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Introduction

A toy model for strong interactions

The theoretical physicist typically spends a lot of e�orts to study models
whose elementary excitation, or particle, content is not directly observable
by his experimental colleague, since the fundamental objects they describe
do not propagate individually, but form more complex structures, such as
composite particles or bound states. Examples can be found in every branch
of Phisics: from the super�uidity and superconductivity theories, where,
respectively, atoms and electrons form strongly correlated states responsible
for the peculiar characteristics of these phases, to the models that describe
the formation of atomic nuclei starting from neutrons and protons.

That's obviously also the case for Quantum Chromodynamics: at low
energy, quarks and gluons do not exist as free particles, but are con�ned in
composite states, namely mesons and baryons. As a founding part of the
Standard Model, QCD shares with Electroweak theory the great success the
theory of elementary particles gained in describing the natural phenomena.
However, in spite of the e�orts of entire generations of physicists, QCD has
been proven to be an exceptionally di�cult theory, in the �rst place because
of the non-abelian structure of its symmetry gauge group, the colour group
SU(Nc). In order to �nd clues for the mechanism governing the strong in-
teractions, in the years have been formulated a lot of �toy models�, which
preserve some of the peculiar features of QCD but are somewhat easier to
solve.

In the present work we will study Quantum Chromodynamics in two
space-time dimensions, QCD2. In this case, exploiting its low dimensional-
ity, it is possible to eliminate the gauge �elds via a gauge �xing procedure,
obtaining in return a con�ning potential between quarks that can be inter-
preted as an interaction mediated by gluons. A pioneer in this �eld has been
Gerardus 't Hooft, who published in 1974 the article [15] in which he studied
the properties of the model in the limit for large number of colours Nc.

In order to formulate properly a quantum �eld theory, a regularization
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INTRODUCTION iv

procedure is mandatory, to deal with the in�nities that arise at various level
of the calculations. We will use a lattice regularization scheme: the theory
is formulated on a lattice with �nite spacing a, which provides a natural
momentum cut-o�. The limit of zero lattice spacing can be performed at
any time to eventually obtain the continuum description. This approach
makes possible to formulate the theory in a non-perturbative way, allowing
in principle to access informations about the structure of the vacuum and
the bound states. However, its main disadvantage is the fermion doubling

problem: when discretized in a direct (naive) way, a fermion theory becomes
redundant in its particle content, acquiring doublers that do not disappear in
the continuum theory. To evade this problem, we will use the Wilson method
[35], which consists in adding terms in the action which give to the doublers'
mass a contribution divergent when a → 0, so that the spurious excitations
can never be produced in a physical process.

The Wilson method, however, explicitly breaks a global invariance of the
classical action, the chiral symmetry, that potentially might be not recovered
in the continuum limit, because of marginal terms that modify the conserva-
tion law associated. When this happens, we say that the classical symmetry
is anomalous. The connection between fermion doublers and chiral anomaly
is a deep one and deserves to be investigated, but since it is slightly out of the
scope of the present work, we present it in appendix E: there, the discussion
is self contained and can be used for reference in future studies. However,
the reader con�dent with the Wilson lattice formulation can skip it and start
directly from chapter 1.

E�ective action and Bogoliubov transformations

As the elementary degrees of freedom for models exhibiting con�nement are
hidden, the physical phenomena are better described by e�ective theories

that are formulated in terms only of the composite states. There is great
interest in deriving the characteristics of these �low energy� theories from
those of the fundamental ones: in this way, an understanding of Nature in
terms of �rst principles could be achieved. Recently, in [8], a method has been
proposed that use to this aim of the formalism of Bogoliubov transformations.

These are unitary transformations in the canonical operators algebra that
mix creation and annihilation operators. They have been applied before in
many branches of physics, from the BCS theory of superconductivity [3], their
�rst historical benchmark, to General Relativity (in the Mukhanov theory of
in�ation [23], in describing the Unruh e�ect [11], in a formulation of black
holes thermodynamics [34]). Indeed, because of the mixing between opera-
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tors, they induced also a transformation in the space of physical states, which
can now be built acting with the new creation operators on a new vacuum
state (that is, the state annihilated by the new destruction operators). Im-
posing a variational principle, that is demanding this new vacuum to be the
one with minimal energy, the parameters of the transformation can be �xed
and the new vacuum interpreted as the physical one. In BCS, it corresponds
to the state where the electrons are coupled in strongly correlated pairs, the
Cooper pairs, while in General Relativity the vacuum itself is a matter of
point of view (it depends on the observer).

The Bogoliubov transformations have been successfully applied also in
QCD2, starting from [2] to more recent studies (see [17]). Here, the new
operators are interpreted as generating quasiparticles, which are shown to
form bound states, the mesons. However, in spite of their intuitiveness, their
application has been somewhat limited in more realistic quantum �eld theo-
ries: the need to start from the canonical (and so Hamiltonian) approach to
formulate the theory makes things terribly complicated when a renormaliza-
tion procedure has to be introduced, because then one cannot use the explicit
Lorentz-covariant form of the action to guess the shape of the counterterms.

However, the method mentioned earlier can in principle overcome these
problems: noting that the partition function of a quantum �eld theory admits
an operatorial representation

Z = Tr e−βĤ (1)

and a functional representation

Z =
∫

[Dφ ]e−S[φ1,φ2,··· ] (2)

whose identi�cation is a matter of textbooks, we can switch from one for-
mulation to the other. Performing �rst the transformation in the operatorial
approach and then pass to the functional one, an e�ective action with the
same original symmetries can be obtained. In this action we can isolate the
vacuum contribution and the quasiparticle one, and so get some relevant in-
formation about the con�ning phase of the theory without the drawbacks of
the canonical scheme.

The application of this method to QCD2 in the limit of large number
of colours, whose characteristics are quite well understood and explained in
literature, it's a test for its validity: if we could deduce in this formulation the
expected informations about vacuum structure, quasiparticles con�nement
and meson dominance, then we have a remarkable alternative approach to
the construction of e�ective quantum �eld theories.
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Thesis structure

At �rst, in chapter 1, we introduce our model for lattice QCD2 and state all
its features we will use in the sequel. Then, in chapter 2 we describe the gen-
eral method to obtain an e�ective theory using Bogoliubov transformations.
The main part of our work start from chapter 3: there, we apply this method
to our model, getting an expression for the vacuum energy and explaining
why the quasiparticles are con�ned. Finally, in 4 we bosonize the model,
formulating it in terms of e�ective colourless mesons, with an interaction
contribution and a proper kinetic term. The results are summarized in chap-
ter 5. The appendices from A to D simply state conventions and specify some
aspects introduced in the main text. As already said, appendix E is a self
contained report about the chiral anomaly in Wilson's lattice formulation,
included to outline his approach and to deepen this intriguing aspect, barely
mentioned in the previous chapters: we hope it can be a valuable addition
for the interested reader.



Chapter 1

QCD2 on the lattice

In this chapter we introduce the lattice formulation of QCD2 and enunciate
its main features. In section 1.1 we write the discrete action of the theory in
Wilson's scheme. Then, in section 1.2 we build its space of states and obtain
an expression for the transfer matrix, the operator that generates the lattice
equivalent of time translations. Finally, in section 1.3 we sketch brie�y some
results from the weak coupling expansion of the theory, the limit for small
gauge coupling constant g.

1.1 Wilson-Dirac action

The action for our model consists of two distinct terms: a fermion and a pure
gauge ones, such that

S = SF + SG (1.1)

The fermion part of the action is

SF = a2
∑

x∈(aZ)2


Ç
m+

2r

a

å
ψ̄(x)ψ(x)

−
ñ
ψ̄(x)

r − γ0

2a
U0(x)ψ(x+ a0̂) + ψ̄(x+ a0̂)

r + γ0

2a
U †0(x)ψ(x)

ô
−
ñ
ψ̄(x)

r − γ1

2a
U1(x)ψ(x+ a1̂) + ψ̄(x+ a1̂)

r + γ1

2a
U †1(x)ψ(x)

ô
(1.2)

The terms proportional to the Wilson parameter r are introduced to solve
the fermion doubling problem (for more details on this point, see appendix
E). In two space-time dimensions the 2×2 Hermitian γ matrices satisfying

1
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the (Euclidean) Cli�ord algebra

{γµ, γν} = 2δµν (1.3)

can be represented as1

γ0 =

Ç
1 0
0 −1

å
= σ3, γ1 =

Ç
0 i
−i 0

å
= −σ2 (1.4)

A third Hermitian matrix, that we call γ5 in analogy with four space-time
dimensions, has the properties

γ5 = −iγ0γ1 =

Ç
0 1
1 0

å
= σ1, {γ5, γµ} = 0 (1.5)

The �elds ψ, ψ̄ are two-component spinors in Dirac indices. The operators

P± =
1± γ0

2
(1.6)

project, respectively, on the components of the fermion �elds that propagate
forward and backward in time:

ψ+ = P+ψ

ψ†− = P−ψ

ψ†+ = ψ̄P+

−ψ− = ψ̄P−
(1.7)

The link variable Uµ(x) belongs to the gauge group SU(Nc) and plays the
role of a connection, such that the fermion action becomes invariant under
local (point-dependent) SU(Nc) transformations. Therefore, under the gauge
transformations

ψ(x)→ Ω(x)ψ(x); ψ̄(x)→ ψ̄(x)Ω†(x) (1.8)

it changes according to

Uµ(x)→ Ω(x)Uµ(x)Ω†(x+ aµ̂) (1.9)

It can be represented in terms of elements of the algebra via the exponential
map

Uµ(x) = eigaAµ(x) (1.10)

1Our convention agrees with that of reference [36], after taking the basis in which γ0

is diagonal.
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with the algebra-valued Hermitian �eld2

Aµ(x) =
N2
c−1∑
l=1

Alµ(x)Θl (1.11)

and Θl a set of Hermitian generators of the algebra, normalized such that

tr
Ä
ΘlΘm

ä
=

1

2
δlm (1.12)

The quadratic Casimir operator is

Θ ·Θ ≡
N2
c−1∑
l=1

ΘlΘl =
N2
c − 1

2Nc

INc (1.13)

We will use also the following Fierz-type identity (see [24]):

N2
c−1∑
l=1

Θl
abΘ

l
cd =

1

2

Ç
δadδbc −

1

Nc

δacδbd

å
(1.14)

Giving up axial interchange symmetry, as in [12], we can introduce a
di�erent lattice spacing aµ and Wilson parameter rµ for each axis: the action
becomes

SF = a0a1

∑
x∈(a0Z)×(a1Z)


Ç
m+

r0

a0

+
r1

a1

å
ψ̄(x)ψ(x)

−
ñ
ψ̄(x)

r1 − γ1

2a1

U1(x)ψ(x+ a11̂) + ψ̄(x+ a11̂)
r1 + γ1

2a1

U †1(x)ψ(x)

ô
−
ñ
ψ̄(x)

r0 − γ0

2a0

U0(x)ψ(x+ a00̂) + ψ̄(x+ a00̂)
r0 + γ0

2a0

U †0(x)ψ(x)

ô
(1.15)

where
U0(x) = eiga0A0(x), U1(x) = eiga1A1(x) (1.16)

We call this representation of the action the �mass form�, because the bare
mass parameter m is explicit in it. Introducing the hopping parameters

κ0 ≡
1

2

Ç
ma0 + r0 + r1

a0

a1

å−1

, κ1 ≡
1

2

Ç
ma1 + r0

a1

a0

+ r1

å−1

(1.17)

2We will use the �late� latin letters l, m, · · · to indicate the N2
c −1 indices of the adjoint

representation, while we will assign the �early� letters a, b, · · · to the Nc indices of the
fundamental one. However, as long as possible, we will omit the latter to lighten notation:
when not explicitly written, they are contracted following the natural order (for example,
ψ̄Θlψ = ψ̄aΘl

abψb). �tr� is a trace over the fundamental indices.
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so that
ζ ≡ a0

a1

=
κ1

κ0

(1.18)

and rescaling the fermion �elds into the dimensionless variables

ϕ =

Ç
a1

2κ0

å1/2

ψ, ϕ̄ =

Ç
a1

2κ0

å1/2

ψ̄ (1.19)

the action can be written in the �hopping-parameter form�

SF =
∑
n∈Z

∑
t∈Z

ϕ̄n,tϕn,t
− κ1

ñ
ϕ̄n,t(r1 − γ1)(U1)n,tϕn+1,t + ϕ̄n+1,t(r1 + γ1)(U †1)n,tϕn,t

ô
− κ0

ñ
ϕ̄n,t(r0 − γ0)(U0)n,tϕn,t+1 + ϕ̄n,t+1(r0 + γ0)(U †0)n,tϕn,t

ô
(1.20)

with dimensionless lattice units

t = x0/a0, n = x1/a1 (1.21)

To avoid inessential complications due to time doublers in the construction
of the fermionic transfer matrix, which we will discuss in the next section, we
will always take r0 = 1, so that the operators r0 ± γ0 become the projectors
(1.6).3

A standard choice of the pure gauge action, that reduces to the Yang-Mills
action in the continuum limit, is

SG =
1

a0a1

∑
P

1

g2

î
2Nc − Tr

Ä
UP + U †P

äó
(1.22)

where the plaquette sum and variables are de�ned by

∑
P

=
1

2

∑
x

1∑
µ,ν=0

UP = Uµ(x)Uν(x+ aµµ̂)U †µ(x+ aν ν̂)U †ν(x)

(1.23)

As it is clear from (1.22), the bare coupling constant g in QCD2 has di-
mension of mass (the theory is super-renormalizable) while the �eld Aµ is

3For a construction of the fermionic transfer matrix with a generic r0, using a double
time slice Hilbert space formalism, see [32].



CHAPTER 1. QCD2 ON THE LATTICE 5

dimensionless. An explicit form for the plaquette variable can be obtained
from (1.10) via the Baker-Campbell-Hausdor� formula: setting

UP = eigaµaνGµν(x) (1.24)

then the lattice (algebra-valued) �eld strength is

Gµν(x) = Fµν(x) + o(a) (1.25)

Fµν(x) = ∂(+)
µ Aν(x)− ∂(+)

ν Aµ(x) + ig[Aµ(x), Aν(x)] (1.26)

where the right derivative is de�ned as in (A.2).

1.2 Transfer matrix

The quantum theory descends, in the functional formalism, from the partition
function

Z =
∫
DU DψDψ̄ e−S[U,ψ,ψ̄] (1.27)

where the total action is
S = SF + SG (1.28)

The fermionc measure is de�ned by

DψDψ̄ =
∏
x

dψ(x)dψ̄(x) (1.29)

where dψ(x)dψ̄(x) denotes a Berezin integral over the Grassmann variables
ψ, ψ̄ at each site, while DU is the Haar measure on SU(Nc). Introduc-
ing external sources we could de�ne a generating functional and establish a
perturbative series as in the continuum. In principle all the theory can be
obtained in this manner, because on the lattice the functional integrals are
well de�ned (provided eventually the use of a �nite box and of a procedure
of thermodynamic limit): that's exactly the usual reason to adopt lattice
regularization. On the other hand, there is a more direct way to �nd the
quantum theory on a lattice, which consists in building up the Hilbert space
of physical states, where the �elds of the theory act as particles creation and
annihilation operators. That's the formalism of second quantization where
QFT originated from, today still relevant in many branches of theoretical
physics, such as the study of quantum many-body systems. In QCD, the
states of the system are in a Fock space F that can be written as a tensor
product of a pure fermion space of states FF and a pure gauge �eld Fock
space FG.
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The bridge between the functional and the operatorial formalism is pro-
vided by the partition function itself, which, from a quantum statistical point
of view, is de�ned as the volume of the accessible states of the system, each
weighted by its Boltzmann factor:

Z = TrF e−βĤ (1.30)

where TrF denotes a sum over states and Ĥ is the quantum Hamiltonian.
The connection between this equation and a path integral representation such
as that in (1.27) is a standard textbook matter and we will not discuss it (for
details see, for example, [36]). We just point out that, as the Hamiltonian is
the generator of continuum time evolution, on the lattice we don't have one
readily available, because in our model also time is discrete. Thus, the role
of the Boltzmann factor is taken by the transfer matrix T̂t,t+1, the operator
that maps the Hilbert space of states de�ned at time t into that de�ned at
time t+1. If this operator is self-adjoint and strictly positive, then the lattice
Hamiltonian can be de�ned as

Ĥ = − 1

a0

ln T̂t,t+1 (1.31)

The proof of the existence of such an operator for Wilson fermions in the
temporal gauge U0 = 1 can be found in [20], [10], [32] and [31]. In order to
work in a more general gauge, we will use a slightly di�erent method, as in
[8]. To get the explicit form of the transfer matrix in our present model, we
will sketch it brie�y for completeness.

Let's focus on the fermionic part of the Hilbert space of states. The
partition function (1.27) can be written as

Z =
∫
DU e−SG[U ] TrF

∏
t

JtT̂t,t+1 (1.32)

where TrF denotes the trace over the fermion Fock space. The operator T̂t,t+1

is the fermion transfer matrix

T̂t,t+1 = T̂ †t V̂tT̂t+1 (1.33)

where

T̂t = exp
î
−û†Mtû+ v̂Mtv̂

†ó exp [v̂Ntû] (1.34)

V̂t = exp
î
û† lnU0,tû− v̂ lnU †0,tv̂†

ó
(1.35)

Jt = exp
î
tr
Ä
Mt +M†

t

äó
(1.36)
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andMt, Nt, U0,t are matrices in internal (colour) and space (but not time,
which is just a label) indices, with the last one de�ned as

[Uµ,t]n1n2 ≡ δn1n2(Uµ)n1,t (1.37)

Therefore, �tr� is a sum over these indices. The symbol û† (v̂†) denotes the
creation operator of fermions (antifermions) and carries internal and space
indices understood (in two space-time dimensions, they carry no Dirac in-
dex because they are single-valued). In a fermion space, the kernel of an
operator can be expressed in terms of matrix elements between canonical
coherent states; using formulas collected in section A.3 it's easy to get, from
the transfer matrix (1.33),

〈ρt, σt|T̂t,t+1|ρt+1, σt+1〉 = exp
î
ρ†tNtσ†t

ó
exp
î
ρ†te
−MtU0,te

−Mt+1ρt+1

ó
· exp

î
−σt+1e

−Mt+1U †0,te−Mtσ†t
ó
exp [σt+1Nt+1ρt+1]

(1.38)
where |ρt, σt〉, |ρt+1, σt+1〉 are canonical coherent states in the Hilbert spaces
de�ned, respectively, at time t and t + 1; ρt, σt, ρt+1, σt+1 are the corre-
sponding Grasmannian eigenvalues (they carry a space and a colour index
understood); we also used the additional hypothesis that the matrices M,
N are Hermitian (for details of the above calculation, see [27]). Inserting
appropriately the resolution of unity (A.51) and using equation (A.48) we
get, for the trace in (1.32),

TrF
∏
t

JtT̂t,t+1 =
∫ ∏

t

î
Jt dρ†tdρtdσ

†
tdσt

ó
e−S̃F (1.39)

with

S̃F =
∑
t

î
ρ†tρt − σtσ†t − ρ†tNtσ†t − σt+1Nt+1ρt+1

− ρ†te−MtU0,te
−Mt+1ρt+1 + σt+1e

−Mt+1U †0,te−Mtσ†t
ó

(1.40)

Introducing the two-component spinors χ, χ† (in spite of the †, these spinors
are independent from an algebra construction point of view) via the associ-
ations

χt =

(
ρt
σ†t

)
, χ†t = (ρ†t , σt), χ̄t ≡ χ†tγ

0 = (ρ†t ,−σt) (1.41)

we can write

S̃F =
∑
t

î
χ̄tχt + χ̄t

Ä
iγ1Nt

ä
χt

− χ̄te−MtP+ U0,te
−Mt+1χt+1 − χ̄t+1e

−Mt+1P− U †0,te−Mtχt
ó

(1.42)
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Operating the change of variables

ϕt =
e−Mt

√
2κ0

χt, ϕ̄t = χ̄t
e−Mt

√
2κ0

(1.43)

which simpli�es the Jacobian J in the integration measure, we obtain

S̃F = 2κ0

∑
t

î
ϕ̄t
Ä
e2Mt + iγ1eMtNteMt

ä
ϕt − ϕ̄t U0,tP+ϕt+1 − ϕ̄t+1U †0,tP−ϕt

ó
(1.44)

Comparing this result with equation (1.20) we �nd

Bt ≡ 2κ0e
2Mt = I− κ1r1

Ä
U1,tT1 + T †1U

†
1,t

ä
(1.45)

Nt = −iκ1B−1/2
t

Ä
U1,tT1 − T †1U

†
1,t

ä
B−1/2
t (1.46)

where we used the de�nition (A.1) for the lattice shift operators.

1.3 Gauge �xing and weak coupling expansion

The gauge action (1.22) can be written as a quadratic plus an interaction
part in the �eld Aµ(x) only in the continuum limit, when it becomes the usual
Yang-Mills action for gluons. In order to de�ne a gluon propagator for any
�nite lattice spacing a we need to formulate a perturbation theory in g on the
lattice, the so called weak coupling expansion, mirroring the diagrammatic
series in the continuum. The lattice procedure has a number of complications
compared to the usual formulation, some of which we brie�y mention:

• Firstly, in order to keep gauge invariance explicit for any �nite lattice
spacing a, a lot of new vertices are introduced. These vertices correctly
do not survive in the continuum limit (they are irrelevant), but never-
theless they complicate considerably the perturbation series when a is
kept �xed.

• To express the Haar invariant measure DU in terms of the adjoint
measure DA , a metric of the gauge group SU(Nc) must be inserted
in the functional integral. This metric can be considered as a new
addend of the action, which generates other vertices (usually, these
vertices diverge in the continuum limit, because they play the role of
mass renormalization counterterms).

• Also, a gauge �xing is mandatory to de�ne correctly the functional
integral (as in the continuum). In the Faddeev-Popov picture, ghost
�elds must be included in the theory to preserve unitarity.
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We won't get in the details of the points above: the interested reader can
�nd complete discussions in textbooks such as [22] and [29]. For our future
convenience, we only need an expression for the gluon propagator at the
lowest order in g (that is, at tree level) in the Coulomb gauge. This gauge
in two space-time dimensions is �xed by the condition

U1(x) = 1 ⇐⇒ A1(x) = 0 (1.47)

so that the only gluon �eld remaining in the theory is A0. The gauge action
becomes

SG =
1

a0a1

∑
x

1

g2

¶
2Nc − Tr

î
U0(x)U †0(x+ a11̂) + U0(x+ a11̂)U †0(x)

ó©
(1.48)

Therefore, the quadratic term in A0 (i.e. the lowest term in the coupling
constant g) is

S
(0)
G = a0a1

∑
x

N2
c−1∑

l,m=1

∂
(+)
1 Al0(x)∂

(+)
1 Am0 (x) Tr

Ä
T lTm

ä
=
a0a1

2

∑
x

N2
c−1∑
l=1

∂
(+)
1 Al0(x)∂

(+)
1 Al0(x)

(1.49)

Using the lattice translational invariance, it is easy to show that the above
expression can be written as

S
(0)
G = −a0a1

2

∑
x

N2
c−1∑
l=1

Al0(x)∂
(−)
1 ∂

(+)
1 Al0(x) (1.50)

The free theory is simply (N2
c − 1 copies of) the one of a free massless scalar

boson. The generating functional is

Z(0)
G [J0] =

1

Z(0)
G

∫
DA0 exp

ñ
1

2

Ä
A0, (∂1)2A0

ä
+ (J0, A0)

ô
(1.51)

where Z(0)
G = Z(0)

G [0], (∂1)2 = ∂
(−)
1 ∂

(+)
1 and we used the notation

(f, g) = a0a1

∑
x

N2
c−1∑
l=1

f l(x)gl(x)

(Mf)l(x) =
∑
y

N2
c−1∑
m=1

M lm(x, y)fm(y)

(1.52)
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Solving the gaussian integral we get

Z(0)
G [J0] = exp

ñ
−1

2

Ä
J0, (∂1)−2J0

äô
(1.53)

so that the free gluon propagator is

Glm00 (x, y) ≡ 〈Al0(x)Am0 (y)〉

=

Ç
1

a0a1

δ

δJ l0(x)

åÇ
1

a0a1

δ

δJ l0(x)

å
Z(0)
G [J0]

∣∣∣∣∣
J0=0

= − 1

a0a1

δlm
î
(∂1)−2

ó
xy

(1.54)

Using the Fourier transform (A.10) we get the momentum representation

Glm00 (p, q) = (2π)2δ(2)(p+ q)Glm00 (p)

Glm00 (p) ≡ δlm
1

(p̂1)2

(1.55)

with

p̂1 =
2

a1

sin
a1p

1

2
(1.56)

so that

Glm00 (x, y) = δlm
δx0,y0

a0

∫ π/a1

−π/a1

dp

2π

eip(x
1−y1)

p̂2
(1.57)

In the continuum limit a0, a1 → 0 this equation gives the well known result

Glm00 (x, y) = δlmδ(x
0 − y0)

∫ +∞

−∞

dp

2π

eip(x
1−y1)

p2

= −1

2
δlmδ(x

0 − y0)
∣∣∣x1 − y1

∣∣∣
(1.58)

where the last equality can be obtained with a prescription to regularize the
integral (see, for reference, [17]). In this form, it is more evident that, in
two space-time dimensions, the interaction between quarks mediated by the
gluons yields to linear con�nement.



Chapter 2

E�ective action: general
formalism

It's now time to describe the method [8] to obtain an e�ective action using
Bogoliubov transformations. After explaining this scheme in section 2.1,
in the following ones we introduce the variational principle that leads to
the physical vacuum and its connection with the diagonalization of lattice
Hamiltonian.

2.1 Unitary transformations

Let χ̂, ˆ̄χ be the two-component spinor �elds that act as canonical operators
in the fermion space of states FF , de�ned at a certain time slice (we neglect
the label t for brevity). Our theory allows a unitary involution to distinguish
the component, û†, that generates a particle, from the one, v̂†, that generates
an antiparticle (that is, the component that propagates, respectively, forward
and backward in time). As we have already mentioned earlier, this involution
is provided by the matrix γ0:

γ0û = û

γ0v̂ = −v̂
γ0û

† = û†

γ0v̂
† = −v̂†

(2.1)

so that, using the projectors de�ned in equation (1.6), we found

û = P+χ̂

v̂† = P−χ̂

û† = ˆ̄χP+

−v̂ = ˆ̄χP−
(2.2)

11
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We will always work in the basis (1.4) where γ0 is diagonal, so we can confuse
the two-component spinors û, v̂ with their non-null components:

û =

Ç
û
0

å
, v̂† =

Ç
0
v̂†

å
, û† = (û†, 0), v̂ = (0, v̂) (2.3)

Therefore,

χ̂ =

Ç
û
v̂†

å
, ˆ̄χ = (û†,−v̂) (2.4)

A Bogoliubov transformation is a unitary transformation in the space of
the operators acting on the Fock space, that mixes creation and annihilation
operators. A generalized version of this transformation can be used in the
transfer matrix formalism of a lattice �eld theory to obtain results compara-
ble to that of a Foldy-Wouthuysen transformation in the Dirac one-particle
theory of a free fermion: namely, the separation of fermions from antifermions
and the diagonalization of the Dirac Hamiltonian (see [33]). The parameters
of the transformation can be used to introduce bosonic �elds in the theory,
in order to bosonize the model. The general formalism of this method can be
found in references [5] and [8] (see also [4]); we will sketch it brie�y to apply
it to our present model. A generic unitary transformation on the operators
(2.4) can be written as

U = WR1/2(1 + F ) (2.5)

where W is a block diagonal unitary transformation which does not mix
creation and annihilation operators; F is an anti-Hermitian operator that
anti-commutes with the involution γ0, so that, in our basis,

F =

Ç
0 −F †
F 0

å
(2.6)

and R is a positive de�nite Hermitian operator that commutes with γ0 and
can be written as

R =
Ä
1 + FF †

ä−1
=

ÑÄ
1 + F †F

ä−1
0

0
Ä
1 + FF †

ä−1

é
≡
(
R 0

0 R̊

)
(2.7)

Applying this transformation to the operators (2.4) we get the new compo-
nents, which we call quasiparticles,

â = R1/2
Ä
û−F †v̂†

ä
â† =

Ä
û† − v̂F

ä
R1/2

b̂ =
Ä
v̂ + û†F †

ä
R̊1/2

b̂† = R̊1/2
Ä
v̂† + F û

ä (2.8)
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These operators satisfy canonical anti-commutation relations for any choice
of F , as a consequence of the unitarity of U . The new (unnormalized)
vacuum, i.e. the state annihilated by â and b̂, is

|F〉 = exp
Ä
F̂ †
ä
|0〉 (2.9)

where
F̂ † = û†F †v̂† (2.10)

is the creation operator of a �meson�, a boson (in the sense of a commuting
degree of freedom, considering that it is a fermion bilinear) composed of a
particle and an antiparticle. The proof that (2.9) is actually a vacuum for

the quasiparticles can be attained building the unitary operator Û (F) that
realizes the transformation (2.5) in the space of states and applying it to the
original vacuum |0〉 (see [8]). One can �nd, to be precise,

Û (F) |0〉 = det
Ä
R1/2

ä
exp
Ä
û†F †v̂†

ä
|0〉 (2.11)

Starting from |F〉 and using the quasiparticle operators, we can build a new
set of canonical coherent states, as in (A.50):

|α, β;F〉 = exp
(
−αâ† − βb̂†

)
|F〉

= exp
(
û†F †v̂† −R−1/2αâ† − βR̊−1/2b̂† − βFα

)
|0〉

(2.12)

(the last identity can be obtained via the Baker�Campbell�Hausdor� for-
mula). The trace of the transfer matrix can be now expressed using matrix
elements between these new coherent states:

〈αt, βt;Ft|T̂ †t V̂tT̂t+1|αt+1, βt+1;Ft+1〉
= 〈αt, βt;Ft|T̂ †t ÎV̂tÎT̂t+1|αt+1, βt+1;Ft+1〉 (2.13)

where Î is the usual form (A.51) of the identity, which can be inserted ap-
propriately also between the two exponential factors which the operators T̂ †t
T̂t+1 consist of. Using the properties (A.34) and (A.47) of the coherent states
and solving the Gaussian integrals over the intermediate variables with the
aid of equation (A.23), one can get, for the partition function,

Z =
∫
DU e−SG[U ]e−S0[F ]

∫ ∏
t

î
dα†tdαtdβ

†
tdβt

ó
e−SQ[α,β;F ] (2.14)

where the zero-point action, which depends only on the time-dependent, holo-
morphic parameters Ft of the Bogoliubov transformation (and, of course, on
the gauge �elds), is given by

S0[F ] = −
∑
t

tr [ln(RtU0,tEt+1,t)] = −
∑
t

tr [ln(RtEt+1,t)] (2.15)
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while the quasifermion action, which describes the interaction of the quasi-
particles generated from (2.8) with themselves and the boson (gauge and
F -type) �elds, has the form

SQ[α, β;F ] = −
∑
t

ï
βtI(2,1)

t αt + α†tI
(1,2)
t β†t

+ α†t(∇t −Ht)αt+1 − βt+1(∇̊t − H̊t)β
†
t

ò
(2.16)

In the zero-point action we followed [8] adopting the de�nitions:

Et+1,t = F †N ,t+1e
Mt+1U †0,teM

†
tFN ,t + F †t+1e

−Mt+1U †0,te−M
†
tFt (2.17a)

E̊t+1,t = F̊N ,teM
†
tU0,te

Mt+1F̊ †N ,t+1 + Fte−M
†
tU0,te

−Mt+1F †t+1 (2.17b)

with

FN ,t = 1 +N †t Ft (2.18a)

F̊N ,t = 1 + FtN †t (2.18b)

In the same way, in the quasiparticle action the terms mixing fermions and
antifermions are

I(2,1)
t = R̊−1/2

t

[
R̊t − E̊−1

t,t−1F̊N ,t−1e
M†t−1U0,t−1e

Mt

] Ä
F †t
ä−1R−1/2

t (2.19a)

I(1,2)
t = R−1/2

t F−1
t

[
R̊t − eM

†
tU0,te

Mt+1F̊ †N ,t+1E̊−1
t+1,t

]
R̊−1/2
t (2.19b)

while the �particle Hamiltonians� for fermions and antifermions are given by

Ht = U0,t −R−1/2
t E−1

t+1,tR
−1/2
t+1 (2.20a)

H̊t = U †0,t − R̊
−1/2
t+1 E̊−1

t+1,tR̊
−1/2
t (2.20b)

We introduced also the covariant derivatives

∇t = U0,t − T †0 (2.21a)

∇̊t = U †0,t − T0 (2.21b)

where T0, T
†
0 are the shift operators in the time direction, de�ned in (A.1).

Using

α†t∇tαt+1 = α†tU0,tαt+1 − α†tαt = α†t (U0,tT0 − 1)αt

βt+1∇̊tβ
†
t = βt+1U †0,tβ

†
t − βt+1β

†
t+1 = βt+1

Ä
U †0,tT

†
0 − 1

ä
β†t+1

(2.22)

we see that these operators are indeed proportional to the covariant deriva-
tives D

(+)
0 , D

(−)
0 de�ned in (A.7).
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2.2 Extremality

A major task of the method sketched above is to �nd a persuasive physical
interpretation of the parameters of the Bogoliubov transformations at each
time slice. So far in the present discussion, the variables Ft, F †t have been
kept completely arbitrary and the �e�ective theory� obtained from (2.14)
is unitary equivalent to the original one by construction. Since however the
transformation Û (Ft) generates a new vacuum, that is a state annihilated by
the quasiparticle destruction operators, the parameters Ft, F †t can be �xed
demanding |Ft〉 to be of minimal energy. Supposing that the quasiparticles
do not contribute to 〈Ft|Ĥ|Ft〉,1 this extremality condition can be achieved
minimizing the zero-point action S0 with respect to the parameters Ft, F †t .
A variation of (2.15) yields the saddle point equations

Ft+1 = Nt+1 + e−Mt+1U †0,te−M
†
tFt (FN,t)−1 e−M

†
tU0,te

−Mt+1

F †t = N †t + e−M
†
tU0,te

−Mt+1
Ä
F †N,t+1

ä−1F †t+1e
−Mt+1U †0,te−M

†
t

(2.23)

(see ref. [8]). Choosing the parameters Ft, F †t to comply with these equations
leads the vacuum of the theory to coincide with a state in the ensemble (2.11)
that is also an extremum of the action.

In general, these equations are too di�cult to be solved, because of their
dependence upon time: some sort of approximation must be introduced. A
recent proposal (see [7]) is to expand the parameters around some stationary
background �eld :

Ft = F̄ + δFt, F †t = F̄ † + δF †t (2.24)

In this way, the saddle point equations can be solved, in �rst approximation,
for the background �eld in stationary conditions (that is, with all the coef-
�cients in (2.23) kept �xed in time), while the time-dependent �uctuations
are interpreted as dynamical mesons with speci�c symmetries.2 The identi�-
cation works only if the number of fermionic states forming the composite is
large, to avoid, as long as possible, the nilpotency of the meson creation oper-
ator (2.10) and to use it as a bosonic canonical one. Following these lines, the
original fermion theory can be described using these e�ective bosonic degrees
of freedom and, under some physical assumptions such as composite boson

dominance, whereby the contribution from quasiparticles can be neglected
altogether, can be completely bosonized. This program has been developed
in references [5], [26] and [25].

1This is certainly true for QCD2 in large Nc limit, as we will see in the next chapter.
2We call them �F-type mesons�, to distinguish them from the �elds composed of quasi-

particles we will study in chapter 4.
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For our present purpose, however, we can overcome these complications
simply noting that, for QCD2 in Coulomb gauge, the matricesN andM does
not depend on time, and the gluon �elds A0, when integrated out, provides an
instantaneous two-dimensional (lattice) Coulomb potential between fermions,
as is it clear from the form (1.57) of the propagator. As a matter of fact,
using the Gauss' law, the contribution of the gauge �elds could be replaced,
directly in the continuum Hamiltonian, with a current-current interaction
term consisting of four quarks coupled with a linear potential (as should be
the Coulomb potential in one spatial dimension: in equation (1.58) we have
already noted this property); for reference, see [17]. In section 3.1 we will
take a di�erent path and perform the integration over the gluon �elds during
the calculation of the e�ective action. Anyway, as the saddle point equations
have time independent coe�cients, we can search a static solution for F , F †.
However, we point out here a possible source of misconception: as long as the
gauge �elds have not been integrated out, the stationary hypothesis on the
solution of the system (2.23) is not justi�ed, because the coe�cients of F ,
F † are function of Uµ and a stationary solution corresponds to a free theory
with Uµ = 1. Only when the e�ective Coulomb potential between quark has
been generated via the averaging process, the saddle point equations lead to
non-trivial solutions in stationary condition. We will develop this point in
the next chapter, where we will explicitly solve the system for our present
model.

The extremality conditions we have just stated have also a very interesting
side e�ect: using relations such as

FF̊N = FNF (2.25)

we can see easily from (2.19) that (2.23) are equivalent to

I(1,2) = 0 = I(2,1) on the saddle point (2.26)

This means that the particular Bogoliubov transformation that minimize the
vacuum energy produces quasiparticles that does not mix in the action. In
this context, there is full analogy with the celebrated BCS theory of super-
conductivity, which has the same feature. Also, as stated in [8], this must
have something to do with the Foldy�Wouthuysen transformation, a unitary
transformation that diagonalize the one-particle Dirac Hamiltonian in such
a way that the resulting fermion and antifermion propagate separately. To
clarify this point, in the next section we will take more directly a lattice
Hamiltonian point of view, showing the connection between the two formu-
lations.
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2.3 Diagonalization of the lattice Hamiltonian

We would like to derive an expression for the lattice Hamiltonian starting
from the transfer matrix, as in (1.31). Using the two-dimensional spinor
formalism introduced in section 2.1, the transfer matrix can be written as

T̂t+1,t = exp
î
χ̂†N †t χ̂

ó
exp
î
χ̂†M †

t χ̂
ó
exp
î
χ̂† lnU0,tχ̂

ó
· exp

î
χ̂†Mt+1χ̂

ó
exp
î
χ̂†Nt+1χ̂

ó
(2.27)

where we used the two-dimensional block matrices

Mt ≡
Ç
−Mt 0

0 Mt

å
Nt ≡

Ç
0 0
Nt 0

å
(2.28)

lnU0,t ≡
(

lnU0,t 0

0 − lnU †0,t

)
=

Ç
lnU0,t 0

0 lnU0,t

å
(2.29)

In order to take the logarithm of the above expression, we would like to
combine the various exponentials in a single one. As the exponents do not
commute, this is a not trivial job: in general,

T̂t+1,t = exp
î
χ̂†ft,t+1(M,N,U)χ̂

ó
(2.30)

where ft,t+1(M,N,U) is a complicate sum of its arguments and their com-
mutators (see equation (B.10)). If we could �nd the form of f , then

Ĥ = − 1

a0

χ̂†ft,t+1(M,N,U)χ̂ (2.31)

At this point we observe that, using the results of Appendix B, we can re-
duce this problem to a pure matrix multiplication task: in (2.27) the transfer
matrix is written in the form (B.11), but f can be found in a generic repre-
sentation of the algebra of the General Linear group, also the fundamental
one. In this way,

eft,t+1(M,N,U) = eN
†
t eM

†
t U0,te

Mt+1eNt+1 (2.32)

The matrices N , N † are nilpotent:

N2
t = 0 = (N †t )2 =⇒

eNt = 1 +Nt

eN
†
t = 1 +N †t

(2.33)
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so we �nd

eft,t+1(M,N,U) = (1 +N †t )eM
†
t U0,te

Mt+1(1 +Nt+1)

=

Ñ
e−M

†
tU0,te

−Mt+1 +N †t eM
†
tU0,te

Mt+1Nt+1 N †t eM
†
tU0,te

Mt+1

eM
†
tU0,te

Mt+1Nt+1 eM
†
tU0,te

Mt+1

é
(2.34)

We would like to impose stationary conditions to proceed further, as
explained in the previous section. However, we could use this hypothesis only
after the integration over the gauge �elds: as the link variables Uµ appears
in our expressions, both explicitly and in the de�nitions ofM and N , if we
look naively for a static solution before the averaging process, we would end
in the free theory, where the gauge �elds are null (or constant, which is the
same). A possible way out is to formulate the stationary condition in a gauge
covariant form (see [7]), requiring that the spatial links �elds evolve in such
a way that at time t they are related to those at a certain initial time t0 = 0
by a pure gauge transformation (1.9):

Uj(t,x) = Ω†t,xUj(0,x)Ωt,x+aĵ (2.35)

Thus, at any time they are gauge equivalent to a constant �eld, and the
non-trivial dynamics remains encoded in the temporal link U0(t,x). As the
spatial link variables appear in the matricesMt, Nt and must also be part
of the solution Ft, they evolve according to

Mt = Ω†tMΩt, Nt = Ω†tNΩt, Ft = Ω†tFΩt (2.36)

where M, N and F are the corresponding values at time 0, whose gauge
dependence comes only from the time 0 space link variables Uj(0,x). Re-
quiring the transformation Ωt to be in a very particular form, we can �nally
drop the temporal dependence in our expressions. Indeed, if

Ωt,x = U0(0,x)U0(1,x) · · ·U0(t− 1,x) (2.37)

then a typical matrix product in (2.34), for example e−M
†
tU0,te

−Mt+1 , can be
written as

e−M
†
tU0,te

−Mt+1 = Ω†te
−M†Ωt U0,tΩ

†
t+1e

−M†Ωt+1 = Ω†te
−M†e−M

†
tΩt+1 (2.38)

because U0,t provides the extra U0(t,x) factor that makes possible the sim-

pli�cation between Ωt and Ω†t+1. In this way

eft,t+1(M,N,U) = Ω†te
f(M,N,U)Ωt+1 (2.39)
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with

ef(M,N,U) =

(
e−M

†
e−M +N †eM†eMN N †eM†eM
eM

†
eMN eM

†
eM

)
(2.40)

and all the Ω factors drop out in the product over time in (1.32), except for
those at the temporal boundaries, which provide the information about the
gauge �elds dynamics. That's exactly what would happen if we chose from
the start to work in the temporal gauge

U0(x) = 1 ⇐⇒ A0(x) = 0 (2.41)

In this case we could simply forget the U0,t in our equations but, as (2.41)
does not completely �x the gauge, we should still introduce a projector in
the product (1.32) in order to work only in the physical sector of the Fock
space, where the states respect the Gauss' law: the projector enforcing this
additional constraint is a Polyakov line that has precisely the form (2.37) at
the boundaries.

We are now interested in block-diagonalizing (2.40), to decouple fermions
from antifermions in the Hamiltonian, which is just −f(M,N,U)/a. Using
a unitary transformation of the algebra, parametrized as in (2.5), we �nd

eU f(M,N,U)U † = U ef(M,N,U)U † =

Ç
A C(1,2)

C(2,1) D

å
(2.42)

with

A = R1/2
ï
e−M

†
e−M +

Ä
F † −N †

ä
eM

†
eM (F −N )

ò
R1/2

C(1,2) = R1/2
ï
e−M

†
e−MF † +

Ä
N † −F †

ä
eM

†
eMF̊ †N

ò
R̊1/2

C(2,1) = R̊1/2
ï
Fe−M†e−M + F̊NeM

†
eM (N −F)

ò
R1/2

D = R̊1/2
ï
Fe−M†e−MF † + F̊NeM

†
eMF̊ †N

ò
R̊1/2

(2.43)

As we can see, the conditions for the transformed matrix to be in block-
diagonal form are exactly the saddle point equations (2.23) when the station-

ary hypothesis is in force! Indeed, as C(1,2) =
î
C(2,1)

ó†
, the system becomes

the single equation
C(2,1) = 0 (2.44)

To proceed further and explicitly block-diagonalize the transfer matrix we
should �nd its solution. This in general a too di�cult task, because (2.44) is
a quadratic matrix equation in F with non-commuting (matrix) coe�cients.
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However, the solution can be obtained in closed form, with a simple gener-
alization of the quadratic formula for an ordinary algebraic equation, if we
impose that the matrices N and M do commute, and thus searching for a
commuting F . This is certainly not true for ordinary QCD in four space-time
dimension, because these matrices contains the dependence from the time 0
link variables Uj(0,x), which do not commute with each other. However, as
in QCD2 there is only one spatial dimension, this condition is luckily satis�ed
in our model. Furthermore, for our present scope we can also take N ,M to
be Hermitian, as it is clear from (1.45) and (1.46). In this case

Fe−2M + e2MN + FN e2MN − e2MF − FN e2MF = 0 (2.45)

Multiplying by −N e−2M we �nd

(NF)2 +
Ä
1−N 2 − e−4MäNF −N 2 = 0 (2.46)

with solutions

NF̄ =
1

2

î
−Y ±

√
Y2 + 4N 2

ó
(2.47)

where we de�ned
Y = 1−N 2 − e−4M (2.48)

Using the convenient parametrization

N 2 ≡ e−2M î(2 sinh ε)2 − (2 sinhM)2
ó

= 2e−2M(cosh 2ε− cosh 2M) (2.49)

we get
NF̄ = e−2Me2ε − 1 (2.50)

and so

F̄ = N e2ε − e2M

e2ε − e2M + e−2ε − e−2M (2.51)

We also �nd
A = e−2ε

D = e2ε (2.52)

and so we get, �nally,

f(M,N,U) = U †
Ç
−2ε 0

0 2ε

å
U (2.53)



Chapter 3

Vacuum and quasiparticles

We will now apply the formalism explained so far to the model described in
chapter 1, namely QCD2 in Wilson's lattice formulation. Using the varia-
tional principle we enunciated in section 2.2, we will �nd an expression for
the vacuum energy. Then, we will study the features of the quasiparticle
contributions.

3.1 Vacuum energy

In this section, we are interested in solving the saddle point equations (2.23),
to derive an expression for the vacuum energy to be confronted with that
known in literature, and thus to �nd con�rmations for our approach. We
will evaluate explicitly the zero-point action (2.15) for our model which, in
stationary conditions, can be written, for our future convenience, as

S0[F ] = −
∑
t

tr
î
ln(R1/2ER1/2)

ó
(3.1)

where we used the cyclicity of the trace. We will work in Coulomb gauge
(1.47):

U1(x) = 1 ⇐⇒ A1(x) = 0 (3.2)

because then the matrices (1.45) and (1.46) have the easy form

B = I− κ1r1(T1 + T †1 ) (3.3)

N = −iκ1B−1/2
Ä
T1 − T †1

ä
B−1/2 (3.4)

21
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Using the Fourier representation (A.10) we get1

B(p, q) = 2πa1δ(p+ q)B(q) (3.5)

e2M(p, q) = 2πa1δ(p+ q)e2M(q) (3.6)

with

B(q) ≡ 1− 2κ1r1 cos a1q (3.7)

e2M(q) =
B(q)

2κ0

= 1 +ma0 − r1ζ(cos a1q − 1) (3.8)

Using repeatedly (A.15) it's easy to see2

B−1(p, q) = 2πa1δ(p+ q) [B(q)]−1 (3.9)

B−1/2(p, q) = 2πa1δ(p+ q) [B(q)]−1/2 (3.10)

and so

N (p, q) = 2πa1δ(p+ q)N (q) (3.11)

N (q) ≡ 2κ1B−1(q) sin a1q (3.12)

In this way, we can see that in the present modelM and N are commuting

operators. In analogy, we de�ne the Fourier representation of F as

F(p, q) = 2πa1δ(p+ q)F(q) (3.13)

F(q) = tan
θq
2

= F †(q) (3.14)

where θq is the Bogoliubov-Valatin angle usually introduced in literature to
parametrize the unitary transformation. In this way

R(p, q) = 2πa1δ(p+ q)R(q) (3.15)

R(q) =

Ç
1 + tan2 θq

2

å−1

= cos2 θq
2

(3.16)

1The a1 we factorized in front of these and the next equations is a consequence of our
choice of normalization (A.10) for the Fourier transform, and will be ultimately dropped
in evaluating the trace, as in (A.14). We could easily absorb it by de�ning summations
and traces in a way readily available for the continuum limit:∑

x,y

AxyByx = a
∑
x

a
∑
y

Axy
a

Byx
a

= a
∑
x

a
∑
y

A′
xyB

′
yx →

∫
dx

∫
dy A′(x, y)B′(y, x)

2In general, this property works for any function of B de�ned as a power series, because
of the convolution theorem of the Fourier transform and of the diagonal form of B.
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and

cos θq =
1−F2(q)

1 + F2(q)
= 2R(q)− 1

sin θq =
2F(q)

1 + F2(q)

(3.17)

As the usual results are obtained directly in the continuum theory, we will
work at the lowest orders in lattice spacings and ultimately take the limit
a0, a1 → 0. We get3

eM(q) = 1 +
ma0

2
+O(a0a1) (3.18a)

N (q) = ζa1q +O(a0a1) = a0q +O(a0a1) (3.18b)

We will also need to expand the link variables (1.10) to second order in g,
using the results sketched in section 1.3. In this way

U0 = 1 + iga0A0 −
1

2
g2a2

0A
2
0 + · · ·

U †0 = 1− iga0A0 −
1

2
g2a2

0A
2
0 + · · ·

(3.19)

We remark that, unlike the previous one, this is not actually an expansion
in the lattice spacing a0: in particular, once we have mediated over gauge
�elds, the quantity a2

0 〈A2
0〉 will be not O(a2

0), but only O(a0). Indeed, this
object is proportional to the gluon propagator we reported in (1.57): one of
the a0 factor simpli�es with the one in the denominator and leaves an overall
term O(a0). This will happen to all (even) orders in g, because the powers of
a0 will always be equal to those of A0. What is really in force here is a weak
coupling expansion that, as we will see, is nothing else than the 't Hooft's

limit

Nc →∞ with g2Nc �xed (3.20)

Expanding (2.17) to second order in g we get

E = E (0) + gE (1) + g2E (2) (3.21)

3There is a subtlety in our limit procedure: as a matter of fact, we are �rst expanding
for a1q ' 0 and then taking the limit a1 → 0. In this way, we can see only the contribution
from the physical fermion pole at q = 0 and lost the informations about the lattice doublers.
To understand what happens of these spurious terms in the continuum limit, we report
the solution of the saddle point equations around them in appendix C (where we study a
free theory in d space-time dimensions).
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with

E (0) = (1 + FN ) e2M (1 + FN ) + Fe−2MF
E (1) = −i (1 + FN ) eMa0A0e

M (1 +NF)− iFe−Ma0A0e
−MF

E (2) = −1

2
(1 + FN ) eMa2

0A
2
0e
M (1 +NF)− 1

2
Fe−Ma2

0A
2
0e
−MF

(3.22)

so that, in momentum space,

E (0)(p, q) = 2πa1δ(p + q)
î
(1 + FN ) e2M (1 + FN ) + Fe−2MF

ó
(q)

E (1)(p, q) = −ia1a0

ßî
(1 + FN ) eM

ó
(−p)A0(p+ q)

î
eM (1 +NF)

ó
(q)

+
î
Fe−M

ó
(−p)A0(p+ q)

î
e−MF

ó
(q)
™

E (2)(p, q) = −a1a
2
0

2

∫
BZ

dk

2π

ßî
(1 + FN ) eM

ó
(−p)A0(p+ k)A0(−k + q)

î
eM (1 +NF)

ó
(q)

+
î
Fe−M

ó
(−p)A0(p+ k)A0(−k + q)

î
e−MF

ó
(q)
™

(3.23)

Using (3.18) and keeping only �rst-order terms in a0, we get

E (0)(p, q) = 2πa1δ(p+ q)
¶
1 + F2(q) +ma0

î
1−F2(q)

ó
+ 2a0qF(q)

©
E (1)(p, q) = −ia1a0 [A0(p+ q) + F(−p)A0(p+ q)F(q)]

E (2)(p, q) = −a1a
2
0

2

∫
BZ

dk

2π

î
A0(p+ k)A0(−k + q)

+ F(−p)A0(p+ k)A0(−k + q)F(q)
ó

(3.24)

Then, we multiply on left and right byR1/2 and use, when convenient, (3.17):

R1/2E (0)R1/2(p, q) = 2πa1δ(p+ q) (1 +ma0 cos θq + a0q sin θq)

R1/2E (1)R1/2(p, q) = −ia1a0

î
R1/2(−p)A0(p+ q)R1/2(q)

+R1/2(−p)F(−p)A0(p+ q)F(q)R1/2(q)
ó

R1/2E (2)R1/2(p, q) = −a1a
2
0

2

∫
BZ

dk

2π

î
R1/2(−p)A0(p+ k)A0(−k + q)R1/2(q)

+R1/2(−p)F(−p)A0(p+ k)A0(−k + q)F(q)R1/2(q)
ó

(3.25)

In evaluating the logarithm of the sum of these quantities to �rst order in a0

we use the usual formula

ln
Ä
1 + (R1/2ER1/2 − 1)

ä
' R1/2ER1/2 − 1− 1

2
(R1/2ER1/2 − 1)2 (3.26)
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and note that the only term that can produce an O(a0) addend when squared
is R1/2E (1)R1/2, because of the property of 〈A2

0〉 we already mentioned. As a
matter of fact,

− 1

2

î
R1/2E (1)R1/2

ó2
(p, q) =

a1a
2
0

2

∫
BZ

dk

2π

·
î
R1/2(−p)A0(p+ k)R(k)A0(−k + q)R1/2(q)

+R1/2(−p)F(−p)A0(p+ k)F(k)R(k)F(k)A0(−k + q)F(q)R1/2(q)

+ 2R1/2(−p)A0(p+ k)R(k)F(k)A0(−k + q)F(q)R1/2(q)
ó

(3.27)

Summing the O(g2) terms we get

R1/2E (2)R1/2(p, q)− 1

2

î
R1/2E (1)R1/2

ó2
(p, q)

=
a1a

2
0

2

∫
BZ

dk

2π
A0(p+ k)A0(−k + q)

·
î
−R1/2(−p)R1/2(q)−R1/2(−p)F(−p)F(q)R1/2(q)

+R1/2(−p)R(k)R1/2(q) +R1/2(−p)F(−p)F(k)R(k)F(k)F(q)R1/2(q)

+ 2R1/2(−p)R(k)F(k)F(q)R1/2(q)
ó

(3.28)

As we will ultimately take the trace of this expression, we can confound −p
with q in the square bracket, to obtain

R1/2E (2)R1/2(p, q)− 1

2

î
R1/2E (1)R1/2

ó2
(p, q)

=
a1a

2
0

2

∫
BZ

dk

2π
A0(p+ k)A0(−k + q)

î
−R(q)−R(q)F2(q) +R(q)R(k)

+R(q)F2(q)R(k)F2(k) + 2R(q)F(q)R(k)F(k)
ó

(3.29)

The dependence from θ is

− 1 +R(q)R(k) [1 + F(q)F(k)]2 = −1 +

Ç
cos

θq
2

cos
θk
2

+ sin
θq
2

sin
θk
2

å2

= −1 + cos2 θq − θk
2

= − sin2 θq − θk
2

(3.30)

We can simplify further the expression for the linear term in g making the
assumption, which we will verify in a short time, that

F(−p) = −F(p) R(−p) = R(p) (3.31)
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With a little bit of trigonometry, our logarithm becomesî
lnR1/2ER1/2

ó
(p, q) '

2πa0a1δ(p+ q) (m cos θq + q sin θq)− ia0a1gA0(p+ q) cos
θp + θq

2

− a1a
2
0g

2

2

∫
BZ

dk

2π
A0(p+ k)A0(−k + q) sin2 θq − θk

2
(3.32)

It's now time to integrate over the gauge �elds, that is perform the gauge
integral in (2.14). This means we can substitute the gauge �elds with their
expectation values. Using (1.55), ultimately we getî

lnR1/2ER1/2
ó
(p, q) '

2πa0a1δ(p+ q)

Ç
m cos θq + q sin θq −

g2

2

∫
BZ

dk

2π

Θ ·Θ
(q − k)2

sin2 θq − θk
2

å
(3.33)

We used directly the continuum gluon propagator instead of its lattice version
to lighten the notation: that's what we would get in the continuum limit,
which is implicit in our choice to maintain only the lowest terms in lattice
spacing; we note that at the end the �rst Brillouin Zone [−π/a1, π/a1] will
extend from −∞ to ∞. We also imposed that 〈A0〉 = 0: that's true for all
the odd product of the gauge �elds, because the generating functional (1.53)
is quadratic in the sources and an odd number of functional derivatives leaves
a factor of J that, when evaluated in J = 0, cancels the result. Evaluating
the trace over space (see (A.14)) and colour indices we �nd

tr
î
lnR1/2ER1/2

ó
= a02πδ(0)

ñ
Nc

2π

∫
BZ

dq (m cos θq + q sin θq)

− αs
(N2

c − 1)

2(2π)

∫
BZ

dq
∫
BZ

dk
1

(q − k)2
sin2 θq − θk

2

ô
(3.34)

with

αs =
g2

4π
(3.35)

The factor 2πδ(0) is simply the length of the lattice in the spatial direction,
as we can see from (A.12):

2πδ(0) = a1

∑
x1

1 (3.36)
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Summing over t we can �nally derive the expression for the vacuum contri-
bution to the action:

S0[θ] = −V Nc

2π

ñ∫
BZ

dq (m cos θq + q sin θq)

− αs (N2
c − 1)

2Nc

∫
BZ

dq
∫
BZ

dk
1

(q − k)2
sin2 θq − θk

2

ô
(3.37)

The space-time volume
V = a0a1

∑
x0

∑
x1

1 (3.38)

accounts for the fact that energy is an extensive property; it can be regular-
ized imposing boundaries on the lattice and then perform a thermodynamic
limit procedure. We remark here that, in the weak coupling regime g → 0,
this result is not trivial (that is, di�erent from what we would obtain in the
free theory) only if Nc → ∞, accordingly to the 't Hooft's limit (3.20). In
this way, the dispersion law for the vacuum energy density is

ω0
q = m cos θq + q sin θq −

γ

2

∫
BZ

dk
1

(q − k)2
sin2 θq − θk

2
(3.39)

with γ ≡ αs (N2
c − 1) /Nc → αsNc. Imposing parity on this expression for

any value of γ, we get

ω0
q = ω0

−q ⇐⇒ θq = −θ−q (3.40)

and so (3.31) is demonstrated. We also note that (3.37) is a O(Nc) contri-
bution in the 't Hooft's limit.

A variation with respect to the Bogoliubov angle θq leads to the saddle
point equation

−m sin θq + q cos θq −
γ

2

∫
BZ

dk
sin (θq − θk)

(q − k)2
= 0 (3.41)

The solution can be obtained in closed form only in the free (γ = 0) theory,
where it is simply

θq = arctan
q

m
(3.42)

and has a trend plotted in Figure 3.1 for di�erent values of the quark mass
m. However, using the numerical methods described in Appendix D, we can
�nd its form also in the interacting theory, as we can see in Figure 3.2. Once
that the values of θq that solve the saddle point equation are available, the
form for the energy density ωq, which we interpret as the vacuum contribute



CHAPTER 3. VACUUM AND QUASIPARTICLES 28

−π/2

0

π/2

−π/2 0 π/2

θ(x)

x = arctan(p/m)

m = 0.0
m = 0.5
m = 1.0
m = 1.5
m = 2.5

Figure 3.1: Plot for the θp that solves the saddle point equation in the free
theory (γ = 0), with di�erent values of the quark mass.

to the energy, follows easily (Figure 3.3). These results are well known in
literature: see, for example, reference [17] and graphs within. The fact that
we can derive it in our present scheme is a proof for the validity of the method
proposed.

3.2 Quasiparticle dynamics

We will now switch on the quasiparticle contribution to the action, in or-
der to �nd informations about the excited states of the theory. From the
perturbative point of view we adopted when we set up the weak coupling
expansion (3.19), the fermion action can be written as a series in g that, to
second order, reads as

SQ ' S
(0)
Q + gS

(1)
Q + g2S

(2)
Q (3.43)

This series can be calculated, as we will do in the next paragraphs, using the
same arguments we formulated to obtain the zero-point action. However, the
integration over gauge �elds in (2.14) acts on the exponential of the action:
we should �rst expand it to the desired order in g and then averaging over
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Figure 3.2: Plot for the θp that solves the saddle point equation in the inter-
acting theory (γ = 1), , with di�erent values of the quark mass.
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Figure 3.3: Plot for ωp, evaluated on solutions θp of the saddle point equation.
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gluons, eventually re-exponentiating the result. We get

exp (−SQ) ' exp
(
−S(0)

Q − g2S
(2)
Q

) ñ
1− gS(1)

Q +
1

2
g2
(
S

(1)
Q

)2
ô

(3.44)

The term proportional to
(
S

(1)
Q

)2
, which we would miss if we had not expand

the exponential, is quartic in the �elds α, β: it can be interpreted as an
interaction term between e�ective mesons composed of quasifermions bound
by gluons. We will discuss it in section 4.1, while now we will focus on the
bilinear terms in α, β, which can be obtained mediating directly the action
(3.43).

Mixing terms

To begin the discussion about the quasiparticle bilinear part, we will now
calculate explicitly the terms in (2.16) that mix the α and β �elds. By
Hermiticity and commutativity we have

I(1,2)
t = It = I(2,1)

t+1 (3.45)

We can write
I =

î
C
Ä
R−1/2E̊−1R−1/2

äó
(3.46)

with

C = R1/2
ï
e−MU0e

−MF + (N −F) eMU0e
M (1 +NF)

ò
R1/2 (3.47)

Expanding to second order in g as in the previous section we get

C = C(0) + gC(1) + g2C(2) (3.48)

with

C(0) = R1/2
ï
e−2MF + (N −F) e2M (1 +NF)

ò
R1/2

C(1) = ia0R1/2
ï
e−MA0e

−MF + (N −F) eMA0e
M (1 +NF)

ò
R1/2

C(2) = −a
2
0

2
R1/2

ï
e−MA2

0e
−MF + (N −F) eMA2

0e
M (1 +NF)

ò
R1/2

(3.49)

In Fourier space, keeping only �rst order terms in a0,

C(0)(p, q) = 2πa0a1δ(p+ q) (−m sin θq + p cos θq)

C(1)(p, q) = ia0a1A0(p+q)
ï
R1/2(−p)F(q)R1/2(q)−R1/2(−p)F(−p)R1/2(q)

ò
C(2)(p, q) = −a1a

2
0

2

∫
BZ

dk

2π
A0(p+ k)A0(−k + q)

ï
R1/2(−p)F(q)R1/2(q)

−R1/2(−p)F(−p)R1/2(q)
ò

(3.50)
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We see that the O(g2) term, once we have mediated over gauge �elds and
extract a δ(p+ q) factor, will be exactly 0.

In order to evaluate the other factor in (3.46), we note that, in our present
model, E̊ and E di�er only for the sign of the linear term in g, because of the
presence of U0 instead of U †0 in (2.17). Therefore, we can �nd the expression
for R1/2E̊R1/2 from that of R1/2ER1/2 we got in the previous section, simply
sending A0 → −A0. In this way

R1/2E̊ (0)R1/2(p, q) = 2πa1δ(p+ q) (1 +ma0 cos θq + a0q sin θq)

R1/2E̊ (1)R1/2(p, q) = ia0a1A0(p+ q)
î
R1/2(−p)R1/2(q)

+R1/2(−p)F(−p)F(q)R1/2(q)
ó

R1/2E̊ (2)R1/2(p, q) = −a1a
2
0

2

∫
BZ

dk

2π
A0(p+ k)A0(−k + q)

î
R1/2(−p)R1/2(q)

+R1/2(−p)F(−p)F(q)R1/2(q)
ó

(3.51)

Inverting this expression with the aid of the Taylor seriesî
1 +

Ä
R1/2E̊R1/2 − 1

äó−1
' 1−

Ä
R1/2E̊R1/2 − 1

ä
+
Ä
R1/2E̊R1/2 − 1

ä2
(3.52)

we obtainïÄ
R1/2E̊R1/2

ä−1
ò(0)

(p, q) = 2πa1δ(p+ q) (1−ma0 cos θq − a0q sin θq)ïÄ
R1/2E̊R1/2

ä−1
ò(1)

(p, q) = −ia0a1A0(p+ q)
î
R1/2(−p)R1/2(q)

+R1/2(−p)F(−p)F(q)R1/2(q)
óïÄ

R1/2E̊R1/2
ä−1
ò(2)

(p, q) =
a1a

2
0

2

∫
BZ

dk

2π
A0(p+ k)A0(−k + q)

·
î
R1/2(−p)R1/2(q) +R1/2(−p)F(−p)F(q)R1/2(q)− 2R1/2(−p)R(k)R1/2(q)

− 2R1/2(−p)R(k)F(k)F(q)R1/2(q)− 2R1/2(−p)F(−p)F(k)R(k)R1/2(q)

− 2R1/2(−p)F(−p)R(k)F2(k)F(q)R1/2(q)
ó

(3.53)

where the last 2 lines come from the O(g) term squared, which gives, as
usual, an O(a0) contribution. When multiplied by C, which already starts
from �rst order in a0, the only terms relevant to this order are the identity
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in �rst line and the linear term in g. Indeed,

C(1)
ïÄ
R1/2E̊R1/2

ä−1
ò(1)

(p, q) = a1a
2
0

∫
BZ

dk

2π
A0(p+ k)A0(−k + q)

·
î
R1/2(−p)F(k)R(k)R1/2(q)−R1/2(−p)F(−p)R(k)R1/2(q)

+R1/2(−p)F(k)R(k)F(k)F(q)R1/2(q)

−R1/2(−p)F(−p)R(k)F(k)F(q)R1/2(q)
ó

(3.54)

Ultimately, keeping only �rst order term in a0,ï
C
Ä
R1/2E̊R1/2

ä−1
ò(0)

(p, q) = 2πa0a1δ(p+ q) (−m sin θq + q cos θq)ï
C
Ä
R1/2E̊R1/2

ä−1
ò(1)

(p, q) = ia0a1A0(p+ q) sin
θp + θq

2ï
C
Ä
R1/2E̊R1/2

ä−1
ò(2)

(p, q) = a1a
2
0

∫
BZ

dk

2π
A0(p+ k)A0(−k + q)

·
ñ
−1

2
sin

θp + θq
2

+ cos
θq − θk

2
sin

θp + θk
2

ô
(3.55)

Integrating over the gauge �elds, we get

I(p, q) = 2πa0a1δ(p+ q)

ñ
−m sin θq + q cos θq

− g2
∫
BZ

dk

2π

Θ ·Θ
(q − k)2

cos
θq − θk

2
sin

θq − θk
2

ô
(3.56)

Inserting the expression for the Casimir operator (1.13) and contracting the
colour indices we get, for the mixing terms,

βtIαt + α†tIβ†t = ζ
∫
BZ

dq

2π
Iq
î
βt(q)αt(−q) + α†t(q)β

†
t (−q)

ó
(3.57)

with

Iq = −m sin θq + q cos θq − γ
∫
BZ

dk
1

(q − k)2
cos

θq − θk
2

sin
θq − θk

2

ô
(3.58)

Confronting this expression with equation (3.39) we can verify that

Iq =
d

dθq
ωq (3.59)

as expected from the discussion in section 2.2: if θ is a solution of the saddle
point equation, that is respects the extremality condition for the zero-point
action, the mixing term in the quasiparticle action is null once the gauge
�elds have been integrated out.
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Quasiparticle energy

At this point we have to perform the calculation of the quasiparticle Hamil-
tonians (2.20), a relevant aspect in order to understand how the mechanism
of con�nement is realized in our picture. We sketch it for the α �eld, as the
β �eld discussion is analogue. The corresponding term in (2.16) is

α†t(∇t −Ht)αt+1 = α†t
[Ä
U0,t − T †0

ä
−
(
U0,t −R−1/2

t E−1
t+1,tR

−1/2
t+1

)]
αt+1

= α†t
(
R−1/2
t E−1

t+1,tR
−1/2
t+1 − T

†
0

)
αt+1

= α†t (αt+1 − αt)− α†t
(
1−R−1/2

t E−1
t+1,tR

−1/2
t+1

)
αt+1

(3.60)
The �rst term in the last line is simply proportional to the lattice time (right)
derivative (A.2), so we only need to �nd the expression of the second term.
In stationary condition, we already know the form of R−1/2E̊−1R−1/2 from
(3.53); sending A0 → −A0 to get E from E̊ we obtain:î

1−R−1/2E−1R−1/2
ó
(p, q) = 2πa0a1δ(p+ q) (m cos θq + q sin θq)

+ ia0a1gA0(p+ q)R1/2(−p)R1/2(q)
î
1 + F(−p)F(q)

ó
− a1a

2
0g

2

2

∫
BZ

dk

2π
A0(p+ k)A0(−k + q)R1/2(−p)R1/2(q)

ß
1 + F(−p)F(q)

− 2R(k)
î
1 + F(−p)F(q)F2(k) + F(−p)F(k) + F(k)F(q)

ó™
(3.61)

and soî
1−R−1/2E−1R−1/2

ó
(p, q) = 2πa0a1δ(p+ q) (m cos θq + q sin θq)

+ ia0a1gA0(p+ q) cos
θp + θq

2

− a1a
2
0g

2

2

∫
BZ

dk

2π
A0(p+ k)A0(−k + q)

ñ
cos

θp + θq
2

− 2 cos
θp − θk

2
cos

θq − θk
2

ô
(3.62)

After the integration over gluon �elds:î
1−R−1/2E−1R−1/2

ó
(p, q) = 2πa0a1δ(p+ q)

ñ
m cos θq + q sin θq

+
g2

2

∫
BZ

dk
Θ ·Θ

(q − k)2
cos(θq − θk)

ô
(3.63)
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Inserting the expression for the Casimir operator (1.13) and contracting the
colour indices we get, for the α-energy in the action,

ζ
∫
BZ

dq

2π
ωαq α

†
t(q)αt+1(−q) (3.64)

with

ωαq = m cos θq + q sin θq +
γ

2

∫
BZ

dk

2π

cos(θq − θk)
(q − k)2

(3.65)

Usingî
1−R−1/2E−1R−1/2

ó
(p, q) = 2πa0a1δ(p+ q) (m cos θq + q sin θq)

− ia0a1gA0(p+ q)R1/2(−p)R1/2(q)
î
1 + F(−p)F(q)

ó
− a1a

2
0g

2

2

∫
BZ

dk

2π
A0(p+ k)A0(−k + q)R1/2(−p)R1/2(q)

ß
1 + F(−p)F(q)

− 2R(k)
î
1 + F(−p)F(q)F2(k) + F(−p)F(k) + F(k)F(q)

ó™
(3.66)

the β term follows easily:

ζ
∫
BZ

dq

2π
ωβq βt+1(q)β†t (−q) (3.67)

with
ωβq = ωαq (3.68)

It is clear that the integral in ωα,βq diverges in a neighbourhood of q. This
property can also be seen in Figure 3.4, where we plot its trend at the saddle
point: as the exact point k = q must be skipped to perform the numer-
ical calculation, the divergence is more evident if we increase the number
of points we use to sample the interval. We can interpret this result as a
sign of con�nement: in the low momentum phase the quasiparticles does not
propagate individually because they would require an in�nite energy to do
so.

As we can see, the quasiparticle contributions are O(1) in Nc, while the
term we have evaluated in the previous section is O(Nc): that's the reason
we neglected them, in the large Nc expansion, when we were searching for
the vacuum energy (see note 1 in section 2.2).
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Figure 3.4: The quasiparticle energy at the saddle point as a function of
x, for m = 1, plotted for di�erent numbers N of samplings in the interval
[−π/2, π/2]. The lack of stability for every x less than a critical value is a
hint for the divergence in the low momentum phase.



Chapter 4

E�ective mesons

4.1 Interaction potential

Let's move on now to the evaluation of the quartic terms in the e�ective
action, as explained at the beginning of section 3.2. Practically, we have
to square the sum of the O(g) terms we found in the previous section (in
equations (3.55) and (3.62)). We will get objects with a colour structure of
the type Ä

ψ1Θlψ2
ä Ä
ψ3Θmψ4

ä
(4.1)

with ψi one of the α, β, α†, β† �elds. After the integration over gauge �elds,
the adjoint indices of the Θ matrices will be summed over, because the gluon
propagator is proportional to δlm, and we can thus rearrange the contractions
between fermions using the Fierz identity (1.14). Keeping only the leading
part in Nc, we will end with the products of bilinears summarized in Table
4.1. To express them we can introduce e�ective �mesonic� and �number�
�elds made of fermion pairs:

Γt(p, q) =
1√
Nc

βt(p)αt(q) Γ†t(p, q) =
1√
Nc

α†t(p)β
†
t (q)

Λα
t (p, q) =

1√
Nc

α†t(p)αt+1(q) Λβ
t (p, q) =

1√
Nc

β†t (p)βt+1(q)
(4.2)

We can see that these objects are non-local objects in momentum space: this
is due to the fact that they do not represent elementary particles, but com-
posite ones. Furthermore, they are colourless : they carry no colour indices,
because of the contractions in the bilinears; we say that they represent singlet
states in colour.

Now we have to �nd the momentum structure. A generic term in the �rst

36
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action term bilinears after rearrangement

(βtItαt)2 (βtαt)(αtβt)

(α†tItβ†t )2 (α†tβ
†
t )(β

†
tα
†
t)

(α†tHtαt+1)2 (α†tαt+1)(αt+1α
†
t)

(βt+1Htβ
†
t )

2 (βt+1β
†
t )(β

†
tβt+1)

(βt+1It+1αt+1)(α†tItβ†t ) (βt+1β
†
t )(αt+1α

†
t)

(α†tHtαt+1)(βt+1Htβ
†
t ) (α†tβ

†
t )(αt+1βt+1)

(βt+1It+1αt+1)(α†tHtαt+1) (βt+1αt+1)(αt+1α
†
t)

(βt+1It+1αt+1)(βt+1Htβ
†
t ) (βt+1β

†
t )(αt+1βt+1)

(α†tItβ†t )(α†tHtαt+1) (α†tαt+1)(β†tα
†
t)

(α†tItβ†t )(βt+1Htβ
†
t ) (α†tβ

†
t )(β

†
tβt+1)

Table 4.1: Fierz rearrangement at leading order in Nc.

column of Table 4.1 is of the type

g2

2a4
1

∫
BZ

dp

2π

dp′

2π

dq

2π

dq′

2π
ψ1
t (−p)LIt(p,−p′)ψ2

t (p
′)ψ3

t′(−q)LIIt′ (q,−q′)ψ4
t′(q
′) (4.3)

with LI,IIt one of the operators I(1)
t , I(1)

t−1, H
(1)
t . Then

LI,IIt (p,−p′) ∈
®
ia0a1A0,t(p− p′) sin

θp − θp′
2

,

ia0a1A0,t−1(p− p′) sin
θp − θp′

2
,

ia0a1gA0,t(p− p′) cos
θp − θp′

2

´ (4.4)

Calculating all the combinations, integrating over gauge �elds, anticommut-
ing the bilinears to obtain the e�ective �elds (4.2), rede�ning the momenta
integration variables p→ −p when needed, we �nally obtain

1

2
g2
(
S

(1)
Q

)2
= −a0

∑
t

1

a2
1

Vt
î
Γ,Γ†,Λα,Λβ

ó
(4.5)
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with

Vt[Γ,Γ†,Λα,Λβ] = −γ
2

1

(2π)2

∫
BZ

dp dp′ dq dq′
δ(p+ p′ + q + q′)

(p+ p′)2

·
®

sin
θp + θp′

2
sin

θq + θq′

2

ï
Γt(p, q

′)Γt(q, p
′) + Γ†t(p, q

′)Γ†t(q, p
′)

− Λα
t (p, q′)Λβ

t (q, p′)− Λβ
t (p, q′)Λα

t (q, p′)
ò

+ cos
θp + θp′

2
cos

θq + θq′

2

ï
Γ†t+1(p, q′)Γt(q, p

′) + Γt(p, q
′)Γ†t+1(q, p′)

+ Λα
t (p, q′)Λα

t (q, p′) + Λβ
t (p, q′)Λβ

t (q, p′)
ò

+ 2 cos
θp + θp′

2
sin

θq + θq′

2

ï
−Λα

t (p, q′)Γt(q, p
′) + Γt(p, q

′)Λβ
t (q, p′)

− Γ†t+1(p, q′)Λα
t (q, p′) + Λβ

t (p, q′)Γ†t+1(q, p′)
ò´

(4.6)

This contribution to the action is quadratic in our composite �elds and pro-
portional to γ: it represents an e�ective interaction term.

4.2 Kinetic term

The identi�cation of the quartic term in the quasiparticle action with an
interaction potential between composite �elds that we derived in the previous
section has required no additional hypothesis and works at the level of the
functional path integral, as it is clear from the discussion at the the beginning
of section 3.2. However, in order to bosonize the model, that is to describe it
only in terms of these e�ective �elds, the part interpretable as a kinetic energy
for the mesons, quadratic in Γ and so quartic in α and β, is still missing.
Nevertheless, the only way we have to produce quartic contributions in the
action is to expand in g, and so we can never generate a free part! The
quasiparticle energies (3.64) and (3.67) have the right requirements, as they
do not depend on g, but they are quadratic in α and β. The solution for
this problem is provided by a very subtle argument, enunciated in [2], that
goes as follows. First, we go back to the operatorial formalism and write the
partition function as the trace of the transfer matrix, written in terms of the
quasiparticle operators (2.8) generated after the Bogoliubov transformation.
The quasiparticle energy is then the fermionic Hamiltonian

ĤF =
∫

dpEpâ
†(−p)â(p) +

∫
dpEpb̂

†(−p)b̂(p) (4.7)
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with Ep = ωα,βp . Then, instead of evaluating the trace expanding on generic
canonical coherent states, as in (2.13), we impose that the relevant states
for the model, in the large Nc limit, are mesonic composites. This means
that we can introduce a projector in equation (1.32) to restrict the trace and
evaluate the matrix elements only between these states (see [5]):

ZF = TrF
∏
t

JtP̂T̂t,t+1 (4.8)

Finally, we have to demonstrate that the matrix elements of the operator ĤF

between these states are equal to those of the operator

ĤM =
∫

dp
∫

dq (Ep + Eq)Γ̂
†(p, q)Γ̂(−q,−p) (4.9)

where Γ̂† and Γ̂ are creation and annihilation operators for the colourless
composites:

Γ̂(p, q) =
1√
Nc

b̂(p)â(q) Γ̂†(p, q) =
1√
Nc

â†(p)b̂†(q) (4.10)

In this way, under this assumption of boson dominance, we can substitute
the quasiparticle energy with an e�ective meson kinetic energy in the action.

To start, in analogy with (2.9) we de�ne a �coherent� composite state of
quasiparticles as

|Φ〉 = exp
Ä
â†Φ†b̂†

ä
|0〉θ (4.11)

where |0〉θ = |F〉 is the vacuum state for the operators â, b̂ (in this section,
as we will always work with canonical coherent states |αβ;F〉 built up acting
on this vacuum with the creation operators â†, b̂†, we will omit the F and
write |0〉 instead of |0〉θ). In the exponent, the contraction between internal
(colour) and space (momentum) indices is understood:

Φ̂† = â†Φ†b̂† =
Nc∑
a,b=1

∫
BZ

dp dq â†a(p)Φ
†
ab(−p, q)âb(−q) (4.12)

Let S be the tensor space from where these indices take values (in our case,
S = RBZ ⊗ SU(Nc)), spanned by the collective indices A, B, etc. At this
level, ΦAB is still a generic matrix. The projector in (4.8) is then

P̂ =
∫

dξ dξ∗

2πi

1

〈Φ|Φ〉
|Φ〉〈Φ| (4.13)
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where ξ, ξ∗ are complex variables parametrizing the matrix Φ. The norm of
the composite state is

〈Φ′|Φ〉 =
∫

dα†dα dβ†dβ

〈αβ|αβ〉
〈Φ′|αβ〉〈αβ|Φ〉

=
∫

dα†dα dβ†dβ exp
Ä
−α†α− β†β + βΦ′α + α†Φ†β†

ä
=
∫

dα†dα exp
î
−α†(1 + Φ†Φ′)α

ó
= det(1 + Φ†Φ′) (4.14)

where det is the determinant in S. We are interested in evaluating matrix
elements of the operator products appearing in (4.7) between these states:

〈Φ′|â†AâB|Φ〉
〈Φ′|Φ〉

= δAB −
〈Φ′|âBâ†A|Φ〉
〈Φ′|Φ〉

(4.15)

with (deriving (A.23) with respect to the sources)

〈Φ′|âBâ†A|Φ〉 =
∫

dα†dα dβ†dβ

〈αβ|αβ〉
〈Φ′|âB|αβ〉〈αβ|â†A|Φ〉

=
∫

dα†dα dβ†dβ (αBα
†
A) exp

Ä
−α†α− β†β + βΦ′α + α†Φ†β†

ä
=
∫

dα†dα (αBα
†
A) exp

î
−α†(1 + Φ†Φ′)α

ó
= det(1 + Φ†Φ′)(1 + Φ†Φ′)−1

BA (4.16)

To evaluate the same expectation value for the b̂ bilinears we can note that

b̂A |Φ〉 = b̂A exp
î
(â†Φ†)B b̂

†
B

ä
|0〉 = b̂A

î
1 + (â†Φ†)B b̂

†
B + · · ·

ó
|0〉 = −(â†Φ†)A |Φ〉

(4.17)
so we can write

〈Φ′|b̂†Ab̂B|Φ〉 = 〈Φ′|(Φ′â)A(â†Φ†)B|Φ〉 = Φ′ACΦ†DB 〈Φ′|âC â
†
D|Φ〉

= 〈Φ′|Φ〉Φ′AC(1 + Φ†Φ′)−1
CDΦ†DB = 〈Φ′|Φ〉

î
Φ′(1 + Φ†Φ′)−1Φ†

ó
AB

(4.18)

Using

Φ′(1 + Φ†Φ′)−1Φ† = (1 + Φ′Φ†)−1Φ′Φ† = 1− (1 + Φ′Φ†)−1 (4.19)

we arrive at

〈Φ′|â†AâB|Φ〉
〈Φ′|Φ〉

=
î
1− (1 + Φ†Φ′)−1

ó
BA

(4.20)

〈Φ′|b̂†Ab̂B|Φ〉
〈Φ′|Φ〉

=
î
1− (1 + Φ′Φ†)−1

ó
AB

(4.21)
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To evaluate now the matrix elements of ĤM , we need a quartic term of
the type

〈Φ′|â†Ab̂
†
B b̂C âD|Φ〉 = 〈Φ′|â†AâDb̂

†
B b̂C |Φ〉

= δAD 〈Φ′|b̂†B b̂C |Φ〉 − δBC 〈Φ′|âDâ
†
A|Φ〉+ 〈Φ′|b̂C âDâ†Ab̂

†
B|Φ〉 (4.22)

We have already found the expression for the �rst two addends. The last
one, using many times the translational invariance of the Berezin integral, is

〈Φ′|b̂C âDâ†Ab̂
†
B|Φ〉 =

∫
dα†dα dβ†dβ

〈αβ|αβ〉
〈Φ′|b̂C âD|αβ〉〈αβ|â†Ab̂

†
B|Φ〉

=
∫

dα†dα dβ†dβ βCαDα
†
Aβ
†
Be
−α†α−β†β+βΦ′α+α†Φ†β†

=
∫

dα†dα dβ†dβ βCαDα
†
Aβ
†
Be
−α†α+β(β†+Φ′α)+α†Φ†β†

=
∫

dα†dα dβ†dβ βCαDα
†
A[β†B − (Φ′α)B]e−α

†α+ββ†+α†Φ†(β†−Φ′α)

=
∫

dα†dα dβ†dβ [βC − (α†Φ†)C ]αDα
†
A[β†B − (Φ′α)B]e−α

†(1+Φ†Φ′)α+ββ†

=
∫

dα†dα dβ†dβ
Ä
βCαDα

†
Aβ
†
B + Φ†ECΦ′BFα

†
EαDα

†
AαF

ä
e−α

†(1+Φ†Φ′)α+ββ†

(4.23)

where, in the last line, we kept only even terms in the Grassmann �elds
because the odd ones are null (as a consequence of the Wick theorem for
Berezin integrals: it can be seen deriving (A.23) with respect to the sources
and putting them to 0). In this way

〈Φ′|b̂C âDâ†Ab̂
†
B|Φ〉 = 〈Φ′|Φ〉

¶
δBC(1 + Φ†Φ′)−1

DA

+ Φ†ECΦ′BF
î
(1 + Φ†Φ′)−1

DE(1 + Φ†Φ′)−1
FA

− (1 + Φ†Φ′)−1
DA(1 + Φ†Φ′)−1

FE

ó©
= 〈Φ′|Φ〉

¶
(1 + Φ†Φ′)−1

DA(1 + Φ′Φ†)−1
BC

+
î
(1 + Φ†Φ′)−1Φ†

ó
DC

î
Φ′(1 + Φ†Φ′)−1

ó
BA

©
(4.24)

Summing and rearranging terms we �nally get

〈Φ′|â†Ab̂
†
B b̂C âD|Φ〉
〈Φ′|Φ〉

=
î
Φ†Φ′(1 + Φ†Φ′)−1

ó
DA

î
Φ′Φ†(1 + Φ′Φ†)−1

ó
BC

+
î
(1 + Φ†Φ′)−1Φ†

ó
DC

î
Φ′(1 + Φ†Φ′)−1

ó
BA

(4.25)
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We have now all the ingredient to specialize the structure matrices Φ, Φ′,
until now completely general. Suppose for the moment that they are singlet
in colour and non-local in momentum composite �elds, so

Φab(p, q) = δab
g(p, q)√
Nc

(4.26)

In this way, keeping only leading terms in large Nc expansion, we have

〈Φ′|Φ〉 = det(1 + Φ†Φ′) = exp tr ln(1 + Φ†Φ′) ' exp tr g∗g′ (4.27)

where
tr g∗g′ =

∫
dq dq′ g∗(q, q′)g′(−q′,−q) (4.28)

and

〈Φ′|â†a(−p)âa(p)|Φ〉
〈Φ′|Φ〉

' δaa
Nc

∫
dq g∗(p, q)g′(−q,−p) (4.29)

〈Φ′|b̂†a(−p)b̂a(p)|Φ〉
〈Φ′|Φ〉

' δaa
Nc

∫
dq g′(−p, q)g∗(−q, p) (4.30)

〈Φ′|â†a(p)b̂†a(q)b̂b(−p)âb(−q)|Φ〉
〈Φ′|Φ〉

' δbbδaa
Nc

g∗(−q,−p)g′(q, p) (4.31)

Summing over colour indices and integrating over momenta, it is now easy
to see that

〈Φ′|ĤF |Φ〉
〈Φ′|Φ〉

=
〈Φ′|ĤM |Φ〉
〈Φ′|Φ〉

(4.32)

for any choice of g, g′.
We remark here that this identi�cation provides an O(1) kinetic energy

contribution in Nc for the colourless composite �elds. Since this argument
works for the Hamiltonian, that's true also for the transfer matrix, which
can be obtained exponentiating it. In this way we are able to introduce in
the e�ective action the the free energy contribution for the singlet mesons
we were looking for.



Chapter 5

Conclusions and outlook

In our study of QCD2 in the large Nc (and weak coupling) expansion, after
the integration over gauge �elds we have obtained an e�ective action with a
number of features, which we summarize here:

• The vacuum energy contribution, obtained choosing the Bogoliubov
transformation to comply with a variational principle (the saddle point
equation), is O(Nc) and has the rate depicted in Figure 3.3.

• At the saddle point, the terms in the action that mix quasiquarks
and quasiantiquarks are exactly 0. Thus, the transformation associ-
ated with the variational principle is also the one that diagonalizes the
quasiparticle sector.

• The quasiparticle energy is a contribution of order O(1) in Nc, which
diverges for low momentum (see Figure 3.4). That's the reason why
they do not propagate as free particles: con�nement occurs.

• The dynamics can be described in terms of meson �elds that are singlet
states in colour. They have an e�ective interaction term and, under
the established hypothesis of boson dominance, also a kinetic O(1) (in
Nc) term obtained from the quasiparticle energy contributions with a
projection over these composite states. In this way the theory has been
bosonized.

As explained, these results are in complete accordance with the ones we
found in literature, obtained with the canonical formalism. However, we re-
mark here that the method we applied in the present work is not only an
alternative version of the usual continuum approach, whose predictions we
re-obtained under the same assumption of weak coupling/large Nc expansion.
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These hypothesis are not an essential feature and, in principle, the formu-
lation described in chapter 2 is more general. The form for the e�ective
action

Se� = S0[F ] + SQ[α, β;F ] (5.1)

is unitary equivalent to the original one, so we needed no additional assump-
tions to write it. Indeed, using the properties of the lattice, we could access
to some of the informations about the non-perturbative (strong-coupling)
regime. That's an aspect to investigate in the future: the usual approach to
e�ective theories in QFT leads to e�ective actions that are de�ned as gener-
ating functionals of n-particle irreducible correlation functions (see [9] and,
for reference, [14]), so they do not even exist outside perturbation theory.
The connection between the two formulations has to be established.

There is also another chance to explore some of the non-perturbative fea-
tures of the theory, provided by numerical methods to evaluate expectation
values of observables on the lattice. As explained in [6], the present method
is free from a problem that makes these simulations really di�cult to imple-
ment. Thus, it should be tested to see if it can be an improvement to the
current numerical approaches.

Furthermore, the possibility to pass from the canonical to the functional
formalism, and vice versa, that we exploited in the last section, makes the
method really powerful and particularly suitable for relativistic theories. In
this context, driven by the promising results we got here, we hope to extend
it to more realistic models for strong interaction. However, its �eld of appli-
cation is not limited to this branch of physics: since it has been formulated in
a very general way, it could be applied to other relevant models, for example
in solid state physics. In this respect, it preserve the great versatility the
Bogoliubov transformations historically proved to have.



Appendix A

Useful formulas

A.1 Lattice operators

We de�ne the free shift operators asî
Tµ
ó
xy

= δx+aµ̂,y,
î
T †µ
ó
xy

= δx−aµ̂,y (A.1)

Lattice right and left derivatives are

∂(+)
µ =

1

a
(Tµ − 1), ∂(−)

µ =
1

a
(1− T †µ) (A.2)

Their action on a generic function is

∂(+)
µ f(x) =

f(x+ aµ̂)− f(x)

a
, ∂(−)

µ f(x) =
f(x)− f(x− aµ̂)

a
(A.3)

A symmetric choice for the derivative is

∂(s)
µ =

1

2
(∂(+)
µ + ∂(−)

µ ) =
1

2a
(Tµ − T †µ) (A.4)

and so

∂(s)
µ f(x) =

f(x+ aµ̂)− f(x− aµ̂)

2a
(A.5)

The free Laplacian operator on the lattice is

∂2 =
∑
µ

∂(+)
µ ∂(−)

µ =
∑
µ

1

a
(∂(+)
µ − ∂(−)

µ ) =
∑
µ

1

a2
(Tµ + T †µ − 2) (A.6)

Introducing a connection, we get the covariant derivatives

D(+)
µ (x, y) =

1

a

{
Uµ(x)

î
Tµ
ó
xy
− 1

}
(A.7a)

D(−)
µ (x, y) =

1

a

{
1−

î
T †µ
ó
xy
U †µ(y)

}
(A.7b)

Dµ(x, y) =
1

2a

{
Uµ(x)

î
Tµ
ó
xy
−
î
T †µ
ó
xy
U †µ(y)

}
(A.7c)
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where Uµ(x) is the parallel transporter in direction µ. As usual,

/D(x, y) =
∑
µ

γµDµ(x, y) (A.8)

The covariant Laplacian is naturally

D2(x, y) =
∑
µ

1

a2

{
Uµ(x)

î
Tµ
ó
xy

+
î
T †µ
ó
xy
U †µ(y)− 2

}
(A.9)

To expand lattice functions in the Fourier basis, we introduce the mo-
mentum representation in a single dimension (the multidimensional general-
ization is straightforward)

f(p) = a
∑
x

f(x)e−ipx, f(x) =
∫
BZ

dp

2π
f(p)eipx (A.10)

where the integration variables span the �rst Brillouin zone:∫
BZ

dp

2π
≡
∫ π/a

−π/a

dp

2π
(A.11)

Therefore, the delta functions can be represented on the lattice as

δ(p− q) =
a

2π

∑
x

e−ix(p−q),
δxy
a

=
∫
BZ

dp

2π
eip(x−y) (A.12)

For a matrix A the convention is

A(p, q) = a2
∑
x,y

Axye
−i(px+qy), Axy =

∫
BZ

dp

2π

dq

2π
A(p, q)ei(px+qy) (A.13)

Using these formulas it's easy to proof that, for any two operators A, B and
functions f , g, the following convolution relations hold:

trA =
∑
x

Axx =
∫
BZ

dp

2π

1

a
A(p,−p) (A.14)

(AB)xy =
∑
z

AxzBzy

=
∫
BZ

dp

2π

dq

2π
ei(xp+yq)

∫
BZ

ds

2π

1

a
A(p, s)B(−s, q) (A.15)

Af(x) =
∑
y

Axyf(y) =
∫
BZ

dp

2π
eipx

∫
BZ

dq

2π

1

a
A(p, q)f(−q) (A.16)

∑
x

f(x)g(x) =
∫
BZ

dp

2π

1

a
f(p)g(−p) (A.17)

∑
z

Axzf(z)Bzy =
∫
BZ

dp

2π

dq

2π
ei(px+qy)

∫
BZ

dr

2π

dt

2π

1

a
A(p, r)f(−r + t)B(−t, q)

(A.18)

and so on.
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A.2 Berezin Integrals

To de�ne a path integral for fermions it is customary to work with anticom-
muting (�Grassmannian�) variables. This construction is standard and can
be found in virtually every textbooks about QFT. We report here the main
points for practicality and to establish conventions. Let θk, θ

†
k, k = 1, · · · , N ,

be two (independent, in spite of the †) sets of anticommuting symbols, that
is

{θk, θj} = 0, {θ†k, θ
†
j} = 0 {θk, θ†j} = 0 (A.19)

An integral over these symbols is de�ned by the requests∫
dθk 1 = 0,

∫
dθk θk = 1,

∫
dθ†k 1 = 0,

∫
dθ†k θ

†
k = 1 (A.20)

This means that ∫
dθk ≡

∂

∂θk

∫
dθ†k ≡

∂

∂θ†k
(A.21)

The product measures are simply

dθ ≡ dθ1 · · · dθN , dθ† ≡ dθ†N · · · dθ
†
1 =⇒ dθ†dθ ≡

N∏
k=1

dθ†kdθk (A.22)

Using these de�nitions, it is easy two show that the following formula for
Gaussian integrals holds:∫

dθ†dθ e−θ
†Aθ+η†θ+θ†η = detAeη

†A−1η (A.23)

A.3 Canonical coherent states

Let F =
⊗N
k=1 Hk be a Fock space de�ned as a direct product of single-

particle fermionic Hilbert spaces. The annihilation and creation operators
obey canonical anticommutation relations¶

âk, âl
©

= 0
¶
â†k, â

†
l

©
= 0

¶
âk, â

†
l

©
= δkl k, l = 1, · · · , N (A.24)

For each sector, the vacuum state is de�ned by

âk |0〉k = 0 (A.25)

and therefore the vacuum state in F is

|0〉 =
N⊗
k=1

|0〉k (A.26)
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Applying the creation operators, we obtain

|k1 · · · kp〉 = â†k1 · · · â
†
kp
|0〉 p = 1, · · · , N (A.27)

These states span the entire Fock space: they form an orthonormal basis

〈k1 · · · kp|l1 · · · lq〉 = δpq
∑

perm π

(−)πδk1π(l1) · · · δkpπ(lp) (A.28)

and the resolution of unity reads

N∑
p=0

1

p!

∑
k1,··· ,kp

|k1 · · · kp〉〈k1 · · · kp| = I (A.29)

The factor 1/p! takes account of the indistinguishability of the particles. A
generic state |ψ〉 can be written as

|ψ〉 = ψ(â†) |0〉 ψ(â†) ≡
N∑
p=0

1

p!
ψk1···kp â

†
k1
· · · â†kp (A.30)

where the coe�cients ψk1···kp are totally antisymmetric. An arbitrary opera-

tor Â can be written as

Â =
∑
p,q

1

p!q!
Ak1···kpl1···lq â

†
k1
· · · â†kp âlq · · · âl1 (A.31)

normal ordered.
The canonical coherent states are de�ned by

|θ〉 = e−
∑

k
θkâ
†
k |0〉 =

∏
k

e−θkâ
†
k |0〉 =

∏
k

Ä
1− θkâ†k

ä
|0〉 (A.32)

with θk Grassmannian variables such that

θkθl = −θlθk, θ†kθl = −θlθ†k, θkâl = −âlθk, θkâ
†
l = −â†l θk (A.33)

(the variables θk and θ
†
k are independent for the purpose of constructing the

algebra). The state |θ〉 is an eigenstate of âk, with eigenvalues θk:

âk |θ〉 = θk |θ〉 (A.34)

Indeed,

âk |θ〉 = âk
∏
j

Ä
1− θj â†j

ä
|0〉 =

∏
j 6=k

Ä
1− θj â†j

ä âk Ä1− θkâ†kä |0〉
=

∏
j 6=k

Ä
1− θj â†j

ä θk |0〉 = θk

∏
j

Ä
1− θj â†j

ä |0〉 = θk |θ〉
(A.35)



APPENDIX A. USEFUL FORMULAS 49

where, in the last step, we can reintroduce at no cost the factor
Ä
1− θkâ†k

ä
in the product because (θk)

2 = 0. The inner product between two coherent
states |θ〉 and |η〉 is

〈θ|η〉 = 〈0|
Ä
1− â1θ

†
1

ä
· · ·
Ä
1− âNθ†N

ä Ä
1− ηN â†N

ä
· · ·
Ä
1− η1â

†
1

ä
|0〉

=
∏
k

Ä
1 + θ†kηk

ä
= exp

(∑
k

θ†kηk

)
≡ exp

Ä
θ†η
ä (A.36)

Using the formulas collected in section A.2 for the integrals over Grassman-
nian variables, we �nd the resolution of unity

Î =
∫

dθ†dθ
|θ〉〈θ|
〈θ|θ〉

(A.37)

Indeed, for a single variable (N = 1),∫
dθ†dθ

|θ〉〈θ|
〈θ|θ〉

=
∫

dθ†dθ e−θ
†θ
Ä
1− θâ†

ä
|0〉〈0|

Ä
1− âθ†

ä
=
∫

dθ†dθ
Ä
1− θ†θ

ä Ä
1− θâ†

ä
|0〉〈0|

Ä
1− âθ†

ä
=
∫

dθ†dθ
Ä
−θ†θ |0〉〈0|+ θ |1〉〈1| θ†

ä
=
∫

dθ†dθ θθ† (|0〉〈0|+ |1〉〈1|) = |0〉〈0|+ |1〉〈1| = I

(A.38)

(only the bilinear terms in θ, θ† survive in the Berezin integral), and so on
for the entire Fock space. Using (A.37) a generic state can be written as

|ψ〉 =
∫

dθ†dθ e−θ
†θψ(θ†) |θ〉 (A.39)

with

ψ(θ†) ≡ 〈θ|ψ〉 =
N∑
p=0

1

p!
ψk1···kpθ

†
k1
· · · θ†kp (A.40)

as it results from (A.30) and (A.34). Using (A.31), the expression for the
representative of a generic operator follows:

A(θ†, η) ≡ 〈θ|Â|η〉 = exp
Ä
θ†η
ä∑
p,q

1

p!q!
Ak1···kpl1···lqθ

†
k1
· · · θ†kpηlq · · · ηl1 (A.41)

and so

Aψ(θ†) ≡ 〈θ|Â|ψ〉 =
∫

dη†dη e−η
†ηA(θ†, η)ψ(η†) (A.42)

AB(θ†, η) ≡ 〈θ|ÂB̂|η〉 =
∫

dη′
†
dη′ e−η

′†η′A(θ†, η′)B(η′
†
, η) (A.43)
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Suppose an operator Ô can be written in the special form

Ô = exp
Å∑
k,l

â†kMklâl

ã
(A.44)

Then, its representative is

O(θ†, η) ≡ 〈θ|Ô|η〉 = exp
ï∑
k,l

θ†k(e
M)klηl

ò
(A.45)

(see [31], Appendix C). Combining this formula with (A.43) it follows that,
if two operators are in the form

Ô1 = exp
Å∑
k,l

â†kMklâl

ã
Ô2 = exp

Å∑
k,l

â†kNklâl

ã
(A.46)

then
O1O2(θ†, η) = exp

ï∑
k,l

θ†k(e
MeN)klηl

ò
(A.47)

Finally, the trace of an even operator Â (such as it commutes with any
Grassmannian variable, Âθk = θkÂ) can be written as

tr Â =
∫

dθ†dθ e−θ
†θA(θ†,−θ) (A.48)

If two kind of fermions (namely, particles and antiparticles) are admitted,
the Fock space can be constructed from the set of canonical creation and
annihilation operators¶

û†i , ûj
©

=
¶
v̂†i , v̂j

©
= δij,

¶
ûi, ûj

©
=
¶
v̂i, v̂j

©
=
¶
ûi, v̂j

©
=
¶
û†i , v̂j

©
= 0
(A.49)

where u†i and v†i create, respectively, a particle and an antiparticle in the
state i. Canonical coherent states can be de�ned in the same way:

|ρ, σ〉 = exp

(
−
∑
k

ρkû
†
k −

∑
k

σkv̂
†
k

)
|0〉 (A.50)

and the resolution of unity reads as

Î =
∫ ∏

k

dρ†kdρkdσ
†
kdσk e

−
∑

k
ρ†
k
ρk−
∑

k
σ†
k
σk |ρ, σ〉〈ρ, σ| (A.51)



Appendix B

Fermion bilinear representation of
the algebra of GL(n)

Let {E(ij) | i, j = 1, · · · , n } be a basis of n× n matrices of the algebra that
generates the general linear group GL(n). A suitable choice is

[E(ij)]kl ≡ E
(ij)
kl = δikδjl (B.1)

so that î
E(ij), E(kl)

ó
ab

=
n∑
c=1

[δiaδjcδkcδlb − δkaδlcδicδjb]

= δjkE
(il)
ab − δilE

(kj)
ab

(B.2)

as it should be. Indeed, a generic matrix can then be written as

Aij =
∑
k,l

AklE
(kl)
ij (B.3)

and
[A,B]ij =

∑
k,l

[A,B]klE
(kl)
ij (B.4)

Let ψ̂i, ψ̂
†
i be n couples of fermion canonical operators, such that

{ψ̂i, ψ̂j} = {ψ̂†i , ψ̂
†
j} = 0 {ψ̂†i , ψ̂j} = δij (B.5)

Fermion bilinear operators are de�ned by

Lij = ψ̂†i ψ̂j (B.6)

They satisfy the same commutation relations of the E(ij):

[Lij, Lkl] = ψ̂†i ψ̂jψ̂
†
kψ̂l − ψ̂

†
kψ̂lψ̂

†
i ψ̂j

= δjkψ̂
†
i ψ̂l − ψ̂

†
i ψ̂
†
kψ̂jψ̂l − δilψ̂

†
kψ̂j + ψ̂†kψ̂

†
i ψ̂lψ̂j

= δjkLil − δilLkj

(B.7)
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As a consequence, they provide a representation of GL(n):

A =
∑
k,l

AklE
(kl) =

∑
k,l

AklLkl (B.8)

A generic product of matrices in GL(n) can be expressed as

exp[A] exp[B] = exp[f(A,B)] (B.9)

where A and B are the corresponding elements of the algebra and

f(A,B) = A+B +
1

2
[A,B] +

1

12

Ä
[A, [A,B]]− [B, [A,B]]

ä
+ · · · (B.10)

is given by the Baker-Campbell-Hausdor� formula. Considering that f(A,B)
can be written in terms of the matrices A, B and their commutators, using
(B.4) and (B.8) it follows easily that also

exp[AE] exp[BE] = exp[f(A,B)E]

=⇒ exp[AL] exp[BL] = exp[f(A,B)L]
(B.11)



Appendix C

Saddle point for fermion doublers

In a free theory with Wilson fermions in d space-time dimensions the matrices
B,M and N are given by

B(q) = 1− 2κ
d−1∑
j=1

cos aqj = 1− 2κ(d− 1) + κ
d−1∑
j=1

(âqj)
2 (C.1)

N (q) = −2κ

B

d−1∑
j=1

aqjσj (C.2)

e2M(q) =
B
2κ

(q) = 1 + am+
1

2

d−1∑
j=1

(âqj)
2 (C.3)

where we used the notations

âqµ = 2 sin
aqµ
2

aqµ = sin apµ
(C.4)

and
iσj = P−γjP+ (C.5)

In a free theory the equation (2.47) naturally holds, so

F̄ =
N

2N 2

Ä
−Y ±

√
Y2 + 4N 2

ä
=
N√
N 2

Ö
− Y

2
√
N 2
±

ÃÇ Y
2
√
N 2

å2

+ 1

è
(C.6)

Using the property of the Pauli σ matrices

σiσj = iεijkσk + δijI (C.7)
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we have

N 2(q) =

Ç
2κ

B

å2 d−1∑
j=1

Ä
aqj
ä2

(C.8)

and so
N√
N 2

(q) = −
∑
j aqjσj√∑
j

Ä
aqj
ä2 (C.9)

From the de�nition (2.48) we get

Y(q) = 1−
Ç

2κ

B

å2
1 +

∑
j

Ä
aqj
ä2 (C.10)

Y
2
√
N 2

=
1−

Ä
2κ
B

ä2 [
1 +

∑
j

Ä
aqj
ä2]

22κ
B

√∑
j

Ä
aqj
ä2 (C.11)Ç Y

2
√
N 2

å2

+1=

[
1−
Ä

2κ
B

ä2]2
+
Ä

2κ
B

ä4 [∑
j

Ä
aqj
ä2]2

+2
[
1+
Ä

2κ
B

ä2] Ä2κ
B

ä2∑
j

Ä
aqj
ä2

4
Ä

2κ
B

ä2∑
j

Ä
aqj
ä2

(C.12)

Suppose now that, for any value of the lattice spacing a, |apj| � 1 for any
j. This means that, before the continuum limit, we are close to the physical
pole pj = 0, the one we would like to see also in the continuum theory. Then

aqj = aqj +O(a3) (C.13)

2κ

B
= 1−ma+O(a2) (C.14)

N√
N 2

= −
∑
j qjσj»∑
j q

2
j

+O(a2) = −q · σ
|q|

+O(a2) (C.15)

Y
2
√
N 2

=
1− (1− 2ma)

2(1−ma)a|q|
+O(a) =

m

|q|
+O(a) (C.16)

and so

F̄ = −q · σ
|q|

(
−m
|q|

+

√
1 +

m2

q2

)

= −q · σ
q2

(−m+ Eq)

= −q · σ
q2

E2
q −m2

Eq +m

= − q · σ
Eq +m

(C.17)
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That's exactly what we expected for the Foldy-Wouthuysen transformation
that diagonalize the free Dirac Hamiltonian (see [8]).

Let's move near a spurious pole: there is now at least one value for j for
which

apj = π − aεj with |aεj| � 1 (C.18)

Obviously
apj = sin(π − aεj) = sin(aεj) = aεj (C.19)

but

âpj = 2 sin
Åπ

2
− aεj

2

ã
= 2 cos

aεj
2
' 2

ñ
1− 1

2

Åaεj
2

ã2
ô

(C.20)

Introducing the counting variable

nj =

1 if apj ' π

0 if apj ' 0
(C.21)

then

B
2κ

= 1 +ma+
∑
j

nj +O(a2) (C.22)

2κ

B
=

1

1 +
∑
j nj
− ma

(1 +
∑
j nj)

2 +O(a2) (C.23)

Y
2
√
N 2

=
1− (1 +

∑
j nj)

−2

2 (1 +
∑
j nj)

−1 a|q|
+O(a) =

M

|q|
+O(a) (C.24)

with

M =
1− (1 +

∑
j nj)

−2

2 (1 +
∑
j nj)

−1 a
=

(1 +
∑
j nj)

2 − 1

2 (1 +
∑
j nj) a

(C.25)

This �mass� factor has the same role as m in the previous calculation, so

F̄ = − q · σ
Eq +M

(C.26)

However, this time

M ∼ 1

a
(C.27)

and in the continuum limit
F̄ → 0 (C.28)

In the Wilson formulation, the spurious poles take a divergent mass term
that, when a→ 0, makes them decouple from the physical phenomena!



Appendix D

Numerical methods

The numerical methods we use to evaluate the solution of the saddle point
equation (3.41) are well explained in reference [16]; we report and elaborate
them here for completeness. The �rst step is to obtain a compact interval of
integration making the change of variable

x = arctan p =⇒ x ∈
ï
−π

2
,
π

2

ò
(D.1)

so that the functional of θ in (3.41) becomes

fx(θ) = −m sin θ(x) + tan x cos θ(x)− γ

2

∫ π/2

−π/2
dx′

sin[θ(x)− θ(x′)]
cos2(x′)(tanx− tanx′)2

(D.2)
Then, to evaluate the integral we can discretize the interval in N evenly
spaced sample points, so that

x −→ xn =
nπ

N
− π

2
n = 0, 1, · · · , N (D.3)

Between two adjacent points there is the interval

dx −→ ∆x = xn+1 − xn =
π

N
(D.4)

In this way, the functional becomes the ordinary function

fn(θ) = −m sin θn + tanxn cos θn −
γ∆x

2

N∑
n′=0
n′ 6=n

sin[θn − θn′ ]
cos2(xn′)(tanxn − tanxn′)2

(D.5)
where θ is a (N+1)-dimensional vector with components θn ≡ θ(xn). The
sum is performed to avoid the point where the denominator is not de�ned.
Therefore, the integral equation (3.41) becomes the non linear system

f(θ) = 0 (D.6)
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where f is the vector with components fn. To evaluate it, we use the Newton
method: starting from an arbitrary �solution� θ̄, an improvement θ̄ + δθ
is obtained solving, with a standard numerical procedure (we adopt an LU
decomposition followed by the Gaussian elimination), the linear system for
the increment

J(θ̄)δθ = −f(θ) (D.7)

This equation can be derived from

f(θ̄ + δθ) = f(θ̄) + J(θ̄)δθ +O
Ä
δθ2
ä

(D.8)

imposing that, in the incremented point, the relation f(θ̄ + δθ) = 0 holds.
From this last equation we can see that

[J ]mn =
∂fm
∂θn

(D.9)

is the Jacobian matrix. Iterating the procedure until δθ is less than some ε,
we get the solution to the target precision. Choosing properly the starting
point θ̄ for the iteration, the convergence is not an issue: using the value
from the free theory γ = 0 we obtain the desired precision in few iterations.



Appendix E

Wilson fermions and chiral
anomaly

E.1 Fermion doubling and Dirac-Wilson action

In a continuum d-dimensional space-time, the action for an Euclidean �eld
theory of free fermions is

S0 =
∫

ddx ψ̄(x)(/∂ +m)ψ(x) (E.1)

The fermion �elds ψ, ψ̄ belong to the fundamental representation of the gauge
(colour) group SU(Nc). This action can be discretized on a hypercubic lattice
with spacing a (in order, for example, to regularize the interacting theory):
just replace the derivative in (E.1) with appropriate �nite-di�erences of �elds
de�ned on nearby lattice sites. Using (A.4), a possible discretized version is

S0 = ad
∑

x∈(aZ)d

ψ̄(x)
d∑

µ=1

γµ
ψ(x+ aµ̂)− ψ(x− aµ̂)

2a
+mψ̄(x)ψ(x)

 (E.2)

Diagonalizing this expression in Fourier space we get, for the quadratic op-
erator in it,

D−1(p) = m+ i
∑
µ

γµ
sin apµ
a

(E.3)

where, because of the discrete nature of the variables x, the conjugate mo-
menta take value in the �rst Brillouin zone

− π

a
< pµ ≤

π

a
; µ = 1, · · · , d (E.4)
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The quark propagator is then

D(p) =
m− i∑µ γµ

sin apµ
a

m2 +
Ä∑

µ
sin apµ
a

ä2 (E.5)

which, in continuum limit, correctly tends to

D(p) −→
a→0

m− i/p
m2 + p2

(E.6)

In addition, the (E.2) action has the same symmetry properties of the action
(E.1) (if we exclude, obviously, the space-time symmetries, replaced by the
symmetries of the hypercubic lattice). Indeed, it remains unchanged under
the global transformation of the �elds

ψ −→ e−iαΞψ ψ̄ −→ ψ̄eiαΞ (E.7)

with Ξ an Hermitian matrix in gauge indices, as well as, in the zero-mass
limit, under the chiral rotation

ψ −→ e−iαγ5ψ ψ̄ −→ ψ̄e−iαγ5 (E.8)

(and also under chiral transformations for which γ5 at the exponent multiplies
an Hermitian matrix in gauge indices).

However, the propagator in (E.5) has a serious problem: its poles provide
the mass-shell conditions and so the particle content of the theory, but, in
the zero-mass limit, the equation

∑
µ

sin apµ
a

= 0 (E.9)

admits 2d di�erent solutions for p in the �rst Brillouin zone. Each component
pµ, con µ = 1, · · · , d, can be 0 or π/a, then the solutions are

ΠA = {(0, 0, · · · , 0), (π/a, 0, · · · , 0), · · · , (π/a, π/a, · · · , π/a)} (E.10)

with A = 1, · · · , 2d. This means that, discretizing in a naive way a theory
of a single free fermion, we get a theory with 2d di�erent particles in the
spectrum!

A possible way out to evade the doubling problem, proposed by K. Wilson,
consists in adding to the action a term of the type

S
(r)
0 = −ad

∑
x∈(aZ)d

ψ̄(x)
d∑

µ=1

r
ψ(x+ aµ̂) + ψ(x− aµ̂)− 2ψ(x)

2a

 (E.11)
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As we can see from (A.6), this term is proportional to a∂2ψ and so it tends
to 0 in the continuum limit, leaving the action unchanged. We obtain

S0W = ad
∑

x∈(aZ)d

ψ̄(x)
d∑

µ=1

ñ
γµ
ψ(x+ aµ̂)− ψ(x− aµ̂)

2a

− r ψ(x+ aµ̂) + ψ(x− aµ̂)

2a

ô
+

Ç
m+

rd

a

å
ψ̄(x)ψ(x)

 (E.12)

From this the propagator

D−1
W (p) =

Ç
m+

rd

a

å
− r

∑
µ

cos apµ
a

+ i
∑
µ

γµ
sin apµ
a

=⇒ DW (p) =
M(p)− i∑µ γµ

sin apµ
a

M(p)2 +
Ä∑

µ
sin apµ
a

ä2 (E.13)

follows, with

M(p) =

Ç
m+

rd

a

å
− r

∑
µ

cos apµ
a

= m− r

a

∑
µ

(cos apµ − 1) (E.14)

If one (or more) component of p is π/a, M(p) diverges for a→ 0: the Wilson
term gives an in�nite mass to the fermion doublers in the continuum limit,
so that they are produced in no physical process, even at perturbative level.
Grouping terms,

S0W = ad
∑

x∈(aZ)d


Ç
m+

rd

a

å
ψ̄(x)ψ(x)

− 1

a
ψ̄(x)

d∑
µ=1

ñ
r − γµ

2
ψ(x+ aµ̂) +

r + γµ
2

ψ(x− aµ̂)

ô (E.15)

The role of the operators (r ± γµ)/2 is particularly clear for r = 1: they are
projectors in spin space.

To make this action invariant under the gauge transformation

ψ(x)→ Ω(x)ψ(x); ψ̄(x)→ ψ̄(x)Ω†(x) (E.16)

we have to insert a parallel transporter along lattice links that transforms as

U(x, x+ aµ̂)→ Ω(x)U(x, x+ aµ̂)Ω†(x+ aµ̂) (E.17)
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From
U †(x, x+ aµ̂)→ Ω(x+ aµ̂)U †(x, x+ aµ̂)Ω†(x)

=⇒ U †(x, x+ aµ̂) = U(x+ aµ̂, x)
(E.18)

and imposing the lattice translational invariance, we get∑
x∈(aZ)d

ψ̄(x)U(x, x− aµ̂)ψ(x− aµ̂) =
∑

x∈(aZ)d

ψ̄(x+ aµ̂)U(x+ aµ̂, x)ψ(x)

=
∑

x∈(aZ)d

ψ̄(x+ aµ̂)U †(x, x+ aµ̂)ψ(x)

(E.19)
We will use the shorthand

Uµ(x) ≡ U(x, x+ aµ̂) (E.20)

Introducing the anti-Hermitian, algebra valued, gauge �eld1

Aµ(x) = ig
N2−1∑
a=1

AaµΘa (E.21)

we have
Uµ(x) = eaAµ(x) (E.22)

The �eld strength is given by

Fµν(x) = ∂(+)
µ Aν(x)− ∂(+)

ν Aµ(x) + [Aµ(x), Aν(x)] (E.23)

In this way we �nd the Dirac-Wilson action

SW = ad
∑

x∈(aZ)d


Ç
m+

rd

a

å
ψ̄(x)ψ(x)

−
d∑

µ=1

ñ
ψ̄(x)

r − γµ
2a

Uµ(x)ψ(x+ aµ̂) + ψ̄(x+ aµ̂)
r + γµ

2a
U †µ(x)ψ(x)

ô (E.24)

E.2 Axial current on the lattice

The Dirac-Wilson action, insofar as it allows to eliminate duplicates from
the spectrum and thus to obtain the correct continuum theory, explicitly
breaks the invariance under chiral rotation, even in the zero-mass limit: the
contributions proportional to the parameter r do not contain any γ matrix

1For our present convenience, in this chapter we use a convention di�erent from (1.11).
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and thus do not allow, exploiting the anti-commuting property with γ5, to
simplify the transformations of ψ and ψ̄ in the bilinear. This is a consequence
of the more general Nielsen-Ninomiya theorem, which denies the possibility
of �nding a theory, satisfying very natural physical demands, at the same
time chirally symmetric and without duplicates: although the transformation
(E.8) leaves the classical action unchanged, the corresponding conservation
law is broken by quantum correction. It is expected that the terms that
explicitly break the chiral symmetry are responsible for this anomaly.

Consider the partition function

Z =
∫ î

dψ dψ̄
ó
e−SW [ψ,ψ̄,U ] (E.25)

with î
dψ dψ̄

ó
=

∏
x∈(aZ)d

dψ(x)dψ̄(x) (E.26)

The local version of the chiral rotation (E.8) consists in the change of vari-
ables

ψ(x) −→ ψ′(x) = e−iα(x)γ5ψ(x) ' (1− iα(x)γ5)ψ(x)

ψ̄(x) −→ ψ̄′(x) = ψ̄(x)e−iα(x)γ5 ' ψ̄(x)(1− iα(x)γ5)
(E.27)

in the partition function integral. As the integration variables are �mute�, it
must be ∫ î

dψ dψ̄
ó
e−SW [ψ,ψ̄,U ] =

∫ î
dψ′ dψ̄′

ó
e−SW [ψ′,ψ̄′,U ] (E.28)

On the lattice the integration measure is well de�ned, since it is a discrete
product, so the Jacobian of the transformation (E.27) equals to 1 (since
tr γ5 = 0), and so î

dψ dψ̄
ó

=
î
dψ′ dψ̄′

ó
(E.29)

The variation of the integral is due exclusively to the variation of the action:

• the m term varies accordingly

δαS
(m)
W = ad

∑
x∈(aZ)d

[−iα(x)] 2mψ̄(x)γ5ψ(x) (E.30)

• the r one accordingly

δαS
(r)
W = ad

∑
x∈(aZ)d

d∑
µ=1

Å
− r

2a

ã
[

− iα(x)ψ̄(x)γ5Uµ(x)ψ(x+ aµ̂)− iα(x+ aµ̂)ψ̄(x)Uµ(x)γ5ψ(x+ aµ̂)

− iα(x+ aµ̂)ψ̄(x+ aµ̂)γ5U
†
µ(x)ψ(x)− iα(x)ψ̄(x+ aµ̂)U †µ(x)γ5ψ(x)

+ 4iα(x)ψ̄(x)γ5ψ(x)]
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Translating x → x − aµ̂ in the second e third addends we can make
everything proportional to α(x), so

δαS
(r)
W = ad

∑
x∈(aZ)d

d∑
µ=1

[−iα(x)]
Å
− r

2a

ã
[

ψ̄(x)γ5Uµ(x)ψ(x+ aµ̂) + ψ̄(x− aµ̂)Uµ(x− aµ̂)γ5ψ(x)

+ ψ̄(x)γ5U
†
µ(x− aµ̂)ψ(x− aµ̂) + ψ̄(x+ aµ̂)U †µ(x)γ5ψ(x)

− 4ψ̄(x)γ5ψ(x)]

In short,
δαS

(r)
W = ad

∑
x∈(aZ)d

[−α(x)]Xr(x) (E.31)

with

Xr(x) ≡

− r

2a

d∑
µ=1

ψ̄(x)iγ5

î
Uµ(x)ψ(x+ aµ̂) + U †µ(x− aµ̂)ψ(x− aµ̂)− 2ψ(x)

ó
− r

2a

d∑
µ=1

î
ψ̄(x− aµ̂)Uµ(x− aµ̂) + ψ̄(x+ aµ̂)U †µ(x)− 2ψ̄(x)

ó
iγ5ψ(x)

(E.32)

• �nally, the term with the γ matrices varies according to

δαS
(γ)
W = ad

∑
x∈(aZ)d

d∑
µ=1

1

2a
[− iα(x)ψ̄(x)γ5γµUµ(x)ψ(x+ aµ̂)

− iα(x+ aµ̂)ψ̄(x)γµγ5Uµ(x)ψ(x+ aµ̂)

+ iα(x+ aµ̂)ψ̄(x+ aµ̂)γ5γµU
†(x)ψ(x)

+ iα(x)ψ̄(x+ aµ̂)γµγ5U
†(x)ψ(x)]

Translating where necessary and using {γµ, γ5} = 0,

δαS
(γ)
W = ad

∑
x∈(aZ)d

d∑
µ=1

1

2a
[−iα(x)][− ψ̄(x)γµγ5Uµ(x)ψ(x+ aµ̂)

+ ψ̄(x− aµ̂)γµγ5Uµ(x− aµ̂)ψ(x)

+ ψ̄(x)γµγ5U
†(x− aµ̂)ψ(x− aµ̂)

− ψ̄(x+ aµ̂)γµγ5U
†(x)ψ(x)]
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and so

δαS
(γ)
W = −ad

∑
x∈(aZ)d

d∑
µ=1

[−α(x)]
J5
µ(x)− J5

µ(x− aµ̂)

a

= −ad
∑

x∈(aZ)d

d∑
µ=1

[−α(x)]∇(−)
µ J5

µ(x)

(E.33)

with

J5
µ(x) =

1

2

î
ψ̄(x)iγµγ5Uµ(x)ψ(x+ aµ̂) + ψ̄(x+ aµ̂)iγµγ5U

†
µ(x)ψ(x)

ó
(E.34)

Ultimately, imposing the invariance (E.28) of the partition function, and thus
that the linear terms in α(x) in the RHS are null, we found

〈
d∑

µ=1

∇−µ J5
µ(x)〉 = 2mi 〈ψ̄(x)γ5ψ(x)〉+ 〈Xr(x)〉 (E.35)

E.3 Continuum limit

Introduction

To prove that equation (E.35) reproduce the well known ABJ anomaly in the
continuum limit we have to show that2

〈Xr(x)〉 −→
a→0

i

16π2
εµνρσ trFµνFρσ (E.36)

The limit procedure is not a trivial operation, since it requires to expand
〈Xr(x)〉 in a formal series of operators, that must be truncated with a power-
counting argument. We took the following discussion from [19], with the
proper clari�cations in [30]. We found the idea to apply the power-counting
theorem [28] (well explained in [21]) to our case in [1]. An alternative dis-
cussion, mathematically more consistent, is in [13].

Kerler series

The �rst step is to evaluate explicitly the expression on the lattice. To �nd
the expectation values in (E.35) we use the generating functional formalism.
To this end, we rewrite the action (E.24) as a quadratic form:

SW = a4
∑

x∈(aZ)4

∑
y∈(aZ)4

ψ̄(x)
Ä
/D −W +M

ä
(x, y)ψ(y) (E.37)

2In the sequel we take d = 4, as QCD4 is the most natural setting to study this problem.
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where

/D(x, y) =
4∑

µ=1

γµ
Uµ(x)δx+aµ̂,y − U †µ(y)δx,y+aµ̂

2a
=

4∑
µ=1

γµDµ(x, y)

W (x, y) = r
4∑

µ=1

Uµ(x)δx+aµ̂,y + U †µ(y)δx,y+aµ̂ − 2δx,y

2a
=

4∑
µ=1

Wµ(x, y)

M(x, y) = mδx,y

(E.38)

The moment-generating function is

Z[η, η̄] =
∫ î

dψ dψ̄
ó
exp
î
−(ψ̄, ( /D −W +M)ψ) + (η̄, ψ) + (ψ̄, η)

ó
(E.39)

where we used the notation

(A,B) = a4
∑

x∈(aZ)4

A(x)B(x) (MC)(x) =
∑

y∈(aZ)4

M(x, y)C(y) (E.40)

Evaluating the Gaussian integral we get

Z[η, η̄] = Z exp
î
(η̄, ( /D −W +M)−1η)

ó
(E.41)

with Z = Z[0, 0] given by (E.25). The correlation functions can be obtained
deriving this expression with respect to the sources. For example, the two-
points function is

[G(x1, x2)] βj
αi ≡ a4 〈ψαi(x1)ψ̄βj(x2)〉

=
a−4

Z

Ç
− δ

δη̄αi(x1)

åÇ
δ

δηβj(x2)

å
Z[η, η̄]

∣∣∣∣∣η=0
η̄=0

= {[( /D −W +M)−1](x1, x2)} βj
αi

(E.42)

with α, β spin indices, i, j colour ones. A typical term in 〈Xr(x)〉 is

− r

2a
〈ψ̄(x)iγ5Uµ(x)ψ(x+ aµ̂)〉 = − r

2a
〈ψ̄αi(x)(iγ5) β

α Uµ(x) ji ψβj(x+ aµ̂)〉

=
r

2a
(iγ5) β

α 〈ψβj(x+ aµ̂)ψ̄αi(x)〉Uµ(x) ji

=
r

2a
(iγ5) β

α [G(x+ aµ̂, x)] αi
βj Uµ(x) ji

1

a4

=
r

2a
tr iγ5G(x+ aµ̂, x)Uµ(x)

1

a4
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and so

a4 〈Xr(x)〉

=
r

2a
tr

4∑
µ=1

iγ5

î
G(x+ aµ̂, x)Uµ(x) +G(x− aµ̂, x)U †µ(x− aµ̂)− 2G(x, x)+

G(x, x− aµ̂)Uµ(x− aµ̂) +G(x, x+ aµ̂)U †µ(x)− 2G(x, x)
ó

Using

(GW )(x, y)

=
∑

z∈(aZ)4

G(x, z)W (z, y)

=
∑

z∈(aZ)4

G(x, z)
r

2a

4∑
µ=1

[Uµ(z)δz+aµ̂,y + U †µ(y)δz,y+aµ̂ − 2δz,y]

=
r

2a

4∑
µ=1

[G(x, y − aµ̂)Uµ(y − aµ̂) +G(x, y + aµ̂)U †µ(y)− 2G(x, y)]

and the analogue for (WG)(x, y), we arrive at the compact expression

〈Xr(x)〉 =
i

a4
tr[γ5(GW +WG)(x, x)] (E.43)

The two-points function G is a matrix inverse (indeed, it is the propa-
gator): with a bit of work, we will represent it as a formal Neumann series,
that is the generalization of the geometric series for an algebra of operators.
Firstly, we note that

G = ( /D −W +M)−1

= ( /D +W −M)( /D +W −M)−1( /D −W +M)−1

= ( /D +W −M)[( /D −W +M)( /D +W −M)]−1

= ( /D +W −M)
[
/D

2
+ [ /D,W ]−W 2 + 2MW −M2

]−1

(E.44)

where we used the fact that M commutes with everything because it's pro-
portional to the identity matrix. For convenience, we de�ne

Σ =
∑
µ,ν

1

4
[Dµ, Dν ][γµ, γν ]

Γ =
∑
µ,ν

γµ[Dµ,Wν ] = [ /D,W ]

V = Σ + Γ

(E.45)
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The commutators in Σ and Γ can be evaluated directly, using the de�nitions
(E.38):

[Dµ, Dν ](x, y) =
1

4

ï
F I

µν(x)δx+aµ̂+aν̂,y + F II

µν(x− aν̂)δx+aµ̂−aν̂,y+

F III

µν(x− aµ̂)δx+aν̂−aµ̂,y + F IV

µν(x− aµ̂− aν̂)δx−aµ̂−aν̂,y

ò
[Dµ,Wν ](x, y) =

r

4

ï
F I

µν(x)δx+aµ̂+aν̂,y − F II

µν(x− aν̂)δx+aµ̂−aν̂,y+

F III

µν(x− aµ̂)δx+aν̂−aµ̂,y − F IV

µν(x− aµ̂− aν̂)δx−aµ̂−aν̂,y

ò
(E.46)

where

F I

µν(x) = [Uµ(x)Uν(x+ aµ̂)− Uν(x)Uµ(x+ aν̂)]/a2

F II

µν(x) = [U †ν(x)Uµ(x)− Uµ(x+ aν̂)U †ν(x+ aµ̂)]/a2

F III

µν(x) = [Uν(x+ aµ̂)U †µ(x+ aν̂)− U †µ(x)Uν(x)]/a2

F IV

µν(x) = [U †µ(x+ aν̂)U †ν(x)− U †ν(x+ aµ̂)U †µ(x)]/a2

(E.47)

All these quantities are indistinguishable, in the continuum limit, from the
�eld strength (E.23): for example,

a2F I

µν(x) = [1 + aAµ(x)][1 + aAν(x+ aµ̂)]

− [1 + aAν(x)][1 + aAµ(x+ aν̂)] + o(a2)

= aAµ(x) + aAν(x+ aµ̂) + a2Aµ(x)Aν(x+ aµ̂)

− aAν(x)− aAµ(x+ aν̂)− a2Aν(x)Aµ(x+ aν̂) + o(a2)

= a2{∇(+)
µ Aν(x)−∇(+)

ν Aµ(x) + [Aµ(x), Aν(x)]}+ o(a2)

Let's go back to the two-points function G: using (as we can see from the
de�ning properties of the Cli�ord algebra γ matrices)

/D
2

=
∑
µ,ν

Ç
1

4
{Dµ, Dν}{γµ, γν}+

1

4
[Dµ, Dν ][γµ, γν ]

å
= D2 + Σ (E.48)

and grouping in the second bracket of (E.44) all the terms with no γ matrix,
we �nd[

/D
2

+ [W, /D]−W 2 + 2MW −M2
]

=
[
1 + (Σ + Γ)

Ä
D2 −W 2 + 2MW −M2

ä−1
] Ä
D2 −W 2 + 2MW −M2

ä
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and so, taking the inverse,

[
/D

2
+ [W, /D]−W 2 + 2MW −M2

]−1

=
Ä
D2 −W 2 + 2MW −M2

ä−1
[
1 + V

Ä
D2 −W 2 + 2MW −M2

ä−1
]−1

(E.49)

De�ning the quantity

G =
Ä
D2 −W 2 + 2MW −M2

ä−1
(E.50)

the result for the two-points function is

G = ( /D +W −M)G(1 + V G)−1 (E.51)

The last bracket can be represented as a geometric series (Neumann series)
and, neglecting considerations about convergence, can be written as

1

1 + V G
=

+∞∑
n=0

(−V G)n (E.52)

and so
G = ( /D +W −M) (G − GV G + GV GV G ± · · · ) (E.53)

The trace (E.43) is thus of the type

i

a4
tr[γ5(GW )]

=
i

a4
tr{γ5[( /D +W −M) (G − GV G + GV GV G ± · · · )W ](x, x)} (E.54)

Since only the terms with at least four γ matrices contracted with γ5 survive
the trace and since Σ and Γ have, respectively, two and one of them, the �rst
addend that does not cancel is the one quadratic in V = Σ + Γ (and cubic
in G):

i

a4
tr{γ5[( /D +W −M)GV GV GW ± · · · ](x, x)}

=
i

a4
tr{γ5[(W −M)GΣGΣGW + /DGΓGΣGW + /DGΣGΓGW ± · · · ](x, x)}

(E.55)
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Power-counting

To understand where the series truncation occurs in the continuum limit we
need to establish some sort of hierarchy, for a → 0, among the operators
we de�ned. Their product can be written in Fourier representation as an
integral in the momentum space (E.4) (lattice Feynman integral). One might
think that an integral of this type is converging in the continuum limit if the
limit of the integrand is absolutely convergent, according to the dominant
convergence theorem. However, this is not the case, and it is easy to �nd
counterexamples: the fact is that the lattice integration spans a compact
space (the �rst Brillouin zone) that implements a momentum cut-o�, while
the continuum limit drastically modi�es the situation, as it brings the cut-
o� to in�nity. It is therefore clear where the trouble arises: in addition
to controlling convergence for small a, we must, at the same time, take in
account the behaviour of the integrand for large momenta. This is the idea
behind the power-counting theorem [28], which generalizes the usual method
for calculating the super�cial degree of divergence for continuum integrals.
A lattice Feynman integral is of the type

IF (q) =
∫
B

d4p1

(2π)4
· · · d4pn

(2π)4

V(p, q;m, a)

C(p, q;m, a)
(E.56)

The numerator has the properties:

i) there is an integer ω and a smooth function F such that

V(p, q;m, a) = a−ωF (ap, aq; am) (E.57)

F is a periodic function in api with period 2π and a polynomial in m;

ii) the continuum limit

P (p, q;m) = lim
a→0
V(p, q;m, a) (E.58)

exists.

The denominator is a generic product of operators, of the type

C(p, q;m, a) =
∏
i

Ci(ki;m, a) (E.59)

with ki linear combinations of the internal momenta p and the external ones
q. Ci must have the following properties:

i) there is a smooth function Qi such that

Ci(ki;m, a) = a−2Qi(aki; am) (E.60)
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ii) The continuum limit exists and

lim
a→0
Ci(ki;m, a) = k2

i +m2
i (E.61)

with mi linear combinations of the mass parameters m;

iii) There are two positive constants a0 and A such that

|Ci(ki;m, a)| ≥ A

∣∣∣∣∣∣∑µ
Ç

2

a
sin

akiµ
2

å2

+m2
i

∣∣∣∣∣∣ ∀ a < a0 (E.62)

There are further conditions for the linear combinations ki, but they are quite
technical in nature and are trivially satis�ed in the present case, where there
is only one internal momentum: in the sequel, the �1-loop version� of the
theorem will be enough. We de�ne the degree of V , and design it with degV ,
the integer number n appearing in the asymptotic expression

V(λp, q;m, a/λ) −→
λ→∞

Kλn +O(λn−1) K 6= 0 (E.63)

(and analogously for C). Obviously,

deg a = −1 deg p = 1 (E.64)

The role of the parameter λ is to control at the same time, when λ → ∞,
the continuum limit and the high momenta behaviour of V . The degree of
the integral is

deg IF (q) = 4 + degV − deg C (E.65)

Now, the Reisz theorem states that the continuum limit of IF exists if
deg IF < 0 and

lim
a→0

IF (q) =
∫

d4k
P (k, q;m)∏
i(k

2
i +m2

i )
(E.66)

In order to apply the theorem to the series (E.55) we only need to write the
operators in it in momentum space and then evaluating their degree. Let's
start from the operators of the free theory, where Aµ(x) = 0 e Uµ(x) = IN×N .
We �nd

D0µ(p) =
i sin apµ

a
(E.67)

W0µ(p) =
r

a
(cos apµ − 1) (E.68)

G0(p) =
−a2∑

µ sin2 apµ + [r
∑
µ(cos apµ − 1)− am]2

=
−a2∑

µ sin2 apµ + r2 [
∑
µ(cos apµ − 1)]2

+O(a) (E.69)
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and so
degD0 = degW0 = 1 deg G0 = −2 (E.70)

We can also evaluate the momentum space version of the operators Σ and Γ
at the lowest order in a, where all the F I,··· ,IV

µν appearing in (E.46) are at the
same point and equal to the Fµν de�ned in (E.23). It is

Σ(p)=
∑
µ,ν

1

16
[γµ,γν ][Fµν+O(a)]

î
eia(pµ+pν)+eia(pµ−pν)+eia(pν−pµ)+e−ia(pµ+pν)

ó
=
∑
µ,ν

1

4
[γµ, γν ]Fµν cos apµ · cos apν +O(a) (E.71)

Γ(p)=
∑
µ,ν

r

4
γµ[Fµν +O(a)]

î
eia(pµ+pν)− eia(pµ−pν)+ e−ia(pµ−pν)− e−ia(pµ+pν)

ó
= r

∑
µ,ν

γµFµν cos apµ · i sin apν +O(a2) (E.72)

and so
deg Σ = deg Γ = 0 (E.73)

We have now all the ingredients to cut o� the series (E.55). The highest
degree term in it is

a−4
Ä
Σ2W 2

0G3
0 + 2ΓΣ /D0W0G3

0

ä
−→ deg a−4

Ä
Σ2W 2

0G3
0 + 2 /D0ΓΣW0G3

0

ä
= 4 + 2− 6 = 0

Indeed, in the interacting theory the operators D0, W0, ... are corrected
by terms D1, W1, ... that depend on increasing powers of a (since Uµ =
I+ aAµ + · · · ) and so have a lower degree; the same is true for the successive
addends in the Kerler series, as they depend on increasing powers of G (and so
of a2). A 0-degree term is said to be marginal : it is at the boundary between
the negative-degree terms and the positive-degree ones. In the lower degree
(irrelevant) terms we can take the continuum limit under the integral sign,
via the power-counting theorem we have just mentioned, but in this case at
least on power of a is left in the numerator, so the integrand tends to 0:
the only terms that do not cancel in the series (E.55) when a → 0 are the
marginal ones!

Spinorial structure

Using the expressions (E.67), (E.68), (E.69), (E.71) and (E.72) it's easy to
obtain
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tr a−4γ5Σ2W 2
0G3

0 −→a→0
−
∑
µ,ν
ρ,σ

1

16
4 tr (γ5γµγνγργσFµνFρσ)

· r2a4
∫

d4p

(2π)4

cos apµ cos apν cos apρ cos apσ [
∑
κ(cos apκ − 1)]2¶∑

κ sin2 apκ + r2 [
∑
κ(cos apκ − 1)]2

©3

Using the property of the γ matrices

tr γ5γµγνγργσ = 4εµνρσ (E.74)

we found (all the indices µ, ν, ρ, σ must be di�erent to give a non null
contribution in the trace, so the cosines product is always over 4 out of 4
di�erent indices and can be factorized)

lim
a→0

tr a−4γ5Σ2W 2
0G3

0 = −IΣ

∑
µ,ν
ρ,σ

εµνρσ trFµνFρσ (E.75)

with

IΣ = r2
∫

d4p

(2π)4

4∏
λ=1

cos pλ
[
∑
κ(cos pκ − 1)]2¶∑

κ sin2 pκ + r2 [
∑
κ(cos pκ − 1)]2

©3 (E.76)

We also rescaled the momenta according to pµ → pµ/a (the integration in-
tervals span now from −π to π). The term with Γ requires a little more
work:

tr 2a−4γ5 /D0ΓΣW0G3
0 −→a→0

−2
∑
µ1,µ2
µ3,µ4

∑
λ

1

4
2 tr (γ5γµ1γµ2γµ3γµ4Fµ2λFµ3µ4)

· r2
∫

d4p

(2π)4

i sin pµ1 cos pµ2i sin pλ cos pµ3 cos pµ4
∑
κ(cos pκ − 1)¶∑

κ sin2 pκ + r2 [
∑
κ(cos pκ − 1)]2

©3

The index λ must be di�erent from µ2 because of the antisymmetry of Fµ2λ.
Furthermore, the trace of the gamma matrices is proportional to the totally
antisymmetric symbol εµ1µ2µ3µ4 , but when λ is µ3 or µ4 the product Fµ2λFµ3µ4
(in the colour trace) becomes symmetric under the exchange of two indices:
the contraction is null. For example, if λ = µ4,

tr(Fµ2µ4Fµ3µ4) −→µ2↔µ3
tr(Fµ3µ4Fµ2µ4) = tr(Fµ2µ4Fµ3µ4)



APPENDIX E. WILSON FERMIONS AND CHIRAL ANOMALY 73

We can thus insert a δµ1λ factor in the sum without changing the result,
obtaining

tr 2a−4γ5 /D0ΓΣW0G3
0 −→a→0

−4
∑
µ1,µ2
µ3,µ4

εµ1µ2µ3µ4 tr (Fµ1µ2Fµ3µ4)

· r2
∫

d4p

(2π)4

sin2 pµ1 cos pµ2 cos pµ3 cos pµ4
∑
κ(cos pκ − 1)¶∑

κ sin2 pκ + r2 [
∑
κ(cos pκ − 1)]2

©3

With µ1 �xed, the others sums are of the type

−4Iµ1
∑
µ2

µ3,µ4

εµ1µ2µ3µ4 tr (Fµ1µ2Fµ3µ4)

with

Iµ1 = r2
∫

d4p

(2π)4

sin2 pµ1
cos pµ1

4∏
λ=1

cos pλ

∑
κ(cos pκ − 1)¶∑

κ sin2 pκ + r2 [
∑
κ(cos pκ − 1)]2

©3

Exploiting the antisymmetry of F we can write

Fµ1µ2Fµ3µ4 =
1

4
(Fµ1µ2 − Fµ2µ1)(Fµ3µ4 − Fµ4µ3)

=
1

4

∑
µ,ν
ρ,σ

(δµµ1δνµ2 − δµµ2δνµ1)(δρµ3δσµ4 − δρµ4δσµ3)FµνFρσ

and so∑
µ2

µ3,µ4

εµ1µ2µ3µ4 tr (Fµ1µ2Fµ3µ4) =
1

2

∑
µ,ν
ρ,σ

(δµµ1εµ1νρσ + δνµ1εµµ1ρσ) tr (FµνFρσ)

Using the cyclicity of the trace, we can swap the indices (µ, ν) ↔ (ρ, σ)
without changing the result. Taking their symmetric linear combination we
get∑

µ2
µ3,µ4

εµ1µ2µ3µ4 tr (Fµ1µ2Fµ3µ4)

=
1

4

∑
µ,ν
ρ,σ

(δµµ1εµ1νρσ + δνµ1εµµ1ρσ + δρµ1εµνµ1σ + δσµ1εµνρµ1) tr (FµνFρσ)

The indices that are set equal by the δ factors can be confused, so we obtain∑
µ2

µ3,µ4

εµ1µ2µ3µ4 tr (Fµ1µ2Fµ3µ4) =
1

4

∑
µ,ν
ρ,σ

(δµµ1+ δνµ1+ δρµ1+ δσµ1)εµνρσ tr (FµνFρσ)

(E.77)
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We can now perform the sum over µ1: since all the indices µ, ν, ρ, σ are
di�erent, we �nd∑
µ1

(δµµ1 + δνµ1 + δρµ1 + δσµ1)
sin2 pµ1
cos pµ1

=
sin2 pµ
cos pµ

+
sin2 pν
cos pν

+
sin2 pρ
cos pρ

+
sin2 pσ
cos pσ

=
4∑

τ=1

sin2 pτ
cos pτ

and so, factorizing,

lim
a→0

tr 2a−4γ5 /D0ΓΣW0G3
0 = −IΓ

∑
µ,ν
ρ,σ

εµνρσ trFµνFρσ (E.78)

with

IΓ = r2
∫

d4p

(2π)4

4∏
λ=1

cos pλ

∑
τ

sin2 pτ
cos pτ

∑
κ(cos pκ − 1)¶∑

κ sin2 pκ + r2 [
∑
κ(cos pκ − 1)]2

©3 (E.79)

Finally, introducing also a factor of 2 from the (WG) term, the equation
(E.43) becomes, in the continuum limit,

lim
a→0
〈Xr(x)〉 = −2iI4

∑
µ,ν
ρ,σ

εµνρσ trFµνFρσ (E.80)

with (the subscript stand for the dimensionality of the space)

I4 = r2
∫ π

−π

d4p

(2π)4

4∏
λ=1

cos pλ
[
∑
κ(cos pκ − 1)]2 +

∑
τ

sin2 pτ
cos pτ

∑
κ(cos pκ − 1)¶∑

κ sin2 pκ + r2 [
∑
κ(cos pκ − 1)]2

©3

(E.81)

Evaluation of the coe�cient

To demonstrate equation (E.36) we still need to verify that

I4 = − 1

32π2
(E.82)

We will show that, although the integrand has a dependence on the param-
eter r, the integral does not and has the expected value. The result is in the
original work by Karsten and Smit [18], who �rst evaluated, in the pertur-
bative approach, the continuum limit of the chiral anomaly in the Wilson's
theory. The result is generalized to Id in [30]. We have

Id = r2
∫ π

−π

ddp

(2π)d

d∏
λ=1

cos pλ
[
∑
κ(cos pκ − 1)]2 +

∑
τ

sin2 pτ
cos pτ

∑
κ(cos pκ − 1)¶∑

κ sin2 pκ + r2 [
∑
κ(cos pκ − 1)]2

©1+d/2

(E.83)
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where all the sums run now from 1 to d. We use the de�nition

D =
∑
κ

sin2 pκ + r2

ñ∑
κ

(cos pκ − 1)

ô2

(E.84)

for the combination in the curly brackets in the denominator. Since

∂

∂pτ
D−d/2 = −d

2
D−1−d/2

ñ
2 sin pτ cos pτ − 2r2 sin pτ

∑
κ

(cos pκ − 1)

ô
=⇒ r2 sin pτ

∑
κ

(cos pκ − 1) =
1

d
D1+d/2 ∂

∂pτ
D−d/2 + sin pτ cos pτ

the identity

r2
∑
τ

sin2 pτ
cos pτ

∑
κ

(cos pκ − 1) =
1

d
D1+d/2

∑
τ

tan pτ
∂

∂pτ
D−d/2 +

∑
τ

sin2 pτ

holds, and so the numerator can be written as

r2

ñ∑
κ

(cos pκ − 1)

ô2

+ r2
∑
τ

sin2 pτ
cos pτ

∑
κ

(cos pκ − 1)

= D +
1

d
D1+d/2

∑
τ

tan pτ
∂

∂pτ
D−d/2 (E.85)

The fraction becomes

D + 1
d
D1+d/2∑

τ tan pτ
∂
∂pτ

D−d/2

D1+d/2
=

Ç
1 +

1

d

∑
τ

tan pτ
∂

∂pτ

å
D−d/2 (E.86)

and so

Id =
∫ π

−π

ddp

(2π)d

d∏
λ=1

cos pλ

·
Ç

1 +
1

d

∑
τ

tan pτ
∂

∂pτ

å{∑
κ

sin2 pκ + r2

ñ∑
κ

(cos pκ − 1)

ô2
}−d/2

(E.87)

That's an integral over a period of a periodic function: for each direction µ
we can translate the integration interval

[−π, π] −→ [−π/2, π/2] ∪ [π/2, 3π/2]

On these intervals the sine is a strictly monotonic function, so we can change
variables of integration according to

pµ −→ sµ = sin pµ; dpµ −→ dsµ = cos pµ dpµ
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On [−π/2, π/2] the sine is strictly increasing and the cosine is positive, on
[π/2, 3π/2] it's the opposite, so Id becomes the sum of 2d integrals on [−1, 1]d

that di�er only for a total sign and for the sign of the cosines:

Id =
2d∑
A=1

d∏
λ=1

εAλ

·
∫ 1

−1

dds

(2π)d

Ç
1+

1

d

∑
τ

sτ
∂

∂sτ

å{∑
κ

s2
κ+r2

ñ∑
κ

(
εAκ
»

1− s2
κ−1

)ô2
}−d/2

(E.88)

where εAµ is one of the d-vector

εAµ = (±1,±1, · · · ,±1) A = 1, · · · , 2d (E.89)

(the A index selects one of the 2d hypercubes in which the integration region
is now split). Passing in spherical coordinates, we de�ne the radial coordinate

σ2 =
∑
κ

s2
κ (E.90)

Using the vectorial identity ∑
τ

sτ
∂

∂sτ
= σ

∂

∂σ
(E.91)

its easy to get

Id =
2d∑
A=1

d∏
λ=1

εAλ

·
∫

dΩd

(2π)d

∫ σ̄(Ω)

0
dσ σd−1

Ç
1+

1

d
σ
∂

∂σ

å{
σ2+ r2

ñ∑
κ

(
εAκ
»

1− s2
κ−1

)ô2
}−d/2

=
2d∑
A=1

d∏
λ=1

εAλ

· 1

d

∫
dΩd

(2π)d

∫ σ̄(Ω)

0
dσ

∂

∂σ

σd
{
σ2+ r2

ñ∑
κ

(
εAκ
»

1− s2
κ−1

)ô2
}−d/2

(E.92)
where now the variables sk are expressed in spherical coordinates, such as

s1 = σ cosφ1

s2 = σ sinφ1 cosφ2

...

sd−1 = σ sinφ1 · · · sinφd−2 cosφd−1

sd = σ sinφ1 · · · sinφd−2 sinφd−1
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The integration region was a hypercube with edge 2; from the relations

−1 ≤ s1 ≤ 1

−1 ≤ s2 ≤ 1

...

−1 ≤ sd−1 ≤ 1

−1 ≤ sd ≤ 1

=⇒

−1 ≤ σ cosφ1 ≤ 1

−1 ≤ σ sinφ1 cosφ2 ≤ 1

...

−1 ≤ σ sinφ1 · · · sinφd−2 cosφd−1 ≤ 1

−1 ≤ σ sinφ1 · · · sinφd−2 sinφd−1 ≤ 1

we get an expression for the limit of integration σ̄ as a function of the angular
variables:

σ̄(Ω) = min

®
1

| cosφ1|
,

1

| sinφ1 cosφ2|
, · · · , 1

| sinφ1 · · · sinφd−1|

´
(E.93)

The denominator in (E.92) is a sum of quadratic terms: it is null only
when each one of them is null. This can happen only when εAκ = 1 in any
direction κ, in a neighbourhood of σ = 0: for all the others 2d − 1 cases
the integrand is regular and the radial integral can be solved. Assign A = 1
to the vector with all positive components, ε1µ = (+1, · · · ,+1); the regular
integrals are given by

1

d

2d∑
A=2

d∏
λ=1

εAλ

∫
dΩd

(2π)d
σd
{
σ2 + r2

ñ∑
κ

(
εAκ
»

1− s2
κ − 1

)ô2
}−d/2∣∣∣∣∣∣

σ=σ̄(Ω)

σ=0

=
1

d

2d∑
A=2

d∏
λ=1

εAλ

∫
dΩd

(2π)d
σ̄d
{
σ̄2 + r2

ñ∑
κ

(
εAκ
»

1− s2
κ|σ=σ̄ − 1

)ô2
}−d/2

The angular region of integration can be split in d subregions where each
of the possibilities (E.93) holds for the limit of integration σ̄. This process
select for each region a direction τ such that the integral does not depend
anymore on εAτ , because the square root that this factor multiplies is null.3

The sum over A is made of pairs of addends which di�er only for the sign of
the component εAτ and so, since we can factorize the angular integral, only
for a total sign, because of the factor

∏d
λ=1 ε

A
λ : the pairs cancel out and the

sum is null. This cancellation can not be complete, because the sum over
A 6= 1 is restricted to an odd number of terms; however, the integration is

3For example, in the subregion where σ̄ = 1/| cosφ1|,

εA1

»
1− s2

1|σ=σ̄ = εA1

 
1− 1

| cosφ1|2
cos2 φ1 = 0

and thus the integral does not depend on εA1 .
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possible, in the improper sense, also in the sector A = 1, excluding a ball
Bδ(0) with radius δ centered in the origin, where the integrand diverges. The
term evaluated at the upper limit of integration is of the same type of those
for A 6= 1 and gives the missing addend to complete the cancellation. Of
the original integral remains only the term evaluated at the lower limit of
integration, with σ = δ in the sector A = 1, to be calculated in the limit
δ → 0+:

Id = − lim
δ→0+

1

d

∫
dΩd

(2π)d
δd
{
δ2 + r2

ñ∑
κ

(»
1− s2

κ|σ=δ − 1
)ô2

}−d/2
(E.94)

It is

lim
δ→0+

ñ∑
κ

(»
1− s2

κ|σ=δ − 1
)ô2

= lim
δ→0+

ñ∑
κ

Ç
−1

2
s2
κ

∣∣∣
σ=δ

åô2

= lim
δ→0+

Ç
−δ

2

2

å2

so the limit is 1 and the result

Id = −1

d

∫
dΩd

(2π)d
(E.95)

does not depend on r. That's the end of the proof.
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