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Introduction

One of the more conspicuous and salient properties of Nature is the great di-
versity of size or length scales in the structure of the world. In general, events
distinguished by a great disparity in size have little influence on each other; they
don’t communicate, and so phenomena associated with each scale can be fairly
treated independently. Actually the success of almost all practical theories in
Physics depends on isolating some limited range of length scale.

A class of phenomena does exist, however, where events at many length scales
make contribution of equal importance. An example is the behaviour of a fer-
romagnet or permanent magnet. Ferromagnetic materials have a critical point
called the Curie point or Curie temperature (for iron the Curie temperature is
1,044 K). At higher temperatures iron has no spontaneous magnetization. As
iron is cooled, the magnetization remains zero until the Curie temperature is
reached, and then the material smoothly becomes magnetized. If the tempera-
ture is reduced after, the strength of the magnetization increases smoothly. This
means that the phase transition taking place at the critical temperature Tc is the
result of an extraordinary collective phenomenon that involves all the spins of
the system at once.

Multiple scales of length complicate many of the outstanding problems in the-
oretical physics. Exact solutions have been found for only a few of these problems,
and for some others even the best known approximations are unsatisfactory. A
method called renormalization group has been introduced for dealing with prob-
lems that have multiple scales of length. It has by no means made the problems
easy, but some that have resisted all other approaches may yield to this one.

The renormalization group (RG) is not a descriptive theory of nature but a
general method for constructing theories. The RG theory consists of a set of
concepts and methods which can be used to understand phenomena in many
different fields of Physics, ranging from quantum field theory over classical sta-
tistical mechanics to non-equilibrium phenomena, to a fluid at the critical point,
but also to a ferromagnetic material at the temperature where spontaneous mag-
netization first sets in, or to a mixture of liquids at the temperature where they
become fully miscible, or to an alloy at the temperature where two kinds of metal
atoms take on an orderly distribution. Other problems that have a suitable form
include turbulent flow, the onset of superconductivity and of superfluidity, the
conformation of polymers and the binding together of elementary particles called
quarks.

v
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vi Introduction

RG methods are particularly useful to understand phenomena where fluctua-
tions involving many different length or time scales lead to the emergence of new
collective behaviour in complex many-body systems. A remarkable hypothesis
that seems to be confirmed by work with the renormalization group is that some
of these phenomena, which superficially seem quite distinct, are identical at a
deeper level. For example, the critical behaviour of fluids, ferromagnets, liquid
mixtures and alloys can be described by a single theory.

This fundamental aspect of critical phenomena is called universality. In short,
this means that despite the differences that two systems may have at their micro-
scopic level, as long as they share some specific features we will explain after, their
critical behaviours are surprisingly identical. It is for these universal aspects that
the theory of phase transitions is one of the pillars of statistical mechanics and,
simultaneously, of theoretical physics. As a matter of fact, it embraces concepts
and ideas that have proved to be the building blocks of the modern understanding
of the fundamental interactions in Nature. Universality finds in the framework
of the renormalization group, its most elegant and natural demonstration.

The Wilsonian RG idea has been implemented in many different ways, de-
pending on the particular problem at hand, and there seems to be no canonical
way of setting up the RG procedure for a given problem. Fortunately, the for-
mulation of the renormalization group in terms of a formally exact functional
differential equation for the effective average action of a given theory, developed
in early nineties by C.Wetterich (FRG), has unified the field by providing a math-
ematically elegant and yet simple way of expressing Wilson’s idea of successive
mode elimination.

By FRG or sometimes called ”exact renormalization group (ERG)”, we mean
the continuous (i.e. not discrete) implementation of the Wilson renormalization
group (RG) transformation of the action in which no approximation is made
and also no expansion is involved with respect to some small parameter of the
action. This technique has successfully been applied in many different areas of
Physics: magnetic frustrated systems [14], out of equilibrium phase transitions [7],
disordered systems [27] [44], BCS and Bose-Einstein condensation [15] [20], gauge
theories [41] [40] [39] [6], gravity [11] [42] [2] and many others.

Interesting, and not yet explored from a FRG viewpoint, are those models
known as ZN -models which exhibit global abelian discrete symmetry. In the
past, these models played a major role in several fields of physics ranging from
condensed-statistical physics to elementary particle physics.

In this thesis we started an analysis of these models by the non-perturbative
functional renormalization group. The central issue has been the understanding
of the phase structure of the various ZN symmetric theories. In the spirit of the
renormalization group ideas future work will be concentrated on the classifica-
tion of all the universality class to which these theories, in continuos dimension,
belong. Particular attention will be dedicated to the special bi-dimensional case
where, from conformal field theory, we know a whole exciting world provided by
parafermion statistics.
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Phase transitions and the scaling
hypothesis

In the vicinity of continuous phase transitions, thermodynamic quantities and
correlation functions typically behave as power laws characterized by universal
critical exponents, which are independent of the short distance details of a sys-
tem. The universal behaviour showed in phase transitions results in the exact
coincidence of the critical exponents for systems which are very different at a
microscopic level.

In this spirit, the study of phase transitions is deeply related to the classifi-
cation of all possible universality classes. The development of the Wilsonian RG
in the 1970s was driven by the desire to gain a microscopic understanding of this
universality.

1.1 Classification of phase transitions
According the modern classification scheme, phase transitions are divided into
two broad categories: first-order and second-order phase transitions.

First-order phase transitions are those that involve a latent heat and they are
characterized by a finite value of the correlation length. This implies the presence
of a mixed-phase regime, in which some parts of the system have completed the
transition and others have not. Familiar examples are the melting of ice or
the boiling and many other important phase transitions including Bose-Einstein
condensation.

Second order phase transitions (continuos phase transitions) instead have no
associated latent heat. Simple Examples of second-order phase transitions are
the ferromagnetic transitions , superconductors, and the superfluid He transition.
The simplest lattice model that exhibits such a phase transition is the famous
Ising model.

These transitions are characterized by a collective behaviour on large scales
near the transition temperature (the critical temperature Tc). For example, the
correlation length, which characterizes the scale of distance over which a collective
behaviour is observed, becomes infinite at the transition. Near Tc, these systems
thus depend on two very different length-scales, a microscopic scale given by

3
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4 Phase transitions and scaling hypothesis

the size of atoms, the lattice spacing or the range of forces, and another scale
dynamically generated, given by the correlation length. To the latter scale are
associated non-trivial large-distance or macroscopic phenomena.

1.2 Critical exponents and universality
As the temperature approaches the critical temperature Tc of a continuous phase
transition, an increasing number of microscopic degrees of freedom start to be
coupled to each other and effectively act as a single entity.

The correlation length ξ sets the typical length scale over which the degrees
of freedom are strongly coupled. For example, in the vicinity of the paramagnet-
ferromagnet transition (with the temperature slightly larger than the critical
temperature) microscopic spins within regions of linear size ξ tend to point in
the same direction, while spins belonging to different regions whose distance is
large compared with ξ remain uncorrelated.

At the critical point associated with a continuous phase transition, the cor-
relation length ξ is infinite and fluctuations of the order parameter extend on all
length scales, so that the system is scale invariant. This actually means that the
phase transition taking place at Tc is the result of an extraordinary collective
phenomenon involving the entire system.

As a consequence, it can be shown thermodynamic observables are homo-
geneous functions of the relevant thermodynamic variables so that they exhibit
power-law behavior. The exponents which characterize the leading behavior of
thermodynamic observables for T → Tc are called critical exponents.

For simplicity, consider the paramagnet-ferromagnet transition. It is conve-
nient to measure the distance from the critical point on the temperature axis in
terms of the reduced temperature

t = T − Tc
Tc

. (1.1)

Historically, one introduces the critical exponents α, β, and γ to characterize the
asymptotic behavior of the following observables for t→ 0,

Table 1.1: Definition of the critical exponents

Observable Exponent Definition

Specific heat α C(t) ∼ |t|−α
Spontaneous magnetization β m(t) ∼ (−t)β t ≤ 0
Magnetic susceptibility γ χ(t) ∼ |t|−γ

Magnetic field δ B(M) ∼ |M |δ

Correlation length ν ξ(t) ∼ |t|−ν

Correlation function η G ∼ r−(d−2+η)

In addition to these thermodynamic exponents, one usually introduces two more
exponents ν and η via the behavior of the order-parameter correlation function
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G(~i−~j) for large distances ~i−~j. If the system is homogeneous, the correlator is
a function of the absolute value of the distance r = |~i−~j|. For a magnetic phase
transition with Ising symmetry, G(r) is defined as follows.

Let us denote by m(r) the operator representing the local magnetization den-
sity at space point r. The thermal average

m = 〈m(r)〉 := Tr e−βHm(r)
Tr e−βH (1.2)

is then independent of r, so that δm(r) = m(r)− 〈m(r)〉 = m(r)−m. The order
parameter correlation function is then defined by the thermal average

G(r) = 〈m~i m~j〉 −m
2. (1.3)

Typically, one finds for the asymptotic behavior of G(r) at distances large com-
pared with the correlation length ξ

G(r) ∼ e−r/ξ√
ξd−3rd−1

. (1.4)

For T → Tc, the correlation length diverges as a power law

ξ ∼ |t|−ν , (1.5)

where ν is called correlation length exponent. When the system approaches the
critical point, the correlation length diverges and the regime of validity of (1.4)
is pushed to infinity. Precisely at the critical point ξ is infinite and the order-
parameter correlation function decays with a power that is different from the
power in the pre-factor in (1.4); in d dimensions we write

G(r) ∼ 1
rd−2+η , T = Tc, (1.6)

which defines the correlation function critical exponent η. Because in (1.6) the
exponent η can be viewed as a correction to the physical dimension d of the
system, η is called anomalous dimension.

It turns out that the the exponents are universal in the sense that entire
classes of materials consisting of very different microscopic constituents can have
the same exponents. As a consequence of this, a uniaxial ferromagnet and a
simple fluid for example are believed to have exactly the same critical exponents.

All materials can thus be divided into universality classes, which are character-
ized by the same critical exponents. The universality class in turn is determined
by some rather general properties of a system, such as its dimensionality, the
symmetry of its order parameter, or the range of the interaction. For example, in
Table 1.2 we list the critical exponents for the Ising universality class in two and
three dimensions and for the XY and Heisenberg universality classes in d = 3.

Experimental evidence for the universality of the critical exponents has been
consolidated, and the microscopic understanding of this universality was only
achieved in the 1970s with the help of the renormalization group, which also
provided a systematic method for explicitly calculating critical exponents in cases
where mean-field theory fails.
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Table 1.2: Critical exponents of the Ising, XY, and Heisenberg universality classes.
The corresponding symmetry groups of the order parameter are Z2 for the Ising univer-
sality class, O(2) for the XY universality class, and O(3) for the Heisenberg universality
class. The small subscripts in the first line denote the dimensionality. While the expo-
nents of the two-dimensional Ising universality class are exact, the exponents in three
dimensions are only known approximately. The numbers for Ising3 and the error es-
timates are from the review by Pelissetto and Vicari [36]. For XY3 we give rounded
values for α, γ, ν and η up to two significant figures, as compiled in Pelissetto and Vicari
(2002, Table 19). For Heisenberg3 we quote the results by Holm and Janke (1993).

Exponent Ising2 Ising3 XY3 Heisenberg3

α 0 0.110(1) −0.015 −0.10
β 1/8 0.3265(3) 0.35 0.36
γ 7/4 1.2372(5) 1.32 1.39
δ 15 4.789(2) 4.78 5.11
ν 1 0.6301(4) 0.67 0.70
η 1/4 0.0364(5) 0.038 0.027

1.3 The scaling hypothesis
Under quite general conditions only two of the six exponents α, β, γ, δ, ν, and η
are independent, so that we can obtain the thermodynamic exponents α, β, γ and
δ from the exponents ν and η related to the scaling of the correlation function
using so-called scaling relations.

Let us first discuss the scaling form of the free energy. For simplicity, consider
again a magnet with free energy density f(t, h), which is a function of the re-
duced temperature and the magnetic field. In the vicinity of a continuous phase
transition, we expect that f(t, h) can be decomposed into a singular and a regular
part,

f(t, h) = fsing(t, h) + fnorm(t, h). (1.7)

Sufficiently close to the critical point, the singular part fsing(t, h) is assumed to
be determined by power laws characteristic of a given critical point. According to
the scaling hypothesis for the free energy, its singular part satisfies the following
generalized homogeneity relation

fsing = b−dfsing(bytt, byhh) (1.8)

where b is an arbitrary (dimensionless) scale factor and the exponents yt and
yh are characteristic for a given universality class. It is now easy to show that
with this assumption the four thermodynamic exponents α, β, γ and δ can all be
expressed in terms of yt and yh and the dimensionality d of the system. Using
the fact that b is arbitrary, we may set byt = 1/|t|, or equivalently b = |t| − 1/yt.
Then we obtain from (1.8),
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fsing(t, h) = td/ytfsing

(
±1, h

t
yh
yt

)
= td/ytF±

(
h

t
yh
yt

)
(1.9)

where we have defined the scaling function F±(x) = fsing(±1, x). We obtain the
desired relations between the thermodynamic exponents α, β, γ and yt, yh by
taking appropriate derivatives of (1.9) with respect to t and h and then setting
h = 0, assuming that close to the critical point the derivatives of the free energy
density are dominated by its singular part

C ' T−1
c

∂2fsing

∂t2

∣∣∣
h=0
∼ |t|

d
yt
−2 = |t|−α, (1.10a)

m ' −∂fsing

∂h

∣∣∣
h=0
∼ (−t)

d−yh
yt = (−t)β , (1.10b)

χ ' ∂2fsing

∂h2

∣∣∣
h=0
∼ |t|

d−2yh
yt = |t|−γ . (1.10c)

Hence

α = 2− d

yt
, (1.11a)

β = d− yh
yt

, (1.11b)

γ = 2yh − d
yt

. (1.11c)

To express the exponent δ associated with the critical isotherm in terms of yh
and d, we consider the derivative of (1.9) for finite h > 0,

m(t, h) ' −∂fsing

∂h
= |t|

d−yh
yt F ′±

(
h

|t|
yh
yt

)
. (1.12)

To obtain a finite value ofm for t→ 0, the scaling function must behave as x
d
yh
−1

for x→∞. We thus obtain for the critical isotherm

m(h) ∼ h
d
yh
−1 = h

1
δ (1.13)

and hence

δ = yh
d− yh

(1.14)

We may now eliminate the two variables yt and yh from the previous equations
to obtain two scaling relations involving only the experimentally measurable ex-
ponents α, β, γ , and δ,

2− α = 2β + γ (1.15)
2− α = β(δ + 1). (1.16)
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In order to express also the exponents ν and η in terms of yt and yh, we need
another scaling hypothesis involving the correlation function G(r). We assume
that sufficiently close to the critical point, G(r) is dominated by the singular part
Gsing(r); t, h) which satisfies

Gsing(r; t, h) = b−2(d−yh)Gsing

(r
b

; bytt, byhh
)
. (1.17)

For simplicity, consider the case h = 0. Setting again b = |t| − 1/yt, we obtain

Gsing(r; t, 0) = |t|
2(d−yh)

yt Gsing

(
r

|t|−1/yt
,±1, 0

)
. (1.18)

For |t| 6= 0 and r →∞, we expect Gsing(r) ∝ e−
r
ξ , so that we obtain

ξ ∼ |t|−
1
yt = |t|−ν (1.19)

where we have used the definition of the correlation length exponent ν. We
conclude that

ν = 1
yt
. (1.20)

Using (1.11a) to express yt in terms of the specific heat exponent α, we obtain
from (1.20) the so-called hyperscaling relation

2− α = dν. (1.21)

Finally we relate the critical exponent η to yh and d by observing that for |t| → 0
the function Gsing(r; t, 0) can only be finite if the rescaled part is proportional to
| rb |
−2(d−yh) for large | rb |. At the critical point we therefore obtain

Gsing(r; 0, 0) ∼ r−2(d−yh) = r−(d−2+η) (1.22)

where we have used the definition of the correlation function exponent η. We
therefore identify

η = d+ 2− 2yh, (1.23)

and expressing yh in terms of the susceptibility exponent γ using (1.11c), we
obtain another hyperscaling relation

γ = (2− η)ν. (1.24)

Equations (1.21) and (1.24) are called hyperscaling relations because they con-
nect singularities in thermodynamic observables with singularities related to the
correlation function.

It turns out, however, that the underlying scaling hypothesis (1.17) is only
valid if the dimension d of the system is smaller than a certain upper critical
dimension dup, which depends on the universality class (for the Ising universality
class dup = 4). As will be discussed in Chapter 2, for d > dup the Gaussian
approximation is sufficient to calculate the critical behavior of the system. The
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failure of hyper-scaling for d > dup is closely related to the existence of a so-called
dangerously irrelevant coupling. If hyperscaling is satisfied, we may combine the
two thermodynamic scaling relations (1.15), (1.16) with the two hyperscaling
relations (1.21) and (1.24) to express the four thermodynamic exponents α, β, γ,
and δ in terms of the two correlation function exponents η and ν,

α = 2− dν, (1.25a)

β = ν

2 (d− 2 + η), (1.25b)

γ = ν(2− η), (1.25c)

δ = d+ 2− η
d− 2 + η

. (1.25d)

This is really a great simplification in the calculation of critical exponents.
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Mean field theory and the Gaussian
approximation

The Wilsonian renormalization group (RG) was invented in order to study the
effect of strong fluctuations and the mutual coupling between different degrees
of freedom in the vicinity of continuous phase transitions. Two less sophisticated
methods of dealing with this problem, namely the mean-field approximation and
the Gaussian approximation were proposed before Wilsonian RG.

Within the mean-field approximation, fluctuations of the order parameter are
completely neglected and the interactions between different degrees of freedom
are taken into account in some simple average way.

The Gaussian approximation is in some sense the leading fluctuation correc-
tion to the mean-field approximation. Although these methods are very general
and can also be used to study quantum mechanical many-body systems, for our
purpose it is sufficient to introduce these methods using the nearest-neighbour
Ising model in d dimensions as an example.

The Ising model is the prototype of a statistical system exhibiting a phase
transition and is defined in terms of the following Hamiltonian,

H = −J
∑
〈ij〉

σiσj − h
N∑
i

σi (2.1)

Here, 〈ij〉 denotes the summation over all distinct pairs of nearest neighbours of a
d-dimensional hypercubic lattice with N sites, the variables σi = ±1 correspond
to the two possible states of the z-components of spins localized at the lattice
sites, J denotes the interaction strength between spins, and h is the Zeeman
energy associated with an external magnetic field in the z-direction. When h = 0
the model has a global discrete symmetry Z2, implemented by the transformation
σi → −σi.

In order to obtain thermodynamic observables, we have to calculate the par-
tition function,

11
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12 Mean field theory and the Gaussian approximation

Z(T, h) =
∑
σi

e−βH ≡
∑
σ1=±1

∑
σ2=±1

· · ·
∑

σN=±1
exp

βJ∑
〈ij〉

σiσj + βh
∑
i

σi


(2.2)

While in one dimension it is quite simple to carry out this summation, the cor-
responding calculation in d = 2 is much more difficult and until now the exact
Z(T, h) for h 6= 0 is not known. For h = 0 the partition function of the two-
dimensional Ising model was first calculated by Onsager [34], who also presented
an exact expression for the spontaneous magnetization at a conference in 1949.
In dimensions d = 3 there are no exact results available, so one has to rely on
approximations. The simplest is the mean-field approximation discussed in the
following section.

2.1 Mean-field approximation

2.1.1 Landau free energy
Mean-field theory is based on the assumption that the fluctuations around the
average value of the order parameter are so small that they can be neglected. As
we will see it is quantitatively correct only above the upper critical dimension but
it anyway gives a qualitatively correct picture of the phase diagram. Consider a
system with finite magnetization,

m = 〈σi〉 ≡
∑
{σj} e

−βHσi∑
{σj} e

−βH (2.3)

where we have used the fact that by translational invariance the thermal expec-
tation values 〈σi〉 are independent of the site label i . We have:

σiσj = [σj + 〈σj〉 − 〈σj〉] [σi + 〈σi〉 − 〈σi〉] =
= 〈σi〉〈σj〉+ [σi − 〈σi〉]〈σj〉+ [σj − 〈σj〉]〈σi〉+
+ [σi − 〈σi〉][σj − 〈σj〉]︸ ︷︷ ︸

small

=

= m2 + σimj +miσj ,

(2.4)

where we discarded the quadratic fluctuation term since we are assuming that the
fluctuations are small. Within this approximation, the Ising Hamiltonian (2.1) is
replaced by the mean-field Hamiltonian for nearest-neighbour interactions

HMF = m2N
zJ

2 −
∑
i

(h+ zJm)σi (2.5)

where z = 2d is the number of nearest neighbours (coordination number) of a
given site of a d-dimensional hypercubic lattice. Now the partition function can
be easily computed,
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ZMF = e−
βNzJm2

2
∑
{σi}

eβ(h+zJm)
∑

i
σi

= e−
βNzJm2

2
∏
i

[
eβ(h+zJm)e−β(h+zJm)+

]
= e−

βNzJm2
2 [2 cosh[β(h+ zJm)]]N ,

(2.6)

where we have introduced the notation z = 2d. Writing this as

ZMF(T, h) = e−βNfMF(t,h;m), (2.7)

we obtain the following expression for the free-energy per site in mean-field ap-
proximation

fMF(t, h;m) = zJ

2 m2 − β−1 log [2 cosh[β(h+ zJm)] . (2.8)

The function fMF(T, h;m) is an example for a Landau function, which describes
the probability distribution of the order parameter: the probability density of
observing for the order parameter the valuem is proportional to e[−βNfMF(T,h;m)].

2.1.2 Mean-field phase diagram
The equilibrium state of the system is now determined from the condition that the
physical value m0 of the order parameter maximizes its probability distribution,
corresponding to the minimum of the Landau function,

∂fMF(T, h;m)
∂m

∣∣∣
m0

= 0. (2.9)

From (2.8) we find that the magnetization m0 in mean-field approximation sat-
isfies the self-consistency condition

m0 = tanh[β(h+ 2dJm0)]. (2.10)

This mean-field self-consistent equation can easily be solved graphically. As
shown in Fig. (2.1) below, for h 6= 0 the global minimum of FMF(T, h;m) occurs
always at a finite m0 6= 0. On the other hand, for h = 0 the existence of nontriv-
ial solutions with m0 6= 0 depends on the temperature. In the low-temperature
regime T < zJ there are two nontrivial solutions with m0 6= 0, while at high
temperatures T > zJ our self-consistency equation (2.10) has only the trivial
solution m0 = 0, see figure below.

In d dimensions the mean-field estimate for the critical temperature is there-
fore

Tc = zJ

kb
= 2dJ

kb
. (2.11)
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14 Mean field theory and the Gaussian approximation

Figure 2.1: Graphical solution of the mean-field self-consistency equation for h > 0.
The inset shows the behaviour of the corresponding mean-field free energy: for T > Tc

it exhibits only one minimum at m0 > 0.

For d = 1 this is certainly wrong, because we know from the exact solution that
Tc = 0 in one dimension. In two dimensions the exact critical temperature of
the nearest-neighbour Ising model satisfies sinh(2J/Tc) = 1 [34], which yields
Tc ≈ 2.269J and is significantly lower than the mean-field prediction of 4J . As
a general rule, in lower dimensions fluctuations are more important and tend to
disorder the system or at least reduce the critical temperature.

2.1.3 Critical exponents
For temperatures close to Tc and small β|h| the value m0 of the magnetization
at the minimum of fMF(T, h;m) is small. We may therefore approximate the
Landau function (2.8) by expanding the right-hand side of (2.8) up to fourth
order in m and linear order in h

fMF(T, h;m) = f + r

2m
2 + u

4!m
4 − hm+ . . . (2.12)

with

f = −T log 2, (2.13a)

r = zJ

T
(T − zJ) ∼ T − Tc, (2.13b)

u = 2T
(
zJ

T

)4
∼ 2Tc, (2.13c)

where these approximations are valid close to the critical temperature, where
|T − Tc| � Tc and zJ/T ∼ 1. Obviously, the sign of the coefficient r changes at
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Figure 2.2: Graphical solution of the mean-field self-consistency equation for h = 0.
The upper figure shows the typical behavior in the disordered phase T > Tc, while the
lower figure represents the ordered phase T < Tc. The behavior of the Landau function
is shown in the insets: while for T > Tc it has a global minimum at m0 = 0, it develops
for T < Tc two degenerate at ±m0.

T = Tc, so that for h = 0 the global minimum of fMF(T, h;m) for T > Tc evolves
into a local maximum for T < Tc, and two new minima emerge at finite values
of m, as shown in Fig. (2.2).

The crucial point is now that for a small reduced temperature t = (T −Tc)/Tc
the value of m at the minima of fMF(T, h;m) is small compared with unity, so
that our expansion in powers of m is justified a posteriori. Taking the derivative
of (2.12) with respect to m, it is easy to see that (2.10) simplifies to

∂fMF(T, h;m)
∂m

∣∣∣
m0

= rm+ u

6m
3
0 − h = 0. (2.14)

The behavior of thermodynamic observables close to Tc is now easily obtained:

◦ Spontaneous magnetization:



i
i

“TSWLatexianTemp_000004” — 2015/1/9 — 14:07 — page 16 — #24 i
i

i
i

i
i

16 Mean field theory and the Gaussian approximation

Setting h = 0 in (2.14) and solving for m0, we obtain for T < Tc (with
r ≤ 0)

m0 =
√
−6r
u
∼ (−t)1/2 (2.15)

Comparing this with the definition of the critical exponent β, we conclude
that the mean-field approximation predicts for the Ising universality class
βMF = 1/2, independently of the dimension d.

◦ Zero-field susceptibility:
To obtain the mean-field result for the susceptibility exponent γ, we note
that for small but finite h and T ≥ Tc we may neglect the terms of order
m3

0 in (2.14), so that m0(h) ∼ h/r, and hence the zero-field susceptibility
behaves for t→ 0 as

χ = ∂m0(h)
∂h

∣∣∣
h=0
∼ 1
r
∼ 1
T − Tc

. (2.16)

It is a simple to show that χ ∼ |T − Tc|−1 also holds for T > Tc. The sus-
ceptibility exponent is therefore γMF = 1 within mean-field approximation.

◦ Critical isotherm:
The equation of state at the critical point can be obtained by setting r = 0
in (2.14), implying

m0(h) ∼
(
h

u

)1/3
(2.17)

and hence the mean-field result δMF = 3.

◦ Specific heat:
The specific heat C per lattice site can be obtained from the thermodynamic
relation

C = −T ∂
2fMF(T, h)
∂T 2 . (2.18)

Setting h = 0, we find from for T > Tc that fMF(T, h) = f because m0 = 0
in this case. On the other hand, for T < Tc we may substitute (2.15) so
that

fMF(T, 0) = f − 3r2

2u , T < Tc. (2.19)

Setting r ≈ T −Tc and taking two derivatives with respect to T , we obtain

C ≈ −Tc
∂2f

∂T 2 , T > Tc,

≈ −Tc
∂2f

∂T 2 + 3Tc
u
, T < Tc.

(2.20)

Note that according to (2.13c) u ≈ 2Tc so that 3Tc/u ≈ 3/2. We conclude
that within the mean-field approximation the specific heat is discontinuous
at Tc, so that C ∼ |t|0, implying αMF = 0. Note that the mean-field results
are consistent with the scaling relations.
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2.1.4 Correlation Function
In order to obtain the exponents ν and η, we need to calculate the correlation

function G(r) we need to relax the assumption of constant magnetic field. In this
case the partition function reads:

ZMF =
∑
{σi}

e
βJ
∑
〈i,j〉

[−mimJ+σimj+σjmi]+β
∑

i
hiσi =

= e
−βJ

∑
〈i,j〉

mimj
∑
{σi}

eβJ
∑
〈i,j〉

[σimj+miσj ]+β
∑

i
hiσi

.

(2.21)

We need now to evaluate the sum:

∑
{σi}

e
βJ
∑
〈i,j〉

[σimj+miσj ]+βh
∑

i
σi =

∑
{σi}

e
2βJ
∑
〈i,j〉

σimj+β
∑

i
hiσi

=
∑
{σi}

e
β
∑

i
σi[J

∑
j(i)

mjhi]

=
∏
i

2 cosh β

J∑
j(i)

mj + hi

 ,
(2.22)

where j(i) are the nearest-neighbour of i. The free energy reads:

fMF = J

N

∑
〈i,j〉

mimj −
1
βN

∑
i

log 2 cosh

β
J∑

j(i)

mj + hi

 (2.23)

and minimizing the free energy we obtain:

mi = tanh

β
J∑

j(i)

mj + hi

 . (2.24)

In order to compute the correlation function we need to determine the solutions
of (2.24) to linear order in the external magnetic field. Since we are interested
in the critical region, we can assume that also the magnetization is small and
expand the hyperbolic tangent to first order:

βJ
∑
j(i)

mj +mi = βhi. (2.25)

To solve the previous equation we need to perform a Fourier transform and we
give here the result for the correlator:

G(r) = 1
Tc

∫
ddk

(2π)d
e−irk

t+ 1
z

∑
a 2(1− cos ka)

(2.26)

At large r we can wtite:
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G(r) ∼ 1
Tc

∫
ddk)
(2π)d

e−irk

t+ k2

= 1
Tc

1
(2π)d

(√
t

r

)d−2

K d
2−1(
√
tr)

∼ 1
Tc

1
(2π)d

(√
t

r

)d−2√
π

2
1√√
tr
e−
√
tr.

(2.27)

We see therefore that the correlation length diverges at the critical point like:

ξ = t−1/2 ≡ t−ν . (2.28)

The mean field correlation length exponent is thus νMF = 1
2 .

At the critical point we find instead:

G(r) ∼ 1
rd−2 ≡

1
rd−2+η (2.29)

which therefore identifies the mean-field anomalous dimension ηMF = 0.

2.1.5 Ginzburg criterion
The Ginzburg criterion establishes when the mean-field analysis is valid, i.e.

under which conditions fluctuations are small. We start from:√
〈M2〉 − 〈M〉2 � 〈M〉, (2.30)

which is equivalent to

NTχ� 〈M〉2. (2.31)

At criticality fluctuations are on all scales and we have (for t→ 0−):

ξ ∼ |t|−ν 〈M〉2 ∼ (−t)2βL2d Nχ ∼ (−t)−γLd. (2.32)

Thus, setting ξ = L, we find:

T (−t)−γξd � (−t)2βξ2d, (2.33)

or

T (−t)−γ−2β+νd � 1, (2.34)

which may happen when γ − 2β + νd > 0 or:

γ + 2β
ν

< d, (2.35)

which is the Ginzburg criterion. If we insert the mean-field exponent we find
d > 4. Thus the mean field predictions are valid in dimension greater than four,
which for this reason is called upper critical dimension dc.
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2.2 Gaussian approximation
The Gaussian approximation retaining quadratic fluctuations includes the lowest-
order correction to the mean-field approximation in an expansion in fluctuations
around the saddle point.

In the field-theory language, the Gaussian approximation corresponds to de-
scribing fluctuations in terms of a free field theory, where the fluctuations with
different momenta and frequencies are independent. In condensed matter physics,
the Gaussian approximation is closely related to the so-called random phase ap-
proximation.

The Gaussian approximation, however, satisfies Ginzburg criterion too and
therefore it is not sufficient to describe the critical behavior of Ising magnets
in experimentally accessible dimensions. In this section we set h = 0 and we
anticipate a field-theory language we will anyway present in detail later.

2.3.1 Exact effective field theory
The functional integral representation of the partition functions reads:

Z =
∫
Dϕ e−SΛ0 [ϕ]. (2.36)

Defining the real-space Fourier transforms of the continuum fields ϕ(k) via∫
k

eikrϕ(k), (2.37)

we can write our ϕ4 toy-model action as:

SΛ0 [ϕ] =
∫
ddr

[
f0 + r0

2 ϕ
2(r) + c0

2 [∇ϕ(r)]2 + u0

4! ϕ
4(r)

]
(2.38)

Let us decompose the field ϕ(~r) describing the coarse-grained fluctuating mag-
netization as follows,

ϕ(~r) = ϕ̄0 + δϕ(~r), (2.39)

or in wave vector space

ϕ(~k) = (2π)dδ(~k)ϕ̄0 + δϕ(~k). (2.40)

Here ϕ̄0 is the mean-field value of the order parameter satisfying the saddle point
condition:

∂SΛ0 [ϕ̄]
∂ϕ̄

∣∣∣∣
ϕ̄0

= 0 (2.41)

and δϕ(~r) describes inhomogeneous fluctuations around the saddle point. Substi-
tuting (2.39) into the action (2.38) and retaining all terms up to quadratic order
in the fluctuations, we obtain in momentum space
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SΛ0 [ϕ̄0 + δϕ] ≈ V
[
f0 + r0

2 ϕ̄
2
0 + u0

4! ϕ̄
4
0

]
+
[
r0ϕ̄0 + u0

6 ϕ̄
3
0

]
δϕ(~k = 0)

+ 1
2

∫
~k

[
r0 + u0

2 ϕ̄
2
0 + c0~k

2
]
δϕ(−~k)δϕ(~k)

(2.42)

This is the Gaussian approximation for the Ginzburg-Landau-Wilson action (2.38).
To further simplify (2.42), we note that the second term on the right-hand side
of (2.42) vanishes because the coefficient of δϕ(~k = 0) satisfies the saddle point
condition (2.41). The first line on the right-hand side of (2.42) can be identified
with the mean-field free energy. Explicitly substituting for ϕ̄0 in (2.42) the saddle
point value,

ϕ̄0 =


0 for r0 > 0√

−6r0

u0
for r0 < 0

we obtain for the effective action in Gaussian approximation for T > Tc, where
ϕ̄0 and δϕ = ϕ,

SΛ0 [ϕ] = V f0 + 1
2

∫
k

[r0 + c0~k
2]ϕ(~k)ϕ( ~−k) T > Tc. (2.43)

On the other hand, for T < Tc, where r0 < 0, we have

r0

2 ϕ̄
2
0 + u0

4! ϕ̄
4
0 = − 3r2

0
2u0

r0 + u0

2 ϕ̄
2
0 = −2r0

(2.44)

and hence

SΛ0 [ϕ] = V

[
f0 −

3r2
0

2u0

]
+ 1

2

∫
k

[−2r0 + c0~k
2]δϕ(~k)δϕ( ~−k) T < Tc. (2.45)

With the help of the Gaussian effective action given in (2.43) and (2.45), we may
now estimate the effect of order-parameter fluctuations on the mean-field results
for the thermodynamic critical exponents.

Because in the thermodynamic limit both the Gaussian approximation and
the mean-field approximation predict the same contribution from the homoge-
neous fluctuations represented by ϕ̄ to the free energy, Gaussian fluctuations do
not modify the mean-field predictions for the exponents β, γ, and δ, which are
related to the homogeneous order-parameter fluctuations. Within the Gaussian
approximation, we therefore still obtain β = 1/2, γ = 1, δ = 3.

On the other hand, the Gaussian approximation for the specific heat exponent
α is different from the mean-field prediction α = 0, because the fluctuations with
finite wave vectors give a nontrivial contribution ∆f to the free energy per lattice
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site. It can be shown that the general result in Gaussian approximation for the
specific heat exponent is given by:

α =

 2− d

2 for d < dup

0 for d ≥ dup.

It should be noted that within the Gaussian model considered here the scaling
relations 2− α = 2β + γ = β(δ + 1) are violated for d < 4.

The same argument can be applied to the correlation length critical exponent
ν and to the anomalous dimension η. We give here the result:

η = 0

ν = 1
2

(2.46)

Note that for d < dup = 4, where the Gaussian approximation yields α = 2 −
d/2 for the specific heat exponent, the Gaussian results η = 0 and ν = 1/2
are also consistent with the hyper-scaling relations connecting ν and η with the
thermodynamic critical exponents.
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Renormalization group: an historical
overview

Nowadays the renormalization group (RG) can be considered a meta-theory,
which is a theory about theories. RG theory consists of a set of concepts, meth-
ods and techniques which historically have been used to understand phenomena
in so many different fields of Physics, ranging from quantum field theory over
classical statistical mechanics to non-equilibrium phenomena and many others.
RG methods revealed to be particularly useful to understand phenomena where
fluctuations involving many different length or time scales lead to the emergence
of new collective behavior in complex many-body systems.

Since its first formulation, RG theory has been successfully applied to very
different fields and so, naturally, a variety of apparently different implementa-
tions were given. At the first sight, the field-theoretical formulation of the RG
idea looks very different from the RG approach later pioneered by Wilson: the
first was employed mainly to cure the divergences in QFT from loop Feynman
diagrams while the latter being based on the concept of the effective action which
is iteratively calculated by successive integration of the degrees of freedom we’re
not interested in.

It is worth to give here a brief historical insight on the different implemen-
tations of the RG theory trying to capture the salient features and underlying
ideas they share in common.

3.1 Field-theoretical renormalization
Originally the concept of Renormalizaton was introduced in the context of quan-
tum field theory. After 1928 [16] quantum electrodynamics (QED) was introduced
in order to describe the electromagnetic interactions between protons and elec-
trons more precisely and physicists realized soon that the theory was plagued by
divergencies.

The idea is that in field theories, space-time is treated as a continuum, so
that in momentum-frequency dual space there is no ultraviolet cutoff. As a
consequence, correlation functions, depending on the dimensionality of the space,
can be ultraviolet divergent because there is no upper-bound for momenta and

23
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frequencies circulating around closed loops one introduces in perturbation theory.

3.1.1 Loops and divergencies

Consider the familiar ϕ4 theory. Fluctuations induced by the ϕ4 term around the
gaussian model are large and they lead in perturbation expansion to integrals,
corresponding to loops in Feynman diagrams. Consider the following bare action

S [ϕ0;m0, λ0] =
∫
ddx L[ϕ0;m0, λ0], (3.1)

with a Lagrangian density

L[ϕ0;m0, λ0] = 1
2 [−⇀∇ϕ0(x)]2 + m2

0
2 ϕ2

0(x) + λ0

4! ϕ
4
0(x). (3.2)

In momentum space (3.1) reads

S [ϕ0;m0, λ0] =
∫

ddk

(2π)d [k2 +m2
0]ϕ(−k)ϕ(k)+

+ λ0

4!

4∏
i=1

(2π)dδk1+k2+k3+k4ϕ0(k1)ϕ0(k2)ϕ0(k3)ϕ0(k4).
(3.3)

This field theory doesn’t have an ultraviolet cutoff so that momentum integrations
are unrestricted, which leads to ultraviolet divergencies. In fact, for instance one
can consider the first-order correction to the proper self energy

= δΣ = λ0

2

∫
ddk

(2π)d
1

k2 +m2
0

= λ0

2 Ωd
∫ ∞

0
dk

kd−1

k2 +m2
0

=

= λ0

2 Ωdmd−2
0

∫ ∞
0

dx
xd−1

1 + x2 ↗∞ for d ≥ 2.
(3.4)

Moreover, fluctuation corrections to correlation functions with more than two ex-
ternal legs can also be ultraviolet divergent. For example, the leading interaction
correction to the effective interaction is

= δΓ = −3λ2
0

2

∫
ddk

(2π)d
1

[k2 +m2
0]2 =

= −3λ2
0

2 Ωdmd−4
0

∫ ∞
0

dx
xd−1

[1 + x2]2 ↗∞ for d ≥ 4.

(3.5)

In order to cure divergent integrals appearing in perturbation series, we have to
make them finite introducing some kind of ultraviolet cutoff and this procedure is
called regularization. Among the regularization procedures (dimensional regular-
ization, lattice regularization, etc.), one can choose a regularization via a sharp
momentum cutoff Λ:
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∫
ddk

(2π)d −→
∫ Λ ddk

(2π)d (3.6)

with which, for example, the correction to the proper self energy in d = 4 becomes

δΣ(Λ) = λ0(Λ)
32π2

(
Λ2 −m2

0(Λ) log Λ2 +m2
0(Λ)

m2
0(Λ)

)
, (3.7)

so this term has a quadratic and a logarithmic divergence, both coming from the
large k integration region. Similarly, we obtain for the regularized correction to
the interaction in four dimensions,

δΓ(Λ) = −λ0(Λ) + 3
16π2λ

2
0(Λ) log Λ

m0(Λ) . (3.8)

Of course in the end we should somehow remove these artificial cutoffs intro-
duced by hand to obtain a renormalized theory which is independent of the reg-
ularization procedure. Perturbative renormalization is the method that allows
to reparametrize the perturbation expansion in such a way that the sensitive
dependence on Λ has been eliminated.

3.1.2 Renormalized quantities

During the years between 1947-1949 incredible theoretical developments were
achieved mainly by Feynman, Schwinger, Tomonaga, Dyson et al. and an empir-
ical general method to eliminate and cure divergencies called renormalization was
proposed and this led in QED to finite results for all physical observables. The
strategy was to reabsorb all infinities encountered in perturbation theory by a
redefinition of physical renormalized quantities defined in terms of bare quantities

ϕ0 = Z
1
2
ϕϕR

m2
0 = Zmm

2
R

λ0 = ZλµλR

(3.9)

where the dimensionless multiplicative renormalization constants Zϕ, Zm and Zλ
will be determined iteratively order by order in perturbation theory, and µ is an
arbitrary mass (or energy or momentum) scale which is introduced to make the
renormalized coupling λR dimensionless.

The idea is that only the renormalized quantities have a physical meaning and
can be related to physical observables. We therefore require that the renormalized
quantities have finite values, while the bare quantities are infinite due to the
singularities contained in the Z-factors.

The important point, in this winter season for the field theory, is that renor-
malized quantities, by definition, does not depend on the cutoff Λ. We adjust
the bare coupling, bare mass and field renormalization in such a way that all
renormalized correlation functions are finite. The fact that this really works to
all orders in perturbation theory is equivalent with the statement of renormaliz-
ability of the theory.
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Consider a generic n-point function. A general renormalized n-point function
ΓR depends on the external momenta ki, on the renormalized coupling λR (we
also assume for simplicity that there is just one coupling, but the generalization is
straightforward), and on the scale µ used to define the renormalization procedure

ΓR = ΓR(ki, λR, µ). (3.10)

Note that bare correlation functions are independent on µ; the dependence on
µ enters only when we remove the cutoff dependence by rescaling the fields and
eliminating λ0 in favour of the renormalized coupling λR.

We shall refer here to Γ ≡ Γ(n)(k1, . . . , kn) as a one-particle-irreducible (1PI)
vertex function with n external legs represented graphically by

2

1

3

n

meaning that any diagram contributing to the shaded circle cannot be separated
into two disconnected parts by cutting a single propagator line. For example, in
the special case n = 2 we recover the irreducible (proper) self-energy introduced
in (3.4) Γ(2)(k,−k) = Σ(k).

The relation between bare and renormalized irreducible vertices is

Γ(n)
0 (ki;m0, λ0,Λ) = Zn/2ϕ Γ(n)

R (ki;mR, λR, µ), (3.11)

and since ΓR is independent on Λ, we can write

ΛdΓR
dΛ = 0. (3.12)

Using (3.11) we get

[Λ∂Λ + β(λ0)∂λ0 − nη(λ0)] Γ0(ki;λ0,Λ) = 0 (3.13)

where

β(λ0) := Λdλ0

dΛ (3.14)

η(λ0) := 1
2Λ d

dΛ logZϕ (3.15)

Equation (3.13) is called a renormalization group equation, and eqs. (3.14) and
(3.15) define the β-function and the η-function of the theory. From their def-
inition, we see that they are proportional to the shift in the coupling constant
and the shift in field renormalization as the scale Λ is varied since, after renor-
malization, the coupling constants are not constant at all, but they depend on
the energy. The behaviour of the coupling constants as a function of Λ is very
important, since it determines the strength of the interaction and the conditions
under which perturbation theory is valid.
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In general the renormalization of the coupling has the form

λR = λ0 − β0λ
2
0 log Λ +O(λ3), (3.16)

so that (3.14) gives

β(λ0) := dλ0

d log Λ = β0λ
2
0 +O(λ3

0). (3.17)

This shows that there is always a zero of the beta function at λ0 = 0, and it
is possible to remove the cutoff while at the same time sending λ0(Λ) → 0. In
other words, given a regularized theory, with a cutoff in momentum space or, for
example, on a space-time lattice (which is another possible UV regulator) we find
the limit Λ→∞ (or the continuum limit in the case of a lattice) tuning the bare
couplings toward a zero of the beta function. This is a way to see things that has
very important applications to statistical mechanics and critical phenomena and
we will come back on this later.

There is another way to extract information from (3.11), which is more useful
from the point of view of particle physics. We use the fact that Γ0 is independent
of the renormalization point µ. Instead ΓR depends on µ explicitly, and also
through the renormalized mass and coupling. Let us neglect all mass terms.
Then we write

[µ∂µ + β(λR)∂λR + nη(λR)] ΓR(ki;λR, µ) = 0. (3.18)

where now

β(λR) = µ
dλR
dµ

(3.19)

and

γ(λR) = 1
2µ

d

dµ
logZϕ. (3.20)

Equation (3.18) is called Callan-Symanzik equation. This equation is formally
very similar to the one previously studied, but now we have the renormalized
coupling λR rather than the bare coupling λ0. It tells us how ΓR changes if we
change the renormalization point µ.

3.2 Wilson’s RG
Ideally, one should take the further step of trying to understand physically why
the divergences appear and why their effects are more severe in some theories than
in others. This direct approach to divergence problem was pioneered in the 1960s
by Kenneth Wilson. The crucial insights needed to solve this problem emerged
from a correspondence, discovered by Wilson and others, between quantum field
theory and statistical mechanics [37], [32], [26], [48].
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3.2.1 The connection between Statistical Mechanics and QFT

The connection emerges from the euclidean formulation of the path integral in
which (expectation values) correlation functions are computed as statistical av-
erages in which each (quantum field) configuration is weighted with e−S :

〈ϕ̂(x1) . . . ϕ̂(xn)〉 =
∫
Dϕ ϕ(x1) . . . ϕ(xn)e−S∫

Dϕ e−S
(3.21)

where S is the Euclidean action. In order to compute the path integral in eq.
(3.21) it is convenient to put the system in a finite volume and to discretize the
four-dimensional Euclidean space, using for instance a four-dimensional lattice
with spacing a. Then the system has a finite number of variables ϕi = ϕ(xi),
corresponding to the lattice sites, and the path integral is a well-defined statistical
sum. The question is how to take the continuum limit a→ 0 so that a non-trivial
QFT emerges.

At this concern consider a point x which is separated from the origin by n
lattice sites, in general the correlation function behaves as:

〈ϕxϕ0〉 =
∫

d4k

(2π)4
eikx

k2 +m2 ∼ e
−|x|m. (3.22)

In statistical mechanics, the behaviour 〈ϕnϕ0〉 ∼ e−n/ξ defines the dimensionless
correlation length

ξ = 1
am

(3.23)

and we see therefore that, if we want to take the continuum limit a → 0 while
keeping the physical mass m fixed, the correlation length must go to infinity.

The correlation length is a function of the couplings of the statistical system
and therefore in order to obtain a continuum QFT in which the physical masses
are finite, we must tune the parameters of the corresponding statistical system so
that the correlation length diverges. Here we are rephrasing, in the language of
statistical mechanics, the renormalization procedure introduced in the previous
section: the dependence of the bare couplings on the cutoff (here the lattice
spacing a) is tuned so to obtain finite values for the renormalized masses and
couplings.

In this analogy the procedure of removing the cutoff in a QFT corresponds to
tuning a statistical system toward a critical point where the correlation length
diverges.

3.2.2 Kadanoff’s RG in 2d-Ising

In order to introduce the underlying concepts of the renormalization group, let us
start by a simple but illuminating example of Wilson’s method implemented in
x-space instead of momentum space and without having recourse to field theory.
This example has been given by Kadanoff in 1966 [24] and introduce the concepts
of spin-blocking, coarse-graining and effective long-distance theories.
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Consider the two dimensional Ising model, defined placing a spin variable
σi = ±1 on each site i of a two-dimensional lattice, whose Hamiltonian is:

H = −J
∑
〈i,j〉

σiσj (3.24)

and the sum runs over nearest-neighbour pairs (i, j). We consider the interaction
term J to be positive (ferromagnetic interaction) so that it tends to align the
spins.

The Hamiltonian (3.24) gives a microscopic description of the system in terms
of interactions between nearest-neighbour spins separated at a distance a. How-
ever, we are usually not interested in the microscopic details of the system, but
instead we usually look for the long distance behaviour and universal quantities.
Going from a microscopic to a macroscopic description is a non-trivial problem,
because in particular when the correlation length ξ is infinite, cooperative effects
between spins can take place: even if the interaction is between nearest-neighbour
spins, the influence of each spin on the others is propagated to the entire system
resulting in an extraordinary cooperative effect.

Figure 3.3: RG implementation R in direct space.

To construct an effective long distance theory we can proceed integrating out
the short distance details of the model. Kadanoff’s recipe is via a spin-blocking
transformation: since at criticality the correlation length ξ � 1, we can regroup
the lattice sites into blocks B made up of four neighbouring spins as shown in
Fig. (3.3). This part of the RG transformation is known as coarse-graining C:
we decide how to reduce the short-distance degrees of freedom of the model. But
a rule has to be established so that the system, which has now a lattice spacing
twice as big as before a′ = 2a is scaled back to its original lattice spacing a and
we define a new spin variable σBi = 1/4

∑
i∈B σi = ±1. This rule is known as

scale transformation S and it is fundamental to preserve the partition function
(and thus its critical behaviour) and to describe the same long distance Physics.
This way we can consider the blocks B as effective spin variables living on the
centre of their respective squares.
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Z =
∑
σi

e−H({σi}, ~K) =
∑
σB

∑
σi∈B

e−H({σi}, ~K) =
∑
σB

e−H({σB}, ~K′) (3.25)

The important thing to notice here is that the blocks, after a RG transformation,
will interact not only with nearest-neighbour interaction, and the new interaction
terms are parametrized by new coupling constants we indicate with ~K ′.

Therefore during the first step of a RG transformation R, the couplings ~K
evolve in new couplings ~K2 = R( ~K) which describes the system at a scale 2a.
The evolution step-by-step should thus be followed in a multiparameter space of
coupling constants we call theory space Ω. We can iterate this recipe of regrouping
and rescaling n times:

~Kn = R( ~Kn−1) = R ◦ · · · ◦ R︸ ︷︷ ︸
n-times

( ~K). (3.26)

the coupling constant ~Kn being the effective coupling which describes the Physics
at the scale l = 2na.

What we have found again, in this parallelism with standard QFT, is that the
theory is described by running coupling constants which, from a statistical point
of view depend on the length scale l over which microscopic fluctuations have
been integrated out and in QFT depend on the cut off 1/l in momentum space.
Therefore, as for the β-functions, all we need to know is encoded in the function
R that describes how couplings evolve in theory space. Knowledge of the exact
R, in some sense, is equivalent to the solution of the theory at long distances.

3.2.3 Flow in theory space

We have seen that Kadanoff’s idea of reducing degrees of freedom is translated
into the problem of following the coupling constants flow in the theory space.

At criticality we have seen that for a second order phase transition ξ = ∞.
Thus the point ~Kξ is mapped into ~K ′ξ′ under a RG transformation for which
ξ′ is infinite again and the blocked system we are describing is equally critical.
This naturally defines the critical manifold Mc as the manifold spanned by all
coupling constants for which ξ =∞:

Mc := { ~K ∈ Ω | ξ =∞}, (3.27)
every point on this manifold is a theory which describes a system at criticality.

Following the flow in theory space is a powerful method in connection with
the notion of fixed point. A fixed point ~K∗ ∈ Mc is defined as a solution of the
following equation:

~K∗ = R( ~K∗), (3.28)
and the RG flow in theory space is determined mainly by the fixed point structure:
the RG trajectory will flow either to infinity or toward a fixed point.

Fixed points can be repulsive or attractive if, starting infinitesimally close to ~K∗
in any direction, the RG transformation will bring us respectively away or toward
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Figure 3.4: Typical topolgy of the RG flow in theory space: we can start for example
with two points which represent an Ising model whose underlying lattice is respectively
triangular and squared. Despite the microscopic theory for these two models is different,
the RG flow drives them in the same basin of attraction since they belong to the same
universality class.

~K∗. All fixed points on the critical surface have at least one unstable (repulsive)
direction, which is the one orthogonal to the critical manifold itself: if we start
close to Mc but not exactly on it, RG transformations constantly decreases ξ
toward the trivial fixed point ξ = 0.

Since a RG trajectory connects equivalent theories (theories describing the
same macroscopic physics), all the theories which lie in the same basin of at-
traction of the same fixed point can be considered equivalent. We can say that
the theory space of renormalizable QFTs is split into equivalence classes called
universality classes.

We understand that universality explains naturally why theories which are
very different at a microscopic level turn out to have the same critical behaviour in
terms of critical exponents. Consider two different point onMc, which therefore
describe two very different theories at a microscopic level; if the RG flow drives
them toward the same fixed point then it means that despite the diversity in the
microscopic details the are describing the same long-distance physics.

3.2.5 Wilson’s recipe in momentum space.

The implementation of the RG transformation in momentum space was given
first by Wilson and Kogut in a very famous and celebrated report [46]. The idea
is the same as before: in order to build an effective theory for the long distance
degrees of freedom one should integrate out the short distance details which is
not interested in. In other words, the best way to study a subset of degrees of
freedom of a system is to build an effective theory for them integrating out the
others.

Back to the field theory description in momentum space where the spin vari-
ables σi(x) are substituted by fields ϕi(k), the short distance details correspond
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here to the high energy modes of the field ϕ(k), those for which k ∈ [Λ− dΛ,Λ],
with Λ = 1/a a cutoff in momentum space.

The coarse graining operation consists here in integrating out the high energy
modes of the field ϕ(k) in the shell [Λ − dΛ,Λ] and in computing the effective
hamiltonian for the remaining modes. Iterating this procedure down to a scale k̄
one remains with an effective hamiltonian for the low energy modes k < k̄. The
long distance physics is recovered here in the limit k̄ → 0 since no fluctuation
remains in this limit and we coped with computing the partition function.

Figure 3.5: RG implementation R in momentum space.

In order to implement this ideas one can divide the fields ϕ(k) into two pieces:

◦ ϕ>(k) that involves the rapid modes k ∈ [Λ/s,Λ]

◦ ϕ<(k) that involves the slow modes k ∈ [0,Λ/s]

and integrate out the rapid modes so that the partition function reads

Z =
∫ Λ
Dϕ(k) e−H[ϕ, ~K]

=
∫ Λ/s

Dϕ<(k)
[∫ Λ

Λ/s
Dϕ>(k) e−H[ϕ<,ϕ>, ~K]

]

=
∫ Λ
Dϕ′(k′) e−H[ϕ′, ~K′].

(3.29)

Again we see that we start with couplings ~K and after the RG transformation R
we obtain new couplings ~K ′ = R( ~K) each associated with a given scale (Λ→ ~K,
Λ/s→ ~K ′, Λ/s2 → ~K ′′, . . . ). In other words, in the coarse graining and rescaling
procedure we generate new couplings the flow of which will determine a trajectory
in theory space.
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Compared to perturbation theory, in this approach a la Wilson, the coupling
constants ~K are naturally associated with a scale instead of the complicated
by-product of field-theoretical regularization and renormalization.

We conclude that renormalizable QFTs can emerge as effective theories describing
the large-distance properties of critical phenomena. The RG of QFT then appears
as an asymptotic form of the general Wilson-Kadanoff RG.
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Functional Renormalization Group

In order to cover Physics across different scales, it is important to have a sys-
tematic scheme of integrating out quantum fluctuations. Fortunately, in the last
decade the development of the so-called functional renormalization group (FRG)
method has somewhat unified the field by providing a mathematically elegant
and yet simple way of expressing Wilson’s idea of successive mode elimination in
terms of a formally exact functional differential equation for the suitably defined
generating functionals of a given theory.

4.1 Effective action
In quantum field theories, all the physical informations are encoded in correlation
functions. In standard QFT we obtain correlation functions by definition from
the product of n field operators at different spacetime points ϕ(xn) averaged over
all possible field configurations (quantum fluctuations). In euclidean QFT, the
field configurations are weighted with the exponential of the euclidean action S[ϕ]

〈ϕ(x1) . . . ϕ(xn)〉 :=
∫
Dϕ ϕ(x1) . . . ϕ(xn)e−S[ϕ]∫

Dϕ e−S[ϕ] . (4.1)

Minkowskian Green’s function of quantum field theory in d spatial dimension
plus time 〈0|T{ϕ(x1) . . . ϕ(xn)} |0〉, can be obtained by computing the correlation
functions of a classical statistical system living in d + 1 spatial dimension, and
performing the analytic continuation back to Minkowskian space.

We also assume that a proper regularized definition of the measure can be
given (for instance, using a spacetime lattice discretization), which we formally
write as ∫

Dϕ −→
∫

Λ
Dϕ (4.2)

where Λ denotes an ultraviolet (UV) cutoff. The regularized measure should also
preserve the symmetry of the theory. Here we work with scalar fields ϕ despite
the following discussion holds identically for other fields like spinors fields, see
e.g. [4], [25].

37
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All n-point correlation functions are summarized by the generating functional
Z[J ]

Z[J ] =: eW [J] =
∫
Dϕ e

−S[ϕ]+
∫
x
Jϕ (4.3)

where sources J are introduced as a mathematical trick to compute all n-point
correlation functions by functional differentiation:

〈ϕ(x1) . . . ϕ(xn)〉 = 1
Z[0]

(
δnZ[J ]

δJ(x1) . . . δJ(xn)

)∣∣∣∣
J=0

. (4.4)

In (4.3) we introduced the generating functional of connected correlators,W [J ] =
lnZ[J ], which, loosely speaking, is a more efficient way to store all relevant
physical informations.

In analogy with the construction of the Gibbs free energy in statistical me-
chanics, an even more efficient way to store informations is obtained by a Legendre
transform of W [J ], namely, the effective action Γ:

Γ[φ] = sup
J

(∫
Jφ−W [J ]

)
. (4.5)

For any given φ, there is a particular value J = Jsup for which
∫
Jφ −W [J ] is

maximum. At J = Jsup

0 = δ

δJ(x) (Jφ−W [J ]) ⇒ φ := δW [J ]
δJ

= 1
Z[J ]

δZ[J ]
δJ

= 〈ϕ〉J . (4.6)

This implies that φ corresponds to the expectation value of ϕ in the presence of
the sources J . The field φ is related to ϕ in the same way that the magnetization
is related to the local spin field in statistical mechanics: it is a weighted average
over all possible fluctuations. The meaning of Γ becomes clear by studying its
derivative w.r.t. φ at J = Jsup:

δΓ[φ]
δφ(x) = −

∫
y

δW [J ]
δJ(y)

δJ(y)
δφ(x) +

∫
y

δJ(y)
δφ(x)φ(y) + J(x) = J(x). (4.7)

This is the quantum equation of motion by which the effective action Γ[φ] governs
the dynamics of the field expectation value, taking the effects of all quantum
fluctuations into account.

As the Gibbs free energy gives, in statistical mechanics, a picture of the
preferred thermodynamic state that includes all effects of thermal fluctuations,
when (4.6) is equal to zero we get the values of ϕ(x) in the stable quantum states
of the theory.

From the definition of the generating functional, the effective action can be
written as an implicit functional integral in the presence of a background field φ:

e−Γ[φ] =
∫

Λ
Dχ exp

(
−S[ϕ+ χ] +

∫
δΓ[φ]
δφ

χ

)
(4.8)
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where we introduced fluctuations χ := ϕ−φ by a shift of the integration variable.
We observe here that the effective action is determined by a nonlinear first-
order functional differential equation, the structure of which is itself a result of a
functional integration. We notice here that an exact determination of Γ[φ], and
thus an exact solution, has been found for rare special cases.

Introducing the effective action formalism, we coped with the problem of
switching from W [J ], which is a functional of the rather mathematical sources J
we introduced to compute correlation functions, to Γ[φ] which is a functional of
the more physical objects φ = 〈ϕ〉.

Moreover a solution of (4.8) attempted by a vertex expansion of Γ[φ]

Γ[φ] =
∞∑
n=0

1
n!

∫
ddx1 . . . d

dxnΓ(n)(x1, . . . , xn)φ(x1) . . . φ(xn) (4.9)

where the expansion coefficients Γ(n) correspond to the one-particle irreducible
proper vertices (1PI). Just as an example, the 3-point and 4-point connected
correlation functions can be expressed diagrammatically as

Figure 4.6: On the l.h.s. the connected 3-point function (green) expressed (on the
r.h.s.) in terms of the 1PI 3-point function.

Figure 4.7: On the l.h.s. the connected 4-point function (green) expressed (on the
r.h.s.) in terms of the sum of connected diagrams (green) plus the 1PI 3-point function
and 1PI 4-point function.

The effective action is therefore the generating functional of the one-particle
irreducible proper vertices and, as a functional, is obtained after integrating out
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the quantum fluctuations. Furthermore, the field equations derived from the
effective action are exact as all quantum effects are included. The effective action
is the interesting macroscopic object we will concentrate on since it gives a defined
physical insight of the quantum theory, because in some sense knowledge of Γ is
somehow equivalent to the solution of a theory.

4.2 A scale-dependent effective action
In principle a computation via equation (4.8) or via Scwhinger-Dyson equations
correspond to integrating-out all fluctuations at once. We can instead approach
this rather difficult problem implementing Wilson’s idea of integrating out itera-
tively momentum shells. Our goal is to introduce an averaged effective action Γk
with a momentum-shell parameter k so that:

◦ it is a generalization of the effective action which includes only fluctuations
with q2 & k2;

◦ it represents a coarse-grained effective action averaged over volumes ∼ k−d,
so that quantum fluctuations on smaller scales are integrated out;

◦ in the limit k → Λ (⇒ small length scales) it reduces to the bare action
S[ϕ] since no fluctuation has been already integrated out;

◦ in the limit k → 0 (⇒ large lenght scales) it corresponds to the full quantum
action Γ since all the fluctuations are integrated out: lowering k results in
a successive inclusion of fluctuations with momenta q2 & k2 and therefore
permits to explore the theory on larger and larger length scales;

◦ can be derived from the generating functional.

It is worth to notice here that the effective averaged action Γk has the very
important property that it interpolates between the classical bare action S and
the full effective action Γ as k is lowered from the UV cutoff to zero. The ability to
follow the evolution to k → 0 is equivalent to the ability to solve the theory. Most
importantly, the dependence of the average action on the scale k is described by
an exact non-perturbative flow equation presented below which is the key-point
of the modern point of view on renormalization.

4.2.1 Derivation of the effective averaged action

We look at the derivation of such an effective action starting from the generating
functional for n-point correlation functions

Z[J ] =
∫
Dχ e−S[χ]+

∫
x
Jχ (4.10)

referring to scalar fields in d euclidean dimensions with classical action S. We
define a scale-dependent generating functional by inserting a cutoff term ∆Sk

eWk[J] ≡ Zk[J ] =
∫
Dχ e−S[χ]−∆Sk[χ]+

∫
x
Jχ (4.11)
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where ∆Sk is choosen to be quadratic in the fields

∆Sk[χ] = 1
2

∫
q

χ∗(q)Rk(q)χ(q) (4.12)

because this choice, as we will see, ensures than a one-loop flow equation can be
exact [29]. The kernel regulator Rk(q) should:

◦ actually implement an IR regularization

lim
q2→0

Rk(q) > 0 (4.13)

e.g. Rk(q) → k2 for q2 → 0 so the regulator screens the IR modes in a
mass like fashion;

◦ be dominated by the stationary point of the action in the limit

lim
k→Λ

Rk(q)→∞ (4.14)

so that Γk→∞[φ] = ΓΛ[φ] = S[φ];

◦ vanish in the limit k → 0 at fixed q

lim
k→0

Rk(q) = 0 (4.15)

so we recover the standard generating functional as well as the full effective
action in this limit Γk→0[φ] = Γ[φ].

Typical regulators that satisfies these three conditions well known in literature
[4], [28], are plotted below.

Figure 4.8: Typical cutoff functions

Now that we checked that the interpolating effective action Γk exhibits the
correct limiting behaviour upon inserting a cutoff function, we can proceed fur-
ther. The expectation value of χ, i.e. the macroscopic field φ, in the presence of
∆Sk[χ] and J reads
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φ(x) := 〈χ(x)〉 = δWk[J ]
δJ(x) (4.16)

and again we employ a (modified) Legendre transform to define the scale depen-
dent effective action as

Γk[φ] = −Wk[J ] +
∫
x

J(x)φ(x)−∆Sk[φ] (4.17)

where we have subtracted the term ∆Sk[φ] in the r.h.s. This subtraction of the
IR cutoff term as a function of the macroscopic field φ is crucial for the definition
of a reasonable coarse-grained free energy with the property ΓΛ ≡ S at the UV
scale. The quantum equation of motion receives a regulator modification

δΓk[φ]
δφ(x) = −

∫
y

δWk[J ]
δJ(y)

δJ(y)
δφ(x) +

∫
y

δJ(y)
δφ(x)φ(y) + J(x)− δ∆Sk[φ]

δφ(x) =

= J(x)− δ

δφ(x)∆Sk[φ] = J(x)− (Rkφ)(x).
(4.18)

4.2.2 Derivation of the flow equation

We now derive a flow equation which describes the change of the scale-dependent
effective action at a scale k with a change of the RG scale, and thus it describes
how the effective actions on different scales are connected. In the modern func-
tional formulation of the renormalization group it is the central equation and it
is the starting point of all our further investigations.

In order to derive it we have to take the scale derivative of the modified
Legendre transform (4.17). Defining the RG time t := log(k/Λ) ⇒ ∂t = k∂k,
we get:

∂tΓk[φ] = −∂tWk[J ]−
∫
x

δWk[J ]
δJ(x) ∂tJ +

∫
x

φ(x)∂tJ − ∂t∆Sk[φ]

= −∂tWk[J ]− ∂t∆Sk[φ]
(4.19)

where the derivative of the cutoff term (remember that φ is the independent
variable in Γk[φ]) reads:

∂t∆Sk[φ] = 1
2∂t

∫
x

φ∗(q)Rk(q)φ(q) = 1
2

∫
x

φ∗(x)(∂tRk(q))φ(q). (4.20)

We need to express the scale derivative ofWk[J ]. Let’s first express the derivative
in terms of exp(Wk[J ]):

∂tWk[J ] = exp(−Wk[J ]) exp(+Wk[J ])∂tWk[J ] =
= exp(−Wk[J ]) [∂t exp(Wk[J ])] .

(4.21)
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Now, going back to the path integral representation and noticing that the scale
dependence appears only in cutoff term, we get

∂tWk[J ] = e−Wk[J] ∂t

∫
Dχ e−S[χ]+

∫
x
Jχ−∆Sk[χ] =

= e−Wk[J] ∂t

∫
Dχ (−∂t∆Sk[χ])e−S[χ]+

∫
x
Jχ−∆Sk[χ] =

= e−Wk[J] ∂t

∫
Dχ

(
−1

2

∫
q

χ∗(q)∂tRk(q)χ(q)
)
e
−S[χ]+

∫
x
Jχ−∆Sk[χ] =

= −1
2

∫
q

∂tRk(q)e−Wk[J]
∫
Dχ χ∗(q)χ(q)e−S[χ]+

∫
x
Jχ−∆Sk[χ]

.

(4.22)

Now express this result in terms of the connected Green function:

e−Wk[J] δ2

δJ(q)δJ∗(q)e
+Wk[J] = δ2Wk[J ]

δJ(q)δJ∗(q) + δWk[J ]
δJ∗(q)

δWk[J ]
δJ(q) =

= 〈χ∗(q)χ(q)〉c + φ∗(q)φ(q) =
= Gk(q) + φ∗(q)φ(q),

(4.23)

we therefore obtain the flow of Wk[J ]

∂tWk[J ] = −1
2

∫
q

∂tRk(q) (Gk(q) + φ∗(q)φ(q))

= −1
2

∫
q

∂tRk(q)Gk(q)− 1
2

∫
q

φ∗(q)(∂tRk(q))φ(q)

= −1
2

∫
q

∂tRk(q)(Gk(q) + ∂t∆Sk[φ]).

(4.24)

Now insert (4.22) in the flow equation for Γk (4.24), we get:

∂tΓk[φ] = −∂tWk[J ]− ∂tSk[φ]

= 1
2

∫
q

∂tRk(q)Gk(q)
(4.25)

This should be expressed as a functional differential equation for the scale-
dependent effective action and in order to do it, let’s express G(p, q) in terms
of this effective action

G(p, q) = δ2Wk[J ]
δJ∗(p)J(q) , φ(q) = δWk[J ]

δJ∗(q) . (4.26)

Using the variational condition on the effective action (4.18), the second variation
w.r.t. φ∗(q′)
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δ2Γk[φ]
δφ∗(q′)δφ(q) = δJ∗(q)

δφ(q′) −Rk(q)δ(q − q′). (4.27)

Now consider the following identity:

δ(q − q′) = δ

δφ∗(q)
δWk[J ]
δJ(q) =

∫
q′′

δ2Wk[J ]
δJ∗(q′′)δJ(q)

δJ∗(q′′)
δφ∗(q′)

(4.27)=
∫
q′′

δ2Wk[J ]
δJ∗(q′′)δJ(q)

[
δ2Γk[φ]

δφ∗(q′)δφ(q′′) +Rk(q)δ(q′ − q′′)
] (4.28)

and we finally obtain the scale-dependent inverse propagator:

G(q, q′) =
[

δ2Γk[φ]
δφ∗(q)δφ(q′) +Rk(q)δ(q − q′)

]−1

(4.29)

The result for the effective averaged action flow equation is:

∂tΓk[φ] = 1
2

∫
q

[
δ2Γk[φ]

δφ∗(q)δφ(q) +Rk(q)
]−1

∂tRk(q) (4.30)

4.3 Flow equation
The dependence of the average action Γk on the coarse graining scale k is de-
scribed by the exact non-perturbative flow equation (4.30) and it represents the
key-object in the functional formulation of RG [4], [30]:

∂tΓk[φ] = 1
2 Tr

{[
Γ(2)
k [φ] +Rk

]−1
∂tRk

}
= 1

2 (4.31)

Hence, let us carefully discuss its most important properties and consequences:

◦ the flow equation is an exact functional integro-differential equation for Γk;

◦ it is possible to define QFTs based on the flow equation. For given suitable
initial conditions, for instance, by defining the bare action at a high UV
cutoff scale k = Λ, the flow equation defines a trajectory to the full quantum
theory described by the full effective action Γ.

◦ the flow equation is UV and IR finite: by construction, the presence of Rk
in the denominator of (4.31) guarantees the IR regularization. In addition,
the properties (4.13) (4.15) also ensure UV regularization, since its predom-
inant support lies on a smeared momentum shell near p2 ∼ k2: the flow is
localized in momentum space;
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Figure 4.9: Sketch of the RG flow in theory space

◦ the solution of (4.31), as already mentioned, corresponds to an RG trajec-
tory in the theory space Ω, introduced as the space of all action functionals
compatible with the symmetries. The important property is that the two
endpoints of a trajectory are given by the initial condition Γk→Λ = Sbare
and the full effective action Γk→0 = Γ;

◦ the regulator Rk can be choosen arbitrarily; obviously the trajectory de-
pends on the regulator and this reflects the RG scheme dependence. Nev-
ertheless, the final point of the trajectory (⇒ universal quantities) is inde-
pendent of Rk;

◦ the equation has a very simple graphical expression as a one-loop struc-
ture equation and this has a very important practical consequence: only
one integral has to be computed. This is very different from perturba-
tion theory where l-loop diagrams require l d-dimensional integrals. This
is a tremendous simplification of the exact renormalization group approach
w.r.t perturbation theory. Anyway perturbation theory can be retrieved
from (4.31) as we will show in appendix A1.

There is no general method to solve equation (4.31). This is the first hint to
the necessity of introducing approximations in order to study it.
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Approximation procedures

The fundamental FRG flow equation (4.31) for the generating functional of the
one particle irreducible vertices is a very complicated mathematical object which
in general cannot be solved exactly and which naturally addresses the question
on how to solve it. It is therefore important to develop reliable approximation
strategies for solving it. Three different types of strategies have been proposed.
The first is based on an iterative approach in which one typically selects an ini-
tial seed for the effective action and insert it in (4.31) to obtain a new effective
action an so on till self-consistency is reached. The second one relies on a suit-
able truncation of the hierarchy of integro-differential equations for the vertices.
This vertex expansion approach was pioneered by Morris (1994) [30] and has
been extensively used in the condensed matter community. The third approxi-
mation strategy, which is the one on which we will concentrate more, has been
preferentially used in field theory and statistical mechanics [4], is based on the
expansion of the functional ΓΛ[φ] in powers of gradients of the field φ. Apart
the first method, the strategy consists in solving the RG equation in a restricted
functional space, projecting consistently the exact RG equation in the functional
space chosen. The quality of the result, of course, depends crucially on the choice
of the space in which we search for a solution.

5.1 Vertex expansion

A hint of such an approximation has already been given in (4.9), which, for the
effective averaged action reads:

Γk[φ] =
∞∑
n=0

1
n!

∫
ddx1 . . . d

dxnΓ(n)
k (x1, . . . , xn)φ(x1) . . . φ(xn). (5.1)

The idea is to insert such an expansion into the flow equation (4.31) and obtain an
infinite hierarchy of flow equations for the vertex function Γ(n)

k which interpolate
between the bare and the fully dressed vertices. Let us give an example for
Γ(1)
k [φ]:

47
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∂t
δΓk[φ]
δφ

= 1
2 Tr

{
(∂tRk)(−1)[Γ(2)

k +Rk]−1 δΓ
(2)
k

δφ
[Γ(2)
k +Rk]−1

}

= −1
2 Tr

{
(∂tRk)[Γ(2)

k +Rk]−1Γ(3)
k [Γ(2)

k +Rk]−1
} (5.2)

which graphically

∂tΓ(1)
k [φ] = −1

2

and if we take a further derivative to get the flow equation for the 2-point function:

∂t
δΓk[φ]
δφδφ

=− Tr
{

(∂tRk)[Γ(2)
k +Rk]−1Γ(3)

k [Γ(2)
k +Rk]−1Γ(3)

k [Γ(2)
k +Rk]−1

}
+

− 1
2 Tr

{
∂tRk)[Γ(2)

k +Rk]−1Γ(4)
k [Γ(2)

k +Rk]−1
}

(5.3)

which has a the following graphical representation

∂tΓ(2)
k [φ] = − − 1

2

We realize that to find the flow equation for Γ(2)
k , we need Γ(3)

k and Γ(4)
k . As a

general rule, the flow equation of Γ(n)
k requires Γ(n+1)

k and Γ(n+2)
k . This establishes

the hierarchy of flow equations we mentioned before. If we want to solve this
infinite tower of equations, we have to truncate it.

A possible truncation consists in keeping Γ(2)
k and Γ(4)

k and to neglect Γ(6)
k in

the equation for ∂tΓ(4)
k . A better method could be to write down most general

ansatz compatible with the symmetries for the effective action, expressed in terms
of Γ(2)

k and Γ(4)
k . In both cases the system of equations becomes closed and could,

in principle, be solved.
It is important to notice here that the vertex expansion is not an expansion

in some small parameter (although of course the assumption is that high order
operators will be irrelevant and suppressed due to the existence of a large scale).
For most practical applications, this is obviously the most problematic part, and
it requires a lot physical insight to make the correct physical choices.

5.2 Derivative Expansion
The other main strategy to obtain approximate solutions of the FRG flow equa-
tions is the derivative expansion. This method has been successfully applied in
statistical physics as well as in field theory where one is usually interested in long



i
i

“TSWLatexianTemp_000004” — 2015/1/9 — 14:07 — page 49 — #57 i
i

i
i

i
i

49

distance physics, that is the |q| → 0 region of the correlation function. The idea
is thus to keep and retain only the lowest orders of the expansion of Γk in powers
of momenta (derivatives):

Γk[φ] =
∫
ddx

{
Vk(φ) + 1

2Zk(φ)(∂φ)2 + 1
2W1,k(φ)(∂2φ)2 +

+ 1
2W2,k(φ)(∂φ)2φ∂2φ+ 1

4W3,k(φ)(∂φ)4
}

+O(∂6)
(5.4)

Here we fully understand what a projection in the theory space is: taking the
scale derivative of (5.4) correspond to project the flow equation into the theory
space spanned by all effective actions truncated up to the desired order. With
this kind of ansatz, the RG equation on Γk becomes a set a ordinary differential
equations for the running functions retained in the ansatz:

∂tVk(φ) = βV [{Vk(φ), Zk(φ),Wi,k(φ)}]
∂tZk(φ) = βZ [{Vk(φ), Zk(φ),Wi,k(φ)}]

∂tWi,k(φ) = βWi
[{Vk(φ), Zk(φ),Wi,k(φ)}].

(5.5)

The lowest level only includes the scalar potential and a standard kinetic term
with constant field renormalization Zk(φ): this approximation is therefore called
local potential approximation (LPA) and it was introduced by Nicoll, Chang and
Stanley [33].

5.3 LPA: Ising model
In order to have an idea on how the local potential approximation works, let us
study here the simple case of the Ising universality class. When we work in LPA,
equation (5.4) reduces to:

Γk[φ] =
∫
ddx

{
1
2(∂φ)2 + Vk(φ)

}
, (5.6)

and in what follows we consider this ansatz for Z2-invariant models.
The problem is to project the RG flow equation (4.31) on the theory space

spanned by all effective potentials Vk. This is naturally performed by defining
the effective potential as Γk computed for uniform field configurations φ = φc:

Vk(φc) := 1
ΩΓ[φc] (5.7)

To compute the RG flow, we act on both sides of this equation with ∂t and we
calculate the right hand side thanks to Wetterich’s equation (4.31). We notice
here that the from the quantum equation of motion,

δΓ[φ∗]
δφ

= 0 ⇐⇒ V ′(φ∗) = 0 (5.8)
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and therefore we deduce that if we are in the situation that the ground state
is independent on the position (field configuration constant), the vacuum of the
theory actually corresponds to an extremum of the effective potential.

Coming back to the projection procedure we have:

∂tΓk[φc] = Ω∂tVk[φc] = 1
2

∫
q

[
Γ(2)
k,|LPA +Rk

]−1

q,−q
∂tRk, (5.9)

so we have to invert [Γ(2)
k + Rk]q,−q within LPA. From now on, we omit the

superscript LPA on Γk and c on φc. An elementary calculation leads to:

Γ(2)
k,(q,q′) = (2π)−d

(
δVk
δqδq′

+ q2
)
δ(q + q′) (5.10)

and we immediately find

∂tVk(φ) = 1
2

∫
q

∂tRk(q2)
q2 + V ′′k (φ) +Rk(q2) . (5.11)

It is convenient to compute the d-dimensional integral in generalized spherical
coordinates: ∫

q

−→ 2πd/2

(2π)dΓ(d/2)

∫ ∞
0

dq qd−1 (5.12)

and to introduce a change of variable q2 =: z so that (5.11) reads:

∂tVk(φ) = 1
2(4π)d/2Γ(d/2)

∫
dz z

d
2−1 ∂tRk(z)

z + V ′′k (φ) +Rk(z) . (5.13)

This form is particularly useful now because, in order to proceed further, we
have to explicitly choose a cutoff function Rk. If we choose the optimized Litim’s
regulator cutoff

Rk(z) = (k2 − z)θ(k2 − z) (5.14)

the flow equation for the effective potential becomes:

∂tVk(φ) = cdk
d 1

1 + V ′′
k

(φ)
k2

, (5.15)

where we have defined cd := [(4π)d/2Γ(d/2)]−1. Equation (5.15) is the exact
projected flow equation for the effective potential Vk. Up to know we implemented
the coarse-graining part of the full RG transformation, and so we have to switch
to dimensionless variables to implement the scale transformation. Let us therefore
introduce

φ = kd/2−1φ̃

Vk(φ) = kdṼk(φ̃).
(5.16)
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Once these dimensionless variables are introduced in (5.15) we obtain the exact
flow equation for the dimensionless effective potential Ṽk:

∂tṼk(φ̃) = −dṼk(φ̃) +
(
d

2 − 1
)
φ̃Ṽ ′k(φ̃) + cd

1
1 + Ṽ ′′k (φ̃)

. (5.17)

Equation (5.17) is quite general because, apart from the fact that the trace opera-
tion in (4.31) is reduced to an integral implying no internal indeces to be summed
on, nowhere we have already specified the mentioned Z2-symmetry.

All we can learn about the model at this approximation is contained in the
solution of this equation. We clearly see that the flow of Ṽk has two parts, one that
comes from the dimension of Vk and φ and one that comes from the dynamics of
the model. This RG equation on Ṽk is a rather simple partial differential equation
that can be easily integrated numerically. We are now in the position to discuss
the critical behaviour of the Ising model and to look for fixed points.

The effective potential Vk has another very nice property: it is the generating
functional B of all the β-functions. In fact if we decide for example to expand Ṽk
in even powers of the field (Z2-symmetry):

Ṽk(φ̃) =
Ntr∑
n=1

λ2n

(2n)! φ̃
2n (5.18)

we obtain every β-function we want by the following formula:

β̃2n = ∂tλ2n = (2n)!
n!

∂n

∂(φ̃2)n
∂tṼk

∣∣∣∣
φ̃=0

=: B(Ṽ , Ṽ ′, Ṽ ′′)
∣∣
φ̃=0 . (5.19)

For example the first β-functions are:

β̃2 = −2λ2 − cd
λ4

(1 + λ2)2

β̃4 = (d− 4)λ4 + 6cd
λ2

4
(1 + λ2)3 − cd

λ6

(1 + λ2)2

β̃6 = (2d− 6)λ6 − 90cd
λ3

4
(1 + λ2)4 + 30cd

λ4λ6

(1 + λ2)3 − cd
λ8

(1 + λ2)2

β̃8 = . . .

(5.20)

If we want to discuss the symmetry breaking (critical behaviour) in the Ising
model at the lowest possible approximation we can choose Ntr = 2 so that Vk is
expanded up to φ4 term and equation (5.6) reads:

Γk[φ] =
∫
ddx

{
1
2(∂φ)2 + 1

2m
2
k(φ)2 + 1

4λk(φ)4
}
, (5.21)

with relative β-functions:
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β̃m = −2m2
k − cd

λk
(1 +m2

k)2

β̃λ = (d− 4)λk + 6cd
λ2
k

(1 +m2
k)3 .

(5.22)

Fixed points are essential in the RG theory. In field theory, they determine
the nature of the continuum limits while in statistical physics they control the
large distance physics of a critical system. A fixed point is a scaling solution of
∂tṼk = 0. At a fixed point of the RG flow the beta functions vanish:

β2n(m∗, λ∗) = 0, (5.23)
the solutions are (we are restricting ourselves in the case d ≥ 3):

Gauss FP
{
m∗ = 0
λ∗ = 0

Wilson-Fisher FP
{
m∗ = − 4−d

16−d
λ∗ = 288

cd
4−d

(16−d)3 .

(5.24)

We soon realize that we have the following structure:

d > 4 spurious FPs
d = 4 only Gaussian FP
d < 4 non trivial FPs.

(5.25)

It is easy to see from (5.24) that it is only in d < 4 that the mass term m∗
is negative opening for a broken phase. For example in d = 3 the coordinates of
the WF fixed point are mWF = −1/13 and λWF ' 7, 75. This is actually what
we expect, since the upper critical dimension for the Ising universality class is
dc = 4 and indeed we find that in d > 4 we have only spurious fixed points which
don’t represent any physical solution.

In 2 < d < 3 multicritical fixed points appear at the dimensional thresholds
dc,i = 2i/(i− 1), i = 2, 3, . . . ,∞. The Wilson-Fisher FP still exists and the same
analysis which is carried on for d = 3 can be done to estimate the critical expo-
nents in this multicritical regime. These kind of calculations have been performed
brilliantly in continuous dimensions by Alessandro Codello [9], confirming also
the special case of d = 2 which yields the infinite set of non-perturbative and
multicritical fixed points expected from conformal field theory (CFT) minimal
models.

In order to test the stability properties of the fixed point and to extract
universal quantities, we linearize the flow around the (WF) fixed point:

Mnm = ∂β2n

∂λ2m

∣∣∣∣
∗

(5.26)
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Figure 5.10: Flow in the bidimensional theory space. The flow is governed by the
gaussian FP (m = 0, λ = 0) and the Wilson-Fisher fixed point (m = m∗ and λ = λ∗).
The attractive submanifold is shown (purple).

the largest negative eigenvalue of the stability matrix is related to the correlation
length exponent ν:

ν = − 1
Λmax

(5.27)

The critical exponent νLPA for the 3d-Ising model is calculated to be νLPA =
0.65(1) while the world best result given in [36], [17] gives ν = 0.63(0) see Tab.
1.2 . LPA qualitatively and quantitatively captures the critical behaviour very
well even in the worst approximation among derivative expansion.

Within LPA, there is no renormalization of the derivative term. The exponent
η is therefore vanishing at this order of the derivative expansion (ηLPA = 0). In
principle, from ν and η all the other exponents could be calculated thanks to
scaling relations (1.25). We understand that, in order to close that system we
should move to the next leading approximation in the derivative expansion.

5.4 LPA: O(N) models
O(N) models are important vector models which express a rich-full physical in-
sight. For instance, the four dimensional N = 4 model describes the scalar sector
of the electroweak standard model in the limit of vanishing gauge and Yukawa
couplings. It is also used as an effective model for the chiral phase transition in
QCD in the limit of two quark flavours. In condensed matter physics N = 3, 2, 1
corresponds respectively to the Heisenberg model, XY model and Ising model
used to describe the ferromagnetic phase transition. There are other applications
like the helium superfluid transition N = 2 and of course, liquid-vapour transi-
tion N = 1 or statistical properties of long polymer chains (self-avoiding walks)
N = 0.

We start the analysis writing a suitable effective action that depends only on
the O(N) invariant ρ = 1

2φ
aφa.



i
i

“TSWLatexianTemp_000004” — 2015/1/9 — 14:07 — page 54 — #62 i
i

i
i

i
i

54 Approximation procedures

Γk[φ] =
∫
x

{
Vk(ρ) + 1

2∂µφ
a∂µφa

}
(5.28)

The flow equation is then projected in the submanifold of the theory space
spanned by all effective potentials compatible with the symmetry. The deriva-
tion proceeds identically w.r.t. the Ising universality class example given above,
apart from the fact that now the trace operation in (4.31) implies a summation
over internal indexes. The flow equation for the dimensionless effective potential
reads:

∂tṼk(ρ̃) = (d− 2)ρ̃Ṽ ′k − dṼk + cd

[
(N − 1) 1

1 + Ṽ ′k
+ 1

1 + Ṽ ′k + 2ρ̃Ṽ ′′k

]
(5.29)

Every solution of (5.29), together with its domain of attraction, represents a
different O(N) universality class. For every d and N one finds a discrete set of
solutions corresponding to multi-critical potentials of increasing order, i.e. with
i minima, which describe multi-critical phase transitions (in which one needs to
tune multiple parameters to reach the critical point).

Truncating again Vk up to φ4 as the lowest possible approximation for sym-
metry breaking, we have

Γk[φ] =
∫
x

{
1
2∂µφ

a∂µφa + mk

2 φaφ
a + λk

4! (φaφa)2
}
, (5.30)

and the flow equation is therefore projected into the theory space of all effective
potentials spanned by the coupling constants mk and λk. Switching to dimen-
sionless quantities and taking advantage of the definition of Ṽk as the generating
functional of all the β-functions, we immediately write the non-perturbative β-
functions for mk and λk:

β̃m = −2m̃2
k −

N + 2
3 cd

λ̃k
[1 + m̃2

k]2

β̃λ = (d− 4)λ̃k + 2
3(N + 8)cd

λ̃2
k

[1 + m̃2
k]3 .

(5.31)

which of course reduce to the Ising β-functions (5.22) in the case N = 1. In the
general O(N) case, the fixed point solutions exhibit an explicit N dependence:

m̃2
∗ = − (4− d)(N + 2)

8(N + 5)− d(N + 2) (5.32)

λ̃∗ = 96(4− d)(n+ 8)2

cd[8(N + 5)− d(N + 2)]3 . (5.33)

The analysis of these fixed point solution revealed again [10] that for d > 4 and
for any N , in accordance with the Ginzburg criterion, one finds only the gaussian
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fixed point (i = 1). Starting at d = 4, the upper critical dimension for O(N)-
models, the Wilson-Fisher fixed points (i = 2) branch away from the gaussian
fixed point. When d = 3 these fixed points describe the known universality classes
of the Ising, XY, Heisenberg and other models.

5.5 Anomalous dimension
The local potential approximation (LPA) is the simplest approximation among
the derivative expansion. It anyway captures qualitatively well the critical be-
haviours of the models analized. If we want to take a step forward and calculate
critical exponents we should work in the next leading approximation scheme,
namely the improved local potential approximation (LPA’).

In this approximation we consider the field-renormalization function Zk(ρ)
not to be constant. Working again with O(N)-models, the standard effective
averaged action becomes:

Γk[φ] =
∫
x

{
Vk(ρ) + 1

2Zk(ρ)∂µφa∂µφa
}
. (5.34)

Following [10], we could derive the flow equation for the dimensionless effective
potential which in these approximation scheme reads:

∂tṼk(ρ̃) = (d− 2)ρ̃Ṽ ′k − dṼk + cd(N − 1)
1− η

d+2

1 + Ṽ ′k
+ cd

1− η
d+2

1 + Ṽ ′k + 2ρ̃Ṽ ′′k
. (5.35)

We see that naturally the anomalous dimension η enters the flow equation because
it fixes the scaling properties of the field at a particular fixed-point.

The computation of the anomalous dimension ηk requires the computation of
the flow of Zk. As we did for the potential this is possible only after a definition
of Zk in terms of Γk has been found. It is clear that Zk corresponds to the term
in Γk which is quadratic in φ and in q. In fact, this definition is not sufficient
to completely characterize Zk since it is the first term in the expansion of the
function Zk(ρ̃) and it is necessary to specify around which value of ρ̃ the expansion
is performed. Here again, we choose the minimum ρ̃0 of the potential. A precise
calculation [4] shows that

Zk = (2π)d

δ(p = 0) lim
p2→0

d2

dp2

(
Γ̄(2)

(2,p),(2,−p)

∣∣∣
min

)
(5.36)

where Γ̄(2)
(2,p),(2,−p) is the second derivative of Γk with respect to φ2(p) and φ2(−p).

The flow of Zk is then obtained by acting on both sides of (5.36) with ∂t. The
result is:

ηk = 16vd
d

ρ̃0λ
2
km

d
2,2(2ρ̃0λk) (5.37)

where we defined the threshold function md
2,2 as
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md
n1,n2

(w) := −1
2Z
−1
k kd−6

∫ ∞
0

dx xd/2∂t
(∂x(Zkx+Rk(x)))

(Zkx+Rk(x))n1(Zkx+Rk(x) + w)n2

(5.38)
To lowest order its value is related to the running dimensionless effective

potential by:

η = cd
4ρ̃0

[
Ṽ ′′∗ (ρ̃0)

]2[
1 + 2ρ̃0Ṽ ′′∗ (ρ̃0)

]2 (5.39)

In general we solve equations (5.35) and (5.39) iteratively as proposed in [9] and
we report here the most interesting results obtained for Z2 and O(N) universality
classes.

For the Ising universality class we plot below in Fig. 5.11 the anomalous
dimensions ηi of the first five multicritical scaling solutions as a function of d. It
is interesting to see how the anomalous dimension ηi vanishes at the corresponding
upper critical dimension dc, confirming that in d > dc mean field solution applies
where there is no field renormalization.

Figure 5.11: Anomalous dimensions ηi of the first five multicritical scaling solutions
as a function of d.

Here we give the result for the critical exponents ν and η as given in [8] up
to ∂4 order as compared with 7-loop perturbation theory [21] and MonteCarlo
simulations [23].

Method ν η

LPA 0.6505 0
∂2 0.6281 0.0443
∂4 0.632 0.033
7-loop 0.6304(13) 0.0335(25)
MC 0.6297(5) 0.0362(8)
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For O(N) models, approaching d = 2 one observes that only the N = 1 anoma-
lous dimension continues to grow: for all other values of N ≥ 2 the anomalous
dimension bends downward to become zero exactly when d = 2. This non- trivial
fact, not evident from the structure of equation (5.35) alone, is the manifestation
of the Mermin-Wagner-Hohenberg theorem.

Figure 5.12: η2 as a function of d for (from above) N = 1, 2, 3, 4, 5, 10, 100. In the
inset we show the anomalous dimensions in the range 3 ≤ d ≤ 4.
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ZN models

ZN models are the simplest statistical mechanics models which exhibit discrete
global symmetries. These models have been studied extensively in the past years,
mainly because they are interesting, both as lattice models and in the continuum
limit as quantum field theories.

In two-dimensional statistical physics, ZN -models played a major role: these
models exhibit intriguing properties such as semi-locality which gives rise to ex-
citations called parafermions and characterized by fractional spin. Parafermions
are well understood in critical system in the continuum limit, since the discrete
symmetry they are associated with combine with conformal invariance and permit
an extensive classification of the so called parafermionic conformal field theories.
The first of such theories, constructed by Fateev and Zamolodchikov [19] [47],
describes the critical points of ZN -symmetric lattice models (clock models) as
the Ising model (N = 2), three state Potts model (N = 3) and Ashkin-Teller
model (N = 4).

In elementary particle physics, the importance of the centre (Z3) of the SU(3)
colour gauge group has been emphasized by ’t Hooft [43] and Polyakov [38], who
have argued that quark confinement is characterized as triality confinement, so
that studies of the phases of the Z3 gauge theories may lead to important insights.
Moreover, the phase structure of the Z3 gauge theory in four dimensions is related
to that of the Z3 spin model in two dimensions [18].

In condensed matter physics ZN symmetric theories appear naturally in the
problem of two-dimensional melting [22]. A crystal in two dimensions has dis-
crete rotational invariance in the plane of the crystal. For a square lattice this
symmetry is Z4, while for a triangular lattice the symmetry is Z6. Part of the
problem of melting is associated with the restoration of full rotational symmetry
which can be broken to a Z4 or Z6 at low enough temperatures.

Besides theoretical motivations, there are some possible experimental realiza-
tions of the effective ZN symmetry. Substances and experimental systems have
been suggested and identified and relevant experiments have been performed.

For example magnetic systems well approximated by simple Ising systems are
numerous and well known and we mention here notable examples CoCs2Br5 in
d = 2 and Dy3PO5 in d = 3 [45]. The case N = 3 which stimulated curiosity be-
cause it coincides with the three-state Potts model, was experimentally realized

61
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in cubic ferromagnets like DyAl2 [3], and substances like the stressed SrTiO3 [1].
Higher n started to be investigate, for example, the stacked triangular antiferro-
magnetic Ising (STI) model with effective N = 6 symmetry may correspond to
materials such as CsMnI3.

For all these examples, the central issue is to understand the phase structure of
the various ZN symmetric theories. A major work would be the classification
of all the universality classes to which these theories, in continuos dimension,
belong. Today, in the framework of the functional renormalization group, this
can be achieved in terms of the so called spike-plot technique [31] which will be
our main interest in future works.

6.1 ZN flow equation: derivation
In this section we give the derivation of the flow equation for the dimensionless
effective potential we will use as the starting point to discuss the functional RG
approach to ZN invariant models. The derivation proceeds analogously to the
one given in Chapters 4 and 5.
ZN global discrete symmetry is well parametrized by complex scalar fields (φ, φ̄)
and we start specifying the microscopic model, in terms of a suitable bare action:

S[φ] =
∫
x

[
φ̄(−∆)φ+ V (φ, φ̄)

]
(6.1)

where integration over x is again d-dimensional
∫
x

=
∫
ddx. The microscopic

action (6.1) is chosen to be invariant under the global abelian ZN symmetry

S[φ]→ S[ωnφ] = S[φ] (6.2)

where ωn is the suitable group representation

ωn = e
2πi
k n k = 1, . . . , n− 1. (6.3)

In what follows, however, we make no reference to a particular symmetry and
the result will be completely general.

After Fourier transformation, the kinetic term reads∫
q

φ̄(q)(q2)φ(q), (6.4)

with
∫
q

= (2π)−d
∫
ddq. The standard functional definition of the partition func-

tion is:

Z = Tr e−βH =
∫
Dχ e−S[χ] (6.5)

and as already introduced in previous chapters, we generalize the last equation
by introducing a source term J for the fields χ and write

Z[J ] = eW [J] =
∫
Dχ e−S[χ]+

∫
x
Jχ
. (6.6)
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At this point we introduce the effective action Γ[φ] as usual, by a Legendre
transform

Γ[φ] = sup
J

(∫
Jφ−W [J ]

)
. (6.7)

In order proceed we include the infrared cutoff term ∆Sk[χ] in (6.6) and define

eWk[J] =
∫
Dχ e−S[χ]−∆Sk[χ]+

∫
Jχ. (6.8)

As we have already seen, the effective average action is defined as a modified
Legendre transform of Wk

Γk[φ] =
(
−Wk[J ] +

∫
x

Jφ

)
−∆Sk[φ]. (6.9)

Our method to determine Γk[φ] (and for k → 0 also Γ[φ]) relies on the existence
of the exact flow equation (4.31):

∂tΓk[φ] = 1
2 Tr

{[
Γ(2)
k [φ] +Rk

]−1
∂tRk

}
. (6.10)

Here the trace operation includes a momentum integration
∫
q
, as well as a sum

over internal indices i = 1, 2, according to the two real composition φ(x) =
1√
2 (φ1(x) + iφ2(x)). What we’re actually doing is to consider the fluctuating

real fields as the radial mode φ1 and the Goldstone mode φ2 as a convenient
parametrization of the complex fields we naturally use to describe ZN models.
On the r.h.s. of (6.10) Γ(2)

k stands for the second functional derivative of Γk[φ]

(Γ(2)
k [φ])ij(q, p) =

−⇀
δ

δφi(−q)
Γk[φ]

−↼
δ

δφj(p)
. (6.11)

It is therefore a matrix in internal and momentum space. Correspondingly, Rk
in eq (6.10) stands for Rk(q)δijδ(q − p).

Approximate solutions of the exact flow equations obtain from a truncation of
the general form of the effective action. In what follows we’ll work in the LPA as
introduced in chapter 5; in the absence of anomalies, the effective action Γ[φ] is
invariant under the same symmetries as the microscopic action S[φ]. This holds
also for the effective average action Γk[φ], provided that cutoff term ∆Sk[φ] is
invariant too. We shall work here in LPA and this approximation will respect all
the symmetries of the classical (microscopic) action

Γk[φ] =
∫
x

[
Vk(φ, φ̄) + 1

2(φ̄(−∆)φ+ φ(−∆)φ̄)
]

=
∫
q

[
V (φ1, φ2) + 1

2 [φ1(q2)φ1 + φ2(q2)φ2]
]
.

(6.12)

In order to proceed further toward the flow equation, the first thing to compute
is the Hessian appearing in the flow equation. Its matrix form is given by
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Γ(2) =


−⇀
δ φ1(−q)Γk

−↼
δ φ1(p)

−⇀
δ φ1(−q)Γk

−↼
δ φ2(p)

−⇀
δ φ2(−q)Γk

−↼
δ φ1(p)

−⇀
δ φ2(−q)Γk

−↼
δ φ2(p)

 =


q2

2 + δVk
δφ1δφ1

δVk
δφ1δφ2

δVk
δφ2δφ1

q2

2 + δVk
δφ2δφ2


Despite the fact that other equivalent representations could be considered ((ρ, θ),
(φ, φ̄)), it turns out that the most convenient one is the (φ1, φ2). Now we add
the diagonal cutoff term Rk(q)δijδ(q − p) to the matrix Γ(2) and then, we first
compute the inverse (Γ(2)

k +Rk)−1 and finally we compute the trace.
The result is as follows:

Tr[(Γ(2)
k +Rk)−1] = q2 + 2Rk +A+B

(q2/2 +A+Rk)(q2/2 +B +Rk)− C2 , (6.13)

where

A := δVk
δφ1δφ1

B := δVk
δφ2δφ2

C := δVk
δφ1δφ2

.

At this point the flow equation (6.10) is a projected flow equation for the effective
potential Vk:

∂tVk = 1
2

∫
q

(q2 + 2Rk +A+B)∂tRk
(q2/2 +A+Rk)(q2/2 +B +Rk)− C2 (6.14)

This form, as we have already seen, is particularly useful upon Litim’s regulator
cutoff:

Rk(z) = (k2 − z)θ(k2 − z), (6.15)

and making the change of variables q2 → z so that dq = 1
2z
−1/2dz, equation

(6.14) becomes:

∂tVk = 1
2(4π)d/2Γ(d/2)

∫ 2k2

0
dz zd/2−1 (2k2 +A+B)2k2

(k2 +A)(k2 +B)− C2

= 1
(4π)d/2Γ(d/2)

∫ k2

0
dz zd/2−1 (2 +A/k2 +B/k2)

(1 +A/k2)(1 +B/k2)− C2/k4

=cdkd
(2 +A/k2 +B/k2)

(1 +A/k2)(1 +B/k2)− C2/k4 .

(6.16)

Equation (6.16) represents again the coarse graining part of the full RG transfor-
mation and we finally have to scale back to dimensionless variables to obtain the
exact flow equation for the dimensionless effective potential in the case of complex
scalar fields. Indicating again the dimensionless variables with tilde-notation:
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{
φ = k

d
2−1φ̃

Vk(φ) = kdṼk(φ̃) =⇒
{
φ̃ = k1− d2 φ

Ṽk(φ̃) = k−dVk(φ) (6.17)

the l.h.s. of (6.16) becomes:

∂tVk =k∂k(kdṼk(φ̃1, φ̃2)) =

=dkdṼk(φ̃) +
[
k
∂φ̃1

∂k
∂φ̃1

Ṽk(φ̃1, φ̃2) + ∂φ̃2

∂k
∂φ̃2

Ṽk(φ̃1, φ̃2)
]
kd+

+ kd∂tṼk(φ̃1, φ̃2) =

=kd
{
dṼk(φ̃1, φ̃2) + (1− d/2)[φ̃1∂φ̃1

Ṽk(φ̃1, φ̃2)+

+φ̃2∂φ̃2
Ṽk(φ̃1, φ̃2)] + ∂tṼk(φ̃1, φ̃2)

}
.

(6.18)

Plugging eq. (6.18) in (6.16) we finally obtain the flow equation for the dimen-
sionless effective potential in the case of complex scalar fields:

∂tṼk + dṼk +
(

1− d

2

)
(φ̃1∂φ̃1

Ṽk + φ̃2∂φ̃2
Ṽk) =

= cd
2 + ∂

(2)
φ̃1
Ṽk + ∂

(2)
φ̃2
Ṽk

(1 + ∂
(2)
φ̃1
Ṽk)(1 + ∂

(2)
φ̃2
Ṽk)− (∂(2)

φ̃1φ̃2
Ṽk)2

.

(6.19)

Note that nowhere we made reference to the ZN symmetry apart claiming that
the bare action (and its evolution) will respect it. Our result is therefore com-
pletely general and suitable to be used wherever the problem at hand necessitates
complex scalar fields to be approached.

6.2 ZN → O(2)
The ZN symmetry is fundamentally different from O(2) symmetry because of its
discrete nature. On the other hand, for large N (in the limit N →∞), it’s natural
to expect the ZN -symmetry to have similar effects to that of the O(2) symmetry.
Understanding this apparently contradictory aspects is an interesting problem.
In this framework we checked that (6.19), in the desired limit, reduces exactly to
the flow equation (5.29) for XY-models well known in FRG literature [4], [13].

In order to compare these results, it’s convenient to shift to the (ρ, θ) repre-
sentation. Then the limit N →∞ should be recovered as an independence of the
effective potential on the angular variable θ. In this limit, indeed, we expect that
the ZN -invariant terms which brakes the O(2) symmetry of the potential should
play no role. We start from the ZN -flow equation (6.19):

∂tṼk+dṼ+(1−d2)(φ̃1∂φ̃1
Ṽk+φ̃2∂φ̃2

Ṽk) = cd
2 + ∂

(2)
φ̃1
Ṽk + ∂

(2)
φ̃2
Ṽk

(1 + ∂
(2)
φ̃1
Ṽk)(1 + ∂

(2)
φ̃2
Ṽk)− (∂(2)

φ̃1φ̃2
Ṽk)2

.

(6.20)
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Changing to (ρ, θ) representation:

φ̃ = 1√
2

(φ̃1 + iφ̃2) = √ρeiθ

¯̃φ = 1√
2

(φ̃1 − iφ̃2) = √ρe−iθ
(6.21)

The interesting term on the l.h.s. of (6.19) reads

(φ̃1∂φ̃1
Ṽk + φ̃2∂φ̃2

Ṽk) = 2ρ
[
cos2 θ

]
∂ρṼk − [cos θ sin θ] ∂θṼk+

+ 2ρ
[
sin2 θ

]
∂ρṼk + [sin θ cos θ] ∂θṼk =

= 2ρ∂ρṼk.
(6.22)

The terms on the r.h.s. are transformed accordingly to

∂
(2)
φ1
Ṽk =

{
2ρ
[
cos2 θ

]
∂(2)
ρ Ṽk + 1

2ρ [sin θ cos θ] ∂θṼk+

+
[
sin2 θ

]
∂ρṼk +

[
cos2 θ

]
∂ρṼk + 1√

2ρ
[sin θ cos θ] ∂θṼk+

+ 1
2ρ
[
sin2 θ

]
∂

(2)
θ Ṽk − 2 [cos θ sin θ] ∂(2)

ρθ Ṽk

}
=

N→∞= 2ρ
[
cos2 θ

]
∂(2)
ρ Ṽk + ∂ρṼk

(6.23)

while ∂(2)
φ2
Ṽk is obtained from (6.23) with the substitution cos θ 
 sin θ, and the

mixed partial derivative reads:

∂
(2)
φ1φ2

Ṽk =
{[

cos2 θ
]
∂

(2)
ρθ Ṽk −

[
sin2 θ

]
∂

(2)
ρθ Ṽk+

− 1
2ρ [sin θ cos θ] ∂(2)

θ Ṽk + 2ρ [sin θ cos θ] ∂(2)
ρ Ṽk+

− 1√
2ρ
[
cos2 θ

]
∂θṼk + 1

2ρ
[
sin2 θ

]
∂θṼk

}
=

N→∞= 2ρ [sin θ cos θ] ∂ρṼk.

(6.24)

Putting everything together in (6.20) we obtain the flow equation in LPA for a
ZN -invariant model in the limit N →∞ (ZN → O(2)):

∂tṼk +dṼk +(2−d)ρ̃∂ρ̃Ṽk =
2cd(1 + ∂ρ̃Ṽk + ρ̃∂

(2)
ρ̃ Ṽk)

1 + 2∂ρ̃Ṽk + (∂ρ̃Ṽk)2 + 2ρ̃∂(2)
ρ̃ Ṽk + 2ρ̃(∂ρ̃Ṽk)(∂(2)

ρ̃ Ṽk)
(6.25)

which alternatively can be written in the following form:
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∂tṼk + dṼk + (2− d)ρ̃∂ρ̃Ṽk = cd

[
1

1 + ∂ρ̃Ṽk
+ 1

1 + ∂ρ̃Ṽk + ρ̃∂
(2)
ρ̃ Ṽk

]
(6.26)

which exactly matches the flow equation (5.29) for O(N) models in the case
N = 2. So, as expected, we recover the O(2)-models flow equation as a special
case of the effective dimensionless potential flow equation for complex scalar fields
(6.19).

We also tried a numerical simulation for the correlation exponent ν in the
framework of the local potential approximation. Despite this approximation is
not suitable to discuss numerical results since it is convenient to move to next
leading orders in the derivative expansion, we anyway obtained νLPA = 0.7001(5)
w.r.t. the XY -model correlation length critical exponent ν = 0.67155(27) [36].

We therefore conclude that the flow equation (6.19) both analytically and numer-
ically reproduces the expected results for O(2)-models in the limiting behaviour
N →∞ where we expect that the ZN perturbation to the O(2)-models plays no
role.

6.3 Perturbing O(2) symmetry
A natural question then would be the effect of the symmetry breaking from the
continuous O(2) to the discrete ZN symmetry. In doing so we can work with
a reduced ZN -symmetric potential which anyway gives us a picture of how this
perturbation affects the fixed point structure of the theory.

A generic ZN -symmetric model may me mapped, in the long distance limit,
to the following φ4-type field theory with euclidean action

S =
∫
x

[
(∂φ)2 + m

2 |φ|
2 + g

4! |φ|
4 + λN

N ! (φN + φ̄N )
]
. (6.27)

The corresponding dimensionless effective potential is:

Ṽk(φ̃, ¯̃φ) = mk

2 |φ̃|
2 + gk

4! |φ̃|
4 + λk,N

N ! (φ̃N + ¯̃φN ). (6.28)

The λk,N term is the lowest-order term in φ which breaks the symmetry from
O(2) to ZN . This φ4 model in three dimension, in the absence of the symmetry
breaking term λN , reproduces of course the XY3 universality class.

Its stability under the symmetry breaking to ZN is determined by the scaling
dimension of λN at the XY3 fixed point. In order to derive it, we again take ad-
vantage of the definition of the dimensionless effective potential as the generating
functional of all the β-functions as developed in chapter 5:

λk,N := ∂
(N)
φ̃

Ṽk

∣∣∣
φ̃, ¯̃φ=0

=⇒ ∂tλk,N = ∂
(N)
φ̃

(
∂tṼk

)∣∣∣
φ̃, ¯̃φ=0

. (6.29)

We have chosen to write the potential (6.28) in terms of (φ̃, ¯̃φ) and so the first
thing to do is to cast eq. (6.19) into the right representation. The derivation is
trivial and we give here the result:
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∂tṼk = −dṼk + (d/2− 1)[(φ̃∂φ̃Ṽk + ˜̄φ∂ ˜̄φṼk)]+

+ cd

2(1 + ∂
(2)
˜̄φφ̃
Ṽk)[

(1 + ∂
(2)
φ̃ ˜̄φ
Ṽk)2 − ∂(2)

φ̃
Ṽk ∂

(2)
˜̄φ
Ṽk

] . (6.30)

We are now in the position to plug the effective potential (6.28) into the flow
equation (6.30) just derived. We obtain:

∂tṼk = −d
[
mk

2 (φ̃ ¯̃φ) + gk
4! (φ̃ ¯̃φ)2 + λk,N

N ! (φ̃N + ¯̃φN )
]

+

+
(
d

2 − 1
)[

mk(φ̃ ¯̃φ) + gk
6 (φ̃ ¯̃φ)2 +N

λk,N
N ! (φ̃N + ¯̃φN )

]
+

+ 2cd
[
1 + mk

2 + gk
6 (φ̃ ¯̃φ)

] [(
1 + mk

2 + gk
6 (φ̃ ¯̃φ)

)2
+

+
(
gk
12

¯̃φ2 + λk,N
N(N − 1)

N ! φ̃N−2
)(

gk
12 φ̃

2 + λk,N
N(N − 1)

n!
¯̃φN−2

)]−1
.

(6.31)

Taking the N th-derivative w.r.t. φ and keeping terms up to φ̃ ¯̃φ, we obtain the
following scaling relation at the XY fixed point:

∂tλk,N = λk,N

{
−(4− d)N(N − 1)

10 + d

(
1− N

2

)
+N

}
. (6.32)

The scaling dimension of λk,N is thus parametrically expressed in terms of the
continuous dimension d:

yN (d) := −(4− d)N(N − 1)
10 + d

(
1− N

2

)
+N. (6.33)

and we can therefore analize how it behaves in the dimension range 2 ≤ d ≤ 4
for different N . What we observe is that the λN perturbation is

◦ relevant in 2 ≤ d ≤ 4 for both N = 2 and N = 3;

◦ marginal in the limiting special case (N = 4, d = 4);

◦ irrelevant for n = 4 and 2 ≤ d < 4;

◦ irrelevant in 2 ≤ d ≤ 4 for N ≥ 5;

Here it is very interesting to notice that if we choose the dimension d to be
d = 4−ε, we exactly recover the result given by Oshikawa in [35] who approached
the same problem in the framework of the ε-expansion:
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Figure 6.13: Scaling dimension yN (d) for N = 2, 3, 4, 5 in the range 2 ≤ d ≤ 4.

yN = 4−N + ε

(
N

2 − 1− N(N − 1)
10

)
+O(ε2), (6.34)

and this is an example on how FRG techniques parametrically extends to con-
tinuos dimension d previous results obtained within ε-expansion.

In the absence of the symmetry breaking λN , the transition belongs to the
so-called XY3 universality class. Extrapolating the result to d = 3, we see that
the ZN perturbation is irrelevant at the XY3 fixed point for N ≥ Nc. We know
that the cases N = 2 (Ising model), N = 3 (three-states Potts model) do not
belong to the XY3 universality class and from the linearization procedure above
Nc is expected to be Nc = 4. On the other hand, from a naive scaling analysis:

[φ] = k1−d/2

[λN ] = kN(d/2−1)−d d=3=⇒ Nc = 6
(6.35)

we find Nc = 6 and so we expect the λN perturbation to be for sure irrelevant
for N ≥ Nc = 6.

A numerical analysis of the fixed point structure for different N gives instead
the following general picture:
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70 ZN models

Figure 6.14: Phase diagram of the reduced ZN theory in d = 3. For p ≥ 5 the broken
ZN (low-temperature) phase disappears and we recover the typical BKT-type transition
of the XY model.

N<5

Gauss FP: {m∗ = 0, g∗ = 0, |λ∗| = 0}
Wilson Fisher FP: {m∗ < 0, g∗ > 0, |λ∗| = 0}
ZN FP : {m∗ < 0, g∗ > 0, |λ∗| 6= 0}

N≥5
{
Gauss FP: {m∗ = 0, g∗ = 0, |λ∗| = 0}
Wilson Fisher FP: {m∗ < 0, g∗ > 0, |λ∗| = 0} .

(6.36)

The phase transition between the ordered phase and the disordered phase is
governed by the XY3 fixed point. This means that the critical exponents are
identical to those of the XY3 model. This is consistent with the numerical results:
the correlation length critical exponent is estimated to be νLPA ' 0.70. However
it is not surprising to obtain an inaccurate result in the lowest order of the
derivative expansion. It would be interesting to carry out the calculation to
higher orders.

While in the disordered phase above Tc (m > 0) , there is no essential effect of
the ZN perturbation, the nature of the ordered phase (m < 0) is more interesting.
The ZN perturbation λN is eventually enhanced in the ordered phase below Tc
for N ≤ Nc = 5.

From the flow diagram in Fig. 6.15 we understand that the ZN perturbation λN
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Figure 6.15: RG flow diagram of the ZN models into the two-dimensional theory
space spanned by m̃k and λ̃k. On the left we select the case N = 2 in which the ZN

perturbation λN is irrelevant at the XY3 fixed point, but it becomes relevant at the IR
fixed point and it flows toward the ZN -fixed point (not shown in figure). On the right
we plot the limiting case N = 5 which clearly shows that the λN perturbation is strictly
irrelevant.

is irrelevant at the XY3 fixed point but is relevant at the IR fixed point. For
T < Tc and N < Nc the symmetry breaking perturbation λN is renormalized to
a small value by the RG flow, and remains small until the RG flow reaches the
IR fixed point. Then it is renormalized to the ZN fixed point.

Summing up, we clarified a FRG picture of the phase structure for 3d ZN
symmetric models. We conclude that there is no finite region of intermediate
phase with a spontaneously broken O(2) symmetry, but only a crossover to a
phase where the discreteness of ZN is relevant. Based on the FRG picture, we
have derived a scaling law of the order parameter models which is valid for any
continuos dimension d.
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6.4 ZN symmetric effective potential

In the previous section we analized how a reduced ZN perturbation affects the
O(2) symmetry in the action (6.27). We would like to make a few remarks. First,
we note that the RG argument used in the previous section does not contradict the
transition to other than XY3 universality class, because only the local stability
of the XY3 fixed point was discussed. It is possible that a lattice model with
ZN symmetry is renormalized to another unknown RG fixed point. Second, the
perturbation term λN is not enough to describe theories with higher N (N ≥ 5)
since we are neglecting operators which are at least as relevant as λN .

In order to approach the problem from a more general viewpoint it is necessary
to have a map of all the ZN fixed points in continuos dimension and for any N : in
this way we pursue the classification of all the universality classes of ZN -invariant
models in continuos dimension.

Anyway, the standard direct analysis of the β-functions, as it was presented in
the previous chapters is complicated as we will show below. The classification of
all the universality classes of ZN -invariant models in continuos dimension should
rely on a spike-plot technique as introduced by Morris in [31] and later developed
by others [9] [12]. The spike-plot technique is a powerful tool which permits to
select from all the spurious fixed points solutions of the β-functions only those
who really corresponds to a physical solution. In this way the problem is reversed:
we first spot the physical solutions of the theory among spurious ones and then
we fully characterize its stability properties through the analysis of the relative
β-functions. Up to now a spike-plot for ZN -invariant models still lacks and it will
be our main interest in future works.

As already seen in the Ising-like example in chapter 5, the standard way
to approach the problem is to give an ansatz for the most general potential
respecting the particular symmetry at hand and the reality condition. In doing so
we can take advantage of the definition of the effective potential as the generating
functional of all β-functions and so we can start analizing them.

In the theory space spanned by all dimensionless effective potentials, the most
general ZN -symmetric one is:

Ṽk(φ̃, ¯̃φ) =
∑
i

[
λk,i

(φ̃)Ni

(Ni)! + λ̄k,i
( ¯̃φ)Ni

(Ni)!

]
+

+
∑
j

µk,j
( ¯̃φφ̃)j

j! +

+
∑
l,m

[
ρk,lm

(φ̃)Nl( ¯̃φφ)m

(Nl +m)! m! + ρ̄k,lm
( ¯̃φ)Nl( ¯̃φφ̃)m

(Nl +m)! m!

]
.

(6.37)

The potential introduced is parametrized by 5 different complex coupling con-
stants (λ, λ̄, µ, ρ, ρ̄) which can be obtained by functional derivatives:
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∂
(Ni)
φ̃

Ṽk

∣∣∣
φ̃, ˜̄φ=0

=: λk,i

∂
(Ni)
˜̄φ

Ṽk

∣∣∣
φ̃, ˜̄φ=0

=: λ̄k,i
1

(j!) ∂
(j)
˜̄φ
∂

(j)
φ̃
Ṽk

∣∣∣
φ̃, ˜̄φ=0

=: µk,l

∂
(Nl+m)
φ̃

∂
(m)
˜̄φ

Ṽk

∣∣∣
φ̃, ˜̄φ=0

=: ρk,lm

∂
(Nl+m)
˜̄φ

∂
(m)
φ̃

Ṽk

∣∣∣
φ̃, ˜̄φ=0

=: ρ̄k,lm

(6.38)

where, of course, the index k in the coupling constants stands for the cutoff index.
The coupling constants flow, and thus the β-functions, can be obtained acting on
both sides of these equations with ∂t and taking advantage of the flow equation
in the (φ, φ̄) representation (6.30). For example the λk,i flow is given by:

∂tλk,i = ∂
(Ni)
φ̃

(
∂tṼk

) ∣∣∣
φ̃, ˜̄φ=0

. (6.39)

What we can do is therefore to analize them case by case and order by order.
For example in the case N = 2 the first λφ4-type truncated potential in which we
consider terms with same order of relevance is:

Vk(φ, φ̄) = 1
2µ1|φ|2 + 1

4µ2|φ|4+

+ 1
6

{
ρ̄1,1|φ|2φ̄2 + ρ1,1|φ|2φ2

}
+

+ 1
2
{
λ1φ

2 + λ̄1φ̄
2}+ 1

24
{
λ2φ

4 + λ̄2φ̄
4} .

(6.40)

The potential is of course Z2-symmetric and represents an effective theory in
which we are describing a generalized Ising universality class. The corresponding
β-functions are given in appendix A2.

In the case N = 3, a generalized Potts universality class truncated potential
in which we consider terms up to φ6 is:

Vk(φ, φ̄) = 1
2µ1|φ|2 + 1

4µ2|φ|4 + 1
12µ2|φ|6

+ 1
24

{
ρ̄1,1φ̄

3|φ|2 + ρ1,1|φ|2φ3
}

+

+ 1
6
{
λ1φ

3 + λ̄1φ̄
3}+ 1

720
{
λ2φ

6 + λ̄2φ̄
6} .

(6.41)

Since, as shown in appendix A2, the structure of the β-functions is very com-
plicated, we have not found a general method to solve them. The method we
addressed to solve for scaling solutions, was to nest β-functions so that one is
left only with a system of five equations in five couplings. Indeed, at any order,
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the β-function in the coupling xi is always a linear function in the next coupling
xi+1. Therefore we can solve βi for xi+1 and use the last equation βm, which is a
function of xm alone to close the system. This has somehow simplified the prob-
lem and we were able to compute critical exponents. We have found however that
the critical exponents computed do not converge to a finite value because it is
necessary to take into consideration next orders in the expansion of the potential.
Moving to next orders has proved the problem to be more and more complicated
and simulations failed to produce satisfactory results.

As a divertissement, we plot below the scaling solutions obtained in the nest-
ing procedure in which we’re left with two equations in two coupling constants
for a multicritical Ising-like potential in fractional dimension: each intersection
represents a possible fixed point solution, the majority of which are of course
spurious fixed points.

Figure 6.16: Contour plot of nested β-functions: each intersection here representing
a possible fixed point scaling solution.

As it is clear, this direct approach to the β-functions for the most general
ZN -invariant effective potential failed to give a defined and satisfactory picture
of the universality classes. In future works we will try to derive a spike-plot for
ZN -models from which we expect instead to have a simpler and more transparent
picture of ZN universality classes.
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Conclusions

ZN models, both as lattice models or as quantum field theories, are the simplest
models which exhibit discrete global symmetries and they played a central role
in several fields ranging from statistical-condensed matter Physics to elementary
particle Physics. In this thesis we have explored a new way to study the flow of ZN
models in theory space within the framework of the Functional Renormalization
Group (FRG) based on the effective average action (EAA).

Within the local potential approximation (LPA), our main result is an exact
functional RG equation (6.19) for the dimensionless effective potential of complex
scalar field theories. In deriving it we do not specify any particular symmetry
and so, despite the fact that we focused it in the case of ZN -invariant theories,
the result is completely general: it describes how the effective potential evolves
in theory space as the scale at which we observe the system is enlarged from UV
to IR for any complex scalar field theory and for any symmetry content.

In order to check analytically the exactness of the flow equation (6.19), we
take advantage of the correspondence between ZN -models and O(2)-models in
the limiting behaviour N → ∞ where it is natural to expect they have similar
effects. In this limit we exactly recover the O(2) flow equation (5.29) for XY -
model proving that the the large N limit is correct.

As an inverse problem we studied the effect of the symmetry breaking from
the continuous O(2) to the discrete ZN symmetry. We worked with the lowest
order effective potential (6.28) which brakes the O(2)-symmetry to ZN , but which
anyway gives us a picture of how this perturbation affects the fixed point structure
of the theory. In order to test the stability of the φ4 model under the symmetry
breaking ZN we derived an exact scaling relation of the perturbation coupling λN
which is valid in any continuos dimension d. The scaling relation reveals that the
ZN perturbation, in 2 ≤ d ≤ 4, is relevant for N = 2 and N = 3 and irrelevant
for N ≥ 5, while it is marginal in the limiting case (d = 4, N = 4) and irrelevant
for (d < 4, N = 4). This analysis extended and clarified the known results from
Blankschtein, Oshikawa et al. [35], [5] but we anyway showed that the scaling
relation we derived reduces exaclty to the scaling relation given in [35], in the
framework of ε-expansion. In doing so we give a proof of how the ε-expansion
can be recovered from FRG.

We specified the previous analysis to the case d = 3 giving a FRG picture of

75
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the phase structure of ZN -symmetric models, which has been extensively studied
in the past years. We found that for 2 ≤ N < 5 the phase diagram opens for a
new ZN fixed point which disappears as soon as N ≥ 5: there is no finite region
of intermediate phase with a spontaneously broken O(2)-symmetry, but only a
crossover to a phase where the discreteness of ZN is relevant. The flow diagram
we derived showed that the λN perturbation is irrelevant at the XY fixed point
and becomes relevant at the IR fixed point.

Motivated by the desire of classifying all the universality classes in continuos
dimension for Zn-invariant theories in the framework of the spike-plot technique,
we introduced the most general Zn-invariant and real effective potential (6.37)
which will be our starting point for future works.

We finally numerically computed the correlation length critical exponent ν in
theXY3-limit within LPA approximation: our best result is νthis work = 0, 7001(5)
to be compared to ν = 0.67155(27) [36], which despite inaccuracy is perfectly
acceptable in the approximation retained.



i
i

“TSWLatexianTemp_000004” — 2015/1/9 — 14:07 — page 77 — #85 i
i

i
i

i
i

A1

Comparison to perturbation theory

Although the FRG equation (4.31) is a one-loop RG flow equation (which should
not be confused with a standard perturbative loop as it contains the full prop-
agator), it contains effects to arbitrary high loop order: it is possible to repro-
duce higher loop order perturbation theory. The derivation follows Litim and
Pawlowski [29]. In order to show how perturbation theory can be retrieved, we
start from the effective action within a loop expansion:

Γk[φ] = SB[φ] +
∞∑
n=1

∆Γn,k[φ] (8.1)

where the functional SB plays the role of a bare action and ∆Γn,k[φ] comprises
the n-th loop order. In terms of the flow equation, contributions of different loop
orders can be identified:

∂tΓk[φ] =
∞∑
n=1

∂t∆Γn,k[φ] (8.2)

where we use the following notation for them-point correlation function to n-loop
order at a scale k:

Γ(m)
n,k (8.3)

We want to show here how we can retrieve the two-loop result for the effective
action, which is the first non-trivial result. As a road map for the expansion in
loop order, here is an outline of the calculation

◦ start from the effective action at n-loop level and calculate the two-point
function

Γn,k
δ2
δφδφ−→ Γ(2)

n,k = Γ(2)
n−1,k + ∆Γ(2)

n,k (8.4)

◦ insert the n-loop two-point function into the one-loop flow equation (4.31)

∂tRk

Γ(2)
n,k +Rk

= ∂tRk

Γ(2)
n−1,k + ∆Γ(2)

n.k +Rk
(8.5)

77
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◦ isolate the n+ 1-loop correction to the effective action

∂t∆Γn+1,k = (∂tRk) 1
Γ(2)
n−1,k +Rk

∆Γ(2)
n,k

1
Γ(2)
n−1,k +Rk

(8.6)

◦ integrate the flow equation to obtain the n+1-loop correction to the effective
action

Γn+1,k = Γn,k + ∆Γn+1,k (8.7)

The effective action at one loop is calculated using the tree-level two-point func-
tion

Γ1,k= = SB + ∆Γ1,k

Γ(2)
0,k = S

(2)
B

(8.8)

The flow equation for the one loop correction to the effective action reads:

∂t∆Γ1,k = 1
2(∂tRk)pq

[
S

(2)
B +Rk

]−1

qp
. (8.9)

Integrate this to get the one-loop correction:

∆Γ1,k =
∫ k

Λ
dk′

1
k′
∂t′

1
2 [log(S(2) +Rk)]pp, (8.10)

and we see that the one-loop result corresponds with ordinary result:

Γ1,k = SB + 1
2

[
log(S(2)

B +Rk)
]
pp
− 1

2

[
log(S(2)

B +RΛ)
]
pp

= SB + 1
2

[
log(S(2)

B +Rk′)
]
pp

∣∣∣∣k
Λ

(8.11)

The one-loop contribution to the two-point function is obtained by taking the
variation of the one-loop effective action

(
∆Γ(2)

1,k

)
qq′

= δ

δφ(q)δφ(q′)∆Γ1,k

= 1
2

δ2

δφ(q)δφ(q′)

[
log(S(2)

B +R′k)
]
pp

∣∣∣∣k
Λ

= 1
2

[
Gpp′S

(4)
B,{pp′,qq′} −Gpq′′′S

(3)
B,{q′′′q′′q}Gq′′p′S

(3)
B,{p′pq′}

]∣∣∣∣k
Λ

(8.12)

where we used:

δ

δφ(q)Gpp
′ = δ

δφ(q)

[
S

(2)
B +Rk

](−1)

pp′
= (−1)Gpq′SB,{q′q′′q}Gq′′p′ (8.13)



i
i

“TSWLatexianTemp_000004” — 2015/1/9 — 14:07 — page 79 — #87 i
i

i
i

i
i

79

with the following graphical representation:

1
2

[
−

]
Now we need to find the two loop correction to the flow equation for the effective
action. In order to do this we insert the correction to the propagator into the
flow equation and then we isolate the two-loop part:

∂tΓ2,k = 1
2(∂tRk)qp

[
Γ(2)

1,k +Rk

]−1

pq
= 1

2(∂tRk)qp
[
S

(2)
B + ∆Γ(2)

1,k +Rk

]−1

pq
=

= 1
2(∂tRk)qp

[
S

(2)
B +Rk

]−1

pq
+

+ 1
2(∂tRk)qp(−1)

[
S

(2)
B +Rk

]−1

pq′′

(
∆Γ(2)

1,k

)
q′′q′

[
S

(2)
B +Rk

]−1

q′q
+ . . .

= ∂t∆Γ1,k + ∂t∆Γ2,k + . . .

(8.14)

We therefore find for the correction:

∂t∆Γ2,k = −1
2(∂tRk)qpGpq′

(
∆Γ(2)

1,k

)
q′′q′

Gq′′q (8.15)

This needs to be integrated over all scales k. Calling, in abbreviation, the tree-
level propagator (with cutoff at scale k)

Gpq =
[
S

(2)
B +Rk

]−1

pq
, (8.16)

the derivatives of the propagator w.r.t. the RG scale k writes:

∂tGpq = ∂t

[
S

(2)
B +Rk

]−1

pq
= (−1)

[
S

(2)
B +Rk

]−1

pq′
(∂tRk)q′q′′

[
S

(2)
B +Rk

]−1

q′′q
=

= (−1)Gpq′(∂tRk)q′q′′
(8.17)

which graphically

∂t =

and this allows to rewrite terms in the flow equations as total derivatives with
the correct combinatorial factors that come from inserting (∂tRk) in all possible
propagators. We can therefore write

Gpp′S
(4)
B,{pp′q′q′′}(∂

′
tG)q′′q′ = 1

2∂t
′(Gpp′S(4)

B,{pp′q′q′′}(∂
′
tG)q′′q′)

Gpp′S
(3)
B,{pp′′q}Gp′′q′′S

(3)
B,{q′′′p′q′}(∂t′G)q′q = 1

3∂t
′(Gpp′S(3)

B,{pp′′q}Gp′′q′′S
(3)
B,{q′′′p′q′})

(8.18)



i
i

“TSWLatexianTemp_000004” — 2015/1/9 — 14:07 — page 80 — #88 i
i

i
i

i
i

80

Using now the result for the scale derivative of Gpq, we can write for the two-loop
flow correction

∂t∆Γ2,k = −1
2(∂tRk)qpGpq′

(
∆Γ(2)

1,k

)
q′′q′

Gq′′q

= 1
2

(
∆Γ(2)

1,k

)
q′′q′

(∂tG)q′q′′ .
(8.19)

We now insert the expression for the one-loop propagator correction and we use
the result for ∂tGpq to write this as a total derivative:

1
2

1
2

[
Gpp′S

(4)
B,{pp′,qq′} −Gpp′S

(3)
B,{pp′′q}Gp′′q′′S

(3)
B,{q′′p′q′}

]k
Λ

(∂t′G)qq′ =

= 1
2

1
2∂t

′

[
1
2Gpp

′S
(4)
b,{pp′,qq′}Gqq′ −

1
3Gpp

′S
(3)
B,{pp′′q}Gp′′q′′S

(3)
B,{q′′p′q′}Gq′q

] (8.20)

and now we perform the scale integration with regard to the renormalization scale
k

∆Γ2,k =
∫ k

Λ
dk′

1
k′

1
2

1
2

[
Gpp′S

(4)
B,{pp′,qq′} +

−Gpp′S(3)
B,{pp′′q}Gp′′q′′S

(3)
B,{q′′p′q′}

]k
Λ

(∂t′G)qq′

=
∫ k

Λ
dk′

1
k′

1
2

1
2∂t

′

[
1
2Gpp

′S
(4)
B,{pp′,qq′}Gqq′+

−1
3Gpp

′S
(3)
B,{pp′′q}Gp′′q′′S

(3)
B,{q′′p′q′}Gq′q

]
(8.21)

so we finally obtain, as a result from integration, the correct perturbative two-
loop result:

∆Γ2,k =
[

1
8Gpp

′S
(4)
b,{pp′,qq′}Gqq′ −

1
12Gpp

′S
(3)
B,{pp′′q}Gp′′q′′S

(3)
B,{q′′p′q′}Gq′q

]k
Λ
(8.22)

=
[

1
8 − 1

12

]
.
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Full potential: Z2 β-functions

We give here the β-functions obtained for the following Z2 λφ
4-type truncated

potential:

Vk(φ, φ̄) = 1
2µ1|φ|2 + 1

4µ2|φ|4+

+ 1
6

{
ρ̄1,1|φ|2φ̄2 + ρ1,1|φ|2φ2

}
+

+ 1
2
{
λ1φ

2 + λ̄1φ̄
2}+ 1

24
{
λ2φ

4 + λ̄2φ̄
4} .

(9.1)

In the full potential (6.37) with N = 2 we could consider next orders in the
expansion of the potential, but the β-functions structure complicates more and
more.

βλ1 = 1
3

{
−6λ1 + ρ1,1

π2(−|λ1|2 + 1
4 (2 + µ1)2)

+

−8(2 + µ1)(−λ̄1λ2 − λ1µ2 + (2 + µ1)ρ1,1)
π2(−4|λ1|2 + (2 + µ1)2)2

}
βλ̄1

= β̄λ1

βλ2 = −λ2 +
16[2ρ1,1(λ̄1λ2 + λ1µ2 − (2 + µ1)ρ1,1) + (2 + µ1)(λ2µ2 − ρ2

1,1)]
π2(−4|λ1|2 + (2 + µ1)2)2

+

+ 64(2 + µ1)(λ̄1λ2 + λ1µ2 − (2 + µ1)ρ1,1)
π2(−4|λ1|2 + (2 + µ1)2)3

βλ̄2
= β̄λ2

βµ1 = 1
3

{
−3µ1 + µ2

π2(−|λ1|2 + 1
4 (2 + µ1)2)

+

−8(2 + µ1)(−ρ̄1,1λ1 − λ̄1ρ1,1 + (2 + µ1)µ2)
π2(−4|λ1|2 + (2 + µ1)2)2

}
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βµ2 = 1
6

{
−3µ2 −

8(2 + µ1)(|λ2|2 + 2|ω1,1|2 − 3µ2
2)

π2(−4|λ1|2 + (2 + µ1)2)2
+

+ 16ρ1,1(|λ2|2λ1 − |ρ1,1|2(2 + µ1) + |λ1|2µ2)
π2(−4|λ1|2 + (2 + µ1)2)2

+

+ 64µ2(|ρ1,1|2λ1 − (2 + µ1)µ2 + |λ1|2ρ1,1)
π2(−4|λ1|2 + (2 + µ1)2)2

+

− 128(2 + µ1)(|ρ1,1|2λ1 − (2 + µ1)µ2 + |λ1|ρ1,1)2

π2(−4|λ1|2 + (2 + µ1)2)3
+

+ 16|ρ1,1|2(|λ1|2λ2 + λ1µ2 − (2 + µ1)ρ1,1)
π2(−4|λ1|2 + (2 + µ1)2)2

− 64(2 + µ1)|λ2|2λ1

π2(−4|λ1|2 + (2 + µ1)2)3
+

−|ρ1,1|2(2 + µ1) + |λ1|2µ2)(|λ1|2λ2 + λ1µ2 − (2 + µ1)ρ1,1)
π2(−4|λ1|2 + (2 + µ1)2)3

}

βω1,1 = −ω1,1 + 8(2|ρ1,1|2λ1(4|λ1|2 + 3(2 + µ1)2)
π2(−4|λ1|2 + (2 + µ1)2)3

− |ω1,1|(2 + µ1)(4λ2(|λ1|2 + (2 + µ1)2) + 8λ2
1µ2)

π2(−4|λ1|2 + (2 + µ1)2)3
+

+ µ2
2(2λ1)(4|λ|2 + 3(2 + µ1)2)− (2 + µ1)(28|λ1|2 + 3(2 + µ1)2ρ1,1)

π2(−4|λ1|2 + (2 + µ1)2)3
+

+
6|λ1|2(2 + µ1)2(λ2µ2 + ρ2

1,1) + 8|λ1|2(−λ2(2 + µ1)ρ1,1 + λ1(λ2µ2 + ρ2
1,1)

π2(−4|λ1|2 + (2 + µ1)2)3

βω̄1,1 = β̄ω1,1

In the mass-like β-functions we can recognise a structure similar to that derived
for the simpler exact Z2 universality class in (5.20).
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