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Introduzione

Lo studio teorico e la realizzazione pratica di simulazioni numeriche è un ingrediente spesso

fondamentale per lo sviluppo di nuove teorie nella fisica contemporanea. Per questo motivo, in

questo lavoro di tesi, abbiamo scelto di affrontare l’analisi di algoritmi di simulazione piuttosto

recenti, e la loro applicazione a modelli teorici nell’ambito della meccanica statistica.

Una vasta area della teoria delle probabilità riguarda lo studio delle catene di Markov, ovvero

una certa classe di processi stocastici caratterizzati da assenza di memoria. Queste sono la teoria

matematica alla base dell’implementazione al calcolatore di algoritmi che usano generatori di

numeri random. In particolare i metodi di Monte Carlo, basati sulle catene di Markov, sono

uno degli strumenti più usati nelle simulazioni in molti campi delle scienze moderne. Estensioni

e miglioramenti di questi metodi (in breve MCMC → Markov Chain Monte Carlo) sono molto

studiati e il nostro lavoro parte proprio dallo studio di un nuovo algoritmo ideato da James

Propp e David Wilson [1] chiamato Coupling From The Past (in breve CFTP).

L’algoritmo CFTP permette un campionamento dello spazio degli stati della catena di Markov

che segue esattamente la distribuzione di probabilità desiderata, diversamente dal MCMC che

la approssima (seppure con buona precisione). In questo caso si parla allora di campionamento

esatto contro campionamento approssimato. È questo il contenuto trattato nel primo capitolo.

Tra i sistemi fisici a cui è possibile applicare in maniera particolarmente efficace il CFTP ce

ne sono alcuni di interesse per la meccanica statistica, come il modello di Ising o il modello di

Potts, in cui la distribuzione di probabilità sullo spazio delle configurazioni è la misura di Gibbs

del corrispondente sistema termodinamico. Il modello di superfici corrugate da noi studiato ha

la stessa caratteristica dei modelli sopracitati, ed è anch’esso un modello di reticolo, in breve

una griglia di siti ad ognuno dei quali è associata una variabile casuale con una particolare

distribuzione di probabilità. Nel secondo capitolo descriviamo il modello e la possibilità di

applicare ad esso il CFTP.

Un fine del nostro studio è di ottenere un valore numerico per l’energia libera del sistema,

grazie ad una media numerica sulle configurazioni generate con il CFTP. La difficoltà consiste nel

fatto che nessun MCMC permette di misurare la funzione di partizione da cui si calcola l’energia

libera per un sistema con uno spazio delle configurazioni vasto: infatti il campionamento viene
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fatto proporzionalmente alla misura di probabilità e la costante di proporzionalità non può essere

determinata in alcun modo.

Noi riusciamo ad aggirare questo problema, parametrizzando opportunamente la misura sullo

spazio degli stati, e realizzando una interpolazione su una famiglia di sistemi. In pratica, tro-

viamo una osservabile locale sul reticolo che corrisponde alla derivata dell’energia libera rispetto

al parametro che descrive la famiglia di misure; dalla derivata, calcolata numericamente in

vari punti della curva del parametro, possiamo ottenere il valore dell’energia libera con una

integrazione.

Il risultato finale mostra che è presente una discrepanza tra il nostro calcolo numerico e le

previsioni ottenute da S. Majumdar e O. Martin [2], i quali, a nostro avviso, utilizzano una

approssimazione di campo medio non del tutto giustificata. Rimarchiamo che l’utilizzo di un

campionamento esatto è stato cruciale nel fugare ogni possibile dubbio sulla presenza di bias nel

campione, e dare delle barre di errore affidabili in maniera rigorosa.
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Capitolo 1

In questo capitolo introduciamo inizialmente i concetti basilari della teoria delle catene di

Markov, per poi spiegare brevemente come sia possibile, tramite di esse, estrarre degli stati da

uno spazio delle configurazioni secondo una distribuzione di probabilità conosciuta. Il metodo

più noto che risale agli inizi degli anni ′50 è un metodo di campionatura approssimata chiamato

Monte Carlo Markov chain, il quale permette, data una catena di Markov ergodica, di estrarre

stati, nel limite di tempo molto grande, che seguono la distribuzione di equilibrio.

Un metodo più moderno, quello che sarà utilizzato in questo lavoro di tesi, è invece un

metodo di campionatura esatta, il quale permette di estrarre stati dallo spazio delle configu-

razioni esattamente secondo la distribuzione di equilibrio di una catena di Markov, ovvero di

determinare a run-time il tempo al di là del quale l’estrazione avviene secondo la distribuzione

stazionaria. Questo algoritmo dovuto a Jim Propp e David Bruce Wilson utilizza una catena di

Markov ergodica che viene iterata dal passato al presente partendo idealmente da tutti gli stati

possibili e si chiama coupling from the past.

Ovviamente nel caso di uno spazio degli stati molto grande (ovvero nella maggior parte

dei casi di interesse in meccanica statistica) non è praticamente realizzabile un programma che

tenga traccia di tutte le catene che partono da tutti gli stati possibili, per cui sembra che il

coupling from the past non abbia utilità pratica. Tuttavia è possibile utilizzare una versione di

questo algoritmo anche per spazi delle configurazioni molto grandi nel caso in cui questi ultimi

possiedano una struttura di ordinamento parziale, e la catena di Markov abbia una matrice di

transizione che lo conserva: questa proprietà della catena si chiama monotonicità.

Capitolo 2

In questo capitolo esponiamo il modello del sistema che vogliamo studiare. Si tratta di un

lattice bipartito in cui esistono dunque due tipi diversi di vertici, ognuno dei quali ha come primi

vicini solo vertici dell’altro tipo: li chiameremo vertici pari e vertici dispari dal momento che,
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nella realizzazione del lattice su un reticolo quadrato (bidimensionale), potremo assegnare ad

ognuno di essi una coppia di coordinate la cui somma determinerà la parità corrispondente. In

ogni vertice è presente una random variabile reale (chiamata altezza) appartenente all’intervallo

chiuso [0, 1] e distribuita secondo una funzione di probabilità che dipende dal tipo di vertice.

Il sistema in esame è composto da configurazioni che possiedono un massimo locale su ogni

sito pari e un minimo locale su ogni sito dispari. Quando la distribuzione di probabilità è la stessa

per tutti i siti, ed è la distribuzione uniforme in [0, 1] normalizzata a 1, stiamo considerando il

modello di superfici corrugate; l’analisi di alcune sue proprietà statistiche è lo scopo di questa

tesi. In particolare ci proponiamo di misurare l’energia libera del sistema nel limite termodina-

mico (cioè quando il volume del reticolo, su cui è basato il modello, tende all’infinito). Sappiamo

tuttavia che un metodo di Monte Carlo non può in alcun modo dare informazioni sull’energia

libera a causa del metodo di campionamento, ma può dirci qualcosa della sua derivata. Infatti

è possibile, a partire dalla misura di una specifica osservabile locale su reticolo finito, ottenere

la derivata dell’energia libera lungo una famiglia a un parametro di misure: vogliamo infatti di-

mostrare come, introducendo sul reticolo delle misure di probabilità dipendenti da un parametro

libero τ , si possa utilizzare il metodo del reweighting per trasformare una piccola variazione del

parametro libero in una osservabile locale.

Facendo simulazioni a valori diversi del parametro τ otteniamo dei dati che, opportunamente

trasformati ed analizzati, corrispondono alla derivata dell’energia libera valutata nel punto τ ,

per cui possiamo ottenere l’energia libera del modello di superfici corrugate semplicemente in-

tegrando numericamente i dati. Questo è possibile se la famiglia di misure scelta ha certe

caratteristiche e se non ci sono singolarità nella derivata agli estremi di integrazione.

L’osservabile locale misurata è una densità (quindi una quantità intensiva) di quelli che, in

una configurazione, chiameremo difetti, ovvero punti che hanno un’altezza maggiore di 1
2 .

Capitolo 3

L’analisi dei dati, ottenuti da tutte le simulazioni effettuate, è spiegata in questo capitolo. Per

prima cosa spieghiamo quali sono stati i requisiti che il programma di simulazione, e prima

ancora lo stesso CFTP applicato al nostro modello, hanno dovuto mostrare affinchè noi potes-

simo proseguire con le simulazioni vere e proprie. Poi analizziamo la distribuzione delle misure

effettuate sulle configurazioni exactly sampled per mostrare come il particolare approccio di cam-

pionamento usato (CFTP, per l’appunto), ci dia la possibilità di trascurare tutti quegli effetti

presenti invece nelle simulazioni con MCMC approssimato: stiamo parlando delle correlazioni

tra i dati dovute all’utilizzo di catene di Markov e del processo di termalizzazione che costringono

ad eseguire analisi dati con tecniche specifiche. Nel nostro caso, dunque, l’analisi degli errori



Riassunto vii

effettuata sarà quella gaussiana e sapremo quindi dare facilmente una incertezza ad ogni misura.

Di seguito descriviamo il procedimento di estrapolazione della densità di difetti per il valore

della dimensione del reticolo che tende all’infinito. Infatti, siccome l’energia libera che ci interessa

è quella corrispondente al limite termodinamico del sistema (volume infinito), mentre le nostre

simulazioni si basano tutte sull’utilizzo di una porzione quadrata di reticolo (ovviamente finita),

dobbiamo ottenere la misura dell’osservabile locale mediante una estrapolazione da un fit sui

dati.

Per concludere, mostriamo il calcolo dell’integrazione che ci porta al valore dell’energia libera.

Dal momento che i dati rappresentano in qualche modo la derivata dell’energia libera rispetto

al parametro τ della famiglia di misure, quello che ci troviamo ad avere in mano dopo l’analisi

dei dati, è una serie di punti. Quindi cerchiamo un polinomio che si adatti nel modo migliore

all’andamento dei dati e lo integriamo, tenendo conto della propagazione degli errori dovuti al

fit.

Capitolo 4

In questo capitolo descriviamo brevemente il codice utilizzato nelle simulazioni. Dal momento

che, in fasi diverse del lavoro, abbiamo usato sia codice di Mathematica 6.0 sia di C++, teniamo

separati i due linguaggi in due sezioni.

La prima riguarda il codice di Mathematica, usato sia per fare simulazioni premilinari (de-

scritte nel Capitolo 3), inerenti allo studio della dinamica dell’algoritmo di Propp e Wilson nel

caso specifico da noi preso in esame, sia per visualizzare graficamente le configurazioni come

matrici di punti permettendoci un approccio più immediato all’analisi del sistema.

La seconda invece espone in modo dettagliato le funzioni del programma di simulazione

scritto in C++ che implementano l’algoritmo di Coupling From The Past. È una parte impor-

tante questa, perchè permette di approfondire aspetti dell’algoritmo che potrebbero non risultare

chiari nella teoria generale esposta nel Capitolo 1.

Capitolo 5

Questo capitolo contiene alcune riflessioni finali sul lavoro svolto e degli spunti per future analisi.

Per prima cosa confrontiamo il risultato ottenuto nel capitolo precedente con quello ottenuto

da S. Majumdar e O. Martin in [2], cercando di spiegare la discrepanza evidente tra i due.

Poi proseguiamo mostrando la possibilità che il modello di superfici corrugate possa pre-

sentare una transizione di fase. Questa idea nasce dallo studio di simulazioni preliminari del

sistema effettuate per valori del parametro della misura (τ) al di fuori del range [1/2, 1] consid-
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erato in questa tesi. Si è infatti notata la presenza di effetti tipici di transizioni di fase durante

l’esecuzione del codice (critical slowing down) e nell’analisi delle configurazioni (clustering).



1. Exact sampling algorithms

1.1 Theory of Markov chains

Let us begin with a simple example to introduce useful notations. Consider a random walker in

a very small town consisting of four streets, and four street-corners v1, v2, v3 and v4 arranged as

in figure 1.1. At time 0 the random walker stands in corner v1. At time 1 he flips a fair coin

v4 v3

v2v1

Figure 1.1 Random walker’s town

and moves immediatly to v2 or v4 according to whether the coin comes up heads or tails. At

time 2 he flips the coin again to decide which of the two adjacent corners to move to, with the

decision rule that if the coin comes up heads, then he moves one step clockwise, while if it comes

up tails, he moves one step counterclockwise. This procedure is then iterated at times 3,4, . . .

For each n let Xn denote the index of the street-corner at which the walker stands at time n.

Hence (X0,X1, . . . ) is a random process taking values in {1, 2, 3, 4}. Since the walker starts at

time 0 in v1, we have

P(X0 = 1) = 1

Next, he will move to v2 or v4 with probability 1
2 each, so that

P(X1 = 2) =
1

2



2 Exact sampling algorithms

and

P(X1 = 4) =
1

2
To this end it is useful to consider conditional probabilities. Suppose that at time n the walker

stands at, say, v2. Then we get the conditional probabilities

P(Xn+1 = v1 |Xn = v2) =
1

2

and

P(Xn+1 = v3 |Xn = v2) =
1

2
because of the coin-fliping mechanism for deciding where to go next. In fact, we get the same

conditional probabilities if we condition further on the full history of the process up to time n,

i.e.,

P(Xn+1 = v1 |X0 = i0,X1 = i1, . . . ,Xn−1 = v2) =
1

2
and

P(Xn+1 = v3 |X0 = i0,X1 = i1, . . . ,Xn−1 = v2) =
1

2
for any choice of i0, . . . , in−1. (This is because the coin-flip at time n + 1 is independent of all

previous coin-flips, and hence also independent of X0, . . . ,Xn.) This phenomenon is called the

memoryless property, also known as the Markov property: the conditional distribution of

Xn+1 given (X0, . . . ,Xn) depends only on Xn.

Another interesting feature of this random process is that the conditional distribution of Xn+1

given that Xn = v2 (say) is the same for all n. This property is known as time homogeneity.

These observations call for a general definition:

Definition 1.1. Let P be a (k × k)-matrix with elements {Pi,j : i, j = 1, . . . , k}. A random

process {Xt} = (X0,X1, . . . ) with finite state space S = {s1, . . . , sk} is said to be a (homoge-

neous) Markov chain with transition matrix P , if for all n, all i, j ∈ {1, . . . , k} and all

i0, . . . , in−1 ∈ {1, . . . , k} we have

P(Xn+1 = sj |X0 = si0 ,X1 = si1, . . . ,Xn−1 = sin−1
,Xn = si)

= P(Xn+1 = sj |Xn = si)

= Pi,j

(1.1)

The elements of the transition matrix P are called transition probabilities.

Another important characteristic (besides the transition matrix) of a Markov chain (X0,X1, . . . )

is the initial distribution, which tells us how the Markov chain starts. It is represented by a

row vector µ(0) given by

µ(0) = (µ(0)
1 , µ(0)

2 , . . . , µ(0)
k )

= (P(X0 = s1),P(X0 = s2), . . . ,P(X0 = sk))
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It turns out that once we know the initial distribution µ(0) and the transition matrix P , we can

compute all the distributions µ(1), µ(2), . . . of the Markov chain due to the following result

Theorem 1.1. For a Markov chain (X0,X1, . . . ) with state space {s1, . . . , sk}, initial distri-

bution µ(0) and transition matrix P , we have that for any n the distribution µ(n) at time n

satisfies

µ(n) = µ(0)Pn (1.2)

i.e. µ(n)
i =

k
∑

j=1

µ(0)
j PN

j,i for all i ∈ {1, . . . , k}.

Lets see what happen if we look at the distribution of Xn in any nontrivial Markov chain:

Xn will keep fluctuating infinitely many times as n → ∞ and therefore we cannot hope to get

results about Xn, but we may hope that its distribution settles down to a limit. I f this limit

exists we call it a stationary distribution for the Markov chain. The general definition is as

follows

Definition 1.2. Let {Xt} be a Markov chain with state space S = {s1, . . . , sk} and transition

matrix P . A row vector π = (π1, . . . ,πk) is said to be a stationary distribution for the Markov

chain (or for the transition matrix P ), if it satisfies

(i) πi ≥ 0 for i = 1, . . . , k, and
∑k

i=1 πi = 1 and

(ii) πP = π, meaning that
∑k

i=1 πiPi,j = πj for j = 1, . . . , k.

Property (i) simply means that π should describe a probability distribution on S.

Property (ii) implies that if the initial distribution µ(0) equals π, then the destribution µ(1)

satisfies

µ(1) = µ(0)P = πP = π

and by iterating we see that µ(n) = π for every n.

Now we introduce two important properties which play a key role in the study of stationary

distributions of Markov chains: irreducibility and aperiodicity. These are the properties

that guarantee that all the states of the Markov chain can be reached from all the others. Hence,

we say that two states si,sj intercommunicate (denoted as si ↔ sj) if the chain has a positive

probability P(Xm+n = sj |Xm = si) > 0 for a certain n and if the same happens when we

change i and j. This takes us directly to the definition

Definition 1.3. A Markov chain {Xt} = (X0,X1, . . . ) with state space S = {s1, . . . , sk} and

transition matrix P is said to be irreducible if for all si, sj ∈ S we have that si and sj intercom-

municate.
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The period d(si) of a state si ∈ S is defined as

d(si) = gcd(n ≥ 1 : (Pn)i,i > 0)

If d(si) = 1, then we say the state si is aperiodic.

Definition 1.4. A Markov chain is said to be aperiodic if all its states are aperiodic.

A Markov chain with these two properties is called regular (or ergodic if it also has Pi,i >

0 ∀ si ∈ S) and is of primary importance in every random algorithm application because of the

following theorems

Theorem 1.2. For any regular Markov chain, there exists at least one stationary distribution.

Theorem 1.3. Let {Xt} be a regular Markov chain with state space S = {s1, . . . , sk}, transition

matrix P and an initial distribution µ(0). Then, for any distribution π which is stationary for

the transition matrix P , we have

lim
n→∞

dTV (µ(n),π) = lim
n→∞

[

k
∑

i=1

∣

∣

∣
µ(n)

i − πi

∣

∣

∣

]

= 0 (1.3)

Here, dTV is a metric on probability distribution called total variation distance and equation

(1.3) is often referred to as the Markov chain approaching equilibrium as n → ∞, equilibrium

because, as a corollary, also
∑

i

∣

∣

∣
µ(n+t)

i − µ(n)
i

∣

∣

∣
→ 0.

Theorem 1.4. Any regular Markov chain has exactly one stationary distribution.

If we add another property to a regular Markov chain we can get a stronger condition on the

stationary distribution.

Definition 1.5. Let {Xt} be a Markov chain with state space S = {s1, . . . , sk} and transition

matrix P . A probability distribution π on S is said to be reversible for the chain (or the

transition matrix P ) if for all i, j ∈ {1, . . . , k} we have

πiPi,j = πjPj,i (1.4)

The Markov chain is said to be reversible if there exists a reversible distribution for it.

This looks like a strong form of equilibrium, as the following result further suggests

Theorem 1.5. Let {Xt} be a Markov chain with state space S = {s1, . . . , sk} and transition

matrix P . If π is a reversible distribution for the chain, then it is also a stationary distribution

for te chain.

The reader interested in the proofs of the previous theorems, can find them in Chapter 5 of [3].
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1.2 Coupling from the past algorithm

Markov chains introduced in Section 1.1 are useful in the cases we have to simulate a ran-

dom variable X distributed according to a given probability distribution π on a state space S.

Markov chain Monte Carlo (MCMC) method is the name of all algorithms using Markov

chain to simulate state spaces and originates in physics in the 1950’s.

The idea is the following: suppose we can construct an irreducible and aperiodic Markov chain

whose stationary distribution is π. If we run the chain with arbitrary initial distribution, then

Theorem 1.3 guarantees that the distribution of the chain at time n converges to π, as n → ∞.

Hence, if we run the chain for sufficently long time, then the distribution of Xn will be very close

to π. Of course this is just an approximation, but the point is that the way µn approximates π

is exponential in n, under mild hypotheses.

Provided that you have a technique to construct a Markov chain knowing only the equilibrium

distribution from which you want to sample, the key question is “How long is a sufficently long

run?”. To decide the number of steps various convergence tests have been proposed but they are

generally difficult to find, and upper bounds are often too weak to be of a practical interest. In

particular they all suffer from the possibility that the Markov chain reaches a metastable state,

so even if the chain seems to be stable, there may exist domains in the state space which have

not yet being visited; in this case, the only way to ensure that we have convergence is to check

that we have visited every state, but if we could do this in a practical way there generally would

be no need to do the simulation at all!.

A possible solution of the problem came in a 1996 paper by Propp and Wilson [4]. They

yielded an algorithm which simultaneously produces an output whose distribution is exactly

the equilibrium distribution π, and determines automatically when to stop running the Markov

chain. This method is denoted exact or perfect sampling versus the approximate sampling of

MCMC. Propp and Wilson algorithm introduces a new intuitive idea, that is backward coupling

or better what they called coupling from the past (CFTP). This name anticipates the fact

that we have to work not with one, but several Markov chains at once and that the simulations

run from some time in the past up to time 0.

Consider to simultaneously run N = |S| copies of the Markov chain from every possible initial

state; let the rule to update the Markov chain be the same for all the chains; this implies in

particular that it should be configuration-independent. We say that two chains have coalesced

if at some step they reached the same state. From that step onward the two chains will follow

the same path in the state space, due to the fact that the same updating function is used for all

the chains. Now, suppose all N chains have coalesced, such that the effect of the initial state

has worn off. A simple MCMC algorithm (forward simulation) would then be to start N chains

in every possible initial state and output the current at once all chains had coalesced. However,
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this will not yield a correct algorithm, because if states in the Markov chains have a unique

predecessor we will obtain biased samples (see example at page 79 in [3]). The solution to the

problem of biased samples comes from the possibility to run the chains from the past to the

present instead of running them from the present to the future.

To better understand the meaning of backward simulations and coalescence in this case we

introduce a new useful notation.

Consider a situation where an ergodic Markov chain with transition matrix P is iterated for

M(fixed) step via an update function

φ : S × U → S such that P(φ(si, U) = sj) = Pi,j (1.5)

where U is a random number and for convenience we assume that the start and finish of the

simulation are designated as time −M and time 0: we call this fixed-time forward simulation.

An approximate sampling procedure whose output is governed by the same probability distribu-

tion as M -step forward simulation is fixed-time backward simulation in which the iteration starts

at time 0 and moves into the past stopping at time −M ; this procedure takes fewer steps then

forward simulation when M is large. Since the state of the chain at time −1 is determined by its

history from time −M to time −1, it is unknown to us when we begin our backward simulation;

therefore we run the chain from time −1 to time 0 not just once but |S| times, once for each

of the |S| = k states of the chain that might occur at time −1. That is we can define a map

f−1 : S → S by putting f−1(s) = φ(s, U0) ∀ s ∈ S. Similarly, for all time t with −M ≤ t < −1,

we can define a random map ft by putting ft(s) = φ(s, Ut+1) or better a recursively defined

function F 0
t (s) whose values are actually functions from the state space to itself. The output of

fixed-time simulation is given by F 0
−M (s∗) where s∗ is the initial state and F t2

t1
is defined as the

composition ft2−1 ◦ ft2−2 ◦ · · · ◦ ft1+1 ◦ ft1 . We see that under backward simulation there is no

need to keep track of all the maps ft individually, but rather we only need to keep track of the

composition F 0
t , which can be updated via the rule

F 0
t (s, U0, U−1, . . . , Ut+1) = F 0

t+1(φ(s, Ut+1), U0, U−1, . . . , Ut+2) = F 0
t+1 ◦ ft (1.6)

More to the point is the observation that if the map F 0
t′ is a constant map for some t′ ∈ [−M, 0),

with

F 0
t′(si) = F 0

t′(sj) ∀ i, j ∈ {1, . . . , k},

then this will remain true from that point onward (that is for all t ≤ t′), and the value F 0
−M (s∗)

must equal the common value of F 0
t′(si) i ∈ {1, . . . , k}; there is no need to go back to time −M

once the composed map F 0
t′ has become a constant map.

It must be clear that a constant map is equivalent with coalescence of all chains with different

initial states. However, the value of the mapping F 0
t′ is not necessarily the same as the state
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of the chains at the time of coalescence: that is the chain may coalesce before time 0. This

explains why the idea of simulationg from the past up to the present is crucial; on the opposite,

if we were doing forward simulation from time 0, then the time t′ at which the map F t′
0 became

constant would coincide with the time of coalescence. Also the value F t′
0 is not necessarily the

same as the value F∞
0 , the latter being a correct sample from π.

Now, by removing the cut-off M setting it equal to infinity we are achieving an output F 0
−∞

distributed according to the stationary distribution π of the Markov chain. An algorithm could

then be stated as follows

t ← 0

repeat

t ← t − 1

for all s ∈ S
F 0

t (s, U0, U−1, . . . , Ut+1) ← F 0
t+1(φ(s, Ut+1), U0, U−1, . . . , Ut+2)

until F 0
t is a constant map

return the unique value F 0
t (·)

This is just what CFTP does, and if we want to be more specific we can ask ourselves if

the process always terminates or if the loop above is unbounded. The answer is in the following

theorem and under certain hypotheses it can be more precise.

Theorem 1.6. With probability 1 the CFTP protocol returns a value, and this value is distributed

according to the stationary distribution of the Markov chain.

Proof. Since the chain is ergodic, there is an n such that for all states i and j, there is a positive

chance of going from i to j in n steps (see Definition 1.3). Hence for each t, F t
t−n(·) has a positive

chance of being constant.

Since each of the maps F 0
−n(·), F−n

−2n(·), . . . has some positive probability ε > 0 of being constant,

and since these events are independent, it will happen with probability 1 that one of these maps

is constant, in which case F 0
−M is constant for all sufficiently large M .

When the algorithm reaches back M steps into the past, it will terminate and return a value

that we may as well call F̄ 0
−∞. Note that F̄ 1

−∞ is obtained from F̄ 0
−∞ by running the Markov

chain one step, and that F̄ 1
−∞ and F̄ 0

−∞ have the same probability distribution. Together these

last two assertions imply that the output F̄ 0
−∞ is distributed according to the unique stationary

distribution π.

This is the so-called 0 − 1 law, meaning that the probability for the termination of CFTP

algorithm must be either 0 or 1; hence, it is enough to show that P(algorithm terminates) > 0

in order to show P(algorithm terminates) = 1. However Theorem 1.6 does not bound the time
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of the iterations and this can bring to computational problems or biased samples: we could see

that, choosing a bad update function, the algorithm may fail to terminate and interrupting a

long run introduces a bias. Another natural question about Propp and Wilson algorithm is what

do to in the case the state space S is huge, that is how can we run the chains from all possible

starting values: we shall see an ingenious technique in Section 1.3.

It is sometimes desiderable to view the process as an iterative one, in which one successively

starts up k copies of the chain at times −1,−2, . . . , until one has gone sufficently far back in the

past to allow the different histories to coalesce at time 0. In this setup it is very important to

bear in mind that the random variables Ut ∈ U that one uses in going from time t− 1 to time t

must be the same for the many sweeps one might make through this time-step for all the chain’s

copies. If not, biased samples would again be obtained. We may accomplish this needing storing

the random variables Ut or, if our Ut’s are given by some pseudo-random number generator, we

may suitably reset the generator’s seed in order to re-use the same variables in the right sweeps.

In Figure 1.2 we consider a simple example with a sequence of times (t1, t2, . . . ) = (1, 2, 4, . . . )

such that the coupled chain runs during a step following the update function f−t(·) = φ(·, U−t).

Moreover we take a very small state space S = {s1, s2, s3} in order to keep easily track of chain’s

trajectories. Since t1 = 1, we start running the chain from time −1 to time 0. Suppose (as in

the top part of Figure 1.2) that it turns out that















φ(s1, U0) = s1

φ(s2, U0) = s2

φ(s3, U0) = s1

Hence the state at time 0 can take two different values (s1 or s2) depending on the state at time

−1, and we therefore try again with starting time −t2 = −2. We then get















φ(φ(s1, U−1), U0) = φ(s2, U0) = s2

φ(φ(s2, U−1), U0) = φ(s3, U0) = s1

φ(φ(s3, U−1), U0) = φ(s2, U0) = s2

which again produces two different values at time 0. Note the use of U0 for the step from time

−1 to time 0 as before. Continuing the algorithm forced us to start the chains from an earlier

starting time −t3 = −4. This yields















φ(φ(φ(φ(s1, U−3)U−2), U−1), U0) = · · · = s2

φ(φ(φ(φ(s2, U−3)U−2), U−1), U0) = · · · = s2

φ(φ(φ(φ(s3, U−3)U−2), U−1), U0) = · · · = s2
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This time we get the state s2 at time 0 regardless of the starting value at time −4. The

algorithm therefore stops with output equal to s2. Note that if we would continue and run the

chains starting at times −8,−16 and so on, then we will keep getting the same output forever.

!

−4 −3 −2 −1 0

s3 s3 s3 s3 s3

s2 s2 s2 s2 s2

s1 s1 s1 s1 s1

n

!

−2 −1 0

s3 s3 s3

s2 s2 s2

s1 s1 s1

n

!

−1 0

s3 s3

s2 s2

s1 s1

n

Figure 1.2 A run of the CFTP algorithm with t1 = 1, t2 = 2, t3 = 4,

and state space S = {s1, s2, s3}. Transitions that are carried out in

the running of the algorithm are indicated with double lines; others are

simple.

1.3 The monotone case

As the wise reader can see the CFTP algorithm presented so far will not be of any practical

utility if the state space S is large: if a Markov chain has 2N states, for N large, it will not be

feasible to visit all of them. Efficient simulation is possible only if we can reduce the number of
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chains to run. Many Markov chains from which we wish to sample and which are of particular

interest in Statistical Mechanics, have a special property called monotonicity. The CFTP

algorithm can take advantage of this condition as we will soon see, becoming very useful for

statistical simulations in huge state spaces.

Suppose now that the (possibly huge) state space S of our ergodic Markov chain admits a

natural partial ordering , : we say that (S,,) is a poset (partially ordered set).

Definition 1.6. Let P be a transition matrix on a poset (S,,). We say P is monotone if P

preserves the partial order,i.e. if Pi,· , Pj,· stochastically whenever si , sj

The product of monotone transition matrices is monotone.

Monotonicity of P is guaranteed when one can couple transitions using a monotone transition

rule.

Definition 1.7. A monotone transition rule for a transition matrix P on a poset (S,,) is an

update function φ : S × U → S such that P(φ(si, U) = sj) = Pi,j and φ(si, U) , φ(sj , U) for all

U ∈ U whenever si , sj.

When a monotone transition rule exists, one can simultaneously generate transitions from various

states in such a way as to maintain ordering relations for each realization.

If, in addition, we can find minimal and maximal elements 0̂, 1̂ with 0̂ , s , 1̂ for all s ∈ S,

that is, if the poset is a lattice, we have the monotone case.

We can now proceed as in Section 1.2 defining a random map

Φt2
t1

(s, U) = φ(φ(. . . (φ(s, Ut1), Ut1+1), . . . , Ut2−2), Ut2−1)

where U is short for (U0, U−1, . . . ). If U−T , U−T+1, . . . , U−1, U0 have the property that

Φ0
−T (0̂, U) = Φ0

−T (1̂, U) (1.7)

then the monotonicity property assures us that Φ0
−T (s, U) takes on their common value for all

s ∈ S. This frees us from the need to consider trajectories starting in all |S| possible initial

states; two states will suffices because the others are“sandwiched” and if these two coalesce then

so will all the others.

In the following chapters we are going to deal with a continuous state space and it is obviously

impossible to track the chains starting from all possible states. However there exists a possible

formulation of this theory dealing with continuous variables as explained in the work [5]. We can

now sketch an argument for which coalescence is assurable even for configurations in continuous

space. The point is that we are using the same set {U0, U−1, . . .} of random numbers on the

two coupled chains, so that when we update a configuration of a chain, we use the exactly
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same variable to update the other configuration too. This lead to the fact that, if the update

is accepted in both chains, the updated variable is the same for both; thus, even for real-valued

variables, we have a non-zero probability for the configurations to be equal.
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2. Model of corrugated surfaces

2.1 Random minima model

Our model consists in a lattice (the underlying space for this problem) where the number of

minima (maxima) is the highest possible, which is to say we have two distinct types of sites on

the lattice, one on which always resides a minimum and one on which always resides a maximum

of the energy, and these sites are alternated.

More generally speaking, we have a bipartite lattice L where Ve and Vo are the sets of distinct

types of alternated sites, even and odd, and E is the set of edges linking two sites (one even and

one odd): L = (Ve, Vo;E).

We denote the set of all sites V = Ve∪Vo and we label each site with a latin index i ∈ {1, . . . , V };
moreover we say two sites i, j are adjacent if the edge e = (i, j) is in E (in this case we write

e = 〈i, j〉).
In such a defined space we associate to each site a height (or energy, if one prefers) xi which

can take values in the real interval [0, 1]; according to the site parity, xi is choosen from the

following normalized probability distributions with support on [0, 1]

µ(xi) =µe(xi) ∀ i ∈ Ve

µ(xi) =µo(xi) ∀ i ∈ Vo

and the two measures are such that µe(xi) = µo(1 − xi). This choice of symmetry is made for

simplicity, and is not strictly necessary.

We write X = {xi}i∈V to denote a configuration and we call this configuration feasible if

for any edge 〈i, j〉, with i ∈ Ve and then j ∈ Vo, we have xi ≥ xj.1 So we obtain the partition

function integrating the measure µ(x) over all the feasible configurations

Z =

∫

∏

i∈Ve

dµe(xi)

∫

∏

j∈Vo

dµo(xj)
∏

〈i,j〉

Θ(xi − xj) (2.1)

1This model can be seen a a limit λ → ∞ of the general model in which all configurations are allowed, but we

have a price λ for each minimum (maximum).
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The integration runs over all the possible combinations of V real numbers in [0, 1], that is [0, 1]V

and the last product in the integral runs over the nearest neighbours j ∈ Vo of each even site

i ∈ Ve.

If a configuration is not feasible it means there is an even site i such as xi is not a local

maximum and the Θ function in (2.1) prevents this configuration from being counted in the

partition function. We can also note that if the measure on the even sites gives zero chance to

small xi to appear (i.e. µe(xi) = 0 if xi ∈ [0, 1/2]), all the Θ’s are automatically satisfied and

the partition function reduces to the product of the one-site measure’s normalization which is

1. We will call this the trivial model.

Our final goal is to calculate the intensive free energy f of the system, which is strictly

related to the partition function by the formula

f =
1

V
lnZ(V ) (2.2)

where V is the number of sites, in the situation where the measure is uniform in [0, 1], that is

all the real numbers in the interval are equiprobable (for a statistical mechanics system, the free

energy is defined as − 1
βV lnZ(β;V ). Here we omitted the sign for convenience, and the factor β

because our system hasn’t got a temperature). This last case is the classic model of corrugated

surfaces (for further readings see bibliography in [2]).

2.2 Lattice and poset structure

Our model is easily implemented on a planar square portion of the lattice L and the following

is the starting point of every simulation we will make:

• a grid of L2 points with 2 coordinates (i, j) ∈ {1, 2, . . . , L}2. Even sites are those such

that i + j is even (see Figure 2.1);

• a real number in [0, 1] is placed over each point. Every even site must have a value larger

than each of the four neighbouring odd sites;

Every realization of the second item above is a feasible configuration X and we can perform on

this whatever kind of measure we want.

Now our purpose is to find a CFTP algorithm, especially a Markov chain, whose states are

all the feasible configurations of the corrugated surfaces model, but we want a monotone CFTP

to concretely realize our simulations. To have a chance to find a such a monotone Markov chain

(see Definition 1.6) we should guess a natural partial ordering on the chain’s state space and

now we show how our model in Section 2.1 can be seen as a poset and how we can define a

monotone transition rule (in the sense of Definition 1.7) for the Markov chain.
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Figure 2.1 L × L grid with a white circle on each odd site and a black

one on each even site

Consider two configurations X and Y in the space of feasible configurations S. We say that

they are partially ordered (X , Y) if xv ≤ yv for any v ∈ Ve, and xw ≥ yw for any w ∈ Vo. The

structure of lattice is completed by the presence of an infimum and a supremum state

0̂ : X such that xv = 0 ∀ v ∈ V

1̂ : X such that xv = 1 ∀ v ∈ V
(2.3)

so that ∀X ∈ S we have 0̂ , X , 1̂.

The transition rule from X = {xv}v∈V to X′ = {x′
v}v∈V (i.e. the dynamics of the Markov

chain), which preserves the lattice structure for any one-site measure µ, is the following:

define x(n)
v =











max
(w neigh v)

xw if v ∈ Ve

min
(w neigh v)

xw if v ∈ Vo

1. choose randomly and uniformly a vertex v ∈ V (i.e. sample 2 integers in {1, 2, . . . , L});

2. choose randomly a real number z in [0, 1] according to the measure µ(z) (the test height);

3. • if v is even: we substitute xv with z setting x′
v = z if z ≥ xw for all w neighbours of

v, that is z ≥ x(n)
v . Otherwise, we leave Xv ;
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• if v is odd: we use 1−z instead of z (because µo(x) = µe(1−x)), and we set x′
v = (1−z)

if (1 − z) ≤ xw for all w neighbours of v, that is (1 − z) ≤ x(n)
v . Otherwise, we leave

xv.

We can easily show that if X , Y, then the same relation is true for their one-step evolution in

the Markov chains due to the above transition rule (X′ , Y′) and this is the important topic

in the monotone CFTP algorithm because starting from 0̂ and 1̂ we have coalescence for all the

states if the two of them coalesce.

The two cases (even and odd site) must be treated in different but symmetric ways. Suppose

first we are updating an even site v ∈ Ve; all the other sites in X and in Y (we have to use the

same update for both the chains) remain unchanged, namely the neighbours of v are the same

before and after the sampling of z, that is x(n)
v ≤ y(n)

v . If z ≥ y(n)
v , then it is a local maximum

and we set y′v = z; at the same time it is also true that z ≥ x(n)
v , because of the ordering of the

configurations, and we can write x′
v = z. However we can have z ≥ x(n)

v but z ≤ y(n)
v , and this

leads to x′
v = z and yv = y′v, but still z ≤ yv and the partial order of the configurations X′ , Y′

is fulfilled. Of course, if z ≤ y(n)
v and z ≤ x(n)

v , no site is updated and X′ , Y′ is obviously true.

Now suppose the site is odd: we must repeat all the reasonings above changing z with 1− z and

inverting all the binary relations; what we see is that also in this second case X′ , Y′.

The Markov chain that follows the dynamic given by the above transition rule is ergodic,

aperiodic and irreducible. These properties guarantee that this chain has a unique equilibrium

distribution, and that we will sample just from that distribution. We want to remark here

that the CFTP algorithm, when the chains have coalesced, outputs only a configuration, and

in Chapter 1 we have demonstrate that the outputted configuration follow the equilibrium

distribution of the ergodic Markov chain. If we run the algorithm for, we say, N times, we end

with a statistical ensemble of N configurations without any correlations between them. This

is true if we pay attention to use a different initial seed for the random number generator in

each different run. For better understanding of the algorithm we suggest to read now the code

implementation in Chapter 4.

Now, although we can say the monotone case arise (see Section 1.3), and that this is true for

all the distribution µ(x) so that a fast CFTP algorithm can be implemented, we have 2 open

questions we would answer to:

• can we find a new parametrization of the model so that it will be parity invariant, so that

there is a sigle measure to sample from and all the sites are of the same kind? We prefer

this new situation because all the relations can be written more easily.

• is the transition rule one of the best to make the chains coalesce or the CFTP loops

remains unbounded? This aspect needs test simulations with Mathematica as we will see
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in section 3.1.1.

The first question has a simple answer: we can transform a configuration X with the notation

of Section 2.1 in a new one X̃ which has at every site a height

x̃v =

{

xv if v ∈ Vo

1 − xv if v ∈ Ve

(2.4)

With these new configurations X̃ we have a symmetrical representation of even and odd

sites, and we have only one distribution for each height of a site from which we have to sample.

In this notation we have another explicit form for the Θ’s in the partition function because now

a feasible configuration hasn’t got local minima and maxima but has to satisfy the constraint

Θ(1 − xv − xw) ∀〈v,w〉 (2.5)

that is the sum over every nearest neighbour must be less than 1. This condition is easily

implemented in the code of the simulation as we will see in Chapter 4 and this is why we deal

with configurations without maxima and minima.

The expression of the partition function in this new space of configurations takes the following

form

Z =

∫

∏

i∈V

dµ(xi)
∏

〈i,j〉

Θ(1 − xi − xj) (2.6)

where the new one-site measure µ(x) corresponds to the old µe(x). With this notation, the

trivial model we have seen in Section 2.1 have only low heights, i.e. less than 1
2 , so that any sum

of pairs is always less than 1 and the total free energy is simply V ln
∫

dµ(x).

The second answer requires a lot of work because we don’t know a priori if this system,

even if in the monotone case, will rapidly coalesce, but we can see how it behaves in the simple

framework of forward simulations and we can analize the time of first coalescence. This study

is shown in subsection 3.1.1 and make use of the symbolic math software Mathematica 6.0.

2.3 The one-parameter family of measures

Even if we can simulate our system with a CFTP algorithm we know there is no chance of

measure directly a quantity like the free energy or the partition function because they are not

local observables but depend on an overall factor not derivable from no one of the known random

algorithms. The measure of a local observable related to the free energy can be found in analogy

with a well-known relation in statistical mechanics and thermodynamics, that is when we derive

with respect to the temperature the logarithm of the partition function we obtain a quantity

related to the average energy of the system. Equation (2.7) shows that along a one-parameter
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family of measures (i.e. the Gibbs measure with parameter β), the derivative of the partition

function gives a local observable.

〈E〉 = −
∂ lnZ(β)

∂β
(2.7)

We can now introduce such a one-parameter family of measures with the hope that there exists

an easy observable related to the derivative of the free energy along the measure parameter.

We know from equation (2.6) (equivalently equation (2.1)) that our system is totally entropic

because the partition function has a combinatorial form. That is, the Hamiltonian of the system

just consists of the constraint given by the Θ functions, and there is no quantity or parameter

such as the inverse of the temperature β, on which the free energy depends. The only part we

can vary in the partition function to obtain an expression like (2.7) is the one-site measure and

we introduce a real parameter τ with these points in mind:

• we want to recover our corrugated surfaces model at one value of the parameter and we

want to pass through a trivial model along the one parameter curve, that is the model

where all the Θ’s are satisfied and the partition function turns out to be the normalization

of the one-site measure. Hence we ask

µτ=start(x) = 0 for all x ∈
[

1

2
, 1

]

(2.8)

and

µτ=end(x) = 1 for all x ∈ [0, 1] (2.9)

and we will study an intervall of the form [start,end];

• we also want to guarantee the continuity of the L2 norm of the measure in the parameter

and some sort of continuity given by the fact that µτ+dτ (x) ≤ (1 + r(τ)dτ)µτ (x) for all

x ∈ [0, 1], with an infinitesimal dτ and a certain finite function r(τ).

The behaviour of the measure between the above important values of τ , start and end, is choosen

in a convenient way for the numerical simulations.

All these choices are made to allow an exactly sampled configuration X from the measure µτ to

be sampled in a biased way from the measure µτ+dτ , but with a known bias which we can show

it is something like the derivative of the free energy with respect to τ . This topic is the main

core of the theoretical work and we are going to show it in details.

There are a lot of one-parameter families of measures µτ (x) meeting all the conditions above

and we will use two of them that we have found particular suitable, one for the numerical im-

plementation of the CFTP algorithm, and one for the theorical demonstration of the main topic

(they are actually the same up to a trivial rescaling). These two families of measures have differ-

ent typical features and since we want to compare simulation’s results and theorical hypotheses,
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Figure 2.2 Simple plot of the family of measures parametrized by τ . In

the simulations, each real number in [0, 1

2
) is picked with probability

2τ , whereas numbers in [1
2
, 1] with probability 2(1 − τ). The factor 2

ensures normalization.

at the end we must take into account the free energy shift coming from the rescaling.

The first parametrization we have choosen is the one that simply gives different weights to num-

bers greater than 1
2 and less than 1

2 and that is always normalized when varying the parameter

τ . We can represent this family of measure as

µτ (x) :=















2τ if x ∈
[

0,
1

2

)

2(1 − τ) if x ∈
[

1

2
, 1

] (2.10)

and in Figure 2.2 you can see a visual representation of what happens when, in the code, we

sample a height: if τ = 1, no high height are choosen and the trivial model occurs (i.e. the

partition function is the normalization, that is 1), but changing τ towards the value of corrugated

surfaces model, more points on the grid have a non-zero probability to be high (increasing in

high points corresponds to a symmetric decreasing of low points and it becomes more and more

difficult to satisfy the Θ functions).

We will show in Chapter 4 how we implement the sampling of each site’s height from this

measure. Furthermore we will show that, to get our final numeric result, we have ran several

simulations at different values of the parameter τ .

The other parametrization is, in a way, more natural, but it is not normalized and this is why we

use it in the calculations, where one can easily deal with this, rather than in the code where it is

understood that any sampling procedure is normalized. In this case, values smaller than 1
2 have

always the same weight when changing the parameter, whereas values larger than 1
2 are more

and more damped as the parameter approaches the value corresponding to the trivial model. In
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Figure 2.3 Plot of the family of measures parametrized by ε. This

measures are not normalized except for the final model: ε = 1.

this case we call the parameter ε (not to make confusion among the two families), and we write

µε(x) :=















1 if x ∈
[

0,
1

2

)

ε if x ∈
[

1

2
, 1

] (2.11)

The normalization of µε(x) is 1 only for the final model (see Figure 2.3) so that the partition

functions, using µε and µτ , match in the relevant case with uniform measure, and the same do

the free energies. As we will soon see the difference in the normalization, passing from µτ to µε,

that is from simulation’s outputs to analytical calculations, will be easily handled.

2.3.1 Local observables and reweighting

We are now ready to introduce the underlying idea which will allow us for calculating the free

energy. The first step is to understand the concept of reweighting, a statistical tool to measure

observables when changing the probability distribution on the state space.

Let’s make a clear example: in statistical mechanics with the Gibbs measure on the state space

(i.e. exp(−βH)) one may want to know the mean value of an observable O (i.e. 〈O〉β), depending

explicitly on the parameter of the measure, β. With the reweight method it is possible to obtain

the measure of the observable at another value of the parameter, say β′, but without changing

the probability distribution; starting from the Gibbs measure a temperature β one can calculate

〈O〉β′ and this is very useful doing simulations, because data sampled with β as parameter can

be used to measure an observable at β′ without the need of re-run the simulation. We give here

the relation of what is called simple histogram reweighting

〈O〉β′ =
〈Oe−(β′−β)H〉β
〈e−(β′−β)H〉β

(2.12)
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Figure 2.4 Visualization of the pointwise relation between different

measures.

and we underline the fact that this can be viewed such as part of the measure being transformed

in an observable quantity.

In our case we use the family of measures µε and we try to vary the parameter by a small

amount. What we note is

µε′(x) ≤ µε(x) ∀x ∈ [0, 1] if ε′ ≤ ε (2.13)

and also graphically (see Figure 2.4) it is clear that only high site are interested in the reweight.

Now call ε′ = ε − δ, for a small δ ≥ 0, and try to understand the meaning of changing the

value of δ.

As we said before, µε (and also µτ ) is chosen fulfilling a sort of continuity, just the same we

see in equation (2.13). So we claim that a configuration, sampled from µε−δ, is sampled from

µε in a biased way, and we can access the bias just looking at Figure 2.4! Rigorously speaking,

since only numbers greater than 1
2 are affected by the value of δ, if we measure how much of

them there are in an exactly sampled configuration, we obtain a number related to the bias.

The probability that a number x in [12 , 1] is choosen by the first measure µε is just ε whereas the

second measure µε−δ would have choosen x with weight ε− δ: so the given height value appears

in the two configurations, sampled from µε and µε−δ, with relative probability

1 if x ∈
[

0,
1

2

)

1 −
δ

ε
if x ∈

[

1

2
, 1

] (2.14)

Since numbers in the second half interval of [0, 1] are so special in this case, and since they are

the ones making effective the Θ functions, we want to call them defects (also cfr. Section 2.4).

Graphically one can view the probability of equation (2.14) in Figure 2.5

If we sum over all feasible configurations we obtain a ratio for the partition functions that

can be interpreted as the probability for a configuration X to be chosen in both the measures.
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Figure 2.5 Visualization of the acceptance rate of the configurations

sampled from different measures.

Since in a configuration there is a variable number of defects, the ratio becomes

Z(ε− δ;L)

Z(ε;L)
=

〈

(

1 −
δ

ε

)#{of defects}
〉

ε

(2.15)

where the subscript ε of the expectation value means that we made the measure of the observable

on a configuration sampled from µε.

Now we want to manipulate this equation in order to obtain the expression of a free energy as

a function of the measurable observable #{of defects}. We remark that the partition function

depends on the parameter ε of the one-site probability distribution, but also on the grid’s

dimension L, because the realization of a particular configuration is strictly related to the volume

|V | = L2 of points.

Remembering equation (2.2) we write the ratio of partition functions as a single exponential

function

exp {|V | [f(ε− δ) − f(ε)]} =

〈

(

1 −
δ

ε

)#{of defects}
〉

ε

(2.16)

and, by multiplying and dividing the first exponent by δ, we obtain

exp

{

|V |δ
[

f(ε− δ) − f(ε)

δ

]}

=

〈

(

1 −
δ

ε

)#{of defects}
〉

ε

(2.17)

We have said that the perturbation δ of the measure must be a small non negative quantity and

in particular we now want to calculate the limit for δ → 0 because we are searching for a linear

term, a derivative, of the free energy. We recognize in the exponent

f(ε− δ) − f(ε)

δ
(2.18)

an incremental ratio, that is the first order term in the Taylor series of the derivative. At the

same time, if we do not consider terms of second or higher orders in δ, but only linear ones, the
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quantity
(

1 −
δ

ε

)#{of defects}

(2.19)

is the Taylor expansion of an exponential function.

This allow us to write

exp

{

|V |δ
[

−
∂f(ε)

∂ε

]}

=

〈

exp

{

−
δ

ε
#{of defects}

}〉

ε

(2.20)

and equating the exponents, the equation becomes

|V |δ
[

−
∂f(ε)

∂ε

]

=

〈

−
δ

ε
#{of defects}

〉

ε

(2.21)

The #{of defects} is obviously related to the size L of the grid, so we change it with a density

of defects that is normalized by the volume |V |:

ρdef(L) =
#{of defects}

L2
(2.22)

Simplifying |V | and δ, equation (2.21) takes the form we want:

∂f(ε)

∂ε
=

〈ρdef 〉ε
ε

(2.23)

Now it’s time to show out the final relation between the free energy of corrugated surfaces

model (i.e. f(ε = 1)) and the local observable measuring the density of defects. Integrating

equation (2.23) brings to

f(ε = 1) − f(ε = 0) =

∫ 1

0
dε
∂f(ε)

∂ε
=

∫ 1

0
dε

〈ρdef 〉ε
ε

(2.24)

Hence, if we had an analityc expression for 〈ρdef (∞)〉 as a function of ε, we could integrate

it and, knowing the free energy of the trivial model f(ε = 0), calculate the free energy of our

model.

This can be done numerically paying attention at the integration limit ε = 0, because it could

be a singularity of the integrand function.

The free energy for the trivial model is known because we already said that the free energy

is equal to the logarithm of the normalization of the measure times |V | (see equation (2.6)) and,

for the family µε that we are using, it is equal to

f(ε = 0) =
ln(Z(0;L))

|V |
=

ln
(

1
2

)|V |

|V |
= − ln 2 (2.25)

as we can see in Figure 2.3. Consequently

f(ε = 1) =

∫ 1

0
dε

〈ρdef 〉ε
ε

− ln 2 (2.26)
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What we have to do in order to calculate f(ε = 1) is giving a specific form to 〈ρdef 〉ε, and

for this we use the CFTP algorithm sampling each configuration with the one-site measure

parametrized by τ (we already said this is the right choice because the probability distributions

remain normalized at 1 for every value of the parameter τ).

We proceeded as follow: for each size L of the grid in the form L = 2k, with k ∈ {4, 5, 6, 7, 8}, we

sampled N = 104 configurations using µτ , with τ ∈ {0.500, 0.525, 0.550, 0.575, . . . , 0.975} (and

µτ ∼ µε for ε = 1−τ
τ ). On each configuration we performed the measure of how many defects

there are. Hence we obtained, for each simulation with fixed L and τ , a statistical ensemble

{ρi
def}i=1...N on which we applied the standard statistical analysis, as we will show in section 3.2,

resulting in the values 〈ρdef (L)〉τ with their appropriate statistical errors. Then, for each value

of τ , we extrapolate, with a fit procedure, the limit L → ∞ of the density of defects. The

integral (2.26) can be then evaluated numerically using a polynomial fit for 〈ρdef (∞)〉τ . We

defer to Section 3.2 any further discussion on simulations.

2.4 Cluster expansion

When we began to study the model of corrugated surfaces, in particular the behavior of defects

in a configuration at certain ε, we found a resemblance between the defects lattice and a typical

hard-core lattice model. By this, we mean that there can’t be two adjacent (nearest neighbours)

defects (i.e. equation (2.6) states that two numbers greater than 1
2 violate the Θ function), and

the defects of a feasible configuration can be interpreted as a perfect lattice gas, where a defect

is a particle. Two particles cannot overlap because of the hard-core repulsion given by the

Hamiltonian which is, in our case, just the Θ function. Moreover, in this scenario, we can think

at the parameter ε as the gas temperature, with the gas becoming less and less dense when ε→ 0

(low “excitation” energy).

Follow these considerations, we decide to apply the classical cluster expansion (cfr. [6] for

a general overview of the theory) to find a perturbative series, in ε, for the free energy of the

system.

Let us introduce some useful notations: we have a graph G with a lattice structure, G = (V,E),

and each vertex i has a random variable xi ∈ [0, 1]; associated to each configuration, we have a

list of positions I = {i1, . . . , ik} that univocally determines a connected subgraph HI on G and

a vector n on its vertex set, with ni = 1 on vertices i ∈ I. This list is consistent, and generates

a valid pair (HI , n), if

• for each (i, j) ∈ E(HI), at least one among i and j is a defect;

• each i ∈ V (HI) such that degHI
(i) ≤ degG(i) is not a defect.
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In this case we call (HI , n) a cluster.

The cluster expansion allow us to write the partition function as a sum of weights i.e. W (I),

associated to each cluster. Each W (I) is to be calculated using the explicit form of the Hamil-

tonian and we will see the form it takes in the model of corrugated surfaces. To continue this

way, we have to make the assumption that W (I) ∼ W ′(I)ε|I| for ε → 0, where |I| stands for

the cardinality of I, that is, for the number of defects. Then, the cluster of order ε are the ones

looking like a“star” graph around a vertex i in the graph, i.e. H{i}. The clusters of order ε2

have two vertices i and j with n = 1, at distance at most 2, and V (H) contains them and all

their neighbours, and so on. We depict some clusters for the model of corrugated surfaces in

Figure 2.6.

1.1 2.1 2.2

Figure 2.6 Valid clusters for the model of corrugated surfaces

Now consider the term of order ε in the expansion of Z. It is just the sum over all possible

locations of a single defect, i.e.

Z = 1 + ε
∑

i

W ′({i}) + O(ε2) (2.27)

Now, if we believe that the good strategy is understanding the logarithm of Z, we will write

that

Z = exp
[

ε
∑

i

W ′({i}) + O(ε2)
]

(2.28)

Up to the corrections, this would be a perfect gas of isolated defects, at a density linear in ε.

This is in accord with the näıve idea of assiomatic thermodynamic, such that any interacting

gas at sufficiently low densities is well approximated by a perfect gas.

However there are a lot of wrong terms in the expansion of the quantity above, even at order

ε2. For example, we have terms of the form 1
2W ′({i})2, while we cannot have more than one

defect at each site, and terms like W ′({i})W ′({j}) for i and j nearby, instead of the appropriate

W ′({i, j}).
The point is that the wrong terms are of the same order in ε of the clusters we still have to

consider. So, working at order ε2, we would had anyhow to describe a perfect gas of isolated

and paired defects, but, in order to consistently correct the error terms, we have to add other
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“pseudo-clusters” to our collections, which can cancel the spurious contributions. Contrarily to

the original clusters, where the factors W ′(I) come from an integration, and are positive at sight

for a real-valued Hamiltonian, the correction terms can be real negative. The calculation of each

order is a combinatorial work and the number of terms grows exponentially with the order of

the parameter.

The model of corrugated surfaces is a special case where the factors W (I) corresponding to

sets I with adjacent defects would just be zero, and we have only to deal with sets I in which

defects are a connected set of second-neighbour defects. We have that variables xi ∈ [0, 1] can be

replaced by a pair (yi, ni), with yi ∈ [0, 1] and ni ∈ {0, 1}, and xi = (yi+ni)/2. As we said at the

beginning of this section, if both ni and nj are zero, the Θ function is always satisfied, and we

are thus in the condition of using n = 0 as the ’zero-order’ of a cluster expansion. Furthermore,

writing the Θ function with the new variables as Θ(1− (ni + nj + yi + yj)/2), makes clear that,

if both ni and nj are 1, for any values of yi and yj the argument is negative. Thus, in this

specialization of the cluster expansion, many terms W (I) vanish (the ones for which 0’s and

1’s are not alternating over H). This implies that the exponential growth in the number of

diagrams has a smaller rate for this model.

We have translational invariance in the system, up to boundary corrections (which are only

of order
√

N , thus subleading at every order in our cluster expansion, in ε, of the free energy at

order N).

At order 1 we only have to calculate W ({i}), and the free energy would read

f = ln
(

1 + εW ({i})
)

+ O(ε2) (2.29)

At order 2 we do not have to calculate W (I) for sets I of adjacent defects, because of the

remark above, but only for I with two defects at distance 2. There are two such diagrams

(up to symmetries of the lattice), the one with relative defect positions at a vector (1, 1), and

the one at position (2, 0). Each of them come with a symmetry factor 2 (the diagonal can be

oriented at π/4 or −π/4, while the distance-2 dimer can be horizontal or vertical). Then we have

the pseudo-clusters corresponding to these same configurations, and to the one of two adjacent

defects. So we have

f = ln
(

1 + εW ({i})
)

+ 2 ln
(

1 + ε2W ({i, i + (1, 1)})
)

+ 2 ln
(

1 + ε2W ({i, i + (2, 0)})
)

− 6 ln
(

1 + ε2W ({i})2
)

+ O(ε3)

(2.30)
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Making the integrals of the corrisponding product of theta functions gives

W ({i}) =

∫ 1

0
dx0(1 − x0)

4 =
1

5
(2.31)

W ({i, i + (1, 1)}) =

∫ 1

0
dx0

(
∫ 1−x0

0
dx1(1 − x1)

3

)2

=
1

20
=

(

1

5

)2

+
1

100
(2.32)

W ({i, i + (2, 0)}) =

∫ 1

0
dx02x0

(
∫ 1−x0

0
dx1(1 − x1)

2

)2

=
2

45
=

(

1

5

)2

+
1

225
(2.33)

Substituting into (2.30) and expanding in series gives

f = ε ·
1

5
+ ε2

[

−
1

2

(

1

5

)2

− 2

(

1

5

)2

+ 2

(

1

100
+

1

225

)

]

+ O(ε3)

= ε ·
1

5
− ε2 ·

16

225
+ O(ε3)

(2.34)

This is an important result because it gives us the possibility to check out if our simulation

data behave properly. Indeed, we will see in Chapter 3 that our data are compatible with a

distribution 〈ρdef〉ε well-approximated by a polynomial in ε, at least for some neighbourhood of

ε = 0. The cluster expansion we developed in this section provides us a prediction for the first

three terms of this polynomial (included the fact that in ε = 0 the density is zero), namely

〈ρdef〉ε = ε
∂f(ε)

∂ε
= ε

[1

5
−

32

225
ε+ O(ε2)

]

= 0.2 ε− 0.142222 ε2 + O(ε3)
(2.35)

We will see in Chapter 3 that the numerical values of our fit are remarkably compatible with

these values.
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3. Data and simulations analysis

3.1 Preliminary checks with Mathematica

3.1.1 Coalescence time

The simulation algorithm described, both in the general framework of MCMC (Section 1.2) and

for the specific model of corrugated surfaces (Section 2.2), requires some preliminary work to

find out if our choice for the update function of the Markov chain could bring, in a resonably

short time (at least in polynomial time), to coalescence. It is a subtle matter because we know

there is no a priori knowledge of the result.

Then we decide to perform some test simulations using our update function, and to plot,

run-time, a specific variable related to the differences between the two coupled Markov chains,

one starting from the 1̂ configuration and one strating from 0̂. This variable, called distance,

get the number of sites that are different between the two ran chains, and it is obviously 0

when the chains have coalesced. For almost every lattice size L and parameter value τ , we run a

CFTP algorithm implemented in Mathematica code (cfr. Chapter 4). When the algorithm starts

iterating the chains it may fail to reach coalescence, and at that time it doubles the running

time and restarts the chains: we call this a level of the CFTP run. We plot, at every level, the

distance between the chains, and we study how the distance behave during the simulation.

We can see, from a couple of figures (Fig. 3.1) got from Mathematica, that initially the

plot presents a plateau and the distance doesn’t change too much. Then the distance becomes

more and more smaller, and the behavior seems monotone. But at the very end it happens

that another effects interacts with the decreasing of the distance. In the plots we can see a

fluctuations of the distance until it reaches the 0, and it seems that the coalescence process has

to pass through a tunnelling effect before it successes. This trend appears in all our simulations,

so we think it is characteristic of the coalescence process, but we don’t investigate this aspect

any more.

However, the coalescence time doesn’t seems to grow exponentially with the lattice size L.
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Figure 3.1 Trend of the distance between two Markov chains starting

from the extremal of the lattice whit L = 32 and τ = 0.500

3.1.2 3 × 3 distribution

As we have shown in Chapter 1, our algorithm should output samples with the desired probability

distribution. Before running it intensively, we want some strong test that this is the case. Hence

we find a simple case where the partition function is easily calculated and we can compare

simulated data and analityc results: the simplest but not trivial situation fitting our requirements

is the 3×3 squared lattice with free boundary condition, where we want to recover the appropriate

marginal distribution of the “middle” variable z.

y4 x1 y1

x4 z x2

y3 x3 y2

Figure 3.2 The square lattice used in the calculation of the distribution

probability for the central site’s height z.

Firstly we run a simulation for our model (τ = 0.5, i.e. uniform measure in [0, 1]) in this

small square and output the central site’s height z for 106 (conjecturally) exactly sampled

configurations.

Then we calculate the distribution

p(z) =

∫ 1

0
dx1 · · · dx4

∫ 1

0
dy1 · · · dy4

4
∏

i=1

[Θ(1 − z − xi)Θ(1 − xi − yi)Θ(1 − xi − yi−1)] (3.1)

in which we use labels according to Figure 3.2.
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Examining the expression (3.1) in details, especially the Θ functions, we note that there are

symmetries according to the values xi can take: if we choose x1 = maxi(xi) (and multiply by 4

the resulting expression because the maximum could have been in any of the 4 locations), the

first Θ gives x1 ≤ (1 − z) and we can write

p(z) = 4 ·
∫ 1−z

0
dx1

∫ x1

0
dx2 · · · dx4

∫ 1

0
dy1 · · · dy4

4
∏

i=1

[Θ(1 − xi − yi)Θ(1 − xi − yi−1)]

Now we must choose which xi (i = 2, 3, 4) is the second maximum, and we clearly see three

different cases of which two are symmetrical:

A if we take x2, then x4 is symmetrical by the swappings y1 ↔ y4, y2 ↔ y3, so it suffices to

multiply by 2 the integral; moreover the integrals of yi can be calculated because

Θ(1 − x1 − y1)Θ(1 − x2 − y1) =Θ(1 − x1 − y1) (because x1 ≥ x2)

Θ(1 − x1 − y4)Θ(1 − x4 − y4) =Θ(1 − x1 − y4) (because x1 ≥ x4)

Θ(1 − x2 − y2)Θ(1 − x3 − y2) =Θ(1 − x2 − y2) (because x2 ≥ x3)

and this leads to
∫ 1−x1

0
dy1

∫ 1−x2

0
dy2

∫ 1−x1

0
dy4 = (1 − x2)(1 − x1)

2

B if we take x3, then the integration of x2 and x4 runs in [0, x3] and the same argument on the

Θ’s applies here

Θ(1 − x3 − y3)Θ(1 − x4 − y3) =Θ(1 − x3 − y3) (because x3 ≥ x4)

Θ(1 − x3 − y2)Θ(1 − x2 − y2) =Θ(1 − x3 − y2) (because x3 ≥ x2)

Θ(1 − x1 − y1)Θ(1 − x2 − y1) =Θ(1 − x1 − y1) (because x1 ≥ x2)

Θ(1 − x1 − y4)Θ(1 − x4 − y4) =Θ(1 − x1 − y4) (because x1 ≥ x4)

and leads to
∫ 1−x1

0
dy1

∫ 1−x1

0
dy4

∫ 1−x3

0
dy2

∫ 1−x3

0
dy3 = (1 − x1)

2(1 − x3)
2

At this point the expression 3.1 simplifies as follows

p(z) = 2 · 4 ·
∫ 1−z

0
dx1

∫ x1

0
dx2

∫ x2

0
dx3dx4(1 − x2)(1 − x1)

2
∫ 1

0
dy3Θ(1 − x3 − y3)Θ(1 − x4 − y3)

+ 4 ·
∫ 1−z

0
dx1

∫ x1

0
dx3

∫ x3

0
dx2dx4(1 − x3)

2(1 − x1)
2
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The last two Θ’s are satisfied if we choose the third maximum among x3 and x4. We take

x3 ≥ x4 and multiply by 2 because our choice is arbitrary.

So we have

p(z) = 2 · 2 · 4 ·
∫ 1−z

0
dx1

∫ x1

0
dx2

∫ x2

0
dx3 x3(1 − x3)(1 − x2)(1 − x1)

2

+ 4 ·
∫ 1−z

0
dx1

∫ x1

0
dx3x

2
3(1 − x3)

2(1 − x1)
2

These integrals can be easily calculated either by hand or with Mathematica and we obtain the

probability distribution

p(z) =
17

630
−

8

45
z3 +

4

15
z5 +

2

9
z6 −

4

7
z7 +

7

30
z8 (3.2)

which is not normalized. The normalized one is

pnorm(z) =
3

25
(z − 1)4(17 + 68z + 170z2 + 228z3 + 147z4) (3.3)
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Figure 3.3 Comparison between an exactly sample of 106 measure of

the central site’s height in a 3× 3 lattice and the analytical form of its

distribution written in equation (3.3).
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Finally we arrange our simulation’s data in a normalized histogram so that we can compare

their distribution form with our formula (3.3). The superimposed plots are shown in Figure 3.3

and look convincing.

In statistical data analysis there are several tests for the goodness of a set of data. When

one have a population with a specific statistical distribution and want to decide if a particular

sample comes from that population, it must use a parameter-free test because the distribution is

exactly know without parameters. That’s our case and we use the Kolmogorov-Smirnov test to

decide if the sample output by the simualtion differs from the hypothesized distribution pnorm(z)

in equation (3.3). Since we have seen, at least graphically, that all works fine, we presume that

the test will not reject our hypothesis.

Briefly, the test compares the empirical cumulative distribution function to the cumulative

function and it use the maximum difference between them as a statistic, called Kolmogorov-

Smirnov statistic. For a sample of n data, {xi}i=1...n, we have the empirical distribution function

Fn(x) =
1

n

n
∑

i=1

Ixi≤x (3.4)

where Ixi≤x is the characteristic function, and the statistic is

Dn = sup
x

|Fn(x) − F (x)| (3.5)

where F (x) is the hypothesized cumulative distribution, i.e. F (x) =

∫ x

−∞
pnorm(z) dz.

The variable
√

nDn follow the Kolmogorov distribution and the test is constructed by using the

critical values of this distribution. The hypothesis regarding the distributional form is rejected

if the test statistic,
√

nDn, is greater than the critical value obtained from statistical tables.

The test performed on our data bring to the following result

√
nDn = 1.022 (3.6)

with n = 106, and this is lower than the critical value α = 1.073 corresponding to a probability

greater than 20% to have a good fit.

3.2 Analysis of simulation’s output

As we said at the end of Section 2.3.1, we have ran simulations both varying the parameter τ

and the lattice size L, in order to obtain an amount of data sufficiently for a statistical analysis.

Each simulation consists in N = 104 runs of the monotone CFTP algorithm, each run exactly

sampling a feasible configuration and outputting the measure of the number of defects (i.e.
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heights greater than 1
2) into a file, together with the number of sweeps of the Markov chain

needed to reach coalescence.

Since the output comes from an exact sampling procedure, we know that our data are not

correlated and that it is possible to straightforwardly use the gaussian error analysis. All this

hypothses will be probed in the following sections.

3.2.1 Run-time

First of all, we want to know how fast our implemented algorithm is, and how long we have to

wait until coalescence is reached. This survey is needed for us to know if all in the code is working

in the right way: if we think at the family of measure µτ used in the simulation, we presume

that, at distinct values of the parameter τ , the run-times shoul be considerably different due to

the quantity of inequalities the code must proceed. Thus, if there is a small probability for a

number greater than 1
2 to be sampled (i.e. the parameter τ is near 1), a feasible configuration of

heigths is easily accomplished, remembering that all Θ’s functions in equation (2.6) are satisfied

and we are near the trivial model along the parameter curve.

We now show in Table 3.1 a summary of how long, in seconds, does it take for 10 runs

to complete, that is to have 10 exactly sampled configurations, with a different set of initial

conditions (different lattice size and one-site measure). Clearly, this time is processor-dependent,

but the qualitative argument is properly shown.

time [sec]

τ 0.500 0.750 0.900

16 0.08 0.03 0.02

32 0.41 0.21 0.09

L 64 2.02 0.79 0.58

128 10.4 3.11 2.74

256 45.8 16.2 13.2

Table 3.1 Time for outputting 10 exactly sampled configurations with

different values of L and τ

3.2.2 Data distribution

Now we focus our attention on the output of each simulation, which is a set of 104 measures of

the configuration’s density of defects.

If it was the case of a typical Monte Carlo Markov Chain simulation, we would expect

samples, that is measure, correlated in some way. We should then remove correlations and
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bias, due to the approximate sampling, if we would accomplish the right result of the mesure.

But, since we are not dealing with an approximate sampling method, we presume our data to

be statistically uncorrelated and obviously unbiased (an exact sampling method always output

configuration with the right equilibrium distribution). There is neither thermalization time nor

correlation one, so each measure we find in the output file has to be consider a normal random

variable, whose distribution has got a mean value and a standard deviation.

We present, in Figure 3.4 and 3.5, the histogram distributions of the number of defects for

the L = 256 lattice with different values of the measure parameter τ . It is clear that the dis-

tribution is a gaussian one even from the plot, but the reader can easily verify the matching

with the superimposed plot of a fitted gaussian. In both figure’s legend there is the χ2 value of

the gaussian fit over the histogram and both look very good. However we decide not to show

the mean and variance fitted value, because we prefer to run an analysis program we wrote and

which use the all data information instead of the histogram data information. Now that we are

sure all our data are distributed normally (the same fitting procedure as above was performed

on all data sets), we can straightforward analyze them.
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Figure 3.4 Distribution of defects in a 256 × 256 lattice with τ = 0.50

fitted by a gaussian.

What we are interested in is clearly the average value of the number of defects, and the

standard deviation of the distribution as the statistical error for the measure. In particular we
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Figure 3.5 Distribution of defects in a 256 × 256 lattice with τ = 0.90

fitted by a gaussian.

use the following expressions

mean value: 〈n〉 =

∑N
i=1 ni

N

variance: σ2
〈n〉 =

〈n2〉 − 〈n〉2

N

(3.7)

for the set of data {ni}i=1,...,N . We show the result of the statistical analysis on each set of

measures in Table 3.2.

3.2.3 Finite-size scaling

Since we are going to use a density of defects, we perform a transformation over each file of data

in order to obtain, for each parameter τ , a table with the measured density and its statistical

error. This is important because we want to fit these averaged values and we need an error

on them: we decide to set the error equal to the standard deviation of the distribution (from

equation (3.7)) divided by the square root of the total number of events in the distribution (e.g.√
104) and obviously by the volume of the lattice because it is a density.

We imagine that the behavior of the density as a function of the lattice size L, for a fixed value

of τ , is not affected by any of the typical effects one could find in studying a phase transition

with a Monte Carlo simulation. That is we think there are no collettive phenomena, and the

correlation function of two adjacent variable is exponentially damped. All these hypotheses are

supported by the interpretation, given in Section 2.4, of the defects as a particle-interacting gas.

Since we are not passing through a critical point of a phase transition (as it would be if we
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Measures of the number of defects

τ 0.500 0.600 0.700 0.800 0.900

16 33.00±4.62 25.12±4.21 18.06±3.74 11.60±3.17 5.60±2.29

32 128.34±8.98 97.552±8.41 70.125±7.36 45.007±6.21 21.721±4.47

L 64 506.40±18.09 384.64±16.38 276.16±14.65 177.23±12.25 85.712±8.88

128 2013.05±35.50 1528.53±32.54 1096.80±29.05 703.69±24.46 340.21±17.80

256 8027.81±71.50 6094.54±66.20 4373.35±58.88 2806.17±49.31 1356.91±35.24

Measures of the number of defects

τ 0.550 0.650 0.750 0.850 0.950

16 28.95±4.42 21.49±3.99 14.76±3.49 8.53±2.79 2.77±1.64

32 112.48±8.65 83.438±7.92 57.316±6.84 33.175±5.44 10.71±3.20

L 64 443.64±17.16 329.03±15.49 225.63±13.49 130.677±10.7791 42.24±6.45

128 1763.11±34.17 1306.99±30.89 896.33±26.79 518.81±21.51 167.54±12.76

256 7030.20±68.39 5212.14±62.83 3573.18±54.19 2068.50±42.98 667.86±25.40

Measures of the number of defects

τ 0.525 0.625 0.725 0.825 0.925

16 30.94±4.52 23.27±4.09 16.40±3.62 10.06±2.99 4.18±1.98

32 120.30±8.82 90.38±8.19 63.64±7.07 39.02±5.85 16.21±3.94

L 64 474.46±17.60 356.48±15.93 250.61±14.05 153.65±11.52 63.83±7.83

128 1886.02±34.91 1416.19±31.53 995.47±27.99 610.49±23.15 253.27±15.57

256 7520.64±70.20 5647.56±64.62 3968.96±56.47 2433.84±46.31 1009.44±31.04

Measures of the number of defects

τ 0.575 0.675 0.775 0.875 0.975

16 26.97±4.32 19.77±3.88 13.20±3.34 7.06±2.57 1.37±1.15

32 104.85±8.48 76.71±7.63 51.12±6.56 27.41±5.00 5.31±2.28

L 64 413.61±16.80 302.19±15.01 201.22±12.90 108.05±9.91 20.96±4.53

128 1644.15±33.28 1200.62±29.89 798.92±25.66 428.72±19.69 83.15±9.06

256 6555.08±67.85 4787.43±60.97 3185.86±51.91 1709.34±39.27 331.55±18.1

Table 3.2 Average and standard deviation summarizing all our simula-

tion’s data.
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try to extend our model at values of the parameter τ less than one-half), an intensive physical

quantity as the density of defects scales, with the size of the lattice, in a simple way. We have

tested our predictions by fitting the data, exposed in the previous section, with the following

function

〈ρdef (L)〉τ = 〈ρdef (∞)〉τ +
Aτ

L
+

Bτ

L2
+ O(L−2) (3.8)

Corrections of order 1/L to the “true” physical observable ρdef (∞), are due to the border effects

on the lattice. Other greater orders are subleading and we chose them in order to make the best

fit (χ2 test), and they are of some utility only for small L. Indeed, we can plot, in a logarithmic

scale, the density versus the lattice size, and we should see how points are linearly dependent

from log2 L (this procedure is show in Figure 3.8). The reader can see fits for the size scaling

in Figure 3.6 and 3.7. Moreover, we show the values for the extrapolated density of defects

(ρdef(∞)) with their error bars (σρ) in Table 3.3. As error, σρ, we choose the one given us by

the fitting procedure for the constant term in the expression (3.8).1
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Figure 3.6 Scaling of the density of defects ρ with the lattice size L for

τ = 0.500: the fitting function gives a value ρ∞ = 0.122126± 0.000009

for the density in the approximation of infinite size.

3.3 Fitting the data

Giving that this is the right procedure to extrapolate the density of defects in the thermodynamic

limit, we obtain a sequence of points, one for each parameter τ , representing the experimental

1We remark that we use the open source program Gnuplot for all the fits in this thesis.
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Figure 3.7 Scaling of the density of defects ρ with the lattice size L for

τ = 0.975: the fitting function gives a value ρ∞ = 0.00504± 0.000003

for the density in the approximation of infinite size.
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Figure 3.8 Logarithmic plot for the density of defects as a function of

the lattice size (L = 256 and τ = 0.500). If we make the logarithm of

equation 3.8 we have the −1 slope of this plot as we would. We also

note that subleading corrections are more important on small lattice

and the corresponding points have a systematic deviation from the

fitted line.
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τ ρdef(∞) σρ

0.500 0.122126 9.13·10−06

0.525 0.114403 1.21·10−05

0.550 0.106936 6.27·10−06

0.575 0.099710 9.28·10−06

0.600 0.092699 7.88·10−06

0.625 0.085900 1.17·10−05

0.650 0.079275 1.30·10−05

0.675 0.072816 1.24·10−05

0.700 0.066505 1.65·10−05

0.725 0.060357 1.18·10−05

0.750 0.054334 1.20·10−05

0.775 0.048448 1.41·10−05

0.800 0.042673 1.27·10−05

0.825 0.037013 7.71·10−06

0.850 0.031449 8.24·10−06

0.875 0.025986 7.95·10−06

0.900 0.020636 6.94·10−06

0.925 0.015344 2.43·10−06

0.950 0.010153 3.74·10−06

0.975 0.005039 2.58·10−06

Table 3.3 Density of defects extrapolated at L → ∞ for all the values

of τ .
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(simulated) trend of the free energy’s derivative (unless of a factor). What we have shown in

equation (2.23) is true for the parameter ε, but all we have to do, to take into account the

different parametrization of the measure, is to assign at each τ the corresponding value of ε

which brings to the same measure (exept for the normalization factor). The substitution is

ε = 1−τ
τ .

If we look at Table 3.3, the only thing that changes is the first column, where we are going

to put ε instead of τ , but the density doesn’t change because the probability distribution is the

same (we take into account the shift of the normalization only at the end of the procedure).

From Section 2.4, we are searching for a polynomial in ε fitting our data, and then we would

like to integrate this polynomial divided by ε. Firstly we have to pay attention at the constant

term of the polynomial, because one of our integration bound is 0, in which 1
ε diverges. For this

reason we choose to set “by hand” the first parameter of the fitting function, and we clearly put

it to 0 so that the possibly divergent term vanishes. The final result of our fitting analysis is

shown in Figure 3.9.
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Figure 3.9 Data fitted with the polynomial 0. + 0.199913 x −
0.139179 x2+0.102073 x3−0.054643 x4+0.01397 x5 where the absence

of a constant terms is forced.

Now, one may asks why we have chosen just a fifth order polynomial, and the answer is

graphically shown in Figure 3.10 and 3.11. As the labels of the two figures explain, we have

tried fitting polynomials of several different orders, with the purpose of find the best fit. Looking

only at the value of the reduced χ2 would have get the fifth order polynomial as the best fit,

but a more intuitive and simper way to see if the fit was right is to plot the difference between
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Figure 3.10 Plot of the difference between the density data and the

fitting function with 4 parameters: a fourth order polynomial. We

note a structure in the plot which show the bad quality of the fit: the

resultant χ̃2 is greater than 10.
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Figure 3.11 In this plot where the fitting function is a fifth order poly-

nomial, the structure is less visible and however fluctuate inside the

error bars. The resultant χ̃2 is 0.68 which is good.
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the data and the fitted function evaluated in the same points. This method resembles the least

squares method for fitting linearly arranged data. Indeed, when we look at this differences for

polynomial of order less than 5, we find that they fluctuate with a clearly visible pattern, that

is, there is an underlying structure which our fit doesn’t take into account. In this way we find

that the fit of Figure 3.9 is the best we can do.

This is not yet the end of our work, because each coefficient of the polynomial is a fitted

parameter, and it has an error that we must consider in order to get the uncertainty on the final

result for the free energy. It follows a table (3.4) with the fitted polynomial and the error bars

assigned to each coefficient. We are glad to see that the coefficients a and b are of the same

order of the one we have theoretically predicted in equation (2.35), using the cluster expansion

method.

a ε+ b ε2 + c ε3 + d ε4 + e ε5

a +0.199913 ± 0.000044

b −0.139179 ± 0.000489

c +0.102073 ± 0.001628

d −0.054643 ± 0.002078

e +0.01397 ± 0.0009

Table 3.4 Fitted parameters for the polynomial.

3.3.1 The free energy

Now we have to integrate, like we wrote in equation (2.26), the fitted polynomial, and we will

get back with the free-enery of the system in the thermodynamic limit. Since all we have done

is concretely a numerical procedure, we have to handle the statistical errors given by the fit, and

we have to show the free energy together with its error bar.

Helped by Mathematica 6.0, we calculate

f(ε = 1) + ln 2 =

∫ 1

0

a ε+ b ε2 + c ε3 + d ε4 + e ε5

ε
dε (3.9)

where the parameters of the numerator in the integral are shown in Table 3.4. We obtain

f(ε = 1) = −0.539666 (3.10)

The method we used to devise the error on the free energy, starting from the parameters error, is

called OAT procedure, because it consists in varying, one at a time, each fitted parameter while

other are fixed and supposed without uncertainty. Doing so we can calculate a lower and an
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upper limit for the free energy. The lower limit is −0.540209 and the upper limit is −0.539123.

They bring together to the final result for our system’s free energy

f = −0.539666 ± 0.000543 (3.11)
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4.1 Mathematica code

We initially performed some simulations with Mathematica because of the ease of visualizing

the configurations on a grid, and of implementing some kind of actions with simple code.

We created a grid, or matrix if one preferes, with the command Table[]. Adding an extra frame

of quenched variables makes the free-boundary conditions:

frame = Table[

If[i != 1 && i != L + 2 && j != 1 && j != L + 2, 0, 1], {i, 1,

L + 2}, {j, 1, L + 2}];

Then we created the starting configurations, 0̂ and 1̂, named here as X and Y, of the Markov

chains of CFTP algorithm. The variable dist takes into account the differences between the

chains and when it turn out to be 0 then the chains have coalesced. We update it on the run,

with O(1) complexity, instead of calculating it.

initialize := Module[{},

thedists = {};

X = Table[

If[EvenQ[i + j] && i != 1 && i != L + 2 && j != 1 && j != L + 2,

1, 0], {i, 1, L + 2}, {j, 1, L + 2}];

Y = 1 - X - frame;

dist = L^2;]

The real grid of numbers, excluding the frame, is obtained through the function

interiore[mat_] := Table[mat[[i, j]], {i, 2, L + 1}, {j, 2, L + 1}];

and the visualization tool is the following complicated function

showstate := Module[{},

If[Length[thedists] > 0 && dist > 0,

Print["Run at level ", levelnow,
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", but not succeeded. Distance is ", dist, " out of ", L^2,

"."];

Print[GraphicsRow[{

ListDensityPlot[1 - interiore[X],

ColorFunctionScaling -> False, Mesh -> False,

InterpolationOrder -> 0, DisplayFunction -> Identity],

ListDensityPlot[1 - interiore[Y],

ColorFunctionScaling -> False, Mesh -> False,

InterpolationOrder -> 0, DisplayFunction -> Identity],

ListDensityPlot[1 - interiore[Abs[X - Y]],

ColorFunctionScaling -> False, Mesh -> False,

InterpolationOrder -> 0, DisplayFunction -> Identity],

ListPlot[Sqrt[thedists], PlotRange -> {0, L + 1},

DisplayFunction -> Identity]

}, ImageSize -> 800]],

If[Length[thedists] > 0 && dist == 0,

Print["Run at level ", levelnow, ", and succeeded."];

Print[GraphicsRow[{

ListDensityPlot[1 - interiore[X],

ColorFunctionScaling -> False, Mesh -> False,

InterpolationOrder -> 0, DisplayFunction -> Identity],

ListPlot[Sqrt[thedists], PlotRange -> {0, L + 1},

DisplayFunction -> Identity]

}, ImageSize -> 600]],

Print["Distance is ", dist, " out of ", L^2, "."];

Print[GraphicsRow[{

ListDensityPlot[1 - X, ColorFunctionScaling -> False,

DisplayFunction -> Identity],

ListDensityPlot[1 - Y, ColorFunctionScaling -> False,

DisplayFunction -> Identity],

ListDensityPlot[1 - Abs[X - Y],

ColorFunctionScaling -> False,

DisplayFunction -> Identity]

}, ImageSize -> 600]]]];];

that plot the matrices in different ways depending on reaching or not coalescence.
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The interesting part of the Mathematica code is the graphic one we have just seen, so we do

not go on showing functions implementing the core of the simulation’s algorithm, which is the

purpose of the following section, but we want to display some figures.
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Figure 4.1 Example of a plot when the chains have coalesced.
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Figure 4.2 Example of a plot when the chains have not coalesced.

4.2 C++ code

An intense use of Mathematica code for simulations, in this case we mean, is not the best. If

the grid size L becomes too large, from L = 128 onward, the algorithm will take several minutes

to output just one exactly sampled configuration. Thus we decided to run the main simulations

written in C++ language and we noted a great improvement of time performances.

We chose for a dynamic use of the memory, and every grid of numbers (i.e. height’s configuration)
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is a double pointer to a real number. As we know, every monotone CFTP run must start from

the extremal configurations, 0̂ and 1̂, here in the parity-invariant notation. We thus introduced

a function that initialize the starting grids to the right values.

void starting()

{

for(int i=1; i<(Lx+1); i++)

for(int j=1; j<(Ly+1); j++)

{

frame[i][j] = 0;

X[i][j] = (i+j)%2 == 0 ? 0 : 1;

Y[i][j] = (i+j)%2 == 0 ? 1 : 0;

}

for(int i=0; i< (Lx+2); i++)

{

frame[0][i] = frame[Lx+1][i] = frame[i][0] = frame[i][Ly+1] = 1;

X[0][i] = X[Lx+1][i] = X[i][0] = X[i][Ly+1] = 0;

Y[0][i] = Y[Lx+1][i] = Y[i][0] = Y[i][Ly+1] = 0;

}

N = Lx*Ly;

}

The variable N above is initially set to the number of points in the grid but has the same

meaning as dist in the Mathematica code, that is two chains have coalesced if N is 0.

Now we show the update function which uniformly pick a vertex (i, j) of the grid and a height

h; the variable h has a probability distribution depending on the parameter tau in the code.

The reader should note we used one of the Gnu Standard Library random numbers generators

(here RANDOM_GEN): this choice came after some testing simulations and looked convincing. More

specifically, the generator is ranlxs0().

During one step of the coupled Markov chain, the algorithm must check 4 inequalities for each

chain and then 2 for testing the distance as the reader can see in the following function.

void update()

{

int i,j;

double h;

i = 1 + gsl_rng_uniform_int (RANDOM_GEN, Lx);

j = 1 + gsl_rng_uniform_int (RANDOM_GEN, Ly);
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h = 0.5*gsl_rng_uniform (RANDOM_GEN);

if ( gsl_rng_uniform (RANDOM_GEN) > tau )

h += 0.5;

if ( fabs(X[i][j] - Y[i][j]) < 1e-9 ) N++;

if ( (h+X[i+1][j])<=1 && (h+X[i-1][j])<=1 && (h+X[i][j+1])<=1 && (h+X[i][j-1])<=1 )

X[i][j] = h;

if ( (h+Y[i+1][j])<=1 && (h+Y[i-1][j])<=1 && (h+Y[i][j+1])<=1 && (h+Y[i][j-1])<=1 )

Y[i][j] = h;

if ( fabs(X[i][j] - Y[i][j]) < 1e-9 ) N--;

}

Now let’s look at the main part of the CFTP algorithm written below.

int CFTPrun()

{

N = Lx*Ly;

level0 = log(Lx*Ly+1)/log(2);

int levelnow = level0;

while ( N>0 )

{

starting();

for (int level=levelnow; level>level0; level--)

runlevel(level);

runlast();

levelnow++;

}

return levelnow-1;

}

The reader should recognize the structure introduced in Section 1.2:

• the while loop proceeds until coalescence happens (the test variable is N, the distance

between the chains);

• every time we restart the Markov chain we have to initialize the configurations to 1̂ and 0̂

with the starting() function;

• a run of the Markov chain is divided in sequent steps, each one remembering the random

variable used, characterized by the use of the variable level: increasing this variable

results in doubling the time-steps of the chain;
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The importance of using the same random numbers at the same sweeps is known and we can

realize this condition by suitably re-setting our random number generator using a seed. Hence

we associate each level with a seed rseed and we define a function with level as argument.

void runlevel( int lev)

{

int tmax = 1;

tmax = tmax << lev;

gsl_rng_set (RANDOM_GEN,(rseed+lev));

for (int t=0; t<tmax; t++)

update();

}

This function simply set the random generator to the right seed and run the update step for

tmax times, where tmax is in the form 2level. Note how we use the bitwise operator << to

do the power operation. This trick speeds up all the process as we had seen with a debugging

session on the code.

To conclude the description of the code we show a function that is called by the CFTP function

at the end of every run: its meaning is clear if one note how much steps the update do. We

define above the variable level0 and if we look at the line tmax = tmax << level0; in the

code below we can say that the Markov chain is updated a number of times equal to the number

of site in the grid plus one. This means we have made the hypothesis that the last sweep which

the Markov chain should do, must have the dimension, at least, of the cover time of the grid

(since each update step pick up only a vertex).

void runlast()

{

int tmax = 1;

tmax = tmax << level0;

gsl_rng_set (RANDOM_GEN,rseed);

for (int t=0; t<tmax; t++)

update();

}

For reasons of completeness, we show the main program and the definitions.

#define Lx 256

#define Ly 256
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#define tau 0.50

#define runs 10000

gsl_rng * RANDOM_GEN;

double **frame;

double **X;

double **Y;

int **defects;

int main()

{

RANDOM_GEN = gsl_rng_alloc(gsl_rng_ranlxs0);

int final_level;

ofstream output("defects.dat");

initialize();

initdefects();

for (int count=0; count<runs; count++)

{

rseed += 32;

final_level = CFTPrun();

output << measuredefects(X) << ’ ’ << final_level << endl;

}

output.close();

freemem();

freedefects();

gsl_rng_free (RANDOM_GEN);

}
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5. Conclusions and perspectives

In this thesis we have been concerned with the calculation of the free energy in the classical

model of corrugated surfaces. We decided for a computational approach to the final result using

a Markov Chain Monte Carlo method. To avoid thermalization, correlation times and other

effects affecting physical observables in these methods, we used an exact sampling algorithm

called coupling from the past, devised by Propp and Wilson [4], which, on the other hand,

outputs configurations following the exact equilibrium distribution of the Markov chain. The

applicability of this algorithm to our model wasn’t yet tested, so we analized the whole procedure

from the beginning, finding that the simulations terminated and that the outputs were following

the right distribution.

After this, it came a theoretical topic related to the mesure of a free energy from a sam-

pling algorithm. We knew that, in a sampling procedure, the weight of each configuration is

determined with an overall multiplicative constant, impossible to identify. This lead to the

impossibility of measuring the free energy directly from an average procedure on the sampled

configurations. We then devised the trick of studying a family of systems along a parameter

curve, such that on an extremum there was our model and on the other extremum a trivial and

solvable model. Along the parameter curve, we found a local observable on the lattice repre-

senting the derivative of the free energy. In this way we managed to integrate the observable to

obtain the final result.

5.1 Possible issue of the final result

An article [2] appeared last year, but reviewed just this summer, is strictly related to the topic

of our work. The authors, S. Majumdar and O. Martin, study the statistical properties of the

number of maxima M in the model of random energy landscape, and, in a section of their

work, they compute the probability of a maximally packed configuration of maxima with size

N (e.g. P (Mmax, N)). Following a “large deviation” law, they write this probability as

P (Mmax, N) ∼ exp[−NΦ(ymax)] ∼ γN
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where Φ is a large deviation function and γ is a lattice dependent constant whose logarithm can

be interpreted as the free energy of the system. With their simulation in 2-dimensional lattice,

they obtain a value for γ, that is

γ2-d = 1.6577 ± 0.0006

Noting that a maximally packed configuration of N sites is just a feasible configuration with

|V | = N in the model of corrugated surfaces, and that its probability is the partition function

in equation (2.1), the constant γ is related to our free energy, such that

γ = exp[−f ]

We then have too a value for γ that is

γcorr = 1.7154 ± 0.0009

and we see that they are not consistent.

A possible way to deal with this discrepancy could be to talk with the authors of the article and

to find, if there is, an error in one of the two procedures. Our present understanding of this issue

is that the authors are implicitly making an approximation of mean-field fashion (although a

refined one), and the discrepancy comes from loop corrections to their procedure. A possibility

could be to test their procedure against the “ladder graph”, i.e. the strip of width 2, which is

both exactly solvable, and has some cycles.

5.2 Possible presence of a phase transition

The study of the model alongside a parameter family of measures has brought to a great result,

but we have explored only a restricted part of the systems dependent from the parameter ε.

Since we now know what’s the behavior of defects as ε goes from 0 to 1, we could ask what

happens if ε→ ∞. We could analyze, with the same statistical tools we have used in this thesis,

simulations made at parameter τ values less than 1/2.

Indeed, we have made these simulations during our preliminary checks with Mathematica.

What we have noted is a significant slowing down of the coalescence time and the presence of

defects collected together in clusters. These are clear clues of a possible phase transition. Since

we have not investigated further on, we can only show some figures of the defects configurations,

with in mind the cluster expansion of Section 2.4.
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(a) Configuration of defects at τ =

0.500

(b) Configuration of defects at τ =

0.200

Figure 5.1 Example of a plot of defects for a lattice 16 × 16. Toward

the phase transition

(a) Configuration of defects at τ =

0.150

(b) Configuration of defects at τ =

0.100

Figure 5.2 Example of a plot of defects for a lattice 16 × 16. We can

see an ordered phase.
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