 3.126825159
-0.3 2.4484(1) 2.4488(3) – – 2.448788557
-0.2 2.0593(5) 2.0593(3) – – 2.059601452
-0.1 1.8127(3) 1.8126(2) – – 1.812767212

0 1.64500(5) 1.6449(2) 1.645(1) 1.6450(1) 1.644934067
0.1 1.5245(2) 1.5253(9) – – 1.524808331
0.2 1.4356(2) 1.4357(5) – – 1.435497487
0.3 1.3670(1) 1.3670(4) – – 1.367026464
0.4 1.31323(6) 1.3132(3) – – 1.3132296
0.5 1.27007(8) 1.2697(4) – – 1.270107121
0.6 1.2350(1) 1.2348(3) – – 1.234960167
0.7 1.20585(6) 1.2062(6) – – 1.205907312
0.8 1.18143(3) 1.1812(7) – – 1.181600461
0.9 1.16099(8) 1.1605(6) – – 1.161050751
1 1.14344(7) 1.1433(4) 1.143(2) – 1.14351798
2 1.05371(1) 1.054(1) 1.054(1) 1.054(1) 1.053724521
3 1.02311(1) 1.0288(9) 1.0232(1) 1.0236(2) 1.023126632
4 1.009690(4) 1.010(3) 1.0098(1) – 1.009736514
5 1.00303(2) 1.005(3) 1.00306(8) 1.0026(8) 1.003027802

Table 3.2. Numerical results for the average optimal cost for different val-
ues of r and theoretical predictions. The value ÊP

r from Ref. [HBM98],
due to a different convention adopted in that paper, is obtained as

ÊP
r =


 2π

r+1
2 Γ(r + 1)

Γ
(

r+1
2

)
Γ(r + 2)




1
r+1

βnum(r + 1))

from Table II therein. The data for ÊP
r from Ref. [LO93] have been obtained via a

linear fit, using a fitting function in the form of Eq. (3.102).

for different values of r, using the laws ρP
r and ρΓ

r , respectively. In the case of the
law ρP

r , the asymptotic estimate for ÊP
r has been obtained using the fitting function

f P(N) = αP
r +

βP
r

N
, (3.102)

with αP
r and βP

r fitting parameters to be determined, αP
r corresponding to the

value of the average optimal cost in the N → ∞ limit. For a given value of r, we
averaged over IN instances for each value of N accordingly with the table below.

N 500 750 1000 2500 5000
IN 100000 75000 50000 20000 10000

Similarly, the asymptotic average optimal cost ÊΓ
r has been obtained using a

fitting function in the form

f Γ(N) =

{
αΓ

r + βΓ
r N−1 + γΓ

r N−
1

r+1 for − 1
2 ≤ r < 1

αΓ
r + γΓ

r N−
1

r+1 + δΓ
r N−

2
r+1 for r ≥ 1.

(3.103)
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Figure 3.2. Plot of the finite-size corrections ∆F̂T
r + ∆F̂F

r for the law ρP
r (left panel) and for

∆F̂(1)
r in the ρΓ

r case (right panel). Observe that in this last plot a discrepancy between
the theoretical prediction and the numerical results appears for r ≥ 1: we interpret
this fact as a consequence of the similar scaling of ∆F̂(1)

r and ∆F̂(2)
r for r � 1, which

makes the numerical evaluation of the single contribution ∆F̂(1) difficult.

We adopted therefore a three-parameter fitting function, constructed according
to Eq. (3.10) including the finite-size correction up to o(N−1) for r ≥ 0 and up
to O(N−2) for 1

2 ≤ r < 2. As in the case before, the asymptotic estimation for
ÊΓ

r is given by αΓ
r . Our data were obtained extrapolating the N → ∞ limit from

the average optimal cost for different values of N. The investigated sizes and the
number of iterations were the same adopted for the evaluation of ÊP

r . To better
exemplify the main differences in the finite-size scaling between the ρP

r case and
the ρΓ

r case, we have presented the numerical results for r = 1 in Fig. 3.1a. In the
picture, it is clear that the asymptotic value ÊP

1 = 1√
2

ÊΓ
1 is the same in the two

cases, as expected from Eq. (3.49), but the finite-size corrections are different both
in sign and in their scaling properties.

In Table 3.2 we compare the results of our numerical simulations with the ones
in the literature (when available) for both ÊP

r (N) and λrÊΓ
r (N), λr being defined

in Eq. (3.49). In Fig. 3.1b we plot our theoretical predictions and the numerical
results that are presented in Table 3.2.

Let us now consider the finite-size corrections. In the case of the ρP
r law, the

O(N−1) corrections are given by ∆F̂T
r + ∆F̂F

r and no nonanalytic corrections to the
leading term appear. We obtain the finite-size corrections from the data used for
Table 3.2, using Eq. (3.102) but fixing αP

r to the average optimal cost ÊP
r given by

the theoretical prediction in Table 3.1 and therefore with one free parameter only,
namely, βP

r . In Fig. 3.2a we compare our predictions for ∆F̂T
r + ∆F̂F

r , deduced by
the values in Table 3.1, with the results of our numerical simulations for different
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values of r.
In the case of the ρΓ

r law with r > 0, the first correction to the average optimal
cost is given by ∆F̂(1)

r , whereas ∆F̂(1)
r is o(N−1) for r < 0. Again, this correction

can be obtained by a fit of the same data used to extrapolate the average optimal
cost, fixing the fitting parameter αΓ

r in Eq. (3.103) to the theoretical prediction, and
performing a two parameters fit in which the quantity γΓ

r appearing in Eq. (3.103)
corresponds to ∆F̂(1)

r . In Fig. 3.2b we compare our prediction for ∆F̂(1)
r , given in

Table 3.1, with the results of our fit procedure for γΓ
r for − 1

2 < r ≤ 5. Observe

that the numerical evaluation of the single contribution ∆F̂(1)
r is not possible for

r = 0. In this case, the result of our fit for the O(N−1) correction was βΓ
r + γΓ

r =

−0.97(4), to be compared with the theoretical prediction N(∆F̂(1)
0 +∆F̂F

0 +∆F̂T
0 ) =

−0.998354732 . . . .

3.6 The random matching problem

Similar conclusion can be deduced for the random matching problem case where
the underlying graph is the complete one with 2N points K2N . The partition
function is

Z[w] = ∑
π

[
2N

∏
j=1

δ

(
1−

2N

∑
i=1

πij

)]
e−βE(π) . (3.104)

where π can assume as before 0 if there is no link in the matching and 1 otherwise.
The energy E(π) is defined now as

E(π) =
2N

∑
i<j

πijwij . (3.105)

Using the replica trick the replicated partition function can be written in the fol-
lowing way [PR02]

Zn =

[
∏′

α∈P([n])

√
N

2π ĝα

∫
dQα

]
e−NS[Q]−N∆ST [Q], (3.106a)

with

S[Q] = ∑′

α∈P([n])

(
Q2

α

2ĝα
− 2 ln z [Qα]

)
, (3.106b)

∆ST[Q] = ∑′

α,β∈P([n])
α∩β=∅

ĝα ĝβ

|Qα∪β|2
4Nĝ2

α∪β

, (3.106c)

The computation of the average optimal cost is basically the same as before. In
the replica symmetric ansatz, one introduces a generating function of the overlaps
G as in (3.38) which, in the low temperature limit must rescaled this time by

Ĝr(l) ≡ Gr

(
β̂

[2η0Γ(r + 1)]
1

r+1
l

)
(3.107)
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in order to satisfy the same saddle point equation (3.9c) of the RAP. The average
optimal cost of the RMP in the thermodynamic limit is

Êr = lim
N→∞

1
N

r
r+1

Er =
r + 1

[2η0Γ(r + 1)]
1

r+1
J(r+1)
r , (3.108)

i.e. 21/(r+1) times smaller than the corresponding one of the bipartite case [MP85].
In particular, for r = 0, using the solution (3.50a) we obtain

Ê0 =
1

η0(0)
π2

12
. (3.109)

Analogously the finite-size corrections ∆F̂T
r and ∆F̂(1)

r can be evaluated in the
same way and one gets

∆F̂T
r = − 1

21+ 1
r+1 N

Γ(2r + 2)J(0)r

(r + 1)η
1

r+1
0 [Γ(r + 1)]

2r+3
r+1

, (3.110a)

∆F̂(1)
r = − η1

N
1

r+1

r + 1

2η0[η0Γ(r + 1)]
2

r+1
J(r)r , (3.110b)

i.e. they are 21+ 1
r+1 and 2

2
r+1 smaller than the respective quantities in the RMP

reported in equations (3.10c) and (3.10e). This determinant correction is much
more involved and was examined in detail by [PR02] in the case r = 0. However,
their formulas can be easily extended to the case r 6= 0. The final result is

∆F̂F
r =

1
N

1

[2η0Γ(r + 1)]
1

r+1

∞

∑
p=0

I2p+1

2p + 1
(3.111)

where
Ip ≡

∫ ∞

0
dt TrHp

t (3.112)

and Ht is the integral operator

Ht(x, y) ≡ e−
Ĝr(x+t)+Ĝr(y+t)

2
(x + y)r

Γ(r + 1)
θ(x + y) . (3.113)

This formula is reminiscent in form of the finite-size corrections of spin glass
models on locally tree-like random graphs [Fer+13, Luc+14]; the finite-size cor-
rections can be interpreted as a sum over non-self-intersecting loops of the graph
each loop contributing with a combinatorial factor and a free energy contribution
due to the addition of the loop to an infinite tree. This form of the corrections
appear also in fluctuations around instanton expansions for the determination of
the large order behavior of a quantum field theory [BP78, MPR17]. Here only
odd-length loops appear. Ip can be written as

Ip =
∫ ∞

0
dt
∫ +∞

−∞

p

∏
k=1

dxk
e−∑

p
k=1 Ĝr(xk+t)

Γp(r + 1)
(x1 + x2)

rθ(x1 + x2) . . . (xp + x1)
rθ(xp + x1) .

(3.114)
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This expression will be examined and simplified in the general r case in Ap-
pendix A.6; here we limit ourselves to the limiting r → ∞ case, where some
exact results can be achieved. Thanks to the solution for r → ∞ given in (3.81)
and (3.85) we perform the change of variables xk = Γ

1
r+1 (r+ 2)

(
1
2 +

x′k
r+1

)
for every

k = 1, . . . , p and t = Γ
1

r+1 (r + 2) t′
r+1 in expression (3.114), getting

Ip =
Γ

p(r+1)+1
r+1 (r + 2)
(r + 1)p+1

∫ ∞

0
dt
∫ +∞

−∞
dx1 . . . dxp

e−∑
p
k=1 Gr(xk+t)

Γp(r + 1)

× θ

[
Γ

1
r+1 (r + 2)

(
1 +

x1 + x2

r + 1

)]
. . . θ

[
Γ

1
r+1 (r + 2)

(
1 +

xp + x1

r + 1

)]

×
(

1 +
x1 + x2

r + 1

)r

. . .
(

1 +
xp + x1

r + 1

)r

(3.115)

In the infinite r limit the argument of the theta functions is always positive so that

Ip =
Γ

1
r+1 (r + 2)

r + 1

∫ ∞

0
dt
∫ +∞

−∞
dx1 . . . dxpe−ex1+t

. . . e−exp+t
e2x1 . . . e2xp

=
Γ

1
r+1 (r + 2)

r + 1

∫ ∞

0
dt
[∫ +∞

−∞
dx e−ex+t

e2x
]p

.

(3.116)

Setting a ≡ et > 0 we have that the integral in square brackets is

∫ +∞

−∞
dxe−aex

e2x =
∫ +∞

0
dy e−ayy = − d

da

∫ +∞

0
dy e−ay =

1
a2 (3.117)

We finally have

Ip =
Γ

1
r+1 (r + 2)

r + 1

∫ +∞

0
dt e−2pt =

Γ
1

r+1 (r + 2)
2(r + 1)p

. (3.118)

Confronting this equation with (3.112) we also get TrHp
t ∝ e−2pt a form that was

verified in [LPS17] in the case r = 0 for large values of p, where the integral is
dominated by the region of small t. Plugging this result into (3.111) we obtain

∆F̂F
r =

1
2(r + 1)N

[
r + 1
2η0

] 1
r+1 ∞

∑
p=0

1
(2p + 1)2 =

π2

16(r + 1)N

[
r + 1
2η0

] 1
r+1

(3.119)
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Chapter 4

The random fractional matching
problem

4.1 Introduction

In the present chapter, we will apply the replica formalism to a different type
of matching problem, namely the random fractional matching problem (RFMP),
the linear relaxation of the matching problem. We start considering a weighted
complete graph K2N . The weights w ≡ {we}e associated to the edges E ≡ {e}e are
non-negative independent random variables, identically distributed according to
a probability density $(w), exactly as in the RMP case. In the RFMP we search for
the set of quantities m ≡ {me}e that minimize the cost

E[m, w] ≡ ∑
e∈E

mewe, (4.1a)

with the additional constraints

me ∈ [0, 1] ∀e ∈ E , ∑
e→v

me = 1 ∀v ∈ V . (4.1b)

In the previous expression, the sum ∑e→v runs over all edges having v as an
endpoint. It is easy to show for general graphs that the problem has semi-integer
solutions, i.e. optimal configurations M with me ∈ {0, 1/2, 1}. M contains only
(odd) cycles and edges that do not share their endpoints (see Fig. 4.1, center).
It is expected that the aoc of the RFMP is less than or equal to the aoc of the
RMP obtained with the same weight probability density $, due to the fact that all
matching configurations feasible for the RMP, are also feasible for the RFMP.

If defined on bipartite graphs, the relaxed problem above has integer solutions
only, due to the absence of odd cycles, and therefore it is equivalent to the stan-
dard RAP. Noticeably, the BP algorithm, deeply related to the cavity method, is
able to recover the optimal solution of an assignment problem when the solution
is unique, and its computational complexity is on par with that one of the best
alternative solvers [BSS08]. The statistical physics of linear or convex relaxations
of discrete optimization problems has been actively investigated in recent years
[TH16, JMRT16]. In an interesting variation of the RFMP, that we will call “loopy
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Matching Fractional Matching “Loopy” Fractional Matching

Figure 4.1. On the left, complete graph K10 with a usual matching on it: the matching cost
in this case is simply the sum of the weights we of the matching edges e ∈ M (thick
edges). In the center, the same graph with a fractional matching on it: in this case,
cycles are allowed and the contribution to the matching cost of an edge of weight we
belonging to a cycle is we/2 (thin edges), we otherwise (thick edges). On the right, the
graph K̂10 obtained allowing loops on each vertex of K10, with a fractional matching
on it. From the left to the right, progressively more matching configurations are
allowed. In particular, any feasible configuration for the usual matching problem is
feasible for the fractional matching problem; moreover, any feasible configuration for
the fractional matching problem is feasible for the loopy fractional matching problem.

RFMP”, an additional non-negative weight wv is associated to each vertex v ∈ V
of the graph. Each weight wv is a random variable extracted independently from
all other weights in the problem with the same distribution of the edge weights
$(w). The loopy RFMP corresponds therefore to a RFMP defined on a graph K̂2N
obtained allowing self-loops on K2N (see Fig. 4.1, right). The cost is defined as

E[m, w] ≡ ∑
e∈E

mewe + 2 ∑
v∈V

mvwv, (4.2a)

with the constraints

me ∈ [0, 1] ∀e ∈ E , mv ∈ [0, 1] ∀v ∈ V , ∑
e→v

me + 2mv = 1 ∀v ∈ V . (4.2b)

Wästlund proved that, in the loopy RFMP, in the optimal configuration me ∈
{0, 1/2, 1} ∀e and mv ∈ {0, 1/2} ∀v [Wäs10]. Remarkably, he also obtained the
expression for the aoc for any N assuming $(w) = e−wθ(w), namely

min
m

E[m, w] =
2N

∑
n=1

(−1)n−1

n2 =
π2

12
− 1

8N2 + o
(

1
N2

)
. (4.2c)

Again, since the loopy RFMP is a relaxed version of the RFMP, that in turn is a
relaxed version of the RMP, it follows from Eq. (4.2c) that all three RCOPs have
the same asymptotic aoc, equal to π2/12. The presence of cycles in the RFMP and
cycles and loops in the loopy RFMP does not affect, therefore, the value of the
aoc, but the finite-size corrections only.

In the following, we will study, using the replica approach, both the RFMP
and the loopy RFMP, and their finite-size corrections. We shall consider weight
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probability densities $(w) with non-negative support and such that $(w) = 1−
µw + o(w) for w → 0+. In particular, if the weights are exponentially distributed
we have µ = 1, whereas µ = 0 if they are uniformly distributed. We will show,
in particular, that the RMP saddle-point solution naturally appears as asymptotic
solution of the problem, alongside with another saddle-point solution of higher
cost corresponding to the solution to the RTSP. Moreover, we will evaluate the
finite-size corrections to the aoc on the matching saddle-point, obtaining as the
main result of this chapter the closed formula

Eε(µ) =
ζ(2)

2
+

1
2N

[
(µ− 1)ζ(3) +

1− ε

4
ζ(2)

]
+ o

(
1
N

)
. (4.3)

Here ζ(z) is the Riemann zeta function and, since ζ(2) = π2/6, we obtain the result
of Eq. (3.109) at the leading order (in the cases we are considering here η0(0) is
always 1). The parameter ε takes value +1 if self-loops are allowed in the model,
−1 otherwise, i.e., when mii is not present. The analytic predictions from the
replica calculation are supported by the numerical simulations in the last section
of the chapter.

4.2 Replica calculation

In the spirit of the seminal works of Orland [Orl85] and Mézard and Parisi [MP85],
let us first write down the partition function for the RFMP, both in its usual and
in its loopy version. As anticipated, we will consider a random-link formula-
tion of the problem on the complete graph with 2N vertices V = {i}i=1,...,2N ,
where the weights {wij}ij are non-negative independent random variables iden-
tically distributed with distribution $(w). As anticipated, in the following, we
will consider a particular class of probability densities, i.e., we will assume that
$(w) = 1− µw + o(w) for w→ 0+. The uniform distribution on the unit interval,
$(w) = θ(w)θ(1− w), and the exponential distribution on the positive real axis,
$(w) = e−wθ(w), belong to this class, with µ = 0 and µ = 1 respectively. Due
to the fact that all distributions in this class have the same limit for w → 0+, i.e.,
limw→0+ $(w) = 1, we expect that the asymptotic aoc will be the same for all of
them, as it happens in the RMP. Indeed, in the general framework of the analysis
of the RMP performed in the previous chapter, it is easily seen that, whereas the
asymptotic cost only depends on the behavior of the first term in the Maclaurin
expansion of $(w) ' $0wr, the O(1/N) finite-size corrections depend on the ex-
pansion up to, at least, the second term, and the power r also affects the scaling
of the corrections themselves.

Let us start observing that, in the RFMP, the occupation number mij = mji of
the edge (i, j) between the node i and the node j can assume the values

mij ∈ {0, 1, 2}, with the constraint
2N

∑
j=1

mij + εmii = 2, 1 ≤ i ≤ 2N, (4.4)

where ε = +1 if loops are allowed, ε = −1 otherwise. The parameter ε, therefore,
allows us to switch between the two variations of the model described in the
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Introduction. The cost of a given matching configuration is

Eε[m, w] =
1
2 ∑

i≤j

(
1 + εδij

)
mijwij. (4.5)

For calculation convenience we consider, for each edge e, me ∈ {0, 1, 2} and
not me ∈ {0, 1/2, 1} as in the Introduction. This fact does not affect the results
apart from the necessary rescaling of the cost that indeed we have introduced in
Eq. (4.5). The partition function for a given instance of the problem can be written
as

Zε(β) ≡ ∑
mij∈{0,1,2}

[
2N

∏
i=1

I

(
2N

∑
j=1

mij + εmii = 2

)]
e−2βNEε[m,w], (4.6)

where I(•) is an indicator function that is equal to one when the condition in the
brackets is satisfied, and zero otherwise. The aoc is recovered as

Eε(µ) ≡ min
m

Eε[m, w] = − lim
β→+∞

1
2N

∂ln Z(β)
∂β

. (4.7)

Note that we have made explicit the dependence of the aoc on the value of µ =
− ∂w$|w=0. From the results in Ref. [Wäs10], we know that Eε(µ) = O(1), i.e.,
the aoc is not extensive, and the cost density scales as O (1/N): this is indeed
expected, due to the fact that the shortest link amongst N scales as 1/N. We
have therefore rescaled β in the exponent of the partition function accordingly,
in such a way that a finite thermodynamical limit at fixed β can be obtained,
and an extensive functional 2NEε(µ) = O(N) appears in the exponent in the
low-temperature regime.

To average over the disorder, we use the following integral representation of
the Kronecker delta,

δa,0 =
∫ 2π

0

dλ

2π
eiλa, (4.8)

and we apply, as usual, the replica trick. The average replicated partition function
for the fractional matching problem can be written as

Zn
ε =

[
n

∏
a=1

2N

∏
i=1

∫ 2π

0

e−2iλa
i dλa

i
2π

]
∏
i<j

(
1 +

Tij

N

) 2N

∏
i=1

(
1 +

ε + 1
2

Ri

N

)
. (4.9)

In Eq. (4.9) we have introduced the quantities

1 +
Tij

N
≡

n

∏
a=1

[
1 + eiλa

i +iλa
j−βNwij + e2iλa

i +2iλa
j−2βNwij

]

= 1 +
1
N ∑

α∩β=∅
α∪β 6=∅

ĝ|α|+2|β| e
i ∑a∈α

(
λa

i+λa
j

)
+2i ∑b∈β

(
λb

i+λb
j

)
,

(4.10a)

and, in the presence of loops, the on-site contribution

1 +
Ri

N
≡

n

∏
a=1

[
1 + e2iλa

i−2βNwii
]
= 1 +

1
N ∑

α 6=∅
ĝ2|α| e

2i ∑a∈α λa
i . (4.10b)
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We remind that, in Eqs. (4.10) the sums run over the elements of P([n]), set of
subsets of [n] ≡ {1, . . . , n}, and we have denoted the cardinality of α ∈ P([n]) by
|α|. We have also introduced the quantity

ĝp ≡ N
∫ +∞

0
e−βpNw$(w)dw

= gp

[
1− µ

gp

N
+ o

(
1
N

)]
, where gp ≡

1
βp

.
(4.11)

Using the previous equation, and in order to evaluate the aoc and its first finite-
size correction, we use the fact that

2Ri = 2 ∑
α 6=∅

ĝ2|α| e
2i ∑a∈α λa

i = ∑
α 6=∅

[
g|α| −

2g2
2|α|

N
+ o

(
1
N

)]
e2i ∑a∈α λa

i

∼ Tii + O
(

1
N

)
,

(4.12)

since 2g2p = gp. In the last step we have used the fact that

Tii = ∑
α∩β=∅
α∪β 6=∅

ĝ|α|+2|β| e
2i ∑a∈α λa

i+4i ∑b∈β λb
i (4.13)

gives zero contribution, unless β = ∅, due to the overall constraint imposed by
the integration on {λa

i }. Neglecting O(1/N) terms in the exponent (i.e., O(1/N2) to
the cost), we can write the partition function as

Zn
ε =

[
n

∏
a=1

2N

∏
i=1

∫ 2π

0

e−2iλa
i dλa

i
2π

]
e

1
2N ∑i,j

(
Tij−

T2
ij

2N

)
+ ε−1

4N ∑2N
i=1 Tii+O( 1

N )
. (4.14)

We introduce now the placeholders

qα,β ≡ I(α ∩ β = ∅)
2N

∑
i=1

ei ∑a∈α λa
i +2i ∑b∈β λb

i , (4.15)

that allow us to write

∑
i,j

Tij +
ε− 1

2 ∑
i

Tii = ∑
α∩β=∅
α∪β 6=∅

ĝ|α|+2|β| q
2
α,β +

ε− 1
2 ∑

α 6=∅
ĝ|α| q∅,α, (4.16a)

∑
i,j

T2
ij = ∑′

α,β|α̂,β̂

ĝ|α|+2|β| ĝ|α̂|+2|β̂| q
2
α4α̂,β∪β̂∪(α∩α̂)

. (4.16b)

In the previous equations α4β ≡ (α \ β) ∪ (β \ α) is the symmetric difference of
the sets α and β, we have denoted by

∑′

α,β|α̂,β̂

= ∑
α∩β=∅
α∪β 6=∅

∑
α̂∩β̂=∅
α̂∪β̂ 6=∅

I(β ∩ β̂ = ∅)I((α ∪ α̂) ∩ (β ∪ β̂) = ∅). (4.17)
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Denoting by

ϕα,β ≡ ∑′

σ,ρ|σ̂,ρ̂
ĝ|ρ|+2|σ| ĝ|ρ̂|+2|σ̂| I (ρ4ρ̂ = α) I (σ ∪ σ̂ ∪ (ρ ∩ ρ̂) = β) , (4.18)

and using a Hubbard–Stratonovich transformation in the form

exp
( ĝ|α|+2|β| − 1/2N ϕα,β

2N
q2

α,β

)

=

√√√√ N

2π
(

ĝ|α|+2|β|−ϕα,β/2N
)
∫ +∞

−∞
dQα,β exp

(
−

NQ2
α,β

2ĝ|α|+2|β|−ϕα,β/N
+ Qα,β qα,β

)

=

√
N

2πĝ|α|+2|β|

∫ +∞

−∞
dQα,β exp

[
−

NQ2
α,β

2ĝ|α|+2|β|
−

ϕα,βQ2
α,β

4ĝ2
|α|+2|β|

+ Qα,βqα,β + O
(

1
N

)]

(4.19)

we can finally introduce the order parameters Qα,β as follows

[
n

∏
a=1

2N

∏
i=1

∫ 2π

0

e−2iλa
i dλa

i
2π

]
e

1
2N ∑i,j

(
Tij−

T2
ij

2N

)
+ ε−1

4N ∑2N
i=1 Tii

'


 ∏

α∩β=∅
α∪β 6=∅

∫
dQα,β

√
N

2πĝ|α|+2|β|




× exp


−N ∑

α∩β=∅
α∪β 6=∅

Q2
α,β

2ĝ|α|+2|β|
+2N ln z[Q]− ∑′

α, β|α̂, β̂

g|α|+2|β|g|α̂|+2|β̂|
4g2
|α|+|α̂|+2|β|+2|β̂|

Q2
α4α̂,β∪β̂∪(α∩α̂)


 .

(4.20)

The expression of ln z[Q], in which we have exponentiated the integration on
{λa

i }, is given in Eq. (B.1) in B.1. Eq. (4.20) generalizes the equivalent expression
for the partition function obtained for the RMP in Refs. [MP85, MP87, PR02], that
is recovered imposing that Qα,β ≡ Qβδ|α|,0.

Observe that in Eq. (4.20) ĝp appears, a quantity defined in Eq. (4.11). We
have that limN→+∞ ĝp = gp. However, expanding for large N the quantities ĝp in
Eq. (4.20), new 1/N finite-size corrections to the cost will appear1. In B.1 we show
that the replicated action can be finally written as

Zn '


 ∏

α∩β=∅
α∪β 6=∅

∫
dQα,β

√
N

2πĝ|α|+2|β|


 e−NS [Q]

S [Q] ≡ S[Q] + ∆ST[Q] + ∆S$[Q] + o (1/N) .

(4.21a)

1As we have seen in the previous chapter, in the case of a generic distribution $(w) = wr[$0 +

$1w + o(w)] these corrections will scale as N−
k

r+1 with k ∈ N and they will be dominant respect to
all other corrections, that are O(1/N), for all values k such that k < r + 1, and of the same order for
k = r + 1 if r + 1 is a natural number. Here only the k = 1 term appears, because r = 0, without
any anomalous contribution.
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The three contributions appearing in the previous expression are

S[Q] ≡ ∑
α∩β=∅
α∪β 6=∅

Q2
α,β

2g|α|+2|β|
− 2 ln z0[Q], (4.21b)

∆ST[Q] ≡ 1
N ∑′

α, β|α̂, β̂

g|α|+2|β|g|α̂|+2|β̂|
4g2
|α4α̂|+2|β|+2|β̂|+2|α∩α̂|

Q2
α4α̂,β∪β̂∪(α∩α̂)

− ε− 1
2N ∑

α 6=∅
g|α|

∂ ln z0[Q]

∂Q0,α
,

(4.21c)

∆S$[Q] ≡ µ

2βN ∑
α∩β=∅
α∪β 6=∅

Q2
α,β, (4.21d)

where

z0[Q] ≡ lim
N→∞

z[Q] =

[
n

∏
a=1

∫ 2π

0

e−2iλa
dλa

2π

]
exp


 ∑

α∩β=∅
α∪β 6=∅

Qα,β ei ∑a∈α λa+2i ∑b∈β λb


 (4.21e)

is the (leading) one-site partition function. It follows that S is the leading term in
S . The ∆ST term contains the finite-size correction due to the re-exponentiation
and to the one-site partition function z. Finally, the ∆S$ term contains an addi-
tional contribution due to the finite-size corrections to gp appearing in Eq. (4.11).
Observe, once again, that this contribution is absent in the case of flat distribution.

The integral in Eq. (4.21a) can now be evaluated using the saddle-point method.
The saddle-point equation for Qα,β is

Qα,β

g|α|+2|β|
= 2

∂ ln z0[Q]

∂Qα,β
= 2

〈
ei ∑a∈α λa+2i ∑b∈β λb

〉
z0

, (4.22)

where 〈•〉z0 is the average performed respect to the one-site partition function
z0. Denoting by Qsp the solution of Eq. (4.22), the replicated partition function
becomes

Zn ' e−NS [Qsp]− ln det Ω[Qsp ]
2 , (4.23)

where Ω is the Hessian matrix of S[Q] evaluated on the saddle-point Qsp, solution
of Eq. (4.22), i.e.,

Ωαβ,α̂β̂[Q
sp] ≡ √g|α|+2|β|g|α̂|+2|β̂|

∂2S[Q]

∂Qα,β∂Qα̂,β̂

∣∣∣∣∣
Q=Qsp

(4.24)

The additional term −1/2 ln det Ω[Qsp] provides, in general, a nontrivial finite-size
correction to the leading term [MP87, PR02].

4.2.1 Replica symmetric ansatz and matching saddle-point

To proceed further, let us assume that a replica-symmetric ansatz holds, i.e., we
search for a solution of the saddle-point equation in the form

Qα,β ≡ Q|α|,|β|. (4.25)
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This is a common and successful assumption in the study of random combina-
torial optimization problems [MP85, MP86a, MP88] that greatly simplifies the
calculation. The stability of a replica symmetric solution is however not obvious
and, in general, a replica symmetry breaking might occur. Here this assumption
will be justified a posteriori, on the basis of the agreement between the analytical
predictions and the numerical computation. Using the replica symmetric hypoth-
esis, the leading term in Eq. (4.21b) becomes

S[Q] = ∑
p+q≥1

(
n

p q

) Q2
p,q

2gp+2q
− 2 ln z0[Q]

n→0−−→ n ∑
p+q≥1

(−1)p+q−1

p + q

(
p + q

q

) Q2
p,q

2gp+2q
− 2n lim

n→0

ln z0[Q]

n
. (4.26)

In the previous expression, and in the following, we will adopt the notation
(

a
b1 · · · bs

)
≡ Γ(a + 1)

Γ (a + 1−∑s
i=1 bi)∏s

i=1 Γ(bi + 1)
. (4.27)

Even under the replica symmetric hypothesis, the evaluation of limn→0
1
n ln z0[Q]

remains nontrivial. However, in B.1 we show that a special replica symmetric
saddle-point solution exists, namely

Qsp
p,q = δp,0Q0,q ≡ δp,0Qq, (4.28)

corresponding to the replica-symmetric saddle-point solution of the RMP. This
fact is not surprising: as anticipated in the Introduction, the aoc of the RFMP co-
incides with the aoc of the RMP in the N → +∞ limit, and, indeed, the evaluation
of z0[Q] on the matching saddle-point can be performed exactly, and coincides
with the one of the RMP [MP85, MP87, PR02]

ln z0[Qsp] = n
∫ +∞

−∞

(
e−ex − e−G(x)

)
dx, (4.29a)

G(x) ≡
∞

∑
k=1

(−1)k−1

k!
Qkexk. (4.29b)

The saddle-point equations become

Qp,q = δp,0Qq =
δp,0

β

∫ +∞

−∞

eqy−G(y)

q!
dy, (4.30)

implying the self-consistent equation for G given by

G(x) =
1
β

∫ +∞

−∞
B(x + y)e−G(y)dy, (4.31)

B(x) ≡
∞

∑
k=1

(−1)k−1 ekx

Γ2(k + 1)
. (4.32)
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As expected, the leading contribution corresponds therefore to the RMP free-
energy,

1
n

S[Qsp] = β
∞

∑
k=1

(−1)k−1Q2
k − 2

∫ +∞

−∞
dy
[
e−y − e−G(y)

]

=
∫ +∞

−∞
dy G(y)e−G(y) − 2

∫ +∞

−∞
dy
[
e−y − e−G(y)

]
.

(4.33)

In the β→ +∞ limit we can introduce

Ĝ(x) ≡ G(βx) . (4.34)

and we can use, as shown in Appendix A.2 the fact that

lim
β→+∞

B(βx) = θ(x). (4.35)

We can solve for Ĝ as

Ĝ(x) =
∫ +∞

−x
e−Ĝ(y)dy =⇒ Ĝ(x) = ln(1 + ex). (4.36)

We finally obtain that, in both the considered formulations, the aoc of the RFMP
is equal to the aoc of the RMP, as anticipated in the Introduction

lim
N→+∞

Eε(µ) =
1
2

∫ +∞

−∞
dl Ĝ(l)e−Ĝ(l) =

π2

12
. (4.37)

4.2.2 Finite-size corrections

In Eq. (4.23) three contributions to the finite-size corrections appear, namely ∆S$,
∆ST, and 1/2 ln det Ω. The first contribution can be evaluated straightforwardly as

∆S$[Qsp] =
µ

2N ∑
β 6=∅

Q2
|β| =

µ

2N

∞

∑
q=1

(
n
q

)
Q2

q =
nµ

2N

∞

∑
q=1

(−1)q−1

q
Q2

q + o(n)

=
nµ

2Nβ

∫ +∞

−∞
dy
∫ +∞

0
dx G(y− x)e−G(y) + o(n).

(4.38)

In the β→ +∞ limit we obtain

lim
β→+∞

lim
n→0

∆S$[Qsp]

nβ
=

µ

2N

∫ +∞

−∞
dy
∫ +∞

0
dx Ĝ(y− x)e−Ĝ(y) =

µ

N
ζ(3). (4.39)

The last integration is performed explicitly in Appendix A.4. The ∆ST contri-
bution depends on ε, i.e., on the presence or not of self-loops. In B.2 we show
that

lim
β→+∞

lim
n→0

∆ST[Qsp]

nβ
= − ε− 1

4N
ζ(2)− 1

N
ζ(3). (4.40)

Finally, the fluctuation contribution

∆EΩ

N
≡ lim

β→+∞
lim
n→0

ln det Ω[Qsp]

4nβ
. (4.41)
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The expression of this fluctuation term is more involved than the corresponding
one for the RMP, that has been studied in Refs. [MP87, PR02]. As it happens in
that case, an exact evaluation through the replica formalism is quite complicated
(we give some details in B.3). However, observe that ∆EΩ depends on neither
ε nor µ. We can therefore avoid the complex, direct evaluation and extract its
value from Wästlund’s formula in Eq. (4.2c) for the aoc in the loopy RFMP with
exponentially distributed weights, comparing our result in this specific case with
Wästlund’s one. In particular, Eq. (4.2c) predicts no 1/N corrections in the loopy
RFMP, implying the simple result

∆EΩ = 0. (4.42)

Moreover, in the spirit of the analysis in Ref. [AT78], the fact that ∆EΩ is a finite
and well-defined quantity also suggests that the Hessian Ω remains positive def-
inite within the replica symmetric ansatz for β → +∞, and, therefore, that the
replica symmetric solution remains stable.

Collecting all contributions, we can finally write down a general expression
for the aoc for the RFMP, and its finite-size corrections, as

Eε(µ) =
ζ(2)

2
+

1
2N

[
(µ− 1)ζ(3) +

1− ε

4
ζ(2)

]
+ o

(
1
N

)
. (4.43)

4.3 Numerical results

The analytic results in Eq. (4.43) have been verified numerically using the LEMON
graph library [DJK11]. For each one of the considered models, the results have
been obtained averaging over at least 3 · 106 instances for each value of N. In
Fig. 4.2 we show our results, both for the case of uniform weight distribution
(µ = 0) and the case of exponential weight distribution (µ = 1). In both cases it
is evident that the aoc of the RMP is greater than the corresponding aoc of the
RFMP, and similarly E−1(µ) ≥ E+1(µ), as expected. The asymptotic formula,
Eq. (4.43), has been verified for all cases. We performed moreover a parametric fit
of our data using the fitting function

E =
π2

12
+

a
2N

+
b

4N2 +
c

8N3 (4.44a)

to verify our predictions for the RFMP in two ways, i.e., either assumiming all
parameters free, or fixing a equal to our analytical prediction (when available) to
improve our evaluation of b and c. We also performed, for comparison, a similar
fit for the RMP, using the fitting function

E =
π2

12
+

a
2N

+
ĉ

(2N)3/2
+

b
4N2 , (4.44b)

to take into account the anomalous scaling of the corrections in this case [LPS17].
The results are summarized in Table 4.1. It is remarkable that the N−3/2 correction
introduced in Eq. (4.44a) for the RMP cost, that is numerically present in agree-
ment with the results in Ref. [LPS17], is absent in all considered variants of the
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1/2N

E

µ = 0

Rmp

Rfmp

loopy Rfmp

(a) µ = 0 case. The smooth lines correspond to
the fits obtained using the asymptotic theo-
retical predictions for both the asymptotic
aoc and the 1/N corrections in the RFMP
and the loopy RFMP in Eq. (4.44a) (see last
column of Table 4.1). The black line corre-
sponds to the fit obtained using Eq. (4.44b)
for the RMP data (see Table 4.1).

0 0.005 0.01 0.015 0.02

0.825

0.83

0.835

0.84

π2/12

1/2N

E

µ = 1

Rmp

Rfmp

loopy Rfmp

(b) µ = 1 case. The blue line corresponds to the
fit obtained using the asymptotic theoreti-
cal prediction for the RFMP in Eq. (4.44a)
(see last column of Table 4.1). The red line
is Wästlund’s formula in Eq. (4.2c) for the
loopy RFMP, that is exact for all values of
N. Finally, the black line corresponds to the
fit obtained using Eq. (4.44b) for the RMP
data (see Table 4.1).

Figure 4.2. aoc for the RMP, the RFMP and the loopy RFMP in the case of both uniform
(left panel) and exponential distribution (right panel) for the weights. Error bars are
represented but smaller than the markers.

RFMP, as we numerically verified and as analytically predicted in Eq. (4.2c) for
the loopy RFMP with exponential weight distribution.

Eq. (4.43) allows us to make predictions about differences of aoc for different
types of models, due to the fact that we have isolated the different contributions
depending on the presence of loops, or on the chosen distribution $. For example,
we expect that

δE` := E−1(µ)− E+1(µ) =
ζ(2)
4N

+ o
(

1
N

)
. (4.45a)

Similarly, we have that

δE$ := Eε(1)− Eε(0) =
ζ(3)
2N

+ o
(

1
N

)
. (4.45b)

Both the relations above have been verified numerically. Our results are shown
in Fig. 4.3 and they are in agreeement with Eqs. (4.45).
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Problem
Theoretical a, b, c/ĉ free b, c free

a a b c or ĉ b c

µ = 0
Rmp – −0.049(4) 0.03(9) −1.54(4) – –

Rfmp ε = +1 −1.2020569 . . . −1.204(1) 1.26(5) −1.0(4) 1.19(2) −0.5(2)
Rfmp ε = −1 −0.3795898 . . . −0.381(1) −2.43(5) 4.7(4) −2.50(2) 5.2(2)

µ = 1
Rmp – 1.131(3) −0.03(8) −1.13(3) – –

Rfmp ε = +1 0 −0.001(1) −0.48(5) 0.5(5) −0.53(2) 0.9(2)
Rfmp ε = −1 0.8224670 . . . 0.821(1) −1.15(6) 0.5(5) −1.19(3) 0.9(3)

Table 4.1. Results of a fitting procedure of the aoc obtained numerically compared with
the theoretical predictions. Wästlund’s formula predicts a = 0 and b = −c = −1/2 for
the aoc of the RFMP with µ = 1 and ε = +1.
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2NδE` for µ = 0

2NδE` for µ = 1

(a) Difference δE` between the aoc obtained
with loops and the aoc obtained without
loops, both for µ = 1 (exponentially dis-
tributed weights) and for µ = 0 (uniformly
distributed weights). The smooth line is
the predicted asymptotic behavior given
Eq. (4.45a).
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2NδE% for ε = −1

(b) Difference δE$ between the aoc obtained
with exponentially distributed weights and
the aoc obtained with uniformly dis-
tributed weights, both for ε = 1 (with
loops) and ε = −1 (without loops). The
smooth line is the predicted asymptotic be-
havior given Eq. (4.45b).

Figure 4.3. Plots of the differences δE` and δE$ as functions of N. In both plots error bars
are represented but smaller than the markers.

4.4 Conclusions

The RFMP on the complete graph K2N generalizes the more famous RMP, al-
lowing cycles in the optimal solution. Here we have studied, using the replica
formalism, its aoc and we have compared it with the aoc of the RMP. We have
considered the case of random weights on the graph edges distributed according
to $(w) = 1− µw + o(w), and we have evaluated the asymptotic expression of
the aoc on the matching saddle-point, obtaining for the RFMP the same asymp-
totic aoc of the RMP. Remarkably enough, another saddle-point solution naturally
appears in the calculation, corresponding to the RTSP solution, whose average op-
timal cost is however higher.

We have also explicitly obtained the finite-size corrections to the asymptotic
aoc in two variations of the model, the standard RFMP and the loopy RFMP, in
which each node can be matched to itself (loop). For the latter model, in particular,
an explicit formula for the aoc had been found by Wästlund for any value of N
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in the case of exponentially distributed weights [Wäs10]. The two models have
different, non-trivial finite-size corrections.

By means of our approach, we have been able to separate the different contri-
butions in the finite-size corrections coming from different details of the problem,
namely a first one due to the possibility of having loops, a second one due to the
chosen weight distribution and a third one that is independent from the aforemen-
tioned characteristics. The first and the second contributions have been explicitly
derived, whereas the third one has been obtained comparing Wästlund’s result
with ours in the corresponding specific case. We have been able to write down an
explicit expression for the aoc for all the considered cases up to o(1/N) corrections,
given in Eq. (4.3). We finally verified our results in all the considered cases com-
paring them with the values for the aoc obtained numerically. Going beyond the
1/N corrections, numerical results also suggest that the anomalous scaling 1/N3/2 in
higher order corrections in the RMP, discussed in Ref. [LPS17] and verified in the
present work, does not appear in the RFMP.

Despite the fact that an explicit expression for the aoc has been found for the
RFMP in all the considered formulations of it, a number of open problems still
remains. For example, a complete replica calculation of the contribution ∆EΩ

deriving from ln det Ω is still missing. We have been able to estimate this contri-
bution relying on Wästlund’s results. However, an explicit replica calculation is
still interesting for a series of reasons. One of them is that, as shown in B.3, ∆EΩ

appears to be the sum of two terms, the first one identical to a corresponding one
appearing in the RMP that is known to be nonzero, the second one that we expect,
from Wästlund’s formula, to be exactly opposite to the former one, in such a way
that ∆EΩ = 0. The presence of this cancellation suggests that the contribution
of cycles plays an important role in the anomalous scaling of higher corrections
in the RMP, and in its absence in the RFMP. Remembering also that an explicit
formula for the 1/N correction in the RMP is still missing, further investigations
in this direction are in order, to shed some light on the problem of finite-size
corrections both in the RFMP and in the RMP even beyond the O(1/N) terms.





91

Chapter 5

Replica-cavity connection

In this chapter we analyze the key connection between cavity and replica ap-
proaches for both the RMP and RTSP. While in the RMP both the replica and
cavity method have permitted to derive average properties of the solution as
long as finite-size corrections, instead in the case of the RTSP one has some un-
resolved technical complications using replicas [MP86a] when dealing with the
limit of low-temperatures. This technical problem does not allow to write down
direct expressions for the average optimal cost and finite-size corrections as can
be done easily for the RMP. On the other hand the average optimal cost of the
RTSP can be easily derived in the thermodynamic limit, by means of the cavity
method [MP86b, KM89]; the result when r = 0 (flat or exponential distribution of
the weights) is

Ê0 =
1
2

∫
dy Ĝ(y)

(
1 + Ĝ(y)

)
e−Ĝ(y) (5.1)

with Ĝ(y) satisfying

Ĝ(x) =
∫ +∞

−x
dy
(
1 + Ĝ(y)

)
e−Ĝ(y) . (5.2)

Notice the similarity with the corresponding equations of the RMP of Chap. 3. The
expression (5.1) was proved to be analogous to the rigorous result of Wästlund
[Wäs10] by [PW17].

In order to bypass those mathematical difficulties of replicas for the RTSP, it is
in principle useful to derive a relation that connects quantities belonging to those
two different words: replica and cavity. Here we prove that this relation is

qk = ĝk mk , (5.3)

where qk is the RS replica multi-overlap, whereas mk are the moments of the
cavity magnetization distribution function. This equation was already mentioned
in [MP86b], but never proved, and it is true for both the RMP and the RTSP. We
will prove (5.3) by using BP equations as introduced in Chap. 1. This approach is
of course equivalent to standard cavity arguments which were obtained both for
the RMP [PR01, MP86b] and RTSP [MP86b, KM89] using a representation of the
partition function borrowed from the theory of polymers [Gen72]. For simplicity
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we limit ourselves to the case r = 0, but this result is valid also in the generic r
case. The rest of the chapter is organized as follows: in Section 5.1 we will start
by analyzing the simpler RMP. In Section 5.2 we will prove (5.3) for the RTSP,
using the BP equations of the random-link 2-factor problem, which is known to
converge, for large number of points, to the RTSP [Fri02].

5.1 Matching warm-up

Given a generic graph G = (V ′, E ′) with weights we for every e ∈ E and cardinality
of the vertex set |V ′| = N, we can associate a factor graph representation F(G) =
(V ,F , E) in order to describe the matching problem using BP equations. This
factor graph representation is depicted in Fig. 5.1 and can be obtained as follows.
To every edge of the graph G one associates a variable node e ∈ V on which it
lives an occupation number ne = {0, 1}; to every vertex of the graph G, instead,
it corresponds a function node a ∈ F which checks that only one of the variable
nodes n∂a incident on a assumes the value 1. In addition, on every variable node
e an external field is present due to the presence of a random weight we on every
edge of the original graph. With those considerations in mind, one identifies the
compatibility functions defined in (1.17) with

ψe(ne) = e−βnewe (5.4a)

ψa(n∂a) = I

[
∑

e∈∂a
ne = 1

]
(5.4b)

and therefore, the probability measure of the matching problem is

µ(n) =
1
Z ∏

a∈F
I

[
∑

e∈∂a
ne = 1

]
∏
e∈V

e−βnewe (5.5)

Denoting by a and b the two factor nodes incident on the variable node e, the BP
equations (1.44) are rewritten as

νe→a(ne) ∝ ν̂b→e(ne) e−βnewe , (5.6a)

ν̂a→e(ne) ∝ ∑
n∂a\e

I

[
∑

e∈∂a
ne = 1

]
∏

k∈∂a\e
νk→a(nk) . (5.6b)

Next we compute the ratio

ν̂a→e(0)
ν̂a→e(1)

= ∑
k∈∂a\e

νk→a(1)
νk→a(0)

= ∑
k∈∂a\e

ν̂c→k(1)
ν̂c→k(0)

e−βwk (5.7)

where, for every fixed k, we have denoted by c the other factor node incident on
k together with a. The cavity field is defined as

ha→e ≡ −
1
β̂

ln
(

ν̂a→e(0)
ν̂a→e(1)

)
(5.8)
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Figure 5.1. Factor graph representation of the matching and 2-factor problems for a given graph
G with N = 6 vertices. Note how the vertices of the graph becomes interactions (factor nodes),
whereas the edges of the graph become the variable nodes. For every variable nodes an external
field is present due to the (random) weight of the edge and it is represented as a squared
hatched inside.

and it satisfies the following self-consistent relation

ha→e = −
1
β̂

ln ∑
k∈∂a\e

e−β̂(Nwk−hc→k) , (5.9)

where we have rescaled the temperature with N as in (3.22). The previous equa-
tion is the analogous of cavity magnetization equations derived by Mézard and
Parisi [MP86b]; those magnetizations are related to the cavity field by the simple
change of variable m = eβ̂h. In the low temperature limit β̂ → ∞, the resulting
cavity field is the minimum of the incoming ones

ha→e = min
k∈∂a\e

(Nwk − hc→k) (5.10)

From now on we will focus on the problem defined on the fully connected topol-
ogy KN with N even. In this case, easing the notation for convenience, equa-
tion (5.9) is rewritten as

he = −
1
β̂

ln
N−1

∑
k=1

e−β̂(Nwk−hk) (5.11)

We can write a distributional version of last equation by introducing the proba-
bility density of the cavity fields P(h)

P(h) =
∫ N−1

∏
k=1

dhk dwk P(hk) ρ(wk) δ

(
h +

1
β̂

ln
N−1

∑
k=1

e−β̂(Nwk−hk)

)

=
∫ du dû

2π
e−iuûδ

(
h +

1
β̂

ln u
) [∫

dϕ dw P(ϕ) ρ(w) eiûe−β̂(Nw−ϕ)

]N−1

.

(5.12)

Expanding in series the exponential and performing the average over the disorder
distribution ρ(w) as in (3.23), we obtain

P(h) =
∫ dudû

2π
e−iuûδ

(
h +

ln u
β̂

)[
1 +

1
N

∞

∑
k=1

(iû)k

k!
ĝk

∫
dϕ P(ϕ) eβ̂kϕ

]N−1

(5.13)
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and in the thermodynamic limit

P(h) '
∫ dudû

2π
e−iuûδ

(
h +

ln u
β̂

)
e∑∞

k=1
(iû)k

k! ĝk
∫

dϕ P(ϕ) eβ̂kϕ
. (5.14)

Introducing the integral representation of the delta function we have

P(h) =
∫ dudû

2π

dĥ
2π

e−iuû−ihĥ u−
iĥ
β̂ exp

[
∞

∑
k=1

(iû)k

k!
ĝk

∫
dϕ P(ϕ) eβ̂kϕ

]

=
∫ dudû

2π

dĥ
2π

∫ ∞

0
dt e−iuû−ihĥ−tu t

iĥ
β̂
−1

Γ
(

iĥ
β̂

) exp

[
∞

∑
k=1

(iû)k

k!
ĝk

∫
dϕ P(ϕ) eβ̂kϕ

]

=
∫ dĥ

2π

∫ ∞

0
dt e−ihĥ t

iĥ
β̂
−1

Γ
(

iĥ
β̂

) exp

[
∞

∑
k=1

(−t)k

k!
ĝk

∫
dϕ P(ϕ) eβ̂kϕ

]
.

(5.15)

Next we define

qk ≡ ĝk

∫
dϕ P(ϕ)eβ̂kϕ , (5.16a)

Ĝ(y) ≡
∞

∑
k=1

(−1)k−1qk
eβ̂yk

k!
(5.16b)

and we prove a posteriori that those quantities are the equivalent respectively of
equations (3.35) and (3.38) i.e. the RS replica overlap and its generating function.
Using those definitions the probability distribution of the cavity field is written as

P(h) = β̂
∫ dĥ

2π
dy

eiĥ(y−h)

Γ
(

iĥ
β̂

) e−Ĝ(y) (5.17)

so that qk is, by definition

qk = ĝk

∫
dh P(h) eβ̂kh = β̂ĝk

∫
dy

eβ̂yk

Γ(k)
e−Ĝ(y) , (5.18)

that is, we have correctly recovered replica formula (3.40). Therefore the RS replica
overlaps qk are related to the moments of the cavity magnetizations [MP86b] via
(5.3). In the low temperature limit the probability distribution can be also com-
puted directly from (5.17) by using the fact that Γ(x) ' 1/x when x → 0

P(h) =
∫

dy

[
d

dy

∫ dĥ
2π

eiĥ(y−h)

]
e−Ĝ(y) = Ĝ′(h) e−Ĝ(h) , (5.19)

which coincides with the result in Ref. [PR01].
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5.2 Traveling Salesman Problem

Let us now turn to the TSP. For a generic graph G = (V ′, E ′), with |V ′| = N,
its factor graph representation F(G) = (V ,F , E), is different from that of the
matching problem for because one has to impose not only that on each vertices
must depart two edges, but also that every configuration has only one cycle. The
first condition guarantees only to find a valid 2-factor configuration. To enforce
the unique cycle condition, let us consider the set of edges δ(S) ⊂ E ′ with S ⊂ V ′
defined as follows

δ(S) ≡
{

e = (ij) ∈ V ′; i ∈ S , j ∈ V ′\S
}

(5.20)

i.e. the set of edges that have one end in S and the other in V ′\S . It is now clear
that one must have at least 2 edges departing from each S i.e.

∑
e∈δ(S)

ne ≥ 2 , ∀S ⊂ V ′, S 6= ∅ . (5.21)

Because of those additional constraints (which are 2N − 2), the factor graph repre-
sentation becomes much more involved. In the following we will not care about
those additional constraints, because one can prove, by means both of replica ar-
guments [MPV86] or by using rigorous results [Fri02] that the average optimal
cost of the RTSP and of the random-link 2-factor problem is the same in the ther-
modynamic limit. For the 2-factor problem the factor graph representation is the
same of the matching problem; the only difference is the form constraint in (5.4b),
which is substituted by

ψa(n∂a) = I

[
∑

e∈∂a
ne = 2

]
. (5.22)

The BP equations (1.44) for the 2-factor problem are

νe→a(ne) ∝ ν̂b→e(ne) e−βnewe (5.23a)

ν̂a→e(ne) ∝ ∑
n∂a\e

I

[
∑

e∈∂a
ne = 2

]
∏

k∈∂a\e
νk→a(nk) (5.23b)

Using the same notation of the previous section, the ratio of messages becomes

ν̂a→e(0)
ν̂a→e(1)

=
∑k,l∈∂a\e

k 6=l

νk→a(1)
νk→a(0)

νl→a(1)
νl→a(0)

∑k∈∂a\e
νk→a(1)
νk→a(0)

=
∑k,l∈∂a\e

k 6=l

ν̂c→k(1)
ν̂c→k(0)

ν̂c→l(1)
νc→l(0)

e−βwk e−βwl

∑k∈∂a\e
ν̂c→k(1)
ν̂c→k(0)

e−βwk
(5.24)

The cavity field (5.8) is therefore

ha→e = −
1
β̂

ln




∑k,l∈∂a\e
k 6=l

e−β̂(Nwk−hc→k)e−β̂(Nwl−hc→l)

∑k∈∂a\e e−β̂(Nwk−hc→k)


 (5.25)
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The previous equation is again the analogous of cavity magnetization equations
derived by Mézard and Parisi [MP86b] and in the low-temperature limit as in
[KM89] we have

ha→e = mmink∈∂a\e (Nwk − hc→k) . (5.26)

where we have denoted by mmink(xk) the second smallest element of the quan-
tities xk. Focusing on the fully connected topology we can proceed by writing a
distributional equation for the probability density of cavity fields as we have done
in the previous section

P(h) =
∫ N−1

∏
k=1

dhk dwk P(hk) ρ(wk) δ

(
h +

1
β̂

ln ∑k<l e−β̂(Nwk−hk)e−β̂(Nwl−hl)

∑k e−β̂(Nwk−hk)

)

=
∫ du dû

2π

dv dv̂
2π

e−iuû−ivv̂δ

(
h +

1
β̂

ln
v
u

) ∫ N−1

∏
k=1

dhk dwk P(hk) ρ(wk)

× exp

[
iv̂ ∑

k<l
e−β̂(Nwk−hk)e−β̂(Nwl−hl) + iû ∑

k
e−β̂(Nwk−hk)

]
.

(5.27)

Using an Hubbard-Stratonovich transformation

exp


 iv̂

2

(
∑

k
e−β̂(Nwk−hk)

)2

 =

∫
Dz exp

[√
iv̂ z ∑

k
e−β̂(Nwk−hk)

]
(5.28)

we have

P(h) =
∫ du dû

2π

dv dv̂
2π

Dz e−iuû−ivv̂δ

(
h +

1
β̂

ln
v
u

)

[∫
dϕ dw P(ϕ) ρ(w) exp

[
−1

2

(√
iv̂ e−β̂(Nw−h)

)2
+
√

iv̂ eβ̂(w−h)
(

z +
iû√
iv̂

)]]N−1

.

(5.29)

In the previous equation we notice the presence of the generating function of
Hermite polynomials

e−
t2
2 +xt =

∞

∑
k=0

Hek(x)
tk

k!
, (5.30)

so that we can easily perform the average over the disorder distribution ρ(w),
getting

P(h) =
∫ du dû

2π

dv dv̂
2π

Dz e−iuû−ivv̂δ

(
h +

1
β̂

ln
v
u

)

×


1 +

1
N

∞

∑
k=1

(√
iv̂
)k

k!
ĝk Hek

(
z +

iû√
iv̂

) ∫
dϕ P(ϕ)eβ̂hk




N−1

.

(5.31)



5.2 Traveling Salesman Problem 97

In the limit of large number of points we obtain

P(h) =
∫ du dû

2π

dv dv̂
2π

Dz e−iuû−ivv̂δ

(
h +

1
β̂

ln
v
u

)
e∑∞

k=1
(
√

iv̂)k

k! Hek

(
z+ iû√

iv̂

)
qk , (5.32)

where it was used the definition (5.16a) also in this case. We now show that qk
corresponds to the RS multi-overlap of Ref. [MP86a]. Introducing the integral
representation of the delta function and performing the v and v̂ integrals we have

P(h) =
∫ du dû

2π

dĥ
2π

∫ ∞

0
dt e−iuû−ihĥ u

iĥ
β̂ t

iĥ
β̂
−1

Γ
(

iĥ
β̂

)
∫

Dz e∑∞
k=1

(i
√

t)k

k! Hek

(
z+ û√

t

)
qk , (5.33)

so that (5.16a) is by definition

qp = ĝp

∫ du dû
2π

∫ ∞

0
dt e−iuû uptp−1

Γ (p)

∫
Dz e∑∞

k=1
(i
√

t)k

k! Hek

(
z+ û√

t

)
qk

= ĝp
dp

dλp

∫ du dû
2π

∫ ∞

0
dt e−iu(û+iλ) tp−1

Γ (p)

∫
Dz e∑∞

k=1
(i
√

t)k

k! Hek

(
z+ û√

t

)
qk

∣∣∣∣∣
λ=0

= ĝp
dp

dλp

∫ ∞

0
dt

tp−1

Γ (p)

∫
Dz e∑∞

k=1
(i
√

t)k

k! Hek

(
z− iλ√

t

)
qk .

∣∣∣∣∣
λ=0

(5.34)

Next using the fact that for every function f the following relation is valid

dp

dλp f
(

λ

a
+ z
)∣∣∣∣

λ=0
=

1
ap

dp

dzp f (z) , (5.35)

we have

qp = (−1)p ĝp

∫ ∞

0

dt
t
(i
√

t)p

Γ (p)

∫
Dz

dp

dzp exp

[
∞

∑
k=1

qk

k!
(i
√

t)k Hek(z)

]
. (5.36)

Using p integrations by parts and the representation of the Hermite polynomials

Hep(z) = (−1)pez2/2 dp

dzp e−z2/2 , (5.37)

we finally get

qp = (−1)p ĝp

∫ ∞

0

dt
t
(i
√

t)p

Γ (p)

∫
Dz Hep(z) exp

[
∞

∑
k=1

qk

k!
(i
√

t)k Hek(z)

]
, (5.38)

which is exactly the saddle point equation obtained using the replica method for
the RTSP as in Ref. [MP86a, equation 3.7]. Therefore also for the RTSP equation
(5.3) is valid.

Note that (5.38) is difficult to analyze, once introduced the generating function
(3.38), in the low temperature limit. The distributional equation of the cavity fields
at zero temperature, instead, is very easy to study and gives

P(h) = G′(h)G(h)e−G(h) , (5.39)

with G(h) satisfying the saddle point equation (5.2).
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Part III

Finite Dimension
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Chapter 6

Euclidean TSP in one dimension

6.1 Introduction

The traveling salesman problem (TSP) is one of the most studied combinatorial
optimization problems, because of the simplicity in its statement and the diffi-
culty in its solution. Given N cities and N(N− 1)/2 values that represent the cost
paid for traveling between all pairs of them, the TSP consists in finding the tour
that visits all the cities and finally comes back to the starting point with the least
total cost to be paid for the journey. The TSP is the archetypal problem in com-
binatorial optimization [Law+85]. Its first formalization can be probably traced
back to the Austrian mathematician Karl Menger, in the 1930s [Men32], but it is
yet extensively investigated. As it belongs to the class of NP-complete problems,
see Karp and Steele in [Law+85], the study of the TSP could shed light on the
famous P vs NP problem. Many problems in various fields of science (computer
science, operational research, genetics, engineering, electronics and so on) and in
everyday life (lacing shoes, Google maps queries, food deliveries and so on) can
be mapped on a TSP or a variation of it, see for example Ref. [Rei94, Chap. 3]
for a non-exhaustive list. Interestingly, the complexity of the TSP seems to re-
main high even if we try to modify the problem. For example, the Euclidean TSP,
where the costs to travel from cities are the Euclidean distances between them,
remains NP-complete [Pap77]. The bipartite TSP, where the cities are divided in
two sub-sets and the tour has to alternate between them, is NP-complete too, as its
Euclidean counterpart. Here we are interested in random Euclidean versions of
the TSP as they were introduced in Sect. 1.4. We will focus on two types of graph,
the complete KN and the complete bipartite one KN,N .

Previous investigations [Car+14, CS15a, CS15b] suggested that the Euclidean
matching problem is simpler to deal with in its bipartite version, at least in two
dimensions. This idea encouraged us to consider first the bipartite TSP, starting
from the one dimensional case, whose analysis has often enabled progress in
the study of higher-dimensional cases. This will indeed, be again the case: the
same problem in two dimension will be analyzed and solved in Chapter 8. On
the complete graph KN , instead, the results found in one dimension, which we
will present here, cannot be extended in higher dimensions as in the bipartite
counterpart.
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This chapter is organized as follows: in Sect. 6.2 we shall introduce a repre-
sentation in terms of permutations of the two models, which we will be useful
in order to find their solutions. In the complete bipartite case, in particular, one
needs a couple of permutations to identify the configurations. In this way we also
establish a very general connection between the bipartite TSP and a much simpler
model, which is in the P complexity class, the assignment problem. Always using
our representation, in Sect. 6.3 we can provide the explicit solution of the bipartite
case for every instance of the disorder (that is, for every position of the points)
in the one dimensional case when the cost is a convex and increasing function of
the Euclidean distance between the cities. In particular this result will be valid
in the p > 1 case for the cost function given in (1.94). In the same section, we
exploit our explicit solution to compute the average optimal cost for an arbitrary
number of points, when they are chosen with uniform distribution in the unit
interval, and we present a comparison with the results of numerical simulations.
In subsection 6.3.4 we discuss also the behavior of the cost in the thermodynamic
limit of an infinite number of points. Here the results can be extended to more
general distribution laws for the points.

In section 6.4 we shall analyze the complete graph case. When in the weights
(1.93) we set p > 1 the solution directly follows from the complete bipartite re-
sults. In addition, we will solve completely the problem also when 0 < p < 1, for
every number of points N. In the p < 0 case, instead we will find that the solution
(and the number of possible solutions for a given instance) depends on the value
of N. Finally we compute the average optimal costs in the various cases and we
compare them with numerical simulations.

6.2 Representations in terms of permutations

Bipartite case

Here we shall consider the complete bipartite graph KN,N . Let SN be the group
of permutation of N elements. For each σ, π ∈ SN , the sequence for i ∈ [N]

e2i−1 = (rσ(i), bπ(i))

e2i = (bπ(i), rσ(i+1))
(6.1)

where σ(N + 1) must be identified with σ(1), defines a Hamiltonian cycle. More
properly, it defines a Hamiltonian cycle h ∈ H with starting vertex r1 = rσ(1) with
a particular orientation, that is

h[(σ, π)] ≡ (r1bπ(1)rσ(2)bπ(2) · · · rσ(N)bπ(N)) = (r1C) , (6.2)

where C is an open walk which visit once all the blue points and all the red points
with the exception of r1. Let C−1 be the open walk in opposite direction. This
defines a new, dual, couple of permutations which generate the same Hamiltonian
cycle

h[(σ, π)?] ≡ (C−1r1) = (r1C−1) = h[(σ, π)] , (6.3)
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since the cycle (r1C−1) is the same as (r1C) (traveled in the opposite direction).
By definition

h[(σ, π)?] = (r1bπ(N)rσ(N)bπ(N−1)rσ(N−1) · · · bπ(2)rσ(2)bπ(1)) . (6.4)

Let us introduce the cyclic permutation τ ∈ SN , which performs a left rotation,
and the inversion I ∈ SN . That is τ(i) = i + 1 for i ∈ [N − 1] with τ(N) = 1 and
I(i) = N + 1− i. In the following we shall denote a permutation by using the
second raw in the usual two-raw notation, that is, for example τ = (2, 3, · · · , N, 1)
and I = (N, N − 1, . . . , 1). Then

h[(σ, π)?] = h[(σ ◦ τ ◦ I, π ◦ I)] . (6.5)

There are N! (N − 1)!/2 Hamiltonian cycles for KN,N . Indeed the couples of per-
mutations are (N!)2 but we have to divide them by 2N because of the N different
starting points and the two directions in which the cycle can be traveled.

Complete case

Here we shall consider the complete graph KN with N vertices. This graph has
(N−1)!

2 Hamiltonian cycles. Indeed, each permutation π in the symmetric group of
N elements, π ∈ SN , defines a Hamiltonian cycle on KN . The sequence of points
(π(1), π(2), . . . , π(N), π(1)) defines a closed walk with starting point π(1), but
the same walk is achieved by choosing any other vertex as starting point and the
walk in the opposite order, that is, (π(1), π(N), . . . , π(2), π(1)) corresponds to the
same Hamiltonian cycle. As the cardinality of SN is N! we get that the number of
Hamiltonian cycles in KN is N!

2·N .
There is another way to associate permutations to Hamiltonian cycles. Let

πk := π ◦ πk−1 for integer k and π0 be the identity function. Of course πN = π0

π ∈ SN . A permutation π ∈ SN is said to be a k-cycle if it formed by a unique
cycle of length k and N − k fixed points. There are 1

k
N!

(N−k)! k-cycles in SN . Let us
consider now the orbit of the point j under the action of π, that is the sequence of
points (π0, π, π2, . . . , πN)(j), with j ∈ [N]. This sequence defines a Hamiltonian
cycle if and only if the permutation π is an N-cycle. If π is an N-cycle also π−1

is an N-cycle. It provides the same closed walk in the opposite direction. As the
cardinality of the N-cycles in SN is (N − 1)! we get, once more, that the number
of Hamiltonian cycles in KN is (N−1)!

2 .
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6.3.1 Comparison with the assignment problem

From (6.1) and weights of the form (1.94), we get an expression for the total cost

E[h[(σ, π)]] = ∑
i∈[N]

[
|rσ(i) − bπ(i)|p + |rσ◦τ(i) − bπ(i)|p

]
. (6.6)
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Now we can re-shuffle the sums and we get

E[h[(σ, π)]] = ∑
i∈[N]

|ri − bπ◦σ−1(i)|p + ∑
i∈[N]

|ri − bπ◦τ−1◦σ−1(i)|p

= E[m(π ◦ σ−1)] + E[m(π ◦ τ−1 ◦ σ−1)]

(6.7)

where E[m(λ)] is the total cost of the assignment m in KN,N associated to the
permutation λ ∈ SN

E[m(λ)] = ∑
i∈[N]

|ri − bλ(i)|p . (6.8)

The duality transformation (6.5), that is

σ → σ ◦ τ ◦ I (6.9)
π → π ◦ I , (6.10)

interchanges the two matchings because

µ1 := π ◦ σ−1 → π ◦ I ◦ I ◦ τ−1 ◦ σ−1 = π ◦ τ−1 ◦ σ−1 (6.11a)

µ2 := π ◦ τ−1 ◦ σ−1 → π ◦ I ◦ τ−1 ◦ I ◦ τ−1 ◦ σ−1 = π ◦ σ−1 (6.11b)

where we used
I ◦ τ−1 ◦ I = τ . (6.12)

The two matchings corresponding to the two permutations µ1 and µ2 have no
edges in common and therefore each vertex will appear twice in the union of
their edges. Remark also that

µ2 = µ1 ◦ σ ◦ τ−1 ◦ σ−1 (6.13)

which means that µ1 and µ2 are related by a permutation which has to be, as it is
τ−1, a unique cycle of length N. It follows that, if h∗ is the optimal Hamiltonian
cycle and m∗ is the optimal assignment,

E[h∗] ≥ 2 E[m∗] . (6.14)

In the case of the Euclidean assignment the scaling of the average optimal cost is
known in every dimensions and for every p > 1 [Car+14]:

E[µ∗] ∼





N1− p
2 d = 1 ;

N1− p
2 (log N)

p
2 d = 2 ;

N1− p
d d > 2 .

(6.15)

The scaling shows an anomalous behavior at lower dimension differently from
what occurs for the matching problem on the complete graph KN where in any
dimension the scaling with the number of points is always N1− p

d . Indeed, also for
the monopartite Euclidean TSP (that is on KN) in [BHH59] it has been shown that
for p = 1, in a finite region, with probability 1, the total cost scales according to
N1− p

d in any dimension.
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6.3.2 Solution in d = 1 for all instances

Here we shall concentrate on the one-dimensional case, where both red and blue
points are chosen uniformly in the unit interval [0, 1]. In our analysis we shall
make use of the results for the Euclidean assignment problem in one dimension
of [BCS14] which have been obtained when in (1.94) is set p > 1. In this work it
is showed that sorting both red and blue points in increasing order, the optimal
assignment is defined by the identity permutation 1 = (1, 2, . . . , N). From now
on, we will assume p > 1 and that both red and blue points are ordered, i.e.
r1 ≤ · · · ≤ rN and b1 ≤ · · · ≤ bN . Let

σ̃(i) =

{
2i− 1 i ≤ (N + 1)/2
2N − 2i + 2 i > (N + 1)/2

(6.16)

and

π̃(i) = σ̃ ◦ I(i) = σ̃(N + 1− i) =

{
2i i < (N + 1)/2
2N − 2i + 1 i ≥ (N + 1)/2

(6.17)

the couple (σ̃, π̃) will define a Hamiltonian cycle h̃ ∈ H. More precisely, according
to the correspondence given in (6.1), it contains the edges for even N,

ẽ2i−1 =

{
(r2i−1, b2i) i ≤ N/2
(r2N−2i+2, b2N−2i+1) i > N/2

(6.18a)

ẽ2i =





(b2i, r2i+1) i < N/2
(bN , rN) i = N/2
(b2N−2i+1, r2N−2i) N/2 < i < N
(b1, r1) i = N

(6.18b)

while for N odd

ẽ2i−1 =





(r2i−1, b2i) i < (N − 1)/2
(rN , bN) i = (N − 1)/2
(r2N−2i+2, b2N−2i+1) i > (N − 1)/2

(6.19a)

ẽ2i =





(b2i, r2i+1) i < (N − 1)/2
(b2N−2i+1, r2N−2i) (N − 1)/2 < i < N
(b1, r1) i = N .

(6.19b)

The main ingredient of our analysis is the following

Proposition 6.3.1. For a convex and increasing cost function the optimal Hamiltonian
cycle is provided by h̃.

This cycle is the analogous of the criss-cross solution introduced by Halton
[Hal95] (see Fig. 6.1). In his work, Halton studied the optimal way to lace a
shoe. This problem can be seen as a peculiar instance of a 2-dimensional bipar-
tite Euclidean TSP with the parameter which tunes the cost p = 1. One year
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r1 r2 r3 r4

b1 b2 b3 b4

Figure 6.1. The optimal Hamiltonian cycle h̃ for N = 4 blue and red points chosen in the
unit interval and sorted in increasing order.

later, Misiurewicz [Mis96] generalized Halton’s result giving the least restrictive
requests on the 2-dimensional TSP instance to have the criss-cross cycle as solu-
tion. Other generalizations of these works have been investigated in more recent
papers [Pol02, GT17]. We will show that the same criss-cross cycle has the lowest
cost for the Euclidean bipartite TSP in one dimension, provided that p > 1. To
do this, we will prove in a novel way the optimality of the criss-cross solution,
suggesting two moves that lower the energy of a tour and showing that the only
Hamiltonian cycle that cannot be modified by these moves is h̃.

We shall make use of the following moves in the ensemble of Hamiltonian
cycles. Given i, j ∈ [N] with j > i we can partition each cycle as

h[(σ, π)] = (C1rσ(i)bπ(i)C2bπ(j)rσ(j+1)C3), (6.20)

where the Ci are open paths in the cycle, and we can define the operator Rij that
exchanges two blue points bπ(i) and bπ(j) and reverses the path between them as

h[Rij(σ, π)] ≡ (C1rσ(i)[bπ(i)C2bπ(j)]
−1rσ(j+1)C3)

= (C1rσ(i)bπ(j)C
−1
2 bπ(i)rσ(j+1)C3) .

(6.21)

Analogously by writing

h[(σ, π)] = (C1bπ(i−1)rσ(i)C2rσ(j)bπ(j)C3) (6.22)

we can define the corresponding operator Sij that exchanges two red points rσ(i)
and rσ(j) and reverses the path between them

h[Sij(σ, π)] ≡ (C1bπ(i−1)[rσ(i)C2rσ(j)]
−1bπ(j)C3)

= (C1bπ(i−1)rσ(j)C
−1
2 rσ(i)bπ(j)C3) .

(6.23)

Two couples of points (rσ(k), rσ(l)) and (bπ(j), bπ(i)) have the same orientation if
(rσ(k)− rσ(l))(bπ(j)− bπ(i)) > 0. Remark that as we have ordered both set of points
this means also that (σ(k), σ(l)) and (π(j), π(i)) have the same orientation.

Then

Lemma 1. Let E[(σ, π)] be the cost defined in (6.6). Then E[Rij(σ, π)]− E[(σ, π)] > 0
if the couples (rσ(j+1), rσ(i)) and (bπ(j), bπ(i)) have the same orientation and E[Sij(σ, π)]−
E[(σ, π)] > 0 if the couples (rσ(j), rσ(i)) and (bπ(j), bπ(i−1)) have the same orientation.
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Proof.

E[Rij(σ, π)]− E[(σ, π)] = w(rσ(i),bπ(j))
+ w(bπ(i),rσ(j+1))

− w(rσ(i),bπ(i))
− w(bπ(j),rσ(j+1))

(6.24)

and this is the difference between two matchings which is positive if the couples
(rσ(j+1), rσ(i)) and (bπ(j), bπ(i)) have the same orientation (as shown in [McC99,
BCS14] for a weight which is an increasing convex function of the Euclidean dis-
tance). The remaining part of the proof is analogous.

�

Lemma 2. The only couples of permutations (σ, π) with σ(1) = 1 such that both (σ(j +
1), σ(i)) have the same orientation as (π(j), π(i)) and (π(j), π(i− 1)) and (σ(j), σ(i)),
for each i, j ∈ [N] are (σ̃, π̃) and its dual (σ̃, π̃)?.

Proof. We have to start our Hamiltonian cycle from rσ(1) = r1. Next we look at
π(N), if we assume now that π(N) > 1, there will be a j such that our cycle
would have the form (r1C1rσ(j)b1C2bπ(N)), if we assume j > 1 then (1, σ(j)) and
(π(N), 1) have opposite orientation, so that necessarily π(N) = 1. In the case
j = 1 our Hamiltonian cycle is of the form (r1b1C), that is (b1Cr1), and this is
exactly of the other form if we exchange red and blue points. We assume that it
is of the form (r1Cb1); the other form would give, at the end of the proof, (σ̃, π̃)?.
Now we shall proceed by induction. Assume that our Hamiltonian cycle is of the
form (r1b2r3 · · · xkCyk · · · b3r2b1) with k < N, where xk and yk are, respectively, a
red point and a blue point when k is odd and vice versa when k is even. Then
yk+1 and xk+1 must be in the walk C. If yk+1 it is not the point on the right of
xk the cycle has the form (r1b2r3 · · · xkysC1yk+1xl · · · yk · · · b3r2b1) but then (xl , xk)
and (yk+1, ys) have opposite orientation, which is impossible, so that s = k + 1,
that is the point on the right of xk. Where is xk+1? If it is not the point on the left
of yk the cycle has the form (r1b2r3 · · · xkyk+1 · · · ylxk+1C1xs · · · yk · · · b3r2b1), but
then (xs, xk+1) and (yk, yl) have opposite orientation, which is impossible, so that
s = k + 1, that is the point on the left of yk. We have now shown that the cycle has
the form (r1b2r3 · · · yk+1Cxk+1 · · · b3r2b1) and can proceed until C is empty. �

The case with N = 3 points is explicitly investigated in Appendix C.1.
Now that we have understood what is the optimal Hamiltonian cycle, we can

look in more details at what are the two matchings which enter in the decompo-
sition we used in (6.7). As π̃ = σ̃ ◦ I we have that

I = σ̃−1 ◦ π̃ = π̃−1 ◦ σ̃. (6.25)

As a consequence both permutations associated to the matchings appearing in (6.7)
for the optimal Hamiltonian cycle are involutions:

µ̃1 ≡ π̃ ◦ σ̃−1 = σ̃ ◦ I ◦ σ̃−1 = σ̃ ◦ π̃−1 =
[
π̃ ◦ σ̃−1

]−1
(6.26a)

µ̃2 ≡ π̃ ◦ τ−1 ◦ σ̃−1 = σ̃ ◦ I ◦ τ−1 ◦ I ◦ π̃−1 =
[
π̃ ◦ τ−1 ◦ σ̃−1

]−1
, (6.26b)



108 6. Euclidean TSP in one dimension

r1 r2 r3 r4

b1 b2 b3 b4

r1 r2 r3 r4

b1 b2 b3 b4

(a) N = 4.

r1 r2 r3 r4 r5

b1 b2 b3 b4 b5

r1 r2 r3 r4 r5

b1 b2 b3 b4 b5

(b) N = 5.

Figure 6.2. Decomposition of the optimal Hamiltonian cycle h̃ in two disjoint matchings
µ̃1 and µ̃2 for N = 4 (left panel) and N = 5 (right panel).

where we used (6.12). This implies that those two permutations have at most
cycles of period two, a fact which reflects a symmetry by exchange of red and
blue points. When N is odd it happens that

I ◦ σ̃ ◦ I = σ̃ ◦ τ−
N−1

2 , (6.27)

so that

I ◦ π̃ ◦ I = I ◦ σ̃ ◦ I ◦ I = σ̃ ◦ τ−
N−1

2 ◦ I = π̃ ◦ I ◦ τ−
N−1

2 ◦ I = π̃ ◦ τ
N−1

2 . (6.28)

It follows that the two permutations in (6.26a) and (6.26b) are conjugate by I

I ◦ π̃ ◦ τ−1 ◦ σ̃−1 ◦ I = π̃ ◦ τ
N−1

2 ◦ τ ◦ τ
N−1

2 ◦ σ̃−1 = π̃ ◦ σ̃−1 (6.29)

so that, in this case, they have exactly the same numbers of cycles of order 2.
Indeed we have

µ̃1 = (2, 1, 4, 3, 6, . . . , N − 1, N − 2, N) (6.30a)
µ̃2 = (1, 3, 2, 5, 4, . . . N, N − 1) (6.30b)

and they have N−1
2 cycles of order 2 and 1 fixed point. See Fig. 6.2b for the case

N = 5.
In the case of even N the two permutations have not the same number of

cycles of order 2, indeed one has no fixed point and the other has two of them.
More explicitly

µ̃1 = (2, 1, 4, 3, 6, . . . , N, N − 1) (6.31a)
µ̃2 = (1, 3, 2, 5, 4, . . . N − 1, N − 2, N) (6.31b)

See Fig. 6.2a for the case N = 4.
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6.3.3 Evaluation of the cost

Here we will evaluate the cost of the optimal Hamiltonian cycle h̃ for KN,N ,

EN,N(h̃) = |r1 − b1|p + |rN − bN |p +
N−1

∑
i=1

[|bi+1 − ri|p + |ri+1 − bi|p] . (6.32)

Assume that both red and blue points are chosen according to the law ρ and let

Φρ(x) :=
∫ x

0
ds ρ(s) (6.33)

be its cumulative. The probability that, chosen N points at random, the k-th is in
[x, x + dx] is

Pk(x)dx = k
(

N
k

)
Φk−1

ρ (x)
[
1−Φρ(x)

]N−k
ρ(x)dx (6.34)

Given two sequences of N points, the probability for the difference φk in the
position between the (k + 1)-th and the k-th points is

Pr ρ [φk ∈ dφ] = dφk

∫
dx dy Pk(x)Pk+1(y)δ(φk − y + x)

= k(k + 1)
(

N
k

)(
N

k + 1

)
dφk

∫
dx dy ρ(x) ρ(y)δ(φk − y + x)

×Φρ(y)
[
1−Φρ(x)

] [
Φρ(x)Φρ(y)

]k−1 [(1−Φρ(x)
) (

1−Φρ(y)
)]N−k−1 .

(6.35)

Let us now focus on the simple case in which the law ρ is flat, where Φρ(x) = x
and (6.34) reduces to

Pk(x) =
Γ(N + 1)

Γ(k) Γ(N − k + 1)
xk−1(1− x)N−k . (6.36)

We we also limit ourself to the simple case p = 2. We remind to Appendix E.2 for
the evaluation of the generic p case, which needs the use of the Selberg integrals.
We obtain

|r1 − b1|2 = |rN − bN |2 =
2N

(N + 1)2(N + 2)
(6.37)

whereas

|bk+1 − rk|2 = |rk+1 − bk|2 =
∫ 1

0
dx dy Pk(x) Pk+1(y) (x− y)2

=
2(k + 1)(N − k + 1)
(N + 1)2(N + 2)

(6.38)

so that
N−1

∑
k=1

2(k + 1)(N − k + 1)
(N + 1)2(N + 2)

=
1
3
(N + 6)(N − 1)
(N + 1)(N + 2)

. (6.39)

In conclusion, the average cost for the flat distribution and p = 2 is exactly

E(2)
N,N =

2
3

N2 + 4N − 3
(N + 1)2 . (6.40)
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If we recall that for the assignment the average optimal total cost is exactly 1
3

N
N+1 ,

the difference between the average optimal total cost of the bipartite TSP and
twice the assignment is

2
3

[
N2 + 4N − 3
(N + 1)2 − N

N + 1

]
=

1
3

N − 1
(N + 1)2 ≥ 0 (6.41)

and vanishes for infinitely large N. Remark that the limiting value is reached
from above for the TSP and from below for the assignment. We plot in Fig. 6.3
the numerical results of the average optimal cost for different number of points.

It is also interesting to look at the contribution from the two different match-
ings in which we have subdivided the optimal Hamiltonian cycle. In the case of
N odd we have for one of them the average cost

2N
(N + 1)2(N + 2)

+ 2

N−1
2

∑
k=1

4k(N − 2k + 2)
(N + 1)2(N + 2)

=
1
3

N2 + 4N − 3
(N + 1)2 (6.42)

and also for the other

2N
(N + 1)2(N + 2)

+ 2

N−1
2

∑
k=1

2(2k + 1)(N − 2k + 1)
(N + 1)2(N + 2)

=
1
3

N2 + 4N − 3
(N + 1)2 . (6.43)

In the case of N even we have for the matching with two fixed points the average
cost

4N
(N + 1)2(N + 2)

+ 2

N−2
2

∑
k=1

2(2k + 1)(N − 2k + 1)
(N + 1)2(N + 2)

=
1
3

N2 + 4N − 6
(N + 1)2 , (6.44)

while for the other with no fixed points

2

N−2
2

∑
k=1

4k(N − 2k + 2)
(N + 1)2(N + 2)

=
1
3

N2 + 4N
(N + 1)2 , (6.45)

which then has a cost higher at the order N−2.

6.3.4 Asymptotic analysis for the optimal average cost

Motivated by the preceding discussion, one can try to perform a more refined
analysis in the thermodynamic limit. In the asymptotic regime of large N, in fact,
only the term with a sum on i in (6.32) will contribute, and each of the two terms
will provide an equal optimal matching contribution. Proceeding as in the case of
the assignment [BCS14, CS14], one can show that the random variables φk defined
above Eq. (6.35) converge (in a weak sense specified by Donsker’s theorem) to
φ(s), which is a difference of two Brownian bridge processes [CDS17]. One can
write the re-scaled average optimal cost as

Ep ≡ lim
N→∞

N
p
2−1 E(p)

N,N (6.46)
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Figure 6.3. Numerical results for E(2)
N,N for several values of N. The continuous line

represents the exact prediction given in (6.40) and the dashed line gives the value for
infinitely large N. For every N we have used 104 instances. In the inset we show the
numerical results for the variance of the cost E(2)

N,N obtained using the exact solution
provided by (6.16) and (6.17). The dashed line represents the theoretical large N
asymptotic value. Error bars are also plotted but they are smaller than the mark size.

where we have denoted with a bar · the average over all the instances. By starting
at finite N with the representation (6.35), the large N limit can be obtained setting
k = Ns + 1

2 and introducing the variables ξ, η and ϕ such that

x = s +
ξ√
N

, y = s +
η√
N

, φk =
ϕ(s)√

N
, (6.47)

in such a way that s is kept fixed when N → +∞. Using the fact that

Φ−1
ρ (x) ≈ Φ−1

ρ

(
s +

ξ√
N

)
= Φ−1

ρ (s) +
ξ

√
N
(

ρ ◦Φ−1
ρ

)
(s)

, (6.48)

we obtain, at the leading order,

Pr [ϕ(s) ∈ dϕ] = dϕ
∫

dξ dη δ


ϕ− η − ξ

ρ
(

Φ−1
ρ (s)

)


 e−

ξ2+η2

2s(1−s)

2πs(1− s)

=

(
ρ ◦Φ−1

ρ

)
(s)

√
4πs(1− s)

e−
[(ρ◦Φ−1

ρ )(s)]
2

4s(1−s) ϕ2
dϕ,

(6.49)
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that implies that

Ep = 2
∫ 1

0
|ϕ(s)|p ds = 2

∫ 1

0
ds

s
p
2 (1− s)

p
2

[(
ρ ◦Φ−1

ρ

)
(s)
]p

∫ +∞

−∞

dϕ√
4π

e−
ϕ2
4 |ϕ|p

=
21+p
√

π
Γ
(

p + 1
2

) ∫ 1

0
ds

s
p
2 (1− s)

p
2

[(
ρ ◦Φ−1

ρ

)
(s)
]p

=
21+p
√

π
Γ
(

p + 1
2

) ∫ 1

0
dx

Φ
p
2
ρ (x)(1−Φρ(x))

p
2

ρp−1(x)
.

(6.50)

In the particular case of a flat distribution the average cost converges to

Ep =
21+p
√

π
Γ
(

p + 1
2

) ∫ 1

0
ds [s(1− s)]

p
2 = 2

Γ
( p

2 + 1
)

p + 1
(6.51)

which is two times the value of the optimal matching. For p = 2 this gives
E2 = 2/3, according to exact result (6.40). Formula (6.49) becomes

ps(x) = δ(ϕ(s)− x) =
e−

x2
4s(1−s)

√
4πs(1− s)

(6.52)

and similarly, see for example [CS14, Appendix A], it can be derived that the
joint probability distribution pt,s(x, y) for ϕ(s) is (for t < s) a bivariate Gaussian
distribution

pt,s(x, y) = δ(ϕ(t)− x) δ(ϕ(s)− y) =
e−

x2
4t −

(x−y)2

4(s−t) −
y2

4(1−s)

4π
√

t(s− t)(1− s)
. (6.53)

This allows to compute, for a generic p > 1, the average of the square of the
re-scaled optimal cost

E2
p = 4

∫ 1

0
dt
∫ 1

0
ds |ϕ(s)|p |ϕ(t)|p, (6.54)

which is 4 times the corresponding one of a bipartite matching problem. In the
case p = 2, the average in Eq. (6.54) can be evaluated by using the Wick theorem
for expectation values in a Gaussian distribution

E2
2 = 4

∫ 1

0
ds
∫ s

0
dt
∫ ∞

−∞
dx dy pt,s(x, y) x2y2 =

4
5

, (6.55)

and therefore

E2
2 − E2

2
=

16
45

= 0.35̄. (6.56)

This result is in agreement with the numerical simulations (see inset of Fig. 6.3)
and proves that the re-scaled optimal cost is not a self-averaging quantity.
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r1 r2 r3 r4 r5 r6

(a) p > 1 case.

r1 r2 r3 r4 r5 r6

(b) 0 < p < 1 case.

Figure 6.4. Optimal solutions for N = 6.

6.4 Optimal cycles on the complete graph

The p > 1 case

We start by proving which is the optimal cycle when p > 1, for every realization
of the disorder. Let us suppose to have N points R = {ri}i=1,...,N in the interval
[0, 1]. As usual we will assume that the points are ordered, i.e. r1 ≤ · · · ≤ rN . Let
us define the following Hamiltonian cycle

h∗ = h[σ̃] = (rσ̃(1), rσ̃(2), . . . , rσ̃(N), rσ̃(1)) (6.57)

with σ̃ defined as in (6.16). In Appendix C.2 we prove that

Proposition 6.4.1. The Hamiltonian cycle which provides the optimal cost is h∗.

Here we just sketch the main ideas behind the proof. Consider a generic
Hamiltonian cycle, that is a σ ∈ SN with σ(1) = 1 (which corresponds to the
irrelevant choice of the starting point of the cycle). We can always introduce a
new set of ordered points B := {bj}j=1,...,N ⊂ [0, 1], which we will call blue points,
such that

bi =

{
r1 for i = 1
ri−1 otherwise .

(6.58)

We consider now an Hamiltonian cycle on the complete bipartite graph with ver-
tex sets R and B, which only uses links available in our monopartite problem and
has the same cost of σ. In Appendix C.2 we show how to build this cycle. So
we have obtained a map between our monopartite problem and a bipartite one,
which we know how to solve. Therefore, the solution of the bipartite problem
gives us the optimal tour also for the monopartite case, which turns out to be h∗.
Note also that the same Hamiltonian cycle is obtained using π̃ given in (6.17). A
graphical representation of the optimal cycle for p > 1 and N = 6 is given Fig.
6.4a.

6.4.1 The 0 < p < 1 case

We now prove that, given an ordered sequence R = {ri}i=1,...,N of N points in the
interval [0, 1], with r1 ≤ · · · ≤ rN , if 0 < p < 1 and if

h∗ = h[1] = (r1(1), r11(2), . . . , r1(N), r1(1)) (6.59)

where 1(1) is the identity permutation, i.e.:

1(j) = j (6.60)

then
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Proposition 6.4.2. The Hamiltonian cycle which provides the optimal cost is h∗.

The idea behind this result is that we can define a crossing in the cycle by
drawing all the links as arcs in the upper half-plain in such a way that all the
crossing between arcs cannot be eliminated by drawing the arcs in another way.
An example of crossing is in the following figure

r1 r2 r3 r4

where we have not drawn the arcs which close the cycle to emphasize the crossing.
Now, as shown in [BCS14], if we are able to swap two crossing arcs with two non-
crossing ones, the difference between the cost of the original cycle and the new one
simply consists in the difference between a crossing matching and a non-crossing
one, that is positive when 0 < p < 1. Therefore the proof of Proposition 6.4.2,
which is given in Appendix C.2, consists in showing how to remove a crossing
(without breaking the cycle into multiple ones) and in proving that h∗ is the only
Hamiltonian cycle without crossings (see Fig. 6.4b.).

The p < 0 case

Here we study the properties of the solution for p < 0. Our analysis is based,
again, on the properties of the p < 0 optimal matching solution. In [CDS17]
it is shown that the optimal matching solution maximizes the total number of
crossings, since the cost difference of a non-crossing and a crossing matching is
always positive for p < 0. This means that the optimal matching solution of 2N
points on an interval is given by connecting the i-th point to the (i + N)-th one
with i = 1, . . . , N; in this way every edge crosses the remaining N − 1. Similarly
to the 0 < p < 1 case, suppose now to have a generic oriented Hamiltonian
cycle and draw the connections between the vertices in the upper half plain (as
before, eliminating all the crossings which depend on the way we draw the arcs).
Suppose it is possible to identify a matching that is non-crossing, then the possible
situations are the following two (we draw only the points and arcs involved in the
non-crossing matching):

r1 r2 r3 r4

r1 r2 r3 r4

In Appendix C.2, we prove that is not always possible to replace a non-crossing
matching by a crossing one keeping unaltered the property of Hamiltonian cycle.
This move is such that the cost of the new configuration is lower than the cost
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of the old one, since the cost gain is the difference between the costs of a non-
crossing and a crossing matching, which is always positive for p < 0.

In this manner the proof for p < 0 goes on the same line of 0 < p < 1,
but instead of finding the cycle with no crossings, now we look for the one or
ones that maximize them. However, as we will see in the following, one must
distinguish between the N odd and even case. In fact, in the N odd case, only
one cycle maximizes the total number of crossings, i.e. we have only one possible
solution. In the N even case, on the contrary, the number of Hamiltonian cycles
that maximize the total number of crossings are N

2 .

N odd case Given an ordered sequence R = {ri}i=1,...,N of N points, with N
odd, in the interval [0, 1], with r1 ≤ · · · ≤ rN , consider the permutation σ defined
as:

σ(i) =





1 for i = 1
N−i+3

2 for even i >1
2N−i+3

2 for odd i >1

(6.61)

This permutation defines the following Hamiltonian cycle:

h∗ := h[σ] = (rσ(1), rσ(2), . . . , rσ(N)). (6.62)

Proposition 6.4.3. The Hamiltonian cycle which provides the optimal cost is h∗.

The proof consist in showing that the only Hamiltonian cycle with the max-
imum number of crossings is h∗. As we discuss in Appendix C.2, the maxi-
mum possible number of crossings an edge can have is N − 3. The Hamilto-
nian cycle under exam has N(N − 3)/2 crossings, i.e. every edge in h∗ has
the maximum possible number of crossings. Indeed, the vertex a is connected
with the vertices a + N−1

2 (mod N) and a + N+1
2 (mod N). The edge (a, a + N−1

2
(mod N)) has 2 N−3

2 = N− 3 crossings due to the N−3
2 vertices a+ 1 (mod N), a+

2 (mod N), . . . , a + N−1
2 − 1 (mod N) that contribute with 2 edges each. This

holds also for the edge (a, a + N+1
2 (mod N)) and for each a ∈ [N]. As shown in

Appendix C.2 there is only one cycle with this number of crossings.
Now, notice that an Hamiltonian cycle is a particular loop covering. However,

if we search for a loop covering in the p < 0 case, we need again to find the one
which maximizes the number of crossings. Since the procedure of swapping two
non-crossing with two crossing arcs can be applied to each loop covering but h∗

it follows that:

Corollary 1. h∗ provides also the optimal 2-factor problem solution.

An example of an Hamiltonian cycle discussed here is given in Fig. 6.5.

N even case In this situation, differently from the above case, the solution is not
the same irrespectively of the disorder instance. More specifically, there is a set
of possible solutions, and at a given instance the optimal is the one among that
set with a lower cost. We will show how these solutions can be found and how
they are related. In this section we will use the results obtained in Appendix C.3
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r1 r2
r3

r4 r5

Figure 6.5. This is the optimal TSP and 2-factor problem solution for N = 5 and p <
0. Notice that there are no couples of edges which do not cross and which can be
changed in a crossing couple.

r1 r2 r3 r4

r1 r2 r3 r4

Figure 6.6. The two possible optimal Hamiltonian cycles for p < 0, N = 4. For each
specific instance one of them has a lower cost than the other, but differently from all
the other cases (p > 0 or N odd) the optimal cycle is not the same for each disorder
instance.

regarding the Monopartite Euclidean 2-factor for p < 0.
Given the usual sequence of points R = {ri}i=1,...,N of N points, with N even, in
the interval [0, 1], with r1 ≤ · · · ≤ rN , if p < 0, consider the permutation σ such
that:

σ(i) =





1 for i = 1
N
2 − i + 3 for even i ≤ N

2 + 1
N − i + 3 for odd i ≤ N

2 + 1
i− N

2 for even i > N
2 + 1

i for odd i > N
2 + 1

(6.63)

Given τ ∈ SN defined by τ(i) = i + 1 for i ∈ [N − 1] and τ(N) = 1, we call Σ the
set of permutations σk, k = 1, ..., N defined as:

σk(i) = τk(σ(i)) (6.64)

where τk = τ ◦ τk−1. Thus we have the following result:

Proposition 6.4.4. The set of Hamiltonian cycles that provides the optimal cost is

h∗k := h[σk] = (rσk(1), rσk(2), . . . , rσk(N)). (6.65)

An example with N = 4 points is shown in Fig. 6.6. In Appendix C.3 the
optimal solution for the Euclidean 2-factor in obtained. In particular, we show
how the solution is composed of a loop-covering of the graph. The idea for the
proof of the TSP is to show how to join the loops in the optimal way in order to
obtain the optimal TSP. The complete proof of the Proposition 6.4.4 is given in
Appendix C.3.
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5 10 15 20 25 30 35 40

1

2

3

4

5

N

N
p
−
1
E

(p
)

N

p = 2

p = 1

p = 0.5

Figure 6.7. Rescaled average optimal cost for various values of p > 0. The points are the
result of a numerical simulation whereas lines are theoretical predictions.

6.4.2 Evaluation of the average costs and numerical results

If we have N random points chosen with flat distribution in the interval [0, 1] and
we order them in increasing position, the probability for finding the k-th point in
x is given by (6.36) while the probability for finding the l-th point in x and the
s-th point in y is given, for s > l by

pl,s(x, y) =
Γ(N + 1)

Γ(l) Γ(s− l) Γ(N − s + 1)
xl−1

× (y− x)s−l−1(1− y)N−s θ(y− x) ,
(6.66)

see for example [CS14, App. A]. It follows that
∫

dx dy (y− x)α pl, l+k(x, y) =
Γ(N + 1) Γ(k + α)

Γ(N + α + 1) Γ(k)
(6.67)

independently from l, and, therefore, in the case p > 1 we obtain soon

EN [h∗] = [(N − 2)(p + 1) + 2]
Γ(N + 1) Γ(p + 1)

Γ(N + p + 1)
(6.68)

and in particular for p = 2

EN [h∗] =
2 (3N − 4)

(N + 1)(N + 2)
, (6.69)

and for p = 1 we get

EN [h∗] =
2 (N − 1)

N + 1
. (6.70)

In the same way one can evaluate the average optimal cost when 0 < p < 1,
obtaining

EN [h∗] =
[
(N − 1) Γ(p + 1) +

Γ(N + p− 1)
Γ(N − 1)

]
Γ(N + 1)

Γ(N + p + 1)
(6.71)



118 6. Euclidean TSP in one dimension

10 15 20 25 30 35 40 45 50

2

2.2

2.4

2.6

2.8

3

3.2

N

N
−
1
E

(p
)

N

p = −1

Figure 6.8. Rescaled average optimal cost in the p = −1 case. The red points and line are
respectively the result of a numerical simulation and the theoretical prediction in the
odd N case. The blue line is the 2 times the theoretic value of the optimal matching.
The orange lines (from top to bottom) are the average costs EN [h1] and EN [h2] defined
in equation (6.75) and (6.76) respectively. The dashed black line is the large N limit of
all the curves.

which coincides at p = 1 with (6.70) and, at p = 0, provides EN [h∗] = N. For
large N, we get

lim
N→∞

Np−1EN [h∗] =

{
Γ(p + 2) for p ≥ 1
Γ(p + 1) for 0 < p < 1 .

(6.72)

The asymptotic cost for large N and p > 1 is 2(p + 1) times the average opti-
mal cost of the matching problem on the complete graph KN as can be checked
in [CDS17]. We report in Appendix C.4 the computation of the average costs
when the points are extracted in the interval [0, 1] using a general probability
distribution.

For p < 0 and N odd we have only one possible solution, so that the average
optimal cost is

EN [h∗] =

[
(N − 1)

Γ
(N+1

2 + p
)

Γ
(N+1

2

) + (N + 1)
Γ
(N−1

2 + p
)

Γ
(N−1

2

)
]

Γ(N + 1)
2Γ(N + p + 1)

. (6.73)

For large N it behaves as

lim
N→∞

EN [h∗]
N

=
1
2p , (6.74)

which coincides with the scaling derived before for p = 0. Note that for large
N the average optimal cost of the TSP problem is two times the one of the cor-
responding matching problem for p < 0. For N even, instead, there are N/2
possible solutions. One can see N/2− 1 of these share the same average energy,
since they have the same number of links with the same k of equation (6.67). These
solutions, in particular have 2 links with k = N/2, N/2 links with k = N/2 + 1
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Figure 6.9. Variance of the optimal cost in the p = 2 case. The red points and line
are respectively the result of a numerical simulation and the theoretical prediction as
given in (6.78).

and N/2− 2 links with k = N/2 + 1. We denote this set of configurations with
h1 (although they are many different configurations, we use only the label h1 to
stress that all of them share the same average optimal cost) and its average cost is

EN [h1] =
Γ(N + 1)

Γ(N + p + 1)

[
N
2

Γ
(N

2 + p− 1
)

Γ
(N

2 − 1
)

+

(
N
2
− 2
)

Γ
(N

2 + p + 1
)

Γ
(N

2 + 1
) + 2

Γ
(N

2 + p
)

Γ
(N

2

)
] (6.75)

The other possible solution, that we will call with h2 has 2 links with k = N/2− 1,
N/2 links with k = N/2 + 1 and N/2− 1 links with k = N/2 + 1 and its average
cost will be

EN [h2] =
Γ(N + 1)

Γ(N + p + 1)

[(
N
2
− 1
)

Γ
(N

2 + p− 1
)

Γ
(N

2 − 1
)

+

(
N
2
− 1
)

Γ
(N

2 + p + 1
)

Γ
(N

2 + 1
) + 2

Γ
(N

2 + p
)

Γ
(N

2

)
] (6.76)

In Fig. 6.7 and 6.8 we compare analytical and numerical results respectively for
p = 0.5, 1, 2 and for p = −1. In particular, since EN [h1] > EN [h2], EN [h2] provides
our best upper bound for the average optimal cost of the p = −1, N even case.

6.4.3 Self-averaging property for p > 1

An interesting question is whether the average optimal cost is a self-averaging
quantity. Previous investigation regarding the matching problem [Ste97, Yuk98]
showed that indeed the average optimal cost is self-averaging in every dimensions
when the graph is the complete one. This is the case, at least in the one dimen-
sional case, also for the random Euclidean TSP. Again we collect in Appendix C.5
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all the technical details concerning the evaluation of the second moment of the
optimal cost distribution E2

N . Here we only state the main results. E2
N has been

computed for all number of points N and, for simplicity, in the case p > 1 and it
is given in equation (C.42). In the large N limit it goes like

lim
N→∞

N2(p−1)E2
N [h∗] = Γ2(p + 2) (6.77)

i.e. tends to the square of the rescaled average optimal cost. This proves that the
cost is a self-averaging quantity. Using (C.42) together with equation (6.68) one
gets the variance of the optimal cost. In particular for p = 2 we get

σ2
EN

=
4(N(5N(N + 13) + 66)− 288)

(N + 1)2(N + 2)2(N + 3)(N + 4)
, (6.78)

which goes to zero as σ2
EN
' 20/N3. In Figure 6.9 we compare the theoretical

result with the numerical ones for the variance of the optimal cost for p = 2.
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Chapter 7

The Euclidean 2-factor problem in
one dimension

In this chapter we shall consider the 2-factor (or 2-matching) problem which con-
sists, given an undirected graph, in finding the minimum spanning subgraph
that contains only disjoint cycles. This problem has been previously considered
on a generic graph G by Bayati et al. [Bay+11] using the BP algorithm. In Sta-
tistical Mechanics models on loops have been considered [Bax16]. In particular
in two dimension loop coverings have been studied also in connection to con-
formal field theories (CFT), Schramm-Loewner evolution (SLE) and integrable
models [MDJ17, JRS04].

The 2-factor problem can be seen as a relaxation of the TSP, in which one has
the additional constraint that there must be a unique cycle. For this reason, if H
is the set of Hamiltonian cycles for the graph G, of course H ⊂ M2. Therefore
if ν∗ ∈ M2 and h∗ ∈ H are respectively the optimal 2-factor and the optimal
Hamiltonian cycle, we have

E[h∗] ≥ E[ν∗] . (7.1)

In infinite dimensions, where the 2-factor can be studied using replica and cavity
method, one finds that, for large number of points, its average optimal cost is the
same of the RTSP, that is inequality (7.1) is saturated on average. This result is
valid both on the complete and on the complete bipartite graph.

Here we study the 2-factor problem in one dimension, both on the complete
graph bipartitioning two sets of N points and on the complete graph of N ver-
tices, throwing the points independently and uniformly in the compact interval
[0, 1]. The weights on the edges are chosen as a convex function of the Euclidean
distance between adjacent vertices. Despite the fact that it is a one-dimensional
problem, it is not a trivial one. In the following we show that, while almost for
every instance of the disorder there is only one solution, by looking at the whole
ensemble of instances there appears an exponential number of possible solutions
scaling as pN , where p is the plastic constant. This is at variance with what hap-
pens for other random combinatorial optimization problems, like the matching
problem and the TSP that were studied so far [BCS14, CS14, CDS17, Car+18b]. In
both cases we know that, for every realization of the disorder, the configuration
that solves the problem is unique.
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r1 r2 r3 r4 r5 r6

b1 b2 b3 b4 b5 b6

r1 r2 r3 r4 r5 r6

b1 b2 b3 b4 b5 b6

(a) Two instances whose optimal solutions are
the two possible ν∗ for N = 6 on the com-
plete bipartite graph KN,N . For each in-
stance the blue and red points are chosen
in the unit interval and sorted in increas-
ing order, then plotted on parallel lines to
improve visualization.

x1 x2 x3 x4 x5 x6 x7

x1 x2 x3 x4 x5 x6 x7

(b) Two instances whose optimal solutions are
the two possible ν∗ for N = 7 on the com-
plete graph KN . For each instance the
points are chosen in the unit interval and
sorted in increasing order.

Figure 7.1. Optimal solutions for small N cases.

The rest of the paper is organized as follows: in Sect. 6.2 we give some def-
initions and we present our model in more detail. In Sect. 7.1 we write the cost
of the 2-factor in terms of permutations and for every number of points we com-
pare its cost with that of matching and TSP. We argue that, in the thermodynamic
limit and in the bipartite case, its cost is twice the cost of the optimal matching.
In Sect. 7.2 we characterize, for every number of points, the properties of the op-
timal solution. We compare it with the corresponding one of the TSP problem
and we conclude that the number of possible solutions grows exponentially with
N. In Sect. 7.3 we derive some upper bounds on the average optimal cost and
in Sect. 7.4 we compare them with numerical simulations, describing briefly the
algorithm we have used to find numerically the solution. We study the finite-size
corrections to the asymptotic average cost in the complete bipartite case, and the
leading order in the complete case.

7.1 The Euclidean 2-factor problem

Let us start by making some considerations when the problem is defined on the
complete bipartite graph KN,N , where each cycle must have an even length.

Let SN be the symmetric group of order N and consider two permutations
σ, π ∈ SN . If for every i ∈ [N] we have that σ(i) 6= π(i), then the two permuta-
tions define the 2-factor ν(σ, π) with edges

e2i−1 := (ri, bσ(i)) (7.2)

e2i := (ri, bπ(i)) (7.3)

for i ∈ [N]. And, vice versa, for any 2-factor ν there is a couple of permutations
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σ, π ∈ SN , such that for every i ∈ [N] we have that σ(i) 6= π(i). It will have total
cost

E[ν(σ, π)] = ∑
i∈[N]

[
|ri − bσ(i)|p + |ri − bπ(i)|p

]
. (7.4)

By construction, if we denote by µ[σ] the matching associated to the permutation
σ and by

E[µ(σ)] := ∑
i∈[N]

|ri − bσ(i)|p (7.5)

its cost, we soon have that

E[ν(σ, π)] = E[µ(σ)] + E[µ(π)] (7.6)

and we recover that
E[ν∗] ≥ 2 E[µ∗] (7.7)

the cost of the optimal 2-factor is necessarily greater or equal to twice the optimal
1-factor. Together with inequality (7.1), which is valid for any graph, we obtain
that

E[h∗] ≥ E[ν∗] ≥ 2 E[µ∗] . (7.8)

In Chap. 6 we have seen that in the limit of infinitely large N, in one dimension
and with p > 1, the average cost of the optimal Hamiltonian cycle is equal to
twice the average cost of the optimal matching (1-factor). We conclude that the
average cost of the 2-factor must be the same. In the following we will denote with

E(p)
N,N [ν

∗] the average optimal cost of the 2-factor problem on the complete bipartite
graph. Its scaling for large N will be the same of the TSP and the matching
problem, that is the limit

lim
N→∞

E(p)
N,N [ν

∗]

N1−p/2 = E(p)
B , (7.9)

is finite. An explicit evaluation in the case p = 2 is presented in Sec. 7.3.
On the complete graph KN inequality (7.7) does not hold, since a general 2-

factor configuration cannot always be written as a sum of two disjoint matchings,
due to the presence of odd-length loops. Every 2-factor configuration on the
complete graph can be determined by only one permutation π, satisfying π(i) 6= i
and π(π(i)) 6= i for every i ∈ [N]. The cost can be written as

E[ν(π)] = ∑
i∈[N]

|xi − xπ(i)|p . (7.10)

The two constraints on π assure that the permutation does not contain fixed

points and cycles of length 2. In the following we will denote with E(p)
N [ν∗] the

average optimal cost of the 2-factor problem on the complete graph. Even though
inequality (7.7) does not hold, we expect that for large N, the average optimal cost
scales in the same way as the TSP and the matching problem, i.e. as

lim
N→∞

E(p)
N [ν∗]
N1−p = E(p)

M . (7.11)

In Sect. 7.4 we give numerical evidence for this scaling.
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r1 r2 rk rk+1 rN−1 rN

b1 b2 bk bk+1 bN−1 bN

y
r1 r2 rk−1 rk rk+1 rk+2 rN−1 rN

b1 b2 bk−1 bk bk+1 bk+2 bN−1 bN

(a) KN,N case

x1 x2 x3 xk xk+1 xk+2 xk+3 xN−2 xN−1 xN

y

x1 x2 x3 xk xk+1 xk+2 xk+3 xN−2 xN−1 xN

(b) KN case

Figure 7.2. Result of one cut of the shoelace in two smaller ones for both the complete
bipartite and complete graph cases. The cost gained is exactly the difference between
an unordered matching and an ordered one.

7.2 Properties of the solution for d = 1

We restrict here to the particular case in which the parameter p appearing in the
definition of the cost (1.93) is such that p > 1, that is the weight associated to
an edge is a convex and increasing function of the Euclidean distance between
its two vertices. In such a case we know exactly, for every number of points, the
optimal solution of the matching problem both on the bipartite [BCS14, CS14,
CDS17] and the complete graph [CDS17] and of the TSP problem, again on both
its bipartiteand complete graph version as examined in Chap. 6. The knowledge
of the optimal configuration of those problems permits to write down several
properties of the solution of the 2-factor.

Bipartite Case

We remind that the adjacency matrix of a bipartite graph with the same cardinality
N of red and blue points can always be written in block form (1.3) which defines
the N × N matrix B. Now, suppose that both blue and red points are labeled
in increasing order, that is if i > j with i, j ∈ [N], then ri > rj and bi > bj, the
permutation which minimizes the cost of the matching is necessarily the identity
permutation µ∗(i) = i for i ∈ [N], so that

E[µ∗] = ∑
i∈[N]

|ri − bi|p . (7.12)

The optimal matching corresponds to

B =




1 · · · · · · 0
...

. . .
...

...
. . .

...
0 · · · · · · 1




. (7.13)



7.2 Properties of the solution for d = 1 125

Since the total adjacency matrix is of the form (1.3), B has to satisfy the following
constraints

N

∑
i=1

Bij = 1 , j ∈ [N] (7.14a)

N

∑
j=1

Bij = 1 , i ∈ [N] (7.14b)

Bij ∈ {0, 1} . (7.14c)

The first two constraints impose that only one edge must depart from each blue
and each red vertex respectively. For the TSP, the optimal Hamiltonian cycle h∗ is
identified by the two permutations σ̃ and π̃ defined in equations (6.16) and (6.17)
with optimal cost (6.32). The optimal Hamiltonian cycle corresponds to the adja-
cency matrix

B =




1 1 0 0 · · · 0
1 0 1 0 · · · 0
0 1 0 1 · · · 0
...

. . . . . . . . . . . .
...

0 · · · 0 1 0 1
0 . . . 0 0 1 1




. (7.15)

Let us now look for the optimal solutions for the 2-factor. The adjacency matrix
of a valid 2-factor must satisfy constraints analogous to those of the matching
problem, i.e.

N

∑
i=1

Bij = 2 , j ∈ [N] (7.16a)

N

∑
j=1

Bij = 2 , i ∈ [N] (7.16b)

Bij ∈ {0, 1} . (7.16c)

The only difference with (7.14) is that from every blue or red vertex must depart
two edges. For N = 2 there is only one configuration. It can be defined by the
adjacency matrix

B2 =

(
1 1
1 1

)
. (7.17)

For N = 3 the solution is the same as in the TSP

B3 =




1 1 0
1 0 1
0 1 1


 . (7.18)

For N = 4 the solution has two simple cycles

B(2)
2 =




1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1


 . (7.19)
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For N = 5 there are two symmetric possible solutions

B2,3 =




1 1 0 0 0
1 1 0 0 0
0 0 1 1 0
0 0 1 0 1
0 0 0 1 1




B3,2 =




1 1 0 0 0
1 0 1 0 0
0 1 1 0 0
0 0 0 1 1
0 0 0 1 1




. (7.20)

For N = 6 there are two possible solutions (not related by symmetry)

B(3)
2 =




1 1 0 0 0 0
1 1 0 0 0 0
0 0 1 1 0 0
0 0 1 1 0 0
0 0 0 0 1 1
0 0 0 0 1 1




B(2)
3 =




1 1 0 0 0 0
1 0 1 0 0 0
0 1 1 0 0 0
0 0 0 1 1 0
0 0 0 1 0 1
0 0 0 0 1 1




. (7.21)

The possible solutions for N = 6 and are represented schematically in Fig. 7.1a.
For N = 7 there are three solutions and so on.

Lemma 3. In any optimal 2-factor ν∗ all the loops must be in the shoelace configuration.

Proof. In each loop there is the same number of red and blue points. Our gen-
eral result for the TSP of Sect. 6.3 shows indeed that the shoelace loop is always
optimal when restricted to one loop. �

Lemma 4. In any optimal 2-factor ν∗ there are no loops with more than 3 red points.

Proof. As soon as the number of red points (and therefore blue points) in a loop
is larger than 3, a more convenient 2-factor is obtained by considering a 2-factor
with two loops. In fact, as can be seen in Fig. 7.2a, the cost gain is exactly equal to
the difference between an ordered and an unordered matching which we know is
always negative for p > 1 [BCS14]. �

It follows that

Proposition 7.2.1. In any optimal bipartite 2-factor ν∗ there are only shoelaces loops with
2 or 3 red points.

In different words to the optimal bipartite 2-factor solution ν∗ is associated an
adjacency matrix which is a block matrix built with the sub-matrices B2 and B3.
Two different 2-factors in this class are not comparable, that is all of them can be
optimal in particular instances.

Proposition 7.2.2. At given number N of both red and blue points there are at most
Pad(N − 2) optimal 2-factor ν∗.

Pad(N) is the N-th Padovan number, see the D.1, where it is also shown in (D.7)
that for large N

Pad(N) ∼ pN (7.22)

with p the plastic number (D.3) (see Appendix D.3 for a discussion on this con-
stant). Actually, for values of N which we could explore numerically, we saw that
all Pad(N − 2) possible solutions appear as optimal solutions in the ensemble of
instances.
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Complete Case

Similar conclusions can be derived in the case of the complete graph KN since, as
we have said, both the analytical solution for the matching [CDS17] and the TSP
are known. Let us order the points in increasing order, i.e. xi > xj if i > j with
i, j ∈ [N]. In the matching problem on the complete graph the number of points
must be even, and with p > 1 the solution is very simple: if j > i then the point
xi will be matched to xj if and only if i is odd and j = i + 1 that is

E[µ∗] = ∑
i∈[N]

|x2i − x2i−1|p . (7.23)

The corresponding adjacency matrix assumes the block diagonal form

A =




a 0 · · · · · · 0
0 a · · · · · · 0
...

...
. . .

...
0 0 a 0
0 0 · · · 0 a




, (7.24)

where

a =

(
0 1
1 0

)
. (7.25)

The adjacency matrix (7.24) satisfies constraints (1.4), with k = 1. In the case of
the TSP on the complete graph, where the number of points can also be odd,
the optimal permutation is the same σ̃ defined in (6.16). With a slightly abuse of
language we will call “shoelace” also the optimal loop configuration for the TSP
problem on complete graph given in (6.57). The adjacency matrix is

A =




0 1 1 0 · · · · · · 0
1 0 0 1 · · · · · · 0
1 0 0 0 1 · · · 0
...

. . . . . . . . . . . . . . .
...

0 · · · 1 0 0 0 1
0 · · · 0 1 0 0 1
0 . . . 0 0 1 1 0




. (7.26)

The possible solutions for the 2-factor on complete graph can be constructed by
cutting in a similar way the corresponding TSP solution into smaller loops as can
be seen pictorially in Fig. 7.2b. Note that one cannot have a loop with two points.
Analogously to the bipartite case we have analyzed before, each loop that form
the 2-factor configuration must be a shoelace. However the length of allowed
loops will be different, since one cannot cut, on a complete graph, a TSP of 4 and
5 points in two smaller sub-tours. It follows that

Proposition 7.2.3. On the complete graph, in the optimal 2-factor ν∗ there are only loops
with 3, 4 or 5 points.
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Figure 7.3. Average optimal costs for various N and for p = 2.

In other terms the optimal configurations are composed by the adjacency ma-
trices A1, A2, A3 that are

A3 =




0 1 1
1 0 1
1 1 0


, A4 =




0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0


, A5 =




0 1 1 0 0
1 0 0 1 0
1 0 0 0 1
0 1 0 0 1
0 0 1 1 0




. (7.27)

In Fig. 7.1b we represent the two solutions when N = 7. In Appendix D.2 we
prove that, similarly to the bipartite case, the number of 2-factor solutions is at
most gN on the complete graph, which for large N grows according to

gN ∼ pN . (7.28)

Also in this case we verified numerically, for accessible N, that the set of possi-
ble solutions that we have identified is actually realized by some instance of the
problem.

7.3 Bounds on the cost

Here we will derive the consequences of the results of the previous section, ob-
taining explicitly some upper bounds on the average optimal cost of the 2-factor
problem. We will examine the complete bipartite case first, where we consider,
for simplicity, the p = 2 case. Indeed the calculation we perform below can be
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done also for general p > 1, but it is much more involved and we sketch it in
Appendix E.3. Then we will examine the complete graph case, where we have
obtained a very simple expression of the average optimal cost for every N, and
for every p > 1.

Bipartite Case

Let us analyze the problem on the complete bipartite graph KN,N . In Sect. 6.3 we
derived for p = 2 the exact result for all N of the TSP when all the points are
chosen with a flat distribution in the interval [0, 1]

E(2)
N,N [h∗] =

2
3

N2 + 4N − 3
(N + 1)2 (7.29)

from which we soon obtain that

E(2)
N,N [ν

∗] =

{
2
3 for N = 2
3
4 for N = 3 ,

(7.30)

since in the cases N = 2 and N = 3 the solutions are the same as in the TSP. For
N = 4 we have still only one solution, which corresponds to two cycles on the
first and the last 2 red points. Both cycles have the same cost and we easily get
that

E(2)
4,4 [ν

∗] =
52
75

. (7.31)

This result can be obtained also in a different way. We first remark that

(rk − bk)2 + (rk+1 − bk+1)2 − (rk − bk+1)2 − (rk+1 − bk)2 = − 2
(N + 1)2 (7.32)

irrespectively from the choice of 1 ≤ k ≤ N− 1. This is exactly the cost gained by
cutting a longer cycle into two smaller ones at position k, see Fig. 7.2a. Therefore
the cost for the optimal 2-factor for N = 4 is the cost for the optimal Hamiltonian
cycle, which from (7.29) is 58

75 , decreased because of a cut, that is by − 2
25 .

For N = 5 there are two possible optimal solutions that we will denote by
ν(2,3) and ν(3,2). For both of them

E(2)
5,5 [ν(2,3)] = E(2)

5,5 [ν(3,2)] =
13
18

(7.33)

and therefore
E(2)

5,5 [ν
∗] = min

{
E(2)

5,5 [ν(2,3)], E(2)
5,5 [ν(3,2)]

}
≤ 13

18
. (7.34)

For N = 6 there are still two possible optimal solutions, that is ν(3,3) and ν(2,2,2),
but this time they have not the same average cost, indeed

E(2)
6,6 [ν(3,3)] =

36
49

=
38
49
− 2

49
(7.35)

E(2)
6,6 [ν(2,2,2)] =

34
49

=
38
49
− 4

49
(7.36)
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that we have written as the TSP value from (7.29) decreased, respectively, by one
and two cuts (7.32) for N = 6.

Now it is clear that when N is even the 2-factor with lowest average energy is
ν(2,2,...,2) and that

E(2)
N,N [ν(2,2,...,2)] =

2
3

N2 + 4N − 3
(N + 1)2 − N − 2

(N + 1)2 =
1
3

N(2N + 5)
(N + 1)2 , (7.37)

which is an upper bound for the optimal average cost since, even though this
configuration has the minimum average cost, for every fixed instance of disorder
there can be another one which is optimal. For N odd one of the 2-factors with
lowest average energy is ν(2,2,...,2,3) and

E(2)
N,N [ν(2,2,...,2,3)] =

2
3

N2 + 4N − 3
(N + 1)2 − N − 3

(N + 1)2 =
1
3

2N2 + 5N + 3
(N + 1)2 , (7.38)

a result which shows that essentially the upper bound for the optimal average
cost for even and odd large N is the same. In Appendix E.3 we generalize these
computations to generic p.

Complete Case

Let us now turn to the problem on the complete graph. In Sect. 6.4 it is shown
that, for every N and every p > 1, the average optimal cost of the TSP has the
expression

E(p)
N [h∗] = [(N − 2)(p + 1) + 2]

Γ(N + 1) Γ(p + 1)
Γ(N + p + 1)

. (7.39)

An analogous expression is present in the case of the matching problem [CDS17],
where the number of points N is even

E(p)
N [µ∗] =

N Γ(N + 1) Γ(p + 1)
2 Γ(N + p + 1)

. (7.40)

Let us now turn to the evaluation of the cost gain when we cut the cycle in two
shoelaces sub-cycles. For p > 1 the cost gain doing one cut can be written as

(xk+1 − xk)
p + (xk+3 − xk+2)

p − (xk+3 − xk+1)
p − (xk+2 − xk)

p

= −2 p Γ(N + 1) Γ(p + 1)
Γ(N + p + 1)

. (7.41)

For example for N = 6 (in which the solution is unique since 6 can be written as
a sum of 3, 4 and 5 in an unique way as 3+3) and p = 2 we have

E(2)
6 =

1
2
− 1

7
=

5
14

. (7.42)

If N is multiple of 3, the lowest 2-factor is, on average, the one with the largest
number of cuts i.e. ν(3,3,...,3). The number of cuts is (N − 3)/3 so that the average
cost of this configuration is

E(p)
N [ν(3,3,...,3)] = N

( p
3
+ 1
) Γ(N + 1) Γ(p + 1)

Γ(N + p + 1)
. (7.43)
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Figure 7.4

a1 a2 a3

−0.193± 0.003 2.03± 0.05 −3.3± 0.2

Table 7.1. Numerical estimates of the parameters a1, a2 and a3 defined in (7.48).

Instead if N can be written as a multiple of 3 plus 1, the minimum average energy
configuration is ν(3,3,...,3,4), which has (N − 4)/3 cuts and

E(p)
N [ν(3,3,...,4)] =

[
N
( p

3
+ 1
)
+

2
3

p
]

Γ(N + 1) Γ(p + 1)
Γ(N + p + 1)

. (7.44)

The last possibility is when N is a multiple of 3 plus 2, so the minimum average
energy configuration is ν(3,3,...,3,5), with (N − 4)/3 cuts and

E(p)
N [ν(3,3,...,5)] =

[
N
( p

3
+ 1
)
+

4
3

p
]

Γ(N + 1) Γ(p + 1)
Γ(N + p + 1)

. (7.45)

In the limit of large N all those three upper bounds behave in the same way. For
example

lim
N→∞

E(p)
N [ν(3,3,...,3)] = N1−p

(
1 +

p
3

)
Γ(p + 1) . (7.46)

Note that the scaling of those upper bounds for large N is the same of those of
matching and TSP.

7.4 Numerical Results

In this section we present our numerical simulations describing briefly the algo-
rithm we have used to find the solution for every instance of the problem. The
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b0 b1 b2

1.562± 0.005 7.7± 0.2 −28± 2

Table 7.2. Numerical estimates of the parameters b0, b1 and b2 defined in (7.49).

2-factor problem has an integer programming formulation. Given a generic sim-
ple graph G = (V , E), the solution can be uniquely identified by a |V| × |V|matrix
of occupation numbers Aij which can assume values 0 or 1. In particular Aij as-
sumes value 0 if node i is not connected to node j in the 2-factor solution and 1
otherwise. The problem can be stated as the minimization of the energy function

E(A) =
1
2

|V|
∑
i=1

|V|
∑
j=1

Aij wij , (7.47)

subject to the constrain (1.4) with k = 2. We have performed some numerical
simulations using a C++ code and the open source GLPK package, a library that
solves general large scale linear programming problems. In Fig. 7.3a and 7.3b
we plot the results of some numerical simulations for p = 2 respectively for the
complete bipartite and complete graph case and we compare them with some

exact results. In the complete graph case we plot NE(2)
N revealing that the scaling

of the cost is the same of the TSP and the matching problem. However the two
situations are completely different, since in the complete case the bound estimate
only gets worse when N increases.

In order to understand the analytic form of the finite-size correction, we have

also performed a parametric fit of the quantity N
(

E(2)
N,N − 2

3

)
using a fitting func-

tion of the type

fB(N) = a1 +
a2

N
+

a3

N2 . (7.48)

In Fig. 7.4a we plot the numerical data and fB(N). The estimate of the parameters
is reported in Table 7.1.

In the complete graph case, we have performed a fit of the rescaled cost NE(2)
N

in order to evaluate numerically the asymptotic value of the cost. The fitting
function was chosen to be

fM(N) = b0 +
b1

N
+

b2

N2 . (7.49)

In Fig. 7.4b we report the plot of the numerical data together with fM(N).
Remember that in the complete graph case, the cost of the 2-factor cannot be
bounded from below by two times the cost of the optimal matching as happens
on the complete bipartite graph. For this reason in Fig. 7.4b we have added the
plot of the theoretical value of the optimal matching (given in equation (7.40))
multiplied by two. The numerical values of the parameters are reported in Ta-
ble 7.2. Note also how in the complete graph case, the first finite-size correction
b1 is not only positive but its magnitude is much greater than a1, its bipartite
counterpart.
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Chapter 8

Going to higher dimensions

In previous chapters we have focused mainly on one-dimensional problems, show-
ing how, in most of the cases under consideration, the solution is always of the
same “shape”, irrespectively of the positions of the points. This permits us to
find the solution of these problems efficiently (i.e. polynomially), their time com-
plexity scaling as the best algorithm for sorting the positions of N points in in-
creasing order. Therefore, even the Euclidean TSP problem, which is in the worst
case scenario NP-complete, is polynomial when considering the subspace of one-
dimensional instances. This property is obviously lost in 2 dimension where it
is not possible to find the features we found in 1 dimension. However the study
of one-dimensional problems can indeed be an important starting point since it
may give an indication or a suggestion of what can possibly happen in higher
dimensional cases. In this final chapter we study the two-dimensional version of
the bipartite TSP. Indeed in previous chapters we have found, in one dimension,
a very strong connection with the assignment problem. We list here what we con-
sider the three important progresses that helped us to reassemble the puzzle in
two dimensions:

• for other optimization problems similar to the TSP, the monopartite and
bipartite versions have different optimal cost properties. For example for the
matching, 1-factor and 2-factor (or loop-covering) problems, the optimal cost
is expected to be a self-averaging quantity whose average scales according
to

E(p,d)
N ∼ N1− p

d (8.1)

(see [BHH59] for a proof in the case p = 1). On the other hand, in the
bipartite version [AKT84, Car+14, BCS14] it is expected that

E(p,d)
N ∼





N1− p
2 for d = 1

N1− p
2 (log N)

p
2 for d = 2

N1− p
d for d > 2

(8.2)

that is a larger cost with respect to the monopartite case when d ≤ 2. More-
over, this quantity is expected to be not self-averaging. This anomalous
scaling is due to the fact that in low dimensions density fluctuations, due
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to the local difference between the number of red and blue points, become
relevant;

• in the bipartite case it is always true (see Chap. 7) that the total optimal cost
of the TSP E∗H is larger than the total optimal cost of the 2-factor problem
(loop covering) E∗M2

, which is larger than twice the total optimal cost of the
corresponding matching problem (assignment) E∗M1

E∗H ≥ E∗M2
≥ 2E∗M1

. (8.3)

In Chap. 6 it has been shown that in d = 1, in the asymptotic limit of an in-
finitely large number points, this bound is saturated, that is the total optimal
cost of the TSP, rescaled with N1− p

2 , is exactly twice the total rescaled opti-
mal cost of the assignment problem, and, therefore, all the three quantities
coincide.

• in the bipartite case, in d = 2 and p = 2, thanks to a deep connection
with the continuum version of the problem, that is the well known transport
problem, it has been possible to compute, exactly, the total optimal cost of the
assignment problem in the asymptotic limit of an infinitely large number
points [Car+14, CS15b, CS15a, AST18]:

E(2,2)
N,N =

1
2π

log N . (8.4)

We considered, therefore, the possibility that also in d = 2, and p > 1, exactly,
thanks to the logarithmic violation present in the bipartite case, the asymptotic
total cost of the TSP can be exactly twice the one of the assignment, that for p = 2
is also exactly known. Indeed, this is the case!

The paper is organized as follows. In Section 8.1 we introduce a scale argu-
ment that justifies our claims and allows to find sub-optimal TSP and 2-factor
problem solutions whose difference in cost with the optimal solution goes to zero
as the number of cities goes to infinity. In Section 8.2 we provide evidence of our
results by extensive numerical simulations. We also examined the case p = 1,
which is the most largely considered in the literature.

8.1 Scaling argument

In this section we will provide a scaling argument to support our claim, that is,
also in two dimensions, for any given choice of the positions of the points, in the
asymptotic limit of large N, the cost of the bipartite TSP converges to twice the
cost of the assignment.

Given an instance, let us consider the optimal assignment µ∗ on them. Let us
now consider N points which are taken between the red an blue point of each
edge in µ∗ and call T ∗ the optimal monopartite TSP solution on these points. For
simplicity, as these N points we take the blue points.

We shall use T ∗ to provide an ordering among the red and blue points. Given
two consecutive points in T ∗, for example b1 and b2, let us denote by (r1, b1) and
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r1 r2

r3r4

b1 b2

b3b4

Figure 8.1. The optimal assignment µ∗ is given by the orange edges
{(r1, b1), (r2, b2), (r3, b3), (r4, b4)}. The monopartite TSP (gray dashed edges) among
blue points provides the necessary ordering. In order to obtain the TSP
b1, r1, b2, r2, b3, r3, b4, r4, b1 in the bipartite graph we have to add the green edges
{((r1, b2), (r2, b3), (r3, b4), (r4, b1)}.

(r2, b2) the two edges in µ∗ involving the blue points b1 and b2 and let us consider
also the new edge (r1, b2).We know that, in the asymptotic limit of large N, the
typical distance between two matched points in µ∗ scales as (log N/N)1/2 while
the typical distance between two points matched in the monopartite case scales
only as 1/N1/2, that is (for all points but a fraction which goes to zero with N)

w(b1,r1) =

(
α11

log N
N

) p
2

,

w(b2,r1) =

[
β22

1
N

+ α11
log N

N
− γ

√
log N
N

] p
2

,

(8.5)

where (α11 log N/N)1/2 is the length of the edge (r1, b1) of µ∗, (β22/N)1/2 is the
length of the edge (b1, b2) of T ∗ and γ = 2

√
α11β22 cos θ, where θ is the angle

between the edges (r1, b1) of µ∗ and (b1, b2) of T ∗. This means that, typically, the
difference in cost

∆E = w(b2,r1) − w(b1,r1) ∼
(log N)

p−1
2

N
p
2

(8.6)

is small as compared to the typical cost (log N/N)
p
2 of one edge in the bipartite

case. To obtain a valid TSP solution, which we call hA, we add to the edges µ∗ =
{(r1, b1), . . . , (rN , bN)} the edges {(r1, b2), . . . , (rN−1, bN), (rN , b1)}, see Figure 8.1.

Of course hA is not, in general, the optimal solution of the TSP. However,
because of Eq. (8.3), we have that

EH[hA] ≥ E∗H ≥ E∗M2
≥ 2 E∗M1

(8.7)

and we have shown that, for large N, EH[hA] goes to 2 E∗M1
and therefore also

E∗H must behave in the same way. As a byproduct of our analysis also E∗M1
for

the loop covering problem has the same optimal average cost. Note also that
our argument is purely local and therefore it does not depend in any way on
the type of boundary conditions adopted. Since in the case of periodic boundary
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Figure 8.2. Numerical results for p = 1 and p = 2 for the TSP (red points), the 2-factor
(green points) and 2 times the assignment problem (blue points) in the open boundary
condition case. Continuous lines are fit to the data.

conditions, as shown in [CS15a], it holds (8.4), we get that the average optimal cost
of both the TSP and 2-factor goes for large N to 2 times the optimal assignment.

Notice that an analogous construction can be used in any number of dimen-
sions. However, the success of the procedure lies in the fact that the typical dis-
tance between two points in µ∗ goes to zero slower than the typical distance be-
tween two consecutive points in the monopartite TSP. This is true only in one and
two dimensions, and it is related to the importance of fluctuations in the number
of points of different kinds in a small volume.

This approach allowed us to find also an approximated solution of the TSP
which improves as N → ∞. However, this approximation requires the solution of
a monopartite TSP on N/2 points, corroborating the fact that the bipartite TSP is a
hard problem (from the point of view of complexity theory).

A similar construction can be used to achieve an approximated solution also
for the 2-factor problem. In this case, instead of solving the monopartite TSP on
the mean points of each edge of µ∗, one should solve the monopartite matching
problem on the same set of points, obtaining a matching M∗. Once more let us
denote by (r1, b1) and (r2, b2) the two edges in µ∗ which give rise to two matched
points in M∗, and collect them together with the edges (r1, b2) and (r2, b1). Re-
peating the above procedure for each couple of points matched inM∗, the union
of the edges obtained gives a valid 2-factor whose cost tends, in the limit of large
N, to twice the cost of the optimal assignment in one and two dimensions. Notice
that, in this case, the procedure is much more efficient because the solution of the
matching problem is polynomial in time.

8.2 Numerical Results

We have confirmed our theoretical predictions performing numerical simulations
on all the three models previously presented: assignment, bipartite 2-factor, and
bipartite TSP. We have considered the case of open boundary conditions.

For what concerns the assignment problem, many polynomial-time algorithms
are available in the literature, as the famous Hungarian algorithm [Kuh55]. We



8.2 Numerical Results 137

p = 1 a1 a2 a3

TSP 0.717(2) 1.32(1) −0.509(1)
2-factor 0.714(2) 1.31(1) −0.58(2)
Assignment 0.715(2) 1.16(2) −0.757(3)
p = 2 a1 a2 a3

TSP 0.321(5) 1.603(2) −0.428(6)
2-factor 0.319(4) 1.577(2) −0.547(7)
Assignment 0.31831 1.502(2) −1.0(2)

Table 8.1. Comparison between fit factors in assignment and TSP, for p = 1, 2. We have
doubled the factors for the assignment to verify our hypothesis. For p = 2, we have
reported the theoretical value of a1 which is 1/π.

have implemented an in-house assignment solver based on the LEMON optimiza-
tion library [DJK11], which is based on the Edmonds’ blossom algorithm [Edm65].
In the case of the 2-factor and TSP, the most efficient way to tackle numerically
those problems is to exploit their linear or integer programming formulation.

To validate our argument, we solved for both assignment and 2-factor problem
(with p = 1, 2), 105 independent instances for 2 ≤ N ≤ 125, 104 independent
instances for 150 ≤ N ≤ 500, and 103 independent instances for 600 ≤ N ≤
1000. In the TSP case, the computational cost is dramatically larger; for this
reason the maximum number of points we were able to achieve with a good
numerical precision using integer programming was N = 300, also reducing the
total number of instances.

An estimate of the asymptotic average optimal cost and finite-size corrections
has been obtained using the fitting function for p = 1

f (p=1)(N) =
√

N log N

(
a1 +

a2

log N
+

a3

log2 N

)
(8.8)

while, for p = 2

f (p=2)(N) = log N

(
a1 +

a2

log N
+

a3

log2 N

)
. (8.9)

These are the first 3 terms of the asymptotic behavior of the cost of the assignment
problem [AKT84, Car+14]. Parameters a2 and a3 for p = 2 were obtained fixing
a1 to 1/π. In Figure 8.2 we plot the data and fit in the case of open boundary
conditions. Results are reported in Table 8.1.

To better confirm the behavior of the average optimal cost of the TSP, we also
performed some numerical simulations using a much more efficient solver, that is
the Concorde TSP solver [App+06], which is based on an implementation of the
Branch-and-cut algorithm proposed by Padberg and Rinaldi [PR91]. The results
for the leading term of the asymptotic average optimal cost are confirmed while a
small systematic error due to the integer implementation of the solver is observed
in the finite-size corrections.
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8.3 Conclusions

In this chapter we have considered three combinatorial optimization problems, the
matching problem, 2-factor problem and TSP, where the cost is a convex increas-
ing function of the point distances. Previous investigations have been performed
in the one-dimensional case, by means of exact solutions. Here we analyzed the
bipartite version of these problems in two dimensions, showing that, as already
obtained in one dimension:

lim
N→∞

E∗H
E∗M1

= lim
N→∞

E∗M2

E∗M1

= 2 . (8.10)

This implies, for the special case p = 2, by using (8.4), our main exact result, that
is

lim
N→∞

E∗H
log N

= 1/π . (8.11)

In general, the evaluation of E∗H and E∗M2
for large N is reduced to the solution

of the matching problem which requires only polynomial time. This seems to
be a peculiar feature of the bipartite problem: the monopartite TSP cannot be
approached in a similar way. As a byproduct of our analysis, we provided in Sec.
8.1 two approximate algorithms, for the bipartite TSP and the bipartite 2-factor:
both are guaranteed to give a solution with optimal cost for large N. The first
algorithm allows to solve the bipartite TSP on N points solving the monopartite
TSP with N points (notice that, on principle, the bipartite version consists of 2N
points). The second allows to exploit the fast Hungarian algorithm to obtain an
approximate solution of the 2-factor problem.
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Chapter 9

Conclusions and perspectives

In this thesis work we have analyzed several combinatorial optimization problems
studying both the behavior of average quantities (such as the average optimal cost)
and finite-size corrections to them.

In Part II we have started by analyzing mean field models, where the weights
are independent identically distributed random variables. These were the first
problems that has been studied since 1985 by means of techniques borrowed from
the theory of disordered systems, such as replica and cavity method (belief prop-
agation in modern language) that we have reviewed in Part I together with spin
glass theory concepts. In Part II we have mainly focused on finite-size correc-
tions to the average optimal cost of several problem, such as the RAP, the RMP
and the RFMP. In particular, taking into consideration a generic class of disorder
distributions, we have showed how the Maclaurin coefficients of its series expan-
sion near the origin affect both the coefficients and the scaling exponent of the
first finite-size correction. In the case of the pure power law probability distri-
bution (where all the Maclaurin coefficients of the probability distribution vanish
except the first one) the corrections are only analytical, that is in inverse powers
of the number of points. When the first Maclaurin coefficient does not vanish, as
in the gamma probability distribution case, the scaling of the first correction is
non-analytical and always larger than the power law case. We have also charac-
terized the scaling of the corrections to all orders of perturbation theory. For the
RMP an additional correction, due to the fluctuation around the saddle point, is
present and it is reminiscent in form of finite-size corrections in many mean-field
diluted models. It can in fact be interpreted as the free energy contributions of
odd loops of the graph. This correction disappears not only when the problem
is defined on the bipartite graph (where there can be only loops of even length),
but also when one allows, on the complete graph, the presence of loops in any
feasible configuration as happens for the RFMP. In the “loopy” version of the
RFMP, obtained by allowing the presence of self-loops, the finite-size correction
of order 1/N vanishes, coherently with rigorous results. It is an argument of fu-
ture work to extend these results to locally tree-like random graph which mimic
better finite-dimensional results. One expects also in this case that the free en-
ergy contributions of even loop in the graph does not contribute to the finite-size
correction. We have also pointed out that still, there are no analogous expression
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for finite-size corrections for the random-link 2-factor problem and for the RTSP
since in the context of replica method, the limit of small temperatures is tricky.
Using cavity method, instead, one can obtain the average optimal cost in the limit
of large number of points. We have proved the key connection between quantities
appearing in the replica approach (the RS multi-overlap), with those of the cavity
method (the distribution of cavity fields). Interestingly this relation is valid also
for the RMP. It is an argument of future work how to use this relation to efficiently
compute finite-size corrections the random-link 2-factor problem and the RTSP.

In Part III we have focused on combinatorial optimization problems in finite
dimension. In that case, the points are extracted uniformly in an hypercubic space
and the weight on an edge is chosen to be a power of the Euclidean distance be-
tween them. As a consequence, the weights will be correlated. As a manner of
fact the methods developed in mean-field simply fail and one has to resort to com-
binatorial methods or to the possibility of constructing a continuum field-theory
of the problem under investigation. In this part we have mainly analyzed the
random Euclidean 2-factor and TSP both on the complete and the bipartite graph.
We have started by analyzing one-dimensional models whose solution has often
enabled progress in the study of higher-dimensional cases. The one-dimensional
analysis has unveiled an important connection with the matching problem, espe-
cially when considering the complete bipartite case for convex increasing weights,
where not only one obtains the same scalings, but also the average cost itself of
the 2-factor and the TSP tends, for large number of points, to 2 times the aver-
age optimal cost of the assignment. We proved, by using a scale argument and
extensive numerical simulation, that this result is also valid in 2 dimensions. It
is desirable therefore, to develop a continuum version approach that is capable
to re-derive the previous results and hopefully it is able to compute finite-size
corrections, as happens in the random Euclidean assignment problem.

It will be matter of future work also the analysis of large deviation properties
of combinatorial optimization problems, both in mean-field and in finite dimen-
sional cases.
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Appendix A

Details of replica computation of
the RAP

A.1 Evaluation of z[Q] on the saddle-point and analytic
continuation for n→ 0

Let us evaluate now the quantity z[Q] on the RS saddle-point. Using the fact that,
for any analytic function f

∫ 2π

0

dλ

2π
eiλ f

(
e−iλ

)
=
∮ dξ

2πi
f (ξ)
ξ2 =

d f
dξ

∣∣∣∣
ξ=0

, (A.1)

we can write[
n

∏
a=1

∫ 2π

0

dλa

2π
eiλa

]
exp

{
∑′

α∈P([n])
q|α|e

−i ∑b∈α λb

}

=
∂n

∂ξ1 · · · ∂ξn

∣∣∣∣
ξ1=···=ξn=0

exp

{
∑′

α∈P([n])
q|α|∏

b∈α

ξb

}
= ∑

α
∏
αi∈α

q|αi |,

(A.2)

where α = {αi}i and αi ∈ P([n]) are disjoint subsets whose union is [n]; however

∑
α

∏
αi∈α

q|αi | =
n

∑
m=1

∑
k1,...,km

k1+···+km=n

(
n

k1 . . . km

)
qk1 . . . qkm

m!

=

(
d
dt

)n ∞

∑
m=0

1
m! ∑

k1,...,km

qk1 . . . qkm

k1! . . . km!
tk1+···+km

∣∣∣∣∣
t=0

=

(
d
dt

)n ∞

∑
m=0

1
m!

(
∞

∑
k=1

qk
tk

k!

)m∣∣∣∣∣
t=0

=

(
d
dt

)n

exp

(
∞

∑
k=1

qk
tk

k!

)∣∣∣∣∣
t=0

.

(A.3)

To perform the analytic prolongation, we prove now that, if f (0) = 1, then

lim
n→0

1
n

ln
[(

d
dt

)n

f (t)
∣∣∣∣
t=0

]
=
∫ +∞

−∞
dl
[
e−el − f (−el)

]
. (A.4)
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This fact can be seen observing that, for n→ 0

(
d
dt

)n

f (t) = f
(

∂

∂J

)
JneJt

∣∣∣∣
J=0
≈ f (t) + n f

(
∂

∂J

)
ln J eJt

∣∣∣∣
J=0

= f (t) + n f
(

∂

∂J

) ∫ ∞

0

ds
s

(
e−s − e−sJ

)
eJt
∣∣∣∣

J=0

= f (t) + n
∫ ∞

0

ds
s
[
e−s f (t)− f (t− s)

]
.

(A.5)

By the change of variable s = el , Eq. (A.4) follows.

A.2 Asymptotic behaviour of the function Br

In this Appendix we study the asymptotic behavior for large λ of the function
Br(λx). By definition in Eq. (3.45)

1
λr Br(λx) ≡

∞

∑
k=1

(−1)k−1 eλxk

(λk)r(k!)2 , (A.6)

so that

Br(λx)
λr = − 1

Γ(r)

∫ ∞

0
tr−1

∞

∑
k=1

(−1)k

(k!)2 eλ(x−t)kdt

= − 1
Γ(r)

∫ ∞

0
tr−1

{
J0

[
2e

1
2 λ(x−t)

]
− 1
}

dt

λ→+∞−−−−→ 1
Γ(r)

∫ ∞

0
tr−1θ(x− t)dt =

xr

Γ(r + 1)
θ(x),

(A.7)

where we have used the fact that

J0(x) ≡
∞

∑
m=0

(−1)m

(m!)2

( x
2

)2m
=

{
1 when x → 0,
0 when x → +∞

(A.8)

is the Bessel function of zeroth order of the first kind.

A.3 Some properties of the function Ĝr

In this Appendix we give some properties of the function Ĝr, defined by the
integral equation (3.9c). From the definition, we have that, for 0 ≤ α < β + 1 and
r > −1,

Ĝ(α)
r (l) ≡ Dα

l Ĝr(l) =
∫ +∞

−∞

(l + y)r−α

Γ(r− α + 1)
e−Ĝr(y)θ(l + y)dy. (A.9)

Observe that
Ĝ(α)

r (l) ≥ 0 for 0 ≤ α < r + 1. (A.10)



A.3 Some properties of the function Ĝr 147

In this equation we have used the fact that, for 0 ≤ α < β + 1, we have [Pod99]

Dα
t

[
tβ

Γ(β + 1)
θ(t)

]
=

tβ−α

Γ(β− α + 1)
θ(t). (A.11)

In particular, for α = r we have the simple relation

Ĝ(r)
r (l) ≡ Dr

l Ĝr(l) =
∫ ∞

−∞
dy e−Ĝr(y)θ(y + l). (A.12)

Moreover, for 0 ≤ α < r + 1,

lim
l→−∞

Ĝ(α)
r (l) = 0. (A.13)

From Eq. (A.12)

Ĝ(r+1)
r (l) = e−Ĝr(−l) ≥ 0⇒ lim

l→+∞
Ĝ(r+1)

r (l) = 1. (A.14)

The relations above imply that

J(α)r ≡
∫ +∞

−∞
du Ĝr(−u)Dα

u Ĝr(u) > 0 , 0 ≤ α < r + 1. (A.15)

Similarly, for 0 < k < r + 1 an integer,

J(r+k+1)
r ≡

∫ +∞

−∞
du Ĝr(−u)Dr+k+1

u Ĝr(u) =
∫ +∞

−∞
du Ĝr(−u)

dk

duk e−Ĝr(−u)

=
∫ +∞

−∞
du Ĝ(k)

r (u)e−Ĝr(u) ≥ 0.
(A.16)

For large l we have

Ĝr(l) ≈
lr+1

Γ(r + 2)
, (A.17a)

Ĝr(−l) ≈ e−
lr+1

Γ(r+2) . (A.17b)

As anticipated, an exact solution is available in the r = 0 case. In particular, for
r = 0, the second derivative

Ĝ(2)
0 (l) = e−Ĝ0(−l)Ĝ(1)

0 (−l) = Ĝ(1)
0 (l)Ĝ(1)

0 (−l) (A.18)

is an even function of l,

Ĝ(2)
0 (l)− Ĝ(2)

0 (−l) = 0⇒ Ĝ(1)
0 (l) + Ĝ(1)

0 (−l) = c, (A.19)

with the constant c = 1 by evaluating the left-hand side in the limit of infinite l
and

Ĝ(1)
0 (0) = e−Ĝ0(0) =

1
2

. (A.20)
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Then we have that

Ĝ0(l)− Ĝ0(−l) = l ⇒ Ĝ(1)
0 (l) = e−Ĝ0(−l) = e l−Ĝ0(l), (A.21)

which means that

d
dl

eĜ0(l) = el ⇒ eĜ0(x) − eĜ0(0) = ex − 1, (A.22)

where we have used the initial condition at l = 0, that is, because of Eq. (A.20),

eĜ0(x) = 1 + ex ⇒ Ĝ0(x) = ln(1 + ex). (A.23)

A.4 Evaluation of the integrals in the r = 0 case

To explicitly evaluate some of the integrals above, let us introduce the polygamma
function

ψm(z) ≡
dm+1

dzm+1 ln Γ(z) = (−1)m+1
∫ ∞

0
dt

tme−zt

1− e−t , (A.24)

which satisfies the recursion relation

ψm(z + 1) = ψm(z) + (−1)m m!
zm+1 , (A.25)

which, for a positive integer argument and assuming m ≥ 1, leads to

ψm(k)
(−1)m+1m!

= ζ(m + 1)−
k−1

∑
r=1

1
rm+1 =

∞

∑
r=k

1
rm+1 . (A.26)

For m = 0 this implies

ψ0(k) = −γE + Hn−1 ⇒ ψ0(1) = −γE, (A.27)

with γE is Euler’s gamma constant and

Hn ≡
n

∑
k=1

1
k

(A.28)

are the harmonic numbers. With these considerations in mind and using Eq. (A.23),
we have that

J(1)0 ≡
∫ +∞

−∞
dy

ln(1 + ey)

1 + ey =
∫ +∞

0
dt

t e−t

1− e−t

= ψ1(1) = ζ(2) = ∑
k≥1

1
k2 =

π2

6
.

(A.29)

Then we compute

J(0)0 ≡
∫ +∞

−∞
dy

1
1 + ey

∫ y

−∞
du ln(1 + eu) =

∫ +∞

0
dt

e−t

1− e−t

∫ t

0
dw

w
1− e−w

= −
∫ +∞

0
dt t

ln(1− e−t)

1− e−t =
∞

∑
k=1

1
k

∫ +∞

0
dt

te−kt

1− e−t =
∞

∑
k=1

1
k

ψ1(k).
(A.30)
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We remark now that

∑
k≥1

ψ1(k)
k

=
∞

∑
k=1

∞

∑
r=0

1
k

1
(r + k)2 = ∑

s≥1

s

∑
k=1

1
k

1
s2 = ∑

s≥1

1
s2 Hs. (A.31)

Applying now the identity
∞

∑
s=1

Hs

s2 = 2ζ(3), (A.32)

discovered by Euler, we obtain

J(0)0 = 2ζ(3) = −ψ2(1). (A.33)

To finally evaluate J(3)0 , we remark now that
∫ +∞

−∞

dy
1 + ey

d
dy

ln(1 + ey) = −
∫ +∞

−∞
dy

d
dy

1
1 + ey = 1. (A.34)

Then, as
d2

dy2 ln(1 + ey) =
d

dy
ln(1 + ey)−

[
d

dy
ln(1 + ey)

]2

, (A.35)

we have

J(3)0 =
∫ +∞

−∞
dy

1
1 + ey

d2

dy2 ln(1 + ey) = −
∫ +∞

−∞
dy
(

d
dy

1
1 + ey

)
d

dy
ln(1 + ey)

=
∫ +∞

−∞
dy

1
1 + ey

[
d

dy
ln(1 + ey)

]2

=
1
2

.

(A.36)

A.5 Calculation of ∆FT
r

To evaluate explicitly ∆FT
r , let us start from Eq. (3.60),

∆F̂T
r =

1
2β̂N

∞

∑
s=1

∞

∑
t=1

(−1)s+t−1 (s + t− 1)!
s!t!

ĝs ĝt

ĝ2
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∞
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∞
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(
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s t
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kr+1

sr+1(k− s)r+1

∫ +∞

−∞
dy e−Gr(y)eykqk ,

(A.37)

and, in order to perform the sum over s, we introduce integral representations

k−1

∑
s=1

1
s!(k− s)!

1
sr+1(k− s)r+1 =

k−1

∑
s=1

(
k
s

) ∫ +∞

0
du
∫ +∞

0
dv

urvre−sue−(k−s)v

k!Γ2(r + 1)

=
∫ +∞

0
du
∫ +∞

0
dv urvr (e

−u+e−v)
k−e−uk− e−vk

k!Γ2(r + 1)
.

(A.38)
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Observing now that the value k = 1 can be included in the sum over k and
defining

h ≡ β̂

[η0Γ(r + 1)]1/(r+1)
, (A.39)

we can write

2β̂r+2Γ(r + 1)N
η0

∆F̂T
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∞
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qk
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y eyk
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(A.40)

This implies that, for h→ ∞,
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1

r+1
0 Γ2+ 1

r+1 (r + 1)

1
r + 1

∫ +∞

−∞
dy e−Ĝr(y)Dr+1

y

[∫ y

−∞
du (y− u)2r+1Ĝr(u)

]

= − Γ(2r + 2)

Nη
1

r+1
0 Γ3+ 1

r+1 (r + 1)

1
r + 1

∫ +∞

−∞
dy e−Ĝr(y)

∫ y

−∞
du (y− u)rĜr(u)

= − Γ(2r + 2)

Nη
1

r+1
0 Γ2+ 1

r+1 (r + 1)

1
r + 1

∫ +∞

−∞
du Ĝr(−u)Ĝr(u),

(A.41)

which is exactly Eq. (3.61).

A.6 General approach for computing Ip

In the following we will write formulas for the quantity Ip defined in (3.114).
Using identities (A.13) and (A.14) for the generating function Ĝr we can rewrite
Ip as

Ip =
(−1)p

Γp(r + 1)

∫ ∞

0
dt
∫ +∞

−∞
dx1 . . . dxp∂1Ĝr(−x1 − t) . . . ∂pĜr(−xp − t)

×
[
Dr

x1
. . .Dr

xp
(x1 + x2)

r . . . (xp + x1)
r
]

θ(x1 + x2) . . . θ(xp + x1)

(A.42)

Since (x1 + x2)r . . . (xp + x1)
r is an homogeneous polynomial of degree pr the pr

derivatives in square bracket give the coefficient of the monomial xr
1 . . . xr

p. This
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coefficient can be evaluated simply using p times the binomial expansion

(x1 + x2)
r . . . (xp + x1)

r =
p

∏
i=1

r

∑
ki=0

p

∏
i=1

(
r
ki

)
xr+k1−kp

1 xr+k2−k1
2 . . . x

r+kp−kp−1
p . (A.43)

Next the coefficient of the monomial xr
1 . . . xr

p is selected imposing k1 = k2 = · · · =
kp, so that

1
Γp(r + 1)

Dr
x1

. . .Dr
xp

[
(x1 + x2)

r . . . (xp + x1)
r] =

r

∑
k=0

(
r
k

)p

≡ Cr,p . (A.44)

Ir,p = (−1)pCr,p

∫ ∞

0
dt

[
p

∏
j=1

∫ +∞

−∞
dxj

]
p

∏
i=1

∂iĜr(−xi − t) θ(xi + xi+1) (A.45)

where xp+1 = x1. Note that

C0,p = 1
Cr,1 = 2r

Cr,2 =
Γ(2r + 1)
Γ2(r + 1)

Cr,p = pFp−1 [{−r, . . . ,−r} , {1, . . . , 1} ;−1] , p ≥ 3

(A.46)

where pFq is the hypergeometric function. Next we perform an integration by
parts on all the variables with even index, that is x2, x4, . . . x2[ p

2 ]
. There is no

contribution from the boundaries. We use

∂2kθ(x2k−1 + x2k)θ(x2k + x2k+1)

= δ(x2k−1 + x2k)θ(x2k + x2k+1) + θ(x2k−1 + x2k)δ(x2k + x2k+1) (A.47)

and then we perform the trivial integration of δ-function. Remark that within
this procedure no δ′ appears, so we can also first perform all the derivatives and
afterward all the integrations. We will end up with 22[ p

2 ] terms and the integra-
tion on only the variables with odd label. Afterwards for each of the remaining
variables, say going from the one with highest index we perform an integration
by parts of the term ∂iĜr(−xi − t) only whenever it does not multiply Ĝr(−xi − t)
or Ĝr(xi − t), that is it appears only in θ-function and perform the integration on
dxi by resolving the δ-functions which have xi as an argument.

The cases p = 1 and p = 2 are exceptional. For example in he case with p = 1
we have

Ir,1 = −2r
∫ ∞

0
dt
∫ +∞

−∞
dx1 ∂1Ĝr(−x1 − t)θ(x1)

= 2r
∫ ∞

0
dt
∫ +∞

−∞
dx1Ĝr(−x1 − t)δ(x1) = 2r

∫ ∞

0
dt Ĝr(−t)

(A.48)
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For r = 0 we obtain I1 = ζ(2)
2 as it should [Rat03]. For p = 2 the two θ-functions

have the same argumentand we can start now our procedure on x2

Ir,2 = −Γ(2r + 2)
Γ2(r + 1)

∫ ∞

0
dt
∫ +∞

−∞
dx1 dx2 ∂1Ĝr(−x1 − t)Ĝr(−x2 − t)δ(x1 + x2)

= −Γ(2r + 2)
Γ2(r + 1)

∫ ∞

0
dt
∫ +∞

−∞
dx1 Ĝr(x1 − t) ∂1Ĝr(−x1 − t) .

(A.49)

Here we can no more proceed in the standard way. Anyhow we can perform a
shift and proceed by using t as a variable

Ir,2 = −Γ(2r + 2)
Γ2(r + 1)

∫ +∞

−∞
dx Ĝr(x)

∫ ∞

0
dt ∂1Ĝr(−x− 2t) (A.50)

=
Γ(2r + 1)
2Γ2(r + 1)

∫ +∞

−∞
dx Ĝr(−x)Ĝr(x) =

Γ(2r + 1)
2Γ2(r + 1)

J(0)r (A.51)

For r = 0 we obtain I2 = J(0)0 /2 = ζ(3) as in [Rat03]. For p = 3 our procedure
allows us to obtain

Ir,3 = Cr,3

[
3
∫ ∞

0
dt
∫ +∞

−∞
dx2Ĝ2

r (−x2 − t)∂2Ĝr(x2 − t)θ(x2) +
∫ ∞

0
dt Ĝ3

r (−t)
]

(A.52)

For p = 4 we get

Ir,4 =
Cr,4

2

∫ +∞

−∞
dx Ĝ2

r (x) Ĝ2
r (−x) (A.53)

This procedure can be applied for values of p higher.



153

Appendix B

Details of the replica computation
of the RFMP

B.1 One-site partition function

The evaluation of the one-site partition function in the RFMP follows the same
type of arguments adopted in the literature for the RMP [MP85, MP87, PR02] and
for the RTSP [MP86a]. The one-site partition function z in the RFMP is

z[Q] ≡
n

∏
a=1

[∫ 2π

0

e−2iλa
dλa

2π

]

× exp


 ∑

α∩β=∅
α∪β 6=∅

Qα,β ei ∑a∈α λa+2i ∑b∈β λb
+

ε− 1
4N ∑

α 6=∅
g|α| e

2i ∑a∈α λa




≡ z0[Q] +
ε− 1
2N ∑

α 6=∅
g|α|

∂z0[Q]

∂Q∅,α
.

(B.1)

In the previous equation, we have introduced z0[Q], that coincides with the ex-
pression given in Eq. (4.21e). It follows that, for N � 1, ln z[Q] provides a con-
tribution both to the leading term S[Q] and to the finite-size corrections ∆ST[Q],
namely, up to o (1/N) terms,

2 ln z[Q] = 2 ln z0[Q]− ε− 1
2N ∑

α 6=∅

g|α|
z0[Q]

∂z0[Q]

∂Q∅,α
, (B.2)

to be compared with the terms appearing in Eqs. (4.21). The evaluation of z0[Q]
is nontrivial in general. In the replica symmetric hypothesis, z0[Q] can be written
as

z0[Q] =
n

∏
a=1

[∫ 2π

0

e−2iλa
dλa

2π

]
exp


 ∑

α∩β=∅
α∪β 6=∅

Q|α|,|β| e
i ∑a∈α λa+2i ∑b∈β λb


 . (B.3)
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Denoting now by ξa ≡ eiλa , observe now that

∑
α∩β=∅
α∪β 6=∅

Q|α|,|β|∏
a∈α

ξa ∏
b∈β

ξ2
b = ∑

p+q≥1
Qp,q ∑

|β|=q
∏
b∈β

ξ2
b ∑
|α|=p

α∩β=∅

∏
a∈α

ξa

→ ∑
p+q≥1

Qp,q ∑
|β|=q

∏
b∈β

ξ2
b ∑
|α|=p

∏
a∈α

ξa → ∑
p+q≥1

Qp,q

q!


 ∑
|α|=p

∏
a∈α

ξa



(

∑
b

ξ2
b

)q

, (B.4)

where each substitution is justified because of the overall constraint that allows
us to neglect powers ξk

b with k ≥ 3. It can be seen that

∑
|α|=p

∏
a∈α

ξa =

(
∑a ξ2

a
) p

2

p!
Hep

(
∑a ξa√
∑a ξ2

a

)
. (B.5)

Here Hep(x) is the probabilists’ Hermite polynomial [AS72]. Substituting the
previous identity in the expression for z0, we obtain

z0[Q] =
∫ +∞

−∞

dxdkxdydky

(2π)2 e∑p+q≥1
Qp,q
p!q! y

p
2 +qHep

(
x√
y

)
+ikxx+ikyyΦ(kx, ky), (B.6)

where

Φ(kx, ky) =

[∫ 2π

0

dλ

2π
e−2iλ−ikxeiλ−ikye2iλ

]n

=

(
− k2

x
2
− iky

)n

. (B.7)

Using now the identity an = ∂n
t eat
∣∣
t=0, we can write [LPS17]

ln z0[Q]

n
=

1
n

ln
[

∂n

∂tn

∫ +∞

−∞
Dz e ∑p+q≥1

Qp,q
p!q! t

p
2 +qHep(z)

∣∣∣∣
t=0

]

=
∫ +∞

0

dt
t

[
e−t −

∫ +∞

−∞
Dz e ∑p+q≥1

Qp,q
p!q! (−t)

p
2 +qHep(z)

]
+ O(n).

(B.8)

At this point, some considerations are in order. Let us first observe that, on
the matching saddle-point in Eq. (4.28), Qsp

p,q = δp,0Qq, the previous expression
becomes

lim
n→0

ln z0[Q]

n
=
∫ +∞

0

dt
t

[
e−t − e∑∞

q=1
Qq
q! (−t)q

]
. (B.9)

The expression above coincides with the one-site partition function in the RAP
and RMP as can be seen in Appendix A.1. In particular, Eqs. (4.29a) can be ob-
tained introducing the function G in Eq. (4.29b). On the other hand, if we consider
the RTSP saddle-point solution, Q̃sp

q,p = δq,0Q̃p, the RTSP one-site partition func-
tion is recovered, as it can be easily seen comparing Eq. (B.8) with the results in
Ref. [MP86a].
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B.2 Evaluation of ∆ST on the matching saddle-point

To evaluate the ∆ST contribution (4.21c) on the matching saddle-point, we follow
the approach in Ref. [MP87, PR02]. In particular,

1
n

∆ST[Qsp] =
1

Nn ∑′

α, β|α, β̂

g|α|+2|β|g|α|+2|β̂|
4g2

2|β|+2|β̂|+2|α|
Q2
|β|+|β̂|+|α| −

ε− 1
4nN ∑

α 6=∅

g|α|
g2|α|

Q0,|α|

=
1
N ∑

s+p≥1
s+q≥1

(−1)p+q+s−1Γ(s + p + q)
p!q!s!

gs+2pgs+2q

4g2
2p+2q+2s

Q2
p+q+s−

ε− 1
4N

∞

∑
p=1

(−1)p−1

p
gp

g2p
Qp.

(B.10)

The asymptotic value of the last sum is given by

lim
β→+∞

ε− 1
4Nβ

∞

∑
p=1

(−1)p−1

p
gp

g2p
Qp = lim

β→+∞

ε− 1
2Nβ

∞

∑
p=1

(−1)p−1

pp!

∫ +∞

−∞
dx eβpx−Ĝ(x)

=
ε− 1
2N

lim
β→+∞

∫ +∞

−∞
dx

γE + βx + Γ(0, eβx)

β
e−Ĝ(x)

=
ε− 1
2N

∫ +∞

0
xe−Ĝ(x)dx =

ε− 1
4N

ζ(2).

(B.11)

In the previous expression, γE is the Euler-Mascheroni constant, whereas Γ(a, z) ≡∫ ∞
z e−tta−1dt is the incomplete gamma function [AS72]. In the contribution from

∆ST we also have

1
n

∞

∑
s+p≥1
s+q≥1

(
n

s p q

)
gs+2pgs+2q

4g2p+2q+2s
Q2

p+q+s

= ∑
s+p≥1
s+q≥1

(−1)p+q+s−1Γ(s + p + q)
p!q!s!

gs+2pgs+2q

4g2
2p+2q+2s

Q2
p+q+s

= ∑
s+p≥1
s+q≥1

(−1)p+q+s−1gs+2pgs+2q

2p!q!s!g2p+2q+2s
Qp+q+s

∫ +∞

−∞
e(p+q+s)x−G(x)dy =

1
β

∫ +∞

−∞
dx e−G(x)

×
∞

∑
k=1

(−1)k−1ekxQk

[
k−1

∑
p=1

1
2pp!(k− p)!

+
k

∑
s=1

k−s

∑
p=0

1
s!(s + 2p)p!(k− s− p)!

]
.

(B.12)

In Ref. [MP87] it has been proved that

lim
β→+∞

1
β2

∫ +∞

−∞
dx e−G(x)

∞

∑
k=1

(−1)k−1ekxQk

k−1

∑
p=1

1
2pp!(k− p)!

= − ζ(3)
N

. (B.13)
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The remaining contribution is zero. To prove this fact, let us start from

k

∑
s=1

k−s

∑
p=0

1
s!(s + 2p)p!(k− s− p)!

=
k

∑
s=1

i
2πs!

∫ +∞

0
dt
∮

γH

dz
∞

∑
p=0

(−z)p+s−k−1 e−(s+2p)t−z

p!

=
k

∑
s=1

i
2πs!

∫ +∞

0
dt e−st

∮

γH

dz e−(1+e−2t)z(−z)s−k−1

=
k

∑
s=1

∫ +∞

0
dt
(
1 + e−2t)k−s−1 e−st

Γ(k− s + 1)s!
=
∫ 1

0
dτ

k

∑
s=1

(1 + τ)k−s τs/2−1

2s!(k− s)!

=
∫ 1

0
dτ

(
τ +
√

τ + 1
)k − (1 + τ)k

2k!τ
.

(B.14)

In the expression above, γH is the Hankel contour in the complex plane. Summing
over k we get

1
2β

∫ +∞

−∞
e−G(x)dx

∫ 1

0
dτ

G
(
x + ln

(
1 +
√

τ + τ
))
− G (x + ln(1 + τ))

τ

=
β

2

∫
dx e−Ĝ(x)

∫ +∞

0
du


Ĝ


x+

ln
(

1+e−
βu
2 +e−βu

)

β


−Ĝ

(
x+

ln(1+e−βu)

β

)
 ,

(B.15)

whose corresponding contribution goes to zero as β→ ∞. We can finally write

lim
β→+∞

lim
n→0

∆ST[Qsp]

nβ
= − 1

N

(
ε− 1

4
ζ(2) + ζ(3)

)
. (B.16)

B.3 On the evaluation of ln det Ω on the matching saddle-
point

In this Appendix we will give some details about the evaluation of the logarithm
of the determinant of the Hessian matrix Ω on the matching saddle-point using
the replica approach, showing that it is equal to the RMP contribution, plus an
additional contribution that we expect to be opposite from Wästlund’s formula.
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We start from its general expression in Eq. (4.24),

Ωαβ,α̂β̂[Q
sp] ≡ √g|α|+2|β|g|α̂|+2|β̂|

∂2S[Q]

∂Qα,β∂Qα̂,β̂

∣∣∣∣∣
Q=Qsp

= δα,α̂ δβ,β̂ I(α ∩ β = ∅)− 2
√

g|α|+2|β|g|α̂|+2|β̂|
〈

ei ∑a∈α∪α̂ λa+2i ∑b∈β∪β̂ λb〉
z0

+ 2
√

g|α|+2|β|g|α̂|+2|β̂|
〈

ei ∑a∈α λa+2i ∑b∈β λb
〉

z0

〈
ei ∑a∈α̂ λa+2i ∑b∈β̂ λb〉

z0

= δα,α̂δβ,β̂ +
1
2

Qα,β√g|α|+2|β|

Qα̂,β̂√g|α̂|+2|β̂|

−
√g|α|+2|β|g|α̂|+2|β̂|Qα4α̂,β∪β̂∪(α∩α̂)

g|α4α̂|+2|β∪β̂∪(α∩α̂)|
I(β ∩ β̂ = ∅)I((α ∪ α̂) ∩ (β ∪ β̂) = ∅).

(B.17)

In the replica symmetric ansatz on the matching saddle-point solution the expres-
sion greatly simplifies, becoming

Ωαβ,α̂β̂ = δα,α̂δβ,β̂I(β ∩ α = ∅) +
δ|α|,0δ|α̂|,0

2
Q|β|√g2|β|

Q|β̂|√g2|β̂|

− δα,α̂

Q|β∪β̂∪α|
√g|α|+2|β|g|α|+2|β̂| I(β ∩ β̂ = ∅)I((β ∪ β̂) ∩ α = ∅)

g2|β∪β̂∪α|
. (B.18)

Observe first that the quantity above is diagonal respect to the index α. In partic-
ular

ln det Ω[Qsp] = ln det Ω(0)[Qsp] +
∞

∑
|α|=1

(
n
|α|

)
ln det Ω(|α|)[Qsp]

= ln det Ω(0)[Qsp] + n
∞

∑
s=1

(−1)s−1

s
ln det Ω(s)[Qsp] + o(n),

(B.19)

where we have separated the contributions for different values of s = |α| and
introduced

Ω(s)
ββ̂
≡ δβ,β̂ −Q|β|+|β̂|+sI(β ∩ β̂ = ∅)

√g2|β|+sg2|β̂|+s

g2|β|+2|β̂|+2s
+

δs,0

2

Q|β|Q|β̂|√g2|β|g2|β̂|
, (B.20)

where β is a set of n − s replica indices. A vector q is eigenvector of Ω(s) with
eigenvalue λ if

qβ − ∑
β̂ : β ∩ β̂ = ∅

√gs+2|β|gs+2|β̂|
g2|β|+2|β̂|+2s

Q|β|+|β̂|+sqβ̂ +
δs,0

2 ∑
|β̂|6=∅

Q|β|Q|β̂|qβ̂√g2|β|g2|β̂|
= λqβ. (B.21)

A first step is to diagonalize Ω(s) according to the irreducible representations
of the permutation group [WM13] in the space of n − s replica indices. In the
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spirit of the strategy of De Almeida and Thouless [AT78], and strictly follow-
ing Refs. [MP87, PR02], we observe that an eigenvector q(c) with c distinguished
replicas, is such that

q(c)β ≡
{

0 if |β| < c,
ωi
|β| if β contains c− i of the c distinguished indices, with i = 0, 1, . . . , c.

(B.22)
For c = 0, than we only have n− s possible eigenvectors in the form q(0)β ≡ q(0)|β| .
The eigenvalue equation can be written down for the (n − s) × (n − s) matrix
N(s,0) given by

N(s,0)
pq = δpq −

(
n− s− p

q

)√g2p+sg2q+sQp+q+s

g2p+2q+2s
+

δs,0

2

(
n
q

)
QpQq√g2pg2q

, (B.23)

whose eigenvalues have multiplicity 1 in the set of eigenvalues of Ω(s). For c ≥ 1,
imposing the ortogonality relation between q(c) and q(c−1), we obtain

∑
β

q(c)β q(c−1)
β = ∑

|β|≥c
q(c)β q(c−1)

β

= ∑
p≥c

c−1

∑
j=0

c−j

∑
r=0

(
n− s− c
p− j− r

)(
c
j

)(
c− j

r

)
ω

c−(r+j)
p ω

c−1−j
p = 0

=⇒
c−j

∑
r=0

(
n− s− c
p− j− r

)(
c− j

r

)
ω

c−(r+j)
p = 0 for p ≥ c and j = 0, 1, . . . , c− 1,

(B.24a)

that for n→ 0 becomes, for p ≥ c and j = 0, 1, . . . , c− 1,

c−j

∑
r=0

(−1)r
(

c− j
r

)
Γ(s + c + p− r− j)

Γ(p− r− j + 1)
ω

c−(r+j)
p = 0, (B.24b)

where we have used the property

lim
n→0

(
n− a

b

)
=

(−1)bΓ(a + b)
Γ(a)Γ(b + 1)

. (B.25)

Eq. (B.24a) allows us to keep ω0
p as independent only. In particular, for c = 1

we have pω0
p + (n− s− p)ω1

p = 0 and therefore the diagonalization of Ω in the
subspace c = 1 can be reduced to the diagonalization of the (n− s− 1)× (n− s−
1) matrix

N(s,1)
pq = δpq −

(
n− s− p

q

)
q

q + s− n

√g2p+sg2q+sQp+q+s

g2p+2q+2s

+
δs,0

2

[(
n− 1

q

)
q

q− n
+

(
n− 1
q− 1

)]
QpQq√g2pg2q

, (B.26)
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with eigenvalue multiplicity n− s− 1 respect to the original matrix Ω(s). Before
proceeding further, some considerations are in order. The matrices N(0,0) and
N(0,1) have the same limit as n → 0, in particular limn→0 N(0,1) = N(0,0). The
calculation of the contribution of these two matrices requires some care, but it
can be proved that it is eventually zero for β → +∞ [MP87, PR02]. For c ≥ 1
Eq. (B.24b) implies

ω0
p

∏c−1
u=0(s + p + u)

=
ω1

p

(p− c + 1)∏c−1
u=1(s + p + u)

= · · ·

= · · · =
ωl

p

∏l
v=1(p− c + v)∏c−1

u=l(s + p + u)
= · · · =

ωc
p

∏c
v=1(p− c + v)

=⇒ ωl
p =

Γ(p + l − c + 1)Γ(s + p)
Γ(p− c + 1)Γ(s + p + l)

ω0
p. (B.27)

Using the previous result, Eq. (B.21) for the |β| = 0 component of an eigenvector
with c ≥ 1 becomes

λω0
p =

δs,0

2

∞

∑
q=1

c

∑
i=0

(
n− c

q + i− c

)(
c

c− i

)QpQqωi
q√g2pg2q

+ ω0
p −

∞

∑
q=1

(
n− s− p

q

)√gs+2pgs+2q

g2s+2p+2q
Qp+q+sω

c
q

= ω0
p −

∞

∑
q=1

(−1)q Γ(s + q)Γ(s + p + q)√gs+2pgs+2q

Γ(s + p)Γ(s + q + c)Γ(q− c + 1)
Qp+q+s

g2s+2p+2q
ω0

q + o(n) (B.28)

(observe that the quadratic term is zero because of Eq. (B.24a)). We can finally
write for each value of s

ln det Ω(s) =
∞

∑
c=0

[(
n− s

c

)
−
(

n− s
c− 1

)]
ln det N(s,c) (B.29)

being the (n− s− c)× (n− s− c) matrix N(s,c) in the n→ 0 limit

N(s,c)
pq = δpq − (−1)q Γ(s + q)Γ(p + q + s)√g2p+sg2q+s

Γ(s + p)Γ(q− c + 1)Γ(s + q + c)
Qp+q+s

g2p+2q+2s
. (B.30)

Shifting by c the indices in the expression above, transposing and then multiplying
by

(−1)p+q

√
g2q+2c+s

g2p+2c+s

Γ(q + c + s)Γ(p + 1)
Γ(p + c + s)Γ(q + 1)

we get a new matrix M(s,c) with the same spectrum of N(s,c), namely

M(s,c)
pq = δpq − (−1)q+c Γ(p + q + s + 2c)

Γ(p + s + 2c)Γ(q + 1)
g2q+2c+s

g2(p+q+s+2c)
Qp+q+s+2c. (B.31)
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To evaluate the correction to the free-energy we need to compute therefore

ln det Ω =
∞

∑
c=2

[(
n
c

)
−
(

n
c− 1

)]
ln det M(0,c)

+
∞

∑
s=1

(
n
s

) ∞

∑
c=0

[(
n− s

c

)
−
(

n− s
c− 1

)]
ln det M(s,c)

= n
∞

∑
c=2

(−1)c−1 2c− 1
c(c− 1)

ln det M(0,c)

− n
∞

∑
s=1

∞

∑
c=0

(−1)c+s(2c + s− 1)
Γ(s + c− 1)

s!c!
ln det M(s,c) + o(n).

(B.32)

At this point is important to observe that, in the expression above, the s = 0
contribution exactly coincides with the fluctuation contribution appearing in the
finite-size corrections of RMP. Its evaluation has been performed in Refs. [MP87,
PR02], but no closed formula is known for it. The s ≥ 1 contribution is instead
absent in the RMP. Generalizing therefore the analysis of Refs. [MP87, PR02], we
note that eigenvalues of M(s,c) are the same as the eigenvalues of the operator

M(s,c)(x, y) = δ(x− y)− (−1)cA(c+s/2)(x, y) (B.33)

where the operator A(k)(x, y) was the one introduced in Ref. [PR02] and it is
defined as

A(k)(x, y) = 2e−
G(x)+G(y)

2

∞

∑
q=0

(−1)qe(q+k)(x+y)

Γ(2k + q)Γ(q + 1)
g2(q+k). (B.34)

Indeed, if ψp is an eigenvector of M(s,c) with corresponding eigenvalue λ, then, by
a straightforward computation, it can be verified that

φ(x) ≡ e(c+ s
2 )x− G(x)

2

+∞

∑
p=0

(−1)p

p!
g2p+2c+sψpepx (B.35)

is an eigenvector ofM(s,c)(x, y) with the same eigenvalue. To evaluate the β→ ∞
limit of A(k)(x, y) we observe that it has the same eigenvalues of the operator

H(k)(x, y) ≡ βA(k)(βx,βy) = e−
Ĝ(x)+Ĝ(y)

2

∞

∑
q=0

(−1)qe(q+k)β(x+y)

Γ(2k + q)Γ(q + 1)
1

q + k
. (B.36)

In Ref. [MP87, PR02] it has been shown that, for β→ +∞, if we impose ln k = βt
with t fixed, the β→ +∞ limit exists. In particular

H(k)(x, y)
ln k=βt−−−−→
t fixed

Ht(x, y) = e−
Ĝ(x)+Ĝ(y)

2 θ (x + y− 2t) . (B.37)

This result suggests that the evaluation of the sums in Eq. (B.32) must be per-
formed scaling c, s and β in a proper way. Given the known result for the RMP,
we distinguish now between the contributions with s ≥ 1 and the contribution
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obtained for s = 0. We know indeed that we can obtain a finite limit for the s = 0,
that is the corresponding fluctuation correction to the aoc in the RMP. We can
write

n
∞
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∞
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(B.38)

A numerical estimation of the quantity above can be found in Refs. [PR02, LPS17].
The evaluation of the s ≥ 1 terms is more complicated and we will present here a
non-rigorous treatment. We have
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(B.39)

Introducing 4c + s = z, the first sum in the last line of Eq. (B.39) becomes
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(B.40a)
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Similarly, after the change of variable z = 4c + s + 2, the second sum becomes
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In other words, we can write
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(B.41)

The main difficulty in the evaluation of the quantities above is that the coefficients

h1(z) :=
∞

∑
s=1

∞

∑
c=0

(−1)sΓ (s + 2c− 1) I (s + 4c = z)
Γ(s + 1)Γ (2c + 1)

(B.42)

h2(z) :=
∞

∑
s=1

∞

∑
c=0

(−1)sΓ(s + 2c)I (2 + s + 4c = z)
Γ(s + 1)Γ(2c + 2)

(B.43)

are oscillating with diverging amplitude in z for z → +∞, and therefore the
large z estimation is not straightforward. It is possible, however, that a different
rearrangement of the contributions appearing in the sums might lead to a simpler
asymptotic evaluation.

In the present work, we avoided this estimation using Wästlund’s formula,
but it is interesting to observe that Eq. (4.2c) implies that the contribution from
Eq. (B.39) is equal and opposite to the one in Eq. (B.38), that coincides with the
fluctuation finite-size correction to the aoc in the RMP. A more comprehensive
study of these quantities can be matter of future investigations.
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Appendix C

Appendix to Chapter 6

C.1 The case N = 3 of the Euclidean bipartite TSP

In the case N = 2 there is only one Hamiltonian cycle, that is h̃. The first nontrivial
case is N = 3. There are 6 Hamiltonian cycles. If we fix the starting point to be
r1 there are only two possibilities for the permutation σ of the red points, that is
(1, 2, 3) and (1, 3, 2). One is the dual of the other. We can restrict to the (1, 3, 2)
by removing the degeneracy in the orientation of the cycles. Indeed σ̃ is exactly
(1, 3, 2) according to (6.16). With this choice the 6 cycles are in correspondence
with the permutations π ∈ S3 of the blue points. We sort in increasing order both
the blue and red points. We have

E(π) = |r1 − bπ(1)|p + |r1 − bπ(3)|p + |r3 − bπ(2)|p

+ |r3 − bπ(1)|p + |r2 − bπ(3)|p + |r2 − bπ(2)|p .
(C.1)

The optimal solution is π̃ = (2, 3, 1). The permutations (1, 3, 2) and (3, 2, 1)
have always a grater cost than π̃, indeed the corresponding cycles are (r1b1r3b3r2b2)
and (r1b3r3b2r2b1), where we have colored in orange the path that, according to
Lemma 1, can be reversed to lower the total cost. Doing this we obtain the optimal
cycle in both cases. Notice that, since we can label each cycle using only the π
permutation, we can restrict ourself to moves that only involve blue points. Since
there are three blue points, these moves will always reverse paths of the form
birjbk, so they correspond simply to a swap in the permutation π. Therefore our
moves cannot be used to reach the optimal cycle from every starting cycle. A dia-
gram showing all the possible moves is shown in Fig. C.1. In conclusion, the cost
function makes S3 a poset with an absolute minimum and an absolute maximum.
The permutation (2, 3, 1) is preceded by both (1, 3, 2) and (3, 2, 1), which cannot
be compared between them, but both precede (1, 2, 3) and (3, 1, 2), which cannot
be compared between them. (2, 1, 3) is the greatest element.

We compute the average costs for all the permutations. Using the same tech-
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Figure C.1. The whole diagram describing the N = 3 case. In the squared boxes the
various cycle configurations are represented. Lower boxes correspond to lower costs.
All the possible moves suggested in Lemma 1 are represented by orange arrows.

niques used in section 6.3.3, we get that, for the p = 2 case

E[(2, 3, 1)] =
3
4
< E[(1, 3, 2)] = E[(3, 2, 1)] =

7
8

< E[(1, 2, 3)] = E[(3, 1, 2)] =
9
8

< E[(2, 1, 3)] =
5
4

.

(C.2)

C.2 Proofs

In this appendix we prove various propositions stated in the main text.

C.2.1 Proof of Proposition 6.4.1

Consider a σ ∈ SN with σ(1) = 1. As we said before, taking σ(1) = 1 correspond
to the irrelevant choice of the starting point of the cycle. Let us introduce now a
new set of ordered points B := {bj}j=1,...,N ⊂ [0, 1] such that

bi =

{
r1 for i = 1
ri−1 otherwise

(C.3)

and consider the Hamiltonian cycle on the complete bipartite graph with vertex
sets R and B

h[(σ, πσ)]

:= (r1, bπσ(1), rσ(2), bπσ(2), . . . , rσ(N), bπσ(N), rσ(1))
(C.4)

so that

πσ(i) =





2 for i = 1
σ(i) + 1 for i < k
σ(i + 1) + 1 for i ≥ k
1 for i = N

(C.5)
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where k is such that σ(k) = N. We have therefore

(bπσ(1), bπσ(2), . . . , bπσ(k−1), bπσ(k), . . . , bπσ(N−1), bπσ(N))

= (r1, rσ(2), . . . , rσ(k−1), rσ(k+1), . . . , rσ(N), r1).
(C.6)

In other words we are introducing a set of blue points such that we can find
a bipartite Hamiltonian tour which only use link available in our monopartite
problem and has the same cost of σ. Therefore, by construction (using (C.6)):

EN(h[σ]) = EN(h[(σ, πσ)]) ≥ EN(h[(σ̃, π̃)])

= EN(h[(σ̃, πσ̃)]) = EN(h[σ̃]),
(C.7)

where the fact that π̃ = πσ̃ can be checked using (6.16) and (6.17) and (C.5).

C.2.2 Proof of Proposition 6.4.2

Before proving Proposition 6.4.2, we enunciate and demonstrate two lemmas that
will be useful for the proof. The first one will help us in understand how to
remove two crossing arcs without breaking the TSP cycle into multiple ones. The
second one, instead will prove that removing a crossing between two arcs will
always lower the total number of crossing in the TSP cycle.

Lemma 5. Given an Hamiltonian cycle with its edges drawn as arcs in the upper half-
plain, let us consider two of the arcs that cannot be drawn without crossing each other.
Then, this crossing can be removed only in one way without splitting the original cycle
into two disjoint cycles; moreover, this new configuration has a lower cost than the original
one.

Proof. Let us consider a generic oriented Hamiltonian cycle and let us suppose it
contains a matching as in figure:

r1 r2 r3 r4

There are two possible orientations for the matching that correspond to this two
oriented Hamiltonian cycles:

1. (C1r1r3C2r2r4C3) ,

2. (C1r1r3C2r4r2C3) ,

where C1, C2 and C3 are paths (possibly visiting other points of our set). The
other possibilities are the dual of this two, and thus they are equivalent. In both
cases, a priori, there are two choices to replace this crossing matching (r1, r3),
(r2, r4) with a non-crossing one: (r1, r2), (r3, r4) or (r1, r4), (r2, r3). We now show,
for the two possible prototypes of Hamiltonian cycles, which is the right choice
for the non-crossing matching, giving a general rule. Let us consider case 1: here,
if we replace the crossing matching with (r1, r4), (r2, r3), the cycle will split; in
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Figure C.2. Replacing a non-crossing matching with a crossing one in an Hamiltonian
cycle always increase the number of crossings. Here we list all the possible topological
configurations one can have.

fact we would have two cycles: (C1r1r4C3) and (r3C2r2). Instead, if we use the
other non-crossing matching, we would have: (C1r1r2[C2]−1r3r4C3). This way we
have removed the crossing without splitting the cycle. Let us consider now case
2: in this situation, using (r1, r4), (r2, r3) as the new matching, we would have:
(C1r1r4[C2]−1r3r2C3); the other matching, on the contrary, gives: (C1r1r2C3) and
(r3C2r4).

The general rule is the following: given the oriented matching, consider the
four oriented lines going inward and outward the node. Then, the right choice
for the non-crossing matching is obtained joining the two couples of lines with
opposite orientation.

Since the difference between the cost of the original cycle and the new one
simply consists in the difference between a crossing matching and a non-crossing
one, this is positive when 0 < p < 1, as shown in [BCS14]. �

Now we deal with the second point: given an Hamiltonian cycle, in general
it is not obvious that replacing non-crossing arcs with a crossing one, the total
number of intersections increases. Indeed there could be the chance that one or
more nodes are removed in the operation of substituting the matching we are
interested in. However, we now show that it holds the following

Lemma 6. Given an Hamiltonian cycle with a matching that is non-crossing, if it is
replaced by a crossing one, the total number of intersections always increases. Vice versa,
if a crossing matching is replaced by a non-crossing one, the total number of crossings
always decreases.

Proof. This is a topological property we will prove for cases, using the represen-
tation on the circle, since crossings are easier to visualize. All the possibilities
are displayed in Fig. C.2, where we have represented with red lines the edges
involved in the matching, while the other lines span all the possible topological
configurations.

�

Now we can prove Proposition 6.4.2:

Proof. Consider a generic Hamiltonian cycle and draw the connections between
the points in the upper half-plain. Suppose to have an Hamiltonian cycle where
there are, let us say, n intersections between edges. Thanks to Lemma 5, we can
swap two crossing arcs with a non-crossing one without splitting the Hamiltonian
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cycle. As shown in Lemma 6, this operation lowers always the total number of
crossings between the edges, and the cost of the new cycle is smaller than the cost
of the starting one. Iterating this procedure, it follows that one can find a cycle
with no crossings. Now we prove that there are no other cycles out of h∗ and its
dual with no crossings. This can be easily seen, since h∗ is the only cycle that
visits all the points, starting from the first, in order. This means that all the other
cycles do not visit the points in order and, thus, they have a crossing, due to the
fact that the point that is not visited in a first time, must be visited next, creating
a crossing. �

C.2.3 Proof of Proposition 6.4.3

To complete the proof given in the main text, we need to discuss two points.
Firstly, we address which is the correct move that swap a non-crossing matching
with a crossing one; thanks to Lemma 6, by performing such a move one always
increases the total number of crossings. Secondly we prove that there is only one
Hamiltonian cycle to which this move cannot be applied (and so it is the optimal
solution).

We start with the first point: consider an Hamiltonian cycle with a matching
that is non-crossing, then the possible situations are the following two:

r1 r2 r3 r4

r1 r2 r3 r4

For the first case there are two possible independent orientations:

1. (r1r4C2r2r3C3) ,

2. (r1r4C2r3r2C3) .

If we try to cross the matchings in the first cycle, we obtain (r1r3C3)(r2[C2]−1r4),
and this is not anymore an Hamiltonian cycle. On the other hand, in the second
cycle, the non-crossing matching can be replaced by a crossing one without break-
ing the cycle: (r1r3[C2]−1r4r2C3). For the second case the possible orientations are:

1. (r1r2C2r4r3C3) ,

2. (r1r2C2r3r4C3) .

By means of the same procedure used in the first case, one finds that the non-
crossing matching in the second cycle can be replaced by a crossing one without
splitting the cycle, while in the first case the cycle is divided by this operation.

The last step is the proof that the Hamiltonian cycle given in Proposition 6.4.3
has the maximum number of crossings.
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Let us consider an Hamiltonian cycle h[σ] =
(

rσ(1), . . . , rσ(N)

)
on the com-

plete graph KN . We now want to evaluate what is the maximum number of
crossings an edge can have depending on the permutation σ. Consider the edge
connecting two vertices rσ(i) and rσ(i+1): obviously both the edges (rσ(i−1), rσ(i))
and (rσ(i+1), rσ(i+2)) share a common vertex with (rσ(i), rσ(i+1)), therefore they can
never cross it. So, if we have N vertices, each edge has N − 3 other edges that
can cross it. Let us denote with N [σ(i)] the number of edges that cross the edge
(rσ(i), rσ(i+1)) and let us define the sets:

Aj :=

{
{rk}k=σ(i)+1 (mod N),...,σ(i+1)−1 (mod N) for j = 1
{rk}k=σ(i+1)+1 (mod N),...,σ(i)−1 (mod N) for j = 2

(C.8)

These two sets contain the points between rσ(i) and rσ(i+1). In particular, the
maximum number of crossings an edge can have is given by:

max(N [σ(i)]) =

{
2 minj |Aj| for |A1| 6= |A2|
2|A1| − 1 for |A1| = |A2|

(C.9)

This is easily seen, since the maximum number of crossings an edge can have is
obtained when all the points belonging to the smaller between A1 and A2 con-
tributes with two crossings. This cannot happen when the cardinality of A1 and
A2 is the same because at least one of the edges departing from the nodes in A1
for example, must be connected to one of the ends of the edge (rσ(i), rσ(i+1)), in
order to have an Hamiltonian cycle. Note that this case, i.e. |A1| = |A2| can
happen only if N is even.

Consider the particular case such that σ(i) = a and σ(i + 1) = a + N−1
2

(mod N) or σ(i + 1) = a+ N+1
2 (mod N). Then (C.9) in this cases is exactly equal

to N − 3, which means that the edges (ra, ra+ N−1
2 (mod N)) and (ra, ra+ N+1

2 (mod N))

can have the maximum number of crossings if the right configuration is chosen.
Moreover, if there is a cycle such that every edge has N− 3 crossings, such a cycle
is unique, because the only way of obtaining it is connecting the vertex ra with
ra+ N−1

2 (mod N) and ra+ N+1
2 (mod N), ∀a.

C.3 The 2-factor and TSP solution for p < 0 and even N

We start considering here the 2-factor solution for p < 0 in the even-N case. After
that, we proof Proposition 6.4.4.

In the following we will say that, given a permutation σ ∈ SN , the edge
(rσ(i), rσ(i+1)) has length L ∈N if:

L = L(i) := min
j
|Aj(i)| (C.10)

where Aj(i) was defined in equation (C.8).
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C.3.1 N is a multiple of 4

Let us consider the sequence of points R = {ri}i=1,...,N of N points, with N a
multiple of 4, in the interval [0, 1], with r1 ≤ · · · ≤ rN , consider the permutations
σj, j = 1, 2 defined by the following cyclic decomposition:

σ1 = (r1, r N
2 +1, r2, r N

2 +2) . . .

(ra, ra+ N
2

, ra+1, ra+ N
2 +1) . . . (r N

2 −1, rN−1, r N
2

, rN)
(C.11a)

σ2 = (r1, r N
2 +1, rN , r N

2
) . . . (ra, ra+ N

2
, ra−1, ra+ N

2 −1)

. . . (r N
2 −1, rN−1, r N

2 −2, rN−2)
(C.11b)

for integer a = 1, . . . , N
2 − 1. Defined h∗1 := h[σ1] and h∗2 := h[σ2], it holds the

following:

Proposition C.3.1. h∗1 and h∗2 are the 2-factors that contain the maximum number of
crossings between the arcs.

Proof. An edge can be involved, at most, in N− 3 crossing matchings. In the even
N case, this number is achieved by the edges of the form (ra, ra+ N

2 (mod N)), i.e. by

the edges of length N
2 − 1. There can be at most N

2 edges of this form in a 2-factor.
Thus, in order to maximize the number of crossings, the other N

2 edges must be
of the form (ra, ra+ N

2 +1 (mod N)) or (ra, ra+ N
2 −1 (mod N)), i.e. of length N

2 − 2. It is
immediate to verify that both h∗1 and h∗2 have this property; we have to prove they
are the only ones with this property.
Consider, then, to have already fixed the N

2 edges (ra, ra+ N
2 (mod N)), ∀a ∈ [N].

Suppose to have fixed also the edge (r1, r N
2
) (the other chance is to fix the edge

(r1, r N
2 +2): this brings to the other 2-factor). Consider now the point r N

2 +1: suppose
it is not connected to the point rN , but to the point r2, i.e., it has a different edge
from the cycle h∗2 . We now show that this implies it is not possible to construct all
the remaining edges of length N

2 − 2. Consider, indeed, of having fixed the edges
(r1, r N

2
) and (r2, r N

2 +1) and focus on the vertex r N
2 +2: in order to have an edge of

length N
2 − 2, this vertex must be connected either with r1 or with r3, but r1 already

has two edges, thus, necessarily, there must be the edge (r N
2 +2, r3). By the same

reasoning, there must be the edges (r N
2 +3, r4), (r N

2 +4, r5), . . . , (rN−2, r N
2 −1). Pro-

ceeding this way, we have constructed N− 1 edges; the remaining one is uniquely
determined, and it is (rN−1, rN), which has null length.
Therefore the edge (r2, r N

2 +1) cannot be present in the optimal 2-factor and so, nec-
essarily, there is the edge (r N

2 +1, rN); this creates the cycle (r1, r N
2

, rN , r N
2 +1). Pro-

ceeding the same way on the set of the remaining vertices {r2, r3, . . . , r N
2 −1, r N

2 +2,

. . . , rN−1}, one finds that the only way of obtaining N
2 edges of length N

2 − 1 and
N
2 edges of length N

2 − 2 is generating the loop coverings of the graph h∗1 or h∗2 . �

Proposition C.3.1, together with the fact that the optimal 2-factor has the maxi-
mum number of crossing matchings, guarantees that the optimal 2-factor is either
h∗1 or h∗2 .
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r1 r2 r3 r4 r5 r6 r7 r8 r9 r10

(a) One of the optimal 2-factor solutions for
N = 10 and p < 0; the others are ob-
tainable cyclically permuting this con-
figuration

r1

r2

r3r4

r5

r6

r7

r8 r9

r10

(b) The same optimal 2-factor solution, but
represented on a circle, where the sym-
metries of the solutions are more easily
seen

Figure C.3

C.3.2 N is not a multiple of 4

Let us consider the usual sequence R = {ri}i=1,...,N of N points, with even N
but not a multiple of 4, in the interval [0, 1], with r1 ≤ · · · ≤ rN , consider the
permutation π defined by the following cyclic decomposition:

π = (r1, r N
2

, rN , r N
2 +1, r2, r N

2 +2)(r3, r N
2 +3, r4, r N

2 +4)

. . . (r N
2 −2, rN−1, r N

2 −1, rN−2)
(C.12)

Defined
πk(i) := π(i) + k (mod N), k ∈ [0, N − 1] (C.13)

and
h∗k := h[πk] (C.14)

the following proposition holds:

Proposition C.3.2. h∗k are the 2-factors that contain the maximum number of crossings
between the arcs.

Proof. Also in this case the observations done in the proof of Proposition C.3.1
holds. Thus, in order to maximize the number of crossing matchings, one con-
siders, as in the previous case, the N

2 edges of length N
2 − 1, i.e. of the form

(ra, ra+ N
2 (mod N)), and then tries to construct the remaining N

2 edges of length
N
2 − 2, likewise the previous case. Again, if one fixes the edge (r1, r N

2
), the edge

(r2, r N
2 +1) cannot be present, by the same reasoning done in the proof of Proposi-

tion B.1. The fact that, in this case, N is not a multiple of 4 makes it impossible
to have a 2-factor formed by 4-vertices loops, as in the previous case. The first
consequence is that, given N

2 edges of length N
2 − 1, it is not possible to have N

2
edges of length N

2 − 2. In order to find the maximum-crossing solution, one has
the following options:

• to take a 2-factor with N
2 edges of length N

2 − 1, N
2 − 1 edges of length N

2 − 2
and one edge of length N

2 − 2: in this case the theoretical maximum number
of crossing matchings is N(N−3)

2 + (N
2 − 1)(N − 4) + N − 6 = N2 − 7N

2 − 2;
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• to take a 2-factor with N
2 − 1 edges of length N

2 − 1, N
2 + 1 edges of length

N
2 − 2: in this case the theoretical maximum number of crossing matchings
is (N

2 − 1)(N − 3) + (N
2 + 1)(N − 4) = N2 − 7N

2 − 1.

Clearly the second option is better, at least in principle, than the first one. The cy-
cles h∗k belong to the second case and saturate the number of crossing matchings.
Suppose, then, to be in this case. Let us fix the N

2 − 1 edges of length N
2 − 1; this

operation leaves two vertices without any edge, and this vertices are of the form
ra, ra+ N

2 (mod N), a ∈ [1, N] (this is the motivation for the degeneracy of solutions).
By the reasoning done above, the edges that link this vertices must be of length
N
2 − 2, and so they are uniquely determined. They form the 6-points loop (ra,
ra−1+ N

2 (mod N), rN−1+a (mod N), ra+ N
2 (mod N), ra+1 (mod N), ra+1+ N

2 (mod N)). The re-
maining N − 6 points, since 4|(N − 6), by the same reasoning done in the proof
of Proposition C.3.1, necessarily form the N−6

4 4-points loops given by the permu-
tations (C.13). �

Proposition C.3.2, together with the fact that the optimal 2-factor has the max-
imum number of crossing matchings, guarantees that the optimal 2-factor is such
that h∗ ∈ {h∗k}N

k=1.

C.3.3 Proof of Proposition 6.4.4

Proof. Let us begin from the permutations that define the optimal solutions for
the 2-factor, that is those given in Eqs. C.11 if is N a multiple of 4 and in Eq. C.12
otherwise. In both cases, the optimal solution is formed only by edges of length
N
2 − 1 and of length N

2 − 2. Since the optimal 2-factor is not a TSP, in order to
obtain an Hamiltonian cycle from the 2-factor solution, couples of crossing edges
need to became non-crossing, where one of the two edges belongs to one loop of
the covering and the other to another loop. Now we show that the optimal way of
joining the loops is replacing two edges of length N

2 − 1 with other two of length
N
2 − 2. Let us consider two adjacent 4-vertices loops, i.e. two loops of the form:

(ra, ra+ N
2

, ra+1, ra+ N
2 +1), (ra+2, ra+2+ N

2
, ra+3, ra+ N

2 +3) (C.15)

and let us analyze the possible cases:

1. to remove two edges of length N
2 − 2, that can be replaced in two ways:

• either with an edge of length N
2 − 2 and one of length N

2 − 4; in this
case the maximum number of crossings decreases by 4;

• or with two edges of length N
2 − 3; also in this situation the maximum

number of crossings decreases by 4.

2. to remove one edge of length N
2 − 2 and one of length N

2 − 1, and also this
operation can be done in two ways:

• either with an edge of length N
2 − 2 and one of length N

2 − 3; in this
case the maximum number of crossings decreases by 3;



172 C. Appendix to Chapter 6

• or with an edge of length N
2 − 3 and one of length N

2 − 4; in this situa-
tion the maximum number of crossings decreases by 7.

3. the last chance is to remove two edges of length N
2 − 1, and also this can be

done in two ways:

• either with two edges of length N
2 − 3; here the maximum number of

crossings decreases by 6;

• or with two edges of length N
2 − 2; in this situation the maximum

number of crossings decreases by 2. This happens when we substi-
tute two adjacent edges of length N

2 − 1, that is, edges of the form
(ra, r N

2 +a (mod N)) and (ra+1, r N
2 +a+1 (mod N)), with the non-crossing edges

(ra, r N
2 +a+1 (mod N)) and (ra+1, r N

2 +a (mod N))

The last possibility is the optimal one, since our purpose is to find the TSP with
the maximum number of crossings, in order to conclude it has the lower cost.
Notice that the cases discussed above holds also for the 6-vertices loop and an
adjacent 4-vertices loop when N is not a multiple of 4. We have considered here
adjacent loops because, if they were not adjacent, then the difference in maximum
crossings would have been even bigger.
Now we have a constructive pattern for building the optimal TSP. Let us call O
the operation described in the second point of (3). Then, starting from the optimal
2-factor solution, if it is formed by n points, O has to be applied N

4 − 1 times if N
is a multiple of 4 and N−6

4 times otherwise. In both cases it is easily seen that O
always leaves two adjacent edges of length N

2 − 1 invariant, while all the others
have length N

2 − 2. The multiplicity of solutions is given by the N
2 ways one can

choose the two adjacent edges of length N
2 − 1. In particular, the Hamiltonian

cycles h∗k saturates the maximum number of crossings that can be done, i.e., every
time that O is applied, exactly 2 crossings are lost.
We have proved, then, that h∗k are the Hamiltonian cycles with the maximum
number of crossings. Now we prove that any other Hamiltonian cycle has a lower
number of crossings. Indeed any other Hamiltonian cycle must have

• either every edge of length N
2 − 2;

• or at least one edge of length less than or equal to N
2 − 3.

This is easily seen, since it is not possible to build an Hamiltonian cycle with more
than two edges or only one edge of length N

2 − 1 and all the others of length N
2 − 2.

It is also impossible to build an Hamiltonian cycle with two non-adjacent edges of
length N

2 − 1 and all the others of length N
2 − 2: the proof is immediate. Consider

then the two cases presented above: in the first case the cycle (let us call it H) is
clearly not optimal, since it differs from h∗k , ∀k by a matching that is crossing in
h∗k and non-crossing in H. Let us consider, then, the second case and suppose the
shortest edge, let us call it b, has length N

2 − 3: the following reasoning equally
holds if the considered edge is shorter. The shortest edge creates two subsets of
vertices: in fact, called x and y the vertices of the edge considered and supposing
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x < y, there are the subsets defined by:

A = {r ∈ V : x < r < y} (C.16)

B = {r ∈ V : r < x ∨ r > y} (C.17)

Suppose, for simplicity, that |A| < |B|: then, necessarily |A| = N
2 − 3 and |B| =

N
2 + 1. As an immediate consequence, there is a vertex in B whose edges have
both vertices in |B|. As a consequence, fixed an orientation on the cycle, one of
this two edges and b are obviously non-crossing and, moreover, have the right
relative orientation so that they can be replaced by two crossing edges without
splitting the Hamiltonian cycle. Therefore also in this case the Hamiltonian cycle
considered is not optimal. �

C.4 General distribution of points

In this section we shall consider a more general distribution of points. Let choose
the points in the interval [0, 1] according to the distribution ρ, which has no zero
in the interval, and let

Φρ(x) =
∫ x

0
dt ρ(t) (C.18)

its cumulative, which is an increasing function with Φρ(0) = 0 and Φρ(1) = 1.
In this case, the probability of finding the l-th point in the interval [x, x + dx]

and the s-th point in the interval [y, y + dy] is given, for s > l by

pl,s(x, y) dΦρ(x) dΦρ(y) =
Γ(N + 1)

Γ(l) Γ(s− l) Γ(N − s + 1)

×Φl−1
ρ (x)

[
Φρ(y)−Φρ(x)

]s−l−1 [1−Φρ(y)
]N−s

× θ(y− x) dΦρ(x) dΦρ(y)

(C.19)

We have that, in the case p > 1

EN [h∗] =
∫

dΦρ(x) dΦρ(y) (y− x)p

×
[

p1,2(x, y) + pN−1,N(x, y) +
N−2

∑
l=1

pl,l+2(x, y)

] (C.20)

and

N−2

∑
l=1

pl,l+2(x, y) =
Γ(N + 1)
Γ(N − 2)

[
1−Φρ(y) + Φρ(x)

]N−3

×
[
Φρ(y)−Φρ(x)

]
θ(y− x)

(C.21)

while

[p1,2(x, y) + pN−1,N(x, y)] =
Γ(N + 1)
Γ(N − 1)

[(
1−Φρ(y)

)N−2
+ ΦN−2

ρ (x)
]

θ(y− x)

(C.22)
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For large N we can make the approximation

EN [h∗] ≈ N3
∫

dΦρ(x) dΦρ(y) (y− x)p

×
[
1−Φρ(y) + Φρ(x)

]N [Φρ(y)−Φρ(x)
]

θ(y− x)
(C.23)

and we remark that the maximum of the contribution to the integral comes from
the region where Φρ(y) ≈ Φρ(x) and we make the change of variables

Φρ(y) = Φρ(x) +
ε

N
(C.24)

so that
y = Φ−1

ρ

[
Φρ(x) +

ε

N

]
≈ x +

ε

Nρ(x)
(C.25)

and we get

EN [h∗] ≈N3
∫

dΦρ(x)
∫ ∞

0

dε

N

[
ε

Nρ(x)

]p ε

N
e−ε Γ(p + 2)

Np−1

∫
dx ρ1−p(x) . (C.26)

When 0 < p < 1

EN [h∗] =
∫

dΦρ(x) dΦρ(y) (y− x)p

[
p1,N(x, y) +

N−1

∑
l=1

pl,l+1(x, y)

]
(C.27)

and
N−1

∑
l=1

pl,l+1(x, y) = N(N − 1)
[
1−Φρ(y) + Φρ(x)

]N−2
θ(y− x) (C.28)

while

p1,N(x, y) = N(N − 1)
[
Φρ(y)−Φρ(x)

]N−2
θ(y− x) (C.29)

For large N we can make the approximation

EN [h∗] ≈N2
∫

dΦρ(x) dΦρ(y) (y− x)p [1−Φρ(y) + Φρ(x)
]N

θ(y− x)

≈N2
∫

dΦρ(x)
∫ ∞

0

dε

N

[
ε

Nρ(x)

]p

e−ε

=
Γ(p + 1)

Np−1

∫
dx ρ1−p(x) .

(C.30)

Indeed the other term, for large N, gives a contribution

N2
∫
(y− x)p [Φρ(y)−Φρ(x)

]N
θ(y− x) dΦρ(x) dΦρ(y) (C.31)

so that, we will set

Φρ(y) = 1− ε

N
, Φρ(x) =

δ

N
, y− x ≈ 1 (C.32)

and therefore we get a contribution
∫ ∞

0
dε e−ε

∫ ∞

0
dδ e−δ = 1 (C.33)

which is of the same order of the other term only at p = 1.
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C.5 Calculation of the second moment of the optimal cost
distribution

In this Appendix we compute the second moment of the optimal cost distribution.
We will restrict for simplicity to the p > 1 case, where

EN [h∗] = |r2 − r1|p + |rN − rN−1|p +
N−2

∑
i=1
|ri+2 − ri|p . (C.34)

We begin by writing the probability distribution for N ordered points

ρN(r1, . . . , rN) = N!
N

∏
i=0

θ(ri+1 − ri) (C.35)

where we have defined r0 ≡ 0 and rN+1 ≡ 1. The joint probability distribution of
their spacings

ϕi ≡ ri+1 − ri , (C.36)

is, therefore

ρN(ϕ0, . . . , ϕN) = N! δ

[
N

∑
i=0

ϕi = 1

]
N

∏
i=0

θ(ϕi) . (C.37)

If {i1, i2, . . . , ik} is a generic subset of k different indices in {0, 1, . . . , N}, we soon
get the marginal distributions

ρ
(k)
N (ϕi1 , . . . , ϕik) =

N!
(N − k)!

(
1−

k

∑
n=1

ϕin

)N−k

θ

(
1−

k

∑
n=1

ϕin

)
k

∏
n=1

θ(ϕin) . (C.38)

Developing the square of (C.34) one obtains N2 terms, each one describing a
particular configuration of two arcs connecting some points on the line. We will
denote by χ1 and χ2 the length of these arcs; they can only be expressed as a
sum of 2 spacings or simply as one spacing. Because the distribution (C.38) is
independent of i1, . . . , ik, these terms can be grouped together on the base of their
topology on the line with a given multiplicity. All these terms have a weight that
can be written as ∫ 1

0
dχ1 dχ2 χ

p
1 χ

p
2 ρ(χ1, χ2) (C.39)

where ρ is a joint distribution of χ1 and χ2. Depending on the term in the square
of (C.34) one is taking into account, the distribution ρ takes different forms, but it
can always be expressed as in function of the distribution (C.38). As an example,
we show how to calculate |r3 − r1|p|r4 − r2|p. In this case ρ(χ1, χ2) takes the form

ρ(χ1, χ2) =
∫

dϕ1 dϕ2 dϕ3 ρ
(3)
N (ϕ1, ϕ2, ϕ3)

δ (χ1 − ϕ1 − ϕ2) δ (χ2 − ϕ2 − ϕ3)

= N(N − 1)
[
(1− χ1)

N−2θ(χ1)θ(χ2 − χ1)θ(1− χ2)

+ (1− χ2)
N−2θ(χ2)θ(χ1 − χ2)θ(1− χ1)

−(1− χ1 − χ2)
N−2θ(χ1)θ(χ2)θ(1− χ1 − χ2)

]
, (C.40)
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that, plugged into (C.39) gives

|r3 − r1|p|r4 − r2|p =
Γ(N + 1)

[
Γ(2p + 3)− Γ(p + 2)2]

(p + 1)2Γ(N + 2p + 1)
. (C.41)

All the other terms contained can be calculated the same way; in particular there
are 7 different topological configurations that contribute. After having counted
how many times each configuration appears in (EN [h∗])2, the final expression
that one gets is

(EN [h∗])2 =
Γ(N + 1)

Γ(N + 2p + 1)

[
4(N − 3)Γ(p + 2)Γ(p + 1)

+
(
(N − 4)(N − 3)(p + 1)2 − 2N + 8

)
Γ(p + 1)2+

+
[N(2p + 1)(p + 5)− 4p(p + 5)− 8] Γ(2p + 1)

(p + 1)

]
. (C.42)
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Appendix D

Possible solutions in Euclidean
2-factor problem

D.1 The Padovan numbers

According to Proposition 7.2.1, in the optimal 2-factor configuration of the com-
plete bipartite graph there are only loops of length 2 and 3. Here we will count
the number of possible optimal solutions for each value of N. Let fN be the num-
ber of ways in which the integer N can be written as a sum in which the addenda
are only 2 and 3. For example, f4 = 1 because N = 4 can be written only as 2 + 2,
but f5 = 2 because N = 5 can be written as 2 + 3 and 3 + 2. We simply get the
recursion relation

fN = fN−2 + fN−3 (D.1)

with the initial conditions f2 = f3 = f4 = 1. The N-th Padovan number Pad(N) is
defined as fN+2. Therefore it satisfies the same recursion relation (D.1) but with
the initial conditions Pad(0) = Pad(1) = Pad(2) = 1.

A generic solution of (D.1) can be written in terms of the roots of the equation

x3 = x + 1 . (D.2)

There is one real root

p =
(9 +

√
69)

1
3 + (9−

√
69)

1
3

2
1
3 3

2
3

≈ 1.324717957244746 . . . (D.3)

known as the plastic constant and two complex conjugates roots

z± =
(−1± i

√
3)(9 +

√
69)

1
3 + (−1∓ i

√
3)(9−

√
69)

1
3

2
4
3 3

2
3

≈ −0.662359 . . . ± i 0.56228 . . .
(D.4)

of modulus less than unity. Therefore

Pad(N) = a pN + b zN
+ + b∗ zN

− (D.5)
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Figure D.1. Padovan numbers and their asymptotic expansion.

and by imposing the initial conditions we get

Pad(N) =
(z+ − 1)(z− − 1)
(p− z+)(p− z−)

pN +
(p− 1)(z− − 1)

(z+ − p)(z+ − z−)
zN
+ +

(p− 1)(z+ − 1)
(z− − p)(z− − z+)

zN
− .

(D.6)
For large N we get

Pad(N) ∼ λ pN (D.7)

with λ ≈ 0.722124 . . . the real solution of the cubic equation

23 t3 − 23 t2 + 6 t− 1 = 0 . (D.8)

In Fig. D.1 we plot the Padovan sequence for a range of values of N and its
asymptotic expression.

There is a relation between the Padovan numbers and the Binomial coeffi-
cients. If we consider k addenda equal to 3 and s addenda equal to 2, there are
(k+s

k ) = (k+s
s ) possible different orderings. If we fix N = 3 k + 2 s we easily get that

Pad(N − 2) = ∑
k≥0

∑
s≥0

δN,3 k+2 s

(
k + s

k

)
= ∑

m≥0
∑
k≥0

δN,k+2 m

(
m
k

)
. (D.9)

D.2 The recursion on the complete graph

A recursion relation analogous to eq. (D.1) can be derived for the number of
possible solution of the 2-factor problem on the complete graph KN . Let gN be
the number of ways in which the integer N can be expressed as a sum of 3, 4 and
5. Then gN satisfies the recursion relation given by

gN = gN−3 + gN−4 + gN−5 , (D.10)

with the initial conditions g3 = g4 = g5 = g6 = 1 and g7 = 2. The solution of
this recursion relation can be written in function of the roots of the 5-th order
polynomial

x5 − x2 − x− 1 = 0 . (D.11)



D.3 The plastic constant 179

This polynomial can be written as (x2 + 1)(x3 − x − 1) = 0. Therefore the roots
will be the same of the complete bipartite case (p, and z±) and in addition

y± = ±i . (D.12)

gN can be written as

gN = α1pN + α2zN
+ + α3zN

− + α4yN
+ + α5yN

− , (D.13)

where the constants α1, α2, α3, α4, and α5 are fixed by the initial conditions g3 =
g4 = g5 = g6 = 1 and g7 = 2. When N is large the dominant contribution comes
from the plastic constant

gN ' α1pN . (D.14)

with α1 ≈ 0.262126...

D.3 The plastic constant

In 1928, shortly after abandoning his architectural studies and becoming a novice
monk of the Benedictine Order, Hans van der Laan discovered a new, unique sys-
tem of architectural proportions. Its construction is completely based on a single
irrational value which he called the plastic number (also known as the plastic
constant) [MS12]. This number was originally studied in 1924 by a French engi-
neer, G. Cordonnier, when he was just 17 years old, calling it "radiant number".
However, Hans van der Laan was the first who explained how it relates to the
human perception of differences in size between three-dimensional objects and
demonstrated his discovery in (architectural) design. His main premise was that
the plastic number ratio is truly aesthetic in the original Greek sense, i.e. that its
concern is not beauty but clarity of perception [Pad02]. The word plastic was
not intended, therefore, to refer to a specific substance, but rather in its adjectival
sense, meaning something that can be given a three-dimensional shape [Pad02].
The golden ratio or divine proportion

φ =
1 +
√

5
2

≈ 1.6180339887 , (D.15)

which is a solution of the equation

x2 = x + 1 , (D.16)

has been studied by Euclid, for example for its appearance in the regular pen-
tagon, and has been used to analyze the most aesthetic proportions in the arts.
For example, the golden rectangle, of size (a + b) × a which may be cut into a
square of size a × a and a smaller rectangle of size b × a with the same aspect
ratio

a + b
a

=
a
b
= φ . (D.17)

This amounts to the subdivision of the interval AB of length a + b into AC of
length a and BC of length b. By fixing a + b = 1 we get

1
a
=

a
1− a

= φ , (D.18)
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which implies that φ is the solution of (D.16). The segments AC and BC, of length,
respectively 1

φ2 (φ, 1) are sides of a golden rectangle.
But the golden ratio fails to generate harmonious relations within and be-

tween three-dimensional objects. Van der Laan therefore elevates definition of
the golden rectangle in terms of space dimension. Van der Laan breaks segment
AB in a similar manner, but in three parts. If C and D are points of subdivision,
plastic number p is defined with

AB
AD

=
AD
BC

=
BC
AC

=
AC
CD

=
CD
BD

= p (D.19)

and by fixing AB = 1, from AC = 1− BC, BD = 1− AD we get

p3 = p + 1 . (D.20)

The segments AC, CD and BD, of length, respectively, 1
(p+1)p2 (p2, p, 1) can be

interpreted as sides of a cuboid analogous to the golden rectangle.
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Appendix E

Selberg Integrals

Euler beta integrals

B(α, β) :=
∫ 1

0
dx xα−1(1− x)β−1 =

Γ(α)Γ(β)

Γ(α + β)
(E.1)

with α, β ∈ C and <(α) > 0, <(β) > 0, have been generalized in the 1940s by Atle
Selberg [Sel44]

Sn(α, β, γ) ≡
[

n

∏
i=1

∫ 1

0
dxi xα−1

i (1− xi)
β−1

]
|∆(x)|2γ (E.2)

=
n

∏
j=1

Γ(α + (j− 1)γ)Γ(β + (j− 1)γ)Γ(1 + jγ)
Γ(α + β + (n + j− 2)γ)Γ(1 + γ)

(E.3)

where
∆(x) ≡ ∏

1≤i<j≤n
(xi − xj) (E.4)

is the Vandermonde determinant, with α, β, γ ∈ C and <(α) > 0, <(β) > 0, <(γ) >
min(1/n,<(α)/(n − 1),<(β)/(n − 1)), see [AAR99, Chap. 8]. Indeed (E.3) re-
duces to (E.1) when n = 1. These integrals have been used by Enrico Bombieri
(see [FW08] for the detailed history) to prove what was known as the Mehta-Dyson
conjecture [MD63, Meh67, Meh74, Meh04] in random matrix theory, but they
found many applications also in the context of conformal field theories [DF85]
and exactly solvable models, for example in the evaluation of the norm of Jack
polynomials [Kak98]. In the following we shall also need of an extension of Sel-
berg integrals [AAR99, Sec. 8.3]

Bn(j, k; α, β, γ) ≡
[

n

∏
i=1

∫ 1

0
dxi xα−1

i (1− xi)
β−1

](
j

∏
s=1

xs

)(
k

∏
s=j+1

(1− xs)

)
|∆(x)|2γ

= Sn(α, β, γ)
∏

j
i=1[α + (n− i)γ]∏k

i=1[β + (n− i)γ]

∏
j+k
i=1[α + β + (2n− 1− i)γ]

.

(E.5)
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Here we shall show one more application in the context of Euclidean random
combinatorial optimization problems in one dimension [CDGM18b]. In the fol-
lowing we will always assume that both the red and the blue points are extracted
with the flat distribution over the interval [0, 1] and that we label them in ordered
position, i.e. ri < ri+1 and bi < bi+1 for i = 1, . . . , N − 1. In addition we will
consider always the case p > 1 in the cost function (1.93).

E.1 Average cost in the assignment

In the case of the assignment for p > 1 the optimal permutation is the identity
one [McC99, BCS14], i.e. the cost is

E(p)
N,N [µ

∗] =
N

∑
i=1
|ri − bi|p . (E.6)

Using the expression of the probability Pk(x) defined in (6.36), the mean displace-
ment is given by

|rk − bk|p =
∫ 1

0
dx dy Pk(x) Pk(y) |y− x|p

=

[
Γ(N + 1)

Γ(k)Γ(N − k + 1)

]2

S2

(
k, N − k + 1,

p
2

)

=
Γ2(N + 1)Γ

(
k + p

2

)
Γ
(

N − k + 1 + p
2

)
Γ(1 + p)

Γ(k)Γ(N − k + 1)Γ
(

N + 1 + p
2

)
Γ(N + 1 + p)Γ

(
1 + p

2

) ,

(E.7)

from which it follows the general p > 1 formula for the average optimal cost of
the assignment

E(p)
N,N [µ

∗] =
Γ2(N + 1)Γ(1 + p)

Γ
(

N + 1 + p
2

)
Γ(N + 1 + p)Γ

(
1 + p

2

)
N

∑
k=1

Γ
(
k + p

2

)
Γ
(

N − k + 1 + p
2

)

Γ(k)Γ(N − k + 1)

=
Γ
(
1 + p

2

)

p + 1
N Γ(N + 1)

Γ
(

N + 1 + p
2

) ,

(E.8)
where we made repeated use of the duplication and Euler’s inversion formula for
Γ-functions. The exact result (E.8) was known only in the cases p = 2, 4 where
only Euler Beta-functions (3.22) is needed, see [CDS17]. The other cases were
known only in the limit of large N [CDS17] at o(N−1).

E.2 Average cost in the TSP

In the bipartite TSP, when p > 1, the optimal solution is given by two permuta-
tions σ̃ and π̃ given respectively in (6.16) and (6.17) and the optimal cost is written
as in (6.32). We have therefore to solve the following integral

|bk+1 − rk|p = |rk+1 − bk|p =
∫ 1

0
dx dy Pk(x) Pk+1(y) |x− y|p

= k(k + 1)
(

N
k

)(
N

k + 1

) ∫ 1

0
dx dy xk−1 yk(1− x)N−k(1− y)N−k−1 |x− y|p ,

(E.9)
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involving the difference between the (k + 1)-th point of one color and the k-th of
the other one. We have solved this integrals in Sec. 6.3 limiting for simplicity to
the simple p = 2 case. This quantity can be evaluated for every p by using the
generalized Selberg integral (E.5)

|bk+1 − rk|p =
Γ2(N + 1)

Γ(k) Γ(N − k) Γ(k + 1) Γ(N − k− 1)
B2

(
1, 1; k, N − k,

p
2

)

=
Γ2(N + 1) Γ(p + 1) Γ

(
k + p

2 + 1
)

Γ
(

N − k + p
2 + 1

)

Γ(k + 1) Γ(N − k + 1) Γ(N + p + 1) Γ
(

N + p
2 + 1

)
Γ
(
1 + p

2

) .

(E.10)
from which we obtain

N−1

∑
k=1
|bk+1 − rk|p = 2 Γ(N + 1) Γ(1 + p)

×
[

(N + p + 1) Γ
( p

2

)

4(p + 1) Γ(p) Γ
(

N + 1 + p
2

) − 1
Γ(N + 1 + p)

]
.

(E.11)

In addition

|r1 − b1|p = |rN − bN |p = N2
∫ 1

0
dx dy (xy)N−1 |x− y|p

= N2S2

(
N, 1,

p
2

)
=

N Γ(N + 1) Γ(p + 1)(
N + p

2

)
Γ(N + p + 1)

.
(E.12)

Finally, the average optimal cost for every N and every p > 1 is

E(p)
N,N [h

∗] = 2

[
|r1 − b1|p +

N−1

∑
k=1
|bk+1 − rk|p

]

= 2 Γ(N + 1)

[
(N + p + 1) Γ

(
1 + p

2

)

(p + 1) Γ
(

N + 1 + p
2

) − 2 Γ(p + 1)
(2N + p) Γ(N + p)

]
.

(E.13)

For p = 2 this reduces to

E(2)
N,N [h∗] =

2
3

N2 + 4N − 3
(N + 1)2 , (E.14)

which was derived in Sect. 6.3 together with the asymptotic behavior for large N
for p > 1

lim
N→∞

Np/2−1E(p)
N = 2

Γ
( p

2 + 1
)

p + 1
. (E.15)

E.3 Cutting shoelaces: the two-factor problem

Selberg integral are also useful to evaluate for generic p and N the cost gained
cutting an Hamiltonian cycle into smaller cycles. We denote the cost gain of
cutting the TSP shoelace at position k by E(p)

k and it is given by

E(p)
k = |rk+1 − bk+1|p + |rk − bk|p − |rk − bk+1|p − |rk+1 − bk|p . (E.16)
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Figure E.1. Graphical representation of the cutting operation which brings from the
optimal TSP cycle (top) to a possible optimal solution of the 2-factor problem (bottom).
Here we have represented the N = 4 case, where the cutting operation is unique.
Notice that blue and red points are chosen on a interval, but here they are represented
equispaced on two parallel lines to improve visualization.

We obtain

|rk − bk|p − |rk − bk+1|p =

=
Γ2(N + 1) Γ(p + 1) Γ

(
k + p

2

)
Γ
(

N − k + p
2 + 1

)

Γ(k) Γ(N − k + 1) Γ(N + p + 1) Γ
(

N + p
2 + 1

)
Γ
( p

2 + 1
)
[

1− k + p
2

k

]

= − p
2

Γ2(N + 1) Γ(p + 1) Γ
(
k + p

2

)
Γ
(

N − k + p
2 + 1

)

Γ(k + 1) Γ(N − k + 1) Γ(N + p + 1) Γ
(

N + p
2 + 1

)
Γ
( p

2 + 1
) ,

(E.17)

and similarly

|rk+1 − bk+1|p − |rk+1 − bk|p =

=
Γ2(N + 1) Γ(p + 1) Γ

(
k + p

2 + 1
)

Γ
(

N − k + p
2

)

Γ(k + 1) Γ(N − k) Γ(N + p + 1) Γ
(

N + p
2 + 1

)
Γ
( p

2 + 1
)
[

1− N − k + p
2

N − k

]

= − p
2

Γ2(N + 1) Γ(p + 1) Γ
(
k + p

2 + 1
)

Γ
(

N − k + p
2

)

Γ(k + 1) Γ(N − k + 1) Γ(N + p + 1) Γ
(

N + p
2 + 1

)
Γ
( p

2 + 1
) .

(E.18)

Their sum is

E(p)
k = − p

2
Γ2(N + 1) Γ(p + 1) Γ

(
k + p

2

)
Γ
(

N − k + p
2

)

Γ(k + 1) Γ(N − k + 1) Γ(N + p) Γ
(

N + p
2 + 1

)
Γ
( p

2 + 1
) , (E.19)

For p = 2 this quantity is in agreement with what we got in Sect. 7.3

E(2)
k = − 2

(N + 1)2 . (E.20)

For p 6= 2, Ek depends on k. In particular, for 1 < p < 2 the cut near to 0 and 1 are
(on average) more convenient than those near the center. For p > 2 the reverse
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k

Figure E.2. Plot of E(p)
k given in Eq. (E.19) for various values of p: the green line is

calculated with p = 2.1, the orange with p = 2 and the blue one with p = 1.9; in all
cases we take N = 100.

is true (see Fig. E.2). Notice that for p = 2 we can sum on all the cuts that can
be done and obtain the mean total cost gain. For p 6= 2, this sum does not give a
simple formula.
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Acronyms

1RSB one-step Replica Symmetry Breaking

2RSB two-step Replica Symmetry breaking

aoc Average Optimal Cost

BP Belief Propagation

dAT de Almeida Thouless

EA Edwards Anderson

ER Erdős-Rényi

fRSB full Replica Symmetry Breaking

MF Mean Field

MST Minimum Spanning Tree

RAP Random Assignment Problem

RCOP Random Combinatorial Optimization Problem

RFMP Random Fractional Matching Problem

RKKY Ruderman Kittel Kasuya Yosida

RMP Random Matching Problem

RRG Random Regular Graphs

RS Replica Symmetry

RSB Replica Symmetry Breaking



188 Acronyms

RTSP Random Traveling Salesman Problem

SK Sherrington Kirkpatrick

TAP Thouless Anderson Palmer

TSP Traveling Salesman Problem
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