
Università degli Studi di Milano
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1. Trees and Forests

1.1 Graph theory

1.1.1 Basic definitions

A graph is a mathematical structure made up of points and lines. Some pairs of
points may be joined by lines. The same pair of points may eventually be joined by
several lines, so a graph may have multiple edges, and eventually some lines may
connect a point to itself forming a “loop”. This kind of pathological situations
are not relevant for most cases, so we define a graph to be simple when it has
no multiple lines or loops; in the following we will discuss simple graphs, unless
otherwise stated.

A graph G is defined as a pair (V,E) of sets such that E ⊆ [V ]2. The elements
of V are vertices (or points or sites or nodes) and the elements of V are edges
(or bond or link or lines). A graph with vertex set V is said to be a graph on
V . The vertex set of a graph is referred to as V (G) and the edge set E(G), this
convention is independent of any name we had chosen for these sets. We write an
edge e ∈ E(G) as e = {x, y}, where x, y ∈ V (G) are two endpoints of the edge,
and we can indifferently denote e as {x, y} or xy. Two points x, y ∈ V (G) are said
to be neighbors or adjacent if they are connected by an edge (xy is an edge of G)
and the edge xy is said to be incident on x and y (and vice-versa). We call S a
subgraph of G if S = (V ′, E′) with V ′ ⊆ V , E′ ⊆ E and V ′ containing all the
vertices adjacent to E′. If V (G) = V (S) we say that S is spanning in G. The set
of spanning subgraphs for a graph G is in natural bijection with the set of subsets
of E(G), which has a vector-space structure on Z2 with the sum defined as the
symmetric difference of the subsets, E1 △ E2 = (E1 ∪ E2) r (E1 ∩ E2).

The degree (or valency) dG(v) = d(v) of a vertex v is the number of edges in
E(G) incident on that vertex. The subscript denotes the graph when not clear, for
example, in the case above of S ⊆ G, we would also have that dS(v) ≤ dG(v) is the
number of edges in E(S) incident on v. If all vertices of G have the same degree k,
the graph G is k-regular or simply regular. We call an Eulerian subgraph (more
shortly a loop) L a subgraph with dL(v) even for all v ∈ V (L), the vector-subspace
L on Z2 of these subgraphs has dimension L(G) which is the number of independent
loops in G.

A path in a graph is a subgraph P = (V,E) on the form:

V = {x0, x1, . . . , xℓ} E = {x0x1, x1x2, . . . , xℓ−1xℓ} (1.1)
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where xk are all distinct; the path P is usually denoted as the sequence of its
vertices, x0, x1, . . . , xℓ. We say that this is a path from x0 to xℓ and the number of
edges of the path is its length.

A graph G is said to be connected if for every pair of vertices in G there exists
a path joining them. If P is a path with vertices x0, x1, . . . , xℓ−1, ℓ ≥ 3 and x0xℓ−1

is in E(G), then C := P + xℓ−1x0 is a cycle in G; so a cycle C = (V,E) is in the
form

V = {x0, x1, . . . , xℓ−1} E = {x0x1, x1x2, . . . , xℓ−1x0} (1.2)

with all x0, x1, . . . , xℓ−1 distinct. A graph (or a subgraph) without any cycle is a
forest or an acyclic graph; a tree is a connected forest, note that in a forest every
component is a tree.

If the edges are ordered pairs of vertices we get the notion of directed graph. An
ordered pair (a, b) is said to be an edge directed from a to b, or an edge beginning
at a and ending at b, and can be denoted as usual as ab, while note however that
in this case ab 6= ba.

For every graph is valid the Euler formula, which relates the number of vertices,
|V |, the number of edges, |E|, the number of connected components, C, and the
number of independent loops, L:

|V | + L = |E| + C (1.3)

For trees, in which C = 1 and L = 0, the Euler formula reduces to:

|V | = |E| + 1 (1.4)

We call a planar embedding for a graph a function that maps each vertex of
a graph G to a distinct point of R2, and each edge of G to a continuos non self-
intersecting curve in the plane joining its endpoints, such that curves corresponding
to nonincident edges do not meet, and curves corresponding to incident edges meet
only in the point representing their common vertex. A graph is planar iff has a
planar embedding. More generally, we call an embedding onto a surface of genus
g the analogue of above, with R2 replaced with the genus-g torus equipped with a
whatever structure of differentiable manifold, and we say that G is of genus g, if
g is the minimum value for which such an embedding exists. However, all of this
“continuum” structure is to many extents redundant: as we are only interested to
the topological properties of these embeddings, not on the metric properties, we
could alternatively define planarity and genus of a graph through the structure of
2-dimensional cell complexes, which leads to the definition of elementary faces, or
plaquettes, in the cell complex, which are cycles of G containing no other vertices
of G “inside”, on one of the two sides, w.r.t. the embedding.

Given a planar graph G we can form a special graph, the dual graph G∗. The
vertices of G∗ correspond to the faces of G, with each vertex placed in the corre-
sponding face. Every edge e of G gives rise to an edge of G∗ joining the two faces
of G containing e (fig. 1.1). We can now define a correspondence from the set of
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Figure 1.1 Example of graph (black dots and solid lines) and the cor-
responding dual graph (white dots and dashed lines)

spanning subgraph of G to the set of spanning subgraphs of G∗. To the subgraph
S = (V,E) we associate S∗ = (V ∗, E∗), where V ∗ = V (G∗) and e ∈ E∗ are cho-
sen such that for every pair edge–dual-edge (e, e∗), either e ∈ E and e∗ /∈ E∗ or
e /∈ E and e∗ ∈ E∗. It follows that a loop in a subgraph of G encircles a connected
component in the associated subgraph of G∗, and vice-versa; so we have, denoting
with D the transformation of duality, the following relations:

connected subgraphs
D

// subgraphs without loops

subgraphs without loops
D

// connected subgraphs
(1.5)

This implies that a spanning tree of G, for definition without loops and connected,
has as counterpart in G∗ a spanning tree, thus there are as many spanning trees in
the graph G as in its dual G∗.

1.1.2 Algebraic graph theory

The Algebraic graph theory aims to translate properties of graphs into algebraic
properties of associated structures and then, using these ones, to deduce theorems
about graphs. We introduce here some basic concepts, for a more detailed review
see [14, 16].

For a given graph G with n vertices and m edges, we define its adjacency matrix
A(G) as an n× n matrix whose entries aij are given by:

aij =

{
1 if i and and j are adjacent
0 otherwise

(1.6)

It follows from the definition that, for an undirected graph, A is a real symmetric
matrix, with trace 0. We are interested primarly in the properties of the adjacency
matrix which are invariant under permutations of rows and columns, i.e. a re-
labelling of vertices. The foremost among them are the spectral property of this
matrix. Suppose the characteristic polynomial of A(G) can be written as:

χ(G;λ) = λn + c1λ
n−1 + c2λ

n−2 + · · · + cn (1.7)
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then the coefficents ci are the sum of the principal minors of A. The first few of
them can be easily proved to be:

1. c1 = 0

2. −c2 is the number m of edges in G

3. −c3 is twice the number of triangles in G

· · ·

We define the incidence matrix D(G) of a directed graph as the n×m matrix with
rows and columns indexed by vertices and edges whose entries die are given by:

die =







+1 if the arrow e starts from i
−1 if the arrow e ends in i
0 otherwise

(1.8)

We define the coordination matrix of the graph C(G) as the diagonal matrix n×n
whose entries Cii are given by the valency of the i-th vertex.

It can be proved that:
DDT = C −A (1.9)

and DDT is independent of the orientation. We call this n × n matrix ∆ = DDT

the “unweighted” Laplacian matrix, as it corresponds to the Laplacian operator
for regular lattices. If we weight each pair of sites ij with wij , which is a formal
algebraic variable, we can define the “weighted” Laplacian matrix, as the matrix
with entries ∆ij defined by:

∆ij =

{
−wij for i 6= j
∑

k 6=iwik for i = j
(1.10)

We note that the sum over the elements in a row or in a column is always equal to
zero, so the matrix annihilates the vector (1, 1, . . . , 1). Since ∆ has an eigenvector
with eigenvalue zero, it follows that det ∆ = 0.

1.2 Kirchhoff theorem for spanning trees

A classical result of algebraic graph theory is the matrix-tree theorem, first discov-
ered by Kirchhoff [13] in the theory of electric circuits. For any vertex i ∈ V we let
∆(i) be the matrix obtained by ∆ deleting the i-th row and column. In its sim-
plest formulation the Kirchhoff theorem states that the number of spanning trees
for a graph is given by det∆(i); more generally, in the case of weighted Laplacian,
the theorem puts in relation the generating polynomial for trees, ZT (~w), with the
determinant of minors of the Laplacian matrix:

ZT (~w) =
∑

T∈T

∏

e∈T

we = det ∆(i) (1.11)
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where T denotes the set of spanning trees of the graph G. The i indipendence of
det∆(i) expresses, in electrical-circuit language, that is physically irrelevant which
site i is chosen to be the “ground”, and, in graph theory, that is irrelevant which
site is chosen as “root” to obtain all the possible spanning trees.

More generally, for any set of vertices I, J ⊆ V , let ∆(I|J) be the matrix
obtained from ∆ by deleting the rows indexed by I and the columns indexed by J ,
for I = J we write simply ∆(I). If I = (i1, i2, . . . , in) with 0 ≤ ij ≤ |V | we write
the principal-minors matrix tree theorem as follows:

det ∆(I) = det∆(i1, i2, . . . , ir) =
∑

F∈F(i1,i2,...,ir)

∏

e∈F

we (1.12)

where F(i1, i2, . . . , ir) denotes the set of spanning forests ofG composed of r disjoint
trees, each one with exactly one root vertex chosen between the vertices i1, i2, . . . , ir.
This theorem is easily derived by the simple matrix-tree theorem considering the
graph in which all the sites i1, i2, . . . , ir are contracted in a single site. The last
theorem we recall is the all-minors matrix-tree theorem, it states that, for |I| = |J |:

det∆(I|J) =
∑

F∈F(I|J)

∏

e∈F

we (1.13)

where F(I|J) denotes the set of spanning forests in G with r components, each of
which has exactly one site from I and one from J , possibly the same vertex.

We can now introduce, for each site i ∈ V , a pair of Grassmann variables
ψi and ψ̄i. This variables are nilpotent (ψ2

i = ψ̄2
i = 0), anticommute and obey

the usual rules for Grassman integration [21]. We then have for every matrix A,
using the notation D(ψ, ψ̄) =

∏

i∈V dψidψ̄i, the following relation to compute the
determinant: ∫

D(ψ, ψ̄)eψ̄Aψ = detA (1.14)

and more generally:
∫

D(ψ, ψ̄)ψi1 ψ̄j1 . . . ψir ψ̄jre
ψ̄Aψ =

ǫ(i1, . . . , ir|j1, . . . , jr) detA(i1, . . . , ir|j1, . . . , jr)
(1.15)

where the sign ǫ(I|J) is defined as ǫ(I|J) = (−1)
P

I+
P

J if the sites are oredered
(i1 < i2 < . . . < ir and the same for J), obviously it is always +1 when (i1, . . . , ir) =
(j1, . . . , jr). At this point is possible to rewrite the matrix-tree theorem (1.11) using
the Grassmann variables we have just introduced, obtaining:

det∆(0) =

∫

D(ψ, ψ̄) ψ̄0ψ0 e
ψ̄∆ψ =

∑

T∈T

∏

e∈T

we (1.16)

It is possible to derive this result without using the well-known links between
matrix-determinant and Grassmann integrations, showing directly how the details
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of the integration lead to have on the r.h.s. the sum over the spanning trees. The
result obtained for the trees, using the root in 0, can be easily extended to more
complex roots. For example we can also have a edge-root (say ij), and so obtain:

∫

D(ψ, ψ̄) (ψ̄iψi ψ̄jψj) e
ψ̄∆ψ (1.17)

or we can fix a set of r vertices root

∫

D(ψ, ψ̄)

r∏

α=1

(
ψ̄iαψiα

)
eψ̄∆ψ (1.18)

At this point it is possible to rewrite also the principal-minors matrix tree theorem
(1.12) in the form:

∫

D(ψ, ψ̄)
r∏

α=1

(
ψ̄iαψiα

)
eψ̄∆ψ =

∑

F∈F(i1,i2,...,ir)

∏

e∈F

we (1.19)

Now we follow the derivation proposed in [1], to construct an interesting femionic
model. Let us introduce, for each subgraph Γ = (VΓ, EΓ) of G, the operator:

QΓ =




∏

e∈EΓ

we








∏

i∈VΓ

ψ̄iψi



 (1.20)

These operators are even and so commute with each other, and with the entire
Grassmann algebra. We now consider the family Γ = {Γ1, . . . ,Γℓ} with l ≥ 0 and
try to evaluate the integral of the form:

∫

D(ψ, ψ̄) QΓ1 . . . QΓℓ
eψ̄∆ψ (1.21)

First we note that if some of the Γi’s have some vertex in common, then the integral
vanishes for the property of nilpotency of the Grassmann variables. In the case
the Γi’s are vertex disjoint, then we know how to evaluate the integral using the
formula (1.19). In fact we can write:

∫

D(ψ, ψ̄)





l∏

k=1

∏

i∈VΓk

ψ̄iψi



 eψ̄∆ψ =
∑

F∈F(∪kVΓk
)

∏

e∈F

we. (1.22)

When using this expression to solve the integral (1.21), the edges in EΓ = ∪kEΓk

cannot be in any forest, otherwise the integral would vanishes for the nilpotency of
the Grassmann variables. However adding

∏

e∈EΓ
we on the r.h.s. of the previous

equality we note that each forest can be put into one-to-one correspondence with
Γ-forests, that are subgraphs of G spanning with l components, each one with
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exactly one Γi and with no cycles except the ones in Γi. So we can rewrite the
(1.21) as follows:

∫

D(ψ, ψ̄) QΓ1 . . . QΓl
eψ̄∆ψ =

∑

H∈FΓ

∏

e∈H

we (1.23)

Introducing now a coupling constant tΓ for each connected subgraph Γ of G,
and using the relation 1 + tΓQΓ = etΓQΓ , given by the properties of Grassman
integration, we have:

∫

D(ψ, ψ̄) eψ̄∆ψ+tΓQΓ =
∑

Γ vertex-
disjoint

(
∏

Γ∈Γ

tΓ

)
∑

H∈FΓ

∏

e∈H

we (1.24)

Interchanging the summation over H and Γ it is possible to rewrite this expression
in a different form. We consider a spanning subgraph H of G with l connected
components H1, . . . ,Hl and we say that Γ marks Hi, Γ ≺ Hi, if Hi contains Γ and
has no cycles except those lying enterely in Γ, we also define the weight for Hi as:

W (Hi) =
∑

Γ≺Hi

tΓ (1.25)

In this framework the property of H to be a Γ-forest is equivalent to say that each
of its components is marked exactly by one of the Γi, so we can rewrite the (1.24)
as follows:

∫

D(ψ, ψ̄) eψ̄∆ψ+tΓQΓ =
∑

H spanning⊆G
H=(H1,...,Hℓ)

(
ℓ∏

i=1

W (Hi)

)
∏

e∈H

we (1.26)

This is the general combinatorial formula.
We now make a particular choice for the Γ’s and the related tΓ, say that:

(i) tΓ = t whenever Γ consists of a single vertex with no edge;

(ii) tΓ = u whenever Γ consists of two vertices connected by a single edge;

(iii) tΓ = 0 otherwise;

So we have:

∫

D(ψ, ψ̄) exp
[

ψ̄∆ψ+tΓQΓ

]

=
∑

F∈F
F=(F1,...,Fℓ)

(
ℓ∏

i=1

(
t|VFi | + u|EFi |

)

)
∏

e∈F

we (1.27)

where F denotes the set of spanning forests of G. Since |VFi | − |EFi | = 1 for each
tree, we can take u = −t and obtain the generating function for unrooted spanning
forest with weight t for each component.
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1.3 Potts model

1.3.1 Model

The most famous model in statistical mechanics is the Ising model, a lattice model
where on each site there is a spin variable that takes its value in {0, 1} (or (↑, ↓),
or (white,black)) and interacts with its nearest-neighbors; the Potts model is its
direct generalization to the case of spins which take q values.

Let G = (V,E) be a graph, on each site i ∈ V we define a spin variable
σi ∈ {1, . . . , q} where q ∈ N+ (the Ising model is the case for q = 2) and for each
edge e ∈ E we define a coupling constant Je ∈ R. The interaction of the model is
given by a delta-function for each edge e = ij, of the form −Jeδ(σi, σj). Denoting
the spin configuration of the system as σ = {σi}i∈V we can write the Hamiltonian
of the Potts model on G as:

H(σ) = −
∑

ij=e∈E

Jeδ(σi, σj) (1.28)

The partition function of the model is ZPotts =
∑

σ
e−βH(σ), the sum of the Boltz-

mann weights, e−βH, for each possible configuration. If we call ve = eβJe − 1 and
v = {ve}e∈E we can rewrite the partition function as dependent on q and v as
follows:

ZG(q,v) =
∑

σ

∏

e∈E

[
1 + veδ(σi, σj)

]
(1.29)

Let now suppose Je to be constant, Je = J , for all the edges . The model is
said to be ferromagnetic if J ≥ 0 (v ≥ 0), anti-ferromagnetic if −∞ ≤ J ≤ 0
(−1 ≤ v ≤ 0) and unphysical when v /∈ [−1,∞), due to the fact that in this
last region the Boltzmann weight is no more positive, as expected for a statistical
mechanics model.

1.3.2 Fortuin-Kasteleyn representation

It is possible to give a subgraph expansion for the partition function of the Potts
model, this expansion was first discovered by Fortuin and Kasteleyn [17] in 1972.
Using this form, the partition function of the model is found to be a polynomial
in q and v, and has the particular feature to allow an analytic continuation in the
parameter q.

Using the relation:
∑

A⊆E

∏

e∈A

ve =
∏

e∈E

(1 + ve) (1.30)
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in the partition function (1.29) we obtain:

ZG(q,v) =
∑

σ

∏

e∈E

[
1 + veδ(σi, σj)

]

=
∑

σ

∑

A⊆E

∏

e∈A

veδ(σi, σj)

=
∑

A⊆E

qC(A)
∏

e∈A

ve

(1.31)

where C(A) is the number of connected components of A subgraph of G (considered
together with the set of vertices V of the whole graph G). The equality between
the second and the third line is obtained summing over the configurations with the
delta constraint. This expression shows how the partition function of the q-state
Potts model, defined separately for each integer value of q, is in fact the restriction
to N+ of a polynomial in q, so we define, in analytic continuation, the Fortuin-
Kasteleyn Random-Cluster partition function which is the algebraic function

ZG(q,v) =
∑

A⊆E

qC(A)
∏

e∈A

ve (1.32)

Further on, using the Euler relation (1.3), and noting that the subgraphs A we
are using are spanning, in fact in (1.30) we use subset of only the edge set, we can
rewrite the ZG(q,v) in the form:

ZG(q,v) = q|V |
∑

A⊆E

qL(A)
∏

e∈A

ve
q

(1.33)

where L(A) denotes the number of independent cycles of A. The resulting prob-
ability measure on 2E is called the Fortuin-Kasteleyn random-cluster model. This
framework is very useful trying to obtain Monte Carlo algorithms for sampling the
model.

1.3.3 Limit q → 0

Having now the possibility to study the partition function of the Potts model for
arbitrary values of q and v we face the task of obtaining the limit for q → 0. We
follow two different ways to obtain a meaningful limit.

First we take q → 0 with fixed v. By the result (1.32) we see that performing
the limit in this way we are selecting the subgraphs A ⊆ E with the smallest
possible number of connected components, the minimum number achievable for
C(A) is obviously C(G), i.e. simply 1 in the case G is connected. We thus have:

lim
q→0

qC(G)ZG(q,v) = CG(v) (1.34)

where
CG(v) =

∏

A⊆E
C(A)=C(G)

∏

e∈A

ve (1.35)
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is the generating polynomial of “maximally connected spanning subgraphs”.
A different limit can be obtained taking q → 0 with w = v/q fixed. By the

result (1.33) we see that we are selecting the subgraphs A ⊆ E with the smallest
possible number of independent cycles, which has minimum value 0, for the forests.
We therefore can write:

lim
q→0

q−|V |ZG(q, qw) = FG(w) (1.36)

where
FG(w) =

∑

A⊆E
L(A)=0

∏

e∈A

we (1.37)

is the generating polynomial of spanning forests. Finally we suppose to replace,
in CG(v), ve by λve and then take λ → 0. This select out, among the possible
subgraphs, the ones with fewest edges: these are the maximal spanning forests (or
spanning trees in the case G is connected), they have exactly |V |−C(G) edges. So
we have:

lim
λ→0

λC(G)−|V |CG(λv) = TG(v) (1.38)

where
TG(v) =

∑

A⊆E
C(A)=C(G)
L(A)=0

∏

e∈A

ve (1.39)

is the generating polynomial for maximal spanning forests (we use here the letter
T because in most cases we deal with connected graphs, and consequently with
spanning trees). Suppose then to replace w in (1.37) with λw and then to take
λ → ∞, this select out the subgraphs with greatest number of edges, among the
spanning forests, i.e. the maximal spanning forests. So we have:

lim
λ→∞

λC(G)−|V |FG(λw) = TG(v) (1.40)

In summary a certain double-limit ofthe partition function for the q-state Potts
model in the limit q → 0 is the generating polynomial for spanning trees of the
graph on which is defined the model, while the single sides of these limit procedures
give respectively spanning forests and connected spanning subgraphs (which are
indeed dual ensembles in the special case of planar graphs).

1.4 Applications of spanning trees and forests

1.4.1 Bijection dimer-covering ↔ spanning-trees

A dimer covering for a given graph G is a collection of edges that covers all the
vertices exactly once, that is, each vertex is adjacent to a unique edge; in other
words is a pairing of adjacent vertices (fig. 1.2).
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Figure 1.2 dimer covering for a 8 × 8 square lattice

There exixts a bijection, due to Temperley [23], between the spanning trees on a
planar graph and dimer coverings of a suitable associated graph. Let us consider a
planar graph G, we then define the planar graphG′ = (E′, V ′), where V ′ is obtained
as the union of the set of vertices V (G) graph G, the set of vertices V (G∗) of the
dual graph G∗ and the set Ṽ of vertices defined as the planar intersections between
pairs of edges (e, e′), with e ∈ E(G), and e′ ∈ E(G∗). E′ is the set of edges such
that for each e = ij ∈ E(G) there are two edges in E′, e1 = ij′ and e2 = j′j where
j′ is the intersection between edge e and the corresponding dual, and analogously

for the dual edges, �
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.

The bijection associates to a spanning tree of the graph G a dimer covering
of the graph G′, with a vertex in V (G) and a vertex in V (G∗) removed. Given
a spanning tree in G and a vertex v ∈ V (G) we direct each edge in the spanning
tree toward this vertex and label the half-edge in E′ of e farther from v with 1 and
the other half with 2. Then we choose as dimer, for each edge e ∈ E(G), the half
labelled by 1. Repeating then the same procedure for the corresponding spanning
tree of the dual graph G∗ with respect to its removed vertex v′ ∈ V (G∗) we obtain
the dimer covering of G′ r {v, v′}.

In particular for a portion of the square lattice, this procedure associates to
each n× n lattice a (2n− 1)× (2n− 1) lattice with one site removed (e.g. the top
right corner), the site removed from the dual lattice is intended to be the vertex
corresponding to the external face. In fig. 1.3 the spanning tree S of G is in red
and the dual counterpart S∗ is in blue, all the outgoing edges of S∗ are intended
to meet in the removed vertex of the dual graph. Following the just displayed
procedure it is possible to obtain the dimer covering.

1.4.2 Temperley-Lieb algebra, trees and forests

An interesting model in statistical mechanics is the O(n) loop model [20]; this is
a lattice model where on each site i is defined a spin variable ~si, which belongs to
an n-dimensional sphere of radius 1 (|si| = 1) with some spherically symmetrical
measure: ~vi ∈ Rn; dµ(~si) = dµ(R · ~si) with R ∈ O(n). With

∫
d~si we denote the
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(a) (b)

Figure 1.3 Spanning tree for a 5×5 square lattice (a) and the associated
dimer covering for the 9×9 square lattice with a site removed (b). The
direct graph is displayed in blue and the dual with dashed lines.

measure on the sphere and we intend the inner product of the spin variables as:

~si · ~sj =
n∑

α=1

s
(α)
i s

(α)
j (1.41)

The model is then defined by the partition integral:

ZO(n) =

∫
∏

ℓ

d~sℓ
∏

〈ij〉

(1 + nβ ~si · ~sj) (1.42)

where n is the dimension of the sphere, β a parameter depending on the temperature
and the second productory is intended on pair of sites nearest-neighbors. For a
lattice with vertex coordination k, it will turn out that only momenta up to k of
the measure dµ are relevant.

It is easy to compute the momentum of the spin variables using the spherical
measure (denoted with 〈·〉), for the symmetry of the measure only even-momenta
are non-null and the maximum momentum different from zero is the one of order
k. Thus, restricting to a lattice of coordination 3, the following equalities are found
to be true:

〈1〉 = 1 (1.43a)

〈s
(α)
i 〉 = 0 (1.43b)

〈s
(α)
i s

(β)
i 〉 =

1

n
δαβ (1.43c)

〈s
(α)
i s

(β)
i s

(γ)
i 〉 = 0 (1.43d)

Let us say that an edge ij is marked with “colour” α when its endpoints are

either with the component n
(α)
i = n

(α)
j 6= 0 and is unmarked when its endpoints

has different components. We can expand the product in (1.42) and note that the
integration forces the 3 edges incident on the same vertex to be:
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• two marked with the same colour

• one unmarked or every edge unmarked.

Thus the only allowed configurations with contribution different from zero are the
ones with loops of edges marked with the same colour, with n colours available;
they give a contribution ncβL where c is the number of loops and L the count of
edges constructing the various loops. At this point we can rewrite ZO(n) in a purely
combinatorics form, summing over the different loop-diagrams, G, as follows:

ZO(n) =
∑

G

βLnc. (1.44)

In this case, the limit β → ∞ and n → 0, corresponds to select among the
allowed configurations the ones with the maximum number of occupied edges, and
the minimum number of loops, 1 when possible.

elementary
⇐

plaquette

Figure 1.4 square-octagonal lattice and its elementary plaquette

Let us set the model in a particular lattice, with coordination 3, composed
of squares and octagons (fig. 1.4); let E be the set of edges belonging only to
the octagons and Ẽ the set of edges belonging to the squares. It is possible to
choose different β’s, say β̃ for the edges in Ẽ and β for the edges in E. Let now
take the limit β → ∞, mantaining β̃ constant. In this way we are selecting the
configurations with loops composed of the maximum number of edges of the type
e, then the limit n → 0 forces the number of loops to be minimum The possible
structures in each elementary plaquette of the allowed configurations are of just
two types:

Figure 1.5 allowed configuration for plaquette, where the bonds marked
in red are selected

and it is possible to recognize them as part of a Temperley-Lieb algebra.
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The elementary faces of the Temperley-Lieb algebra are of two types:
The elements of Temperley Lieb Algebra satisfy some useful relations; indeed,

denoting the elementary faces with ei’s, we can write:

{
e2i = λei
eiei±1ei = ei

(1.45)

these relations correspond, pictorially, to the following structures:

= λ and =

where λ comes from the dotted closure in the first relation. Finally we note
that is easily obtainable a bijection between the configuration of spanning trees or
forests in a planar regular graph and a configuration of the loop model in terms of
Temperley Lieb plaquettes associated. We consider in the same frame the graph and
its dual, then we add a lattice such that each plaquette of the new lattice has vertices
in pair belonging to the dual and direct graph and its diagonals are respectively a
direct and a dual edge. Then each plaquette corresponds to a different Temperley
Lieb elementary face depending on which between the dual and the direct edge
is marked as in (fig. 1.6). This gives a one-to-one correspondence between forest
configurations and loop configurations of the just defined lattice (fig. 1.7).

��

�� ��

��

Figure 1.6 two different plaquettes.



1.4 Applications of spanning trees and forests 15

�� �� ��

���� ��

���� ��

�� �� �� ��

��

��

��

Figure 1.7 Example of loop-model ↔ spanning tree correspondence.
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2. The Abelian Sandpile model

It has been about 20 years since Bak, Tang and Weisenfield’s landmark papers
on self-organized criticality (SOC) appeared [6]. The concept of self-organized
criticality has been invoked to describe a large variety of different systems. I shall
describe here one specific model: the Abelian Sandpile Model (ASM). The sandpile
model was first proposed as a paradigm of SOC and it is certainly the simplest,
and best understood, theoretical model of SOC: it is a non-equilibrium system,
driven at a slow steady rate, with local threshold relaxation rules, which in the
steady state shows relaxation events in bursts of a wide range of sizes, and long-
range spatio-temporal correlations. The ASM consists of a special subclass of the
sandpile models that exhibits, in the way we will discuss later, the mathematical
structure of an abelian group, and permits to obtain a powerful tool in sampling
random spanning trees.

2.1 General properties

The ASM is defined as follows [7, 8]: we consider a graph of N sites labelled by
integers i = 1, . . . , N , at each site we define a nonnegative integer height variable
zi, called the height of the sandpile, and a threshold value z̄i ∈ N+. We define an
allowed configuration of the sandpile as a set of heights {zi} such that zi ≥ 0 ∀i;
then we define a stable configuration of the sandpile an allowed sonfiguration {zi},
such that zi < z̄i ∀i.

The time evolution of the sandpile is defined using the following rules:

1. Adding a particle: Select one of the sites randomly, the probability that the
site i is picked being some given value pi, and add a grain of sand there.
Obviously

∑

i pi = 1. On addition of the grain at site i, zi increases by 1,
while the height at the other sites remains unchanged.

2. Toppling : If for any site i zi ≥ z̄i, then the site is said to be unstable, it
“topples”, and lose some sandgrains to other sites. This sandgrain’s transfer
is defined in terms of an N × N integer valued matrix ∆, which properties
will be specified in (2.2). On toppling at site i, the configuration is updated
according to the following rule:

zj → zj − ∆ij ∀j = 1, . . . ,N (2.1)
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If the toppling results in some other sites becoming unstable, they are also
toppled simultaneously (it will be clear in the following that the order of
toppling is unimportant). The process continues until all sites become stable
(we will see later under which conditions on {z̄i} and ∆ the final stability is
guaranteed)

At each time step in the evolution, first we add a particle, as specified in rule 1,
then we “relax” the configuration, i.e. we perform the necessary topplings to reach
a stable configuration as stated in rule 2.

The matrix ∆ has the following properties:

∆ii > 0, ∀i (2.2a)

∆ij ≤ 0, ∀i 6= j (2.2b)
∑

j

∆ij ≥ 0, ∀i (2.2c)

These conditions just ensure that on toppling at site i, zi must decrease, height
at other sites j can only increase and there is no creation of sand in the toppling
process. In some sites could be possible to “lose” some sand during a toppling.
A site i is said to be “on the boundary” if

∑

j ∆ij > 0, and “in the bulk” if
∑

j ∆ij = 0. Indeed,
∑

j ∆ij is the total sand lost in the toppling process on i, so
that, pictorially, we can think of this “lost sand” as dropping out of some boundary.
Clearly, in the formulation on an arbitrary graph, as presented here, this concept
of boundary does not need to correspond to some geometrical structure. We note
that no stationary state of the sandpile is possible unless the particles can leave the
system. The model can be represented by a directed graph on N vertices, where
we draw (−∆ij) directed bonds from site i to j, and (

∑

j ∆ij) arrows from i to
outside (fig. 2.1).

In the particular case of square lattice the toppling matrix is given as:

∆ij =







+4 if i = j
−1 if i, j are nearest-neighbors

0 otherwise
(2.3)

In this framework to be on the boundary (or in a corner) has a direct correspondence
with the geometrical structure of the lattice.

We assume, without loss of generality, that z̄i = ∆ii (this amounts to a partic-
ular choice of the origin of the zi variables). Then we know that if a site i is stable,
and the initial conditions for the heights are zi(t = 0) ≥ 0 ∀i ∈ V , at all times the
allowed values for zi are the ones for which holds 0 ≤ zi < z̄i. This procedure de-
fine a Markov chain on the space of stable configurations, with a given equilibrium
measure. So running the given dynamics for long times, that means after a large
amount of sand added, the system reaches the stationary state. In this state, the
relaxation after adding a particle, tipically involves a sequence of topplings. This
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Figure 2.1 a graphical representation of the general ASM. Each node
denotes a site. On toppligs at any site, one particle is transferred along
each arrow directed outward form the site

particular occurrence is called an avalanche. The sizes of avalanches can be studied
statistically for interesting graphs (e.g. for a partition of Z2). In many cases of
interest it seems to have a power law tail, which is signal of existence of long-range
correlations in the system.

The model has a fundamental abelian property [7]. We define operators ai’s,
which act on the space of the stable configurations of the model, by the following
rules: if C is a stable configuration, aiC is the stable configuration obtained by
adding a particle in the site i and then relaxing the system. It is easy to check that
starting with an unstable configuration with two or more sites unstable, we get
the same final configuration by toppling the sites in a certain order or in another.
Let us consider an unstable configuration with the unstable sites α and β, the first
toppling of site α leaves β unstable for (2.2b), and, after the toppling of β, we get
a configuration in which:

zi → zi − (∆αi + ∆βi) ∀i ∈ V (2.4)

this expression is clearly symmetrical under exchange of α and β. Thus we get
the same resulting configuration irrespective of whether α or β is toppled first. By
repeated use of this argument, we see that in an avalanche, the same final state
is reached irrespective of the sequence in which unstable sites are toppled. Also
toppling from a site α and then adding a grain in β gives the same result of first
adding the grain and then perform the toppling. From this two properties it follows
that for all configurations C, and for all i and j, we get aiajC = ajaiC. In other
words the operators ai commute with each other:

[ai, aj ] = 0 ∀i, j ∈ V (2.5)

Note that, while this property seems very general, it is not shared with most of
the other SOC models, even other sandpile models, for example when the toppling
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condition depends on the gradient, in this case the inequality (2.2b) would not be
satisfied and the operators ai do not commute.

The operators ai’s satisfy some other useful relations. For example, on a square
lattice, when 4 grains are added at a given site, this is forced to topple once and a
grain is added to each of his neighbors. Thus:

a4
j = aj1aj2aj3aj4 (2.6)

where j1, j2, j3, j4 are the nearest-neighbors of j.
In the general case one has, instead of (2.6),

a∆ii
j =

∏

j 6=i

a
−∆ij

j . (2.7)

Using the abelian property, in any product of operators ai, we can collect together
occurences of the same operator , and using the reduction rule (2.7), it is possible
to reduce the power of ai to be always less than ∆ii. The ai are therefore the
generators of a finite abelian semi-group (in which the associative property follow
from their definition) subject to the relation (2.7); these relations define completely
the semi-group.

We consider now the repeated action of some given generator a1 on some con-
figuration C. Since the number of possible states is finite, the orbit of ai must
close on itself, at some stage, so that an+p

1 C = an1C for some positive period p,
and non negative integer n. The first configuration that occurs twice in the orbit
is not necessary C, so that the orbit consists of a sequence of transient configura-
tions, followed by a cycle. If this orbit does not exhaust all configurations, we can
take a canfiguration outside this orbit and repeat the process. So the space of all
configurations is broken up into disconnected parts, each one containing one limit
cycle.

Under the action of a1 the transient configurations are unattainable once the
system has reached one of the periodic configurations. In principle the recurrent
configurations might still be reachable as a result of the action of some other op-
erator, say a2, but the abelian property implies that if C is a configuration part
of one of the limit cycles of a1, then so is a2C, in fact ap1C = C implies that
ap1a2C = a2a

p
1C = a2C. Thus the transient configurations with respect to an oper-

ator a1 are also transient with respect to the other operators a2, a3, . . . , and hence
occur with zero probability in the steady state. The abelian property thus implies
that a2 maps the cycles of a1 into cycles of a1, and moreover that all this cycles
have the same period (fig. 2.2). Repeating our previous argument we can show
that the action of a2 on a cycle is finally closed on itself to yield a torus, possibly
with some transient cycles, which may be also discarded. Continuing with the same
arguments for the other cycles and other generators leads to the conclusion that
the set of all the configurations in the various cycles form a set of multi-dimensional
tori under the action of the a’s. the configurations that belong to a cycle are said
to be recurrent, and can be defined, if we allow addition of sand with non zero
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action of a1

action of a2

Figure 2.2 graphical representation of the combined action of a1 and
a2

probability in any site (pi > 0 ∀i), as the configurations reachable by any other
configuration with addition of sand followed by relaxation. We denote the set of
all recurrent configurations as R.

2.2 The abelian group

When we resctrict our study to the set R of recurrent configurations, we can define
the inverse operator a−1

i for all i, as each configuration in a cycle has exactly one
incoming arrow corresponding to the operator ai. Thus the ai operators generate a
group. The action of the ai’s on the states correspond to translations of the torus.
From the symmetry of the torus under translations, it is clear that all recurrent
states occur in the steady state with the same probability.

This analysis, which is valid for every finite abelian group, leaves open the
possibility that some recurrent configurations are not reachable from each other,
in which case there would be some mutually disconnected tori. However, such a
situation cannot happen if we allow addition of sand at all sites with non zero
probabilities (pi > 0 ∀i). Let us define Cmax as the configuration in which all sites
have their maximal height, zi = ∆ii − 1 ∀i. The configuration Cmax is reachable
from every other configuration, is therefore recurrent, and since inverses ai’s exist
for configurations in R, every configuration is reachable from Cmax implying that
every configuration lie in the same torus.

Let G be the group generated by operators {ai} i from 1 to N . This is a finite
group beacause the operators ai’s, due to (2.7), satisfy the closure relation:

N∏

i=1

a
∆ji

i = I ∀i = 1, . . . ,N (2.8)

the order of G, denoted as |G|, is equal to the number of recurrent configurations.
This is a consequence of the fact that if C and C ′ are any two recurrent configura-
tions, then there is an element g ∈ G such that C ′ = gC. We thus have:

|G| = |R| (2.9)
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2.3 The evolution operator and the steady state

We consider a vector space V whose basis vectors are the different configurations
of R. The state of the system at time t will be given by a vector

|P (t)〉 =
∑

C

Prob(C, t) |C〉 , (2.10)

where Prob(C, t) is the probability that the system is in the configuration C at
time t. The operators ai can be defined to act on the vector space V through their
operation on the basis vectors.

The time evolution is Markovian, and governed by the equation

|P (t+ 1)〉 = W |P (t)〉 (2.11)

where

W =

N∑

i=1

piai (2.12)

To solve the time evolution in general, we have to diagonalize the evolution operator
W . Being mutually commuting, the ai may be simultaneously diagonalized, and
this also diagonalizes W . Let |{φ}〉 be the simultaneous eigenvector of {ai}, with
eigenvalues {eiφi}, for i = 1, . . . N . Then

ai
∣
∣{φ}

〉
= eiφi

∣
∣{φ}

〉
∀i = 1, . . . ,N. (2.13)

We recall that the a operators now satisfy the relation (2.8). Applying the l.h.s.
of this relation to the eigenvector |{φ}〉 gives exp(i

∑

j ∆kjφj) = 1, for every k, so
that

∑

j ∆kjφj = 2πmk, or inverting,

φj = 2π
∑

k

[
∆−1

]

jk
mk , (2.14)

where ∆−1 is the inverse of ∆, and the mk’s are arbitrary integers.

The particular eigenstate |{0}〉 (φj = 0 for all j) is invariant under the action of
all the a’s, ai |{0}〉 = |{0}〉. Thus |{0}〉 must be the stationary state of the system
since

∑

i

piai |{0}〉 =
∑

i

pi |{0}〉 = |{0}〉 . (2.15)

We now see explicitly that the steady state is independent of the values of
the pi’s and that in the steady state, all recurrent configurations occur with equal
probability.
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2.4 Recurrent and transient configurations

Given a stable configuration of the sandpile, how can we distinguish between tran-
sient and recurrent configurations? A first observation is that there are some
forbidden subconfiguration that can never be created by addiction of sand and
relaxation, if not already present in the initial state. The simplest example on
the square lattice case is a configuration of two adjacent sites of height 0, 0 0 .
Since zi ≥ 0, a site of height 0 can only be created as a result of toppling at one
of the two sites (toppling from anywhere else can only increase his height). But a
toppling of either of this sites results in a height of at least 1 in the other. Thus
any configuration which contains two adjacent 0’s is transient. With the same
argument is easy to prove that the following configurations can never appear in a
recurrent configuration:

0

0

0             0                                 0             1             0                       0             3             0

Figure 2.3 Examples of forbidden subconfigurations

In general a forbidden subconfiguration (FSC) is a set F of r sites (r ≥ 1), such
that the height zj of each site j in F is less of the number of neighbors of j in F ,
precisely:

zi <
∑

j∈Fr{i}

(−∆ij) ∀i ∈ F (2.16)

The proof of this assertion is by induction on the number of sites in F . For example
the creation of the 0 1 0 subconfiguration must involve toppling at one of end

sites, but then the subconfiguration must have had a 0 0 before the toppling,
and this was shown before to be forbidden.

An interesting consequence of the existence of forbidden configurations is the
following: consider an ASM on an undirected graph, with Nb bonds between sites,
then in any recurrent configuration the number of sandgrains is greater or equal to
Nb. Note that here we do not count the boundary bonds, corresponding to particles
leaving the system. To prove this, we note that if the inequality is not true for any
configuration, it must have a FSC in it.

2.4.1 The multiplication by identity test

A more systematic way to test the recurrence of a given configuration could be
found by using some operator properties of the ai (2.7). Let us take the example
of a sandpile defined on an N ×N square lattice. Multypling all the relations (2.7)
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gives
∏

i

a4
i =

∏

i

ani
i , (2.17)

where ni is the number of neighbors of a given site i, i.e. 4 for a bulk site, 2 or 3
for a boundary site. Now we can use the property for the ai that on the set R of
recurrent configurations the inverses are defined, and this yields to

∏

i

a4−ni
i = 1. (2.18)

So, to check whether a configuration C is recurrent, one has to add a particle at
each boundary site (two on corner sites), relax the system, and then check whether
the final configuration is the same as C, in which case the configuration is recurrent.
In the next section we will see how to obtain the same result in an easier and faster
way.

2.4.2 Burning test

There is a simple recursive procedure to discover if a configuration is recurrent.
We consider a test set, say T , of sites. In the beginning T consists of all the sites
of the lattice we are considering; we first test the hypothesis that T is a FSC using
the inequalities (2.16). If these inequalities are satisfied for all sites in T , then the
hypothesis is true and the configuration in exam is transient. Otherwise there are
some sites for which the inequalities are violated, these sites cannot be part of any
FSC, in fact the inequalities will remain unsatisfied even though T is replaced by
a smaller subset of sites. We can now delete them from T to obtain a new subset
T ′, we say we “burn” these sites and the remaining are “unburnt”; at this point it
is possible to check whether T ′ is a FSC with the previous procedure. We continue
following this scheme until we cannot burn anymore site. If we get a finite subset
F of unburnt sites this is a FSC and the configuration is transient, if the set of
unburnt sites becomes empty the configuration in exam is found to be recurrent.
We call the procedure just presented the burning test.

In the burning test it does not matter in which order the sites are burnt. It
is however useful to introduce the concept of time of burning and to add to the
graph a site, named sink, which is connected to all the “boundary” sites with as
many links as the number of lost particles in a toppling by the boundary sites in
exam, it never topples and only collects sand. There is a natural way to choose
a time of burning for each site. At time t = 0, all the sites in T are unburnt
axcept the sink. At any time a site is called “burnable” iff the inequality (2.16) is
unsatisfied with respect to the set T (t) reached at that time, then a burnable site
at time t becomes burnt at time t + 1, and so remains for the next times. With
this prescription we label each site of the graph with a burning time, depending
just on the configuration in exam.

Take now an arbitrary site i, except the sink. Let τi + 1 be the time step at
which this is burnt, then the burning rule implies that at time τi at least one of his
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neighbor sites has been burnt. Let ri be the number of such neighbors and let us
write:

ξi =
∑′

j

(−∆ij) (2.19)

where the primed summation runs over all unburnt neighbors of i at time τi. Then
we have zi ≥ ξi since the site i is burnable at time τi; but, since it was not burnable
at time τi − 1 we must also have:

zi < ξi +K (2.20)

where K is the number of bonds linking i to his neighbors which were unburnt
at time τi. During the burining test we say that fire reaches the site i by one of
the K bonds. Obviously when K = 1 there is just one possibility so there are no
problems, and we say that the fire reaches i from the only site possible. If K > 1 we
have to select one bond through which the fire reaches i depending on his height zi.
For this purpose we order the bonds converging on the site i in some sequence (e.g.
{(i, i1), (i, i2), (i, i3), . . .}), the order is arbitrary and can be chosen indipendently
on each site i. Now we can write zi = ξi + s − 1 for some s > 0, we say that fire
reaches i using the s-th link in the ordered list of the possible ones. With this
procedure we have got a unique path for the fire to reach each site i, given the
configuration of heights in the sandpile and the prescription on the order of bonds
converging on each site. The set of bonds along which fire propagates, connects
the sink with each site in the graph, and there are no loops in each path. Thus the
set just obtained is a spanning tree on the graph G′ = G+ {sink}.

So choosing a particular prescription for a given graph we can obtain by each
configuration a unique spanning tree. For example on a square lattice we have four
bonds for each site, let us call them N-E-S-W, where the cardinal points denotes the
direction of incidence, we can choose the prescription N>E>S>W and obtain for
a recurrent configuration the corresponding spanning tree. In (fig. 2.4) is shown a
burning test for a 4×4 square lattice, with prescription NESW, with

�
�
�

�
�
�

are denoted
the sites such that, connected together, represent the sink, with

�
�
�
�the sites burnt

at the given time of each step of the algorithm and with , the bonds through
which the fire could have reached the site but were rejected.
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Figure 2.4 Example of burning test acting on a given configuration, at
each time is displayed the progress in the algorithm until at t=6 all
sites become “burnt”
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2.5 Algebraic aspects

We want to report some features of the abelian group G associated to the ASM. In
particular we determine scalar function, invariant under toppling, and the rank of
the group for the square lattice.

Furthermore we recall that any finite abelian group G can be expressed as a
product of cyclic groups in the following form:

G ∼= Zd1 × Zd2 × · · · × Zdg (2.21)

That is, the group is isomorphic to the direct product of g cyclic groups of order
d1, d2, . . . , dg. Moreover the integers d1 ≥ d2 ≥ . . . ≥ dg > 1 can be chosen such
that di is an integer multiple of di+1 and, under this condition, the decomposition
is unique. In the following we determine the canonical decomposition of the group.

2.5.1 Toppling invariants

The space of all configurations {zi} (with zi ≥ 0) constitutes a commutative semi-
group over the vertex-set of the ambient graph, with the addition between config-
urations defined as a sitewise addition of heights with relaxation, if necessary. We
define an equivalency relation on this semigroup by saying that two configurations
{zi} and {z′i} are equivalent iff there exists |V | integers nj, j = 1, . . . N , such that:

z′i = zi −
∑

j

∆ijnj ∀i ∈ V (2.22)

This equivalence is said “equivalence under toppling”, and each equivalence class
with respect to (2.22) contains one and only one recurrent configuration. One can
associate to each configuration {zi} a recurrent configuration C defining:

C[zi] =
∏

i

azi
i C

∗ (2.23)

where C∗ is a given recurrent configuration. If {zi} and {z′i} are in the same
equivalence class, then C[zi] = C[z′i], indeed we have that:

C[z′i] =
∏

i

a
zi−

P

j ∆ijnj

i C∗ =
(∏

i

azi

)(∏

ij

a∆ijnj

)

C∗

=
(∏

i

azi

)(∏

j

(∏

i

a∆ij
)nj
)

C∗ =
∏

i

aziC∗ = C[zi].
(2.24)

Using the (2.22) two stable configurations can be equivalent under toppling.
Toppling invariants are scalar functions defined on the space of all the configu-

rations of the sandpile, such that their value is the same for configurations that are
equivalent under toppling. Given the toppling matrix ∆ for an N sites sandpile,
we define N rational functions Qi, i ∈ {1, . . . ,N}, as follows

Qi({zj}) =
∑

j

∆−1
ij zj mod 1 (2.25)
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It is straightforward to prove that the functions Qi are toppling invariants, indeed
the toppling at site k changes C ≡ {zi} → C ′ ≡ {zi − ∆ik}, and the linearity of
the Qi’s in the height variables permits to write:

Qi(C
′) = Qi(C) −

∑

j

∆−1
ij ∆jk = Qi(C) mod 1 (2.26)

These functions are rational-valued but they can be made integer-valued by mul-
tiplication upon an adequate integer. So these functions can be used to label the
recurrent configurations. Thus the space of recurrent configurations can be replaced
by the set of N-uples (Q1, Q2, . . . , QN ), but this labelling is generally overcomplete,
they being not all indipendent.

It is desirable to isolate a minimal set of invariants, and this can be done for an
arbitrary ASM using the classical theory of Smith normal form for integer matrices
[22].

Any nonsingular N ×N integer matrix ∆ can be written in the form:

∆ = ADB (2.27)

where A and B are N × N integer matrices with determinant ±1, and D is a
diagonal matrix

Dij = diδij (2.28)

where the eigenvalues di are defined as follows:

1. di is a multiple of di+1 forall i = 1 to N − 1

2. di = ei−1/ei where ei stands for the greatest common divisor of the determi-
nants of all the (N − i) × (N − i) submatrices of ∆ (note that eN = 1)

The matrix D is uniquely determined by ∆ but the matrices A and B are far from
unique. The di are called the elementary divisors of ∆.

In terms of the decomposition (2.27), we define the set of scalar functions Ii(C)
by

Ii(C) =
∑

j

(A−1)ijzj mod di (2.29)

Due to the unimodularity of A (fact that guarantees the existence of an integer
inverse matrix for A), these functions are integer-valued, and are toppling invariant,
explicitely, given the equivalence under toppling relation (2.22), we have:

Ii[z
′
j ] =

∑

j

(A−1)ijzj −
∑

jk

(A−1)ij∆jknk (2.30)

= Ii[zj ] −
∑

jkℓm

(A−1)ijAjℓDℓmBmknk = (2.31)

= Ii[zj ] −
∑

jk

DijBjknk (2.32)

= Ii[zj ] − di
∑

k

Biknk = Ii[zj ] mod di (2.33)
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Only the Ii for which di 6= 1 are nontrivial, and we note that this invariants are far
from unique, because they are defined in the term of A which is not unique itself.
The Ii’s can also be written in term of the Qi’s as follows:

Ii[C] =
∑

j

diBijQj[C] (2.34)

We now show that the set of nontrivial invariants is always minimal and complete.
Let g be the number of di > 1, we associate at each recurrent configuration a
g-uple (I1, I2, . . . , Ig) where 0 ≤ Ii < di. The total number of distinct g-uple is
∏g
i=1 di = |G|.
We first show that this mapping from the set of recurrent configurations to

g-uples is one-to-one. Let us define operators ei by the equation

ei =
N∏

j=1

a
Aji

j 1 ≤ i ≤ g (2.35)

Acting on a fixed configuration C∗ = {zj}, ei yields a new configuration, equivalent
under toppling to the configuration {zj +Aji}. If the g-uple corresponding to C∗ is
(I∗1 , I

∗
2 , . . . , I

∗
g ), from (2.29) follows that eiC

∗ has toppling invariants Ik = I∗k + δik.
By operating with this operators {ei} sufficiently many times on C∗, all |G| values
for the g-uple (I1, I2, . . . , Ig) are obtainable. Thus there is at least one recurrent
configuration corresponding to any g-uple (I1, I2, . . . , Ig). As the total number of
recurrent configurations equals the number of g-uples (2.9), we see that there is
a one to one correspondence between the g-uples (I1, I2, . . . , Ig) and the recurrent
configurations of the ASM.

To express the operators aj in terms of ei, we need to invert the transformation
(2.35). This is easily seen to be:

aj =

g
∏

i=1

e
(A−1)ij

i 1 ≤ j ≤ N (2.36)

Thus the operators ei generate the whole of G. Since ei acting on a configuration
increases Ii by one, leaving the other invariants unchanged, and since Ii is only
defined modulo di, we see that

edi
i = I for i 1 to g (2.37)

Note that the definition (2.35) makes sense for i between g+ 1 and N , and implies
relations among the aj operators.

This shows that G has a canonical decomposition as a product of cyclic groups
as in (2.21), with di’s defined in (2.28). We thus have shown that the generators
and the group structure of G can be entirely determined from its toppling matrix
∆, through its normal decomposition (2.27).

The invariants {Ii} also provide a simple additive representation of the group
G. We define a binary opreration of “addition” (denoted by ⊕) on the space of
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recurrent configurations by adding heights sitewise, and then allowing the resulting
configuration to relax. From the linearity of the Ii’s in the height variables, and
their invariance under toppling, it is clear that under this addition of configurations,
the Ii’s also simply add. Thus for any recurrent configurations C1 and C2 one has

Ii(C1 ⊕ C2) = Ii(C1) + Ii(C2) mod di (2.38)

The Ii’s provide a complete labelling of R. There is a unique recurrent config-
uration, denoted by Cid, for which all Ii(Cid) are zero. Also, each recurrent C has
a unique inverse −C, also recurrent, and determined by Ii(−C) = −Ii(C) mod di.
Therefore the addition ⊕ is a group law on R, with identity given by Cid. M.
Creutz first gave an algorithm to compute this configuration in [18].

There is a one-to-one correspondence between recurrent configurations of ASM
and elements of the group G: we associate to the group element g ∈ G, the recurrent
configuration gCid, and from (2.38) follows that for all g, g′ ∈ G

gCid ⊕ g′Cid = (gg′)Cid (2.39)

Thus the set of recurrent configurations with the operation ⊕ form a group which is
isomorphic to the multiplicative group G, result first proved in [18]. The invariants
{Ii} provide a simple labelling of the recurrent configurations. Since a recurrent
configuration can also be uniquely determined by its height variables {zi}, the
existence of forbbidden configuration (2.16) in ASM’s implies that this heights
satisfy many inequality constraints.

2.5.2 Rank of G for a rectangular lattice

For a general toppling matrix ∆, it is difficult to say much more about the group
structure of G. To obtain some useful results we now consider the toppling matrix ∆
of a finite L1×L2 2-dimensional square lattice. In this framework is more convenient
to label the sites not by a single index i running from 1 to N = L1L2, but by two
Cartesian coordinates (x, y), with 1 ≤ x ≤ L1 and 1 ≤ y ≤ L2. The toppling
matrix is the discrete Laplacian as defined in (2.3), given by ∆(x, y;x, y) = 4,
∆(x, y;x′, y′) = −1 if the sites are nearest-neighbors (i.e. |x − x′| + |y − y′| = 1),
and zero otherwise. We assume, without loss of generality, that L1 ≥ L2. The
relations (2.6) satisfied by operators a(x, y), using the fact that the operators has
an inverse on R, can be rewritten in the form

a(x+ 1, y) = a4(x, y)a−1(x, y + 1)a−1(x, y − 1)a−1(x− 1, y) (2.40)

where we adopt the convention that

a(x, 0) = a(x,L2 + 1) = a(0, y) = a(L1 + 1, y) = I ∀x, y (2.41)

The equations (2.40) can be recursively solved to express any operator a(x, y) as
a product of powers of a(1, y). Therefore the group G can be generated by the L2
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operators a(1, y). Denoting the rank of G (minimal number of generators) by g,
this implies that

g ≤ L2 (2.42)

In the special case of a linear chain, L2 = 1, we see that g = 1, and thus G is cyclic.
Equations (2.40) permits also to express a(L1 + 1, y) in term of powers of a(1, y)
say

a(L1 + 1, y) =
∏

y′

a(1, y′)nyy′ (2.43)

where the nyy′ are integers which depend on L1 and L2 and which can be eventually
determined by solving the linear recurrence relation (2.40). The condition (2.41),
a(L1 + 1, y) = I then leads to the closure relations

L2∏

y′

a(1, y′)nyy′ = I ∀y = 1, . . . , L2 (2.44)

The equations (2.44) give a presentation of G, the structure of which can be de-
termined from the normal form decomposition of the L2 × L2 integer matrix nyy′ .
This is considerably easier to handle that the normal form decomposition of the
much larger matrix ∆ needed for an arbitrary ASM. Even though this is a real
computational improvement, the calculation for arbitrary L1 is not trivial.

In the particular case of square-shaped lattice, where L1 = L2 = L, using the
above algorithm is possible to find the structure of G, and to prove that for an
L× L square lattice we have

g = L for L1 = L2 = L (2.45)
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3. Cluster-toppling rules and

exotic operators

In this chapter we present a generalization of the toppling rule which preserves
the group properties of the model, and has some interesting involvements with the
identification of recurrent configurations. Then we propose a class of operators Ni

that have some particular exchange properties, although being in a non-abelian
extension of the original ASM algebra. We also show the possibility of obtaining
a particular stationary state by the repeated action of the operators Ni on a given
state, we study this stationary state and we find a close relation with the above
mentioned cluster-toppling rules. We study in more detail portions of the square
lattice of various particular shapes.

3.1 Generalized toppling rules

In chapter 2, we introduced the two basic rules of the ASM: the “addition rule”
and the “toppling rule”. The addition rule has a general formulation, and, in the
identification of a Markov Chain, it is flexible because of the possibility to make
different choices for the rates pi, at which particles are added on each site. On the
other hand the toppling rule is maybe not the most general. Indeed a toppling
rule took the form of a single-variable check, labelled by a site index i, zi < z̄i
which, if failing causes an “instability” in the height profile, which relaxes with a
constant shift zj → zj −∆ij such that the total mass can only decrease, with some
conditions that ensure both the finitness of the relaxation process, and the fact
that the result has no ambiguity in the case of multiple violated disequalities at
some intermediate steps.

Theorem 1. Given an ASM on a graph G = (E,V ) and a toppling matrix ∆, if C̃
is unstable, consider the set S of sequences (i1, . . . , iN(s)) such that tiN(s)

. . . ti2ti1C̃
is a valid sequance of topplings, and produces a stable configuration C(s), some
facts are true:

(0) S is non-empty;

(1) C(s) = C(s′) for each s, s′ ∈ S, i.e. the final stable configuration does not
depend upon possible choices of who topples when;
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(2) N(s) = N(s′) = N(C̃) ∀s, s′ ∈ S

(3) ∀s, s′ ∈ S ∃π ∈ SN(s) : i
(s)
α = i

(s′)
π(α)

for α = 1, . . . ,N(C̃), i.e. the toppling
sequences differ only by a permutation.

Proof. Here we prove (3), given (1) and (0) As a restatement of (3), we have that
one can define a vector ~n(C̃) ∈ N|V | as the number of occurrence of each site in any
of the sequence of S. Then, we have that the final configuration is

C = C̃ + ∆ · ~n (3.1)

The fact that ~n is unique is trivially proven. Indeed, as S is non-empty, we have
a first candidate ~n0, and thus a solution of the non-homogeneous linear system (in
~n)

∆ · ~n = C − C̃.

If there was another solution ~n1, then we would have that ~n′ = ~n1−~n0 is a solution
of the homogeneous system

∆ · ~n′ = ~0.

But ∆ is a square matrix of the form Laplacian+mass, such that the spectrum is
all positive (we saw how it is a strictly-dissipative diffusion kernel), so it can not
have non-zero vectors in its kernel. This proves the uniqueness of ~n, i.e. (3). But
(3) is stronger than (2), and the fact that C = C̃ + ∆ · ~n also implies (1). So the
theorem is proven.

The standard toppling rule can be shortly rewritten as:

if zi ≥ z̄i = ∆ii =⇒ zj → zj + ∆ij ∀j (3.2)

Pictorially, on a square lattice, we can draw the heights at a given site i and at its
nearest-neighbors i1, i2, i3, i4 as

zi1
zi4 zi zi2

zi3

(3.3)

and an example of typical toppling is

0

0 4 0

0

−→

1

1 0 1

1

(3.4)

where the initial value of zi is equal to z̄i = 4, so it is the only site that becomes
unstable and requires the toppling shown in figure.

A straightforward generalization of this prescription is to consider a site stable
or unstable not just for “ultra-local” (i.e. single-site) properties (like the overcom-
ing of the site threshold) but also for local properties that depend on the heights
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at more than one sites. Similarly, we would have toppling rules ~∆α = {∆αj}j∈V
with more than a single positive entry. Still we want to preserve the “exchange”
properties of toppling procedures which led to the abelianity of the drop operators
ai, and this could be in principle such a severe constraint that we could not find
essentially any new possibility. As we show now, by direct construction, this is
not the case. We can define some cluster-toppling rules, labelled by whole subsets
I ⊆ V of the set of sites, instead that by a single site, and for any subset I introduce
the toppling rule

if ∀i ∈ I zi ≥
∑

α∈I

∆iα =⇒ zk → zk −
∑

α∈I

∆αk ∀k (3.5)

These rules clearly define some sandpile model, that, under some constraints on
the choice of toppling clusters L = {I}, we will prove later to be abelian. But,
before this, we address the simpler issue of cheking for the finiteness of the space
of configurations. It is trivial to see that if, for any site i, there is no set {i} ∈ L,
but only an arbitrary number of “large” clusters I ∈ L, |I| ≥ 2, i ∈ I, then all the
configurations of height

zi = n ∈ N, zj = 0 j 6= i (3.6)

are allowed and stable, thus a necessary condition for having a finite set of stable
configurations is

{i} ∈ L ∀i ∈ V (3.7)

this is also sufficent, as even in the standard ASM we have a number
∏
z̄i of stable

configurations (where z̄i is the source of instability for each site), and this number
can only decrease when adding new toppling rules.

We define Lstd the set of toppling cluster for the standard toppling rules, that
is

Lstd =
{
{i}i∈V

}
(3.8)

So we ask wether a given set L of cluster-toppling give rise to a finite abelian
sandpile. Say I(1) and I(2) are two clusters in L

Theorem 2. Given an ASM on a graph G = (E,V ), with a symmetric toppling
matrix ∆, {~∆I}I∈L and L ⊇ Lstd. A necessary and sufficient condition for the
sandpile to be abelian is that

each component of I(1) r I(2) ∈ L ∀I(1), I(2) ∈ L (3.9)

Proof. Let us call J = I(1) ∩ I(2), then there are two cases:

(a) J = ∅

(b) J 6= ∅
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In case a the compatibility is obvious, indeed if we make the toppling for I(1)
then the heights in I(2) can only increase for the properties of the toppling matrix
∆. After the topplings also of the sites in I(2) have been done, the final height
configuration will be

z′k = zk −
∑

i∈I(1)

∆ik −
∑

j∈I(2)

∆jk (3.10)

this expression is clearly symmetric under the exchange of I(1) and I(2).
In case b we shortly recall the toppling rule for I(1) and I(2) (3.5)

if ∀i ∈ I(1) zi ≥
∑

α∈I(1)

∆iα =⇒ zk → zk −
∑

α∈I(1)

∆αk ∀k (3.11a)

if ∀i ∈ I(2) zi ≥
∑

α∈I(2)

∆iα =⇒ zk → zk −
∑

α∈I(2)

∆αk ∀k (3.11b)

now we note that we can split the sums in the contribution from J and the one
from the remaining sites of each subset

∑

α∈I(1)

=
∑

α∈I(1)rJ

+
∑

α∈J

∑

α∈I(2)

=
∑

α∈I(2)rJ

+
∑

α∈J

Now we can topple first I(1) and so update the configuration {zi} → {z′i} as follows

z′i = zi +
∑

α∈I(1)rJ

∆αi +
∑

α∈J

∆αi ∀i ∈ V

At this point, for the updated configuration the following relations are valid

∀i ∈ I(2) r J z′i =zi −
∑

α∈I(1)rJ

∆αi −
∑

α∈J

∆αi ≥ (3.12a)

≥
∑

α∈I(2)rJ

∆iα +
∑

α∈J

∆iα −
∑

α∈I(1)rJ

∆αi −
∑

α∈J

∆αi ≥ (3.12b)

≥
∑

α∈I(2)rJ

∆iα −
∑

α∈I(1)rJ

∆αi ≥ (3.12c)

≥
∑

α∈I(2)rJ

∆iα (3.12d)

in line (3.12b) we used the symmetry property of the toppling matrix to cancel
out the second and the fourth terms, in line (3.12c) we used the property the off-
diagonal elements ∆ij to be negative or equal to zero to obtain the inequality in
the last line, indeed if A > B, if ci ≥ 0 then A+

∑
ci > B a fortiori.
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In the case it does not exist the toppling rule for I(2) r J , there exists a config-
uration of heights (the minimal heights such that both I(1) and I(2) are unstable)
such that toppling first I(1) or I(2) leads immediately after a single toppling to two
distinct stable configurations, so we see that necessary part of the theorem holds.
As a consequence, as L ⊇ Lstd, given I ∈ L we have that all the I ′ ⊆ I are in L, and
thus all of its components. In particular disconnected I’s are simply redundant,
and we can restrict L to contain only connected clusters without loss of generality.

Conversely, if I(2)rJ ∈ L (and I(1)rJ ∈ L by symmetry), in the two “histories”
in which we toppled I(1) or I(2), we can still topple I(2) r J ∈ L and I(1) r J ∈ L
respectively and put them back on the same track, i.e.

tI(1)rJtI(2) ≡ tI(2)rJtI(1) (3.13)

as operators when applied to configurations C such that both I(1) and I(2) are
unstable.

We want also to produce a proof similar to that for standard toppling rule in
theorem 1 for the cluster-toppling ASM.

We have G = (E,V ), and the induced toppling matrix ∆, and a set L of
connected subsets of V , with L ⊇ Lstd =

{
{i}i∈V

}
. Call ~∆i = {∆ij}j∈V , and

~∆I =
∑

i∈I
~∆i. A toppling tI changes ~z into ~z − ~∆I .

Theorem 3. If C̃ is unstable, consider the set S of sequences s = (I1, . . . , IN(s))

such that tIN(s)
. . . tI2tI1C̃ is a valid sequence of topplings and produces a stable

configuration C(s). Some facts are true:

(0) S is non-empty;

(1) C(s) = C(s′) ∀s, s′ ∈ S;

(2)
∑N(s)

α=1 |I
(s)
α | =

∑N(s′)
α=1 |I

(s′)
α | ∀s, s′ ∈ S;

(3) defining ~χI =

{
1 i ∈ I
0 i /∈ I

,
∑N(s)

α=1 ~χI(s)α
is the same for all the sequences and

is some vector ~n(C̃)

Proof. (of (3) and (2) given (1) and (0)) Again, the final stable configuration is
C = C̃ + ∆ · ~n, and the uniqueness of ~n is proven along the same line as the proof
for standard ASM. Then, as (3) is a strenghtening of (2), the theorem is proven.
remark however some qualitative difference with the simplest case of ordinary ASM:
it can well be that N(s) 6= N(s′), and s and s′ do not differ simply by a permutation
(e.g., in the relaxation of 3 4 3 by t3t12 or by t1t3t2), and analogously the
kernel ∑

j

nI ~∆Ij = 0 ∀I ∈ L

is non-empty for L ) Lstd, as ∆ is rectangular (e.g. n12 = a, n1 = n2 = −a, nI = 0
otherwise is a null vector of ∆). Only in the “basis” of Lstd we have a unique
solution, and of course the versor êI , in Z|L|, reads ~χI in this basis.
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We present for clearity the case in which the rule is defined for all the 2-clusters,
dimers. In this case we have

L =
{
{i, j}ij∈E

}
∪
{
{i}i∈V

}
, (3.14)

and the general rule (3.5) becomes:

if







ij ∈ E
zi ≥ ∆ii + ∆ij

zj ≥ ∆jj + ∆ij

=⇒ zk → zk − ∆ik − ∆jk ∀k, (3.15)

we can now pictorially draw on a square lattice the heights for a given cluster,
formed by the sites i and j, and its nearest-neighbors i1, i2, i3, j1, j2, j3 as

zi1 zj1
zi3 zi zj zj2

zi2 zj3

(3.16)

so a typical 2-cluster toppling is:

0 0

0 3 3 0

0 0

−→

1 1

1 0 0 1

1 1

(3.17)

in which in the initial state both the sites i and j have height equal to z̄i − 1 = 3
and become unstable with respect to the (3.15), it is therefore necessary to topple
the sites obtaining the final configuration. We note that doing a single cluster-
toppling is the same as making two consecutive normal topplings, at condition
that we permit negative height in the intermediate steps and force the toppling
also in the case it is not necessary (zi = 3), in fact:

0 0

0 3 3 0

0 0

−→

1 0

1 -1 4 0

1 0

−→

1 1

1 0 0 1

1 1

(3.18)

and in the case zi ≥ 4 or zj ≥ 4 or both, the same result would have been obtained,
any possible rule we choose to use, as proved in 2. This fact can be better under-
stood recalling the relations (2.6) satisfied by the operators ai and aj, with i and
j corresponding to the ones in (3.16):

a4
i = ai1ai2ai3aj (3.19a)

a4
j = aj1aj2aj3ai (3.19b)

If we restrict the attention on recurrent configurations where inverses of ai exist it
is possible to multiply side by side the two equalities obtaining:

a4
i a

4
j = ai1ai2ai3ajaj1aj2aj3ai (3.20)
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and dividing (in group sense) each side by ai and aj we have the following equality:

a3
i a

3
j = ai1ai2ai3aj1aj2aj3 (3.21)

that is the same of (3.19) for the cluster toppling rule, furthermore this rule gener-
alizes for arbitrary subsets of V . This permit us to state that the different toppling
rules we have introduced bring to the same group presentation (and then to the
same group structure) for the abelian group associated to the recurrent configura-
tions of the ASM.

We recall now that for the model with the standard toppling rule we have an
easy characterization for the subsets F of the graph that are forbidden subconfig-
uration (FSC), that is:

if ∀i ∈ F zi <
∑

j 6=i
j∈F

(−∆ij) =⇒ F is a FSC (3.22)

As obvious with the new rules just introduced, some forbidden subconfigurations
of the standard ASM can become reachable by adding sand and toppling, e.g. the
simplest forbidden configuration in the case of standard toppling rules, 0 0 , is
easily reachable if we allow the 2-cluster toppling rule, in fact it can simply turn
up as result of the basic 2-cluster toppling 3 3 → 0 0 . It is also possible
to characterize the forbidden subconfigurations with respect to a given I-toppling
rule, we have:

if ∀I ⊆ F

k∑

j=1

zij <
∑

j∈FrI
ℓ∈I

(−∆ℓj) =⇒ F is a FSC (3.23)

this yielding to the possibility that a transient configuration with respect to a L′

toppling rule becomes recurrent for a L′′ toppling rule, with L′′ ⊃ L′.
Furthermore some configurations stable with respect to a L′ toppling rule be-

come unstable if we allow L′ to increase up to L′′, e.g. the basic unstable con-
figuration 3 3 for the dimer-toppling rule is perfectly stable in the framework
of toppling only for zi ≥ z̄i. Moreover the fact that the group structure of the
associated group remains unchanged under the addition of the new toppling rules,
yields the number of group elements g ∈ G to be the same in the two cases, this
forces the number of recurrent configurations to be the same, as the order of group
associated, i.e. as many stable recurrent becomes unstable, as transient become
recurrent, for each enlargement of L.

In this framework, we see how, remaining unchanged the number of recurrent
configurations and growing up the number of unstable configurations, since the set
of L-stable configurations becomes a subset of the original set of stable configu-
rations S = {0, 1, 2, 3}|V |, in some sense the transient configurations that become
allowed must correspond to some newly unstable configurations. This kind of sym-
metry between the two sets, yields to suppose the existence of a bijection between
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unstable configurations for L′′ toppling rules and transient configurations for L′

toppling rules, with L′′ ⊃ L′. This procedure of enlarging the set of unstable con-
figuration, and at the same time to shrink the set of transient configuration yields
to the possibility to completely suppress the set of the transient configurations and
to have that the recurrent configurations become all the stable configurations. This
situation is reached by letting

L = {all the subsets of V } (3.24)

An interesting example is the lattice 3 × 1 in which the number of configurations
is not huge and we can directly check this statement.

L = Lstd

0 0 0

0 0 1 2
3

0 01 2
3

0 1 0
︸ ︷︷ ︸

8 transients

L = Lstd ∪ {i1, i2}

0 1 0

0 0 1 2
3

︸ ︷︷ ︸

4 recurrents

3 3 0 1
2 3

︸ ︷︷ ︸

4 unstables

L = Lstd ∪ Lmax

0 0 0

0 0 1 2
3

︸ ︷︷ ︸

8 recurrents

0 01 2
3

0 1 0

3 3 3

3 3 0 1
2

3 30 1
2

3 2 3
︸ ︷︷ ︸

8 unstables

3.2 The operator Ni = a
†
iai

Until this point we worked with the abelian operators ai of the group G associated
with the ASM, defined as the ones which add a grain in i and let the configuration
relax if necessary. It is possible to complementary define the operators a−1

i inverses
of ai and to find their explicit action as shown in [9]. In order to obtain it, must
be used the already introduced concept of forbidden subconfigurations (2.16) and
the new elementary operation of untoppling.

We define the untoppling rule the rule through which if, at site i, the height
becomes for some reason negative, it is increased by ∆ii and the heights in the
other sites j are decreased by −∆ij, where ∆ is the usual toppling matrix of the
sandpile. Shortly we can write

if zi < 0 =⇒ zj → zj + ∆ij ∀j (3.25)

If eventually after this updating the height at some other site becomes negative,
then we let them untopple following the (3.25). This rule is exactly the symmetric
counter-part of the toppling rule (3.2) for the model in which all the heights are
trasformed as follows

zi → 4 − zi (3.26)
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Thus we don’t have to worry about the order we choose to perform the different un-
topplings, indeed they satisfy an abelian property exactly as the standard toppling
rule does.

Instead of defining a−1
i we define a new, but similar, operator a†i from the

space of stable configurations to itself. It effectively acts as follows: given a stable
configuration C = {zj}, the configuration a†iC = {z′j} is the one in which z′i = zi−1,
and, in the case z′i < 0 after the decreasing, the necessary untoppling are performed
in order to obtain an allowed configuration. This is not the same as a−1

i , indeed

in that case, after the action of a†i , we have to make a burning test to check if the
configuration is or not recurrent, and in the case it is transient, a sort of inverse
avalanche of the FSC found with the burning test is performed, this procedure is
repeated until the configuration becomes recurrent. This fact suggests the property
of the a†i ’s to bring back, in some cases, the recurrent into transient configurations.

We can now define the operator

Ni = a†iai (3.27)

Clearly this operator does not commute with the whole operator algebra of the
sandpile, indeed the action of a†i can decrease the height in a site where otherwise
the action of ai would have generated an avalanche. Now we study the repeated
action of Ni on the maximally filled configuration Cmax, that is zi = 3 for all i, of a
square lattice rectangular-shaped. We choose to act on this particular configuration
because the action of Ni on it isn’t trivial, at the first step, for every site; indeed
there are many possible configurations for which the action of Ni is trivial, and so
correspond to doing nothing, for some i. Given Ni, the cases for which NiC = C
are the following:

(i) if zi < 3, in this case the first added particle does not bring to any toppling

and the action of a†i simply restore the initial height;

(ii) if zi = 3 and no one of its nearest-neighbors, j, has maximal height (zj = 3),
indeed in this case the action of ai lead up to a toppling, just one, letting
zi = 0; the following action of a†i involves one untoppling and restore the
initial situation.

Ni acting on configuration Cmax creates diagrams that pictorially seems “scattering
diagrams”. We tested this fact by the help of a computer program written by Creutz
[19], this program represents each different height value with a different colour:

zi = 3; zi = 2; zi = 1; zi = 0

thus in the following we will indifferently speak about a site i of height zi = 2
as a “2-height” site or as a “blue” site.

Let us speak about what happens with the action of Ni: we will discuss the
fenomenology on a square-shaped lattice. The first hit creates a central square
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Figure 3.1 configuration after a single hit of Ni in the site marked in
black

of blue sites with 4 beams of red sites departing from its vertices and connecting
to the corner of the lattice (fig. 3.1). We define this new objects as some defect
in the originally homogeneous background of height 3, i.e. zi < 3, that present a
periodicity with a certain period (kx, ky), obviously integer, being the ASM settled
in a lattice; in the following, with abuse of notation, we will call them propagators,
and we will indicate the component kx and ky of the periodicity as the momenta
of the propagator. Acting with Ni more time on the just reached configuration,
bring to different possible results, neglecting the cases in which the action is trivial.
Choosing the i inside the blue square just formed, that we can consider in some
way as a loop of blue propagators, the action of Ni simply contracts the initial
square into the one tangent to the point i chosen. On the other hand, choosing i in
one of the four external trapezoids, it seems that, from the corresponding corners,
some “new mass” reaches the diagram, changing the propagators that migrate
and become of different shape, and of different momentum. Continuing as just
presented it is possible to create many different propagators for as many values of
kx and ky we want.

3.2.1 The ASM-propagators

Having produced some data about these “ASM-propagators”, and having spanned
many possible different shapes of the above defined “propagators”, it is possible to
state some apparent rule they follow, although we did not succeed still in proving
the more “exotic” of them.

1) It is possible for the propagators to meet in some vertices, in general meeting
point for three of them, just as two of them scatter in a new propagator. This
happens with a surprising conservation law, indeed considering the momenta of
the propagators as a flow, then in a process the following relation holds

(px, py) + (qx, qy) = (kx, ky) (3.28)

the momentum along direction x and y is conserved, so

px + qx = kx and py + qy = ky (3.29)
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(3, 1) + (0, 1) → (3, 2) (4, 3) + (1, 0) → (5, 3)

Figure 3.2 example of vertices of scattering

In figure 3.2 are shown some examples

2) When in the diagram a loop forms, composed by the known propagators,
then this loop is a forbidden subconfiguration. The action of Ni inside the loop
leads up to shrink the loop, until it becomes a single vertex. Otherwise Ni acting
in a zone external of any loop (i.e. adjacent to the border), creates a new loop and
increase the momenta incident on the corners of the square.

3) A fact true for all the case we studied, is that at each propagator we can
associate a quantity defined as the sum of the defects of height with respect to the
completely filled configuration in the space of a period (kx, ky). The non-trivial
fact is that this quantity, we can call E, satisfies the following relation:

E = k2
x + k2

y (3.30)

For example in the case of the propagator (5, 2) we have the following value for E,
E = 25 + 4 = 29, counting the number of sites with height less than 3 there are 6
of height 0 and 11 of height 2, so the total height defect is 6 × 3 + 11 = 29 = E.

4) Propagators (kx, ky) with kx and ky relatively prime, are named “prime”.
These propagators have defined shape, and cannot be composed of other smaller
propagators. The propagators in the form (nkx, nky) are generally composed of
n propagators (kx, ky) that propagate parallely. The only exception we know is
the propagator (2, 0), it has the special property to present two different possible
shape, in fact it can be two parallel blue lines, but can also be a single red line,
however the E of this propagator has the right value 4 in both the shapes of the
propagator, if we use accordingly a period of 2, kx = 2.

5) High momentum propagators are much more unstable than the low-momentum
ones. So it is easy to break their structure by acting with Ni on the lattice. Fur-
thermore in scattering events of high momentum propagators the structure of the
vertex is not easy to understand, but it is possible to recognize some fine structures
composed of low momentum operators.

6) In the case a propagator (kx, ky) can be written as (px + qx, py + qy) with
px, py near to qx, qy, it seems to behave like two propagators (px, py), (qx, qy) that
propagate parallely and exchange a particle every half period. In particular this
feature is clear for family of propagators close to the two families (k, k − 1) and
(k, 1), e.g. (9, 2) and (9, 7) as can bee seen in figura 3.6.
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7) In the case the initially maximally filled configuration has some defects (e.g.
a single point of height 0, 1 or 2) on condition that this defects does not produce
a forbidden subconfiguration, the dynamics induced by the Ni’s on Cmax is not
perturbed by their presence. It happens that the propagators seen acting on Cmax
as initial configuration are exactly the same in the regions where the defects are
not present, in regions where is localized a defect, the propagators, seen as height
defects, simply decrease the height of the defect present in the initial configuration,
in the case the height becomes negative, an untoppling operator acts in order
to have an allowed configuration. When the propagators move over, then the
initial configuration is perfectly restored, so the dynamics is not affected by any
perturbation.

8) When there is a loop of propagators, as said above the action of Ni in its
inner part, shrink it, the non-trivial fact is that every possible sequence of operators
that completely shrinks the loop to a “tree” diagram connecting the propagators
incoming in the loop, brings to the same result, irrespectively of the number of
operators we used or the positions where they act, on condition that they all act
inside the loop (i.e. if the loop is embedded into a box with no other loops, all Ni

act on components of height 3 not connected to the border).

Furthermore we have found some typical patterns for particular families of
propagators. We present the rule to build the propagator for the families (k, 1)
and (k, k − 1) for k greater than 1. The pattern for generic (k, 1), (fig. 3.3), is
formed by a sequence of blue squares (k − 1) × (k − 1) with diagonal composed
of grey sites, each one shifted of one site from the previous and linking to it by a
column of k − 2 green sites and 1 more blue site for side.













︷ ︸︸ ︷

︸ ︷︷ ︸

k − 2
k − 1

k − 1

k

Figure 3.3 characterization of (k, 1) generic propagator

The pattern for generic (k, k − 1), (fig. 3.4), is in some sense similar, up to
a rotation of 45◦, to the one for the (k, 1) family. Indeed it presents a sequence
of rombi with each half, divided by the diagonal (horizontal w.r.t. the lattice
directions), composed of a triangle, of sites red and green, arranged in echelon
formation, whose height is k − 2; then the diagonal is long 2k − 1 sites, k of them
being blue and k − 1 grey. These structures are linked such that the tip of the
triangle is connected to the end of the diagonal of the previous rombhus.
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k − 2

︷ ︸︸ ︷
2k − 1

Figure 3.4 characterization of (k, k − 1) generic propagator

Some examples of components of these families for particular value of k are
presented in figure 3.5

(a) (b)

Figure 3.5 examples of propagators: (a) (7, 1) belonging to the family
(k, 1); (b) (9, 8) belonging to the family (k, k − 1)

These two families have also an easy characterization for the basic scattering
vertices of the processes

(k, 1) + (1, 0) → (k + 1, 0) and (k, k − 1) + (1, 1) → (k + 1, k) (3.31)

The first scattering is obtained simply enlarging the square of the composing the
(k, 1) propagator. When the single blue line of the (1, 0) propagator meets the
wider propagator, it adds to the square in the side parallel to its direction, enlarges
the square and the the structure repeats with the expected periodicity. As for the
general structure of the propagator the similitude between the (k, 1) and (k, k− 1)
propagators is preserved for the pattern of elementary scattering, indeed the red
line at 45◦ representing the (1, 1) propagator, when meets the (k, k+1) adds to the
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triangle composing the rombhus, enlarging it, and the enlarged rombhus repeats
with the expected periodicity.

In the prescription on how to shrink a loop, it is hard to distinguish in some
“intrinsic” way which green regions are “inside” a propagator (e.g. as in figure
3.5 for prop. (k, 1) and (k, k − 1)) and which are inside a subloop which is almost
shrinked out. If one impose to squeeze all the green regions not connected to the
border, one obtain a new family of propagators, corresponding to the reduction of
the previous one w.r.t. the prescription above. As for the natural propagators this
new ones has similar scattering rules and satisfy the periodicity property we used
to define the natural propagators. In figures 3.6 and 3.7 we report the tabular of
natural and squeezed propagators.

To obtain the figures presented in this section we have been helped by the
program xsand written by M. Creutz, besides other programs we wrote in order to
study the high-order propagators [19]
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Figure 3.6 natural propagators
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Figure 3.7 squeezed propagators
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3.3 Stationary state

In this last section of the chapter we study the possibility to act on the configuration
Cmax of a given lattice with the operator Ni uniformly on the lattice, as many time
as it is possible until no more site gives rise to a non-trivial action of Ni. A priori
there is no guarantee for this process to stop in a finite time nor to reach the
same state following a different sequence of operators NikNik−1

· · ·Ni1 (e.g. having
a different number of operators, or taking the same set of operators in different
order), but surprisingly this fact happens, and in the following we will give the
reason for this fact. We call stationary state the configuration reached at the end
of this process.

This uniqueness of the stationary state can be explained by the fact that the
action of Ni is in fact just a tool to perform the 2-cluster toppling rule only in
the clusters to which the site i belong, and only if this cluster were unstable in
the sense of (3.15), indeed the cases (i) and (ii) in which the action of Ni is trivial
are exactely when i does not belong to any unstable 2-cluster. In this perspective
the action repeated with Ni until no more sites permit an untrivial action of the
operator, simply corresponds to reach the stable configuration with respect of the
2-cluster toppling rule defined above. Furthermore the theorem 3 states that the
order with which we choose to perform the different topplings, that is the order
with which we choose to act with the differents Ni, is irrelevant for the final result.
Indeed the final stable configuration is unique, and each different “history” must
give the same result.

Other interesting facts about this particular configuration are the following:
1) The patterns obtained are shape depending, but they seems to follow the

same guidelines, in particular for rombhus and square we found a bulk part com-

posed of a grid
2 3

1 2
, otherwise the part near the boundary seems to exhibit

particular patterns that have some influence due to the corners of the chosen shapes.
We also studied the patterns in a circular shape, in order to minimize the effects
of the corners, in this case the pattern found only in the bulk for the square and
the rombhus fills entirely the circle, apart a boundary zone, thin with respect to
the diameter of the circle, see figure 3.8.

2) The dynamics converging to the stationary state has an interesting property,
in particular in the case of the circle, after a initial state of “bubbles” mainly
of propagators (0, 1) and (1, 1), the system reaches a moment in which only the
internal part needs to change further on, the part mantains the circular shape of
the whole lattice, and then collapse in the final stationary state , see figure 3.9.
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Figure 3.8 Example of stationary state for a square of side L = 151, a
rhombus with diagonal d = 299 and a circle with diameter D = 97
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Figure 3.9 Evolution of the state of a circle of diameter 61



52 Cluster-toppling rules and exotic operators



4. An algorithm for uniform

sampling of trees

In chapter 2 we reported how to construct an explicit basis for the space of recurrent
configurations R. We want now to show how it is possible to use this basis to obtain
an algorithm with polynomial-time worst-case complexity for exact sampling of the
recurrent configurations and, through the bijection obtained via burning test of the
ASM, of trees of the graph associated.

When studying the ASM on an N sites square lattice, as presented in section
2.5.2, we found that the relations (2.44) give a presentation of the group G associ-
ated to the ASM, in terms of the g × g integer matrix nyy′ where g is the rank of
the group. The elements of nyy′ are obtained solving the linear recursive relation
(2.40). Thus in this case is not necessary, in order to examine the group structure
of G, to work with the huge N ×N toppling matrix ∆, indeed the structure of G
can be determined by the normal form decomposition of nyy′ .

This allow us to determine explicitly the form of the generators êi and their pe-
riod. We recall that it is possible, in the case of a rectangular-shaped square lattice
L1×L2, to find an overcomplete set of generators with periods di, but in any case the
di found through the Smith normal form satisfy the relations d1 ≥ d2 ≥ . . . dg > 1
with di an integer multiple of di+1. In the case of a square-shaped lattice the
number L of generators is minimal, and this allows to compute the generators. To
characterize the algorithm, we need a bound for the value of periods di. In order to
obtain a bound for the value of the various periods of êi, first we recall the following
relation

g
∏

i=1

di = |G| (4.1)

here g is the number of a minimum set of generators. Now we note that the
number of allowed configuration is 4L

2
, and it is much greater than the number

of recurrent configuration, that we know to be det∆, furthermore the number of
recurrent configuration is equal to the order of G as stated in (2.9). This relations,
together with the (4.1) yields to write:

di < |G| = det ∆ < eaL
2

(4.2)

with a = log 4. So an upper bound for di is eaL
2
, but it still desirable to obtain a

more restrictive bound.
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It is possible to compute for each generator êi its 2k-powers, indeed in the
following procedure they will be useful tools for computing some particular config-
urations. This task is done by subsequent doubling of the configuration associated
to the generator, that is

(êi)
2k

= (êi)
2k−1

⊕ (êi)
2k−1

(4.3)

Furthermore, each sum of stable configurations takes a polynomial time, at most
of order L4, to be performed1. This lets evaluate the time needed to obtain the
sequence of the 2k-powers for a given êi, that is t ∼ kL4 where k is the number of
2k-powers needed, dependent onthe period di, chosen as

k = ⌊log2(di)⌋ (4.4)

As said before the period grows as eaL
2

so k is order L2 × some suitable constant.
At this point it is possible to write the estimated time to obtain all the 2k-power-
configurations of the various generators

t ∼ L2L4L = L7 (4.5)

where the factor L2 comes from the number of 2k-powers needed for each generator,
L from the number of generators and L4 from the time needed to perform each
sum of configurations, with sitewise addition plus relaxation.

Furthermore the space in memory needed to store the configurations, in order
to use them in the following part of the algorithm, is

memory ∼ L2L2L (4.6)

where L comes from the number of generators, and a first L2 for the number of
2k-powers, a further L2 from the space needed for each configuration to be stored,
being a configuration of an L× L lattice.

It is now easy to obtain the exact sampling for the recurrent configurations of
the sandpile. Indeed, forming the generators a basis of the set R, at each given
recurrent configuration C can be associated a vector ~n(C) that represent it in terms
of the basis, that is

C =

(
∑

i

ni(C)êi

)

⊕Cid. (4.7)

This reduce the sampling of the recurrent configuration to the sampling of a vector
~n such that each of its components is 0 ≤ ni < di. Then using the relation (4.7) we

1Define I({zi}) =
P

i zir
2(i), where r(i) is the distance of i from the center of the square.

When a toppling occurs on the border, say that the particle leaving the system remains on the
lattice site immediately out of the square. With this rule, each toppling increases I by 4, and the
total mass (including the particles out of the border) remains fixed. The worst case is that all
particles go out at the corners (where r2(i) ∼ L2/2), so that Ifinal − Ibegin &

P

i zi(L
2/2− r2(i)).

As at each site zi ≤ 6 (during the parallel toppling), this quantity is further bounded by ∼

6L4
R 1/2

−1/2
dx

R 1/2

−1/2
dy( 1

2
− x2 − y2) = 2L4, so the number of toppling is . L4/2.
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obtain the configuration desired. The last step for obtain the sampled recurrent
conifguration is, in fact, a simple sum of generator’s configurations. This sum is in
principle simple, but in practice there is a computational problem. Indeed there is
a huge number of configuration to be summed, that comes from the fact that in
average each period di grows exponentially as said in the beginning of the chapter.
To solve this problem we transform the integers ni sampled in their binary form
ni = 010 . . . 011101 and then, instead of perform the relaxation of niêi, we write

ni =
∼L2
∑

j=0

bij2
j bij ∈ {0, 1} (4.8)

and we take
L⊕

i=1

⊕

bij=1

(2j êi) (4.9)

which are at most L3 stable configurations, so that summing them even in a naive
way takes a time∼ L4L3 = L7.

So we prove a rigorous bound for the exact sampling of spaning trees on L×L
square geometry of L7-time and L5-space for the preprocessing, and L7-time and
L2-space (but quite generously estimated) for each indipendent sampling.

In a cylindrical geometry, with the y-sides taken periodic, one of the two x-
side open and the other closed, particular symmetry properties permits to further
on speed up the algorithm. Indeed the space needed to store the 2k-powers of
generators is decreased of a factor L due to the periodicity, and the time required
to create all the configurations 2kêi also decrease by a factor L, as 2kêi and 2kêj
only differ by a translation on the cylinder, so the preprocessing is time ∼ L6 space
∼ L4 in this case.
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5. Monte-Carlo algorithms for

the Potts model

One of the most important tool for the study of statistical mechanics is the possi-
bility to perform simulations of its models in order to obtain detailed informations
about them otherwise unreachable analytically. This is done using a class of compu-
tational algorithms that uses stochastic approach to the problem, these algorithms
are named Monte Carlo algorithms. In particular the Potts model has been widely
studied with this method and many different algorithms have been proposed for
sampling configurations of the model in different ranges of value of its parameters
q and J . In this chapter we give a brief review on some known methods for Monte
Carlo simulation, trying to point out the possible problems that each algorithm
presents at the various regimes.

5.1 Swendsen-Wang algorithm

One of the most important algorithms for simulating the Potts model was proposed
in 1987 by Swendsen and Wang and is known as the Swendsen-Wang cluster algo-
rithm [12]. It simulate the q-state ferromagnetic Potts model at positive integer
q > 1. The Swendsen-Wang algorithm is based on passing back and forth between
the Potts spin representation and the Fortuin-Kasteleyn bond representation (see
section 1.3.2), that for a Potts model on a graph G = (E,V ) is

Z =
∑

A⊆E

qC(A)v|A|. (5.1)

Let show explicitly how the algorithm works. Beginning with an arbitrary config-
uration of Potts spins, we create bonds with probability p = 1 − e−J , where J is
the coupling constant of the Potts model, between nearest-neighbor sites with the
same spin value. No bonds are present between sites containing different spins. If
the original spins are now erased, we are left with a configuration of bonds, and
clusters, with weights given by (5.1). Note that some of the original clusters of
Potts spins may be split into smaller clusters, since bonds do not occur between
all sites with the same spin.

The next step is to assign a random Potts value σ ∈ {1, . . . , q} to each cluster
and the same spin value to each site in the cluster. Then by erasing the bonds
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we are now left with a new Potts configuration. The new Potts configuration can
differ substantially from the original one, since large portions of large clusters can
change colour in a single step.

To see directly that the detailed balance is satisfied, note that every transition
between two Potts configurations must pass through some bond configuration. The
probability to pass through a bond configuration has a factor p for every bond and
a factor q for every cluster regardless of which Potts configuration we started with.
However the probabilities differ of a factor 1 − p for each missing bond between
neighboring sites with the same spin value. Since the probability is uniform for
going from a bond configuration to any Potts configuration consistent with it,
the ratio of the transition rates is just the exponential of the difference in the
Hamiltonian of the two Potts configurations. Since detailed balance is satisfied
explicitly for every bond configuration the system can pass through during the
transition between two Potts configurations, detailed balance is satisfied for the
total transition probability.

This algorithm does not eliminate critical slowing-down, that is a problem con-
nected to the simulations approaching the critical point of the model, but it rad-
ically reduces it compared to local algorithms. Much effort has therefore been
devoted, for both theoretical and pratical reasons, to understanding the dynamic
critical behavior of the Swendsen-Wang algorithm as a function of the spatial di-
mension d and the number q of Potts spin states. Anyway this algorithm has the
limitation to allow the simulation only for positive integer value of q.

5.2 Chayes-Machta algorithm

A further advance was made in 1998 by Chayes and Machta [24], who devised
a cluster algorithm for simulating the random-cluster model (see section 1.3.2)
— which provides a natural extension of the Potts model to non-integer q — at
any real q > 1. The Chayes-Machta algorithm generalizes the Swendsen-Wang
algorithm and in fact reduces to it when q is an integer.

We consider the Fortuin-Kasteleyn random-cluster model with parameter q > 0
defined on any finite graph G = (V,E) by the partition function

Z =
∑

A⊆E

qk(A)
∏

e∈A

ve (5.2)

where A is the set of occupied bonds, k(A) is the number of connected components
in the graph (V,A) and {ve} are nonnegative edge weights.

At our aim, it is convenient to consider a more general partition function, the
generalized random-cluster model

Z =
∑

A⊆E

(
∏

e∈A

ve

)(
k∏

i=1

W (Hi)

)

(5.3)
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where H1, . . . ,Hk are the connected components of the graph (V,A), and {W (H)}
are non-negative weights associated to the connected subgraphsH of G. The model
reduces to the Fortuin-Kasteleyn model if W (H) = q for all H; other special cases
include the Fortuin-Kasteleyn representation for the Potts model in a magnetic
field and various loop models.

Now let m be a positive integer, and let us decompose each weight W (H) into
m non-negative pieces, any way we like

W (H) =

m∑

α=1

Wα(H) (5.4)

The first step of the generalized Chayes-Machta algorithm, given a bond configu-
ration A, is to choose, independently for each connected component Hi, a “color”
α ∈ {1, . . . ,m} with probabilities Wα(Hi)/W (Hi); this color is then assigned to all
the vertices of Hi. The vertex set V is thus partitioned into

V =

m⋃

α∈1

Vα. (5.5)

It is not hard to see that the bond configuration is nothing else than a general-
ized random-cluster model with weights {Wα(H)} on the induced subgraph G[Vα],
independently for each α.

We now can update these generalized random-cluster models on these sublat-
tices by any valid Monte Carlo algorithm. One valid update is “do nothing”; this
corresponds to the “inactive” colors of Chayes and Machta. Of course, we must
also include at least one non trivial update. The basic idea is to have at least one
color for which the weights Wα(H) are “easy” to simulate. In particular, when
W (H) = q for all H (the standard Fortuin-Kasteleyn random-cluster model), we
can take Wα(H) = 1 for one or more colors α (the so-called “active” colors); the
corresponding model on G[Vα] is the independent bond percolation, which can be
trivially exactly resampled. Since we must have Wα(H) ≤W (H), this works when-
ever q ≥ 1. More generally if q ≥ k we can have k active colors and a fraction ∼ k

q

of edges is exactely resampled (within the given partition) at each step. If q is an
integer and we take k = q, we recover the standard SW algorithm.

This algorithm has the fundamental improvement, respect to the Swendsen-
Wang algorithm, to permit the simulation also for non integer values of q, thus
having access to ranges of q corresponding to the general random-cluster model.
Although this improvement, it mantains the restriction that does not allow to
simulate the model for q < 1, range of values interesting in order to study the
system for q approaching to zero.

5.3 Sweeny algorithm

One of the simplest possible dynamics for simulating the random-cluster model
for a given graph G = (E,V ), (5.1), is the local bond-update dynamics first used
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by Sweeny [10] in 1983. This algorithm is based on local moves and proceeds as
follows:

(1) we pick a bond e ∈ E randomly and purpose to change it state (occupied or
unoccupied)

(2) we update the current occupation state of the bond e according to a Metropo-
lis dynamics that is based on the weights given by (5.1), and on the preceed-
ing occupation state. In detail, this means that e will become occupied with
probability 1 if it connects two different clusters, it will become unocuppied
with probability q if it is part of a cluster, indeed its deletion divides a cluster
forming two different clusters, and it will remain unocuppied with probability
1 if its addition forms a loop in an already existent cluster.

(3) return to step 1

This algorithm has the defect to become very slow in q ≪ 1, indeed the number
of accepted moves, at thermal equilibrium, is decreasing linearly with q near zero,
this particular problem will be handled in section 6.2.

5.4 Region q < 1

The brief review given in the preceedings sections shows how it is possible to
simulate tha case q < 1 only with the Sweeny dynamics, but this dynamics is
slow for many different reasons, in fact the local-updating procedure require a
big amount of steps before reaching thermalization, or decorrelation from a given
configuration. Furthermore in the zone q → 0 the rate of accepted moves decreses
as q. It is our aim to speed up this dynamics to obtain a faster simulation. We
will study the possibility to have an algorithm passing back and forth between the
random-cluster representation and a representation that enables the unfreezing of
observables otherwise blocked.
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In this chapter we present a Monte Carlo algorithm for the sampling of the ran-
dom cluster model at low values of q. In this region, and in a particular limit,
(q → 0, v/q = t fixed), the Fortuin-Kasteleyn representation corresponds to a mea-
sure non vanishing only for ensemble of spanning forestsforest, whose number of
components approaches to 1 when T → 0, where T is the weight for each compo-
nent. We aim to produce the algorithm collecting together a dynamics of Sweeny
type (section 5.3), that unfreezes the cluster observables, and a dynamics of ASM
type, that mixes the link in each cluster with a uniform probability, as said in
chapter 2, and, in particular, can produce big changes when an avalanche occurs
after the addition of a particle. As we said above, we want to mix Monte Carlo
moves of two different kinds, and also to speed up one of the two dynamics, which
otherwise would suffer from (a component of) critical slowing-down due to trivial
reasons. These procedures are a bit delicate, and we have to prove that the result-
ing Markov chain has the proper measure. In order to do this, we discuss a bit
these issues in more generalitity in these three sections 6.1, 6.2 and 6.3.

6.1 Collecting two dynamics together

We consider two different Markov chains with transitions given by moves of type A

and B, and with Markov’s rate p
(1)
y (x) and p

(2)
y (x). If they have the same stationary

measure µ(x), this measure is achieved also by the new Markov chain being the
union, under some prescriptions of the two preceeding dynamics. Any prescription
on which move to use at each temporal step (e.g. deterministic, (A,B,A,B, . . .),
or random with a given probability p, (A,A,B,A,B,B,B,A,A, . . .)) is valid with
the caveat that is given a priori and indipendent of the configuration of the system
at time t.

We now prove that given these prescriptions, the Markov chain defined by

p
(1+2)
y (x) has µ(x) as stationary measure. Indeed, by the general theory of Markov

chains, we know that if µ(x) is a Frobenius vector (eigenvector with eigenvalue 1,
all the other λ’s being |λ| < 1) with respect to the rates

(

p(1+2)
y (x)

)k
{
k = period of the pattern, e.g. 2 (A,B,A,B, . . .)
k = 1 if the pattern is purely random

(6.1)

then the Markov chain will converge to the stationary measure µ(x). Indeed we
know that µ(x) is a Frobenius eigenvector with respect to p(1), being its stationary
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measure, and the same holds for p(2) (it is also allowed that unicity of |λ| = 1 lacks
in one of the two moves). Now for linearity we have that µ(x) is a Frobenius vector
also with respect to ap(1) + (1 − a)p(2) with a ∈ R, and this proves the thesis.

We note that the prescription on the choice of which Markov chain use, al-
though indipendent of the current configuration, can be chosen with respect to the
thermodynamic parameters of the system (e.g. its size N or the value of T ).

6.2 Boost of slow dynamics

We say that a dynamics is very slow when the probability to make self-moves is
much bigger than the probability to reach a different state. When this fact happens
for simple structural reasons, and calling the probability to make a self-move – i.e.
doing nothing and reamain in the same configuration – pself (x), we have that

pself(x) = 1 − o(1) (6.2)

Evolving the state of the system, it is possible to “boost” it. We suppose also to
have

pself(x) > p
(comp)
self (x) (6.3)

where pself (x) is the probability to make a self-move and p
(comp)
self (x) is the com-

putable probability of doing nothing. Furthermore we define p
(unk)
self (x) as:

p
(unk)
self (x) = pself (x) − p

(comp)
self (x) (6.4)

In fact, if the dynamics approaches the desired measure µ(x) with the rates
{pself (x), py(x)} satisfying the master equation, then I can “boost” the dynamics
by doing moves with rates

{p
(unk)
self (x), py(x)}

1 − p
(comp)
self (x)

, (6.5)

and then count each configuration in the data istogram not with time “1”, but
with time “n” geometrically distributed with average 1

1−p
(comp)
self (x)

. This is just as

an ideal process in which with the probability p(x) = 1−p
(comp)
self (x) uses an outgoing

arrow

p(x)

p
(u)
s (x) , and with probability 1− p(x) uses a self-arrow

p
(c)
s (x)

. With
this approach p(x) is just a given parameter depending on x that remains constant

during the whole process in which the arrows used are self-arrows .
It is possible to compute the distribution of the expectation values of the time

with a single random number rand(), using the formula:

n =

⌈
ln rand()

ln(1 − p(x))

⌉

(6.6)
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6.3 Boost of collected dynamics

Given an a priori dynamics for the combination of two different Markov chains
(e.g. A e B presented in section 6.1), this dynamics may become very difficult to
simulate when we choose to “boost”, as presented in the previous section, one of
the two moves or both of them.

Let suppose to have an “unboosted” dynamics, obtained collecting together the
two dynamics with a periodic prescription of period t, e.g. t = 101, that can be
briefly represented by:

A,B,B, . . . , B
︸ ︷︷ ︸

100

, A,B,B, . . . , , B
︸ ︷︷ ︸

100

, A,B, . . . (6.7)

Then the new dynamics can be be obtained as sketched in the following diagram:

update(isto,1) x=A(x) n=n(x) n<t?

update(isto,t)

update(isto,n)

x=B’(x)

t=t-n

n=n(x)

t=S

t=S
yes

no

Figure 6.1 flux diagram of the “boosted” union alghoritm

where n(x) is the time value computed using the relation (6.6) applied to the
current configuration, update(isto,n) means to update the data histogram increas-
ing the counter of time of the value n (i.e. counting each observable in averages
with a relative weight n), S is the threshold value which determines the frequency
of changing between the two elementary moves we have (for example 100 in (6.7))
and x = A(x) (x = B′(x) = Bboost(x)) represents the action of the move A (Bboost,
where Bboost is the move boosted as in section 6.2) on the configuration x.

We now report an example of typical code “unboosted” with periodic prescrip-
tion of period threshold:

for(t=0;t<t_max;t++)

{

update(isto,1);

move A;

for(c=threshold;c>0;c--)

{

update(isto,1);
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move B;

}

}

Here is an example of the same code with a “boosted” dynamics:

for(t=0;t<t_max;t++)

{

update(isto,1);

move A;

c=threshold;

while(c>0)

{

n=n(x);

if(c-n>0)

{

update(isto,n);

c=c-n;

move B’;

}

else

{

update(isto,c);

c=0;

}

}

}

6.4 Overview on our algorithm

We present here an algorithm that collects together the Sweeny dynamics displayed
in section 5.3 and the ASM dynamics discussed in chapter 2 and permits to simulate
the partition function of the random-cluster model

Z =
∑

A⊆G

qk(A)
∏

e∈A

ve. (6.8)

for a planar lattice.
We let A be the moves that use the ASM dynamics, i.e. to add a particle

random on the sites of the sandpile and relax the configuration, and S the move
that uses the Sweeny dynamics, i.e. to add or delete a bond with the dynamics
presented in 5.3. Then we collect the dynamics together as presented in section
6.3 with A=ASM and B=S, in particular we choose to boost the Sweeny dynamics
that is slow in our region of investigation. We choose the threshold value for each
simulation in order to obtain a balance between the boosted Sweeny move and the
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ASM moves. The whole code is written in C-language, wihout the help of special
libraries.

The crucial point of the algorithm consists in the possibility to pass, whenever
necessary, back and forth between the representation in terms of height variables of
the sandpile and the representation in terms of bond variables of the random-cluster
model. This result is obtained constructing a function to map each connected
cluster of bonds of the configuration in the ASM height’s structure associated by
the inverse of the burning test presented in section 2.4.2. In order to obtain a sort
of invariance under rotation, or at least to decrease the influence of the prescription
rule (e.g. NESW) in the function that perform the bijection between sandpile and
bond configurations, we choose to update randomly distinctly for each site these
regulations every time we need to use this function. Furthermore we note that the
sandpile model and the spanning tree obtained via burning test, are not settled
in the graph where is defined the random-cluster model, but in its dual. Thus we
parellely update the direct and planar-dual graphs during the simulation, in order
to use one or the other according to the type of move we are doing. During the
description of the burning test, it came out the particular task of the site burnt
at time 0, in the burning test language, this site is called the sink of the graph.
This site can be represented as a set of sites connected with each other, each one
connected with at least one site on the boundary of the ASM cluster, and they are
the initial points to construct all the burned zone, in the burning process. These
sites are divided from the unburnt sites at time 0 by the bonds of the dual spanning
tree associated to the spanning tree obtained with the burning test, that in our
framework are the bonds of the random-cluster model. This shows how a cluster
is completely surrounded by a burned profile. Thus we have that the basic action
of the Sweeny dynamics, to add or delete an edge, corresponds in an ASM point
of view, to modify the burned profile, in particular deleting a bond as the result
to create a burned profile departing from the sites endpoints of the corresponding
direct edge on the sandpile and adding a bond corresponds to remove the internal
burned profile that the bond disconnects. A challenge of the algorithm is to update
this part of the structure with a low-complexity procedure.

6.5 Numerical results

After writing and testing the computer program, we performed simulations of the
model on an L × L square lattice for different sizes L and different temperatures
T . The fact that the model is settled in an open square lattice, with no periodic
conditions, does not allow to study many variables and correlation function for
which the lack of symmetry makes very difficult the evaluation.

We define on the lattice the following local observables, for a configuration with
set of bonds E and with heights of the sandpile {zi}:
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a- the local bond occupation ne

ne =

{
1 if e ∈ A
0 otherwise

(6.9)

b- the local bond burnt property be

be =

{
1 if e is burnt
0 otherwise

(6.10)

we say an edge e ∈ E is burnt if the corresponding dual edge e′ = ij ∈ E∗ is
such that its endpoints i and j are burnt.

c- the local burnt site property bi

bi =

{
1 if i is a burnt site
0 otherwise

(6.11)

Using these local variables, and the further variable zi that is defined, as usual,
as the height in each site i (say, zi = 5 if bi = 1), we define the following functions:

Be(t,∆t) =
∑

e∈E

|b(t)e − b(t+∆t)
e | (6.12a)

Ne(t,∆t) =
∑

e∈E

|n(t)
e − n(t+∆t)

e | (6.12b)

Zi(t,∆t) =
∑

i∈V

δ(z
(t)
i , z

(t+∆t)
i ) (6.12c)

Bi(t,∆t) =
∑

i∈V

δ(b
(t)
i , b

(t+∆t)
i )δ(b

(t)
i , 1) (6.12d)

These functions are a particular combination of the autocorrelation functions, for
the observables defined in (a,b,c,d), translated and rescaled. The fact that in they
can be expressed as sum and not products comes from the particular possible values
of the local observables (0,1). Furthermore, they have different limits for ∆t→ ∞
and ∆t→ 0. We summarize the different limits in this tabular

∆t→ 0 ∆t→ ∞

Be 0 2y(1 − y)L2

Ne 0 L2/2
Zi L2 a+ κ2

Bi κL2 κ2L2

where

y =prob(be = 1) = 〈be〉 (6.13a)

κ =prob(bi = 1) = 〈bi〉 (6.13b)

a =(1 − κ)2
3∑

z=0

p2(z) (6.13c)
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where the p(z) are the probabilities to have height z in the steady state computed
by Priezzhev [25] and take values

p(0) 0.074
p(1) 0.174
p(2) 0.307
p(3) 0.446

We collected the data to study these functions in various run at sizes

L = 64, 88, 128 (6.14)

and temperature values

T = 0.04, 0.05, 0.06, 0.07, 0.08, 0.09 (6.15)

To study the real improvement from a purely Sweeny dynamics, we collected the
data for both the simulations with the ASM dynamics and the complete algorithm
just presented. The data were taken every fixed interval of steps (∆t)min and
postprocessed after the end of the runs. We present the plot of the data in figure
6.2, where in the x-axis is reported the different ∆t values and the values of the
functions are plotted, for all the t available, further is also drawn the curve that fit
the data obtained as explained in the following.

To compute the curve for the fit of the data we first fit them with a single
exponential with parameters a1, b1 and c1

a1 + b1e
− x

c1 (6.16)

The data for the dynamics with both ASM and Sweeny moves fit well the single
exponential, but the ones obtained with only the Sweeny dynamics clearly show
a multiplicity of characteristic times Cα. Indeed looking at the data plots for the
Sweeny dynamics is clearly visible an elbow in the curve, this represent the fact
that the trend of the curve could not be obtained with a single exponential but at
leaast with a superposition of two of them, one that give the trend for ∆t→ 0 the
other for ∆t→ ∞. But to have a comparable result we have to do the fit with two
exponentials also for the data of the composed dynamics, although hey were well
fitted by a single exponential. At this point we fit the data with a combination of
two exponentials, with 5 parameters, a1, b1, c1, b2 and c2

a1 + b1e
− x

c1 + b2e
− x

c2 (6.17)

Using this procedure we succeed in the task of fitting the data in a convincing way,
but the errors in the parameters does not permit to use them as indicators of the
real improvement obtained with our algorithm (in other words, the 5 parameters
have huge cofluctuations, the non-diagonal elements of the correlation matrix for
the fit parameters being not far from ±1). Although the data plots clearly present
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a decreasing autocorrelation time for the Sweeny dynamics to its union with the
ASM dynamics, we have to find a better indicator instead of the fit parameters.
Thus we decided to study quantities that better represent the curve, as the area
below the curve, that can be obtained by combination of the fit parameters. In
particular we have that the area can be obtained by the relation

b1c1 + b2c2 = Area (6.18)

Another possible quantity indicator of the shape of the curve is the typical extension
in the horizontal axes, i.e. 〈∆t〉 where times the area that is obtained as

b1c
2
1 + b2c

2
2 = 〈∆t〉 Area (6.19)

The value of 〈∆t〉 indicate how fast the curve is decreasing and thus it is a good
indicator for the autocorrelation time. So we studied the combination

〈∆t〉 =
b1c

2
1 + b2c

2
2

b1c1 + b2c2
(6.20)

Each value of 〈∆t〉 corresponds to a different observable in a given simulation. We
report in figure 6.3 the results found with the simulations done for these variables,
in the x-axis are reported the different temperatures of the various simulations and
the height of the points corresponds to their value. We note a scaling of order 2
for almost every variable from the data set with Sweeny to the one with also ASM
dynamics. In particular the observable ne presents a clear improvement due to the
ASM dynamics. Indeed, as displayed in figure 6.2 in the third pair of plots, the
autocorrelation time evidently decreases when the ASM dynamics is introduced.
The same result can be deduced looking at figure 6.3, there 〈∆t〉ne is represented by
light blue dots, and is evident that it is bigger than the value of 〈∆t〉 for the others
observables. However, in the plots for the collected dynamics, all the observables
have similar value for 〈∆t〉, this shows how ne has definitely unfreezed.

We display also a figure of the typical configuration for a 128 × 128 lattice at
temperature 0,07 in figure 6.4. In figure are traced the lines corresponding to the
bonds of the random-cluster model and each elementary square is filled with a
colour representing its height or its burning state, the scale of colours is

zi = 0 zi = 1 zi = 2 zi = 3 zi burnt
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Figure 6.2 Plot of the data corresponding to a simulation for a lattice
with parameters L = 128 at T = 0.07
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Figure 6.4 Typical configuration of heights and bonds for a lattice of
size L = 128 at T = 0.07
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tutti i pazzi di fisica e dintorni, la preparata, moreno, la pazza di metodi e la
pazza delle macchinette, grazie a quei simpaticoni che hanno scritto il mio nome
su una colonna dell’aula occhialini, seguito da parole non molto simpatiche, grazie
alla Tremenda, la Bea, il Teo, il bianchino-nerino, l’Achille e la Milla, grazie alla
bella musica di Guccini, gli Afterhours e i Pearl Jam, grazie ai miei anticorpi che mi
hanno salvato in molte occasioni, grazie alle mie innumerevoli biciclette, ormai tutte
rubate o passate a miglior vita, grazie al microbirrificio di Lambrate, all’eastend



Ringraziamenti 75

e allo Union, che mi hanno permesso di svagarmi quando ce n’era bisogno, grazie
anche a Milano, alle sue strade, le sue serate che mi mancheranno sempre, infine
ringrazio tutti quelli che ho dimenticato ma che sanno di meritare di essere citati
in queste pagine, grazie.
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