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Riassunto

All’interno del lavoro di tesi si discute l’estensione di un metodo di bosonizzazione a
teorie di campo fermioniche relativistiche in 3 + 1 dimensioni, a temperatura (T ) e
potenziale chimico (µ) finiti. Questo metodo è stato sviluppato inizialmente per valori
nulli dei suddetti parametri [1]. Si analizza anche la possibilità di sostituire un’azione che
genera stati legati con una, fisicamente equivalente, in cui i campi associati alle variabili
elementari e quelli associati agli stati legati stessi possano essere trattati in identico
modo. Un’indagine in questa direzione è di particolare interesse, in quanto, come è noto,
esistono sistemi, in cui alcuni gradi di libertà elementari sono fermionici, che, almeno per
certe scale di energia, sono più efficacemente descritti tramite gradi di libertà bosonici.
Ne sono esempi tutti in sistemi che presentano una rottura di simmetria continua,
infatti il parametro d’ordine è sempre una variabile bosonica. Si osservi, inoltre, che
questi bosoni risultano essere composti da fermioni. Esempi fisicamente rilevanti sono
la superconduttività nei metalli, la dominanza dei mesoni chirali in cromodinamica
quantistica (QCD) e il fenomeno della superconduttività di colore in QCD ad alta
densità adronica.

La tesi è strutturata come segue. Nel primo capitolo si introduce il contesto in cui
si inserisce il lavoro di tesi e si fornisce una breve descrizione di alcuni degli strumenti
necessari alla trattazione che segue. Il primo concetto utile che viene introdotto è quello
di bosonizzazione. Tale procedura consiste di un cambio di variabili nell’integrale fun-
zionale che esprime la funzione di partizione, in cui le nuove variabili sono di carattere
bosonico. Di maggiore interesse è la bosonizzazione di sistemi fermionici. Per i motivi
espressi sopra, la bosonizzazione è uno strumento particolarmente efficace in quanto
consente di applicare a sistemi fermionici alcuni dei metodi sviluppati per sistemi con
gradi di libertà bosonici. In particolare, la possibilità di sostituire, nelle simulazioni
numeriche, variabili bosoniche a variabili fermioniche è di grande interesse. In seguito,
viene presentata una breve introduzione alle teorie di gauge su reticolo, soffermandosi
sulle difficoltà che sorgono introducendo dei fermioni sul reticolo stesso. Tali problemi
sono parzialmente risolti con l’utilizzo dei fermioni di Kogut-Susskind. Si introduce,
quindi, il formalismo operatoriale della matrice di trasferimento su reticolo e il for-
malismo degli stati coerenti. Nel formalismo operatoriale, la parte fermionica della
funzione di partizione viene scritta come la traccia di una potenza L0 della matrice di
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trasferimento. La temperatura compare nella funzione di partizione tramite la relazione
T−1 = L0. In analogia con la meccanica statistica, si introduce il potenziale chimico nel
formalismo come il moltiplicatore di Lagrange associato al numero di particelle. Cal-
colando la traccia sulla base degli stati coerenti, si ottiene la rappresentazione funzionale
della funzione di partizione gran-canonica. In questo modo, il potenziale chimico si ac-
coppia esponenzialmente con i campi fermionici e non risultano essere necessari ulteriori
controtermini. Infine, vengono descritti in breve il diagramma di fase della QCD e le
problematiche legate al suo studio.

La bosonizzazione è un argomento di grande interesse di ricerca. Le procedure di
bosonizzazione per teorie relativistiche in (1 + 1) dimensioni sono note e hanno portato
alla scoperta di risultati esatti [4]. Per quanto riguarda, invece, le tecniche di bosoniz-
zazione in dimensioni maggiori, non si conosce, ad oggi, una tecnica che si possa dire
totalmente soddisfacente. In particolare, nei metodi noti, il campo bosonico ha sempre
numero fermionico 0. I punti fondamentali che una tecnica di bosonizzazione deve af-
frontare e risolvere sono due. In primo luogo, come poter introdurre i campi bosonici
nell’azione e, successivamente, come ottenerne l’azione effettiva. Nel secondo capitolo
si presenta un particolare metodo di bosonizzazione per teorie Abeliane in dimensione
(d + 1), con d > 1 [21]. In questo metodo, il campo bosonico è un potenziale di Kalb-
Ramond antisimmetrico di rango (d− 1) ed è introdotto tramite un opportuno cambio
di variabili nell’integrale funzionale. L’integrale sulle variabili deve essere calcolato in
modo esplicito, tuttavia non esiste un metodo generale per valutare il determinante
fermionico, come, ad esempio, si verifica per le teorie di gauge. Esiste, inoltre, un se-
condo metodo di bosonizzazione, che fa uso della trasformata di Hubbard-Stratonovich.

Recentemente, è stato sviluppato un nuovo metodo di bosonizzazione, il metodo am-
pliato e sviluppato nel lavoro di tesi, in cui la funzione di partizione è scritta nel forma-
lismo operatoriale e in cui si utilizza una regolarizzazione su reticolo. In questo modo, si
possono individuare i gradi di libertà dominanti, di tipo bosonico, come sovrapposizione
di coppie di quark e antiquark, il cui operatore di creazione è della forma Φ̂† := û†Φ†v̂†,
dove û e v̂ sono gli operatori di quark ed antiquark1. La funzione Φ è la funzione di strut-
tura dei bosoni e questi operatori non costituiscono un’algebra canonica. L’assunzione
fisica che i gradi di libertà dominanti siano di carattere bosonico viene implementata
valutando la traccia solo sugli stati di bosone composto. L’azione efficace, per i campi
di bosone composto, è ottenuta facendo ricorso ad un’unica approssimazione. Infatti, è
necessario, al fine di determinare l’azione, esprimere il proiettore sugli stati dominanti
tramite stati (semi-)coerenti dei bosoni composti, della forma

|φ〉 := exp
(
û†(φ · Φ†)v̂†

)
|0〉 . (1)

Questa approssimazione è tanto migliore, tanto maggiore è l’indice di nilpotenza di Φ̂†.
1Gli indici di posizione e il numero quantico sono sotto intesi, sia per i fermioni, che per gli operatori

composti. Anche la sommatoria sui numeri fermionici è implicita.
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Questo approccio consente di utilizzare metodi variazionali. Valutando la funzione di
partizione tramite il metodo di punto sella, si ottiene, a livello semi-classico, lo stato
fondamentale come in (1), dove (φ·Φ†) assume il valore (φ · Φ†), soluzione dell’equazione
di punto sella2. Si determina anche la funzione di struttura del mesone chirale. Nel caso
in cui la matrice di trasferimento sia indipendente dal tempo, si conoscono le soluzioni
delle equazioni di punto sella e queste sono riportate nella tesi. Questo metodo è stato
testato su un modello con interazione a quattro campi e si è trovato un pieno accordo
con i risultati noti per il settore bosonico.

Al fine di estendere tale formalismo a temperatura e potenziale chimico finiti, è ne-
cessario prendere in considerazione stati con numero fermionico non nullo ed eccitazioni
dello stato fondamentale. Questo risultato può essere raggiunto introducendo stati di
composto barionico; tuttavia ci siamo limitati a considerare stati fermionici. Allo scopo,
si è esegue una trasformazione di Bogoliubov-Valatin generalizzata sul doppietto degli
operatori dei quarks

ψ̂ 7→ λ̂ := Uψ̂ dove ψ :=
(

û
v̂†

)
. (2)

La condizione di unitarietà per U è essenziale. Dal doppietto λ̂, è stato possibile estrarre
gli operatori di quasiquarks α̂ e quasiantiquarks β̂. Si è deteminata la forma del gener-
atore Û della trasformazione, che risulta essere una composizione di una rotazione nello
spazio dei singoli operatori di particella con una rotazione dei doppietti. Si osservi che la
procedura ha alcune similitudini con la teoria della superconduttività [26]. Si è determi-
nato lo stato di vuoto della teoria nella nuova base degli operatori, che risulta dipendere
dai parametri della rotazione. La forma di tale stato, a meno di costanti moltiplicative,
è come quella indicata in Eq. (1), sostituendo a φ ·Φ† una funzione dei parametri della
trasformata, che abbiamo determinato. In questa nuova base, si è trovata l’azione effet-
tiva dei campi associati alle quasi particelle, valutando la traccia sugli stati coerenti delle
quasi particelle stesse. La derivazione, esatta, dell’azione è stata svolta senza alcuna
assunzione e senza fissare il gauge. Tale condizione è necessaria per effettuare efficaci
simulazioni numeriche. Abbiamo ottenuto due diverse scritture per l’azione, entrambe
gauge invarianti, le cui espressioni sono riportate all’interno della tesi. In entrambe le
azioni compaiono i termini cinetici per i quasiquarks e per i quasiantiquarks , diagonali
nello spazio dei doppietti; sono presenti inoltre termini di interazione tra quasiquarks e
quasiantiquarks . La presenza di questi ultimi termini è dovuta al fatto che la matrice
di trasferimento, ovviamente, accoppia i quark con i antiquark. I coefficienti di inter-
azione sono dipendenti dai parametri della trasformata. Abbiamo verificato che, nel
caso in cui la matrice di trasferimento sia indipendente dal tempo, l’azione non dipende
dal parametro della trasformata e il suo valore coincide con il valore esatto. Abbiamo

2In generale la matrice di trasferimento dipende dal tempo, quindi ne dipendono anche l’equazione

di punto sella e la sua soluzione.



IV

quindi osservato che, per determinati valori dei parametri della trasformata di Bogoli-
ubov, l’azione si diagonalizza nelle componenti di quasiquarks e di quasiantiquarks .
Si è osservato che, per gli stessi valori della trasformata, lo stato fondamentale, nella
nuova base, risulta essere lo stato fondamentale ottenuto con il metodo variazionale.
Quindi, le eccitazioni di quasiquarks e di quasiantiquarks dello stato fondamentale sono
non interagenti. La determinazione dei parametri della trasformata che diagonalizza
l’azione richiede la soluzione dell’equazione di punto sella. Nel caso in cui la matrice di
trasferimento dipenda dal tempo, ne dipendono anche i parametri. In questo caso, la
diagonalizzazione richiede quindi di effettuare un cambiamento di base ad ogni passo
temporale. Quindi, si può interpretare il parametro della trasformata come il campo
associato al mesone. Il metodo sviluppato è stato testato su una teoria con interazione
a quattro campi fermionici e si sono trovati discreti accordi con i risultati presenti in
letteratura [31, 32].

Nell’ultima parte dello studio, si sono introdotti nella funzione di partizione, insieme
ai mesoni e trascurando le particelle fermioniche, anche stati di bosone composto con
numero fermionico 2, i diquark . Tale scelta è stata considerata al fine di estendere il
formalismo sviluppato anche alla trattazione di barioni, che possono essere interpretati,
almeno alcuni, come un’adatta sovrapposizione di un diquark ed un antiquark. Questi
stati devono essere introdotti in maniera tale da proibire il doppio conteggio degli stati
stessi. Quindi, i diquark devono essere ortogonali agli stati di mesone e viceversa. La
condizione di mutua ortogonalità trova soluzione definendo gli operatori di diquark come
segue

B̂† := α̂†B α̂† ; (3)

dove α indica gli operatori, trasformati secondo (2), a partire dagli operatori û. Come nel
caso precedentemente discusso, la determinazione dell’azione efficace richiede l’approssi-
mazione del proiettore sul sottospazio dei mesoni e dei diquark , tramite l’utilizzo di stati
coerenti. In questo caso, tuttavia, sorgono alcune complicazioni dovute alla presenza
di due tipi di particelle composte e alle regole di commutazione cui soddisfano. Si è
derivata l’azione efficace per i campi associati ai due tipi di particelle. Come nel caso
dei quasiquark, abbiamo trovato due espressioni dell’azione, che sono riportate nella tesi.
Nell’azione efficace compaiono solo variabili olomorfe e, per grandi valori dell’indice di
nilpotenza, l’azione è proporzionale all’indice stesso. Quindi, il metodo di punto sella è
il primo metodo utile di analisi. Nella tesi sono riportate le equazioni di punto sella ed
una discussione delle loro possibili soluzioni.

Nell’ultimo capitolo sono indicati i possibili sviluppi del lavoro di tesi. Innanzitutto,
per quanto riguarda lo studio di teorie prive della simmetria di gauge, è possibile ese-
guire uno sviluppo in potenze di 1/Nf dell’azione dei mesoni e dei diquark . Riteniamo
che tale sviluppo possa essere svolto sulla linea di [9], analizzando anche anche gli as-
petti più sottili dello sviluppo come in [33]. Inoltre, l’azione dei quasiquark può essere



V

ulteriormente analizzata in assenza di campi di gauge, approfondendone le analogie con
la teoria della superconduttività. Al fine di analizzare il diagramma di fase della QCD,
è interessante studiare le soluzioni delle equazioni di punto sella per l’azione dei mesoni
e dei diquark . In seguito, si potrebbero introdurre anche le eccitazioni fermioniche, in
aggiunta ai mesoni e ai diquark , e studiarne l’azione efficace. In effetti, tale azione è
già stata ottenuta, ma rimane ancora da capire come risolvere la condizione di mutua
ortoganalità in presenza di mesoni, diquark e fermioni.

Nello studio delle teorie di gauge la nostra formulazione è particolarmente interes-
sante, in quanto, se si trascurano le eccitazioni fermioniche, permette di applicare metodi
variazionali nella determinazione dello stato fondamentale. Chiaramente, la soluzione di
queste equazioni può essere trovata solo numericamente. Come indicato in precedenza,
una volta ricavata la soluzione per la funzione di struttura del mesone nel suo stato
fondamentale, abbiamo diagonalizzato l’azione nei campi fermionici. Ci aspettiamo che
questo risultato sia rilevante nello studio a temperatura finita. Infine, abbiamo ragione
di credere che questa formulazione costituisca un buon punto di partenza per l’analisi
tramite simulazioni numeriche [2, 24].
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Chapter 1

Introduction

In this work, we discuss an extension of a new method of bosonization [1, 2] to relativis-
tic field theories at finite chemical potential and temperature. Moreover, we test the
formulation we obtain in a Gross-Neveu model. In the sequel, we introduce composite
of di-quarks in order to extend our formalism to composite baryonic like and to the
study of the phase diagram for large values of the chemical potential.

There exist many systems, with fermionic degrees of freedom, that can be described
in a more suitable and easier way, at least for certain energy scales, by means of bosonic
degrees of freedom. Namely, in a region of the space of the parameters, the excitations of
the system can be described using bosonic degrees of freedom. This is indeed the case in
presence of spontaneous breaking of a global symmetry, where the low energy excitations
of the symmetry are the Goldstone bosons. Typical examples in non-relativistic systems
are the Cooper pairs in metals and the pairing in nuclei with partially filled shells. In
the context of relativistic field theories, relevant examples are the vector dominance in
strong-electromagnetic interactions, the dominance of chiral mesons in QCD and, in
high density QCD, the so called color superconductivity [3]. Notice that in all these
systems the elementary particles couple in pairs and the result is a composite boson,
which appears as an effective degree of freedom. These bosons can have fermion number
0 or 2. Therefore, we expect to be able to rewrite every theory that presents the
phenomena described above, in terms of another less fundamental one, with dominant
bosonic degrees of freedom. Obviously, the latter theory is useful when its analytical
studies are less complex than the ones of the original system and when it allows to
implement operative numerical simulations.

Usually, in modern physics, a quantum system is described by its partition function

Z =
∫

D[φ]e−S[φ] , (1.1)

where φ denotes all the fields associated to the elementary degrees of freedom of the
system, S[φ] is the Euclidean action and D[φ] is the integral measure. If one considers

1



2 Introduction

a system at finite temperature T , the integral over the imaginary time in the action
runs from 0 to 1/T . To obtain an effective theory, one has to find an approximation
Z ′ of Z in (1.1) in terms of the fields φeff ; these fields are associated to the degrees
of freedom whose dynamics is governed by an effective action Seff [φ]. Usually, this
procedure can be performed only in a particular region of the parameters of the theory.
An effective theory when the φeff fields are boson-like is particularly successfull. The
effective theory in terms of boson fields is remarkably operative even in a computational
context; in fact, the numerical simulations with anti-commuting variables are usually
hard to implement.

Bosonization

Bosonization consists of a change of variables in the functional integral (1.1), where
the new integration variables are boson-like. Usually, the ”old” variables are fermion-
like. In the cases where bosonization can be applied and when one is able to perform
it, the fermion system is replaced by another one, of bosons, which has a completely
equivalent physical content, including identical spectra. This procedure is extremely
powerful because it permits to re-express the theory in terms of physical and relevant
degrees of freedom and to find connections between different theories. For some systems,
bosonization can be performed in an exact way and allows to integrate the partition
function of the system. For instance, in 1 + 1 dimensions, bosonization has been widely
studied and analyzed and gives exact results (see, for example, the equivalence between
the Sine-Gordon model and a two fermions model with current-current interaction).
However, this is a particular feature of theories in 1+1 dimensions and it is well known
that it is, in general, not shared by theories in a larger number of dimensions. In fact,
bosonization in higher dimensions requires, in general, some kind of approximation.

Since the thesis work under discussion is intended to the study of a four dimensional
system, we do not discuss in this introduction, the special features of 1 + 1 dimensional
systems. A detailed treatment of this argument is given in [4, 5, 6].

Consider, for the moment, bosonization in non-relativistic theories. One of the
first organic approach to bosonization is due to Bogoliubov [7]. In this work, starting
from the Fröhlich Hamiltonian of a number of electrons interacting with phonons, the
proprieties of the ground states are derived. Then, the Cooper pairs are mapped into
effective bosons whose dynamics is described by the Hamiltonian of a superfluid system
of elementary bosons. Notice that, in this theory, the presence of external bosons, the
excitations of the lattice, is essential because they produce an attractive force between
the electrons.

To the scopes of the thesis work, a key role is played by a recently developed method
of bosonization [8, 9]. This procedure can be used when the composite bosons have
fermionic number 0 or 2. The starting point is the partition function in its operator
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form, i.e. the trace of the transfer matrix in the Fock space of the fermions. The phys-
ical assumption of boson dominance is then implemented by restricting the trace to
fermion composites. This requires an approximation of the projection operator in the
subspace of the composites; the approximation being the better, the higher the number
of fermion states in the composites. The approximate projection operator is built in
terms of coherent states of composites and the evaluation of the trace, which is done
exactly, generates a bosonic action in terms of the holomorphic variables appearing in
the coherent states. The approach shares two features with a variational method: the
reduction of the starting full space, here the fermions Fock space, to a subspace, that
of the composites, and a variational procedure to determine the structure functions.
This particular bosonization method has been completely developed for non-relativistic
many-body systems and checked on the BCS model of superconductivity and on the pair-
ing model of finite systems, like atomic nuclei and ultra-small superconducting grains.
The properties of these systems are indeed exactly reproduced.

Since the thesis studies deal with relativistic theories, we do not go further in deepen-
ing the discussion about non-relativistic systems. Furthermore, non-relativistic methods
can hardly be extended to treat relativistic field theories; it is, in general, necessary to
introduce new techniques. Other approaches to bosonization in non-relativistic systems
can be found in [10] and references therein. In Chapter 2, we give a brief introduction
to bosonization of relativistic theories.

Quantum field theories on a lattice

Quantum Chromodynamics is a remarkable theory. It is a convincing practical exam-
ple of the triumph of the quantum field theory. Asymptotic freedom allows QCD to
be consistent down to arbitrary short distance scale, enabling us to define the theory
completely in terms of the fundamental microscopic degrees of freedom (quarks and
gluons). This fundamental definition is very simple, yet the theory describes a wide
range of phenomena, from the mass spectrum of hadrons to deep-inelastic scattering.
As such, QCD should also possess well defined thermodynamic properties. Analytically,
it is very hard to obtain any result and the perturbative approach can be performed
only in certain kinematic regions, for example in the study of heavy ions collisions,
or in the study of the thermodynamics for large values of the chemical potential and
temperature. The above remarks make, at least in principle, lattice approaches, that
do not rely on small parameter expansions, an invaluable and the most powerful tool in
studying QCD and, in general, non Abelian gauge theory. In fact, lattice gauge theory
permits to perform analytical studies for strong coupling [11] and should allow us to
extract expectation values from numerical simulations. A detailed discussion about lat-
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tice theory can be found in [12, 13]1. Over the Euclidean lattice, the partition function
for vanishing chemical potential is given by

Z :=
∫

D[U ]D[ψ̄]D[ψ]e−βSG[U ]−SF [U,ψ̄,ψ] =
∫

D[U ]e−βSG[U ]det M [U ] , (1.2)

where −SF [U, ψ̄, ψ] = (̄,ψM [U ]), β ∝ g−2, SG[U ] is the pure gauge Wilson action with
U(x,µ) being the variable associated to the gauge field on the link (x, x + µ), ψ is the
fermion field and the time direction of the system runs between 0 and 1/T .

However, a price is to be paid in exchange of such advantages; the introduction of
fermions over the lattice gives rise to the well known difficulties of the fermions dou-
bling and the breaking of the chiral invariance. Since the Dirac equation contains only
derivatives of the first order, a naive regularization on a lattice gives for the propagator
of a Dirac field with mass m

∆−1
k = m + i

∑
µ

γµ sin pµ . (1.3)

In the limit of zero lattice spacing, the previous equation has 16 poles, corresponding
to 16 propagating particles, one for any corner off the Brillouin zone. This phenomenon
is called of the fermion doubling: the number of fermions doubles once for any space-
time dimension. In a free theory, the doubling problem can be dealt with, but, in a
theory with interactions, the extra fermions2 can be introduced in pairings and change
the physical content in the continuum limit. In order to have physically meaningful
interacting theories with fermions on lattice, it is thus necessary to avoid the fermion
doubling. This scope can be achieved in different ways; the most important approaches
are called of the Wilson’s and Kogut-Susskind’s fermions. In the Wilson’s method, the
naive action is modified by adding a term proportional to a second order derivative

SF N :=a4
∑

x

ψ̄xmψx +
1
2a

±4∑

µ=±1

ψ̄x+µγµψx 7→

a4
∑

x


ψ̄x

(
m +

4r

a

)
ψx +

1
2a

±4∑

µ=±1

ψ̄x+µ (γµ + r) ψx


 =: SF W . (1.4)

With this action, the propagator is different with respect to the one appearing in (1.3);
one observes that the masses of the 15 extra fermions have an additional term pro-
portional to ra−1. They become infinitely heavy in the continuous limit and finally
disappear. The continuum limit of (1.4), carried out with the appropriate tuning of the
parameters, corresponds to the Dirac action for 0 < r ≤ 1 with only one fermion.

1In this references, it is possible to find an introduction to all the arguments described in this section.

References about the original papers can be found in the textbook.
2The Brillouin zone is the area in the momentum space whit 0 ≤ pµ < 2π; the extra fermions

correspond to a pole distinct from the origin.
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Another possibility, to face the fermion doubling, is to interpret the extra fermions as
fermions with different flavours; this idea was first introduced by Kogut and Susskind.
In order to obtain the action of the Kogut-Susskind fermions, it is first necessary to
perform a local change over the fermion fields, in a way such as to obtain the action
in a spin diagonal base. In this base one has 4 staggered fermions and, since the
action is diagonal in the Dirac index, it is possible to introduce an arbitrary number Nf

of staggered fermions. Once this expression is computed, it is a very nice exercise to
assemble all the degrees of freedom, corresponding to each one of the staggered fermions,
and to obtain a fermion ψx,I , with a new quantum number, namely the taste, that lives
on the even sites of the lattice, see appendix B.3. For Nf staggered fermions, one
obtains Nf Dirac-taste fermions, called the Kogut-Susskind fermions. In the continuum
limit they describe a theory with 4Nf flavours. The Kogut-Susskind pure fermion gauge
invariant action, in the flavour base, is

SF KS =
′∑

x,y

a4ψ̄x

[
m δx,yI⊗ I +

∑
µ

γµ ⊗ I
(
∇(−)

µ P(+)
µ −∇(+)

µ P(−)
µ

)]
ψy (1.5a)

=
′∑

x,y

a4ψ̄x

[
m δx,yI⊗ I + 2

∑
µ

(
γµ ⊗ I∆µ − 2aγ5 ⊗ t5tµ∆2

µ

)
]

ψ . (1.5b)

Above, all the indices are omitted, included the color index, and we have defined

∇(±)
µ x,y =

±1
2a

(U±µ xT(±)
µ x,y − δx,y) , P(±)

µ =
1
2

(I⊗ I± γµγ5 ⊗ tµt5) , (1.6a)

∆µ :=
1
4a

(Uµ x(t)T(+)
µ − U−µ x(t)†T(−)

µ ) , T(±)
µ x,y := δx±2µ,y . (1.6b)

Here U±µ x is the gauge field associated to the link x, x ± 2µ. Usually, for numerical
simulations, one chooses a different normalization of the field. In the following, we
always use the action expression (1.5a). From the other form (1.5b), one can observe
that the term proportional to ∆2

µ is a lattice artifact that disappears in the continuum
limit. Since the fermion fields live on a lattice of double size, with respect to the naive
formulation, the Brillouin zone is halved and there is no doubling.

The Wilson’s fermions do not have chiral symmetry for any value of the mass.
The Kogut-Susskind action, instead, for m = 0, is symmetrical under the following
transformations of the field

ψ 7→ eiθ5γ5⊗t5+iθψ , ψ 7→ −γ5 ⊗ Iψ , (1.7)

for any real θ5 and θ. Eq. (1.5) exhibits an other symmetry which we discuss for Nf = 1,
but that can be generalized to any value of Nf . In fact

ψ 7→ (Uo(1)Po + Ue(1)Pe) ψ , (1.8)

with Pe/o = 1
2 (I ⊗ I ± γ5 ⊗ t5), and Uo/e(n) are elements of U(n), (1.8) leaves (1.5)

invariant for m = 0. This is a lattice version of the chiral symmetry. In the continuum
limit, the symmetry (1.8) Uo(1)⊗ Ue(1) becomes Uo(4)⊗ Ue(4).
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Transfer matrix formalism

Usually, the study of the thermodynamical and dynamical properties of a quantum
field theory is performed by means of the functional formalism where the partition
function is written as in Eq. (1.1). There exists, however, another formalism, namely
the operatorial or Hamiltonian formalism; in this case, the partition function, for a
gauge theory on a lattice at temperature T , is

Z = Tr
1/T∏

t

T̂t . (1.9)

Here Tr is the trace over the Fock space and T̂t is a selfadjoint operator, called the
transfer matrix, that generates the evolution of the state from an imaginary time t to
the time t + 1. Notice that T̂t is the corresponding of e−aĤ . A selfadjoint and strictly
positive T̂ assures a selfadjoint and limited from below Hamiltonian defined as Ĥ = ln T̂ .
In general, given the transfer matrix of the theory, it is possible to rewrite the partition
function in the functional formalism. This can be done by use of a standard procedure
[14, 15] that, in short, consists of introducing the identity of the Fock space, written
in terms of coherent states for each time slice, and of evaluating the trace in (1.9) over
these states. This procedure allows to obtain the corresponding functional expression of
Z. The fields appearing in the functional form come from the variables3 in the coherent
states. However, the inverse is not guaranteed. For example, we can deduce easily the
action (1.4) for r = 0, 1 from an Hamiltonian, but this is not trivial or, in general,
possible for any value of r. The existence of the transfer matrix is necessary to prove
the physical positivity that is required to obtain an acceptable quantum field theory,
i.e. with a selfadjoint Hamiltonian4. Normally, for bosonic theories, the existence of the
transfer matrix is quite obvious, but for fermionic ones the situation is different. The
procedure to construct the transfer matrix of a gauge theory can be summarized in the
following way. Firstly, one has to identify the components of the fermion fields ψ which
can be related to fermions ψ(−) and antifermions ψ(+). They propagate, respectively,
forwards and backwards in time and are interchanged by charge conjugation. Then,
one is to introduce the projection operators over fermions and antifermions P

(∓)
0 ; such

that P
(−)
0 ψ = ψ(−) and P

(+)
0 ψ = ψ(+). In the sequel, one defines the Hilbert space of

the system as the tensor product of the Hilbert space of the fermions (HF ) with the
one of the gauge bosons (HG). The operator associated to the gauge field Û(x, µ) acts
as a multiplication operator of the function of the gauge configuration. Afterwards,
one introduces two independent algebras ûi, û†i and v̂i, v̂†i , that satisfy anti-canonical

3These variables are Holomorphic/Grassmann ones, depending if they are associated to bosons or

fermions.
4Even if it is clear that the transfer matrix is very similar to e−aĤ , in general it is difficult to obtain

the Hamiltonian.
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commutation relations and are associated, respectively, to fermions and antifermions.
The index i = (x, I) represents all the quantum numbers of the particles, i.e. position
x and internal quantum numbers I. The next step is defining an operator T̂ that is
selfadjoint, strictly positive and that, following the standard procedure described above
[14, 15], must reproduce the partition function of the theory (1.2). If all the previous
steps can be performed, the action describes a consistent quantum field theory and the
reflection positivity is automatically verified. This procedure has already been carried
out for Wilson’s fermions in the gauge U0 ∼ 1 [16] and for Kogut-Susskind’s fermions
in the gauge U0(n0)U0(n0 + 1) ∼ 1 [17]. In both cases, the transfer matrix assumes the
following form

T̂t = T †F (U)T †G(U)S(U,U ′)TG(U ′)TF (U ′) . (1.10)

TF (U) is the only term in T̂ that depends on the fermion operator and contains the
interacting term for the gauge and fermion fields. S(U ′, U) and TG(U) come from the
plaquette term in the Wilson action. To our proposes, it suffices to write only the
fermionic part of the partition function in the operatorial formalism. Since Û(x, µ) acts
as a multiplication operator, it is easy to convert the purely bosons part of the transfer
matrix into its functional form, by introducing a s.o.n.c. in HG for each time slice in
(1.9). The result is

Z =
∫

D[U ]e−βS′G[U ]TrF

1/T∏

t=0

T̂ †t V̂tT̂t+1 , (1.11)

where TrF is the trace in the Fock space of the fermions and the term in the trace,
denoted ZF , is the fermionic part of the Z, S′G[U ] = S′G[U ]− 4

∑
t4tr−Mt. Clearly, T̂ is

a function of the configuration of the boson fields T̂ = T̂ [Ut] and depends of time. The
presence of V̂t is due to the fact that the axial gauge has not been fixed; in fact V̂t = Îd
in the axial gauge. The expressions of T̂t and V̂t are

T̂t = exp
(
−û†Mtû− v̂†MT

t v̂
)

exp (v̂Ntû) , (1.12)

V̂t = exp
(
û† ln U0,tû + v̂† ln U∗

0,tv̂
)

. (1.13)

The explicit form of the matrices M , N are reported in appendix B.3 and depend on
the choice of the regularization assumed for the fermion field. It is, then, possible to
define the pure fermionic transfer matrix operator T̂t := T̂ †t V̂tT̂t+1 and to perform a
simplification in the expression of the transfer matrix. One observes that

V̂tT̂t+1 = exp
(
−û†(Mu,t+1)û− v̂†(MT

v,t+1)v̂
)

exp (v̂Nt+1û) , (1.14)

with the conventions

Mu,t+1 := ln
(
eMt+1U †

0,t

)
, MT

v,t+1 := ln
(
eMT

t+1UT
0,t

)
. (1.15)
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This shows that T̂t+1 and V̂tT̂t+1 have the same structure; the difference is given by the
replacements

Mt+1 7→ Mu,t+1 and MT
t+1 7→ MT

v,t+1. (1.16)

During the procedure we have determined the two components, ψ(−) and ψ(+), of the
fermion field ψ, while in the operatorial formalism the operators associated to the
fermions and antifermions are already known. It is useful to introduce the operator
doublet

ψ :=

(
û

v̂†

)
. (1.17)

Finally, one can check that

P(−)
0 ψ̂ = û , P(+)

0 ψ̂ = v̂† . (1.18)

Chemical potential on a lattice

The study of quantum field theories (QFT) at finite chemical potential is very interesting
because these theories describe many physical systems, for example neutron stars and
nuclear matter. However, some complications arise in the theoretical approach to QFT
at finite chemical potential.

In the continuum, the chemical potential is introduced by adding to the Lagrangian
density of the theory the term

−µψ̄γ0ψ . (1.19)

On a lattice, the same result can be achieved modifying the variables of the time links
in (1.2) by a factor

U0 7→ eaµU0 , U †
0 7→ e−aµU †

0 . (1.20)

One obtains, in this way, a gran canonical partition function Z[µ]. The theoretical
study does not have particular complications at finite density, on the contrary of Monte
Carlo simulations. In fact, the latter are valid only for a real positive integration mea-
sure for the gauge fields; condition that does not hold anymore in presence of a non
vanishing chemical potential. For finite values of the chemical potential, the fermionic
determinant (det M [U ]) is a function that highly depends on the configurations of the
gauge fields, non local and not necessarily real and positive. These peculiarities make
the Monte Carlo simulations hard and inefficient. To avoid these difficulties, a way is
to perform simulations with an imaginary chemical potential µ′, value for which the
fermionic determinant is real. The quantities obtained through numerical simulations
for imaginary chemical potential are expanded around the origin in powers of µ′. The
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information for real values of the chemical potential, therefore the physically relevant
information, are obtained from the series in µ′ by analytical continuation. Obviously,
this method is restricted to values of the chemical potential smaller than the convergence
radius of the series. In the case of QCD, it is not yet known the analytic structure of
the thermodynamical singularities. However, it is possible to study models that exhibit
characteristics in common with QCD, as the Gross-Neveu model, in order to extract
qualitative information on QCD and to understand useful methods to analyze the latter.

Another difficulty arises while introducing the chemical potential in QFT , as ex-
plained in Ref. [18] and references therein. In a Euclidean lattice path integral formu-
lation, if the chemical potential is coupled as in Eq. (1.19), it is necessary to introduce
specific counterterms. This causes same disadvantages in the numerical simulations. By
exploiting the analogy of the chemical potential with the time link gauge fields, it is
possible to find a solution of this problem: eµ must be coupled linearly to the fermion
fields. In this situation no particular counterterms are required. The problem is that
the chemical potential looses its physical meaning of Lagrange multiplier of a conserved
charge.

In the transfer matrix formalism, this problem can have a solution. In quantum
statistical mechanics, the partition function of a non relativistic system is defined as
Z = Tre−βĤ , where β = (kbT )−1 and Ĥ is the Hamiltonian of the system. In this
formulation, the chemical potential is introduced as a Lagrange multiplier associated
to the number of particles. Then the gran-canonical partition function is defined as
Zgc = Tre−β(Ĥ−µn̂).

Inspired by the previous procedure, we use the following prescription to introduce
the chemical potential in a quantum field theory. The fermionic part of the partition
function written in terms of the transfer matrix, when the transfer matrix is known, is

ZF = TrF

1/T∏

t=0

[
T̂ †t V̂tT̂t+1

]
. (1.21)

As explained, the chemical potential is introduced as the Lagrange multiplier of the
fermion number n̂B, that is called also baryon number

ZF = TrF e
µn̂B

T

1/T∏

t=0

[
T̂ †t V̂tT̂t+1

]
= TrF

1/T∏

t=0

[
T̂ †t eµn̂B V̂tT̂t+1

]
. (1.22)

Following the procedure described in the last section one can derive the functional form
of ZF . In this expression, the exponential of the chemical potential is coupled linearly
to the fermion fields. In the thesis we take the right side of (1.22) to be the definition
of the gran canonical partition function.
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The phase diagram of QCD

The study of relativistic field theories at finite temperature (T ) and chemical poten-
tial (µ) is of great interest, both from an experimental and theoretical point of view.
However, the determination of the dynamical and thermodynamic properties of those
theories requires the use of complex techniques developed in the context of theoretical
physics and of information obtained through nuclear physics experiments. The rele-
vance of these highly non trivial studies is nowadays remarkable in the field of quantum
chromodynamics (QCD). The phase diagram of this theory, in the parameters T and
µ, is expected to show a number of phase transitions and crossovers, whose nature still
has to be completely clarified. Indeed, even at an experimental level, the study of the
behavior of hadronic matter is a topical argument.

Figure 1.1: The contemporary view of the QCD phase diagram, a semiquantitative
sketch. from [19].

It is believed that the QCD phase diagram should present at least three phases as shown
in fig. 1. For small values of µ and T (T . 100Mev, µ . 600 Mev), the fundamental
state exhibits chiral symmetry breaking. The associated Goldstone bosons are the pi-
ons and the region under discussion is said to be of an hadrons gas. Part of this region
can be explored through the experimental analysis in heavy ions collisions. At greater
temperatures, it is possible to perform a perturbative expansion around a plasma state
of quarks and gluons. This investigation predicts that the quarks are massless, free and
with the chiral symmetry restored. While the study of the latter region can be carried
out by means of perturbative methods, the chiral symmetry breaking in the first zone
is clearly a non perturbative phenomenon. An argument by Pisarski-Wilczek suggests
that the phase transition between the hadrons gas and the quarks and gluons plasma is
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of the first order, at least for a flavour number equal to three. The order parameter is
given by 〈ψ̄ψ〉. The first order transition line ends in a (tri-)critical point, whose values
of µc and Tc are still unknown. For non vanishing values of the quarks bare masses
and for values of the chemical potential smaller than the critical potential, the phase
transition is a crossover. On the contrary, in the case of massless quarks, the transition
is of the second order. Therefore, the quarks masses in QCD play a role analogous
to the one played by the magnetic field in the Ising’s model. The knowledge of the
theory for big values of the chemical potential is, instead, poorer. In this region, we
expect a phase transition from a quarks and gluons gas to a color superconductivity
phase. This transition is characterized by a non vanishing value of the order parameter〈
ψT Cψ

〉
5. However, the analogies between the QCD phase diagram and the well known

water phase diagram suggest that QCD should exhibit other phases beyond the ones
described. Other information about the phases of QCD can be found in [19, 20].

Today, the investigation of the QCD phase diagrams is far from conclusion. In
fact, the experimental analysis in the accessible regions of the diagram is only at its
beginning, as the study through numerical simulations still has to be developed and
completed.

The knowledge of QCD thermodynamics is essential for the understanding of such
natural phenomena as compact stars and laboratory experiments involving relativistic
heavy ions collisions.

An effective theory in terms of dominant degrees of freedom can be very powerful
to describe QCD or hadron matter at finite temperature (T ) and chemical potential
(µ). In some of these phases, the excitations should be of composite type, for example
mesons and baryons. This new states of matter are accessible in numerical simulation
or partially accessible in the experimental investigation of heavy collisions.

The thesis work is organized as follows. Chapter II is devoted to a review of bosoniza-
tion in relativistic systems. In Chapter III we discuss a new method of bosonization
and, in the next Chapter, we extend it to finite µ and T . In Chapter V we test the the-
ory just developed and described with a model with four fields interaction. In Chapter
VI, we study the possibility of having di-quarks condensate. Finally, the last Chapter is
reserved to a discussion of the conclusions and of the perspectives of the studies carried
through in the thesis.

5C is the charge conjugation matrix. There is a breaking of the color symmetry SUc(3) into SUc(2)

and of the symmetry associated to the baryonic number UB(1) into Z2.





Chapter 2

A method of bosonization

In this chapter, we present an introductive review of the techniques of bosonization.
Since we are interested into relativistic field theories, we do not discuss in detail non
relativistic systems.

The method of bosonization consists of the replacement of a known system of
fermions with a theory of bosons which has a completely equivalent physical content,
including identical spectra and interactions. The procedure provides a recipe to express
the correlation functions of the fermionic theory in terms of the bosonic ones of the
corresponding system. When applicable, it is an extremely useful tool for analyzing
fermionic systems, since it permits to apply to them the powerful techniques that have
been developed for bosonic systems.

To develop a bosonization method for relativistic theories in higher than 1 + 1
dimensions, two points are essential: the introduction of the field associated to the
dominant composite boson and the derivation of its action. We now discuss two of
the known bosonization methods for relativistic theory. In the procedure we deal with,
the bosons are described by Kalb-Ramond fields introduced as Lagrange multipliers
for the gauge fields [21, 22]. When it is possibile, the action for the boson fields is
then derived by explicit computations. There exists another method of bosonization
for relativistic field theories, but we do not go into the details of the latter, since it is
quite standard. In this method, higher dimensional terms (quartic in the fermion fields)
are introduced, if absent, by hands in the action and the boson fields are generated
via the Hubbard-Stratonovich transformation [23]. Sometimes, when the added terms
are irrelevant in the renormalization-group terminology, they are introduced to stabilize
the evaluation, for instance in numerical simulations, of the fermion determinant [24].
However, often, the investigations consist of analytical studies and are substantially
restricted to a non-renormalizable framework [23]. In one noticeable exception [25], the
Hubbard-Stratonovich transformation is scale-dependent (”re-bosonization”) leading to
a functional renormalization-group analysis. For these methods, the boson fields are
real, and they are related bosons of fermion number zero.

13
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2.1 Bosonization in arbitrary dimension by means of gauge

forms

It has been proven that, in 1 + 1 dimensions, bosonization is a particular duality trans-
formation [5, 6]. The observation that the latter is not restricted by dimensionality
permits to generalize the bosonization method to higher dimensional systems. The du-
alization approach guarantees the existence of a bosonized version of the theory, but do
not guarantees that the bosonic theory has the usual proprieties of a field theory, such
as, for example, locality. The technique of bosonization as dualization can be used to
treat the case where the symmetry of the initial fermionic system is both abelian or
non abelian. In what follows, we focus on systems whit abelian symmetry as in [21] and
[22]. Usually, bosonization of fermionic systems whit abelian (non-abelian) symmetry
is referred to as abelian-bosonization (non-abelian-bosonization).

Consider a system of fermion fields ψl (where l = 1...Nf is the flavour index) in D

dimensions described by an Euclidean action SF (ψ∗l , ψl). The action under consideration
is diagonal in the flavour index and invariant under global U(1) transformations. In this
case, it is possible to omit the flavour index. To study the reaction of the system to the
presence of external currents Jext

i , the action SF (ψ∗l , ψl) contains an interaction term
of the form ψ∗MiψJext

i , where Mi is an appropriate matrix. The fermionic partition
function reads

ZF =
∫
Dψ∗Dψe−SF (ψ∗l ,ψl) . (2.1)

To bosonize, we first enlarge the fermionic theory by gauging the global U(1) symmetry.
Replacing the ordinary derivative with the covariant one containing the gauge field A,
the gauge invariant action becomes SF (ψ∗l , ψl, A). The effective action for the gauge
field A is defined by

e−SB(A) :=
∫
Dψ∗Dψ−SF (ψ∗,ψ,A) . (2.2)

By Fourier transform, one obtains the action for the variable J , conjugate to A

e−ŜB(J) :=
∫
DAe−SB(A)+i

∫
AµJµdDx . (2.3)

Since SF (ψ∗, ψ,A) is invariant under gauge transformations, it follows that the field J

satisfies the constraint ∂µJµ = 0. By Poincaré lemma, one obtains

J =
1
2π

∗ db , (2.4)

where ∗ denotes the Hodge dual and d the exterior differential. Notice, that the solution
of (2.4) is not unique. In fact, two (D-2)-forms differing by dλ(D−3), for a (D-3)-
form λ(D−3), yield the same J . Therefore, Ŝ(J) =: Ŝ(db) is invariant under gauge
transformations b 7→ b + dλ(D−3). In terms of b, (2.3) can be written as

e−ŜB(db) :=
∫
D[A]e−SB(A)e

1
2π

∫
A∧db , (2.5)
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where D[A]e−S(A) is the measure induced by DAe−S(A) on the space of the gauge orbits,
i.e. the gauge equivalent class

[A] := {A′ : A−A′ = dΛ}

and D[b]e−ŜB(db) denotes the measure on the gauge equivalent class

[b] := {b′ : b− b′ = dλ(D−3)} .

It can be proven that

ZF =
∫
DψDψ∗e−SF (ψ,ψ∗) =

∫
D[b]e−ŜB(db) =: ZB , (2.6a)

〈J (x1)µ1 · · · J (xn)µn
〉
SF (ψ,ψ∗) = (2π)(−n)

〈 ∗ db(x1)µ1 · · · ∗ db(xn)µn
〉
ŜB(db)

, (2.6b)

where J (x)µ := −i δ SF (ψ,ψ∗,A)
δA(x)µ

. The proof of the previous identities is based over the

following observation. Replacing the definition of Ŝ(db) in (2.6a), one notices that b

acts as a Lagrange multiplier. The integral over the field b imposes on A the constraint
dA = 0. Performing the integration over A, one finally obtains ZF . Instead, if one is
able to perform the integral in a different order, first over ψ∗, ψ and then over A, one
obtains the partition function for the bosonic field b. The latter, introduced by Fourier
transform, is a completely antisymmetric Kalb-Ramond gauge potential and plays the
role of a bosonized variable.

The identities (2.6) show the possibility of expressing every quantity in a fermionic
theory by an appropriate quantity in a bosonic theory. Clearly, these identities are
somewhat abstract and they are useful only if ŜB(db) is a tractable quantity. Actually,
the obtention of SB(A) and then of ŜB(db) itself is generally a laborious and not neces-
sarily successful step. Notice that, if SB(A) is quadratic in A, Ŝ(db) is quadratic in db.
This method is valid in relativistic systems [21] as well as in non-relativistic ones [22].

In the following, we study one application of the method under discussion to a
sample case where an approximation permits to compute the effective action of the field
b.

2.1.1 Bosonization of Dirac fields

Consider the Euclidian free massive fermion Lagrangian density and its corresponding
U(1) gauge invariant version

LF (ψ̄, ψ) = −ψ̄( 6∂ + m + Jext
i Mi)ψ , SF (ψ̄, ψ, A) =

∫
dDxLF (ψ̄, ψ) + īψ 6Aψ , (2.7)

where the interaction term, between the Dirac field ψ and the external currents Jext
i ,

is given by ψ̄MiψJext
i = iψ̄γµψJext

µ
1. Notice that, even if omitted for shortness, the

1In this case J (x)µ := −i δ SF (ψ,ψ∗,A)
δA(x)µ

= −i δ SF (ψ,ψ∗,A)
δJext(x)µ

.
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action depends on Jext. Following the same procedure described above and carrying on
the computations, it is possible to build an action of the kind of SB(A) (see Eq. (2.2))
and to obtain the bosonized action for the (D-2)-gauge form b. The result reads

e−ŜB(db) =
∫
DAµ exp

[
−SB(A) +

∫
dDx

(
iεµ1µ2µ3...µD∂µ1Aµ2bµ3...µD −

1
2ξ

(∂µAµ)2
)]

.

(2.8)
The only difference in the method is that, for convenience, we choose to perform the
integral over the whole set of configurations of the gauge field instead that over the gauge
equivalence class [A]. In fact, the last term appearing in (2.8) is the gauge fixing term,
necessary for a well posed path integral over A. In order to investigate the properties of
the boson theory, it is necessary to perform the functional integral first over the fermion
field and, subsequently, over the field A. However, the way to evaluate the integral is, in
general, not known and appropriate approximations are necessary. One possible choice
is to expand the action SB(A) in powers of 1/m, for large m. The leading term in the
effective Lagrangian is the one that has the lowest scaling dimension, that, in this case,
coincides with the lowest naive dimension. This term has a very simple expression

e−SB(A) = exp
[
1
2

∫
dDx

(
Jext + A

)
µ

Πµν
D

(
Jext + A

)
ν

+ O

(
1
m

)]
, (2.9)

where we have omitted irrelevant A independent terms. Observe that the integral
has been regularized by dimensional regularization and rinormalized by the minimal
subtraction scheme MS. This procedure has the advantage of making it simple to
track the m dependence of the results. The vacuum polarization, Πµν

D (x), is well known
and takes different expressions for D = 3 or D ≥ 42. Indeed, this difference is at
the origin of the different properties of the bosonized theory. As the lowest dimension
term is the one quadratic in the sum (Jext + A), the evaluation of the integral in (2.8)
simplifies remarkably to

e−ŜB(db) = exp
{−1

2

∫
dDx

[
Ωµ(Π̂µν

D )−1Ων + 2Ωµ(Π̂µη
D )−1Πην

D Jext
ν +

+ Jext
µ Πµη

D (Π̂ηλ
D )−1Πλν

D Jext
ν + Jext

µ Πµν
D Jext

ν

]}
. (2.10)

Above Ωµ := εµµ2µD∂µ2bµ3...µD and Π̂µν
D := Πµν

D + ξ−1∂ν∂µ. The second term in Π̂µν
D

comes from the gauge fixing. Notice that Eq. (2.10) is valid for all systems for which
the effective action of the gauge field is quadratic in A. In the case in exam, Eq. (2.10)
simplifies and using the appropiate expressions of the vacuum polarization 2.1.1, we
obtain the bosonized actions

SB(db) =
∫

dDx
[ 1
2kD

Ωµ2−1Ων + ΩµJext
ν

]
, D ≥ 4 ,

SB(db) =
∫

d3x
[
εµνλ

(
bµ∂νbλ + Jext

µ ∂νbλ

) ]
, D = 3 .

2Πµν
3 = k3ε

µνρ∂ρ, where k3 is a known finite coefficient; while Πµν
D = kD(2gµν + ∂µ∂ν) for D ≥ 4,

where kD is D-dependent divergent constant.
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Both results are quadratic in the b field and it is possible to check the identity (2.6).
For D ≥ 4 the action is not local, instead, for D = 3, the action is local and it is called
of Chern-Simons.

Dualization to scalar variable

It has been proven that, for all spacetime dimension, a theory of antisymmetric Kalb-
Ramond fields is dual to a derivatively coupled scalar fields one. Since we have more
intuition about the second, the described dualization process is very useful. The dual-
ization method is based mainly on two observations. Firstly, the fact that the functional
integral over b can be rewritten as an integral over Ω with the constraint ∂ · Ω = 0. In
fact, in the bosonized theory the Kalb-Ramond fields b appear in the combination that
is equivalent to Ω. Secondly, that it is possible to introduce a Lagrange multiplier ϕ,
whose integration gives the constrain ∂ · Ω = 0.

In general, it is difficult to perform the unconstrained integral over Ω, but, in the
case of interest here, the functional integral is quadratic and therefore easy to evaluate.
The result is the same for all D

S′B(ϕ, Jext) =
1
2

∫
dDxJext

µ Πµν
D Jext

ν +
1
ξ
ϕ(2)2ϕ (2.11a)

and the partition fuction can be expressed by a dual scalar theory

ZF =
∫
Dψ̄Dψe−SF (ψ̄,ψ) =

∫
D[ϕ]e−S′B(ϕ,Jext) = Z ′B . (2.11b)

The action for ϕ is local and free, but the kinetic term for the scalar field is both unusual
and irrelevant. Since ϕ decouples from the external current, the integral in (2.11b) may
be ignored; the remaining term is just the large m limit of the original fermionic theory.





Chapter 3

Composite boson dominance

In the present section, we introduce a recently developed method of bosonization for rel-
ativistic field theories in arbitrary dimension. This formulation is inspired by a method
of bosonization for many-body systems [8, 9], which has been checked to reproduce
exactly the properties of the BCS model of superconductivity and of the pairing model
of finite systems. However, the treatment of relativistic systems has to be considered
carefully and is obviously different in many aspects.

The starting point of the method is the fermionic part of the partition function
Z in its operatorial formalism (1.11), i.e. the trace of a power of the transfer matrix
in the Fock space of the fermions T̂ . We are interested, for the moment, only to the
fermionc part ZF (1.21) of the partition function. In the operatorial formalism, the
dominant degrees of freedom are introduced like bosons composed of fermions in the
form of a superposition of pairs of fermions and anti-fermions. The assumption of boson
dominance can be implemented by restricting the trace in the partition function only
over states of composite bosons.

In general, the functional form of Z can be found by performing the trace of its
operator expression over coherent states [15, 14]. This is nearly the procedure we shall
adopt in the following to derive the functional form of the restricted partition function.
We introduce particular states, namely similar-coherent states of composite bosons,
over which we compute the trace. Then, one is able to deduce the effective action of
the composite bosons fields, performing some Berezin integrals; fields are introduced,
as usually, as holomorphic variables in the similar-coherent states. Notice that this
procedure respects all the symmetries of the system; however, since the transfer matrix
formalism does not treat in the same way space and time, Euclidean invariance has to
be checked a posteriori.

We adopt lattice regularization because this choice has some advantages, but this
approach is, in general, compatible for any regularization. The first advantage is that
on a lattice there is an unambiguous definition of composite. Secondly, since we are
interested into gauge theories, a lattice formulation allows to extract information from

19
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numerical simulations.

3.1 Composite boson operator

Since we are interested in considering only relevant excitations, we must introduce
creation and annihilation operators of these states, respectively

Φ̂†I := û†Φ†I v̂
† =

∑

i,j

û†i (Φ
†
I)i,j v̂

†
j , Φ̂I := v̂Φ†I û =

∑

i,j

v̂i(ΦI)i,j ûj , (3.1)

where I := (x,K). Here x is the spatial coordinate of the composite bosons and
K represents their quantum number. In this notation, Φ†I is the composite structure
function. From the definition of Φ̂†I , it is possible to see that the composite bosons are an
overlap of a fermion and an anti-fermion, with quantum numbers i and j, respectively,
and coefficients (Φ†I)i,j . The composite bosons have zero fermion number. The operators
Φ̂ and Φ̂† are boson like but they do not obey canonical commutation relations. In fact,
the composite commutation relations are

[
Φ̂I , Φ̂

†
J

]
= tr+

(
ΦI Φ†J

)
− û†Φ†JΦI û− v̂†Φ∗JΦT

I v̂ ,
[
Φ̂I , Φ̂J

]
= 0 . (3.2)

Since the fermion creation operators are nilpotent, the composite boson operators can
be classified by their index of nilpotency ΩI , defined by the relation

ΩI := Maxω∈N
{

ω|(Φ̂†I)ω 6= 0
}

.

Qualitatively, one can observe that the greater the number of fermions and anti-fermions
in the composite, i.e. the number of coefficients Φ̂†I such that Φ̂†I 6= 0, the greater is
ΩI . In the limiting case in which all the matrix elements of Φ̂I are not null, ΩI is equal
to the number of fermion states. The composite bosons must have large ΩI to look
like canonical bosons, whose nilpotency index is infinity. Therefore, one considers only
operators with large nilpotency index. Notice that ΩI can be at most the number of
fermion states.

It is possible to generate a sub-space of the fermion Hilbert space by repeatedly
acting with Φ̂†I over |0〉. This Hilbert space is called composite boson Hilbert space.
Consider the following state

|φ〉 := exp

(∑

I

φIΦ̂
†
I

)
|0〉 , (3.3)

where φI are holomorphic variables. We call this kind of states similar-coherent states
of composite or simply coherent states, because they share with the coherent states of
elementary bosons the property of a fixed phase relation among the components with
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different number of composites. These states look like boson coherent states but they
do not satisfy their basic property. In fact, from (3.2), it is easy to deduce that

Φ̂I |φ〉 6= φI |φ〉 . (3.4)

By use of the formulae collected in appendix A, one can deduce that the inner product
of coherent states is

〈φ1|φ2〉 = det+(1 + F1F†2) , (3.5)

where we have used the convention

F†i,j :=
∑

I

φI(Φ
†
I)i,j =: φI · (Φ)†I i,j .

The result (3.5) is different from the inner product of elementary coherent states.
In order to compute the partition function only over composite boson states, it is

necessary to know the projector over their subspace

P̂C :=
∑

{nI}

(∏
I Φ̂†nI

I

) ∣∣ 0
〉〈

0
∣∣
(∏

I Φ̂nI
I

)

〈
0

∣∣
(∏

I Φ̂nI
I

)(∏
I Φ̂†nI

I

) ∣∣ 0
〉 . (3.6)

For later convenience, we define

R(a,b) :=
(
1 + F†aFb

)− 1
2

,
◦
R(a,b):=

(
1 + FbF†a

)− 1
2

,

Rt := R(t,t) ,
◦
Rt:=

◦
R(t,t) .

Notice that R and
◦
R have the same determinant and the only difference between them

is that they live in distinct subspaces of the projectors P
(−)
0 and P

(+)
0 . The definition

of the involution ◦ can be found in appendix B.3.

3.2 The operator P̂
We would like to rewrite the operator P̂C in terms of coherent states of composite
bosons, as

P̂ :=
∫ [

dφ∗dφ

2πi

] |φ〉〈φ|
〈φ|φ〉 , (3.7)

where we have defined the measure
[dφ∗dφ

2πi

]
:=

∏

I

dφ∗IdφI

2πi
. (3.8)

Notice that, the identity in a Fock space can be written as in Eq. (3.7) if one replaces
the similar-coherent states with fermions coherent states. Since the states |φ〉 are not
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strictly coherent, the equivalence between P̂ and P̂C is not guaranteed. However, P̂ is
a good approximation of P̂C if it satisfies

〈0|
(∏

I

Φ̂nI
I

)
P̂

(∏

I

Φ̂†mI
I

)
|0〉 ' δnI ,mJ 〈0|

(∏

I

Φ̂nI
I

) (∏

I

Φ̂†nI
I

)
|0〉 . (3.9)

The last equation is generated by the following one

〈φ1| P̂ |φ2〉 '
〈
φ1

∣∣φ2

〉
, (3.10)

by deriving with respect to φ1, φ2 and then setting both variables to zero. By use of
(3.5), it is possible to write (3.10) in the following way

〈
φ1

∣∣ P̂ ∣∣φ2

〉
=

∫ [
dφ∗dφ

2πi

]
e−E(φ∗,φ,φ∗1,φ2) , (3.11a)

where

E(φ∗, φ, φ∗1, φ2) := tr+
[
ln

(
1 + FF†

)
− ln

(
1 + F1F†

)
− ln

(
1 + FF†2

)]
. (3.11b)

As it is shown in the following, E , for large Ω, is proportional to Ω itself. The integral
(3.14) can be evaluated by saddle point method; whose equations are

∂E
∂φI

= (φ∗J − φ∗1 J)tr+
ΦIΦ

†
J

(1 + FF†)(1 + F2F†) = 0 , (3.12a)

∂E
∂φ∗I

= (φJ − φ2 J)tr+
ΦJΦ†I

(1 + FF†)(1 + F1F†) = 0 . (3.12b)

The solutions of the saddle point equations are φ = φ2 and φ∗ = φ∗1. Moreover, at the
saddle point, the following equations hold

E(φ∗1, φ2, φ
∗
1, φ2) = −tr+

[
ln

(
1 + F1F†2

)]
, (3.13a)

∂2E
∂φI∂φJ

∣∣∣ φ=φ2

φ∗=φ∗1

=
∂2E

∂φ∗I∂φ∗J

∣∣∣ φ=φ2

φ∗=φ∗1

= 0 ,
∂2E

∂φI∂φ∗J

∣∣∣ φ=φ2

φ∗=φ∗1

= tr+
ΦJΦ†I

(1 + F1F†2)2
.

(3.13b)

Considering the gaussian corrections at the saddle point too, the result is

〈
φ1

∣∣ P̂ ∣∣ φ2

〉 ' 〈
φ1

∣∣φ2

〉
det−1 ∂2E

∂φI∂φ∗J

∣∣∣ φ=φ2

φ∗=φ∗1

, (3.14)

where det is the determinant over the boson composite quantum number.

In the following, to study the action of P̂ on the subspace of composite bosons and
to fully understand the implication of the formula (3.14), we consider a simple case.
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3.2.1 The operator P̂ with a unique composite boson

For simplicity, take into consideration the case of a unique composite boson, i.e the
case where the index I in (3.1) assumes only one value. Further assume the following
normalization for the structure function

tr+ΦΦ† = 1 . (3.15)

Notice that, if the structure function is smooth and the composite boson is a large
numbers of fermion with different quantum number, each matrix element ΦΦ† is O( 1

Ω).
For the moment, we restrict to consider a trivial case, where the structure function

has a large nilpotency index and satisfies:

ΦΦ† = IdΩ−1 . (3.16)

This hypothesis simplifies the computation; in fact the relation (3.2) becomes
[
Φ̂, Φ̂†

]
= 1− Ω−1û†û− Ω−1v̂†v̂ . (3.17)

The non canonical term appearing above, i.e. the second and the third addends in the
last equation, is of O( 1

Ω). The inner product is

〈
φ1

∣∣φ2

〉
=

(
1 +

1
Ω

φ∗1φ2

)Ω

−−−−→
Ω→∞

eφ∗1φ2 , (3.18)

exactly as the inner product of canonical coherent states. By (3.18), it is clear that E
is of order Ω. In the same hypotheses, one can check that

Φ̂Φ̂†n
∣∣ 0

〉
= n(1− 2(n− 1)Ω−1)Φ̂†n−1

∣∣ 0
〉
. (3.19)

From the constraint (3.16), one observes that the composite boson states, with n com-
posites bosons, satisfy the same identities of canonical boson states up to terms of order
O

(
n
Ω

)
1. In the subspace of composite bosons with n ¿ Ω, the states |φ〉 behave as

coherent states.
Since the structure function is a dynamical variable, the hypothesis (3.16) is very

strong. It is therefore reasonable to return to consider the projector with only one
composite but without the constraint given by (3.16). The unwanted term in (3.14) is

[
tr+

ΦΦ†

(1 + F1F†2)2

]−1

. (3.20)

1It can be proven that

〈
0

∣∣Φ̂mΦ̂†n
∣∣ 0

〉
= δm,nn!(1− 2Ω−1)(1− 4Ω−1) · · · (1− 2(n− 1)Ω−1) ,

〈
φ

∣∣Φ̂†n
∣∣ 0

〉
= φ∗n(1− 2Ω−1)(1− 4Ω−1) · · · (1− 2(n− 1)Ω−1) .
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To check if P̂ satisfies (3.9), one needs to perform the derivative, with respect to φ∗1
and φ2. In both members of (3.14), only derivatives of the same order with respect to
φ∗1 and φ2 are non null for φ∗1 = φ2 = 0. Notice that this is true for each factor of the
right hand side of (3.14). Performing n derivatives with respect to φ∗1 and φ2, the factor
(3.20) gives terms proportional to (m+1)!m! tr

(
ΦΦ†

)m+1, for any m ≤ n. These terms
do not appear in the right hand side of Eq. (3.14). When the relation

tr
(
ΦΦ†

)m+1
' Ω−m+1 (3.21)

holds, (3.10) is satisfied for n ¿ Ω with an error of O(n!
Ω ). In this situation, it is verified

the idempotency of P̂ too

P̂2 ∼ P̂ . (3.22)

3.2.2 The operator P̂ with an arbitrary number of composite bosons

The argument given in the previous section can be generalized to treat an arbitrary
number of composites when the index ΩI is very large for all I. If we assume that

tr
(
ΦIΦ

†
J

)m+1
' δI,JΩ−m+1 , (3.23)

the relations (3.10) and (3.22) are valid in the subspace of a total number n ¿ Ω of
composite bosons.

3.3 Derivation of the effective action

We now turn to the derivation of the effective action for the fields φ and φ∗. For the
reader’s convenience, we quote the fermion part of the partition function in the transfer
matrix formalism

ZF = TrF
L0−1∏

t=0

[
T̂ †t V̂te

µn̂B T̂t+1

]
. (3.24)

Where L0 = T−1. Under the assumption that at low energy the partition function is
dominated by boson states, it is possible to restrict the evaluation of the trace over
these type of states. The bosonized 2 partition function is

ZC = TrF
L0−1∏

t=0

[
P̂T̂ †t V̂te

µn̂B T̂t+1

]
. (3.25)

2This expression is said to be bosonized, because we write it in terms of boson fields. As explained in

Chapter 1, this procedure requires some approximation, in this case, the physical assumption of boson

dominance and the approximation of the projector.
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Considering periodic boundary conditions for the elementary bosons fields, on which
the matrices Nt, Mt and Ut depend, the partition function becomes

ZC : = TrF
[
P̂T̂ †0 V̂0e

µn̂B T̂1P̂T †1 V̂1e
µn̂B T̂2 · · · P̂T †L0−1V̂L0−1e

µn̂B T̂0

]
(3.26)

=
∫ L0−1∏

t=0

[
dφ∗t dφt

2πi

] 〈
φt

∣∣T̂ †t V̂te
µn̂B T̂t+1

∣∣φt+1

〉
〈
φt

∣∣φt

〉 . (3.27)

In order to derive the effective action of composite boson fields we need the matrix
element 〈

φt

∣∣T̂ †t V̂te
µn̂B T̂t+1

∣∣φt+1

〉
. (3.28)

Since the subspace of P̂ incudes only neutral states and since
[
eµn̂B , T̂t+1

]
= 0, then

the chemical potential disappears in (3.25). In fact, n̂b is not active over the subspace
of the projector P̂. By use of the formulae collected in appendix A, we have

a
〈
φt

∣∣T̂ †t V̂tT̂t+1

∣∣φt+1

〉
= det+

[
e−M†

t
◦
Et+1,t e−Mv,t+1

]
= det−

[
e−Mu,t+1Et+1,te

−M†
t

]
,

(3.29)
where

◦
Et+1,t :=

◦
FN, t eM†

t eMv,t+1

( ◦
FN, t+1

)†
+ Ft e−M†

t e−Mu,t+1F†t+1 , (3.30a)

Et+1,t := (FN, t+1)
† eMu,t+1 eM†

t FN, t + F†t+1 e−Mv,t+1 e−M†
t Ft , (3.30b)

◦
FN, t := 1 + BtN

†
t , (3.30c)

FN, t := 1 + N †
t Bt . (3.30d)

The last equality in (3.29) is valid since
◦
Et,t+1 and Et,t+1 (as well

◦
FN, t and FN, t) have

the same determinant, see appendix B.3. Therefore, by substitution of (3.29) and (3.5)
in equation (3.27), we find the functional expression of the partition function in terms
of the composite boson fields φ∗ and φ

ZC =
∫ [dφ∗dφ

2πi

]
e−SC(φ∗,φ) , (3.31)

where

SC(φ∗, φ) :=
L0−1∑

t

tr+

[
ln

◦
R
−2

t − ln
(
e−M†

t
◦
Et,t+1 e−Mv,t+1

)]
. (3.32)

The action above describes the composite boson that interacts with the external boson
fields on which N and M depend. The interaction is no customary. The action in (3.32)
is gauge invariant, but it is not invariant under the global U(1) transformation of the
composite boson fields

φt 7→ eiϑφt , φ∗t 7→ e−iϑφ∗t . (3.33)

This implies that the boson number is not a good quantum number. One side of the
dynamical problem is the determination of the structure matrices Φ; the path integral



26 Composite boson dominance

formulation is a good starting point for the resolution of the problem. For the moment,
all present fermions are bosonized, but in the next Chapter we generalize the treatment
to the case that include fermion states. Notice that in the action SC(φ∗, φ), time and
space are not treated in a symmetric way.

It is very important to observe that the derivation of the effective action for com-
posite fields is exact under the physical assumption of boson dominance. The only
approximation that has been made is over the form of the projector over the bosons
subspace. This derivation is the most general one; in fact, no hypothesis has been taken
over the type of fermions and no gauge has been fixed.

3.3.1 Evaluation of the partition function by the saddle point equation

At present, we do not know a procedure to exactly perform the integral in (3.31).
However, it can be evaluated by saddle point method, as, for large nilpotency index,
the integral is dominated by the minimum of the action. The saddle point equations,
for (3.31), in Ft and F†t+1 are, respectively

F†t
◦
R

2

t =
[
N †

t eM†
t eMv,t+1

◦
F
†
N, t+1 +e−M†

t e−Mu,t+1F†t+1

] ◦
E
−1

t+1,t , (3.34a)

◦
R

2

t+1 Ft+1 =
◦
E
−1

t+1,t

[ ◦
FN, t eM†

t eMv,t+1Nt+1 + Fte
−M†

t e−Mu,t+1

]
. (3.34b)

In order to look for a solution of the saddle point equations (3.34a) and (3.34b), we
multiply the first equation by Ft on the left and the second one by F†t+1 on the right

◦
R

2

t = eM†
t eMv,t+1

◦
F
†
N, t+1

◦
E
−1

t+1,t , (3.34c)
◦
R

2

t+1 =
◦
E
−1

t+1,t

◦
FN, t eM†

t eMv,t+1 . (3.34d)

This equation does not admit φ = 0 as a solution; this means that the ground state is
a condensation of mesons, while there exists the trivial solution φ = ∞. The equations
(3.34c) and (3.34d) give

◦
Et+1,t =

◦
R
−2

t eM†
t eMv,t+1

◦
F
†
N, t+1=

◦
FN, t eM†

t eMv,t+1
◦
R
−2

t+1 (3.34e)

and

( ◦
F
†
N, t+1

)−1

=
◦
E
−1

t+1,t

◦
R
−2

t eM†
t eMv,t+1 , (3.34f)

( ◦
FN, t

)−1

= eM†
t eMv,t+1

◦
R
−2

t+1

◦
E
−1

t+1,t . (3.34g)
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Substituiting (3.34e) in (3.34c) and in (3.34d), we arrive to the following equations

F†t = F−1
t (e−Mv,t+1e−M†

t − 1) +
[
N †

t + e−M†
t e−Mu,t+1F†t+1

( ◦
F
†
N, t+1

)−1]
e−Mv,t+1e−M†

t ,

(3.34h)

Ft+1 =
(
e−Mv,t+1e−M†

t − 1
)F†−1

t+1 + e−Mv,t+1e−M†
t
[
Nt+1+

◦
F
−1

N, t Fte
−Mv,t+1e−M†

t
]
,

(3.34i)

The equations (3.34h) and (3.34i) are two non-linear coupled iterative equations and we
do not know a solution to them. These equations simplify considerably if we limit to
consider the axial gauge and M = 0. This is the case, for example, of Kogut-Susskind
fermions, for which the equations become

Ft+1 = Nt+1 +
(
1 + FtN

†
t

)−1Ft , (3.35a)

F†t = N †
t + F†t+1

(
1 + Nt+1F†t+1

)−1
. (3.35b)

The equations (3.35) can be solved by iteration and, imposing boundary condition,
they can be transformed into eigenvalue equations. Notice that the equations (3.34a)
and (3.34b) are not independent in the axial gauge; indeed the Hermitian Conjugate of
(3.34b) is (3.34a) with the substitution of t with t + 1.

Saddle point equation stationary solution

Consider Nt to be time independent and M = 0. Therefore, it is necessary that the
boson fields, on which N depends, are time independent. This is not the case of a gauge
theory. For a time independent N , the equations for Ft+1 and F†t are time independent
too; thus, it is possible to find a constant solution for Ft =: F̄ . Eq. (3.35a) gives

F̄N †F̄ − F̄N †N −N = 0 . (3.36)

Supposing that the solution of (3.36) is of the form

F̄ = NA , (3.37)

then (3.36) becomes
N

(
AN †NA−AN †N − 1

)
= 0 . (3.38)

In the case we are considering

H2 :=
1
4
N †N

is the square of the hamiltonian of the fermions. A time independent A must commute
with it and therefore it is possible to diagonalize N †N and A at the same time. In the
eigenvectors base, the equation (3.38) becomes an eigenvalue equation for the matrix A

Ã2
q4E2

q − ÃqE
2
q − 1 = 0 , (3.39)
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where Ãq and E2
q are the eigenvalues of A and H2 related to the q-th eigenvector. The

solutions for each eigenvalue are two

Ãq± =
(
Eq ±

√
1 + E2

q

)
(2Eq)

−1 , (3.40)

and they satisfy

Ãq + + Ãq− = 1 , Ãq± = −
(
Ãq∓4H2

q

)−1
, Ã2

q± =
1

4H2
+ Ãq± . (3.41)

To a general set of eigenvalues {Ãq} corresponds, in a general base, a solution of the
saddle point equation (3.38), of the form

AΓ =
H + Γ

√
1 + H2

2H
. (3.42)

Here Γ is a square matrix whose eigenvalues Γ̃q are ±1; its explicit expression depends
on the base selected and on the set {Ãq}. The family of solutions of the saddle equation
is very large. The physical solution is the one that minimizes the action. By use of
(3.34e) and (3.41), the action, evaluated over a general solution of (3.36), becomes

S̄c Γ := SC(φ∗, φ)
∣∣
Ft=F̄ = −

∑
t

tr+ ln
(
1 + NAΓN †

)
(3.43a)

= −
∑

t

tr− ln
(
Eq +

√
1 + E2

q

)Γ̃q2

. (3.43b)

The tr± must be interpreted as the sum over the eigenvalues and the sign in (3.60)
depends on the sign in (3.40). The set of eigenvalues that minimizes the action is the
one corresponding to the choice of the positive sign in (3.40) for all the eigenvalues.
This set corresponds to a Γ with only positive eigenvalues and diagonal in the position
base. Instead, the solution with all negative signs in (3.42) is a maximum of the action.
The ground state is a condensate of composites with structure function

F̄ =
1
2

NH−1
(
H +

√
1 + H2

)
. (3.44)

This is a time independent minimum of the effective action. In such composites, the
occupation number of high momentum states is larger than that of low momentum
states, the structure function is different from that of bound pairs. Anyway, if there
exist time independent extremes, F̄ can eventually be only a local minimum.

3.4 Second form of the effective boson action

In this section we derive an alternative expression of the effective action of the composite
bosons. This can be achieved performing the following transformation of the fermion
operators

û 7→ û′ := v̂† , v̂† 7→ û′† := û . (3.45)
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This transformation change particles in hols. The new vacuum is the state |0′〉 in the
space HF , the Hilbert space of fermions, and is annihilated by all the û′ v̂′. Clearly, it
is the fully occupied lattice

|0′〉 =
∏

i

v̂†i û
†
i |0〉 (3.46)

The new vacuum is connected to the trivial solution φ = ∞. Substituting (3.45) in the
definition of ψ̂, one observes that the transformation change the role of P(±)

0 , then it
is related to time reversal. To obtain the effective action we must calculate the matrix
element in Eq. (3.28). For the canonical boson, whose creation and destruction operator
are b̂ and b̂†, it is possible to prove that exp(bb̂)(̂b†)n|0〉 = exp(b∗b̂†)|0〉 are equivalent in
the sub space with 0, 1, · · ·n bosons. It follows that

eû†F†v̂† |0〉 = ev̂′F†û′ ∏

i

v̂′†i û′†i |0′〉 ' eû′†F v̂′† |0′〉 . (3.47)

This transformation is only an approximation, but in the case of large Ω and for a
number of composite bosons n ¿ Ω, the equivalence should hold. The operator T̂

changes under the transformation; in fact

exp
(
ψ̂†P(+)

0 NP(−)
0 ψ̂†

)
7→ exp

(
ψ̂′†P(−)

0 NP(+)
0 ψ̂′

)
. (3.48)

Instead, if we apply the time reversal to the fermion action on a lattice and then perform
the Lüscher construction [16] of the transfer matrix, the operator T̂ changes as follows

T̂t = exp
(
−û†Mtû− v̂†MT

t v̂
)

exp (v̂Ntû) 7→ exp (v̂Ntû) exp
(
−û†MT

t û− v̂†Mtv̂
)

.

(3.49)

From the previous observation, one deduces that the matrix element (3.28) changes,
under the transformation (3.45), in this way

〈φt|T̂ †t V̂te
µn̂B T̂t+1|φt+1〉 7→ 〈φt|V̂te

µn̂B T̂tT̂
†
t+1|φt+1〉 , (3.50)

with the substitutions

Ft 7→ F†t , Nt 7→ N †
t , Mt 7→ −M∗

t . (3.51)

In the right side of (3.50) and of the next expressions, we have omitted the prime.
It is now possible to evaluate the matrix element 〈φt|T̂tV̂te

µn̂B T̂ †t+1|φt+1〉. Firstly, one
observes that

T̂ †t+1|φt+1〉 = exp
(
Nt+1 + eM†

t+1Ft+1e
M†

t+1

)
|0〉 , (3.52)

〈φt|V̂te
µn̂B T̂t = 〈0| exp

(
Nt + eMv, tFte

Mu, t
)

. (3.53)
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The chemical potential disappears, as expected. The matrix element (3.50) can be com-
puted introducing the identity in the HF , written in terms of coherent states between
the two parts in (3.52). The result is

〈φt|T̂tV̂te
µn̂B T̂ †t+1|φt+1〉 = det −

◦
Et,t+1 , (3.54)

where

E′
t+1,t := 1 +

(
N †

t+1 + e−M†
u,t+1F†t+1e

−M†
v,t+1

) (
Nt + e−MtFte

−Mt
)

, (3.55a)

◦
E
′
t+1,t:= 1 +

(
Nt + e−MtFte

−Mt
) (

N †
t+1 + e−M†

u,t+1F†t+1e
−M†

v,t+1

)
. (3.55b)

We have found a second form of the effective action; it is like in (3.31), but with the
action

SC(φ∗, φ)′ =
L0∑

t=0

tr+

(
ln

◦
R
−2

t − ln
◦
Et+1,t

)
. (3.56)

For Mt = 0 and U0, t, the action in Eq. (3.32) coincides with the action given in Eq.
(3.56), with the substitution

Ft 7→ (Ft)
−1 . (3.57)

However, remember that during the derivation of the second form we have performed
the substitution in Eq. (3.51). The first form of the partition function is equivalent

to the second one, with the substitution Ft 7→
(
F†t

)−1
. The time independent saddle

equations (3.36) become, by use of (3.41)

N
(
F̄ ′N †N F̄ ′ + F̄ ′N †N − 1

)
= 0 . (3.58)

This equation can be solved in the same way as (3.36). The solution reads

F̄ ′Γ = −N
H + Γ

√
1 + H2

2H
. (3.59)

The action SC(φ∗, φ)′, evaluated over this solution, is

SC(φ̄∗, φ̄)′Γ := −
∑

t

tr− ln
(
Eq +

√
1 + E2

q

)−Γ̃q2

. (3.60)

Since a minus appears in the exponential, the physical solution corresponds to the one
for which all the eigenvalues of the corresponding Γ are negatives. This means that,
under the transformation (3.45), the structure function changes. Since SC(φ∗, φ)[F̄ =
NAΓ=+1] = SC(φ∗, φ)′[F̄ = −NAΓ=−1], the partition function, are equivalent at the
leading order.

The second form of the partition function is easier to handle and allows to evaluate
the Gaussian corrections to the saddle point [1].



Chapter 4

Finite Temperature and finite

chemical potential formalism

In this Chapter we extend the formalism outlined in Chapter 3 to field theories at finite
temperature and density. The aim of the studies under discussion is to reformulate the
theory in terms of the fields that are related to the dominant degrees of freedom, whose
dynamics is controlled by an effective action. The hope that motivates this investigation
is that the effective theory may be simpler than the fundamental one.

4.1 Quasi-quarks and generalized Bogoliubov

transformation

In order to extend the formalism explained in the previous chapters to finite temper-
ature, we must introduce excited states. The aim is to consider baryons composites,
but we limit ourselves to introduce, in addition to mesons, excited states with fermion
quantum number. In this way, we introduce states with no null fermion number and
therefore generalize the formalism to finite density. In Chapter 3 we have determinate,
under some assumptions, the ground state, which depends on the dynamical propriety
of the theory considered. The new states must be excitations of this ground state. Since
we consider quarks and anti-quarks, there are two types of excited states, that we call
”quasiquarks ” and ”quasiantiquarks ”. The operator associated to these states can be
introduced using a generalization of the Bogoliubov-Valatin transformation [7, 26]. This
is a linear transformation for operator doublet ψ̂

ψ̂ 7→ λ̂ := Uψ̂ . (4.1)

31
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This application, defined by the matrix U, must be unitary with respect to the metric
of the fermion space1; then U has to satisfies to

γ0U
+γ0U = Id . (4.2)

Choosing the following parametrization for the linear transformation

U :=

(
A −AB†

CD C

)
, (4.3)

and replacing it in (4.2), we obtain the following system with solutions




A†A + D†C†CD = 1
C†C + BA†AB† = 1
D†C†C −A†AB† = 0

,





B = D

A†A =
(
1 + B†B

)−1

CC† =
(
1 + BB†)−1

. (4.4)

These equations give the expressions only of the product of A†A and C†C, that is a
constrain over the expressions of A and C, namely

A = I
(
1 + B†B

)−1/2
, C = I ′

(
1 + BB†

)−1/2
. (4.5)

Here I (I ′) is the root of the identity and satisfies to: I = P(−)
0 I P(−)

0 (I ′ =
P(+)

0 I ′P(+)
0 ), I †I = I I † = P(−)

0 (I ′†I ′ = I ′I ′† = P(+)
0 ) and commutes with B†B

(BB†). The solutions given in Eqs. (4.4) and (4.5) describe the most general unitary
transformation in the doublet space

U =:


 I

(
1 + B†B

)− 1
2 −I

(
1 + B†B

)− 1
2 B†

I ′ (1 + BB†)− 1
2 B I ′ (1 + BB†)− 1

2


 . (4.6)

The arbitrariness in the choice of I corresponds to the arbitrariness in phases for the
coefficients of the Bogoliubov transformation used in the theory of superconductivity
[23, 26, 27]. There are other analogies between these two different theories. Notice
that the only free parameter of the transformation is the fermion + matrix B, which
determines the transformation, while the matrices A and C are boson -like and depend
on B; see appendix (B.3). Observe that for B = F these operetors annihilate the state
eû†F v̂† |0〉, i.e. they are excitations of the vacuum.

Given λ̂, it is possible to introduce the quasi-particles α̂ and β̂ operators. These
operator have to be defined in a way such that λ̂ is the doublet operator associated to
them, i.e. they have to satisfy the same relation that exist between the field ψ̂ and û,
v̂ (1.17), The definitions are

α̂ := P
(−)
0 λ̂ , β̂† := P

(+)
0 λ̂ , α̂† := λ̂†P (−)

0 , β̂ := λ̂†P (+)
0 . (4.7)

1The inner product of the fermion doublet is
¯̂
ψψ̂ = û†û− v̂v̂†; the metric is Diag(1,−1), the gamma

matrices are given in B.
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With these definitions of α̂ and β̂, λ̂ is the doublet operator associated to them

λ̂ =

(
α̂

β̂†

)
. (4.8)

It is necessary to introduce the unitary operator Û , associated to the transformation
described by U in (4.1). We suppose that the generator is a composition of a rotation
in the space of the operator particles, with generator

Θ̂ = û†Θûû + v̂†ΘT
v̂ v̂ (4.9)

and of a rotation in the space of the operator doublet

Ŝ := û†X†v̂† − v̂Xû . (4.10)

Then

Û := eiΘ̂eŜ . (4.11)

Obviously, since the transformation described by U is unitary, the operators defined in
(4.7) respect anti-canonical commutation relations and they annihilate the new ground
state of the theory Û |0〉.

4.1.1 Evaluation of the parameters of the Bogoliubov trasformation

In Chapter 3 we have determinate that, for large Ω, the ground state is a condensate
of mesons (3.3), whose structure function is a solution of the saddle point equations
(3.34). In order to introduce the excited states over the physical ground state, we need
to perform a transformation in the space of the doublets, such that the new vacuum is
the state |φ〉. The parameters in the operator, appearing in Eq. (4.11), have to be fixed
as to obtain

Û |0〉 =
|φ〉

(〈φ|φ〉) 1
2

. (4.12)

As we explain in appendix C, the generator Û creates the ground state if the parameters
of the transformation solve the following equations

cos
√

X†X =
1√

1 + F†F , eiΘûX†eiΘv̂ = F† . (4.13)

For these values of the parameters, ψ̂ transforms in this way

Û ψ̂Û −1 =




exp(−iΘû)√
1+F†F

[
û−F†v̂†]

exp(+iΘû)√
1+FF†

[
v̂† + F û

]

 . (4.14)

This transformation rule is equivalent to the one given in Eq. (4.6). Indeed, the quasi-
particles, α̂ and β̂ defined by (4.7) from Uψ̂, with the parameters of the transformation
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B = F , and α̂ and β̂ defined from Û ψ̂Û −1, with the parameters that satisfy to (4.13),
are mutually orthogonal to the ground state

α̂i|φ〉 = β̂i|φ〉 = 0 . (4.15)

The quasi-particles, defined in these two ways, are different for a rotation of the opera-
tors.

Notice that the structure function of the mesons F is gauge covariant, in order to
obtain a gauge invariant state. From the point of view of symmetries we remark that α̂

and û ( β and v̂) transform in the same way by construction, because of the presence
of the dynamical bosonic fields appearing in

◦
R, R and F . This is different with respect

to the original Bogoliubov’s transformation where the matrices
◦
R, R and F are kept

fixed. Since the α̂|0〉 (β̂†|0〉) has fermion number +1 (−1) we call this operator of
quasiquarks (quasiantiquarks ).

4.1.2 The Bogolibov transform fields

In order to obtain the effective action for the fields related to the quasiparticles, we
must introduce the coherent states of the latter. These states can be obtained acting
with Û over the coherent states of the particles

Û |α, β〉 = |αβ; φ〉 := exp
(
−αα̂† − ββ̂†

)
exp

(
û†F†v̂†

)
|0〉 (4.16a)

= exp
(
û†F†v̂† − aα̂† − bβ̂† − βFα

) ∣∣0〉
, (4.16b)

where

ai :=
(
R−1α

)
i

bi :=
(

β
◦
R
−1

)

i

.

The last expression of the coherent states, Eq. (4.16b), is obtained using the formula
of Campbell − Baker − Hausdorff . Notice, that in the new coherent states we
individualize the parameters φ of the transformation that has been performed to derive
them. The states defined in (4.16), like the ones seen in section 3.1, have the property
of a fixed phase relation among components of different number of particles. However,
they are not an eigenvectors of Φ (3.4). Instead, since the quasiparticelle operators
obey a canonical algebra, the states (4.16) are eigenvalues of the operators α̂ and β̂.
The fields α, β (and a, b) are 2 spinor with quark quantum number. The scalar product
of states of the type of (4.16) is

〈
α1β1; φ1

∣∣α2β2; φ2

〉
= det +

◦
R
−2

2,1 ×

× exp
(
a∗1R

2
2,1a2 + b∗1

◦
R

2 T

2,1 b2+ (4.17)

+ a∗1F†2
◦
R

2

2,1 b∗1 + b2

◦
R

2

2,1 F1a2 − a∗1F†1
◦
R

2

1,1, b∗1 − b2

◦
R

2

2,2 F2a2

)
.
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In the first line of (4.17), appears the ground state contribution (or composite boson
contribution); while in second the quasiparticelle one. Since α̂ and β̂ depend on the
parameters of the transformation, the quasi-particelle contribution to (4.17) depends
on the configuration of the ground state. The terms in the last line of (4.17) are null
for an equal transformation φ1 = φ2. This is due to the fact that α̂ and β̂, that satisfy
to (4.15) for a value of the φ field, do not satisfy the same equation for different values
of the field.

In the standard procedure, as we explain in section 1, to derive the functional form
of the partition function from the operatorial expression, it is necessary to evaluate the
trace over coherent states and therefore to know the identity written in terms of these
state. The identity (P̂m qq̄) expressed in terms of the coherent states of the Bogoliubov
transform, with parameter φ, of particles operator is

P̂m qq̄ :=
∫

D[α∗, α, β∗, β]
|αβ; φ〉〈αβ; φ|
〈αβ;φ|αβ; φ〉 . (4.18)

Since we introduce P̂m qq̄ at each time slice, we can do a change of base at each time.
Then, the parameter of the Bogolibov’s transform becomes a function of the time.

The Bogolibov’s transform can be linked, univocally, if we do not consider a rotation
in the space of the parameters, with the structure function of the mesons; we can
interpret the Bugolibov’s parameter B as the structure suction F of the condensate
according to (4.16). They can also be time dependent.

4.2 First form of the effective action

In the sequel, we discuss how to obtain the effective action of the quasiquarks and
quasiantiquarks in presence of a condensate of mesons. We consider the most general
instance: no assumption is made over the form of the transfer matrix and we do not
fix any gauge. The fermionic sector of the partition function in terms of the transfer
matrix is given by (3.24). We evaluate the trace in the base of the Bogoliubov fields.
Notice that we have two fields, one (α) for the quasiquarks and the other (β) for the
quasiantiquarks . In order to derive the effective action we need to introduce, for each
time slice, the identity written in terms of these states (4.18). By the same procedure
described in section 3.3, we obtain the functional expression of the partition function

Zφ : = TrF
L0−1∏

t=0

[
P̂m qq̄T̂

†
t V̂te

µn̂B T̂t+1

]
(4.19a)

=
∫

D[α∗, α, β∗, β]
〈αtβt; φt|T̂ †t V̂te

µn̂
B T̂t+1|αt+1βt+1; φt+1〉

〈αtβt; φt|αtβt;φt〉 . (4.19b)
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The formulae collected in appendix A allow to compute the matrix element appearing
in the numerator in (4.19b) and to write the partition function in the following way

Zφ =
∫

D[α, α∗, β, β∗]e−Sφ(α β) , (4.19c)

where

Sφ(α β) :=
L0∑

t=0

tr+
◦
R
−2

t −tr+
(
e−M†

t
◦
Et,t+1 e−Mv,t+1

)
+

−
[
a∗t Ltat + bt

◦
Lt b∗t + btI

(2,1)
t at + a∗t

◦
I

(1,2)

t b∗t

]}
,

(4.20)

and

Lt := −R2
t + E−1

t+1,t eµ T (+) ,

◦
Lt:=

◦
R

2

t −e−µ T (−)
◦
E
−1

t+1,t ,

I
(2,1)
t :=

[ ◦
R

2

t −
◦
E
−1

t,t−1

◦
FN, t−1 eM†

t−1 eMv,t

]
F†−1

t ,

◦
I

(1,2)

t :=F−1
t

[ ◦
R

2

t −eM†
t eMv,t+1

( ◦
FN, t+1

)† ◦
E
−1

t+1,t

]
.

Sφ(α β) can be interpreted as the effective action of the quasi-particles. The index φ de-
notes the base that has to be used to evaluate the trace. Obviously, the action in (4.20)
is gauge invariant and, for null values of the Grassmann variables, reduces to the known
one (3.32). In Sφ(α β) appears the pure ground state contribution and the last four

terms are related to quasi particles. The term proportional to Lt and
◦
Lt is the kinetic

term of the quasi-particles, that move and interact with the mesons. The terms pro-

portional to I
(2,1)
t and

◦
I

(1,2)

t describe the interaction, mediated by the mesons, between
quasiquarks and quasiantiquarks .Integrating over the Grassmann fields, we obtain the
effective action for the meson fields

SC(φ∗, φ) :=
L0−1∑

t=0

[
tr+

◦
R
−2

t −tr+e−M†
t
◦
Et,t+1 e−Mv,t+1 − 2tr+

◦
R
−2

t

]

− Tr− ln (−Lt)− Tr+ ln
[ ◦
Lt +I

(2,1)
t

(
− ◦

Lt

)−1 ◦
I

(1,2)

t

]
.

(4.21)

The first two terms in (4.21) describe a pure boson contribution, while the third term
comes from a change of variable in the Grassmann integral. The second line, instead,
denotes the contribution of the thermal excitations. Given the exact form of the parti-
tion function, we must evaluate the sum over the time index too, to know its value. At
the moment, it is possible to carry out the trace only in a few cases.



4.3. Second form of the effective action 37

4.2.1 Stationary case

Return to consider the case treated in section 4.2.1 and to study the consequences of
having introduced quasiquarks and quasiantiquarks . Recall that we supposed Mt = 0,
Ut = 1 and N to be time independent. To evaluate the partition function, we need
to perform the sum over the time index. Since the matrix N is time independent, we
assume that the relevant configurations for the composite boson fields φ∗ and φ are time
independent too, namely the ground state is a stationary state. Suppose that B = NA,
for any B that is not necessarily a solution of a saddle point equation, and that A

commutes with N †N . From the former hypothesis follows that

BN † = NB† , N †B = B†N . (4.22)

Performing some algebra in the expression (4.21) and using the last identity, one can
deduce that

SC(φ∗, φ) := −Tr+ ln
[(

2 + NN † −
(
e−µT (−) + eµT (+)

))]
. (4.23)

This expression gives the exact action and it is F independent. This means that the
transformation given in (4.1) is a symmetry of the system. This result confirms that the
operator P̂m qq̄ is not a projector, but it is the change matrix base for different choices
of the B parameter in (4.1). The main difference between our results and the ones
obtained in Ref. [2] is that, since we consider the quasiantiquarks too, we do not omit
any state in the trace.

4.3 Second form of the effective action

Following the same procedure described in section (3.4), we can deduce an alternative
expression for the partition function. The first step to perform is the unitary trans-
formation reported in the (3.45). By this transformation the transfer matrix changes
as

T̂ †t V̂te
µn̂B T̂t+1 7→ T̂tV̂te

µn̂B T̂ †t+1 , (4.24)

with the replacements

N 7→ N † , M 7→ −M . (4.25)

The new Bogoliubov’s transformed doublet is not the doublet given in (4.8) with the
substitutions (3.45); it is necessary to repeat the procedure of the Bogoliubov’s trans-
formation in the new base of the operators û′ and v̂′. Following the same procedure
expressed in section 4.2, it is possible to deduce a different expression for the partition
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function. The functional form is like the one in Eq. (4.19c), but with the action

Sφ(α β)′ =
L0∑

t=0

{
tr+

(
ln

◦
R
−2

t − ln
◦
E
′
t+1,t

)
+ (4.26)

−
[
a∗t L

′
tat + bt

◦
L
′
t b∗t + btI

′(2,1)
t at + a∗t

◦
L

′(1,2)

t b∗t

] }
,

where

L′t := −
[
R2

t − e−Mt (E′)−1
t+1,t e−M†

u,t+1 eµ T (+)
]

◦
L
′
t:=

◦
R

2

t − e−µ T (−) e−M†
v,t+1 (

◦
E
′
t+1,t)

−1 e−Mt

I
′(2,1)
t :=− ◦

R
2

t Ft + e−M†
v,t(

◦
E
′
t,t−1)

−1
[
Nt−1 + e−Mt−1Ft−1e

−Mt−1
]
e−M†

u,t

◦
L

′(1,2)

t := −F†t
◦
R

2

t +e−Mt

[
N †

t+1 + e−M†
u,t+1F†t+1e

−M†
u,t+1

]
(
◦
E
′
t+1,t)

−1e−Mt+1 .

The boson matrices E′
t+1,t and

◦
E
′
t+1,t are defined in (3.55a). For Mt = 0 and U0, t, the

action (4.26) coincides with the action given in (4.20), under the substitutions

Bt 7→
(
B†

)−1
, at =

(
B†)−1

at , bt 7→ bt

(
B†

)−1
. (4.27)

The second form of purely bosonic effective action correspondent to (4.21) is obtained
performing the integration over the Grassmann variables. The result reads

SC(φ∗, φ) :=
L0∑

t=0

[
tr+

◦
R
−2

t −tr+
◦
E
′
t,t+1 −2tr+

◦
R
−2

t

]

− Tr− ln (−Lt)− Tr+ ln
[ ◦
Lt +I

′(2,1)
t (−Lt)

−1 ◦
I

′(1,2)

t

]
.

(4.28)

Under the same conditions expressed in section 4.2.1, one can verify that the action
(4.28) gives the action (4.23). This means that the transformation (3.45) is a symmetry
of the system, at least for time independent configuration of the external bosons. So we
have two equivalent expressions of the effective action and we can choose the simplest
one. For future developments in the context of gauge theories, we believe that the
second form of the action allows for simpler analytical studies.

4.4 Diagonalization of the effective action

We have introduced the quasi-particles as Bogoliubov’s transformations, in order to
obtain excited states over the physical vacuum. The effective action that we find is
given by (4.20). We observe that, for a particular choice of the parameters of the
Bogoliubov’s transformation, the quasiquarks do not interact with the quasiantiquarks .
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In fact, this peculiar value of the transformation is such that the interaction terms

vanish: I
(2,1)
t =

◦
I

(1,2)

t = 0. The whole action is

Sφ(α β) :=
L0∑

t=0

tr+
◦
R
−2

t −tr+
(
e−M†

t
◦
Et,t+1 e−Mv,t+1

)− [
a∗t Ltat + bt

◦
Lt b∗t

]
. (4.29)

This value corresponds to a solution of the saddle point equations (3.34a) and (3.34b).
The excitations of the ground state do not interact with each other.

The topic can be read also in another way. Suppose we want to evaluate the partition
functions. However, the transfer matrix couples particles and antiparticle; in fact in T̂
there is a term ev̂Nû. It is, anyway, preferable to compute the trace of a diagonal operator
that does not couple particles and anti-particles. To the purpose, we can operate a
change of base in the particle operator, for example a Bogoliubov’s transformation,
generated by an operator Û that leads to a diagonal expression like (4.29). It is obvious
that the ground state corresponds to the state Û |0〉, where |0〉 is the old vacuum. Since
the transformation is unitary, we have obtained two representations of the algebra,
equivalent in finite system. Anyhow, it is well known that, in the thermodynamic limit,
some complications appear [23, 27].





Chapter 5

Test of the formalism on a model

with 4-fermions interaction

In this chapter we test our method on a fermion system with four fields with Kogut-
Susskind fermion 3 + 1 dimension. The action we take into consideration is

SF GN =
′∑

x,y

ψ̄x [m δx,yI⊗ I + Q]ψy − 1
2

g2

4Nf

′∑
x

σx(ψ̄xψx)2 . (5.1)

It is clear that this system possesses the symmetries (1.7) and (1.8); Q is defined in (B.4).
How explained in Chapter 1, the study of simple systems often allows to understand
some phenomena that appear in more complex theories, like QCD. Indeed, the four-
fermions model is believed to be an effective theory of quarks and gluons at intermediate
energy.

This theory has been deeply studied for non zero values of both temperature [31] and
chemical potential [32]. The method that we have discussed in Chapter 3 has already
been tested at zero values with the parameters T and µ [1]. It was proven to reproduce
all the known results in the boson sector and it also allowed to determine the structure
functions of the condensed composite [1]. In this section, instead, we test the method
for non null values of the parameters. In order to have an action bi-linear in the fermion
fields, as usually, we introduce a scalar field σ whose Gaussian integral gives the starting
partition function

Z =
∫

D[ψ̄ψ]e−SF GN =
∫

D[ψ̄ψ]D[σ]e−
(
SF KS+ 1

2

4Nf

g2

∑′
x σ2

)
. (5.2)

Here SF KS is the action of the Kogut-Susskind fermions with a Yukawa interaction
with a field σ. In the presence of such an interaction, the matrices N and M , for this
choice of the regularization, depend on σ and are given in appendix B.1.
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5.1 The gap equation

In the last section we have derived the effective action for the quasi-particles fields
(4.20). In order to evaluate the perturbations around the ground state, we must fix
the parameters of Bogoliubov’s transform to maximize to ground state contribution to
the action. As explained in the former Chapter, these values of the parameters of the
Bogolibov’s transform correspond to the structure function of the composite Ft. The
values φ = φ̄ correspond to a value of the structure function that saturates the ground
state (solution of the saddle point equations (3.34)); the action of the quasi-quark fields
is diagonal in the quasi-particle fields and it is given in (4.29). It is bi-linear in fermion
fields. Notice that, in general, the diagonalization of the action requires to solve the gap
equations (3.34h) and (3.35b). The effective action (4.29), coming from the fermionic
part of (5.2), can be written as

Sφ̄(α β, σ) =

L0
2∑

t=0

{
tr− lnR−2

t E−1
t+1,t − α∗t s (∇−Ht) αt+

−βt

( ◦
∇ − ◦

Ht

)
β∗t

}
,

(5.3)

where we have defined

∇t := s−1
(
eµU0,tT

(+) − 1
)

, Ht := eµs−1
(
U0,t −R−1

t E−1
t+1,tR

−1
t+1

)
T (+), (5.4a)

◦
∇t:= s−1

(
1− e−µT (−)U0,t

)
,

◦
Ht:= − e−µ

s
T (−)

(
U0,t−

◦
R
−1

t

◦
E
−1

t+1,t

◦
Rt+1

)
. (5.4b)

These objects can be interpreted as the covariant and effective Hamiltonians for the bi-
spinors field of quasiquarks and quasiantiquarks . In the previous formula, s = 2 denotes
the step of lattice. Notice that this expression of the action avoid the fermion doubling,
since the derivative is not symmetrical.

In the limit Nf → ∞, the partition function is dominated by the saddle point of
σ; in such limit the most important configuration for the σ is space-time independent
[31]. For the sake of simplicity, in the following we omit the time index. In this case,
we know the expression of F , given in (3.44), which is diagonal in the flavours index.
As we have found in Chapter 3.3.1, the elements that appear in the definition of the
Hamiltonian simplify to

R−1E−1R−1 = R−2E−1 =
(
H + (1 + H2)1/2

)−2
, (5.5a)

◦
R
−1 ◦

E
−1 ◦

R
−1

=
◦
R
−2 ◦

E
−1

=
( ◦

H +(1+
◦
H

2

)1/2

)−2

. (5.5b)
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The two Hamiltonian can be written in a different way

H = eµH
[
H +

(
1 + H2

)1/2
]
,

◦
H= −e−µ

[
◦
H +

(
1+

◦
H

2
)1/2

]
, (5.6a)

R−2E−1 = 1− se−µH,
◦
R
−2 ◦

E
−1

= 1− seµ
◦
H . (5.6b)

The Hamiltonian for the particles, H, and the one for the anti-particles,
◦
H, as H and

◦
H

have the same eigenvalues; the only difference is that one is a boson−, while the other
is a boson +. For time independent configurations of the external fields, it is possible
to perform the Grassmann integrals and the sum over the Matsubara frequencies1. The
effective action for the σ fields is

S̄eff [σ] =
1
2

4Nf

g2

′∑
x

σ2 + Nf
L0

2
tr− ln

(
R−2E−1

)
(5.7)

− tr−Nf ln
(
1 +

(
R−2E−1eµ

)L0/2
)
−Nf tr+ ln

(
1 +

( ◦
R
−2 ◦

E
−1

e−µ
)L0/2

)
.

where the first therm is the kinetic therm of the auxiliary field, the second is the T = 0
contribution to the quantum fluctuation, while, in the second line, appear the thermal
fluctuations. As the action is proportional to Nf , the partition function in σ is controlled
by the minimum of the action. The gap equation for the σ field is

∂S̄eff [σ̄]
∂σ̄

=
2L0Nf σ̄

g2
−Nf

L0

2
σ̄fq(σ̄)−Nf σ̄fT (σ̄, L0, µ) = 0 , (5.8)

where, as usually, we have split the quantum contribution

fq(σ̄) := tr−(1 + H2)−
1
2 (5.9)

from the contribution coming from the thermal fluctuations

fT (σ̄,
L0

2
, µ) := tr−(1 + H2)−

1
2

[(
1 + (eµ − sH)−L0/2

)−1
−

(
1 +

(
e−µ − sH)−L0/2

)−1
]

.

(5.10)

At the saddle point, the fermion number is given by nF := − 2
L0

∂Seff
∂µ i.e.

nF = tr−
1

1 + (eµ − sH)−L0/2
− tr+

1

1 + (e−µ + sH)−L0/2
=: n+

F − n−F . (5.11)

Observe that our method is in complete agreement with the solution of the Gross-Neveu
model for Nf →∞ [31]. Since we are interested in the chiral transition, we consider the

case m = 0. For this value one observes, from the naive continuum limit of H and
◦
H,

1 L0
2

is the time dimension of the lattice, i.e T−1.
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that the parameter σ̄ is the mass of the quasi-particles. For σ̄ = 0, the action possesses
the following symmetry

α → −γ5 ⊗ t5α β → βγ5 ⊗ t5 . (5.12)

The study of the gap equations and of the fermion number, for different values of T and
µ, requires the evaluation of the trace in the definitions (5.9) and (5.10). However, this
can be performed only by means of numerical methods. In the following, we limit to the
discussion of merely qualitative results. Notice that H is diagonal in the momentum
space and that its eigenvalues are given in (B.6); the trace in the momentum space is
defined in [1].

5.1.1 The case T = µ = 0

Observe that, for T = µ = 0, the thermal contribution is null as the fermion number.
For this values of the parameters, the gap equations becomes

4σ̄

g2
= σ̄fq(σ̄) . (5.13)

This equation [1] admits solution σ̄ 6= 0, only for values of the coupling constant g > gc,
where g2

c = fq(0). For g < gc, we have σ̄ = 0 and the transformation (5.12) is a
symmetry of the system. Instead, for g > gc, the physical solution is non zero and then
the symmetry of the system is broken; the σ field acquires a mass mσ = 2σ̄.

5.1.2 The case T = 0

In the limit of zero temperature

S̄eff [σ] =
1
2

4Nf

g2

′∑
x

σ2 +
L0

2

{
tr− ln

(
R−2E−1

)− tr−
[
θ
(
R−2E−1eµ − 1

)× (5.14)

× ln
(
R−2E−1eµ

)]
+−tr+

[
θ

( ◦
R
−2 ◦

E
−1

e−µ − 1
)

ln
( ◦

R
−2 ◦

E
−1

e−µ
)]}

.

The corresponding gap equations and the number of fermions are

nF = tr−θ
(
R−2E−1eµ − 1

)− tr+ θ

( ◦
R
−2 ◦

E
−1

e−µ − 1
)

, (5.15a)

2
L0

∂S̄eff [σ̄]
∂σ̄

=
4Nf σ̄

g2
−Nf σ̄fq(σ̄)−Nf σ̄fT (σ̄, 0, µ) = 0 . (5.15b)

These equations give the following qualitative information. For any value of the chemical
potential, the number of quasi-anti-quarks is zero (5.15b). Instead, the number of
fermions increases as the chemical potential increases and the fermions tend to occupy
high momentum states. Notice that on the lattice all the momentum states can be
empty and not necessarily in the limit µ → 0. The contribution of the mass σ̄ to the
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energy gap of the excitations is exactly reproduced. Indeed, for any value µ such that
eµ−1 < 2σ̄, the equation for the fermion number gives n+

F = 0. The value of the chemical
potential influences the gap equations too (5.15a); in fact the contribution coming from
fT (σ̄, L0, µ) increases if the chemical potential increases; for this the solution, σ̄ must
be decreasing. At µ ≥ µc, σ̄ = 0; for this value the chiral symmetry is restored. The
value µc can be determined solving the equation

4L0Nf

g2
= tr−

L0

H
√

1 + H2

[
1− θ

(
R−2E−1eµ − 1

)]
∣∣∣∣∣
σ=0

. (5.16)

Finally, for values g < gc, σ̄ = 0.

5.1.3 The case µ = 0

For null values of the chemical potential, the quasiquarks and quasiantiquarks contributions
in the gap equations (5.13) and in the fermion number (5.11) are equal, so nF is zero
0. If g > gc and if the temperature increases, the contribution coming from the thermal
fluctuations increases. Therefore, the solutions of (5.13) decrease; for high values of the
temperature the chiral symmetry is restored. The critical value of the temperature L0

can be determined from

4L0Nf

g2
= tr−

L0

H
√

1 + H2

[
1− 2

1 + (R−2E−1)−L0/2

] ∣∣∣∣∣
σ=0

.

(5.17)

For any value of g < gc, we have the symmetry phase at any temperature.

In conclusion, we have proven that the main characteristics of the solution, in the
limit of large NF , are reproduced. Since the evaluation of the trace can be performed
only by means of numerical simulations, we can not evaluate it at the critical exponent.
We intend to investigate further in this direction. In particular, the fact that the action
is diagonal can simplify remarkably both the analytical and numerical investigations.





Chapter 6

Condensate of diquarks

The aim of this work is to look for the possibility to write the partition function of
the non-abelian gauge theory, that generates bound states for different values of the
thermodynamical parameters, in a physical equivalent theory in which the bound states
and elementary constituents appear on the same footing. It is obviously that the next
step in this direction is the introduction in the trace of baryon states. It is clear that
the transfer matrix formalism is a good starting point since it permits, for example, to
estimate masses and shapes of bound states as we have been seen in Chapter 3. Since
our formalism exactly reproduces the thermodynamical properties in the cases shown
in the last chapter, we think it can be adopted to the aim.

Since we are interested in the study of hadron matter and in exotic states of matter,
we must add to the mesons different types of states as diquark and baryons. In order to
consider different states in the partition function and in the trace, we must avoid the
double counting of states. This can be do imposing the condition that states of different
particles must be mutually orthogonal. This constraint corresponds to the condition
on the wave function renormalization of composite particles in the Lehmann spectral
representation of composite operators [29].

In this section, we extend our formalism in presence of diquarks as we suppose that
it could be useful in the study of the high chemical potential zone of the phase diagram.
At the same time, this can be a first step in order to introduce the baryons. We
think that decomposing an baryons as a diquark plus elementary fermions can simplify
the computations. The other possibility [30] of introducing the baryons as elementary
particles requires that their operator must be cubic in the elementary particle fields.
This solution, however, introduces a few complications in the computations.
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6.1 Composite diquark operator

We introduce diquark composite operators. We choose to define creation and destruction
operators in the following way

B̂†
I := û†i (BI)

†
i,j û†j , B̂I := ûi (BI)i,j ûj . (6.1)

The matrix B has the same role of the matrix Φ for the meson like composite, the only
difference is that B must be antisymmetric. The index I of the di-quarks structure
functions is defined in the same way as the meson one in section 3.1. It is possible
to repeat the same observation made about the role of the structure function. The
particles that are created by B̂† have fermion number two. Notice that

B̂I

∣∣φ〉
= v̂†F∗BIF†v̂†

∣∣φ〉
. (6.2)

Since we must avoid double counting, diquark states and meson states must be mutually
orthogonal; therefore we must change the definition (6.1) of the diquark operator. The
diquarks have got to satisfy to

B̂I |φ〉 = 0 , (6.3)

for every I. One solution1 of the last equation is

B̂I := α̂i (BI)i,j α̂j , (6.4)

where α̂ is defined in (4.7) and this definition guarantees that diquark states are an-
nichilated by Φ̂. In the following, we assume (6.6) and its hermitian conjugate

B̂I := α̂†i (BI)
†
i,j α̂†j (6.5)

as the definition of the diquark bosons composite operator. As for the mesons operator,
the diquark operator has a nilpotency index. For ours purposes, it is necessary to
introduce semi-coherent states

|b , φ〉 := e
1
2

α̂†Bα̂†eû†F†v̂† | 0 〉 , (6.6)

= e
1
2

û†R−1BR−1 T û†+û†F†v̂† | 0 〉 , (6.7)

where we use the convention

B†i,j :=
∑

I

bI(B
†
I)i,j =: b ·B†

i,j .

1It is not the most general solution of (6.3). We know a more general one, but this one renders the

computations more complicated.
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From the definition of diquark , it is clear that the state |b , φ〉 is not properly a coherent
state. Indeed, the algebras of the mesons and of the diquark are not independent and
canonical

[
B̂†

I ,
1
2

B̂j

]
= û†B†

IBj û− 1
2

tr−B†
IBj ,

[
ûF v̂,

1
2

B̂j

]
= α̂†BJRF†v̂ . (6.8)

We can make observations similar to the ones made in section 3.2; the states (6.6)
that look like coherent in the subspace with number mesons and diquark lot less than
nilpotency index Ω Ωdq, Ωdq is the nilpotency index of B. By use of the formulae
collected in appendix A, one can evaluate the inner product

〈
b1, φ1

∣∣b2, φ2

〉
= det −R2,1

(
det −U(2,1)

)1/2
, (6.9)

where

U(i,j) := 1 + R−1
(i,i)B†i R−1 T

(i,i) R2 T
(i,j)R

−1 T
(j,j) BjR

−1
(j,j)R

2
(i,j) . (6.10)

The computation is quite similar to the ones of the previous Chapter; the only difference
is that the integration over the Grassmann variable of the particles in (A.3) has to be
performed on the right side formula of (A.1), instead than on the left side of the same
formula as in the previous cases. The integration over the anti-particles variable is
performed as usually.

6.2 The operator P̂m b

As in the case of boson dominance, we want to introduce a projection operator over the
sub-space of the composite bosons meson type and diquark type. We prefer to express
the projection operator by means of coherent states

P̂m b :=
∫ [dφ∗dφdb∗db

(2πi)2
] |b , φ〉〈b , φ|
〈b , φ|b , φ〉 . (6.11)

It is necessary to show that P̂m b is an approximation of the projection over that sub-
space. P̂m b is a projector over that sub space if it satisfies to

〈
0
∣∣Φm1B̂n1

∣∣P̂m b

∣∣B̂†n2Φ†m2
∣∣0〉 ' 〈

0
∣∣ B̂n1Φm1B̂†n1Φ†m2

∣∣0〉
δn1,n2 δm1,m2 (6.12)

and to an idempotency condition (3.22). The formula (6.12) is generated by the following
one 〈

b1 φ1

∣∣ P̂m b

∣∣ b2 φ2

〉 ' 〈
b1 φ1

∣∣ b2 φ2

〉
, (6.13)

by derivation with respect to holomorphic variables and then setting both variables to
zero. Replacing (6.12)in Eq. (6.13), we obtain

〈
b1 φ1

∣∣ P̂m b

∣∣ b2 φ2

〉
=

∫ [dφ∗ dφdb∗db

(2πi)2
]
e−E(φ,φ∗,b,b∗) , (6.14)
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where

E(φ0, φ
∗
0, b0, b

∗
0) := (6.15)

= tr−

[
ln−R−2

0,0 − ln−R−2
(0,1) − ln−R−2

(2,0) +
1
2

(
ln− U(0,0) − lnU(0,1) − lnU(2,0)

)]
.

Since E , for large nilpotent index Ω and Ωdq, is proportional, to the index itself 2, we
can evaluate the integral by the saddle point method. The saddle point equations are

∂E(φ, φ∗, b, b∗)
∂b

=
1
2

tr−
[
U−1

(0,0)U−1
(0,1)

(
R−1

(0,0)B
†R−1 T

(0,0)R
2 T
(0,0)R

−1 T
(0,0)B0R

−1
(0,0)R

2
(0,0)+

−R−1
(0,0)B

†R−1 T
(0,0)R

2 T
(1,0)R

−1 T
(1,1)B2R

−1
(1,1)R

2
(0,1)

)]
= 0 , (6.16a)

∂E(φ, φ∗, b, b∗)
∂b∗

=
1
2

tr−
[
U−1

(0,0)U−1
(2,0)

(
R−1

(0,0)B†0R−1 T
(0,0)R

2 T
(0,0)R

−1 T
(0,0)BR−1

(0,0)R
2
(0,0)+

−R−1
(2,2)B†2R−1 T

(2,2)R
2 T
(2,0)R

−1 T
(0,0)BR−1

(0,0)R
2
(2,0)

)]
= 0 , (6.16b)

∂E(φ, φ∗, b, b∗)
∂φ

= tr−

[
1
2

Φ†F0R(0,0)

(
U−1

(0,1) − U−1
(2,0)

)
− Φ†F1R(0,1)U−1

(0,1)

]
= 0 , (6.16c)

∂E(φ, φ∗, b, b∗)
∂φ∗

= tr−

[
1
2

(
U−1

(0,1) − U−1
(2,0)

)
R2

(0,0)F†0Φ− U−1
(2,0)R

2
(2,0)F†2Φ

]
= 0 . (6.16d)

The unique solution of (6.16) is

φ = φ2 , φ∗ = φ∗1 , b = b2 , b∗ = b∗1 . (6.17)

The leading corrections at the saddle point are the gaussian fluctuations around it.
This contributions are complex because the algebra of the two different particles are
non canonical (6.8). In order to evaluate the gaussian corrections, we have to evaluate
the second order derivatives. We do not report the explicit expressions for a matter of
space. We know that

∂2E
∂b∂b

∣∣∣φ=φ2 φ∗=φ∗1
b=b2 b∗=b∗1

=
∂2E

∂b∗∂b∗
∣∣∣φ=φ2 φ∗=φ∗1

b=b2 b∗=b∗1

= 0 . (6.18)

The other second order derivatives are all non vanishing and depend, in a complex way,
on b∗1, b1, φ∗1 and φ2. The quadratic fluctuations around the saddle point give

〈 b1 φ1| P̂m b | b2 φ2〉 '
〈
b1 φ1

∣∣ b2 φ2

〉
g(b1, b2, φ1, φ2) , (6.19)

where g(b1, b2, φ1, φ2) is the determinant of the Hessian of E . Its complicate expression
makes difficult the evaluation of its contribution in equation (6.12). We are evaluating
the contribute coming from the Hessian, we expect that exist the possibility to erase
the possible additional term. At the moment we do have not information about the
idempotency of P̂m b

2This means that in the hypothesis of section 3.2.1, we verify that tr− ln−R−2 Ω and

tr− ln− U(0,0) Ωdq.
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6.3 First form of the effective action

In this section, we deduce the expression of the effective action for the composite fields
φ and b. For the moment, we consider the most general case: we do not introduce
any assumption over the fermion regularization and do not fix the gauge. Under the
assumption that the dominant degrees of freedom are meson and di-quarks type, we can
approximate the partition function (3.24) evaluating the trace over only such states

ZC m c : = TrF
L0−1∏

t=0

[
P̂m bT̂

†
t V̂te

µn̂B T̂t+1

]
(6.20a)

=
∫ [dφ∗dφdb∗db

(2πi)2
]〈

bt φt

∣∣T̂ †t V̂te
µn̂B T̂t+1| bt+1 φt+1

〉
〈
bt φt

∣∣ bt φt

〉 . (6.20b)

To evaluate the action one has to compute the new matrix element in (6.20b). It can
be verified that

〈
γ, δ|ev̂Nt+1û |bt+1 , φt+1

〉
= det−F†N, t+1×

× exp
[
1
2

γ∗F†−1
N, t+1R

−1
t+1B†t+1R

T −1
t+1 F∗−1

N, t+1γ
∗ + γ∗F†−1

N, t+1F†t+1δ
∗
]

,

〈
α , β| eû†Xû+v̂†Y v̂ev̂Nv̂ |bt+1 , φt+1

〉
= det−F†N, t+1×

× exp
[
1
2

α∗eXF†−1
N, t+1R

−1
t+1B†t+1R

T −1
t+1 F∗−1

N, t+1e
XT

α∗ + α∗eXF†−1
N, t+1F†t+1e

Y T
β∗

]
.

We can use this and Eq. (6.9) to obtain the effective action. The expression (6.20b)
becomes

ZC m c =
∫ [dφ∗dφdb∗db

2πi

]
e−SC m b(φ,b) , (6.22)

where

SC m b(φ, b) =
L0−1∑

t=0

tr−
[
lnR−2

t − ln
(
e−Mu,t+1Et+1,te

−M†
t

)
+

1
2

lnU(t,t) −
1
2

lnUN (t+1,t)

]

(6.23a)

=
L0−1∑

t=0

tr−
[
µ− ln

(
e−Mu,t+1e−M†

t

)
+

1
2

lnW(t,t) −
1
2

lnWN (t+1,t)

]
.

(6.23b)

Above, we have defined

UN i,j := 1 + e2µR−1
(i,i)B†i RT −1

(i,i) ET −1
i,j RT −1

(j,j) BjR
−1
(j,j)E

−1
i,j , (6.24a)

WN i,j := 1 + e−2µRT
(i,i)B†−1

i R(j,j)Ei,jR(j,j)B−1
j RT

(j,j)E
T
i,j , (6.24b)

Wi,j := 1 + RT
(i,i)B†−1

i R(i,i)R
−2
(i,j)R(j,j)B−1

j RT
(j,j)R

T −2
(i,j) . (6.24c)
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6.3.1 Saddle point equations

For the moment, we consider the case where the index Ω is large. As explained in section
3.3.1, we can evaluate the partition function (6.22) by saddle point method. Deriving
(6.23a) in Bt and B†t+1 one obtains

0 =
1
2

[
U−1

(t,t)B†t − e2µR−1
t E−1

t+1,tU−1
N (t+1,t)R

−1
t+1B†t+1R

T −1
t+1 ET −1

t+1,tR
T −1
t

]
, (6.25a)

0 =
1
2

[
Bt+1U−1

(t+1,t+1) − e2µRT −1
t+1 ET −1

t+1,tR
T −1
t BtR

−1
t E−1

t+1,tU−1
N (t+1,t)R

−1
t+1

]
. (6.25b)

The other gap equations can be obtained in a more suitable form performing the derivate
of (6.23b) with respect to Ft and F†t+1. The results are, respectively

0 =
e−2µ

2

[ 1
2
F∗t B†−1

t RtEt,t−1Rt−1B−1
t−1R

T
t−1E

T
t,t−1W−1

N (t,t−1)R
T 3
t +

+
1
2

R3
t Et,t−1Rt−1B−1

t−1R
T
t−1E

T
t,t−1W−1

N (t,t−1)R
T
t F†t +

−RtB−1
t−1R

T
t ET

t+1,tW−1
N (t+1,t)R

T
t+1B†−1

t+1 Rt+1∂FtEt+1,t+

+
1
2

R3
tB−1

t RT
t ET

t+1,tW−1
N (t+1,t)R

T
t+1B†−1

t+1 Rt+1Et+1,tF†t +

+
1
2
F∗t ET

t+1,tW−1
N (t+1,t)R

T
t+1B†−1

t+1 Rt+1Et+1,tRtB−1
t R3

t +

− ∂FT
t
ET

t+1,tW−1
N (t+1,t)R

T
t+1B†−1

t+1 Rt+1Et+1,tRtB−1
t Rt

]
, (6.25c)

0 =
e−2µ

2

[ 1
2

RT
t+1B†−1

t+1 Rt+1Et+1,tRtB−1
t RT

t ET
t+1,tW−1

N (t+1,t)FT
t+1+

+
1
2
Ft+1Et+1,tRtB−1

t RT
t ET

t+1,tW−1
N (t+1,t)R

T
t+1B†−1

t+1 R3
t+1+

− ∂F†t+1
RtB−1

t RT
t ET

t+1,tW−1
N (t+1,t)R

T
t+1B†−1

t+1 Rt+1+

+
1
2
Ft+1B−1

t+1R
T
t+1Et+2,t+1W−1

N (t+2,t+1)R
T
t+2B†−1

t+2 Rt+2Et+2,t+1R
3
t+1+

+
1
2

RT 3
t Et+2,t+1W−1

N (t+2,t+1)Rt+2B†−1
t+2 Rt+2Et+2,t+1R

−1
t+1FT

t+1+

−W−1
N (t+1,t)R

T
t+1B†−1

t+1 Rt+1Et+1,tRtB−1
t RT

t ∂FT
t
ET

t+1,t

]
. (6.25d)

In the axial gauge, the hermitian conjugate of the equations (6.25a) is equivalent to
(6.25b), if one performs the exchange of t with t + 1. Multiplying (6.25a) by Bt on the
left and (6.25b) by B†t+1 gives

B†tBt =e2µR−1
t E−1

t+1,tR
−1
t+1B†t+1R

T −1
t+1 ET −1

t+1,tR
T −1
t Bt , (6.26a)

B†t+1Bt+1 =e2µB†t+1R
T −1
t+1 ET −1

t+1,tR
T −1
t BtR

−1
t E−1

t+1,tR
−1
t+1 . (6.26b)

Equations (6.25c) and (6.25d) can be recast into a more useful form if one notice that,
for example, the first term in trace in Eq. (6.25c) is the transpose of the second, the
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sixth is the transpose of the third and so on. These terms can be summed together and,
after some algebra, the result is

0 =
1
2

[
R2

tF†t +
(
R2

tF†t
)T

− E−1
t+1,t∂FtEt+1,t −

(
E−1

t+1,t∂FtEt+1,t

)T

−R2
t

(
1 + e−2µRtEt,t−1Rt−1B−1

t−1R
T
t−1E

T
t,t−1R

T
t B†−1

t

)−1
F†t +

−R2
t

(
1 + e−2µB−1

t RT
t ET

t+1,tR
T
t+1B†−1

t+1 Rt+1Et+1,tRt

)−1
F†t +

+ 2
(
1 + e−2µRtB−1

t RT
t ET

t+1,tR
T
t+1B†−1

t+1 Rt+1Et+1,t

)−1
E−1

t+1,t∂FtEt+1,t

]
,

(6.27a)

0 =
1
2

[
Ft+1R

2
t+1 +

(Ft+1R
2
t+1

)T − (∂Ft+1Et+1,t)E−1
t+1,t −

(
(∂Ft+1Et+1,t)E−1

t+1,t

)T

−Ft+1

(
1 + e−2µEt+1,tRtB−1

t RT
t ET

t+1,tR
T
t+1B†−1

t+1 Rt+1

)−1
R2

t+1+

−Ft+1

(
1 + e−2µB−1

t+1R
T
t+1E

T
t+2,t+1R

T
t+2B†−1

t+2 Rt+2Et+2,t+1Rt+1

)−1
R2

t+1+

+ 2∂F†t+1
E−1

t+1,t

(
1 + e−2µEt+1,tRtB−1

t RT
t ET

t+1,tE
T
t+1B† −1

t+1 Et+1Rt+1

)−1 ]
.

(6.27b)

By use of the formula (6.26), it is possible to recast the matrix appearing in the denom-
inator of the last three terms of (6.27a) and (6.27b) in the following way

1 + e−2µRtEt,t−1Rt−1B−1
t−1R

T
t−1E

T
t,t−1R

T
t B†−1

t = 1 +
(
B†tBt

)−1
,

1 + e−2µB−1
t RT

t ET
t+1,tR

T
t+1B†−1

t+1 Rt+1Et+1,tRt = 1 +
(
B†tBt

)−1
,

1 + e−2µRtB−1
t RT

t ET
t+1,tR

T
t+1B†−1

t+1 Rt+1Et+1,t = Rt

[
1 +

(
B†tBt

)−1
]

R−1
t ,

1 + e−2µEt+1,tRtB−1
t RT

t ET
t+1,tR

T
t+1B†−1

t+1 Rt+1 = R−1
t+1

[
1 +

(
B†t+1Bt+1

)−1
]

Rt+1 ,

1 + e−2µB−1
t+1R

T
t+1E

T
t+2,t+1R

T
t+2B†−1

t+2 Rt+2Et+2,t+1Rt+1 = 1 +
(
B†t+1Bt+1

)−1
,

1 + e−2µEt+1,tRtB−1
t RT

t ET
t+1,tE

T
t+1B† −1

t+1 Et+1Rt+1 = R−1
t+1

[
1 +

(
B†t+1Bt+1

)−1
]

Rt+1 ,

and to simplify the equations (6.27)

0 = R2
tF†t −E−1

t+1,t∂FtEt+1,t−

−R2
t

[
1 +

(
B†tBt

)−1
]−1

F†t + Rt

[
1 +

(
B†tBt

)−1
]

R−1
t E−1

t+1,t∂FtEt+1,t (6.29a)

0 = Ft+1R
2
t+1 − (∂Ft+1Et+1,t)E−1

t+1,t

−Ft+1R
−1
t+1

[
1 +

(
B†t+1Bt+1

)−1
]−1

Rt+1R
2
t+1 −Ft+1

[
1 +

(
B†t+1Bt+1

)−1
]−1

R2
t+1+

+ 2∂F†t+1
E−1

t+1,tR
−1
t+1

[
1 +

(
B†t+1Bt+1

)−1
]−1

Rt+1 . (6.29b)
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To obtain the saddle point equations it is necessary to solve the equation (6.29). If we
consider the following condition

[
F†tFt,B†tBt

]
= 0 , (6.30)

the equation (6.29) gives

0 =
1

1 + B†tBt

[
R2

tF†t −E−1
t+1,t∂FtEt+1,t

]
, (6.31a)

0 =
[
Ft+1R

2
t+1 − (∂Ft+1Et+1,t)E−1

t+1,t

] 1

1 + B†t+1Bt+1

. (6.31b)

Notice that these expressions are independent of the structure function of the diquark ,
The equations (6.31) and (6.26) are iterative equations for the structure function of
the compisites, they can be solved by numerical method. The equations (6.31) are
equivalent to Eqs. (3.34). In the stationary cases, it is known the analytical solution
FΓ, see section 3.3.1, which expression is given in (3.42). Substituting a solution of the
saddle point equations (3.42) in (6.26), the gap equations for B, in the time independent
case, become

B† =e2µ
(
H +

√
1 + H2

)2Γ̃
B†

(
H +

√
1 + H2

)2Γ̃
, (6.32a)

B =e2µ
(
H +

√
1 + H2

)2Γ̃
B

(
H +

√
1 + H2

)2Γ̃
. (6.32b)

The derivation of the equations is performed with the natural condition that Γ, de-
scribed in section 3.3.1, commutes with H2. It is a very important to observe that in
the equation for F does not appear B, while the equations for B depend on F . The
saddle point equations admit always the solution B = 0; it is the only solution for µ = 0.
Nowadays, we do not know other solutions different from the null one, but we are pro-
ceeding the investigation in this direction. Our belief is that the equations (6.32) admit
some non trivial solution B̄Γ, for some choice of Γ; pointedly the solutions will depend
on Γ. The physical solution, corresponding to a minimum of the action SC m b(φ, b), is a
function of µ. We expect, for values of the chemical potential smaller than some critical
value µc, that the physical solutions will be B̄ = 0 and F̄ given in (3.44)3. Instead, for
values of the chemical potential greater than µc, we expect that the physical solution
not to be a null value of B̄; probably the solution for F̄ is different from (3.44). Indeed,
the gap equations (6.31) are B independent, but the condition of minimization of the
action depends on the value of B̄.

6.4 Second form of the effective action

In section 3.4, we derived an alternative form of the partition function performing a
unitary transformation (3.45) in the operator space. In this section we deduce, by a

3For B = 0, we obtain, as expected, SC(φ∗, φ) = SC m c(φ, 0).
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different method, a similar result. Considering the cyclicity of the trace, the operatorial
form of the partition function (3.24) is equivalent to

Z ′C : = TrF
[
V̂0e

µn̂B T̂1T
†
1 V̂1e

µn̂B T̂2T̂
†
2 · · ·T †L0−1V̂L0−1e

µn̂B T̂0T̂
†
0

]
. (6.33)

Instead, if P̂m b is a projector, (6.20b) must be equivalent to

Z ′C m c := TrF
[
P̂m bV̂0e

µn̂B T̂1T
†
1 P̂m bV̂1e

µn̂B T̂2T̂
†
2 P̂m b · · ·

· · · P̂m bV̂L0−1e
µn̂B T̂L0−1T

†
L0−1P̂m bV̂L0−1e

µn̂B T̂0T̂
†
0

]
. (6.34)

Notice that ZC m c and Z ′C m c do not necessary coincide, because P̂m b is only an approx-
imation of a projector. Indeed, at the moment we do not know whether the contribution
coming from g(b1, b2, φ1, φ2) in P̂m b can create some additional terms that can make
the two expressions to differ. In order to evaluate SC m b(φ, b)′ obtained from (6.34), it
is necessary to know the matrix element

〈bt, φt|V̂te
µn̂B T̂t+1T̂

†
t+1|bt+1 , φt+1〉 = det E′

t+1,t det −
(
U ′N, (t+1,t)

) 1
2 (6.35)

= det 1/2
(
e2µ∆†

t+1, t+1

)1/2
× (6.36)

× det −
[
∆u, t+1, t + E′

t+1,te
−2µ∆†−1

t+1, t+1E
′T
t+1,t

]1/2
,

where we have defined

E′
t+1,t := 1 +

[
N †

t+1 + e−M†
t+1Ft+1e

−M†
t+1

] [
N †

t+1 + e−M†
w, t+1Fte

−M†
u, t+1

]

∆u, t+1, t := e−Mu, t+1R−1
t BtR

T −1
t e−MT

u, t+1

∆†
t+1, t+1 := e−M∗

t+1R−1
t+1B†t+1R

†−1
T t+1e

−M†
t+1

U ′N, (t+1,t) := 1 + e2µ∆†
t+1, t+1E

′T −1
t+1,t∆u, t+1, tE

′−1
t+1,t .

One of the most important difference between this method of derivation of the second
form of the effective action and the previous one is that, in the expression (6.35), the
matrices N , M and their adjoints are all evaluated at the same time slice, while, by use
of the other method, they are evaluated at different times. In presence of diquark , we
must use this technique because we have not an analogue expression of (3.47).

The bosonized functional form of the partition function (6.34) is as in (6.22), but
with the second form of the action

SC m b(φ, b)′ :=
L0−1∑

t=0

tr−

[
ln R−2

t +
1
2

lnUt,t − tr− lnE′
t+1,t − 1

2
lnW ′

t+1,t

]
. (6.37)

6.4.1 Pure diquarks action

In Chapter 3, we have considered the case where the ground state of a system is a
composite bosons with the total charge zero (3.1). Now we consider the case where
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the ground state is a composite boson with fermion number two. The action of pure
diquarks can be obtain from the action of mesons and diquarks, with the additional
condition for the structure function of the neutral bosons

Φ = 0 .

We consider M = 0 and U0 = Id. Substituting (6.38a) in the action, one obtains

SC m b(φ, b)
∣∣∣
Φ=0

=
L0−1∑

t=0

tr−
[1
2

ln
(
1 + B†tBt

)
− 1

2
ln

(
1 + e2µB†t+1Bt

) ]
(6.38a)

SC m b(φ, b)′
∣∣∣
Φ=0

=
L0−1∑

t=0

tr−
[1
2

ln
(
1 + B†t+1Bt+1

)
− ln

(
1 + N †

t+1Nt+1

)
+ (6.38b)

− 1
2

ln

(
1 + B†t+1

1

(1 + N †
t+1Nt+1)T

Bt
e2µ

1 + N †
t+1Nt+1

)]
.

The two forms of the actions have a deep difference. In fact, in the first form of the
action there is no the dynamical contribution coming from N . This is no surprise, in
fact, we know that4

ev̂Nû|b〉 = |b〉 .
As a matter of fact, the Dirac equation couples the particles part to the anti-particles one
of the fields. Then, the evolution of the field requires both particles and anti-particles.
In the first form we consider only a subspace of the particles space, this precludes the
evolution of particles.

We are still working on the subject, in order to introduce, in addition to the mesons
and diquark , also fermionic states. We have indeed already derived the effective actions,
but we have not solved yet the condition of mutually orthogonality between the states
of composite bosons and fermions. Once we are able to solve this problem, we will have
a virtually complete extension of this method at finite temperature.

4|b〉 := |b, φ = 0〉 .



Chapter 7

Conclusions and outlooks

In this thesis work, we extended a general method of bosonization, for relativistic field
theories of fermions in 3 + 1 dimension, to non zero values of the chemical potential
and temperature. The formalism obtained can be applied to theories whose low energy
excitations are dominated by bosonic models; this is always the case for the spontaneous
breaking of continuous symmetries. We adopted the formalism of the transfer matrix
because it is closed to the Hamiltonian one of non relativistic theories, and therefore
very natural while dealing with real and virtual bound states. We chose a lattice regular-
ization, because the main aim is the study of gauge theories and because, on a lattice,
composite operators can be defined without any ambiguity. Moreover, the approach
developed allows for the application of a variational method.

In order to extend the method, we introduced quasifermions and quasiantifermions
states by a generalized Bogoliubov-Valatin’s transformations on the doublet operator.
This transformation does not break the gauge invariance. By use of coherent states,
associated to the quasiparticles, we transformed, without any approximation, the (gran
canonical) partition function, written as the trace of transfer matrix, in a functional
expression with an effective action. In the latter appears a term coming from the trans-
formation, a term bi-linear in the quasiparticles fields and a term of interaction between
the quasifermions and the quasiantifermions. We have determined the generator of the
transfer matrix, whose parameters appear in the effective actions. We have been able to
prove that, if the external boson fields are time independent, the action coincides with
the exact one and it is independent of the choice of the parameter in the transforma-
tion. We have found a result analogous tho BCS model [26]. Indeed, the choice of the
parameter for which the interacting term from the quasiparticles and antiquasiparticles
is null (”compensation of dangerous graph”) coincides with a choice of the parameters
for which the new ground state is the state that minimize the actions. This result has
a particular relevance because the quasiquarks do no interact with the quasiantiquarks.
We find an analogy between the Bogoliubov-Valatin’s transformations and the Foldy-
Wouthuysen’s. In the case of interaction with time dependent external bosons field, the

57
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diagonalization of the action, for each time slices, requires to perform a transformation
at each time slice. The parameter of the transformation become functions of time, then
we can interpret it as a field associate to the mesons. In the sequel, performing a differ-
ent unitary transform (related to time reversal) we derived an alternative expression of
the action. The second form of the action is more suitable to perform calculations. We
tested this method with a four fermion fields interaction in the limit Nf →∞. All the
main characteristics of the model are reproduced in both the boson and fermion sector.
Moreover, we determined the structure function of the mesons.

In the sequel we introduced, in addition to mesons, composite bosons with fermion
number 2, the diquark . This permits to study QFT at high chemical potential. We
imposed mutually orthogonality between mesons and diquark . We introduced the pro-
jector over the sub-space of meson and diquark . However, we have not been able to
perform a completely satisfying study of this object. Then, we derived the effective ac-
tions. By variational method we determined the saddle point equations, but we have not
found yet any relevant solution. Anyway, we suppose that the saddle point equations
should have an interesting physical outcome. In a future work we intend to complete
the study of the action for mesons and diquark and to introduce, in addition to mesons
and diquark , fermion states. These fermions can either be elementary particles or cubic
in the fermion operator. However, the last opportunity has to be discarded in order to
have a simple theory from a computational point of view. This permits to introduce in
the formalism the baryons, that can be viewed as a diquark plus a fermion. The fermion
and boson states must be mutually orthogonal. This leads to an alternative expression
of the partition function where the composite and elementary degrees of freedom are
treated on the same footing.

The effective actions, the one for the mesons and quasiparticles and the one for
mesons and diquark , can be further on analyzed, in the absence of gauge fields, and
an expansion of the theory in 1/Nf can be performed. The expansion in the number
of flavours should be carried through on the line of [9], analyzing also the more subtle
aspects of the expansion itself [33].

The effective action we found, can be useful in the study of gauge theories, or, more
in general, of systems of fermions that interact with bosons field. In particular, it could
play a meaningful role in the study of the limit of strong coupling and in the analysis of
the exotic states of hadronic matter. In this case, the effective bosons carry the quantum
number of the chiral bosons and the chiral symmetry is broken by a condensation of
sigma mesons. The variational parameters of the expectation value of the σ-mesons
should help in numerical simulation [24]. The determination of the structure function
of the composite depends on the configuration of the elementary bosons, since M and
N depend on them. The determination of such structure function can be done by
numerical methods.
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We reckon, moreover, that the method developed in the thesis project could be ap-
plied, with interesting results, to the study of the phase diagram of QCD. In particular,
the determination of the fundamental state can be made through variational methods.
The solution of the saddles point equation, that has already been solved in the static
case, can be found through iterative procedures in the case of theories with interactions
with external boson fields. We think it is going to be possible to determine the structure
function of the condensate, at least through numerical ways and under opportune ap-
proximations, that at the same time is a minimum of the action and that diagonalized
the action in the quasiparticles fields. This is going to be function of the gauge fields.
Introducing vacuum states excitations, we obtained a different expression of the QCD
partition function. At the moment, we do not know any approximation that would
allow to carry on an analytic study of the partition function; however, we have reasons
to believe that is going to be possible to proceed in this sense.

The formalism we have developed and studied is certainly a good starting point for
numerical simulations. In fact, under the physical hypothesis that all the degrees of
freedom are of boson type, i.e. that all the fermions are bosonized, we already obtained
an expression of the partition function in terms of only holomorphic variables. The ob-
tained effective theory presents, at least in principle and considering also non bosonized
fermions, computational simplifications. It would be of great interest, therefore, to
perform numerical simulations for high values of the chemical potential.





Appendix A

Notations and conventions

In this section, we report some useful identities and conventions about Berenzin Integral
and coherent states. These are standard arguments; an introduction about the Grass-
mann algebra can be found in [14] and a discussion about coherent states formalism can
be found in [15]. For the thesis purposes are fundamental the relations that follow.

If θ and θ̄ are two Grassmann algebra it is well known that
∫

Dθ̄Dθe−θ̄Aθ+J̄θ+θ̄J = det (A)eJ̄A−1J ,

∫
Dθe−

1
2

θCθ+J̄θ = Pf(A)e
1
2

JA−1J (A.1)

and (Pf(A))2 = det (A). Under a general change of base in the integral θ = θ(θ′), for
which det ∂θi

∂θ′j
6= 0, the measure of integration changes as Dθ 7→ det −1 ∂θi

∂θ′j
Dθ′.

The coherent states in presence of particles and antiparticles are

|γ, δ〉 := e−αû†−δv̂† |0〉 . (A.2)

The inner product of this states is 〈γ, δ|ρ, σ〉 = eγ∗ρ+δ∗σ. The identity in the Fock space
of fermions can be written as

Id =
∫

D[ω∗]D[ω]D[ϕ∗]D[ϕ]
|ω, ϕ〉〈ω, ϕ|
〈ω, ϕ|ω, ϕ〉 . (A.3)

In the base of coherent states, the matrix element of the transfer matrix can be easily
calculated, for example

〈ω, ϕ|ev̂Nû|ρ, σ〉 = eρNσ+ω∗ρ+ϕ∗δ (A.4)

〈ωϕ|αβ; ξ〉 = eω∗Fϕ∗−aω∗−bϕ∗−βFα|0〉 . (A.5)

Since in the transfer matrix T̂ is a product of the exponential of the operator propor-
tional to v̂û, or to û†û, or to v̂†v̂, or to their adjoints, evaluating its matrix elements
in coherent states base is easy. This operation can be done introducing, between each
exponent in T̂ , the identity written as in A.3

〈αtβt; φt|T̂ †t V̂te
µB̂T̂t+1|αt+1βt+1; φt+1〉 = 〈αtβt; φt|T̂ †t IdV̂te

µB̂T̂t+1|αt+1βt+1; φt+1〉 .
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In the next step we need to evaluate two matrix elements; one is

〈ω, ϕ|V̂te
µB̂T̂t+1|αt+1βt+1; φt+1〉 = 〈ω, ϕ|V̂te

µB̂e−û†Mt+1û−v̂†MT
t+1v̂Idev̂Nt+1û|αt+1βt+1;φt+1〉 .

Then we can repeat the procedure since all the operators leave the way to the Grassmann
variables. In the end, it is necessary to evaluate all the integrals over the Grassmann
variables. These integrals are all Gaussian. This procedure permits to obtain the
functional form of the partition function. Notice that this procedure can be used in
presence of the exponential of an operator proportional to ûû. To evaluate the different
matrix elements we report the following identity [16]

〈ω, ϕ|e−û†Aû−v̂†Bv̂|ρ, σ〉 = exp
(
ω∗e−Aρ + ϕ∗e−Bσ

)
. (A.6)

Next we quote some identities, obtained following the former procedure

〈ωϕ|ewNtu|αβ; φ〉 = det+

◦
FN, t e

(
−βFα+b

◦
FNNa+ω∗FNa−b

◦
FNϕ∗+ω∗FNF†ϕ∗

)
(A.7)

and

〈ωϕ|V̂te
µn̂B T̂t+1|αβ;φ〉 =det+FN×

× exp
[
− βFα + b

◦
FN Na + ω∗e−MuFNF†e−Mwϕ∗+

+ ω∗eµe−MuFNa− b e−µB
(+)
N e−Mw,t+1ϕ∗

]
.



Appendix B

The matrices M , N of the

transfer matrix

In this appendix, we quote the explicit forms of the M and N matrices, for Wilson and
Kogut-Susskind regularization, appearing into the definition of the T̂ in (1.12) and also
into the definition of the operator in T̂ . The general form of T̂ is given in (1.12), the
matrices M and N depend only on the configuration of the gauge field of the spatial link
for both the regularizations. Therefore M and N are time dependent: Mt = M [Ui(t)]
and Nt = N [Ui(t)]; where i = 1 · · · 3. The time link gauge variables U0 are present only
in V̂t

1.
Notice that the entries of the matrix M , N , F and B and of their functions, where the

last two are the structure functions of mesons and diquark , are the quantum numbers
of fermion. The time index t must be interpreted as an independent variable and the
matrices are functions of it.

B.1 Kogut-Susskind regularization

The Kogut-Susskind fermion lives on a hypercube lattice whose sides are twice the basic
lattice spacing. The sum over basic lattice or block lattice must be distinct. We use the
conventions

′∑
x

:= 2d
∑

x even

, tµ := γT
µ . (B.2)

Here d is the space-time dimension and x even means that it is necessary to take into
consideration only even sites. The field ψ = ψx,I has the index x of space-time and an

1The gamma matrix in Euclidean space must satisfies {γµ, γν} = δµ,ν so they are selfadjoint

γ0 = ( I 0
0 I ) , γi =

(
0 iσi

−iσi 0

)
, γ5 =

(
0 −I
−I 0

)
. (B.1)
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intrinsic quantum number index I. For this choice of regularization, I = (α, t, j), where
the indices are, respectively, Dirac index, taste index and flavour index; α, t = 1 · 4 and
j = 1 ·Nf . As usually

ψ̄γµ ⊗ tνψ :=
∑

α ,β ,t ,s ,j ,l

ψx α ,t ,jγ
α,β
µ tt,sν δj,lψx β ,s ,l .

In this formalism [17] the operators û and v̂ and their conjugates have index i := (x, I),
where x is the space index. It is possible to check that the projectors P

(±)
0 that select

the fermionic or antiferionic part of the field ψ are those defined in Eq. (1.6a). The M

and N matrices, in presence of a Yukawa interaction with a field σ, are M = 0 and

N = −2

{
(m + σ)γ0 ⊗ I +

3∑

n=1

γ0γn ⊗ I
[
∇(−)

n P(+)
n −∇(+)

n P(−)
n

]}
. (B.3)

For a definition of the object in Eq. (B.3), see Eqs. (1.6). It is clear that ∇(±)
µ x,y are,

respectively, lattice covariant forward and back forward derivate. For convenience we
define

Q =
∑

µ

γµ ⊗ I
(
∇(−)

µ P(+)
µ −∇(+)

µ P(−)
µ

)
. (B.4)

A very important objet is

H2 :=
1
4
N †N = (m + σ)2 −4 , (B.5)

with 4 =
∑3

n=1
1
4

[
∇(+)

n +∇(−)
n − 2

]
. In absence of the gauge field, H2 can be diago-

nalized in the momentum space and its eigenvalue is

E2
q := (m + σ)2 − q̃2 . (B.6)

Above q̃2 =
∑3

n=1q̃
2
n and q̃2

n = 1
2 (1− cos 2qn). As explained, the Kogut-Susskind field

lives on the lattice of eves sites so the Brillouin zone is 0 ≤ pµ < π; this guarantees that
there is no doubling; indeed the action SKS possesses only first order derivatives. The
factor 2 in the definition of q̃2

n comes from the double size of the lattice.

B.2 Wilson regularization

A derivation of the transfer matrix for this regularization can be found in [16], here
we report only the results. The fermion fields ψx,I have only the dirac index as inner
quantum number and x is a position index that can label any site of the lattice. The
projector operators are

P(±)
0 :=

1
2

(1± γ0) , (B.7)

and the matrices M and N are

M = −1
2

ln
(

B

2K

)
N = 2KB− 1

2 cB− 1
2 . (B.8)
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We have defined

B = 1− k
3∑

j=1

(
UjT

(+)
j + T(−)

j U †
j

)
γj , c =

1
2

3∑

j=1

i
(
UjT

(+)
j − T(−)

j U †
j

)
σj . (B.9)

B.3 Boson and fermionmatrices

From the definitions of ψ̂ and P(±)
0 , Eqs. (1.17) and (1.18), it is possible to rewrite

(1.12) and (3.1) as

T̂ = exp
(
−ψ̂†Mψ̂

)
exp

(
ψ̂†P(+)

0 NP(−)
0 ψ̂

)
, Φ̂† = ψ̂†P(−)

0 ΦP(+)
0 ψ̂ , (B.10)

where we omit all the indices and define M =
(

M 0
0 −M

)
. It is quite natural to extend

the definitions of the (n × n)2 matrices M , N and Φ as matrices in the space of the
doublet ψ̂. In this space, they become square (2n × 2n) matrices of the form

M :=
(

M 0
0 0

)
N :=

(
0 0
N 0

)
Φ̂ :=

(
0 0
Φ̂ 0

)
. (B.11)

As we have only the M , N and Φ matrices, we study the possibilities of their sums and
products. In this space there exist two type of matrices. One type is called boson matrix
and they are the X such that X2 6= 0, of the form

(
A 0
0 0

)
=: b(−), like M or

(
0 0
0 B

)
=:

b(+), called respectively boson∓. The other type is said fermion type and they are such
that X2 = 0 of the form

(
0 0
B 0

)
= f (−), as N and Φ, or

(
0 A
0 0

)
= f (+), as N † and Φ†;

called respectively fermion∓. We make this distinction because, if we multiply on the
right a fermion± or boson± matrix by P(∓)

0 , we obtain the null matrix (f (±)P(∓)
0 =

b(±)P(∓)
0 = 0). Notice that the Hermitian adjoint of a fermion∓ matrix is a fermion±

and that the product of fermion∓ with fermion± matrix on the right is a boson±

matrix. The boson matrices are different: the Hermitian adjoint of a boson∓ matrix
is a boson∓ and the products are b(∓)b(±)

1 = 0 and b(∓)b(∓)
1 = b(∓)

2 ; the sum of any
two elements of boson∓ is a boson∓ matrix. Then boson∓ define two rings. Since
the multiplication in fermion∓ is not defined, this set does not have an interesting
algebraic structure. Only functions of bosonmatrices can be defined. The determinant
of boson and fermion matrices is always null. To reproduce the right behavior for the
boson± matrices, we must compute the determinant only over the entries of the sub-
space related P(±)

0

det ±A = det (P(±)
0 A) . (B.12)

The trace is defined as

tr±A = ln det (P(±)
0 eO) , (B.13)

2n is the number of the different states of fermions.



66 The matrices M , N of the transfer matrix

for any boson± matrix O . The determinant of fermion matrices is always zero.
Leaving out the matrix M , the products F†F , F†N , N †N and their Hermitian

adjoints are the same generators of the boson−. From these matrices, can be derived
some of the generators of the algebra boson + performing the ◦ transformation, defined
as follows

◦ : boson± 7→ boson∓ ,
◦

(f (±)f (∓)):= f (∓)f (±) . (B.14)

Clearly, ◦2 = Id. This transformation can be extended over all the rings; the transfor-
mation of a product is defined as

◦
(

∑

j=0···J
f (±)
j f (∓)

j ):=
∑

j=0···J

◦
(f (±)

j f (∓)
j ) ,

◦
(

∏

j=0···J
f (±)
j f (∓)

j ):= (
∏

j=0···J

◦
f (±)
j f (∓)

j ) . (B.15)

For the moment we have considered the action of ◦ only over elements of boson±

matrices that can be decomposed as sums and/or products of elements of the form
f (∓)
j f (±)

j . In the order to extend the definition of the ◦ transformation to the whole ring,
it is necessary to introduce a role that gives the transformation of the boson± that can
be not decomposed as explain before. In our case, it can be read from the expression
of T̂ in Eq. (1.12) and of V̂ T̂ in Eq. (1.14). Indeed, for each matrix in boson±, there
exists the corresponding boson∓; more explicitly

µ
◦7→ −µ Mt

◦7→ Mt , Mu,t+1
◦7→ Mv,t+1 . (B.16)

Notice that, for Eq. (A), the boson± matrix appears at the exponent. Now we have
extended the transformation ◦ over the entire ring boson±. It is easy to check that

◦
(eMu + f (±)f (∓))=

◦
(eMu) +

◦
(f (±)f (∓)) ,

◦
(eMuf (±)f (∓))=

◦
(f (±)f (∓))

◦
(eMu) . (B.17)

The determinant and the trace of the matrix, as (
∏J

j=0f
(±)
j f (∓)

j ), 1 + (
∏J

j=0f
(±)
j f (∓)

j ), E

are ◦ invariant. It is convenient to introduce the convention

◦
T (±):= T (∓) . (B.18)

Notice that
◦
I

(2,1)

t (
◦
I

, (2,1)

t ) and
◦
I

(1,2)

t (
◦
I

, (1,2)

t ) are different .
We have found a solution of the saddle point equations of the form F = NA where

A = A[N †N ]; at the same time, we can try to find a solution of the form F = NA with
A = A[NN †].



Appendix C

Bogoliubov’s transform

parameters

We have got to determinate the parameters in (4.11) to obtain (4.12). The procedure of
the determination of the parameters of X is quite similar to the procedure performed in
BCS theory [26]. The main difference is that in this case we need to perform a rotation
in the space of operator particles, while this is not necessary the case in BCS theory.

For convenience, in this section we do not use Einstein notation. Ŝ can be written
in the form

Ŝ =
∑

i

û†i Λ̂
†
i − Λ̂iûi =

∑

i

σi , Λ̂i := v̂ ·X , σi := (û†i Λ̂
†
i − Λ̂iûi) . (C.1)

Evidently,
{

ûj , Λ̃i

}
. One observes that

[
σi, σj

]
= −û†i

(
X† ·X

)
i,j

ûj + û†j
(
X† ·X

)
i,j

ûi . (C.2)

It is possible to perform a change of base in the space of particles: û 7→ (Oû) =: ũk to
render X†X a diagonal matrix OX†XO−1 = δk,k′X̃

†
kX̃k. For convention, each object

expressed in this base has a tilde on the top. The commutator in (C.3) vanishes in this
base, therefore

eŜ =
∏

i

e σ̃k . (C.3)

Notice that

σ̃2
k = −Λ̃†kΛ̃kũ

†
kũk − Λ̃kΛ̃

†
kũkũ

†
k , σ̃2n

k = (−1)n
(
Λ̃†kΛ̃k

)n
ũ†kũk +

(
Λ̃kΛ̃

†
k

)n
ũkũ

†
k . (C.4)

The previous relations reveal an analogy between σ2 and a projector, they only differ
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for a multiplicative factor. From (C.5), it follows that

e−i σ̃k =
∑

n

(−)n

(2n)!

[
1 +

σ̃k

2n + 1

] [(
Λ̃†kΛ̃k

)n
ũ†kũk +

(
Λ̃kΛ̃

†
k

)n
ũkũ

†
k

]
, (C.5a)

e−i σ̃k |0〉 =
∑

n

(−)n

(2n)!

[
1 +

σ̃k

2n + 1

](
Λ̃kΛ̃

†
k

)n
ũkũ

†
k|0〉 . (C.5b)

In this base, the computation of (C.5b) is easy, since Λ̃kΛ̃
†
k|0〉 = X̃†

kX̃k|0〉, and one
obtains

e−i σ̃k |0〉 =
∑

n

(−)n

(2n)!

(
X̃†

kX̃k

) 2n
2 +

(−)n

(2n + 1)!

(
X̃†

kX̃k

) 2n+1
2

X̃
− 1

2
k X̃

†− 1
2

k |0〉 (C.6a)

= cos
√

X̃†
kX̃k

(
1 + tg

√
X̃†

kX̃k X̃
− 1

2
k X̃

†− 1
2

k ũ†kΛ̃k

)
|0〉 (C.6b)

= cos
√

X̃†
kX̃ke

tg
√

X̃†
kX̃k X̃

− 1
2

k X̃
†− 1

2
k ũ†kΛ̃k |0〉 . (C.6c)

Substituting into (C.3) gives

∏

k

eσ̃k |0〉 =
∏

k

cos
√

X̃†
kX̃ke

∑
k tg

√
X̃†

kX̃k X̃
− 1

2
k X̃

†− 1
2

k ũ†kΛ̃k |0〉 , (C.7)

and returning to the old base

eŜ |0〉 = det − cos
√

X†X , etr−(tg
√

X†X X− 1
2 X†− 1

2 )û†Λ† |0〉 . (C.8)

The action of the operator eiΘ̂ is well known; the result is

Û |0〉 =
(
det − cos

√
X†X

)
exp

[
tr−

(
tg
√

X†X X− 1
2 X†− 1

2

)
û†eiΘûX†eiΘv̂ v̂†

]|0〉 .
(C.9)

This equation is equivalent to (4.12) if the parameters Θv̂, Θû and X in Û satisfy to

det − cos
√

X†X = det −
1√

1 + F†F , (C.10a)

eiΘûX†eiΘv̂ = F† . (C.10b)

If Eq. (C.10a) holds, a stronger form of Eq. (C.10b) is satisfied

cos
√

X†X =
1√

1 + F†F . (C.11)

Now we evaluate the action of Û over the doublet ψ̂. In order to perform this compu-
tation, we make use of the following identity

eABe−A =
∞∑

n=0

1
n!

[A, [A, · · · [A, B] · · · ]] . (C.12)
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First, we need to evaluate the action of eŜ . In this case, the first and second terms in
(C.12) are

[
Ŝ, û

]
= −X†v̂† ,

[
Ŝ, v̂†

]
= Xû , (C.13)

[
Ŝ,

[
Ŝ, û

]]
= −X†Xû

[
Ŝ,

[
Ŝ, v̂†

]]
= −XX†v̂† (C.14)

The particular expressions of this commutators permit to apply a recursive process; the
result is

eŜ ûe−Ŝ =
∞∑

n=0

(−X†X)n

(2n)!

[
û− 1

2n + 1
X†v̂

]

= cos
(√

X†X
) [

û− tg
(√

X†X
)

X−1/2X† 1/2v̂†
]

, (C.15)

eS v̂†e−S =
∞∑

n=0

(−XX†)n

(2n)!

[
v̂† +

1
2n + 1

Xû

]

= cos
(√

XX†
) [

v̂† + tg
(√

XX†
)

X†−1/2X1/2û
]

. (C.16)

The rotation in the particles operator space gives

eiΘ̂eŜ ûe−ŜeiΘ̂ = cos
(√

X†X
)

e−iΘû

[
û− e+iΘûtg

(√
X†X

)
X−1/2X† 1/2e+iΘv̂ v̂†

]

(C.17)

eiΘ̂eS v̂†e−Se−iΘ̂ = cos
(√

XX†
)

e+iΘv̂

[
v̂† + e−iΘv̂tg

(√
XX†

)
X†−1/2X1/2e−iΘû û

]
.

(C.18)

In the cases where we can solve the equations (C.10) and (C.11), then the doublet
operator ψ̂ transforms under Û in the following way

Û ψ̂Û −1 =




exp(−iΘû)√
1+F†F

[
û−F†v̂†]

exp(+iΘû)√
1+FF†

[
v̂† + F û

]

 . (C.19)
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