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ABSTRACT

Motivated by recent experimental advances in the field of cold atoms, the theoretical

study of the non-equilibrium dynamics of isolated quantum many-body systems is cur-

rently receiving increasing attention. One of the main question concerns the way in

which a macroscopically large isolated system evolving with unitary quantum dynamics

from a generic initial state approaches equilibrium. In this thesis we investigate the non-

equilibrium dynamics of a quantum Ising chain perturbed by a time-dependent noise

in the transverse field and driven out of equilibrium by a sudden change of the static

component of this transverse field, we refer to this model as noisy quantum Ising chain.

In previous work various equal-time quantities were calculated and it was found that, in

the limit of weak noise, the system first attains an intermediate stationary non-thermal

state in which the noise does not affect the dynamics, then the noise comes into play and

drives the chain towards an infinite-temperature thermal state. Moreover, at long-times,

the equal-time correlator of the transverse magnetization shows a diffusive behavior.

In this work we extend the computation to two-time quantities and find the correlation

and linear response functions of a noisy quantum Ising chain. We focus on the analysis

of these expressions in the time range in which the noise has come in play; we find that

at short time differences compared to the time elapsed from the quench, the two-time

correlator of the transverse magnetization shows a diffusive behavior analogous to the

one of the equal-time correlator. On the contrary, for much longer time differences, the

qualitative behavior of the two-time correlator changes completely becoming ballistic.

In addition, the knowledge of dynamic correlations gives us the opportunity to study the

fluctuation-dissipation relations in non-equilibrium conditions. In particular, we extract

an effective temperature of the noisy chain from the classical fluctuation-dissipation rela-

tion which provide information about its dynamics. In the case of short time differences

compared to the time elapsed from the quench, the effective temperature grows towards

infinity as time goes, according to the results obtained for the two-time correlator of the

transverse magnetization. Instead, in the opposite case of much longer time differences

we find an effective temperature that tends to zero: at the present this behavior is not

understood and therefore more studies are required.
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The thesis is organized as follows:

• In Chapter 1 we introduce the concept of quantum quench and the current under-

standing of quantum relaxation in integrable and non-integrable quantum many-

body systems. Recent experiments involving non-equilibrium of these systems are

illustrated.

• In Chapter 2 we review the equilibrium properties of the quantum Ising chain,

paradigmatic example of integrable model undergoing a quantum phase transition,

which is the basis of the model investigated in this thesis. We discuss after the

non-equilibrium dynamics of a quantum Ising chain following a quench of the

transverse field and we confirm the lack of thermalization using an approach based

on fluctuation-dissipation relations.

• In Chapter 3 we first explain the Keldysh formalism employed in the following to

derive the various results. The noisy quantum Ising chain is then introduced and

its non-equilibrium dynamics is discussed in detail.

• In Chapter 4 we report the results obtained in this thesis for the two-time correla-

tion and linear response functions of the transverse magnetization. The behavior

for different times range is investigated. Finally, we extract an effective temper-

ature of the noisy chain from the classical fluctuation-dissipation relation and we

discuss the information provided by it.

Details about the calculations are reported in the Appendices.
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CHAPTER 1

INTRODUCTION TO NON-EQUILIBRIUM DYNAMICS

In this Chapter we illustrate the fundamental issues concerning non-equilibrium dynam-

ics in closed quantum many-body systems. In particular, in Sec. 1.1 we introduce the

simplest protocol to drive a system out of equilibrium, i.e., the so-called quantum quench.

In Sec. 1.2 we discuss the definition of thermalization for closed quantum systems and

the possible mechanism behind it. Then, in Sec. 1.3, we consider integrable quantum

systems and their relaxation properties, introducing the generalized Gibbs ensemble. In

Sec. 1.5 we present the concept of prethermalization and finally, in Sec. 1.6, we review

the fluctuation-dissipation theorem and the associated effective temperatures, which will

turn out to be a useful tool for investigating non-equilibrium dynamics. In addition

to the relevant theoretical concepts, experiments involving non-equilibrium dynamics of

isolated quantum systems are also illustrated here.

1.1 Quantum quench

The strength of thermodynamics consists in its effectiveness in describing a system com-

posed by many degrees of freedom at equilibrium in terms of few macroscopic variables,

such as temperature, volume, pressure etc. Moreover, these macroscopic variables are

generally not independent, but they satisfy some relations, called equation of state,

depending on the characteristics of the system considered. The underlying microscopic

and probabilistic theory is statistical mechanics, which, starting from general and simple

principles, successfully explains the equilibrium properties of systems with many degrees

of freedom. This theory has been developed in the 18/19-th century and it is considered

one of the greatest successes in physics for its general character and the broad range of

applications. However, most systems found in nature are not in thermodynamic equilib-

rium; for they change over time, are subject to flux of matter and energy or to chemical

reactions. Unfortunately, there is no general theory able to describe non-equilibrium

phenomena and research in this direction proceeds mainly via a case by case study
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1. Introduction to non-equilibrium dynamics 2

forming a rapidly evolving research field.

In the past decade, experimental advances in the field of cold atoms [1–3] have made it

possible to realize artificial systems which are accurately described by theoretical models

(e.g., Hubbard, Kondo, Ising and Luttinger models): internal parameters are tunable

with high precision and, in addition, they exhibit an unprecedented degree of isolation

from the surrounding environment, i.e., their dynamics is unitary and genuinely quan-

tum many-body effects (e.g., linear superposition of states, entanglement) are preserved

by the dynamics during the time scales of the experiments. The availability of these sys-

tems provides an invaluable opportunity to explore theoretically and experimentally the

non-equilibrium dynamics of closed quantum many-body systems [4]. Among the many

ways in which a system can be driven out of equilibrium, in this thesis we concentrate on

the simplest protocol, the so-called quantum quench. It consists in preparing the system

in the ground state |0⟩g0 of its quantum many-body Hamiltonian H(g0), characterized

by a parameter g0, and in suddenly switching the parameter to a different value g ̸= g0,

letting the system evolve according to the post-quench Hamiltonian H(g), i.e.,

|ψ(t)⟩ = e−iH(g)t |0⟩g0 , (1.1)

where |ψ(t)⟩ is the state of the system after a time t from the quench. The ground

state |0⟩g0 of the pre-quench Hamiltonian H(g0) is not an eigenstate of the post-quench

Hamiltonian H(g) and it has a finite overlap with all the post-quench eigenstates |n⟩g
(see Fig. 1.1), making the dynamics of the system highly non-trivial.

A sudden change of a parameter is a theoretical idealization, since from an experimental

point of view it is not possible to modify the characteristics of a system instantaneously.

Let us call τr the relaxation time of the system, i.e., the time scale which governs the

response of the system to external perturbations, and τg = g/ġ the typical time associ-

ated with the variation of the parameter g in our experiment. For τr ≪ τg the system

is given sufficient time to adapt to the altered conditions and it can be thought of as

being almost at equilibrium at every moment: this is known as adiabatic transforma-

tion. On the other hand, if τg ≪ τr the system is not able to respond to the external

perturbation and therefore lags behind: this is what we mean by a sudden change and

what constitutes a quantum-quench.

There are different kinds of quantum quenches: the abrupt change of the parameter

can involve only a spatially localized part of the extended system (local quench) or the

whole system (global quench); it is possible to ”quench” the parameter across a quan-

tum phase transition, suddenly switching on interactions, or modify the geometry of

the system (geometric quench). It is natural to ask oneself if the system long after a

quantum quench approaches a steady state, what the characteristics of this state are

and if the eventual relaxation process occurs uniformly in time or if it consists of many

stages. We address these questions in the next Sections.
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Figure 1.1: Schematic representation of the energy spectrum of the pre-quench (blue)
and post-quench (red) Hamiltonian. The state |0⟩g0 in which the system is initially
prepared is not an eigenstate of the post-quench Hamiltonian H(g), resulting in a non
trivial quantum evolution (see Eq. (1.1)). [Courtesy of A. Gambassi]

1.2 Quantum thermalization

1.2.1 Ergodicity in classical statistical mechanics

In classical physics the concept behind thermalization is ergodicity. Consider a classical

system of N particles in d spatial dimensions, with volume V and constant energy E.

The system is characterized by a time-independent Hamiltonian H(x⃗), where x⃗ = (q⃗, p⃗)

is a point in a 2dN -dimensional phase space Γ. The value of x⃗ determines the microscopic

state of the system and, because of energy conservation, it belongs to the constant energy

surface ΣE , defined as the set of points x⃗ ∈ Γ such that H(x⃗) = E. The point x⃗ evolves

in time according to Hamilton’s equations

dqi(t)

dt
=
∂H

∂pi
,

dpi(t)

dt
= −∂H

∂qi
,

H(q⃗, p⃗) = E,

(1.2)

with i = 1, . . . , 2dN , drawing a trajectory x⃗(t) on the surface ΣE . In order to describe

the properties of the system, we are interested in the value of some observable O(x⃗(t)),

which depends on the dynamical state of the system. In experiments done in equilibrium

conditions, one is actually measuring the time average O of the observable O, defined

as

O ≡ lim
T→+∞

1

T

t0+T∫

t0

dt O(x⃗(t)). (1.3)
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Despite the conceptual simplicity of this definition, it cannot be used for practical pur-

poses. Indeed, determining the dynamics of x⃗(t) requires solving as many differential

equations (1.2) as the number of degrees of freedom (of the order of Avogadro number

NA ∼ 1023 for macroscopic systems), which is clearly an impossible task. One needs

a different approach and equilibrium statistical mechanics is the viable one. Instead of

considering its time evolution, the idea is to take a large number of copies of the same

system and to assign to this set a time-independent1 probability distribution ρ(x⃗) that

determines the probability for the system to be in the state x⃗. The set of the copies is

known as statistical ensemble and ρ(x⃗) is the associated probability distribution. The

choice of the ensemble and of the corresponding probability distribution ρ depends on

the macroscopic conditions of the system. If, for example, it has a fixed number N of

particles, a given volume V and a given value of the energy within the range E and

E +∆E, the probability distribution ρ(x⃗) has to be nonzero only at the points x⃗ ∈ Γ

which are consistent with these constrains, i.e.,

ρmc(x⃗) =

{
1/Ω, if H(x⃗) = E,

0 , otherwise.
(1.4)

In Eq. (1.4) we indicate by Ω the area of the surface ΣE and assume that each point x⃗

in ΣE is equally probable. This kind of ensemble is known as the microcanonical one.

Once the probability distribution ρ is chosen, we define the ensemble average of the

observable O as

⟨O⟩ρ ≡
∫

Γ
dx⃗ ρ(x⃗)O(x⃗). (1.5)

This average is more easily computable than the time average (1.3), because one does

not need to solve all the equations of motions but instead it is sufficient to know the

macroscopic properties of the system and define a consistent probability distribution.

The connection between these two approaches is provided by the concept of ergodicity.

A system is said to be ergodic if, for any observable O and for almost all initial states

x⃗0, the time average (1.3) is equivalent to the microcanonical average (1.4 and 1.5):

O = ⟨O⟩ρ . (1.6)

Another equivalent definition is that a system is said to be ergodic if during its motion

x⃗(t) passes arbitrarily close to all points of the surface ΣE of the phase space compatible

with energy conservation. An important class of systems which are not ergodic is consti-

tuted by integrable systems. By definition a classical system with f degrees of freedom is

integrable if there are f independent integrals of motion which are Poisson-commuting;

this means that the Hamilton’s equations can be exactly integrated via action-angle

variables. The presence of additional conservation laws in integrable systems constrains

the dynamics of the system to a subregion of the energy surface ΣE and so the evolution

is not able to uniformly cover the surface at constant energy.

1We are considering here equilibrium cases.
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1.2.2 Thermalization in quantum statistical mechanics

In the early days of quantum mechanics, von Neumann realized that the most obvious

generalization of the notion of ergodicity to the quantum realm is arduous [5]. In

quantum mechanics the counterpart of the state x⃗ is the wavefunction |ψ⟩ ∈ H, where

H is the Hilbert space of the system considered. The time evolution of this state is now

governed by the Schrödinger equation

i
∂

∂t
|ψ(t)⟩ = H|ψ(t)⟩, (1.7)

where we set ! = 1 and H is the Hamiltonian operator of the system. If we choose the

basis of the normalized eigenstates |α⟩ of the Hamiltonian, H|α⟩ = Eα|α⟩, it is possible
to decompose the state as

|ψ⟩ =
∑

α

cα|α⟩, (1.8)

where the normalization condition ⟨ψ|ψ⟩ = 1 implies

∑

α

|cα|2 = 1. (1.9)

The solution of the evolution equation (1.7) is then given by

|ψ(t)⟩ =
∑

α

cα e
−iEαt |α⟩. (1.10)

The expectation value of an observable O at time t is

⟨O(t)⟩ = ⟨ψ(t)|O|ψ(t)⟩ = Tr [ρ(t)O] =
∑

α,β

cαc
∗
β e
−i(Eα−Eβ)t⟨β|O|α⟩, (1.11)

where the density matrix ρ(t) associated with the pure state |ψ⟩ is given by

ρ(t) = |ψ(t)⟩⟨ψ(t)|. (1.12)

Accordingly, the time average calculated according to Eq. (1.3) is

O = lim
T→+∞

1

T

t0+T∫

t0

dt ⟨O(t)⟩ = Tr
[
ρ(t)O

]
, (1.13)

where ρ(t) is the time average of the density matrix. Also in this case the computation

of Eq. (1.11) is practically impossible for a macroscopic system and we need to introduce

a statistical description.

Similarly to the classical case, it is possible to introduce the suitable ensembles and

the corresponding operator density matrix ρ. The ensemble expectation value of an

observable O is

⟨O⟩ρ = Tr[ρO]. (1.14)
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The quantum equivalent of the microcanonical ensemble (system with constant energy

within the range [E,E +∆E]) is defined by the density matrix ρmc

ρmc =
1

N
∑

α∈SE

|α⟩⟨α|, (1.15)

where SE is the set of eigenstates |α⟩ of H such that E ≤ Eα ≤ E + ∆E and N is a

normalization factor, counting the total number of eigenstates within the microcanonical

shell [E,E + ∆E]. The microcanonical expectation of an observable is obtained from

Eqs. (1.14) and (1.15) as:

⟨O⟩mc = Tr [ρmcO] =
1

N
∑

α∈SE

⟨α|O|α⟩. (1.16)

A naive extension of the concept of ergodicity to the quantum realm should require that,

chosen a generic initial condition |ψ0⟩ made out of states in the microcanonical shell

|ψ0⟩ =
∑

α∈SE

cα|α⟩, (1.17)

the time average of the density matrix is equal to the microcanonical one. Proceeding

along this line, the time average of the density matrix is

|ψ(t)⟩⟨ψ(t)| = lim
T→+∞

1

T

t0+T∫

t0

dt
∑

(α,β)∈SE

cαc
∗
β e
−i(Eα−Eβ)t |α⟩⟨β|

=
∑

α∈SE

|cα|2|α⟩⟨α|+ lim
T→+∞

1

T

t0+T∫

t0

dt
∑

(α ̸=β)∈SE

cαc
∗
β e
−i(Eα−Eβ)t |α⟩⟨β|

=
∑

α∈SE

|cα|2|α⟩⟨α|+ i lim
T→+∞

∑

(α ̸=β)∈SE

(
cαc∗β |α⟩⟨β|
Eα − Eβ

)(
e−i(Eα−Eβ)(T+t0)−t0

T

)

=
∑

α∈SE

|cα|2|α⟩⟨α| ≡ ρdiag,

(1.18)

where we use Eqs. (1.10) and (1.17), then split the sum and finally perform the integra-

tion. In the last equality, we could neglect the second term of the previous line under

the assumption that the eigenstates of the system are not degenerate, i.e., Eα ̸= Eβ if

α ̸= β, while we define the diagonal density matrix ρdiag. The equivalence between the

diagonal density matrix ρdiag and the microcanonical one ρmc requires that

|cα|2 =
1

N , (1.19)

as it is evident from the comparison of Eqs. (1.15) and (1.18). But Eq. (1.19) is a very

special condition, satisfied by a very restricted class of initial states.
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Another argument showing that the concept of quantum thermalization is peculiar in

several respects, consists in the fact that the trace of the density matrix is constant

during a unitary time evolution (this follows from the cyclic property of the trace).

Hence, if we take a pure state |ψ0⟩ as a starting point of the evolution, the trace of the

square of its density matrix ρ = |ψ0⟩⟨ψ0| is identically one at any time, i.e.,

Tr[ρ2(t)] = Tr[ρ2] = Tr[ρ] = 1. (1.20)

On the other hand, we expect that thermalization occurs and therefore the properties of

the system should be described by a thermal density matrix ρth with inverse temperature

β > 0

ρth =
1

Z
e−βH , (1.21)

which, however, has Tr[ρ2th] < 1 in contrast to Eq. (1.21). Accordingly, it seems that

true thermalization in closed systems never occurs. But our common sense makes us

believe that macroscopic systems should reach an equilibrium thermal state, unless some

special conditions are met (e.g., integrability, see below for details). In order to solve

this apparent puzzle, we restrict our attention to a finite and spatially compact subpart

A of the original system, so that the complementary part A can act as an effective bath,

leading the subsystem to thermalization. Adopting this point of view, the key quantity

in which we are interested is the reduced density matrix ρA

ρA = TrA[ρ], (1.22)

obtained from ρ by tracing over the degrees of freedom of the bath. We can now

claim that a closed quantum many-body system relaxes to an equilibrium thermal state

at inverse temperature β, or in other words thermalizes, if, in the thermodynamic limit

and for any subsystem A, the long-time limit of ρA equals the appropriate Gibbs density

matrix ρth, i.e.,

lim
t→+∞

ρA(t) = ρA,mc = TrA[ρmc] = ρth =
e−βH

Z
. (1.23)

In this case, the outcome of measurement of local observable OA can be evaluated either

as the time average or as an ensemble average

lim
t→+∞

⟨ψ(t)|OA|ψ(t)⟩ = Tr [ρA,mcOA] =
1

Z
Tr
[
e−βH OA

]
. (1.24)

1.2.3 Eigenstate thermalization hypothesis

One of the most debated issue in the literature about non-equilibrium many-body sys-

tems is the mechanism underlying quantum thermalization. The most accepted conjec-

ture regarding the mechanism underlying the emergence of a thermal state in isolated

quantum systems is the so-called eigenstate thermalization hypothesis (ETH). It states

that thermalization happens at the level of individual energy eigenstates and that the

time evolution plays just an auxiliary role (see Fig. 1.2); in order to compute thermal
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Figure 1.2: (a): In classical systems thermalization is made possible by dynamical
chaos. The system evolves in time and visits all the available phase space, such that it
can be correctly described with a microcanonical ensemble. (b): It has been conjectured
that the mechanism responsible for thermalization in quantum systems is the eigenstate
thermalization hypothesis. The thermalization happens at the level of individual energy
eigenstates (see Eq. (1.26)) and time evolution does not construct the thermal state as
in the classical case but it only reveals it. In fact, the thermal state exists already at
time t = 0, but the quantum coherence, which is suppressed as times passes, hides it.
[Figure taken from Ref. [6]]

averages it is sufficient to know the average over a single energy eigenstate within the

microcanonical energy window. Below we will be more specific and we clearly explain

how ETH works. Consider an observable O: its time average O is given by Eq. (1.13)

and therefore, proceeding in the same way as done before to derive Eq. (1.18), it can be

computed as a diagonal ensemble average, i.e.,

O =
∑

α∈SE

|cα|2⟨α|O|α⟩. (1.25)

The value predicted for the observable by the microcanonical ensemble is instead given

by Eq. (1.16) The averages (1.25) and (1.16) have to be equal and the only possibility for

this to happen is to assume that the diagonal elements ⟨α|O|α⟩ = Oαα are constant in

the energy window [E,E+∆E]. Under this hypothesis and from Eqs. (1.16) and (1.25),

we can assert that thermalization happens at the level of individual eigenstates of the

Hamiltonian, i.e.,

Oαα = ⟨O⟩mc = O; (1.26)

in other words, each eigenstate implicitly contains a thermal state. The role of time

evolution is only to suppress the off-diagonal elements ⟨β|O|α⟩ with β ̸= α appearing

in O (similarly to Eq. (1.18)), leaving behind only the ones with β = α. This idea

was introduced by Deutsch in 1991 [7] and Srednicki in 1994 [8]. In Ref.[8] the author

considered an isolated quantum hard-sphere gas, whose classical counterpart has chaotic

dynamics, and showed that the momentum distribution of each constituent particle

approaches its thermal equilibrium value. In Ref. [7], instead, the ETH has been

shown to hold for integrable systems with a small perturbation in the form of a random
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matrix. More recently, supporting evidence for ETH has been collected in non-integrable

models investigated via numerical methods [6, 9] while its breakdown was demonstrated

in integrable models [10].

1.3 Integrable systems and generalized Gibbs ensemble

As we mentioned above, integrability plays an important role in determining the asymp-

totic properties of a system. However, defining a quantum counterpart of integrability

is a non-trivial task [11]. For instance, it is not clear what should be considered as

number of degrees of freedom in a system with a finite dimensional Hilbert space, e.g.,

a spin chain: if the number of spins, which is proportional to the size of the system or,

instead, the dimension of the Hilbert space which grows exponentially with the size of

the system. Moreover, the existence, analogously to the classical case, of a maximal set

of independent and commuting operators cannot be considered the hallmark of integra-

bility. Indeed, such a set can be built by considering the projectors on the eigenstates

of the Hamiltonian, but this can be done for any system and therefore does not discrim-

inate if a quantum system is integrable or not. A better definition is the one given by

Sutherland [12]: a quantum system is integrable if any multi-body scattering process

can be decomposed in a series of binary collisions; this implies that quasi-particles can

scatter only elastically and their identity is preserved upon collisions.

In addition to energy, an extensive number of non-trivial independent conserved quanti-

ties In is present in quantum integrable systems; these quantities constrain the dynamics

and prevent any relaxation towards a thermal state. Indeed, starting from an initial state

|ψ0⟩, the expectation value of integrals of motion is conserved during the dynamics:

⟨ψ0(t)|In|ψ0(t)⟩ = ⟨ψ0|In|ψ0⟩, (1.27)

and the system retains information about the initial state at any time. On the contrary,

a thermal state has no memory of the initial state. For quantum integrable systems it

was supposed [13] that relaxation actually occurs towards a non-thermal steady state

described by the so-called generalized Gibbs ensemble (GGE)

ρgge =
1

Zgge
e−

∑
n λnIn , (1.28)

where {In} is the set of the independent local conserved quantities with

[In, Im] = 0 and [In, H] = 0, ∀n,m, (1.29)

while the constants λn are fixed by imposing that the expectation value over the GGE

coincides with the (conserved) value that these quantities have in the initial state (see

Eq. (1.27)):

⟨In⟩gge = Tr [Inρgge] = lim
t→∞

⟨ψ0(t)|In|ψ0(t)⟩ = ⟨ψ0|In|ψ0⟩. (1.30)
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In this case, it follows that the long-time limit of the expectation value of a local ob-

servable OA will be

lim
t→∞

⟨ψ0(t)|OA|ψ0(t)⟩ = Tr [OAρgge] . (1.31)

It is worth noting that the only assumption behind the GGE density matrix (1.28) is

the maximum-entropy principle [14] according to which the density matrix ρ is the one

which maximizes the von Neumann entropy

S[ρ] = −Tr [ρ ln ρ] , (1.32)

taking in account the conservation of the quantities In. Mathematically, one has to look

for ρ which maximizes the functional F [ρ]:

F [ρ] = S[ρ]− ξ [Tr[ρ]− 1]−
∑

n

λn [Tr[Inρ]− ⟨ψ0|In|ψ0⟩] , (1.33)

which is composed by the entropy S, a term imposing the normalization of the density

matrix and a final term taking in account that the integrals In of motion in the steady

state are equal to their initial value. The solution of this minimization problem is the

GGE density matrix (1.28) in which we can interpret the coefficients λ’s as Lagrange

multipliers. Moreover, one assumes that only local integrals of motion have to be in-

cluded in the GGE because, as explained in Sec. 1.2, we focus only on a subpart of the

system and so we are interested in its local properties. The generalized Gibbs ensem-

ble has been tested successfully in various models, such as Luttinger liquids [15], Ising

chains [16, 17], integrable hard-core bosons [13] and Hubbard-like models [18, 19].

As we anticipated in Sec. 1.1, the non-equilibrium dynamics following a quantum quench

can be investigated also experimentally thanks to cold atomic gases. We now illustrate

the important experiment performed by Kinoshita et al. [20], known as the quantum

Newton’s cradle. In this experiment arrays of tightly confined tubes of ultracold 87Rb

atoms were prepared in a superposition of states of opposite momentum. The imparted

kinetic energy was small compared to the energy required to excite the atoms to the

higher transverse states and the gases remained effectively one dimensional along the

axis of elongation. The system was then allowed to evolve for a certain time before the

momentum distribution was sampled (see Fig. 1.3). It was observed that, after thousands

of collisions, the momentum distribution remained non-Gaussian, signaling that the

non-equilibrium Bose gas did not equilibrate on the time scales of the experiment (see

Fig. 1.3). The explanation of this unexpected behavior is that this experimental setup

is close to be represented by the Lieb-Liniger model [21, 22], which describes a gas

of one-dimensional Bose particles interacting via a repulsive delta-function potential.

This model is a notable example of integrable quantum many-body system and so the

associated non-trivial conservation laws prevent relaxation towards a Gibbs thermal

ensemble.
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Figure 1.3: (a) The classical Newton cradle and (b) its quantum counterpart consid-
ered in the experiment of Ref. [20]. Right: Absorption image as a function of the time
t elapsed from the quench during the first oscillation cycle for the quantum Newton
cradle, showing the absence of relaxation towards a steady state and an almost periodic
motion [Figure taken from Ref. [20]]

1.4 The end of the story?

Until now, it seems that the current knowledge about the relaxation of closed quantum

many-body systems following a quantum quench can be summarized as follows: non-

integrable systems relax to a thermal Gibbs ensemble, while integrable models attain

a non-thermal state described by a generalized Gibbs ensemble. However, the actual

dynamics towards quantum relaxation could be more involved, as some recent works

suggest. For example, in Ref. [23] the dynamics of a Bose-Hubbard model following a

quench from the superfluid to the Mott insulator regime was investigated in this respect.

It was found that for large values of the post-quench interaction strength between the

particles the system approaches a distinctly non-equilibrium steady state which bears

strong memory of the initial conditions. By contrast, if the post-quench interaction

strength is comparable to the hopping between neighboring sites, the correlations are

rather well approximated by those at thermal equilibrium. The explanation behind this

strange behavior was given in terms of the ineffectiveness of quasi-particles interactions

deep in the Mott regime, with a suppression of thermalization, because of the impos-

sibility of redistributing the energy injected into the system after the quench. Instead,

a more pronounced dependence of the evolution on the initial state was observed in a

numerical study of integrability breaking in a one-dimensional quantum Ising chain [24]

H = −
∑

i

[
σzi σ

z
i+1 + gσxi

]
− h

∑

i

σzi . (1.34)
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Numerical results for the out of equilibrium evolution of the reduced density matrix of

this model showed the existence of three different regimes occurring depending on the

initial states. The initial configuration was chosen to be a translation invariant product

states, determined by the state of an individual spin,

|ψ⟩ = cos

(
θ

2

)
|0⟩+ eiφ sin

(
θ

2

)
|1⟩, (1.35)

for |0⟩ (|1⟩) the +1 (−1) eigenstates of σz. If the initial state has all spins aligned along

the positive y direction (θ = φ = π/2), then the reduced density matrix approaches the

thermal canonical ensemble (strong thermalization), while for initial states with spins

pointing along the positive z direction (θ = 0) the system shows convergence to thermal

values only after time averaging (weak thermalization). Remarkably, if the initial spins

point along the x direction (θ = π/2, φ = 0) relaxation is fast, but the distance between

the evolved state and the thermal one is different from zero even in the long-time limit.

In Ref. [25] it was established that when certain models which are far from being inte-

grable reach the steady state, they have memory of the initial conditions, resulting in a

lack of thermalization but being instead described by a generalized Gibbs ensemble.

In spite of these evidences in favor of the role played by the GGE in the dynamical

evolution of quantum many-body systems, its explicit construction for general interact-

ing integrable models remains an open problem, and there are examples of integrable

systems where the GGE seemingly fails to describe correctly the steady state [26, 27]. A

thorough understanding of the non-equilibrium dynamics of closed quantum many-body

system has not yet been reached and research in this field is one of the most active and

growing activity in statistical physics and condensed matter.

1.5 Prethermalization

In the previous Sections we concentrated on the state attained by a closed quantum

system long after a quantum quench, but it is certainly interesting to investigate also

the intermediate dynamics and understand whether the relaxation occurs uniformly or

via a sequence of different stages. In fact, it is possible that a system driven out of

equilibrium initially approaches an intermediate quasi-steady state and then approaches

the eventual stationary state of the dynamics at a later time. A notable instance of this

case is provided by the so-called prethermalization.

This multi-stage dynamics was first mentioned in the study of relativistic heavy-ions

collisions [28]. It was observed that, on a time scale τpt, a dephasing mechanism leads

to the equipartition of energy between kinetic and potential component and to the

establishment of a time-independent equation of state P = P (ϵ) relating the pressure P

and the energy density ϵ, even if the system is still far from equilibrium. This process

is independent of the details of the interaction and is very rapid; for this first non-

thermal steady state was introduced the term prethermalization. Inelastic collisions are

responsible for the existence of a second, longer time scale τdamp which characterizes

the relaxation of the mode occupation numbers; most of the dependence on the initial
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conditions is already lost at this stage, even if the momentum distribution function

still does not look thermal. True equilibration happens only at later times t ∼ τeq.

A similar scenario emerges also in condensed matter, as highlighted in Ref.[29] where

the authors investigated the non-equilibrium dynamics of a Fermi-Hubbard model at

half filling (with Fermi energy ϵF = 0) in more than one spatial dimension (such that

the system is not integrable and thermalization is expected) after a sudden interaction

quench. This model is described by the following Hamiltonian

H(t) =
∑

k,σ

ϵk : c†kσckσ : +θ(t)U
∑

i

(
ni↑ −

1

2

)(
ni↓ −

1

2

)
, (1.36)

where σ ∈ {↑, ↓} indicates the spin value, k the momentum, c and c† are canonical

fermionic annihilation and creation operators, respectively, ni,↑(↓) = c†i,↑(↓)ci,↑(↓) repre-

sents the occupation number of the site i with spin value σ =↑ (↓), while θ(t) is defined
as θ(t < 0) = 0, θ(t > 0) = 1 and it accounts for the sudden interactions switch-on.

Three clearly separated time regimes were found: a first stage for times 0 < t ! ρ−1F U−2,

where ρF = ρ(ϵ = 0) is the density of states at the Fermi level, during which one ob-

serve a fast reduction of the Fermi surface discontinuity with oscillations decaying as 1/t

in the momentum distribution function. This short-time regime has been interpreted

as the formation of quasi-particles from the free electrons of the initial non-interacting

Fermi gas. Then for times t " ρ−1F U−2 the system relaxes towards an intermediate

quasi-steady regime, where there are no further changes in the momentum distribution

function, but this distribution does not resemble the equilibrium one. This is a clear

instance of prethermalization and if the system was integrable, this regime of dynamics

would become stable and last forever, but the inelastic interaction processes at later

times drive this metastable state towards the true equilibrium distribution function.

Finally, in the late stage of the dynamics for t " ρ−3f U−4, a Boltzmann equation de-

scription is expected to hold and the authors have been able to show that the resulting

momentum distribution function of the system approaches a Fermi-Dirac one with tem-

perature T ∼ U : in other words, the system has reached a thermal state.

Another important aspect of prethermalization is its possible connection with the GGE:

in fact, GGE stationary states for integrable systems could be seen as prethermal

plateaus which never decay and, conversely, the prethermal intermediate state of nearly

integrable models can be seen as if it was the GGE asymptotic state of the ”closest”

integrable model constructed with specific quasi-conserved quantities [30]. To be more

specific, consider as starting point an integrable Hamiltonian

H(t = 0) = H0 =
∑

α

ϵαIα, (1.37)

where ϵα is the ”energy” of the level labeled by the quantum number α, {Iα} is a set

of integrals of motion with corresponding eigenvectors |n⟩, Iα|n⟩ = nα|n⟩, and suddenly

switch on a small integrability-breaking term H1

H(t > 0) = H0 + gH1 with |g| ≪ 1. (1.38)
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Because of the smallness of the parameter g, the evolution after the quench of this

system can be investigated using unitary perturbation theory, for details see Ref. [30].

We expect that the dynamics is strongly influenced by the near integrability of H(t > 0)

and the conservation laws possessed by H0 are not totally lost. In this case the system

prethermalizes and an observable ⟨A(t)⟩ relaxes first to a non-thermal quasi-stationary

value Apreth. The expectation value of A within the prethermalization plateau can be

obtained as long-time average

⟨A(t)⟩ = lim
T→∞

1

T

T∫

0

dt′ ⟨A(t′)⟩, (1.39)

assuming that g is so small that the scale 1/|g| and 1/|g|2, related to the perturbative

character of the calculations, are well separated and the limit T → ∞ is taken in the

sense that 1/|g| ≪ T ≪ 1/|g|2. It turns out that Eq. (1.39) can be written as [30]

Apreth = ⟨A(t)⟩ = 2⟨A⟩0̃ − ⟨A⟩0 +O(g3), (1.40)

where the averages ⟨•⟩0 and ⟨•⟩0̃ are respectively taken on the initial state |0⟩, ground
state of the integrable Hamiltonian H0, and on the perturbative ground state |0̃⟩ of

H(t > 0). Being close to integrability is reflected by the fact that a set of approximate

integrals of motion Ĩα can be constructed and that the Hamiltonian (1.38) can be cast

in the following form

H =
∑

α

ϵαĨα +
∑

ñ

|ñ⟩(gE(1)
n + g2E(2)

n )⟨ñ|+O(g3), (1.41)

where |ñ⟩, E(1,2)
n are the perturbed eigenvectors and eigenvalues of H(t > 0). For ap-

proximate integrals of motion we mean quantities Ĩα which commute among themselves

and with the full Hamiltonian at least up to second order, i.e.,

[Ĩα, Ĩβ ] = 0 and [H, Ĩα] = O(g3). (1.42)

This set of approximate constant of motions are then used to build the corresponding

GGE

ρG̃ =
1

Z
exp

[
−
∑

α

λαĨα

]
(1.43)

with the constrain

⟨Ĩα⟩G̃ = Tr
[
ρG̃Ĩα

]
= ⟨Ĩα⟩0. (1.44)

Phrased in these terms, the main result of Ref. [30] is that the prethermal values (1.40)

can be actually predicted as GGE averages with the density matrix (1.43), i.e.,

Apreth = ⟨A⟩G̃ +O(g3). (1.45)
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The scenario described in Ref. [30] is expected to hold for intermediate time scales

1/g ≪ t ≪ 1/g2, as a natural limitation coming from perturbative computations, and

therefore the prethermal metastable state is expected to be long lived as much as the

integrable point is weakly perturbed. If thermalization eventually occurs, it is due to

the O(g3) terms, which are expected to become relevant on time scales of the order 1/g3.

Prethermalization occurs also in systems of quenched spinor condensates [31], non-

integrable quantum spin chains after a quench [32] and weakly interacting bosons fol-

lowing an interaction quench [33]. In Chapter 3 we report in some detail the study of

the non-equilibrium dynamics of a noisy quantum Ising chain, which shows prethermal-

ization [34].

We now present the recent experiment performed by Schmiedmayer’s group [35] thanks

to which it has been possible to directly observe a system in a prethermal state. The

experiment considers a single one-dimensional Bose gas cloud of 87Rb atoms in the

quasi-condensate regime and with an elongated shape: because of this geometrical con-

straint and reduced dimensionality many longitudinal modes are populated with a con-

sequent rich spatial structure and dynamics of the local phase of the ”condensate” wave

function, in contrast to three-dimensional condensates in which the existence of a gen-

uine long-range order implies a quantum state with a single global phase. The initial

state is prepared by rapidly and coherently splitting the single one-dimensional gas,

producing a system of two uncoupled and elongated one-dimensional Bose gases in a

double-well potential. After the splitting, the two gases have almost identical longi-

tudinal phase profile φ1,2(z) (where z is the coordinate along the elongation), and are

therefore strongly correlated in their phases (see Fig. 1.4). By contrast, two indepen-

dent quasi-condensates have different and uncorrelated phase profiles φ1 and φ2. The

strongly correlated phases of the two gases after splitting reflects the memory of their

common parent quasi-condensate. The experiment studies how this memory evolves,

decays in time, and, in particular, whether a thermal equilibrium state corresponding

to two independent separated quasi-condensates is reached at long times. After the

splitting, the system evolves in the double-well potential for some time te before the

two gases are released from the trap and allowed to interfere. The interference pattern

along the longitudinal direction is integrated over a variable length L and the so-called

integrated contrast C(L) is extracted

C2(L) =
1

L

∣∣∣∣∣∣∣

L/2∫

−L/2

dz ei∆φ(z,t)

∣∣∣∣∣∣∣

2

, (1.46)

where ∆φ = φ1 − φ2 is the phase difference between the two gases and C(L) is a

direct measure of the strength of the relative phase fluctuations. In the initial state this

quantity is large, because essentially ∆φ = 0; during the evolution, instead, the phase

difference varies, resulting in a decreasing of C(L) as a function of time. Repeated

experimental runs can be used in order to measure the mean squared contrast ⟨C2⟩
of the system. Fig. 1.5 (taken from Ref. [35]) shows an initial rapid decay of ⟨C2⟩,
after which a quasi-steady state emerges which slowly evolves further on a second, much
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Figure 1.4: (A): An initial phase fluctuating one-dimensional Bose gas formed by an
elongated cloud (with longitudinal coordinate z) is split into two uncoupled gases with
almost identical phase distributions φ1(z) and φ2(z) and allowed to evolve for a time
te. (B): At te = 0, fluctuations in the local phase difference ∆φ(z) between the two
gases are very small, and the corresponding phase correlation length λ∆φ is very large.
During the evolution, these relative-phase fluctuations increase, and λ∆φ decreases.
The main goal of the experiment is to understand whether or when this system will
reach the corresponding thermal equilibrium of uncorrelated phases as characterized by
the initial temperature T and thermal coherence length λT . (C): Matter-wave inter-
ference patterns obtained letting the two gas clouds interfere after different evolution
times. The contrast C(L) (see Eq. (1.46)) is a direct measure of the strength of the
relative-phase fluctuations. (D): Repeated experimental runs provide a characteristic
distribution P (C2) of contrasts, which allows one to distinguish between the initial
state, an intermediate prethermalized state, and the eventual thermal equilibrium of
the system. [Figure taken from Ref. [35]]

slower time scale. In order to verify if the quasi-steady state is thermal or not, the

probability distribution function P (C2)dC2, which gives the probability that C2 takes

values within the range [C2, C2 + dC2], is computed and compared with a thermal

equilibrium distribution at temperature Teff . It was found that the experimental data

are well described by an equilibrium distribution with an effective temperature which,

however, is a factor of five smaller than the initial temperature of the unsplit system

(see Fig. 1.5). The conclusion is that the observed steady-state cannot be the true

thermal equilibrium state of the system, but it is instead a prethermal state. These

experimental facts can be rationalized theoretically on the basis of an integrable theory,

i.e., the Tomonaga-Luttinger liquid formalism which provides predictions in very good

agreement with the experimental data; for details see Ref. [35].
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Figure 1.5: (A): Evolution of the mean squared-contrast ⟨C2⟩ (see Eq. (1.46)) of
the interference patterns integrated over the whole length of the quasi one-dimensional
clouds. Rapid decay is followed by a much slower one. Inset: experimental distributions
of the squared contrast for three different values of the evolution time te. Red lines
are the best fit with equilibrium distributions from which Teff is extracted, while the
blue dashed lines are the equilibrium distributions at the actual setup temperature.
The evident discrepancy with the experimental data indicates that the steady state is
non-thermal. [Figure taken from Ref. [35]]

1.6 Fluctuation-dissipation theorem and effective temperatures

In the previous Sections we illustrated how the non-equilibrium dynamics of closed

quantum many-body systems following a quantum quench is actually understood and

described. One can distinguish two classes of systems: non-integrable ones, whose

asymptotic local properties are described by the usual Gibbs distribution, and integrable

systems, which, instead, relaxes to the so-called generalized Gibbs ensemble, account-

ing for the additional local conserved quantities in the system. However, it has been

suggested in Refs. [36, 37] that, depending on the system’s parameters and the specific

quantity under study, a conventional Gibbs ensemble might effectively describe some

relevant features of the non-equilibrium dynamics even in integrable case and therefore

their study would not reveal the non-equilibrium nature of the dynamics. Therefore, a

different approach is required in order to assess the real thermalization of a system and

in this Section we discuss this novel method [38, 39].

1.6.1 One-time quantities

Consider a system in the initial state |ψ0⟩ subject to the sudden quench of its Hamil-

tonian from H(g0) to H(g) (see Fig. 1.1). The post-quench Hamiltonian governs the

unitary dynamics of the system, characterized by the state |ψ(t)⟩. Usually, one-time
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quantities are studied in this kind of problems in order to understand the relaxation

properties. Among them, a special role is played by the energy of the system; indeed

the average energy E(t)

E(t) ≡ ⟨ψ(t)|H(g)|ψ(t)⟩ = ⟨ψ0| eiH(g)tH(g) e−iH(g)t |ψ0⟩ = ⟨ψ0|H(g)|ψ0⟩ = E(t = 0),

(1.47)

is conserved in the dynamics because of unitary evolution. We can define an effective

inverse temperature βEeff associated to the energy as

⟨ψ0|H(g)|ψ0⟩ =
1

Z
Tr
[
e−β

E
effH(g)H(g)

]
, (1.48)

where the quantity on the l.h.s is the average energy of the system after the quench while

the one on the r.h.s is the average energy of an equilibrium state ofH(g) at a temperature

T = TE
eff = 1/βEeff (we set to 1 the Boltzmann constant kB). In other words, we can

imagine the system as if it was in an equilibrium thermal state at temperature TE
eff fixed

by the amount of energy injected into the system upon quenching. However, one would

like to check that a Gibbs state with the temperature thus defined also describes the

stationary limit of the average value of other observables. Considering an observable O,

one can compare the stationary value of the average of the observable after the quench

⟨O(t = ∞)⟩ with the expectation value that the same observable would have in an

equilibrium Gibbs ensemble at the effective temperature TO
eff and determine TO

eff in

such a way that these two averages coincide, i.e.,

lim
t→∞

⟨ψ0|O(t)|ψ0⟩ =
1

Z
Tr
[
e−β

O
eff O

]
= ⟨O⟩T=TO

eff
. (1.49)

An effective thermal-like behavior of the system in the stationary state would require

these temperatures TO
eff to be independent of the observable O considered and to co-

incide with TE
eff defined by Eq. (1.48), because a real thermal state is described by a

unique temperature. This approach is useful also in order to understand better the

difference between the canonical Gibbs ensemble and the generalized Gibbs ensemble.

Consider an Hamiltonian that can be written in the diagonal form

Hint =
∑

k

ϵkIk =
∑

k

Hk, (1.50)

where {Ik} is a set of non-trivial conserved quantities and ϵk is the energy of the level

labeled by the quantum number k. Therefore, the dynamics after the quench is con-

strained by a large number of integrals of motion and in Sec. 1.3 we argued that the

asymptotic properties of these kind of systems are captured by a generalized Gibbs

ensemble (see Eq. (1.28)) and that the Lagrange multipliers λk can be determined by

imposing the condition (1.30). Equation (1.30) is analogous to Eq. (1.48), but with a

set of effective temperatures {T k
eff} = {ϵk/λk} determined by the condition

⟨ψ0|Ik|ψ0⟩ =
1

Zgge
Tr
[
e−

∑
k λkIk Ik

]
=

1

Zgge
Tr
[
e−

∑
k βk

effHk Ik
]
= ⟨Ik⟩T=T k

eff
. (1.51)
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In a sense, the generalized Gibbs ensemble is characterized by a variety of different

effective temperatures, one for each eigenstate, opposite to the canonical Gibbs ensemble

which is described by only one temperature. A signal of possible thermalization of the

system is the equality of all k-dependent effective temperatures T k
eff to TE

eff .

1.6.2 Two-time quantities

In the stationary state one-time quantities are by definition time-independent, whereas

two-time quantities are not and therefore they carry information on how the dynamics

occurs even in equilibrium. Moreover, the analysis of one-time observable could be

misleading [17, 36, 37] and therefore one is naturally led to consider two-time correlation

function between two generic operators A and B, defined by

CAB(t, t′) = ⟨A(t)B(t′)⟩ = Tr
[
ρA(t)B(t′)

]
, (1.52)

where the generic operator O evolves according to the Heisenberg representation (! = 1)

O(t) = eiHtO e−iHt . (1.53)

Clearly, generic A and B do not commute and therefore ⟨A(t)B(t′)⟩ ̸= ⟨B(t′)A(t)⟩; it is
then natural to define symmetric and antisymmetric correlation functions as

CAB
± (t, t′) = ⟨[A(t), B(t′)]±⟩, (1.54)

where [X,Y ]± = (XY ± Y X)/2. Without loss of generality, it is possible to consider

either operators with zero average or to subtract the latter from the definition of the

generic operator O: O(t) → O(t)− ⟨O(t)⟩. In addition to CAB, the other fundamental

dynamic quantity is the linear response function RAB which quantifies, up to linear

term, how much the expectation value ⟨A(t)⟩ varies after a perturbation hB(t) which

couples linearly to the operator B in the Hamiltonian of the system:

RAB(t, t′) =
δ⟨A(t)⟩
δhB(t′)

∣∣∣∣∣
hB=0

, (1.55)

where A(t) is obtained by evolving A with the time-dependent perturbed Hamiltonian

HhB (t) ≡ H − hB(t)B. The Kubo formula [40], which holds in and out of equilibrium,

relates the linear response function RAB(t, t′) to the antisymmetric correlation CAB
− (t, t′)

defined in Eq. (1.54)

!RAB(t, t′) = 2iθ(t− t′)CAB
− (t, t′), (1.56)

where θ(t−t′) enforces causality: if the perturbation is switched on at time t′ the system

will react to it only at later times t > t′. If we consider Hermitian operators, O† = O,

the complex conjugate of the correlations function is [CAB(t, t′)]∗ = ⟨B(t′)A(t)⟩ and the

symmetric and antisymmetric correlators CAB
± can be respectively expressed in terms
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of CAB alone, defined in Eq. (1.52), as

CAB
+ (t, t′) = Re CAB(t, t′) and CAB

− (t, t′) = i Im CAB(t, t′), (1.57)

so that Eq. (1.56) yields

!RAB(t, t′) = −2θ(t− t′) Im CAB(t, t′). (1.58)

In equilibrium, the dynamics is invariant under time translations and therefore correla-

tion and response functions are stationary, i.e., CAB
± (t, t′) = CAB

± (t − t′), whereas out

of equilibrium this is not necessarily the case. In the stationary case, we can consider

Fourier transform of the correlation function, defining the Fourier transform (and its

inverse) of a function as

f(ω) =

∞∫

−∞

dt eiωt f(t) and f(t) =

∞∫

−∞

dω

2π
e−iωt f(ω). (1.59)

In Gibbs equilibrium the stationary correlation function between any two observables is

linked to the linear response of one of these observables to a linear perturbation applied

to the other in a model-independent way. Indeed, while the functional forms of the

correlation and linear response may depend on the pair of observables considered and of

course by the model studied, the relation between then remains unaltered and it is just

determined by the temperature of the environment. This remarkably universal relation

is the statement of the fluctuation-dissipation theorem (FDT) that in time domain can

be expressed as

RAB(t) =
i

!θ(t)
∞∫

−∞

dω

π
e−iωt tanh

(
β!ω
2

)
CAB
+ (ω), (1.60)

where β is the inverse temperature of the system at equilibrium. Taking the limit ! → 0

of (1.60), one can find the classical fluctuation-dissipation theorem

RAB(t) = −βθ(t) d
dt

CAB(t). (1.61)

The quantum FDT can be cast in a compact form in the frequency domain by Fourier

transforming Eq. (1.60)

! ImRAB(ω) = tanh

(
β!ω
2

)
CAB(ω). (1.62)

At equilibrium, the relation between RAB and CAB is determined only by the inverse

temperature β and it is independent of the model and the pair of observables A, B

considered. Accordingly, the knowledge of RAB and CAB
+ for a pair observables A and

B allows the determination of the inverse temperature β of the system in equilibrium

via Eqs. (1.60) and (1.62), whatever the observable A and B are. FDT provides a way



1. Introduction to non-equilibrium dynamics 21

to ’measure’ the temperature of a system, through the measurements of correlation and

response functions.

The idea of the novel approach we pursue in the following Section (see also Refs. [38,

39]) is to test the relaxation to a thermal state determining the correlation and linear

response of a chosen pair of observables and verifying whether FDT is satisfied. Out of

equilibrium, we define an inverse effective temperature βAB
eff (ω) by enforcing the quantum

fluctuation dissipation relations (FDR), i.e., via

! Im RAB(ω) = tanh

(
βAB
eff (ω)!ω

2

)
CAB
+ (ω), (1.63)

where we consider CAB
+ (t) and RAB(t) within the stationary regime in order to perform

Fourier transform (1.59). In complete generality βAB
eff (ω) defined from Eq. (1.63) depends

both on the choice of the observables A and B and on the frequency ω. Indeed, as

the correlation CAB and response RAB functions are, in principle, unrelated out of

equilibrium it is necessary to allow such dependence of βAB
eff (ω) in Eq. (1.63). The study

of the effective temperatures βAB
eff (ω) obtained from Eq. (1.63) can provide important

information on the eventual thermalization of the system after the quench; if the system

thermalizes, in fact, the effective temperatures βAB
eff (ω) must become almost constant in

the frequency domain and also independent of the quantities used to define them, i.e.,

βAB
eff (ω) = β, (1.64)

in such a way that FDR (1.63) reduces to FDT (1.62) proving that the system is really

in thermal equilibrium at inverse temperature β. We emphasize that the idea of using

FDR in order to investigate thermalization properties in non-equilibrium systems is

completely general. In Sec. 2.4 we report the results obtained by using this approach

for the quench dynamics of a quantum Ising chain [38], for which it was originally

argued that some one-time observable could equilibrate. Then in Chapter 4 we compute

the correlation and response functions for a quantum Ising chain perturbed by a time-

dependent delta correlated noise in the transverse direction and driven out of equilibrium

also by a sudden quench of the static component of the transverse field and extract an

effective temperature in order to better understand its relaxation dynamics.



CHAPTER 2

QUANTUM ISING CHAIN

In this Chapter we introduce and provide the necessary background about the one-

dimensional quantum Ising chain (QIC), which the noisy quantum Ising chain we study

in this thesis is based on. In Sec. 2.1 we introduce the Hamiltonian of QIC, describing its

properties and the presence of a quantum phase transition. Then, in Sec. 2.2, we show

in detail how it is possible, through Jordan-Wigner transformation and Bogolyubov

rotation, to map the QIC onto non-interacting fermionic system. The quantum Ising

chain is an example of integrable model and so it provides the opportunity to test the

GGE hypothesis, discussed in Sec. 1.3, for the relaxation dynamics of the system. In

Sec. 2.3, we review the results found in Refs. [16, 17] for the non-equilibrium dynamics

of a quantum Ising chain following a quantum quench of the transverse field. Finally, in

Sec. 2.4, we confirm the lack of thermalization of the QIC from a qualitative different

approach, based on the computation of the correlation and linear response functions

and the consequent failure of the fluctuation-dissipation theorem [38].

2.1 The model

We discuss the one-dimensional quantum Ising chain in a transverse field (QIC). This

model is described by the Hamiltonian

H(g) = −J
L∑

j=1

[
σxj+1σ

x
j + gσzj

]
(2.1)

where σαj are the Pauli matrices at site j which commute at different sites. We assume

a positive exchange constant J > 0, the length L of the chain to be even and we impose

22
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periodic boundary conditions σαL+1 = σα1 . In an explicit representation:

σx =

(
0 1

1 0

)
, σy =

(
0 −i

i 0

)
, σz =

(
1 0

0 −1

)
with

[
σαj ,σ

β
k

]
= 2iδjkϵ

αβγσγj

(2.2)

where ϵαβγ is totally anti-symmetric symbol, such that ϵxyz = 1, and δjk is the Kro-

necker’s delta. In Eq. (2.1) the term σxj+1σ
x
j does not commute with σzj , highlighting

the quantum nature of the system. The Hamiltonian Eq. (2.1) displays a global Z2

symmetry being invariant for a global rotation around the z-axis in spin space by an

angle of π, i.e,

σxj → −σxj , σyj → −σyj , σzj → σzj (2.3)

The quantum Ising chain is of fundamental importance because it is the paradigmatic

example of a model which undergoes an equilibrium quantum phase transition by tuning

the coupling g [41]: at zero temperature and in the thermodynamic limit it is character-

ized by two phases, a paramagnetic for g > 1 and ferromagnetic one for g < 1, separated

by a quantum critical point at g = 1. In the paramagnetic phase we have a vanishing

order parameter ⟨σxi ⟩, while in the ferromagnetic one we have spontaneous Z2-symmetry

breaking ⟨σxi ⟩ ̸= 0 and long-range order along the x direction appears in the system,

limr→∞Cxx
r = limr→∞⟨σxi σxi+r⟩ ̸= 0. However the long-range order disappears as soon

as the temperature T takes non-vanishing values. We want to emphasize that this phase

transition, occurring at T = 0, is only due to the quantum fluctuations in the system.

Phase transitions in classical models are driven by thermal fluctuations which weaken

and cease as T → 0; in contrast, quantum fluctuations are controlled by the coupling g

and they persist up to T = 0 eventually triggering this phase transition. Accordingly

the quantum nature of the system is crucial.

The model Eq. (2.1) is realized in solids [42] and in Ref. [43] a degenerate Bose gas of

rubidium atoms confined in an optical lattice has been used to simulate the Hamilto-

nian Eq. (2.1) with a negative exchange constant J < 0; in the latter case the system

is isolated from the environment and its parameters are controlled with high accuracy

making possible to investigate non-equilibrium dynamics of spin chains experimentally.

2.2 Diagonalization of the quantum Ising chain

Now we want to show that it is possible to map the Hamiltonian of the QIC Eq. (2.1) into

one of non-interacting fermions. We introduce the raising and lowering spin operators

σ±j at the site j

σ±j =
σxj ± iσyj

2
(2.4)

For 1/2-spin operators we can use the explicit representation Eq. (2.2) and prove that

{
σ+j ,σ

−
j

}
= 1. (2.5)
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So anticommutation relations Eq. (2.5) suggest an analogy between the operators σ±

and canonical creation and annihilation fermionic operators c†, c, i.e.,

σ+j /→ cj , σ−j /→ c†j (2.6)

with
{
cj , c

†
k

}
= δjk and

{
cj , ck

}
=
{
c†j , c

†
k

}
= 0 (2.7)

But this analogy fails for spins at different sites given that truly fermionic operators

would anticommute, {cj , c†k} = 0 if j ̸= k, while instead σ± commute, [σ+j ,σ
−
k ] = 0 if

j ̸= k. However it is possible to modify the identification suggested above and express

1/2-spin operators in terms of fermions in order to reproduce the commutation relations

Eq. (2.2). In general we have to introduce a phase factor

σ+j = U(j)cj σ−j = c†jU
†(j) (2.8)

where U(j) is a non-local function of c, c† which eventually takes the form of a ”string”

of operators.

For one-dimensional systems Jordan and Wigner [44] established the phase factor

U(j) =
j−1∏

l=1

exp(iπc†l cl) =
j−1∏

l=1

[
1− 2c†l cl

]
. (2.9)

The last equality in Eq. (2.9) follows from the fact that the only eigenvalues of the

fermionic number operator nj = c†jcj are 0 or 1 and so exp(iπc†l cl) = 1 − 2c†l cl; in this

way the phase factor U(j) can also be interpreted as a ”string” of operators.

The spin operators σ± expressed in terms of canonical creation and annihilation fermionic

operators c†, c trough the Eq. (2.8) with the phase factor U(j) given by Eq. (2.9) now

satisfy the correct commutation rules, i.e.,

if
{
cj , c

†
k

}
= δjk then

{
σ+j ,σ

−
j

}
= 1 and

[
σ+j ,σ

−
k

]
= 0 for j ̸= k. (2.10)

Accordingly, using Eqs. (2.4), (2.8) and (2.9) the original spin operators σαj are given by

σxj = σ+j + σ−j =
j−1∏

l=1

[
1− 2c†l cl

] [
cj + c†j

]
, (2.11)

σyj = (−i)
[
σ+j − σ−j

]
= (−i)

j−1∏

l=1

[
1− 2c†l cl

] [
cj − c†j

]
, (2.12)

σzj =
[
σ+j ,σ

x
j

]
= 1− 2c†jcj , (2.13)

where in Eq. (2.13) we use [cj , c
†
mcm] = 0 if j ̸= m and [1− 2c†jcj ]

2 = 1.

It follows from Eqs. (2.8), (2.9) and (2.13) that the inverse Jordan-Wigner transforma-
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tion is

cj =
j−1∏

l=1

σzl σ
+
j , (2.14)

c†j =
j−1∏

l=1

σzl σ
−
j , (2.15)

and it is possible to prove that if the spin operators σ satisfy the commutation rules

Eq. (2.2) then the operators c†, c are fermionic, that is they fulfill the anticommutation

relations Eq. (2.7).

Trough Eq. (2.11), we can write the nearest-neighbor interaction term in Eq. (2.1) as

σxj σ
x
j+1 =

j−1∏

l=1

[
1− 2c†l cl

] [
cj + c†j

] j∏

m=1

[
1− 2c†mcm

] [
cj+1 + c†j+1

]

=
[
cj + c†j

] [
1− 2c†jcj

] [
cj+1 + c†j+1

]
=
[
c†j − cj

] [
cj+1 + c†j+1

]
,

(2.16)

where we use the anticommutation relations Eq. (2.7) and [1 − 2c†jcj ]
2 = 1. One im-

portant point to note concerns boundary conditions. We assume periodic boundary

conditions for spin operators, σαL+1 = σα1 , however boundary conditions of the Jordan-

Wigner operators {cj , c†j} are affected by the fermion parity (−1)NF , where the number

of fermions NF in the chain is defined as

NF ≡
L∑

j=1

c†jcj . (2.17)

Indeed, let us look at the boundary term σxLσ
x
L+1:

σxLσ
x
L+1 = σxLσ

x
1 =

L−1∏

l=1

[
1− 2c†l cl

] [
c†L + cL

] [
c1 + c†1

]

=
L−1∏

l=1

exp(iπc†l cl)
[
c†L + cL

] [
c1 + c†1

]
= eiπ

∑L−1
l=1 c†l cl

[
c†L + cL

] [
c1 + c†1

]

= (−) eiπ
∑L

l=1 c
†
l cl
[
c†L − cL

] [
c1 + c†1

]
= (−1)NF+1

[
c†L − cL

] [
c1 + c†1

]
,

(2.18)

where we use Eqs. (2.7), (2.9), (2.11) and (2.17) and we note that if we consider the

creation operator c†L we certainly have nL = 1, while considering the annihilation op-

erator cL we have nL = 0. By comparing Eq. (2.16) and Eq. (2.18), we define the

Jordan-Wigner operators cL+1 as

cL+1 ≡ (−1)NF+1c1, (2.19)

which amounts to assuming periodic boundary conditions for the chain if NF is odd and

antiperiodic ones if NF is even.
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Therefore we use Eqs. (2.13), (2.16) and (2.18) to write Eq. (2.1) as

H(g) = −J
L−1∑

j=1

[
c†j − cj

] [
cj+1 + c†j+1

]
−Jg

L∑

j=1

[
cjc

†
j − c†jcj

]
+J(−1)NF

[
c†L − cL

] [
c1 + c†1

]

(2.20)

Looking at the structure of the Hamiltonian (2.20) we note that it is quadratic in the

fermionic operators c, c† and so quasi-particles are either created/destroyed in pairs

or they hop to the nearest neighboring site; this implies that the Hamiltonian (2.20)

conserves the parity of the number of fermions (−1)NF . In mathematical terms the

operators H and (−1)NF commute, [H, (−1)NF ] = 0, and we can diagonalize them

simultaneously. Accordingly the Hamiltonian is block diagonal, H(g) = He(g)⊕Ho(g),

where He/o acts on the subspace of the Fock space with an even/odd number of fermions.

2.2.1 Even sector

Focusing on the sector with an even number NF of fermions (−1)NF = 1, according to

Eq. (2.19) fermions acquire antiperiodic boundary conditions on the fermions

cL+1 = −c1. (2.21)

In this way the Hamiltonian Eq. (2.20) can be written as

He(g) = −J
L∑

j=1

[
c†j − cj

] [
cj+1 + c†j+1

]
− Jg

L∑

j=1

[
cjc

†
j − c†jcj

]
. (2.22)

Being quadratic, it can be conveniently diagonalized via a Fourier transform

cj =
1√
L

∑

k

e−ikjck with k = ±π(2n+ 1)

L
and n = 0, . . . ,

L

2
− 1.

(2.23)

The quantization of k is due to the antiperiodic boundary conditions Eq. (2.21) and this

sector is generally referred to as Neveu-Schwarz sector (NS). In Fourier space Eq. (2.20)

assume the form

He(g) = 2J
∑

k>0

[
cos k(c−kc

†
−k − c†kck) + i sin k(c†kc

†
−k − c−kck)

]
+ 2Jg

∑

k>0

[
c†kck − c−kc

†
−k

]

= 2J
∑

k>0

Ψ†
kHkΨk, (2.24)

where we have introduced the Nambu spinor Ψk and the 2× 2 matrix Hk according to

Ψk =

(
ck
c†−k

)
and Hk =

(
g − cos k i sin k

−i sin k cos k − g

)
, respectively. (2.25)
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This Hamiltonian is eventually diagonalized via a Bogolyubov rotation (see Appendix

A), (
ck
c†−k

)
=

(
ugk −ivgk

−ivgk ugk

)(
γgk
γg †−k

)
= R(θgk)

(
γgk
γg †−k

)
(2.26)

where ugk = cos θgk and vgk = sin θgk. (2.27)

The operators γg †k , γgk represents fermionic quasi-particles that satisfy the canonical an-

ticommutation relation {γg †k , γgk′} = δk,k′ and {γgk , γ
g
k′} = 0; the Bogolyubov angle θgk

fulfills the relation

tan(2θgk) =
sin k

g − cos k
. (2.28)

For k > 0 this relation has to be inverted with 2θgk ∈ [0,π], whereas the values of θgk for

k < 0 are obtained by using the property θg−k = −θgk. As we use in the following, we

anticipate that the Bogolyubov angle fulfills the following relations

cos(2θgk) =
2(g − cos k)

ϵgk
and sin(2θgk) =

2 sin k

ϵgk
. (2.29)

In terms of Bogolyubov quasi-particles γg †k , γgk the Hamiltonian He(g) Eq. (2.22) is

diagonal and reads

He(g) =
∑

k

ϵgk

[
γg †k γgk − 1

2

]
=
∑

k>0

ϵgk

[
γg †k γgk + γg †−kγ

g
−k − 1

]
, (2.30)

with a dispersion relation

ϵgk = 2J
√

1 + g2 − 2g cos k. (2.31)

In Fig. 2.1 we plot the dispersion relation ϵgk in Eq. (2.31) as a function of k ∈ [−π,π]
in the case J = 1 and g = 1.3 (paramagnetic phase), g = 0.7 (ferromagnetic phase) and

g = 1 (critical point). We note that the dispersion relation ϵgk is a function of k bounded

both from above and from below

2J |g − 1| < ϵgk < 2J(1 + g). (2.32)

A basis for the Fock space in the even sector is then given by

|k1, . . . , k2m; g⟩NS =
2m∏

j=1

γg †kj
|0, g⟩NS where kj ∈ NS, m ∈ N, (2.33)

and |0, g⟩NS is the vacuum state annihilated by all γgk : γ
g
k |0, g⟩NS = 0 if k ∈ NS.

The ground state of the system with an even number of fermions NF is the vacuum

state where no quasi-particle has been created

|GS⟩NS = |0, g⟩NS , (2.34)
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Figure 2.1: Dispersion relation ϵgk for J = 1 [see Eq. (2.31)] as a function of k ∈ [−π,π]
and three different values of the transverse field, indicated in the legend, chosen to
correspond to the paramagnetic phase (g > 1), ferromagnetic phase (g < 1) and to the
critical point g = 1.

from the Hamiltonian He(g) (2.30) and the property γgk |0, g⟩NS = 0, the corresponding

energy is

Eg
0,NS = −1

2

∑

k

ϵgk. (2.35)

It’s possible to link the ground state with different transverse field through the relation

[16]

|0, g0⟩NS =
1

NNS
exp

⎡

⎣i
∑

p∈NS

K(p)γg †−pγ
g †
p

⎤

⎦ |0, g⟩NS (2.36)

where NNS is a normalization constant and the function K(p) is given by

K(p) = tan (∆θk) , (2.37)

and we defined the difference between Bogolyubov angles ∆θk

∆θk ≡ θgk − θg0k . (2.38)
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The time evolution governed by the Hamiltonian H(g) of the ground state |0, g0⟩NS is

[16]

e−itHe(g) |0, g0⟩NS =
|B(t)⟩NS√
NS⟨B|B⟩NS

(2.39)

where

|B(t)⟩NS = e−itE
g
0,NS exp

⎡

⎣i
∑

0<p∈NS

e−2itϵ
g
p K(p)γg †−pγ

g †
p

⎤

⎦ |0, g⟩NS (2.40)

2.2.2 Odd sector

For an odd number NF of fermions we have (−1)NF = −1 and therefore, according to

Eq. (2.19), we have to impose periodic boundary conditions on the fermions

cL+1 = c1. (2.41)

The Hamiltonian then takes the form

Ho(g) = −J
L∑

j=1

[
c†j − cj

] [
cj+1 + c†j+1

]
− Jg

L∑

j=1

[
cjc

†
j − c†jcj

]
(2.42)

and it can be diagonalized as in the NS case discussed above, i.e., doing a Fourier trans-

form and then expressing the Hamiltonian in terms of suitable Bogolyubov fermions.

The allowed quantized momenta are now

p =
2πn

L
with n = −L

2
, . . . ,

L

2
− 1, (2.43)

because of the periodic boundary conditions on the fermions. The periodic sector is

known as Ramond sector (R). By applying the Fourier transform, isolating the p = 0

term and then using the Bogolyubov rotation the Hamiltonian in the R sector becomes

Ho(g) =
∑

p ̸=0

ϵgp

[
γg †p γgp − 1

2

]
− 2J(1− g)

[
γg †0 γg0 − 1

2

]
, (2.44)

and a basis of the subspace of the Fock space with odd fermion numbers is

|p1, . . . , p2m+1; g⟩ =
2m+1∏

j=1

γg †pj |0, g⟩R where pj ∈ R, m ∈ N (2.45)

and |0, g⟩R is the vacuum state annihilated by all γgp : γ
g
p |0, g⟩R = 0 if p ∈ R. In the R

sector, the state |0, g⟩R is not allowed by the condition that this sector must contain an

odd number of fermions and therefore the lowest energy state fulfilling this condition is

|GS⟩R = γg †0 |0, g⟩R , (2.46)
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with associated energy

Ho(g)γ
g †
0 |0, g⟩R = −1

2

⎡

⎣
∑

p ̸=0

ϵgp + 2J(1− g)

⎤

⎦ γg †0 |0, g⟩R ≡ Eg
0,Rγ

g †
0 |0, g⟩R , (2.47)

where we used Eq. (2.44) and the anticommutation relations {γgp , γg †k } = δpk.

Similarly to the NS sector, it’s possible to show that [16]

e−itHo(g) |0, g0⟩R =
|B(t)⟩R√
R⟨B|B⟩R

(2.48)

where

|B(t)⟩R = e−itE
g
0,R exp

⎡

⎣i
∑

0<p∈R
e−2itϵ

g
p K(p)γg †−pγ

g †
p

⎤

⎦ |0, g⟩R (2.49)

2.2.3 Paramagnetic and ferromagnetic phase

Noting that

ϵg0 = 2J |1− g| > 0, (2.50)

we can write the ground state energy Eg
0,R (2.47) in the R sector in the paramagnetic

phase (g > 1) and in the ferromagnetic phase (g < 1), respectively, as

Eg>1
0,R = −1

2

∑

p

ϵgp + ϵg0, (2.51)

Eg<1
0,R = −1

2

∑

p

ϵgp. (2.52)

As long as L is finite one can verify numerically [see Fig. 2.2] that Eg
0,NS < Eg

0,R for any

g and therefore |0, g⟩NS is the ground state in both phases.

However, in the thermodynamic limit L → ∞, from Eqs. (2.35) and (2.52)

Eg
0,NS = −1

2

∑

k

ϵgk −→
L→∞

−L

2

π∫

−π

dk

2π
ϵgk, (2.53a)

Eg<1
0,R = −1

2

∑

p

ϵgp −→
L→∞

−L

2

π∫

−π

dp

2π
ϵgp, (2.53b)

and therefore Eg
0,NS = Eg<1

0,R .

From Eqs. (2.35), (2.50), (2.51) and (2.53), we conclude that, in the paramagnetic phase

(g > 1) and in the thermodynamic limit L → +∞, Eg
0,NS < Eg>1

0,R and therefore the non

degenerate ground state is always

|GS⟩par = |GS⟩NS = |0, g⟩NS (2.54)
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and par⟨GS|σxj |GS⟩par = ⟨σxj ⟩par = 0.

Instead from Eqs. (2.35), (2.52) and (2.53) we can assert that, in the ferromagnetic

phase (g < 1) and in the thermodynamic limit L → +∞, Eg
0,NS = Eg<1

0,R resulting in

two degenerate ground states related by the Z2 symmetry Eq. (2.3)

|GS⟩fer =
1√
2
[|GS⟩NS ± |GS⟩R] =

1√
2

[
|0, g⟩NS ± γg †0 |0, g⟩R

]
. (2.55)

By spontaneous symmetry breaking the system selects a unique ground state in which

spins align along the x-direction ⟨σxj ⟩fer ̸= 0.

Moreover, it is possible to see that the gap ∆ of the quantum Ising chain, defined as the

difference between the energy of the ground state and the first excited state, is

∆ = Eg
1 − Eg

0 = 2J |g − 1|, (2.56)

and it vanishes at the critical point g = 1.

In the end we have seen that the quantum Ising chain in transverse field can be mapped

into a system of non-interacting fermions and at zero temperature and in the thermo-

dynamic limit it exhibits a quantum phase transition at the critical point g = 1.

2.3 Quantum quench in the quantum Ising chain

While in the previous Section we have briefly reviewed the equilibrium properties of the

quantum Ising chain, here we focus on its dynamics following a global quantum quench

of the transverse field. The quench protocol consists in preparing the system in the

ground state |GS⟩g0 of the Hamiltonian H(g0) and in suddenly switching at time t = 0

the transverse field to a different value g such that the subsequent unitary time evolution

of the system is determined by the new Hamiltonian H(g). The time evolution of the

initial state is then

|ψ(t)⟩ = e−iH(g)t|GS⟩g0 . (2.57)

Upon quenching the transverse field one injects an extensive amount of energy into the

system and all excited states populates; this can be seen by looking immediately after

the quench at the populations

g0⟨GS|γg †k γgk |GS⟩g0 = sin2(∆θk),

g0⟨GS|γg−kγ
g †
−k|GS⟩g0 = cos2(∆θk),

(2.58)

and the coherences

g0⟨GS|γg †k γg †−k|GS⟩g0 = − i

2
sin(2∆θk),

g0⟨GS|γg−kγ
g
k |GS⟩g0 =

i

2
sin(2∆θk),

(2.59)
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Figure 2.2: The quantity −
∑

q ϵ
g
q , related to the ground-state energy E0 (see

Eqs. (2.35), (2.51) and (2.52)), is plotted for even/odd number of fermions (q ∈ NS/R)
as a function of the chain length L for the paramagnetic (upper panel) and ferromag-
netic (lower panel) phase. The insets show the behavior of −

∑
q ϵ

g
q with q ∈ NS/R

for large and finite values of the chain length L (5000 ≤ L ≤ 6000) in the two phases.
It can be seen that the values corresponding to the NS sector are always smaller than
those of the R sector for finite L. A quantum phase transition occurs only in the
thermodynamics limit.
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where ∆θk is given by Eq. (2.38). Equations (2.58) and (2.59) can be obtained by ex-

pressing the fermionic operators {γgk , γ
g†
−k} in terms of {γg0k , γg0†−k } through a Bogolyubov

rotation R(θgk)R†(θg0k ) = R(∆θk) (see Eq. (2.26)) and then using the property of the

initial state γg0k |GS⟩g0 = 0. It is natural to ask oneself if the energy pumped into the

chain upon quenching will redistribute over the degrees of freedom and the system even-

tually reaches a thermal state.

This question has been addressed in 2012 by Calabrese et al. in Refs. [16, 17] with

the conclusion that the presence of an extensive number of local conserved quantities

nk = γg †k γgk
1 constrains the dynamics in such a way that the reduced density matrix

ρA, defined in Eq. (1.22), after a sudden quench of the transverse field in the quantum

Ising chain does not attain a Gibbs density matrix but in the stationary state it is rather

equivalent to that of the generalized Gibbs ensemble (see Sec. 1.3):

ρA(t = ∞) = ρGGE , (2.60)

where the GGE density matrix for the Ising chain is

ρGGE =
1

ZGGE
exp

(
−
∑

k

βkϵ
g
kγ

g †
k γgk

)
, (2.61)

with the Lagrange multipliers βk fixed by the initial state through Eq. (1.30)

g0⟨GS|γg †k γgk |GS⟩g0 = Tr[ρGGEγ
g †
k γgk ]. (2.62)

For a quench in the Ising chain these conditions amount at

βkϵ
g
k = 2arctanh[cos(2∆θk)], (2.63)

where ϵgk and ∆θk are given by Eqs. (2.31) and (2.38), respectively. In this way arbitrary

local multi-point spin correlation functions can be evaluated as averages within the

GGE. In the following, we distinguish between local and non-local operators in terms

of Jordan-Wigner fermions {c, c†}. From Eq. (2.13), it is evident that the transverse

magnetization σzj is a local operator, because it involves only Jordan-Wigner operators

at the site j; the order parameter σxj , instead, is a non-local operator as can be seen

from Eq. (2.11) which includes a string of Jordan-Wigner operators at the sites l ̸= j.

Although σx is a non-local operator we stress that correlation functions involving the

order parameter can nevertheless be evaluated from GGE.

We focus on the correlation functions of the transverse spins σzj and of the order param-

eter σxj . First we consider the transverse spins because they are local in the fermionic

representation and so their correlation functions and expectation values can be calcu-

lated rather easily. The expectation value of the on-site transverse magnetization in the

1the integrals of motion nk = γg †
k γg

k are non-local, but for the quantum Ising model is possible to
show that local integrals of motion can be expressed as linear combinations of nk [45]
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thermodynamics limit L → +∞ is

⟨σzl ⟩ ≡ ⟨ψ(t)|σzl |ψ(t)⟩ =
π∫

0

dk

π

[
cos(2θgk) cos(2∆θk) + sin(2θgk) sin(2∆θk) cos(2ϵ

g
kt)
]
,

(2.64)

where θgk, ϵ
g
k and ∆θk are given in Eqs. (2.28), (2.31) and (2.38), respectively. Equa-

tion (2.64) displays a first constant term, which is the value in the stationary state

and it agrees with the GGE prediction, and an oscillating term, describing the coherent

evolution due to pairs of quasiparticles propagating after the quench from the initial

state and decaying to zero for Jt ≫ 1 as a power law 1/(Jt)3/2. This behavior can be

determined by a stationary phase approximation around the saddle points at k = 0 and

k = π. The power law decay of ⟨σzl ⟩ towards the value prescribed by the GGE occurs

through inhomogeneous dephasing, i.e., it results from the sum of many oscillating term

with slightly different frequencies, and this picture agrees with the argument given in

Ref. [46] for the relaxation dynamics of observables in integrable models.

The connected transverse two-point correlator in the thermodynamic limit and in the

infinite time limit t → ∞ at fixed, finite separation between spins l is expressed as

Czz(l,∞) ≡ lim
t→+∞

[
⟨ψ(t)|σzj+lσ

z
j |ψ(t)⟩ − ⟨ψ(t)|σzj |ψ(t)⟩2

]

=

π∫

−π

dk

2π
eilkeiθ

g
k cos(2∆θk)

π∫

−π

dp

2π
eilpe−iθ

g
p cos(2∆θp).

(2.65)

The connected two-point function in an equilibrium Gibbs ensemble at temperature β−1

is

⟨⟨σzjσzj+l⟩⟩ − ⟨⟨σzj ⟩⟩2 =
π∫

−π

dk

2π
eilkeiθ

g
k tanh

(
βϵgk
2

) π∫

−π

dp

2π
eilpe−iθ

g
p tanh

(
βϵgp
2

)
, (2.66)

where ⟨⟨O⟩⟩ denotes the thermal equilibrium expectation value at temperature 1/β. In

this way Eq. (2.65) resembles the finite temperature result in Eq. (2.66) provided that

the temperature β is replaced by a mode-dependent inverse temperature βk given in

Eq. (2.63). Accordingly, Czz(l,∞) agrees with the GGE value given by Eqs. (2.61)

and (2.63) and the GGE can be thought of as a system with mode-dependent tempera-

tures. The reason for the appearance of mode-dependent temperatures is the integrability

of the system; in this case the degrees of freedom do not interact among them and so

each k-mode will ”thermalize” at its own temperature βk, determined by the energy

injected into it upon quenching [Eq. (2.58)].

The order parameter σxj is a non-local observable in the Jordan-Wigner representation

and so its correlation functions are more difficult to compute. In order to obtain re-

sults for these quantity a determinant and form factor approach has been developed in

Refs. [16, 17]. For quenches within the ferromagnetic phase the expectation value of the
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order parameter ⟨σxl (t)⟩ turns out to relax to zero exponentially [16]

⟨σxl (t)⟩ ≡ ⟨ψ(t)|σxl |ψ(t)⟩ ∝ exp

[
t

∫ π

0

dk

π
ϵg
′

k log(cos 2∆θk)

]
, (2.67)

where ϵg
′

k = d
dk ϵ

g
k; the two-point function Cxx(l, t) decays exponentially in time and

space [16]

Cxx(l, t) ≡ ⟨ψ(t)|σxj+lσ
x
j |ψ(t)⟩ ∝ exp

[
l

∫ π

0

dk

π
θ(2ϵg

′

k t− l) log | cos 2∆θk|
]
×

× exp

[
2t

∫ π

0

dk

π
θ(l − 2ϵg

′

k t)ϵg
′

k log | cos 2∆θk|
]
,

(2.68)

where the step function θ(x) is defined as θ(x < 0) = 0 and θ(x > 0) = 1. The

exponential correlation length ξ of Cxx can be extracted from the first factor above

which encodes the spatial dependence and it is equal to

ξ−1 = −
∫ π

−π

dk

2π
log | cos 2∆θk|. (2.69)

As expected, the same expression for ξ−1 can be obtained from the GGE density matrix,

i.e., by computing the thermal correlation length and then make the substitution in

Eq. (2.63)). We can write the two-point correlation functions also as [16]

Cxx(l, t)

(⟨σx(t)⟩)2 ∼ exp

[∫ π

0

dk

π

[
l

ξ(k)
− 2t

τ(k)

]
θ(2ϵg

′

k t− l)

]
, (2.70)

where we have defined mode dependent correlations lengths ξ(k) and decay times τ(k)

by

ξ−1(k) = − ln | cos 2∆θk| τ−1k = −ϵg
′

k ln | cos 2∆θk|. (2.71)

The step function in Eq. (2.70) means that a given k-mode contributes to the relaxation

dynamics only if the distance l lies within its forward light cone, indicating that the

quasiparticles emitted after the quench propagate ballistically.

2.4 Effective temperatures for quantum Ising chain

The first picture which emerged about the non-equilibrium dynamics of isolated quan-

tum many-body systems was that non-integrable systems reach a thermal stationary

state described by a Gibbs distribution with a single temperature (see Sec. 1.2); inte-

grable systems, instead, are not expected to thermalize and the asymptotic properties of

local observables are described by the so-called generalized Gibbs ensemble, discussed in

Sec. 1.3, in which each conserved quantity is characterized by a different effective tem-

perature. But this scenario seems to be richer; indeed it was suggested in Refs. [36, 37]

that for small quenches in a quantum Ising chain observables that are non-local in terms



2. Quantum Ising Chain 36

of Jordan-Wigner fermions display an effective thermal behavior. On the other hand,

local quantities do not show thermal behavior, with the exception of quenches to the

critical point for which all mode dependent temperatures become equal [17]. In fact,

the critical point shows some noteworthy properties that can be attributed to the gap-

less spectrum (see Eq. (2.56)) and to the linearity of the dispersion relation ϵg=1
k (see

Eq. (2.31)) at low momenta. So it is desirable to develop a set of tools which allows one

to test thermalization (or its lack) in isolated quantum systems beyond the one based

on the analysis of stationary expectation values. One proposal is discussed in Sec. 1.6

which suggest to use the fluctuation-dissipation theorem in order to extract a time or

frequency-dependent parameter that we call ”effective temperature”. The analysis of the

effective temperatures can definitely inform us about the possible thermal character of

the dynamics.

In this Section we study the effective temperatures for a quantum quench of the trans-

verse field Ising chain [38] in order to demonstrate that equilibration never occurs in this

model, in spite of some early evidence for the contrary, as mentioned above. In particu-

lar the attention is focused on quenches to the critical point and the observables taken

in account are the transverse magnetization σz, local in the Jordan-Wigner fermions as

it can be seen from Eq. (2.13), the global transverse magnetization M and the order

parameter σx, which, instead, is non-local as it should be clear from Eq. (2.11). It is

legitimate to restrict to the even sector because we consider expectation values of oper-

ators which are defined in terms of products of an even number of fermions operators

and therefore they do not alter the parity of the state. The dynamic observables one is

typically interested in can be expressed in terms of the operators {σai } and via Jordan-

Wigner transformation in terms of the fermions {ck, c†k} or alternatively of {γk, γ†k}. A

practical way to compute the post-quench correlation functions is to express the time

dependent operators {ck(t), c†k(t)} in terms of the operators {γg0k }; the benefit of this

approach is that the operators {γg0k } annihilate the state |GS⟩g0 in which the system

has been initially prepared. On the other hand, the dynamics after the quench takes

a simple form if the operators one is interested in are expressed in terms of the quasi

particles {γgk , γ
g†
k } which diagonalize the post-quench Hamiltonian H(g); in fact their

time evolution is trivially given by

(
γgk(t)

γg†−k(t)

)
=

(
e−iϵ

g
kt 0

0 eiϵ
g
kt

)(
γgk
γg†−k

)
≡ U(ϵgk, t)

(
γgk
γg†−k,

)
(2.72)

where we use Eq. (2.30), the Heisenberg equation of motion and we define the evolution

operator U(ϵgk, t) with dispersion relation ϵgk given in Eq. (2.31). It is evident that

the number operator ng
k = γg†k γ

g
k of each k-level, which appears in the GGE density

matrix, is a constant of motion. In order to solve the dynamics, one first expresses

the quasi particles {γgk , γ
g†
−k} in terms of {γg0k , γg0†−k } through a Bogolyubov rotation

R(θgk)R†(θg0k ) = R(∆θk) (see Eq. (2.26)). Then we apply the time evolution operator

U(ϵgk, t) to the quasi particles {γgk , γ
g†
−k} to obtain {γgk(t), γ

g†
−k(t)} and finally the time-

dependent operators {cgk(t), c
g†
−k(t)} are expressed in terms of the latter via a Bogolyubov
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rotation R†(θgk). In summary, the total transformation is

(
ck(t)

c†−k(t)

)
= R†(θgk)U(ϵ

g
k, t)R(∆θk)

(
γg0k
γg0†−k

)
≡
(
ug,g0k (t) −[vg,g0k (t)]∗

vg,g0k (t) [ug,g0k (t)]∗

)(
γg0k
γg0†−k

)
, (2.73)

where

ug,g0k (t) = e−iϵ
g
kt cos θgk cos∆θk + eiϵ

g
kt sin θgk sin∆θk, (2.74a)

vg,g0k (t) = i eiϵ
g
kt cos θgk sin∆θk − i e−iϵ

g
kt sin θgk cos∆θk (2.74b)

and θgk, ϵ
g
k and ∆θk are given by Eqs. (2.28), (2.31) and (2.38), respectively. In this way

we can express the average

⟨•⟩ = g0⟨GS| • |GS⟩g0 (2.75)

in terms of the functions ug,g0k (t) and vg,g0k (t).

According to the philosophy of Sec. 1.6, we want to extract from various observable a

set of effective temperatures in order to test an eventual effective thermal behavior. We

start by analyzing the expectation value of σz(t) in the long-time stationary state after

the quench Eq. (2.64)

⟨σz⟩stat ≡ lim
t→∞

⟨σz(t)⟩ =
∫ π

0

dk

π
cos(2θgk) cos 2∆θk. (2.76)

As stated in the previous Section, this value differs from the one predicted by a Gibbs

thermal ensemble at a unique temperature T , while it agrees with the GGE prediction

with a suitable set of effective temperatures. However, at the critical point g = 1, it

turns out that the effective temperature T z
eff associated to the transverse magnetiza-

tion, calculated from Eq. (1.49) with O = σz, is equal to the energy based effective

temperature TE
eff , defined by Eq. (1.48):

T z
eff = TE

eff . (2.77)

Therefore Eq. (2.77) would suggest an effective thermalization within a Gibbs ensemble

at temperature TE
eff . In order to assess this apparent thermalization, according to the

strategy discussed in Sec. 1.6, we now focus on the fluctuation and response functions

of the system and extract from them a set of effective temperatures. The two-time sym-

metric, connected correlation and linear response functions Czz
+ and Rzz, respectively,

for generic g and g0 are given by (see Eqs. (1.52), (1.54), (1.55), (1.57) and (1.58)) [38]

Czz
+ (t+ t0, t0) =

1

2
⟨
{
σzj (t+ t0),σ

z
j (t0)

}
⟩ − ⟨σzj (t+ t0)⟩⟨σzj (t0)⟩ (2.78)

= 4

π∫

0

dk

π

π∫

0

dl

π
Re [vk(t+ t0)v

∗
k(t0)ul(t+ t0)u

∗
l (t0)] , (2.79)

Rzz(t+ t0, t0) = iθ(t)⟨
[
σzj (t+ t0),σ

z
j (t0)

]
⟩ (2.80)
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= −8θ(t)

π∫

0

dk

π

π∫

0

dl

π
Im [vk(t+ t0)v

∗
k(t0)ul(t+ t0)u

∗
l (t0)] , (2.81)

with uk(t) ≡ ug,g0k (t) and vk(t) ≡ vg,g0k (t). For critical quenches, g = 1 and in the

stationary regime t0 → ∞, Eqs. (2.79) and (2.81) become [38]

Czz
+ (t) ≡ lim

t0→∞
Czz
+ (t+ t0, t0) = J2

0 (4t)− E2(4t) + J2
1 (4t)−

[
E′(4t)

]2
, (2.82)

Rzz(t) ≡ lim
t0→∞

Rzz(t+ t0, t0) = 4θ(t)
[
J0(4t)E(4t)− J1(4t)E

′(4t)
]
, (2.83)

where Jα(t) is the Bessel function of the first kind and of order α, while the function

E(τ) is defined as

E(τ) ≡
π∫

0

dk

π
sin(ϵkτ/4) cos(2∆θk), (2.84)

with

ϵk ≡ ϵg=1
k = 4 sin(k/2) and ∆θk = θg=1

k − θg0k . (2.85)

The initial condition enters these expressions only via cos(2∆θk). Remarkably, at the

critical point g = 1, this quantity turns out to depend on the pre-quench value of the

transverse field g0 only through the ratio [38]

Υ =

(
1 + g0
1− g0

)2

> 1. (2.86)

We note that Υ and consequently the stationary part of the correlation and response

functions Czz
+ and Rzz are invariant under the transformation g0 → g−10 and therefore

in the stationary regime we can restrict to initial conditions in the ferromagnetic phase

g0 < 1.

In Fig. 2.3 we report the stationary correlation and linear response functions Czz
+ and

Rzz, respectively, as a function of time for quenches from g = 0, 0.5, 1 to the critical

point g = 1. In both panels the inset highlights on a double logarithmic scale the

long-time algebraic decay of these functions. If the system is initially prepared deeply

in the ferromagnetic phase g0 = 0 (or in the highly paramagnetic one with g0 = ∞),

E(τ) = J1(τ) and so Eqs. (2.82) and (2.83) become

Czz
+ (t) = J2

0 (4t)−
1

4
[J0(4t)− J2(4t)]

2 , (2.87)

Rzz(t) = 2θ(t)J1(4t) [J0(4t) + J2(4t)] , (2.88)

where we used the relation J ′1(τ) = [J0(τ)− J2(τ)] /2. For g0 ̸= 0,∞ the function E(τ)

cannot be expressed in terms of Bessel functions, but its asymptotic behavior in the

long-time limit t ≫ 1 can be determined analytically [38]

Czz
+ (t ≫ 1) = − 1

8πt2
cos(8t) +O(t−3), (2.89)
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Figure 2.3: Time dependence of the correlation Czz
+ (t) (left panel) and linear response

functions Rzz(t) (right panel) of the local transverse magnetization σz
j in the stationary

regime after a quench to the critical point Γ = 1. The insets highlight the algebraic
decay of the functions; if Γ0 ̸= Γ = 1 (blue and red lines) the decay is ∼ t−2 while
in the case of equilibrium at zero temperature Γ = Γ0 = 1 (green line) we have a
different power-law ∼ t−3/2. In the figures of this Section, the transverse magnetic field
is indicated with Γ and not g. [Figure taken from Ref [38]]

Rzz(t ≫ 1) =
1

4πt2

[(
1− g0
1 + g0

)2

− sin(8t)

]
+O(t−3). (2.90)

We recall that at equilibrium (g = g0 = 1) the leading algebraic decay of Czz
+ and Rzz is

qualitatively different from the ones after the quench reported above, as it turns out to

be ∼ t−3/2 at zero temperature and ∼ t−1 at finite temperature. This different algebraic

decay is shown in the inset of Fig. 2.3.

Considering the Fourier transform of the functions Eqs. (2.82) and (2.83) (see Eq. (1.59))

it is possible to define a frequency-dependent effective temperature T z
eff (ω) through the

fluctuation-dissipation relation (1.63) for Czz
+ (ω) and Rzz(ω). Being σz quadratic in

the fermions, the Fourier transform functions Czz
+ (ω) and Rzz(ω) receive contributions

only from real values of the frequency ω which coincide either with the sum ϵk + ϵl or

with the difference ϵk − ϵl of the energies ϵk,l ot two quasi-particles. This results in a

finite cut-off ωmax = 2ϵk=π; moreover, due to the symmetry under time-reversal in the

stationary state Czz
+ (t) = Czz

+ (−t), the following symmetry properties holds

Czz
+ (ω) = Czz

+ (−ω) and ImRzz(ω) = − ImRzz(−ω). (2.91)

In Fig. 2.4 we show the functions Czz
+ (ω), Rzz(ω) (left panel) and T z

eff (ω) (right panel)

as obtained by numerical integration of Eqs. (2.82) and (2.83) and via Eq. (1.63). We

note that T z
eff (ω) vanishes both for ω → ωmax (with ωmax = 2ϵk=π(g = 1) = 8) and

for ω → 0. We emphasize that there is no obvious relationship between TE
eff , defined

in Eq. (1.48), and T z
eff (ω) in the right panel of Fig. 2.4. A genuine thermal behavior,

instead, would require T z
eff (ω) to be independent of ω and T z

eff = TE
eff . The vanishing

of the temperature T z
eff (ω → 0) can be explained by the fact that for ω → 0 the

correlation and response functions are not only determined by the low k-modes, but
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Figure 2.4: Left panel: dependence of the correlation function Czz
+ (ω) and the imag-

inary part of the linear response function ImRzz(ω) of σz on the frequency ω, for
Γ0 = 0.3 (solid lines) and 0.8 (dashed lines) at the critical point Γ = 1. Right panel:
effective temperatures T z

eff (ω) defined on the basis of Eq. (1.63), for Γ = 1 and various
values of Γ0. The corresponding dashed horizontal lines indicate the values of the effec-
tive temperature TE

eff determined on the basis of the expectation value of the energy
from Eq. (1.48). The comparison shows that there is no special relationship between
these two possible effective temperatures, even though a thermal behavior was appar-
ently observed when studying one-time quantities. In the figures of this Section, the
transverse magnetic field is indicated with Γ and not g. [Figure taken from Ref [38]]

they also receive a contribution from the energy difference ϵk − ϵl between high-energy

modes with k, l ≃ π, which are characterized by Tk≃π ≃ 0, where the mode-dependent

temperature Tk is given in Eq. (2.63).

We conclude that, although ⟨σz⟩stat takes a thermal value, the dynamics of σz is not

compatible with a thermal behavior that would require T z
eff (ω) to be independent of ω

and T z
eff = TE

eff .

We now focus on the global transverse magnetization M

M =
1

L

L∑

j=1

σzj . (2.92)

The generic two-time connected correlation and response function of M(t) are, from

Eqs. (1.52), (1.54), (1.55), (1.57) and (1.58), [38]

CM
+ (t+ t0, t0) = L

[
1

2
⟨{M(t+ t0),M(t0)}⟩ − ⟨M(t+ t0)⟩⟨M(t0)⟩

]
(2.93)

= 8

π∫

0

dk

π
Re [vk(t+ t0)v

∗
k(t0)uk(t+ t0)u

∗
k(t0)] , (2.94)

RM (t+ t0, t0) = iL θ(t)⟨[M(t+ t0),M(t)]⟩ (2.95)

= −16 θ(t)

π∫

0

dk

π
Im [vk(t+ t0)v

∗
k(t0)uk(t+ t0)u

∗
k(t0)] . (2.96)
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Figure 2.5: Time dependence of the correlation CM
+ (t) (left panel) and linear response

functions RM (t) (right panel) of the global transverse magnetization M (see Eq. (2.92))
in the stationary regime after the quench to the critical point Γ = 1. The insets shows
the algebraic decay of the functions ∼ t−3/2 for initial conditions Γ0 ̸= Γ = 1; in the
case of equilibrium at zero temperature Γ0 = Γ = 1 (green solid lines), |CM

+ (t)| still
decays as t−3/2 whereas |RM (t)| decays more slowly, as indicated by the uppermost
thin dashed line ∼ t−1 in the inset of the right panel. In the figures of this Section, the
transverse magnetic field is indicated with Γ and not g. [Figure taken from Ref [38]]

For critical quenches and in the stationary regime CM
+ and RM become

CM
+ (t) ≡ lim

t0→∞
CM = C +

J0(8t) + J2(8t)

2
+ F (8t) + F ′′(8t). (2.97)

RM (t) ≡ lim
t0→∞

RM (t+ t0, t0) = 4θ(t)
[
E(8t) + E′′(8t)

]
, (2.98)

where we introduced the function F and the constant C

F (τ) ≡
π∫

0

dk

π
cos(ϵkτ/4) cos

2(2∆θk) and C =
(1− g0)2

4
. (2.99)

In Fig. 2.5 we plot these stationary correlation and response functions of the global

magnetization M for a critical quench g = 1 from various initial conditions g0 = 0, 0.5, 1.

In the case of initial conditions deep in the ferromagnetic or paramagnetic phase (i.e.,

g0 = 0 or g0 = ∞) the functions CM
+ (t) and RM (t) can be expressed completely in terms

of Bessel functions [38]

CM
+ (t) =

1

4
+

5

8
J0(8t) +

1

2
J2(8t)−

1

8
J4(8t), (2.100)

RM (t) = θ(t) [J1(8t) + J3(8t)] . (2.101)

For generic quenches, instead, it is only possible to determine the long-time behavior of

the stationary correlation and response functions:

CM
+ (t ≫ 1) = C +

1

8
√
πt3/2

sin(8t− π/4) +O(t−5/2), (2.102)
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Figure 2.6: Left panel: correlation function CM
+ (ω) and the imaginary part of the

linear response function ImRM (ω) of M as functions of the frequency ω, for Γ0 = 0.3
(solid lines) and 0.8 (dashed lines) at the critical point Γ = 1. The dot-dashed black line
shows the limiting value of CM

+ (ω) and ImRM (ω) for Γ0 → 1. Right panel: effective
temperatures TM

eff (ω) for Γ = 1 and various values of Γ0. The corresponding dashed

horizontal lines indicate the values of the effective temperature TE
eff determined on

the basis of the expectation value of the energy from Eq. (1.48). As in Fig. 2.4 the
comparison between solid and dashed lines in the right panel shows that there is no
special relationship between these two possible effective temperatures. Contrary to
T z
eff (ω) [see Fig. 2.4], the effective temperature TM

eff (ω) takes a finite value at low
frequencies ω → 0+. In the figures of this Section, the transverse magnetic field is
indicated with Γ and not g. [Figure taken from Ref [38]]

RM
+ (t ≫ 1) = − 1

4
√
πt3/2

cos(8t− π/4) +O(t−5/2). (2.103)

We note that the algebraic decay common to Eqs. (2.102) and (2.103) is slower than the

one of the corresponding quantities for the local transverse magnetization in Eqs. (2.89)

and (2.90); in addition, this leading-order decay ∼ t−3/2 of both CM
+ and RM for

g0 ̸= g = 1 is observed also at equilibrium at finite temperature [47].

Proceeding in the same way as we did for the local transverse magnetization we calculate

the Fourier transforms of CM
+ (t) and RM (t) and then we extract the effective tempera-

tures TM
eff (ω) according to Eq. (1.63). The Fourier transform CM

+ (ω) and RM (ω) receive

a contribution only from frequencies ω = ±2ϵk, contrarily to Czz
+ (ω) and Rzz(ω). The

results are reported in Fig. 2.6. We note that for a certain frequency ω the effective

temperature TM
eff (ω) is equal to the mode dependent temperature Tk characterizing

the GGE (see Eq. (2.63)), Tk = TM
eff (ω = 2ϵk). We emphasize that there is no obvi-

ous relationship between the effective temperature TE
eff and the frequency-dependent

TM
eff (ω). The effective temperature TM

eff (ω) vanishes at ω = ωmax and it takes a finite

value at low frequencies, contrary to what happens to the effective temperature T z
eff (ω).

The reason for this distinct low-frequency behavior of TM
eff is that TM

eff (ω → 0) is solely

determined by the low-energy modes which are characterized by a finite effective temper-

ature Tk given in Eq. (2.63). The difference between the various effective temperatures

TM
eff (ω) ̸= T z

eff (ω) ̸= TE
eff provides additional evidence of the lack of thermalization in

the asymptotic long-time state.
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The last observable we consider here is the order parameter σx. Its expectation value

⟨σx(t)⟩ decays to zero at long times for any g ̸= g0; this is similar to the equilibrium

thermal behavior at finite temperature T > 0 which is characterized by the absence

of long-range order along the x-axis in spin space. In order to investigate the possible

emergence of an effective thermal behavior we study the stationary two-time correlation

function Cxx, defined as

Cxx(t+ t0, t) = lim
t0→∞

⟨σxj (t+ t0)σ
x
j (t0)⟩, (2.104)

which provides the symmetric correlation function Cxx
+ and the linear response function

Rxx using Eqs. (1.57) and (1.58). The order parameter correlation function can be

written in terms of the determinant of a 2L × 2L matrix, where L is the chain length,

and it is evaluated numerically in Ref. [38].

The dynamics of the operator σx shows a very different behavior compared to those

of the previous observables considered, as we can see in Fig. 2.7. Both Cxx
+ (t) and

Rxx(t) decay exponentially, rather than algebraically, in the long-time limit, with the

characteristic time τ defined by

Cxx
+ (t) ∼ e−t/τ where τ−1 = −

π∫

0

dk

π

dϵgk
dk

ln cos(2∆θk). (2.105)

We note that this time coincide with the one calculated in Ref. [16] (see Eq. (2.68)).

It is very interesting to analyze the time dependence of the space-dependent stationary

correlation Cxx
+ (r, t) and response Rxx(r, t) functions of two spins σx separated by a

distance r, calculated from Cxx(r, t+ t0, t) = ⟨σxj+r(t+ t0)σxj (t0)⟩t0=∞ using Eqs. (1.57)

and (1.58). We observe from Fig. 2.8 that the correlation and the response functions

remain almost constant up to times tm ≃ r/2; then the correlation function oscillates

and decays towards its asymptotic vanishing value whereas the response function first

abruptly increases and takes non-negligible values and then decays as well. At short

times, t < tm, Cxx(r, t) and Rxx(r, t) are constant because the quasi-particles emitted

after the quench move ballistically with a finite maximum speed vm ≃ 2. Accordingly,

the correlation function will be constant until the point located at (r, t + t0) does not

belong to the light cone of the point (r = 0, t0). This light-cone effect was already

reported in Refs. [16, 17]. The long-time exponential decay of Cxx(r, t) and Rxx(r, t)

is illustrated in Fig. 2.9, we observe that it is independent of r and it occurs with the

rate τ given by Eq. (2.105). Finally, in Ref. [38] a set of effective temperatures T x
eff

is extracted numerically from Eq. (1.63) and these temperatures turn out to have no

relationship with the previous one, providing further evidence for the lack of thermal

behavior.

In summary, we have seen that the quantum Ising chain does not thermalize as it

is clearly shown not only by discrepancies in expectation values of one-time quanti-

ties, but also as revealed by the time-dependence of two-time correlation and response

functions which do not satisfy the fluctuation-dissipation theorem proper to the Gibbs
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ensemble. In fact, to assert the emergence of a thermal behavior solely on the basis

of one-time quantities might be misleading and the effective temperatures extracted

from fluctuation-dissipation relations result to be an extremely powerful tool to deeply

understand the nature of the stationary state reached after the quench.

Figure 2.7: Time dependence of the correlation Cxx
+ (t) (left panel) and linear response

Rxx(t) (right panel) functions of the order parameter, in the stationary state after a
quench to the critical point Γ = 1 and for various values of Γ0. The insets highlight the
short-time behavior of these functions and the dashed curves correspond to the analytic
expressions [38] 1 − 2(Γt)2 (left panel) and 4⟨σz⟩statΓt (right panel). In the figures of
this Section, the transverse magnetic field is indicated with Γ and not g. [Figure taken
from Ref [38]]
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Figure 2.8: Time dependence of the stationary correlation (left panel) and linear
response function (right panel) of two σx spins separated by a distance r = 10 in units
of the lattice spacing, after a quench to the critical point Γ = 1. Both Cxx

+ (r = 10, t)
and Rxx(r = 10, t) display clear light-cone effects, as discussed in the main text. In
the figures of this Section, the transverse magnetic field is indicated with Γ and not g.
[Figure taken from Ref [38]]

Figure 2.9: Time dependence of the correlation and response functions Cxx
+ (r, t) and

Rxx(r, t) for various values of r and Γ0 after a quench to the critical point Γ = 1. The
behavior of both functions at short times is compatible with a light-cone effect with
characteristic time r/vm = r/2 for the present case Γ = 1. Before this characteris-
tic time, the correlation function is almost constant whereas the response function is
negligible. The eventual exponential decay (highlighted by the logarithmic scale) is
independent of r and the dashed lines correspond to a decay rate given by equation
Eq. (2.105). The dependence on r of the correlation function at small times is compat-
ible with a spatial exponential decay Cxx

+ (r) ∼ e−r/ξ with correlation length ξ ≃ 2.3
equal to the one predicted by Eq. (2.69). In the figures of this Section, the transverse
magnetic field is indicated with Γ and not g. [Figure taken from Ref [38]]



CHAPTER 3

NOISY QUANTUM ISING CHAIN

It is interesting and important to know the asymptotic state reached by a quantum

system driven out of equilibrium by a quantum quench [2, 13, 16, 20]. In addition

to understanding which asymptotic state is attained by a quantum many-body system

after a quantum quench, it is important to know how this develop in time, i.e., what

are the time scales for thermalization, whether the process of thermalization occurs

uniformly or it is composed by many stages and, eventually, which are the mechanisms

behind thermalization. In this Chapter we answer these questions by studying the

non-equilibrium dynamics of a quantum Ising chain perturbed by a time-dependent

uncorrelated noise in the transverse field and driven out of equilibrium by a sudden

quench of the mean value of this transverse field; we refer to this model as noisy quantum

Ising chain. This model has been introduced in Ref.[34] in order to investigate the effect

of integrability breaking on the non-equilibrium dynamics of a quantum Ising chain.

In Sec. 3.1 we introduce the model and the non-equilibrium protocol, illustrating the

motivation which led to its formulation. In Sec. 3.2 we briefly review the Keldysh contour

technique which allows us to treat conveniently quantum many-body systems governed

by a time-dependent Hamiltonian. Finally, in Sec. 3.3 we show that it is possible to

write down and solve analytically a master equation for the noisy quantum Ising chain

using the Keldysh formalism; then we report the expressions of the time evolution of

various and physically relevant observables obtained by employing the solution of the

master equation. Remarkably, it turns out that the non-equilibrium dynamics of the

system resulting from the interplay of a quantum quench and a time-dependent noise is

characterized by three temporal stages. First, the system relaxes towards the asymptotic

steady state of the quantum Ising chain after a sudden quench without noise; this

phenomena is prethermalization discussed in Sec. 1.5. Later, a noise-induced dephasing

occurs, suppressing exponentially the coherences on the time scale of the inverse noise

strength. In the last stage, the noise heats up the system, driving it towards a thermal

state but at infinite temperature. In addition, the correlation function of the transverse

magnetization at equal times shows an interesting crossover from ballistic to diffusive

46
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behavior as time goes by.

3.1 The model, the motivation and the out of equilibrium pro-

tocol

In Sec. 1.3 we discuss the peculiarity of the non-equilibrium dynamics of integrable

systems. Generically, actual many-body systems are non-integrable and therefore the

study of these systems is of fundamental importance in order to reach a complete and

deep understanding of the non-equilibrium dynamics of quantum many-body systems.

Unfortunately non-integrable systems are hard to treat analytically and their dynamics

is almost never known beyond numerical simulations which, however, are still restricted

to rather small systems and short times, especially in higher spatial dimensions. We

now show heuristically that studying a quantum Ising chain perturbed by a Gaussian

noise in the strength of the transverse field, which can be solved analytically as we see

in the next Sections, can help us to understand the properties of a non-integrable Ising

chain. Consider, in fact, the Hamiltonian

H(g,B) =
∑

i

(
σxi σ

x
i+1 + gσzi

)
+B

∑

i

σzi σ
z
i+1, (3.1)

where the first term is the integrable quantum Ising chain described in Chapter 2 while

the second term, with coupling B, breaks the integrability of the model [24]. As in the

Hubbard-Stratonovich transform, we consider the infinitesimal time evolution

e−iϵH = e−iϵ
∑

i[σx
i σ

x
i+1+gσz

i ] e−iϵB
∑

i σ
z
i σ

z
i+1 +O(ϵ2), (3.2)

where we employ the Baker-Campbell-Hausdorff formula

eZ = eX eY with Z = X + Y +
1

2
[X,Y ] +

1

12
([X, [X,Y ]]− [Y, [X,Y ]]) + . . . .

(3.3)

We now introduce an auxiliary field δg and write the second term in Eq. (3.2) as a

Gaussian integral

e−iϵ
∑

m,n Bσz
mσz

n ∼
∫ ∏

m

d(δgm) e−iϵ
∑

m,n δgmBδgn−iϵ
∑

m σz
mδgm , (3.4)

where we considered generic indexes m and n. For nearest-neighbor interaction this

representation requires the auxiliary field δg to be position dependent. Neglecting this

fact and inserting Eq. (3.4) in Eq. (3.2), one can now interpreter the integration over the

auxiliary field δg as taking the expectation value on a random field which depends on

time; in other words Eq. (3.4) can be read as an average over a time-dependent Gaussian

white noise δg(t). Accordingly, we end up with a quantum Ising chain perturbed by a
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Figure 3.1: Out of equilibrium protocol studied for the quantum Ising chain: the
system is prepared in the ground state of the unperturbed Ising chain (see Eq. (2.1))
with g0 > 1, |GS⟩g0 , and is evolved according to the noisy Ising Hamiltonian (3.5) with
a different value of the transverse field g > 1, plus a Gaussian delta-correlated noise on
top of it. [34]

time-dependent Gaussian white noise δg(t) along the transverse direction

H(g, t) = −J
L∑

i=1

[
σxi σ

x
i+1 + gσzi + δg(t)σzi

]
, (3.5)

where the Gaussian noise δg(t) has zero average and delta temporal correlations, with

an amplitude Γ, i.e.,

⟨δg(t)⟩noise = 0,

⟨δg(t)δg(t′)⟩noise =
Γ

2
δ(t− t′).

(3.6)

We consider the dynamics of the system according to the following protocol: at time

t < 0 the chain is prepared in the ground state of the unperturbed Hamiltonian as in

Eq. (2.1)], with a certain value g0 of the transverse magnetic field, |GS⟩g0 , and δg(t) = 0.

At a later time t > 0, the chain is evolved according to the full Hamiltonian (3.5) with

both a different value g of the transverse field and the noise δg(t), as portrayed in

Fig. 3.1. For simplicity, both g0 and g are chosen within the paramagnetic phase. In

the following we focus on the interplay between the effect of the sudden quench g0 /→ g

of the transverse field and the time-dependent noise δg(t) driving the dynamics of the

system.

3.2 Keldysh formalism

In this Section we review the Keldysh contour technique which we will use in Sec. 3.3

to solve the time-dependent Hamiltonian (3.5). For additional details and applications
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the reader is referred to Refs. [48–51].

3.2.1 Closed time contour

Consider a quantum many-body system governed by a time-dependent Hamiltonian

H(t) = H0 + V (t), (3.7)

where H0 describes a system of non-interacting particles and V (t) is a time-dependent

perturbation or interaction term between these particles. We assume that in the distant

past t = −∞ the system is in a state specified by a density matrix ρ(−∞) and that

the particles are non-interacting, i.e., V (−∞) = 0. The density matrix ρ(t) evolves

according to the von Neumann equation of motion

∂tρ(t) = −i [H(t), ρ(t)] , (3.8)

where we set ! = 1. Equation (3.8) is formally solved with the help of the unitary

evolution operator U(t, t′) as

ρ(t) = U(t,−∞)ρ(−∞)U†(t,−∞) = U(t,−∞)ρ(−∞)U(−∞, t), (3.9)

where the evolution operator U(t, t′) obeys the differential equation

{
∂tU(t, t′) = −iH(t)U(t, t′),
U(t, t) = 1,

(3.10)

and in the last equality of Eq. (3.9) we use the property U†(t, t′) = U(t′, t). Due to

the time-dependence of the perturbation V (t), we note that the Hamiltonian operators

taken at different times, in general, do not commute with each other. Accordingly, the

solution of Eq. (3.10) is

U(t, t′) =
+∞∑

n=0

(−i)n

n!

∫ t

t′
dt1 . . .

∫ t

t′
dtnT [H(t1) . . . H(tn)] = T exp

[
−i

∫ t

t′
dt̄H(t̄)

]
,

(3.11)

where the time-ordered product of operators, denoted by the symbol T , is defined as

T [O1(t1)O2(t2) . . . On(tn)] = Oi1(ti1)Oi2(ti2) . . . Oin(tin) (3.12)

where i1, i2, . . . , in ∈ {1, 2, . . . , n} are such that ti1 > ti2 > · · · > tin . One is usually

interested in the expectation value of some observable O at a time t given by

⟨O(t)⟩ ≡ Tr [ρ(t)O] = Tr [ρ(−∞)U(−∞, t)OU(t,−∞)] , (3.13)

where we use Eq. (3.9) and the cyclic property of the trace to move the evolution operator

U(t,−∞) to the right of O. The last equality in Eq. (3.13) describes the evolution from

the time t = −∞, at which the initial density matrix ρ(−∞) is specified, towards t,
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when the observable O is evaluated, and then back to the time t = −∞. Accordingly,

in order to calculate the expectation value of an observable O we have to evolve the

initial state both forward and backward in time. At equilibrium, this forward-backward

evolution can be avoided using the adiabatic theorem (see below) and in fact it can be

reduced only to the forward one [50, 52, 53]. By considering systems at equilibrium at

zero temperature, the expectation values have the form

⟨GS|O|GS⟩, (3.14)

where |GS⟩ is the ground state of the interacting many-body system described by the

Hamiltonian H = H0 + V . We assume to adiabatically switch the interactions on and

off in the distant past and distant future, respectively, i.e.,

H(t) = H0 + e−ϵ|t| V, (3.15)

where ϵ is a positive infinitesimal real number. Under the adiabatic assumption, the

interacting ground state |GS⟩ is obtained from the ground state |0⟩ of the corresponding
non-interacting system as

|GS⟩ = U(0,−∞)|0⟩. (3.16)

Moreover, one expects that

U(+∞,−∞)|0⟩ = eiφ |0⟩, (3.17)

i.e., the time evolution of the non-interacting ground state upon adiabatic switching

first on and then off the interactions brings the system back into the state |0⟩ , up to

a phase factor eiφ. The idea behind Eqs. (3.16) and (3.17) is that the slow adiabatic

perturbation keeps the system in its evolving ground state at all times. From Eq. (3.17)

and the normalization of non-interacting ground state ⟨0|0⟩ = 1, we can write the phase

factor as

eiφ = ⟨0|U(+∞,−∞)|0⟩. (3.18)

Accordingly, Eq. (3.14) becomes

⟨GS|O|GS⟩ = ⟨0|U(−∞, 0)OU(0,−∞)|0⟩ = e−iφ⟨0| eiφ U(−∞, 0)OU(0,−∞)|0⟩

=
⟨0|U(+∞,−∞)U(−∞, 0)OU(0,−∞)|0⟩

⟨0|U(+∞,−∞)|0⟩ =
⟨0|U(+∞, 0)OU(0,−∞)|0⟩

⟨0|U(+∞,−∞)|0⟩ ,

(3.19)

where we used Eqs. (3.16) and (3.18) and the group property for the evolution operator

U(t1, t2)U(t2, t3) = U(t1, t3). The result of this procedure is that one needs to consider

only the forward evolution U(−∞,+∞) from the distant past to the distant future, as

it is evident from the expression of the numerator in the last equality of Eq. (3.19): the

evolution is from t = −∞ towards t = 0, where the observable O is evaluated, and then

it continues to the distant future t = +∞.

In non-equilibrium situation the procedure which take to Eq. (3.19) does not work. If the
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Hamiltonian H(t) contains non-adiabatic time-dependent external fields the evolution

drives the system away from the instantaneous ground state. Even if all such fields

are eventually switched off in the distant future, there is no guarantee that the system

returns to its initial ground state: acting with the operator U(+∞,−∞) on the initial

ground state results in an unknown superposition of excited states. As a result, the

backward evolution U(−∞, t) cannot be eliminated and therefore, as it can be seen

from Eq. (3.13), the evolution is along the closed time contour Ct depicted in Fig. 3.2,

which stretches from the distant past t = −∞ to the time t, where the observable O is

evaluated, and then back to t = −∞.

Figure 3.2: The closed time contour Ct is illustrated. We consider the system to be
driven out of equilibrium by a time-dependent perturbation V (t); in order to evaluate
the expectation value of an observable O we need to evolve the initial state, specified
by the density matrix ρ(−∞), along the forward branch from t = −∞ toward t, where
the observable O is evaluated, and then back to the time t = −∞ (see Eq. (3.13)). In
equilibrium situation, it is possible to reduce the evolution along the contour to real-
time axis one using the adiabatic theorem (see Eqs. (3.16), (3.17) and (3.19)). On the
other hand, in non-equilibrium situation the adiabatic does not hold and the contour
evolution is necessary.

3.2.2 Green’s function and non-equilibrium diagrammatics

As in the case of systems in equilibrium [52, 53], we define the Green’s function from

which we can obtain the physically relevant observables of the many-body system. How-

ever, as it is clear from the discussion above, we need to work on the closed time contour

and we are thus led to study the contour-ordered Green’s function Gc, also called prop-

agator, defined as

Gc(1, 2) ≡ −i
〈
TC(ψH(1)ψ†

H(2))
〉
= −iTr

[
TC(ψH(1)ψ†

H(2))ρ(−∞)
]
, (3.20)

where ψH ,ψ†
H are the annihilation/creation field operators evolved in the Heisenberg

representation according to the Hamiltonian (3.7), while we introduced the condensed

notation i = (xi, τi) and promoted the temporal variable τ to belong to the contour.

In the following we refer by τi to a time variable on the contour and by ti to the

corresponding real time variable (see Fig. 3.3). A contour ordering operator TC has

been introduced, which orders operators according to the position of their contour-time



3. Noisy Quantum Ising Chain 52

argument on the closed contour; for example, for the case of two contour times,

TC(ψ(τ1)ψ†(τ2)) =

⎧
⎨

⎩
ψ(τ1)ψ†(τ2), τ1

C
> τ2,

±ψ†(τ2)ψ(τ1), τ2
C
> τ1,

(3.21)

where the upper (lower) sign is for bosons (fermions) respectively. The notation
C
≷ for

ordering along the contour has been introduced; for example, τ1
C
> τ2 means that τ1 is

further along the contour C than τ2 irrespective of their corresponding numerical values

on the real axis and the symbol
C
< is defined analogously. We also introduce lesser Gc,<

and greater Gc,> quantities for the contour ordered Green’s function

Gc,<(1, 2) = Gc(1
C
< 2), (3.22)

Gc,>(1, 2) = Gc(1
C
> 2). (3.23)

It is possible to prove [48] that the Heisenberg evolution OH(t) of an operator O can be

expressed on closed contour form as

OH(t) = TCt
[
e−i

∫
Ct

dτVH0 (τ)OH0(t)
]
, (3.24)

where Ct is the contour depicted in Fig. 3.2 stretching from t = −∞ to t and back again

to t = −∞ and VH0(t) denotes the perturbation evolved in the Heisenberg representation

according to the non-interacting Hamiltonian H0. Using Eq. (3.24) we can write the

contour-ordered Green’s function in Eq. (3.20) as [48]

Gc(1, 2) = −iTr
[
TC
(
e−i

∫
C dτVH0 (τ) ψH0(1)ψ

†
H0

(2)
)
ρ(−∞)

]
, (3.25)

and the contour C, depicted in Fig. 3.3, stretches from t = −∞ to t = min(t1, t2)

and back to t = −∞ and then forward to max(t1, t2) before finally returning back to

t = −∞. The contributions from the hatched parts in Fig. 3.3 cancel because for this

part the field operators are not involved and a closed contour appears which gives the

unit operator, or equivalently U(t1,−∞)U(−∞, t1) = 1. By the same argument, it is

possible to extend the backward and forward branches of the contour to the infinite

future t = +∞ obtaining the so-called Schwinger-Keldysh or real-time contour, which

we illustrate in Fig. 3.4. We now assume that in the distant past t = −∞ the system

was in thermal equilibrium with a density matrix

ρ(−∞) = ρth =
e−βH0

Z
. (3.26)
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Figure 3.3: Contour C stretches from t = −∞ to min(t1, t2) and back to t = −∞ and
then forward to max(t1, t2) before finally returning back to t = −∞. The contributions
from the hatched parts cancel because the field operators are not involved in this part
of the contour and so it gives the unit operator. We denote by τi the time variable
belonging to the contour (blue dot) and by ti the associated variable on the real-axis(red
dot).

Figure 3.4: The Keldysh contour stretches from the far past t = −∞ to the distant
future t = +∞ and back.

The contour-ordered Green’s function takes the final form

Gc(1, 2) = −iTr
[
TC
(
e−i

∫
C dτVH0 (τ) ψH0(1)ψ

†
H0

(2)
)
ρth
]

= −i
〈
TC
(
e−i

∫
C dτVH0 (τ) ψH0(1)ψ

†
H0

(2)
)〉

= −i

〈
TC
(
e−i

∫
C dτVH0 (τ) ψH0(1)ψ

†
H0

(2)
)〉

〈
TC e−i

∫
C dτVH0 (τ)

〉 ,

(3.27)

where in the last equality we introduced the trivial factor

〈
TC e−i

∫
C dτVH0 (τ)

〉
= 1, (3.28)

in order to make Eq. (3.27) structurally equivalent to the equilibrium case [52, 53]. We

have eliminated the complicated time evolution governed by the full Hamiltonian H(t)

replacing it with simpler evolution determined by the non-interacting Hamiltonian H0.

We take advantage of this procedure because we can now apply Wick’s theorem [48, 54],

which applies only to quadratic Hamiltonians as H0. Wick’s theorem states that the

expectation value of a contour-ordered string of operators α, evolving with quadratic
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Hamiltonian, can be obtained as

⟨TC [αH0(τ2n)αH0(τ2n−1) . . .αH0(τ2)αH0(τ1)]⟩ =
∑

a.p.p

∏

i ̸=j

(±)ζP ⟨TC [αH0(τi)αH0(τj)]⟩ ,

(3.29)

where the sum is over all possible pairs (a.p.p) of indices {1, 2, . . . , 2n}, α can be either

a creation or an annihilation operator and the quantum statistical factor (±)ζP counts

the number of transpositions relating the orderings on the two sides (upper sign for

bosonic operators and lower sign for fermionic ones). By applying repeatedly Wick’s

theorem, we can construct the perturbative expansion of the contour ordered Green’s

function. Writing down the n-th order contribution from the expansion of the expo-

nential in Eq. (3.27) containing the interaction, and employing Eq. (3.29), we obtain

an expression for the full contour propagator Gc(1, 2) involving only the free contour

propagator Gc
0(1, 2) = −i⟨TC(ψH0(1)ψH0(2))⟩ and the interaction vertices. Accordingly,

non-equilibrium and equilibrium formalism are structurally equivalent, the only differ-

ence being the replacement of time integrals running on the real axis with contour ones.

As in the equilibrium case, we can express the perturbative expansion of Gc(1, 2) dia-

grammatically through Feynman diagrams1 and obtain the Dyson equation for the full

contour propagator [48–51]:

Gc(1, 2) = Gc
0(1, 2) +

∫
dx3

∫

C
dτ3

∫
dx4

∫

C
dτ4G

c
0(1, 3)Σ

c(3, 4)Gc(4, 2)

= Gc
0(1, 2) +Gc

0(1, 3)⊗ Σc(3, 4)⊗Gc(4, 2)

= Gc
0(1, 2) +Gc(1, 3)⊗ Σc(3, 4)⊗Gc

0(4, 2),

(3.30)

where the symbol ⊗ is understood as a convolution product, the subscript ”0” indicates

that the corresponding quantity refers to the non-interacting theory and all the quan-

tities are evaluated along the contour. The function Σc is called (contour) self-energy

and its expression depends on the interaction V (t) chosen. In Fig. 3.5 Dyson equation

(3.30) is represented diagrammatically.

3.2.3 Langreth theorem

We now present a technique, based on the Langreth theorem, which allows us to con-

vert the integrals along the contour into integrals on the real-time axis. In a generic

perturbative expansion, one encounters, e.g., contour integrals of the form

D(τ1, τ2) =

∫

C
dτ A(τ1, τ)B(τ, τ2) = A(τ1, τ)⊗B(τ, τ2), (3.31)

where the contour C can be the one depicted in Fig. 3.3 or Fig. 3.4. On this specific

example, we illustrate the procedure for the associated lesser quantity D<(τ1, τ2) in

which, according to Eq. (3.22), we have τ1
C
< τ2. First of all it is convenient to deform

1As in equilibrium formalism, the disconnected Feynman diagrams originating in the numerator of
Gc are canceled by the vacuum diagrams from the denominator (see Eq. (3.27)).
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Figure 3.5: Diagrammatic representation of Dyson equation for the contour ordered
Green’s function Gc. The double arrow represents the full contour Green’s function
Gc, the single arrow the non-interacting Green’s function GC

0 and the red circle the
self-energy Σc.

Figure 3.6: We write the contour C, illustrated in Fig. 3.3 or Fig. 3.4, as C = C1 + C2,
where Ci, with i = 1, 2, is the path going from t = −∞ to t = ti and back. Each

contour Ci is then split into the forward branch
→
C i, from t = −∞ to t = ti, and the

backward branch
←
C i, from t = ti to t = −∞.

the contour C into the equivalent contour C1 + C2 as depicted in Fig. 3.6.

Equation (3.31), with τ1
C
< τ2, becomes

D<(τ1, τ2) =

∫

C1
dτ A(τ1, τ)B(τ, τ2) +

∫

C2
dτ A(τ1, τ)B(τ, τ2)

=

∫

C1
dτ A(τ1, τ)B

<(τ, τ2) +

∫

C2
dτ A<(τ1, τ)B(τ, τ2),

(3.32)

because on the contour C1 one has τ
C1
< τ2, and, analogously, τ1

C2
< τ on the contour C2.

By splitting the contours into the forward and backward parts
→
C i and

←
C i, respectively,
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and by using the contour ordering on them, one has

D<(τ1, τ2) =

∫
→
C 1

dτA>(τ1, τ)B
<(τ, τ2) +

∫
←
C 1

dτA<(τ1, τ)B
<(τ, τ2)

+

∫
→
C 2

dτA<(τ1, τ)B
<(τ, τ2) +

∫
←
C 2

dτA<(τ1, τ)B
>(τ, τ2).

(3.33)

Parameterizing the forward and backward contours as (i = 1, 2)

→
Ci = t with t ∈ [−∞, ti], (3.34)
←
Ci = t with t ∈ [ti,−∞], (3.35)

and noting that the contour variables τi can now be identified by their corresponding

values ti on the real-time axis, Eq. (3.33) becomes

D<(t1, t2) =

t1∫

−∞

dt
[
A>(t1, t)−A<(t1, t)

]
B<(t, t2) +

t2∫

−∞

dtA<(t1, t)
[
B<(t1, t)−B>(t1, t)

]

=

+∞∫

−∞

dt θ(t1 − t)
[
A>(t1, t)−A<(t1, t)

]
B<(t, t2)

+

+∞∫

−∞

dt θ(t2 − t)A<(t1, t)
[
B<(t1, t)−B>(t1, t)

]
.

(3.36)

Introducing the retarded function

AR(t1, t2) = θ(t1 − t2)
[
A>(t1, t2)−A<(t1, t2)

]
, (3.37)

and the advanced function

AA(t1, t2) = θ(t2 − t1)
[
A<(t1, t2)−A>(t1, t2)

]
, (3.38)

one eventually finds the rule to express the lesser quantity D< in Eq. (3.31) as

D< = AR(t1, t) ◦B<(t, t2) +A<(t1, t) ◦BA(t, t2), (3.39)

where ◦ symbolizes convolution product in real time, i.e., integration over the internal

real-time variable t from minus infinity to plus infinity. We report in table 3.1 other

useful rules which can be proved analogously to Eq. (3.39). These equivalent expressions

- known as Langreth theorem- allow one to turn any contour ordered quantity, such as

the contour ordered Green’s function we are interested in, into products of real-time

quantities.
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Contour Real axis

D = A⊗B D≷ = AR ◦B≷ +A≷ ◦BA

DR = AR ◦BR

DA = AA ◦BA

D = A⊗B ⊗ C D≷ = AR ◦BR ◦ C≷ +AR ◦B≷ ◦ CA +A≷ ◦BA ◦ CA

Table 3.1: List of rules based on Langreth theorem in order to express contour integrals
in ones along real-time axis. On the left column we report quantities evaluated along
the contour and on the right column the corresponding quantities on the real-axis. The
symbol ⊗ (◦) indicates contour (real-axis) convolution integral [48, 49].

3.2.4 Kinetic equations

Applying the last relation reported in table 3.1 to the Dyson equation (3.30), we can

rewrite it for the real-time Green’s function as

G≷ = G≷
0 +GR

0 ◦ ΣR ◦G≷ +GR
0 ◦ Σ≷ ◦GA +G≷

0 ◦ ΣA ◦GA

= G≷
0 +GR ◦ ΣR ◦G≷

0 +GR ◦ Σ≷ ◦GA
0 +G≷ ◦ ΣA ◦GA

0 .
(3.40)

We now express this equation in integro-differential form; the equation of motion for the

Green’s function are

(i∂t − h0)G
R/A
0 (t, t′) = δ(t− t′), (3.41a)

(i∂t − h0)G
<,>
0 (t, t′) = 0, (3.41b)

GR/A
0 (t, t′) (−i∂t′ − h0) = δ(t− t′), (3.41c)

G<,>
0 (t, t′) (−i∂t′ − h0) = 0, (3.41d)

where h0 denotes the single-particle Hamiltonian, i.e., H0 =
∑

i h0ψ
†(i)ψ(i). By acting

with the operator (i∂t − h0) from the left of the first equality in Eq. (3.40) and from

the right of the second equality with (−i∂t′ −h0), we obtain the Dyson equation for the

real-time Green function in integro-differential form

i∂tG
≷(t, t′) = h0G

≷(t, t′) +

+∞∫

−∞

dt′′
[
Σ≷(t, t′′)GA(t′′, t′) + ΣR(t, t′′)G≷(t′′, t′)

]
,

−i∂t′G
≷(t, t′) = G≷(t, t′)h0 +

+∞∫

−∞

dt′′
[
GR(t, t′′)Σ≷(t′′, t′) +G≷(t, t′′)ΣA(t′′, t′)

]
.

(3.42)

Equation (3.42) is the starting point in order to obtain, in the next Section, a mas-

ter equation for the noisy quantum Ising chain from which all the relevant physical

properties of the system then follow.
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3.3 Prethermalization in a noisy quantum Ising chain

In this Section we briefly review the results of Ref. [34] about the kinetics of local

observables and their correlation functions after a quench of the noisy quantum Ising

chain discussed in Sec. 3.1. In order to evaluate these observables, in Sec. 3.3.1 a kinetic

equation for the equal time non-equilibrium Green’s function is obtained for the quench

protocol discussed in Sec. 3.1 and illustrated in Fig. 3.1. This is achieved by deriving

within the Keldysh contour technique a master equation, the solution of which eventually

provides an analytic expression for the two-time functions of Bogolyubov fermions at

equal time. These equations will then be used in order to calculate all the observables

of interest and their the non-equilibrium dynamics, as discussed in Sec. 3.3.2. In the

following we assume J = 1 and we restore it in the calculations only when it is necessary.

3.3.1 Master equation

Based on the solution of the quantum Ising chain discussed in Sec. 2.2, one can introduce

the noise in the transverse field and write the noisy quantum Ising chain Hamiltonian

(3.5) as

H(g, t) = 2
∑

k>0

Ψ†
kHk(t)Ψk = 2

∑

k>0

Ψ†
k

(
H0

k + Vk(t)
)
Ψk, (3.43)

where Ψk is the Nambu spinor (2.25) while, from Eq. (2.24),

H0
k = (g − cos k)σz − (sin k)σy and Vk(t) = δg(t)σz. (3.44)

As explained in Sec. 3.2, we can set up a perturbative expansion for the contour ordered

Green’s function Gc(τ, τ ′) as

Gc(τ, τ ′) =
[
Gc

k(τ, τ
′)
]
l,m

= −i

〈
g0

〈
GS

∣∣∣TC
(
Ψk,l(τ)Ψ

†
k,m(τ ′)

)∣∣∣GS
〉

g0

〉

noise

= −i
〈
TC
(
Ψk,l(τ)Ψ

†
k,m(τ ′)

)〉
,

(3.45)

where |GS⟩g0 is the ground state of the unperturbed Ising Hamiltonian (2.1) with g = g0,

the index l = 0, 1 indicates the l-th component of the Nambu spinor Ψk and we take the

expectation value over the initial pure state |GS⟩g0 and then we perform the average

over the noise (3.6). The contour Green’s function (3.45) satisfies the Dyson equation

(3.30) diagrammatically illustrated in Fig. 3.7. In the following we will neglect noise

crossed diagrams, computing the self-energy within the so called self-consistent Born

approximation [49], controlled by the small parameter γ

γ =
Γ

∆
≪ 1 , (3.46)

as illustrated in Fig. 3.7, with ∆ = |g − 1| half of the gap of the noiseless chain (2.56).

This dimensionless parameter is, in a sense, the analogue of kF l ≫ 1 in disordered

electron systems, where the typical length scale associated to electron wavefunctions,
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Figure 3.7: Diagrammatic representation of the Dyson equation (3.30) satisfied by
the contour ordered Green’s function (3.45) of the noisy quantum Ising chain. Crossed
diagrams are neglected according to the self-consistent Born approximation Eq. (3.49).
[34]

λF ∼ 1/kF (kF is the Fermi wave vector), is much smaller than the typical length

associated to disorder, l (the average mean path), and correlations induced by the latter

can be disregarded at leading order in kF l ≫ 1. This physical analogy is at the origin

of the approximation Γ/∆ ≪ 1, since Γ and ∆ play a role analogous to l−1 and kF ,

respectively.

The physically relevant information about the system are encoded in the real-time lesser

Green’s function G<(t, t′), defined as

G<(t, t′) =
[
G<

k (t, t
′)
]
l,m

= i
〈
Ψ†

k,m(t′)Ψk,l(t)
〉
. (3.47)

The Dyson equation for the real-time Green’s function can be written as in Eq. (3.42),

i.e.,

i∂tG
<(t, t′) = H0

kG
<(t, t′) +

∫
dt′′[Σ<(t, t′′)GA(t′′, t′) + ΣR(t, t′′)G<(t′′, t′)],

−i∂t′G
<(t, t′) = G<(t, t′)H0

k +

∫
dt′′[GR(t, t′′)Σ<(t′′, t′) +G<(t, t′′)ΣA(t′′, t′)],

(3.48)

where H0
k is given by Eq. (3.44).

Within the self-consistent Born approximation, the self energies are obtained by con-

sidering the lowest order self-energy diagram, i.e., the sunset diagram, and replacing

in it the non-interacting propagator G0 with the full one G, as it is diagrammatically

illustrated in Fig. 3.7:

Σ<
t,t′ =

Γ

2
δ(t− t′)σzG<

t,t′σ
z

ΣR,A
t,t′ =

Γ

2
δ(t− t′)σzGR,A

t,t′ σ
z = ∓i

Γ

4
δ(t− t′)1.

(3.49)

The last equality in Eq. (3.49) follows from the fact that GR/A
t,t = ∓i/2, as a consequence

of the definitions (3.37) and (3.38), of the following convention for the step function θ,

i.e.,

θ(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0, x < 0,

1/2, x = 0,

1, x > 0,

(3.50)
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and of the fundamental identity

G<(t, t)−G>(t, t) = i⟨Ψ†
k,l(t)Ψk,m(t)⟩+ i⟨Ψk,m(t)Ψ†

k,l(t)⟩ = i
〈{

Ψ†
k,l(t),Ψk,m(t)

}〉

= iδl,m = i1.

(3.51)

In the last line we used the anticommutation relation for Nambu spinors, i.e.,
{
Ψk,l,Ψ

†
k′,m

}
=

δk,k′δl,m. In order to solve Eq. (3.48) we substitute Eq. (3.49) into it, subtract the two

resulting equations and take the limit t → t′; defining the density matrix

ρk(t) = −iG<
k (t, t) (3.52)

we finally obtain the master equation [34]

∂tρk = −i[H0
k , ρk] +

Γ

2
(σzρkσ

z − ρk), (3.53)

where [H0
k , ρk] on the right hand side is responsible for the free dynamics while the

second one contains information about the dissipation due to the noise. We now apply to

Eq. (3.53) a Bogolyubov rotation R(θgk) (see Eqs. (2.26) and (2.28)), which diagonalizes

the Ising model in the basis of the Bogolyubov fermions γgk , finding

∂tρk = −i[H̃0
k , ρk] +

Γ

2
(σ′ρkσ

′ − ρk), (3.54)

where

H̃0
k = R†(θgk)H

0
kR(θgk) = ϵgkσ

z, (3.55)

σ′ = R†(θgk)σ
zR(θgk) = cos(2θgk)σ

z + sin(2θgk)σ
y. (3.56)

The density matrix ρk is consequently expressed in the basis of the Bogolyubov fermions,

ρk(t) =

(
⟨γg †k (t)γgk(t)⟩ ⟨γg †k (t)γg †−k(t)⟩
⟨γg−k(t)γ

g
k(t)⟩ ⟨γg−k(t)γ

g †
−k(t)

)
, (3.57)

where ⟨γg †k γgk⟩ are the populations of the energy levels of the noisy Hamiltonian with

momentum k while ⟨γg †k γg †−k⟩ represent the coherences.

Before solving Eq. (3.54), let us comment on the properties of the noise. In the base

diagonalizing the final Hamiltonian, Hk(t) appears as

Hk(t) = ϵgkσ
z + δg(t)(σz cos 2θgk + σy sin 2θgk)

= ϵgkσ
z + δgzk(t)σ

z + δgyk(t)σ
y,

(3.58)
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where δgzk(t) and δg
y
k(t) satisfy

⟨δgzk(t)δgzk(t′)⟩ =
Γ

2
(cos 2θgk)

2δ(t− t′),

⟨δgyk(t)δg
y
k(t
′)⟩ = Γ

2
(sin 2θgk)

2δ(t− t′),
(3.59)

where it should be easy to see that our model is equivalent to the QIC perturbed by

two k-dependent delta correlated noises, one along the z direction and the other one

along y. Moreover the noise along the y direction is correlated to the noise along the z

direction

⟨δgzk(t)δg
y
k(t
′)⟩ = Γ

2
sin 2θgk cos 2θ

g
kδ(t− t′). (3.60)

The usual way to solve a master equation like (3.54) is to decompose the density matrix

ρk in the basis of the Pauli matrices, i.e.,

ρk =
1

2
+ δfk σ

z + xk σ
x + yk σ

y, (3.61)

where δfk represents the population of the k-mode while xk, yk the coherences. These

coefficients are real, being the density matrix ρk in Eq. (3.57) Hermitian. Upon inserting

this decomposition in the master equation (3.54) we end up with a system of differential

equations for the coefficients δfk, xk, yk of the density matrix (3.61):

∂t(δfk) = −Γ sin2(2θgk)δfk +
Γ

2
yk sin(4θ

g
k),

∂txk = −Γxk − 2ϵgkyk,

∂tyk =
Γ

2
sin(4θgk)δfk + 2ϵgkxk − Γ cos2(2θgk)yk,

(3.62)

where θgk and ϵgk are given in Eqs. (2.28) and (2.31), respectively. In the following we

solve this system of equations in the limit γ = Γ/∆ ≪ 1, which allows us to neglect

y-z correlations; this approximation is checked numerically for different values of k in

the Brillouin zone. Taking into account the various initial conditions in Eqs. (2.58)

and (2.59), corresponding to an extensive amount of energy injected in the system by

the quench of the transverse field, we immediately obtain [34]

δfk(t) =

[
sin2(∆θk)−

1

2

]
e−Γt sin

2(2θgk), (3.63)

where ∆θk is given in Eq. (2.38). For the coherences it is convenient to introduce the

variable zk = xk − iyk for which we obtain [34]

∂tzk = (−2iϵgk − Γ)zk + Γ
[
1− cos2(2θgk)

] zk − z∗k
2

; (3.64)
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Figure 3.8: Populations nk(t) = ⟨γg †
k (t)γgk(t)⟩ of the energy levels of the noisy Hamil-

tonian (3.5) with momentum k as a function of wave vector k ∈ [0,π] at various times
after the quench: from bottom to top, Γt = 0.1, 1, 10, 102, 103 and 104. The quench
occurs from g0 = 2 to g = 4. [Figure taken from Ref. [34]]

from this equation we see that the coherences decay exponentially fast as Γt ≫ 1, as

one can see close to k ≃ 0 or k ≃ π:

zk ≃ z0ke
−2iϵgkte−Γt. (3.65)

On the other hand, we see from equation (3.63) that while the populations δfk of

most of the modes relax quickly to the thermal occupation nk ≃ 1/2 corresponding to

infinite temperature on time scales of the order of 1/Γ, this relaxation rate vanishes

upon approaching the band edges k = 0 and k = ±π as illustrated in Fig. 3.8.

We report the expression for δfk and zk for k ≃ 0, as they will be useful later on in

the calculation of the leading behavior of physical observables during thermalization

dynamics discussed in the next Section:

⟨γg †k γgk⟩ =
1

2
+

1

2

(
k2

2∆2
ρ2− − 1

)
e−Γk

2t/∆2
,

⟨γg †k γg †−k⟩ = − ik

2∆
ρ−e

−αt−iβt,

(3.66)



3. Noisy Quantum Ising Chain 63

where ρ− ≡ 1−∆/∆0 with ∆0 ≡ |g0 − 1| and

α = Γ

[
1− (k/∆)2

2

]
,

β = 2∆

[
1 +

(k/∆)2

2

]
.

(3.67)

3.3.2 Thermalization dynamics of observables

Based on the expressions reported in the previous Section, we are now in the position to

investigate the interplay between quench and noise in the time evolution of observables

of interest: in particular we focus their dynamics from the initial state towards the

asymptotic steady state, which is the infinite temperature state, where all fermion modes

are equally occupied with nk = 1/2, for all k in the Brillouin zone. We shall start the

analysis by computing the energy absorbed by the system. We will then be concerned

with the possible thermalization of the transverse magnetization correlator and, finally,

we are going to look for signatures of the noise in the time evolution of the order

parameter correlations.

Energy absorbed by the quantum Ising chain

The energy E(t) absorbed by the system during the noisy time-dependent protocol can

be expressed as

E(t) = ⟨ψ(t)|H(g, t)|ψ(t)⟩ (3.68)

and this expression is for a certain realization of the noise δg and then it will have to be

averaged over the distribution of the noise. The state of the chain at time t, |ψ(t)⟩, is

|ψ(t)⟩ = UH(g,t)(t, 0)|GS⟩g0 , (3.69)

where UH(g,t)(t, 0) is given by Eq. (3.11) and we remind that |GS⟩g0 is the ground state

of the unperturbed Ising Hamiltonian (2.1) with g = g0 in which the chain is initially

prepared. Substituting into Eq. (3.68) the expression for the Hamiltonian Eq. (3.5), we

get

E(t) = ⟨ψ(t)|
(
H0(g) + δg(t)

∑

i

σzi

)
|ψ(t)⟩

= ⟨ψ(t)|H0(g)|ψ(t)⟩+ δg(t)⟨ψ(t)|
L∑

i=1

σzi |ψ(t)⟩,
(3.70)

where H0(g) is given in Eq. (2.1). Let us now assume that at time τ and onwards the

noise is turned off. Accordingly, in the thermodynamic limit L → ∞, the total energy
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acquired at time τ by the system is

E(τ) = L

∫ π

0

dk

2π
ϵgk

(
⟨γg †k (τ)γgk(τ)⟩ − ⟨γg−k(τ)γ

g †
−k(τ)⟩

)
. (3.71)

We can now use the expectation values for the two-point functions of the Bogolyubov

fermions derived in the previous Section (see Eqs. (3.61) and (3.63)) in order to evaluate

this expression as a function of τ . By using Eqs. (3.61) and (3.63), Eq. (3.71) can be

written as

E(τ) = L

∫ π

0

dk

2π
2ϵgkδfk = −L

∫ π

0

dk

2π
ϵgk cos(2∆θk)e

−Γτ sin2(2θgk). (3.72)

At short times τ ≪ Γ−1, the energy E(τ) is equal to the one EQ injected in an ordinary

quench plus small corrections [34]

E(τ) = EQ + L

∫ π

0

dk

2π
ϵgk cos(2∆θk) sin

2(2θgk)Γτ, (3.73)

as one can readily verify by expanding the exponential in Eq. (3.72) and where

EQ = − L

2π

∫ π

0
dk ϵgk cos(2∆θk) (3.74)

is the energy injected in the system by a sudden quench g0 /→ g with no noise on the

transverse field.

For τ ≫ Γ−1, Eq. (3.72) is actually dominated by the modes with smallest relaxation

rate, i.e., k ≃ 0 and k = π, with the final result [34]

E(τ) ≃
Γτ≫1

− L

2
√
π

g2 + 1√
Γτ

. (3.75)

Accordingly, the energy approaches its asymptotic value with an asymptotic algebraic

behavior (Γτ)−1/2, which is the signature of the slow relaxation of the k ≃ 0 and k = π

modes.

Evolution of the spatial density of kinks

An interesting quantity for highlighting the dynamics of thermalization is the spatial

density of kinks nkink, defined as

nkink ≡ 1

2L

L∑

i=1

⟨(1− σxi σ
x
i+1)⟩. (3.76)



3. Noisy Quantum Ising Chain 65

0 5 10 15 20 25 30 35
t0.56

0.58

0.60

0.62

0.64

0.66

0.68

n kink

Figure 3.9: Density of kinks nkink as a function of the time t elapsed after the quench
from g0 = 1.1 to g = 4 in the presence of a noise of strength Γ = 0.01. While the
red line shows the value attained by nkink without noise and predicted by the GGE,
the full time evolution (blue line) shows first a saturation towards the GGE value for
J−1 ≪ t ≪ Γ−1 and then a runaway towards the infinite temperature state. [Figure
taken from Ref. [34]]

Simple algebraic manipulations yield [34]

nkink(t) =
1

2L

∑

k

(1 + 2⟨γg †k γk⟩g=0) =

=
1

2L

∑

k

(
2 + 2δfk(t) cos(2∆αk) + 2yk(t) sin(2∆αk)

)
.

(3.77)

This result has been obtained by expressing the Bogolyubov fermions at g = 0 in terms

of fermions diagonalizing the Hamiltonian with g ̸= 0, consequently ∆αk = θg=0
k − θgk

is the difference between the two corresponding Bogolyubov angles. It is clear from

this expression that the number of kinks nkink can be written as the sum of two terms,

nkink(t) ≡ ndrift(t) + ∆n(t), where ndrift due to populations δfk (plus the constant

term) and describing the heating of the system towards the asymptotic steady state at

infinite temperature; ∆n(t), instead, is responsible for dephasing, it is exclusively due

to coherences, and it is at the origin of an intermediate stage of the dynamics of nkink,

which we shall relate to prethermalization [28–30].

It turns out that the dynamics of nkink(t) towards the asymptotic state can be divided

into three stages as summarized in Fig. 3.9:

1. first of all, the system relaxes towards the asymptotic steady state of the QIC

after a quench of the transverse field without noise, which is the GGE of the QIC

and which accounts for the conserved quantities of the model, i.e., the occupation

number of the fermions nk = γg †k γgk . This happens through inhomogeneous de-

phasing, arising from the overlap of a continuum of frequencies in Eq. (3.77) and

leading to a (Jt)−3/2 decay in the Jt ≫ 1 limit. This result can be easily derived
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by applying a stationary phase approximation to Eq. (3.77) for Jt ≫ 1 but in the

temporal range Γt ≪ 1 where the noise is not effective. Though the term prether-

malization has been introduced for closed quantum many-body systems driven out

of equilibrium by a quench, the appearance in the dynamics of an intermediate

stage described by a suitable chosen GGE observed here is very similar to what

has been found in closed systems [29, 30], justifying the use of this term also in

this context.

2. The second stage of the dynamics consists in a noise-induced dephasing, where

coherences are suppressed by the noise exponentially in time for Γt ≫ 1, as the

leading e−Γt behavior discussed before indicates.

3. The third stage corresponds to the heating up of the model and an equidistribution

of the populations. This drives, e.g., the number of kinks towards the final stage

of the dynamics corresponding to an infinite temperature state. This happens

following the same (Γt)−1/2 behavior as the energy, and it is due again to the

presence of slow relaxing modes dominating the dynamics towards thermalization.

As a last remark, it should be noticed that the appearance of a prethermalization stage

strictly depends on the different behaviors of populations and coherences during the

dynamics. This implies that whether an observable will show prethermalization or not

will depend crucially on its expression in the Bogolyubov basis. This is the reason

behind the absence of a prethermal stage in the dynamics of E(t).

On-site transverse magnetization

A prethermal plateau is also observed in the dynamics of the on-site transverse mag-

netization ⟨σzi (t)⟩, which possess a similar expression to Eq. (3.77) in the Bogolyubov

basis

mz ≡ ⟨σzi ⟩ = −
∫ π

0

dk

2π
4
[
δfk(t) cos(2θ

g
k)− sin(2θgk)yk(t)

]
, (3.78)

where δfk and yk(t) are given in Eqs. (3.63) and (3.64), respectively. The prethermal

plateau is in correspondence of the expectation value of σzi evaluated in the GGE of the

QIC without noise (see Eq. (2.64))

⟨σzi ⟩GGE =

∫ π

0

dk

2π
2 cos(2∆θk) cos(2θ

g
k), (3.79)

with ∆θk given in Eq. (2.38), and it is approached algebraically as (Jt)−3/2, in the

limit Jt ≫ 1, as in a quenched QIC [16]. On the other hand, the on-site transverse

magnetization will approach its equilibrium expectation value ⟨σzi ⟩T=∞ = 0 at infinite

temperature as a power law, i.e., as (Γt)−1/2 for t ≫ Γ−1, when quantum coherent

effects have been already exponentially suppressed by the noise. Accordingly, the non-

equilibrium dynamics of this observable is exactly the same as the one observed for the

number of kinks. In the next Section we are going to consider two-points correlation
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function of the transverse magnetization in order to unveil novel behaviors behind the

interplay of noise and quench.

Correlator of the transverse magnetization

We now investigate the equal-time correlation function of the transverse magnetization,

computed at different spin sites

Czz(r, t) = ⟨σzi+r(t)σ
z
i (t)⟩ − ⟨σzi (t)⟩2. (3.80)

Due to translational invariance, for future convenience we can set i = 0. The expression

for Czz(r, t) can be written as a sum of three terms [34]

Czz(r, t) = ⟨σr(t)σ0(t)⟩pop. + ⟨σr(t)σ0(t)⟩coh. + ⟨σr(t)σ0(t)⟩mix., (3.81)

where

⟨σr(t)σ0(t)⟩pop. = 4

∫ π

−π

dk

2π

∫ π

−π

dk′

2π
ei(k−k

′)r

{
sin(2θgk) sin(2θ

g
k′)δfk(t)δfk′(t)

+

[
1

2
+ cos(2θgk′)δfk′(t)

] [
1

2
− cos(2θgk)δfk(t)

]}
,

(3.82)

⟨σr(t)σ0(t)⟩coh. = 4

∫ π

−π

dk

2π

∫ π

−π

dk′

2π
ei(k−k

′)r
{
− sin(2θgk) sin(2θ

g
k′)yk(t)yk′(t)

+ [xk(t) + iyk(t) cos(2θ
g
k)]× [xk′(t)− iyk′(t) cos(2θ

g
k′)]
}
,

(3.83)

⟨σr(t)σ0(t)⟩mix. = 4

∫ π

−π

dk

2π

∫ π

−π

dk′

2π
ei(k−k

′)r
{
iδfk(t) sin(2θ

g
k)[xk′(t)− iyk′(t) cos(2θ

g
k′)]

− iδfk′(t) sin(2θ
g
k′)[xk(t) + iyk(t) cos(2θk)]

+ sin(2θgk)δfk′(t)yk(t) cos(2θ
g
k′) + sin(2θgk′)δfk(t)yk′(t) cos(2θk)

}
.

(3.84)

Looking the expression of the coherences in Eq. (3.64), it should be clear that we can

extract from the integrals in Eqs. (3.83) and (3.84) a prefactor with a purely time

dependent exponential decay in time, which allows us to neglect these terms for t ≫ Γ−1,

as

⟨σr(t)σ0(t)⟩coh. ∝ e−2Γt,

⟨σr(t)σ0(t)⟩mix. ∝ e−Γt.
(3.85)

The behavior of the equal-time correlation function of the transverse magnetization is

analyzed in great detail in Ref.[34], where one can find all the necessary details of the

calculation. The final result, illustrated in Fig. 3.10, is that the dynamics is character-

ized by the propagation of two “wave” fronts: at earlier times, t ≪ Γ−1, a first front
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appears at r ≃ Jt, controlled by the velocity of the quasi-particles emitted after a quench

(v ≃ J), which separates unconnected space-time regions, r ≫ Jt, where σzi correlations

behave as in the QIC without quench, from a region of space-time connected points

r ≪ Jt, where the stationary correlation function is the same as in a quenched QIC

[16]. This is consistent with the Lieb-Robinson bound [55], as already found for other

systems [56] and by various authors for the sudden quench of the QIC [16, 38]. The

effects of the noise are hardly relevant at early times, as observed for the evolution of

nkink.

At longer times t ≫ Γ−1, instead, we find a diffusive spreading of correlations for

∆r ≪ Γt, as the square of distance r scales as the time t, while for unconnected space-

time points with ∆r ≫ Γt the stationary correlation function crosses over to the asymp-

totic expression of the correlation function in a quenched QIC without noise [16]. This

scenario can be summarized in the following expressions for the correlation function [34]:

Czz(r, t ≪ Γ−1) ≃

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

2πr2
exp[−2∆0r], r ≫ vt,

1

rα
exp[−r/ξz], r ≪ vt,

(3.86)

where ξz is the correlation length associated with a simple quantum quench of the

transverse field and α an exponent, calculated in Ref. [16]. At long times t ≫ Γ−1, the

noise becomes relevant and the second crossover, between the quenched QIC correlation

function and a diffusive behavior emerges

Czz(r, t ≫ Γ−1) ≃

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1

rα
exp[−r/ξz], γt ≪ r ≪ vt,

− 1

π

∆2

4

1

Γt
exp

[
−(∆r)2

2Γt

]
, r ≪ γt,

(3.87)

where γ = Γ/∆ is the small parameter introduced in Eq. (3.46), which controls the

accuracy of the self-consistent Born approximation (3.49).

Correlator of the order parameter

The last observable analyzed in Ref. [34] is the order parameter correlation function

Cxx(r, t) at equal-times, defined as

Cxx(r, t) = ⟨σxi+r(t)σ
x
i (t)⟩ − ⟨σxi (t)⟩2, (3.88)

in order to see if the diffusive behavior observed for correlation of the transverse magne-

tization is a general signature of the effect of the noise in correlation functions. The way

to compute this function is to express it in the form of a Toeplitz determinant and to

evaluate it for spins at a separation r → ∞ by using the Fisher-Hartwig conjecture (see

Ref. [34] for details). For a quench without external noise the stationary correlation
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Figure 3.10: Spreading of quantum and thermal correlations in the noisy quantum
Ising chain (J = 1) of Eq. (3.5): the correlator of the transverse magnetization(see
Eq. (3.80)) has a first crossover when ballistic quasi-particles, carrying quantum corre-
lations, propagate at the distance r. Thermal correlations propagate at a second stage,
leading to a crossover towards a diffusive form. [Figure taken from Ref. [34]]

function has in general an exponential form Cxx(r, t) ∼ exp(−r/ξQ), with a correlation

length ξQ predicted by the generalized Gibbs ensemble [16]. Turning on the noise, the

correlation function takes the form [34]

Cxx(r, t) ∼
r→∞

r−1/2 e−r/ξ(t), (3.89)

where
1

ξ(t)
=

1

ξquench.
+

1

ξ(t)noise
with

1

ξ(t)noise
=

Γt

2g2
. (3.90)

In this way the equal-time correlation function of the transverse magnetization and of

the order parameter show very different behavior (compare Eq. (3.87) with Eq. (3.89)),

similarly to what happens for quenches in the QIC [36, 37]; indeed, the correlation

function of the order parameter displays the same exponential form as in the absence

of the noise and the spreading of quantum and thermal correlations does not result in a

diffusive form, but rather it modifies the value of the correlation length which, at later

times, decreases as 1/Γt as time increases.



CHAPTER 4

DYNAMIC CORRELATIONS OF THE NOISY QUANTUM

ISING CHAIN AND EFFECTIVE TEMPERATURES

In the published studies of the noisy quantum Ising chain (NQIC) only equal-time quan-

tities were considered [34]; in this Chapter we extend the calculation to two-time quan-

tities and, in particular, we determine the correlation and linear response functions,

which are needed in order to define effective temperatures. First of all, in Sec. 4.1 we

analyze a simplified model consisting of a two-level system driven out of equilibrium by

a time-dependent noise which heats it up. Based on the fluctuation-dissipation relations

we are able to extract a parameter, which we call effective temperature, indicating that

the two-level system is always out of equilibrium during the evolution, while the system

approaches an infinite-temperature thermal state only at infinitely long times. Then in

Sec. 4.2 we focus on the analysis of two-time quantities of the NQIC. Using Keldysh

diagrammatic technique, we are able to solve analytically the Dyson equations for the

Greens functions within the self-consistent Born approximation which is valid for suf-

ficiently weak noise. From these solutions, in Sec. 4.3 we determine the expression of

the correlator of the transverse magnetization. Finally, in Sec. 4.4 we obtain the corre-

lation and linear response functions of the transverse spins in the long-time limit and

we analyze these expression in order to understand how the equal-time correlator of the

transverse magnetization changes at different times.

4.1 A toy model: two-level system

4.1.1 The model and Green’s function

Motivated by Eqs. (3.58) and (3.59), from which we see that the noisy quantum Ising

chain is equivalent to the quantum Ising chain perturbed by two k-dependent delta

correlated noises, one along the z direction and the other one along y, we introduce a

simplified model, consisting of a two-level system subject to a time-dependent noise [57].

70
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The Hamiltonian of the model is

H =
∑

i,j=1,2

c†i [H0 + V (t)]ij cj , (4.1)

where the operators ci, c
†
i obey standard anticommutation relations,

H0 =
h

2
σz (4.2)

is time-independent and

V (t) =
∑

i=x,y,z

ξi(t)σ
i. (4.3)

is a stochastic noise. By imposing the constrain

∑

i=1,2

c†ici = 1, (4.4)

the Hamiltonian in Eq. (4.1) is equivalent to a 1/2 spin subject to a fluctuating magnetic

field. We assume that the noise terms are uncorrelated, i.e., ⟨ξi(t)ξj(t′)⟩ = 0 for i ̸= j,

with zero average ⟨ξi(t)⟩ = 0 and the correlations of the noise in the same direction are

⟨ξz(t)ξz(t′)⟩ =
Γz

2
δ(t− t′), (4.5)

⟨ξx(t)ξx(t′)⟩ =
Γr

4
δ(t− t′), (4.6)

⟨ξy(t)ξy(t′)⟩ =
Γr

4
δ(t− t′). (4.7)

We can treat this problem in the Keldysh formalism and set up a perturbation theory

as explained in Sec. 3.2. We solve the Dyson equations (3.42) for the lesser and greater

Green’s functions G≷(t, t′) averaged over the noise

G<(t, t′) = i⟨c†j(t
′)ci(t)⟩ and G<(t, t′) = −i⟨ci(t)c†j(t

′)⟩, (4.8)

using the self-consistent Born approximation (see Sec. 3.3):

Σ≷(t, t′) = δ(t− t′)

[
Γz

2
σzG≷(t, t′)σz +

Γr

4

(
σxG≷(t, t′)σx + σyG≷(t, t′)σy

)]
,

ΣR/A(t, t′) = ∓iδ(t− t′)

(
Γz

4
+

Γr

4

)
1.

(4.9)

The solution of the Green’s functions (4.8) in the approximation (4.9) is (see Appendix

B for details)

G<(t, t′) = iH(t)
[
e−(

Γz+Γr
4 )|t−t′| 1

2
+ e
−Γr

(
t+t′
2

)
−(Γz−Γr

4 )|t−t′| δf0σ
z

+ e
−(Γz+

Γr
2 )

(
t+t′
2

)
+Γz

4 |t−t′|
(z0σ

+ + z∗0σ
−)
]
H†(t′), (4.10)
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G<(t, t′)−G>(t, t′) = i e−(
Γz+Γr

4 )|t−t′|H(t)H†(t′), (4.11)

where we introduce the matrices σ± and the time-dependent unitary matrixH(t) defined

respectively as

σ± =
σx ± iσy

2
and H(t) =

(
e−i

h
2 t 0

0 ei
h
2 t

)
. (4.12)

We emphasize that the equal-time Green’s function G< of this model is similar to the

one discussed in Chapter 3. The coefficients δf0, z0 are fixed by the initial conditions

of the evolution, depending on the initial state of the system assumed. We note that

Eqs. (4.10) and (4.11) are not time-translation invariant, in contrast to what happens

at equilibrium, because the system is driven out of equilibrium by the noise.

4.1.2 Equilibrium and fluctuation-dissipation theorem

In order to compare with the case discussed above, here we consider the same two-

level system but in absence of the noise (i.e., with V = 0 in Eq. (4.1) and then given by

Eq. (4.2)) and evolving from an equilibrium initial state at temperature β0. We find that

the corresponding Green’s functions are related by the fluctuation-dissipation theorem

(see Eq. (1.62)) which involve the temperature β0. The time-independent Hamiltonian

is

H0 =
∑

i,j=1,2

h

2
c†iσ

z
ijcj , (4.13)

and we impose the constrain in Eq. (4.4). A suitable basis of the Hilbert space is given

by

|n1 = 1, n2 = 0⟩ and |n1 = 0, n2 = 1⟩, (4.14)

where ni = c†ici is the number operator of the i-th level. The time evolution of the

fermionic operators ci are easily obtained from the Heisenberg equations of motion

(! = 1)
dci(t)

dt
= i [H0, ci(t)] = −i

∑

m=1,2

h

2
σzimcm(t), (4.15)

which can be solved:

c1/2(t) = c1/2(0) e
∓ih2 t,

c†1/2(t) = c†1/2(0) e
±ih2 t .

(4.16)
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Due to the equilibrium nature of the initial state the Green’s functions of the two-level

system follow from Eqs. (4.14) and (4.16):

G<(t, t′) =
i

Z0
Tr
[
e−β0H0 c†j(t

′)ci(t)
]
=

i

Z0

(
e−

β0h
2 −

ih
2 (t−t′) 0

0 e+
β0h
2 + ih

2 (t−t′)

)
,

G>(t, t′) = − i

Z0
Tr
[
e−β0H0 ci(t)c

†
j(t
′)
]
= − i

Z0

(
e

β0h
2 −

ih
2 (t−t′) 0

0 e−
β0h
2 + ih

2 (t−t′)

)
,

(4.17)

where the partition function is Z0 = 2 cosh
(
β0h
2

)
. Using Eq. (4.17), we can find the

expressions of the Keldysh function GK(t, t′), defined as the sum of the lesser G< and

greater G> Green’s function:

GK(t, t′) = G>(t, t′) +G<(t, t′) = i tanh

(
β0h

2

)(
− e−

ih
2 (t−t′) 0

0 e
ih
2 (t−t′)

)
, (4.18)

while the difference between the retarded GR and advanced GA Green’s functions (see

Eqs. (3.37) and (3.38)) turns out to be:

GR(t, t′)−GA(t, t′) = G>(t, t′)−G<(t, t′) = −i

(
e−

ih
2 (t−t′) 0

0 e
ih
2 (t−t′)

)
. (4.19)

A simple relation between GK and GR−GA exists taking, in fact, their Fourier transform

GK(ω) and GR(ω)−GA(ω), respectively, defined by Eq. (1.59), of Eqs. (4.18) and (4.19).

One finds

GK(ω) = i tanh

(
β0h

2

)(
−δ(ω − h

2 ) 0

0 δ(ω + h
2 )

)
,

GR(ω)−GA(ω) = −i

(
δ(ω − h

2 ) 0

0 δ(ω + h
2 )

)
,

(4.20)

and therefore they satisfy the fluctuation-dissipation theorem in frequency-space (1.62)

GK(ω) = tanh (β0ω)
[
GR(ω)−GA(ω)

]
. (4.21)

Analogously to what was done in Sec. 2.4 we would like to use a relationship analogous

to Eq. (4.21) in order to define a sort of non-equilibrium effective temperature, the

properties of which will eventually indicate whether the system reaches an equilibrium

state or not. This attempt is described below.

4.1.3 Effective temperatures

In order to understand the role played by the noise in the dynamics of the two-level

system discussed above and how it affects the effective temperature possibly associated

with it, we consider the case in which the system is initially at equilibrium with inverse
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temperature β0 and follows its heating up due to the noise. The dynamics for times t > 0

is governed by the Hamiltonian (4.1) and the Green’s functions are given by Eqs. (4.10)

and (4.11) with the initial thermal condition (4.18, 4.19), which yield

GR(t, t′)−GA(t, t′) = −i e−
Γz+Γr

4 |t−t′|H(t)H†(t′), (4.22)

GK(t, t′) = −i tanh

(
β0h

2

)
e
−Γr

(
t+t′
2

)
−(Γz−Γr

4 )|t−t′|H(t)σzH†(t′), (4.23)

with the matrix H defined in Eq. (4.12). Following the line of argument presented in

Sec. 1.6 we want to define an effective temperature through the fluctuation-dissipation

relation (4.21). However, we cannot do a Fourier transform because the Green’s function

(4.22) and (4.23) are not time translation invariant. We note that Eqs. (4.22) and (4.23)

can be expressed in terms of Wigner variable T and τ

T =
t+ t′

2
and τ = t− t′; (4.24)

instead of doing a Fourier transform, we then perform a Wigner transform, defined as

f(ω, τ) =

2T∫

−2T

dτ eiωτ f(τ, T ). (4.25)

In order to simplify the notation we use the same symbol for the function and its

transform, as the difference is made clear by their argument. In other words we are

keeping T fixed and then Fourier transform with respect to the variable τ . To compute

the Wigner transform of Eqs. (4.22) and (4.23), we need the following result

2T∫

−2T

dτ ei(ω+a)τ−b|τ | =
2b− e−2bT {2b cos[2(ω + a)T ]− 2(ω + a) sin[2(ω + a)T ]}

b2 + (ω + a)2
, (4.26)

and, accordingly,

GK
11
22
(ω, T ) = ∓8i tanh

(
β0h

2

)
×

(Γz − Γr) e−ΓrT −e
−Γz+Γr

2 T {(Γz − Γr) cos[(2ω ∓ h)T ]− 2(2ω ∓ h) sin[(2ω ∓ h)T ]}
(Γz − Γr)2 + 4(2ω ∓ h)2

,

(GR −GA)(ω, T )11
22

=

= −8i× Γz + Γr − e
−Γz+Γr

2 T {(Γz + Γr) cos[(2ω ∓ h)T ]− 2(2ω ∓ h) sin[(2ω ∓ h)T ]}
(Γz + Γr)2 + 4(2ω ∓ h)2

,

(4.27)

where GK
11
22

and (GR −GA)11
22

indicate, respectively, the diagonal elements of the matrix

GK and GR − GA. The off-diagonal elements vanishes because of the initial thermal

condition (4.18, 4.19). We define an effective temperature βeff , in general dependent
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Figure 4.1: Effective temperatures β±
eff (ω, T ) (see Eq. (4.29)) as a function of ω for

fixed T for β0 = 10, h = 2, Γz = 5, Γr = 0.01. T ranges from 10 to 150 at step of
5 units moving from the topmost (lowermost) to the lowermost (topmost) curves for
β > 0 (β < 0). This qualitative behavior is observed independently of the choice of β0.

on the frequency ω and on the time T , such that

GK(ω, T ) = tanh
[
β±eff (ω, T )ω

] [
GR(ω, T )−GA(ω, T )

]
. (4.28)

Clearly a lack of dependence on ω and T (at least within some range) provides a strong

evidence in favor of the fact that the system has reached equilibrium. As peculiarity of

this model, we note that we have to define two different effective temperatures β±eff , one

for each level, otherwise Eq. (4.28) can never be satisfied. From Eqs. (4.27) and (4.28)

we obtain the two effective temperatures

β±eff (ω, T ) = ± 1

ω
arctanh

{
tanh

(
β0h

2

)[
(Γz + Γr)2 + 4(2ω ∓ h)2

(Γz − Γr)2 + 4(2ω ∓ h)2

]
P±
Γz ,Γr

(ω, T )

}
,

(4.29)
and we have defined

P±
Γz,Γr

(ω, T ) ≡ (Γz − Γr) e−ΓrT −e
−Γz+Γr

2 T {(Γz − Γr) cos[(2ω ∓ h)T ]− 2(2ω ∓ h) sin[(2ω ∓ h)T ]}
Γz + Γr − e

−Γz+Γr
2 T {(Γz + Γr) cos[(2ω ∓ h)T ]− 2(2ω ∓ h) sin[(2ω ∓ h)T ]}

.

(4.30)

The effective temperature β±eff (ω, T ) is illustrated in Fig. 4.1 as a function of ω for

various fixed values of T : we note that β±eff (ω, T ) never displays a plateau upon changing

ω, which means that the system can never be thought of as being at thermal equilibrium.

Actually this conclusion is independent of the value of T . The two-level system is

always driven out of equilibrium by the noise and only in the infinite-time limit it

reaches a thermal equilibrium state with infinite temperature, signaled by the fact that

βeff (T = ∞) = 0. The presence of a negative temperature βeff is not worrying being
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the system out of equilibrium. Clearly, this model is very simple and the lack of an even

apparent thermalization is not really surprising. It is interesting then to test if in the

noisy quantum Ising chain, the quantum many-body effects and the presence of many

levels in interaction can lead a different scenario.

4.2 Green’s functions of noisy quantum Ising chain

In Chapter 3, we presented a discussion of one-time quantities for a noisy quantum

Ising chain; in this Section we extend the calculation to two-time quantities and find

the correlation and linear response functions of the transverse spins. The model is

characterized by the Hamiltonian (3.5) with Gaussian noise in the transverse field δg(t)

with amplitude Γ (see Eq. (3.6)) and the quench protocol considered is illustrated in

Fig. 3.1. In order to calculate the two-time correlation functions of the transverse spins

of the chain we need to determine first the lesser Green’s function G<(t, t′) at different

real times expressed in terms of the post-quench Bogolyubov fermions {γgk , γ
g †
k }, i.e.,

G<(t, t′) = i

[
⟨γg †k (t′)γgk(t)⟩ ⟨γg †k (t′)γg †−k(t)⟩
⟨γg−k(t′)γ

g
k(t)⟩ ⟨γg−k(t′)γ

g †
−k(t)⟩

]
. (4.31)

Analogously to what was done in Chapter 3, the analysis starts from the Dyson equations

(3.48): within the self-consistent Born approximation (3.49), valid for sufficiently weak

noise Γ ≪ ∆, we obtain (see Appendix C for the details of the analysis)

G<
11
22
(τ, T ) = i e∓iϵ

g
kτ

[
1

2
e−

Γ
4 |τ |±

(
sin2(∆θk)−

1

2

)
e−ΓT sin2(2θgk)−

Γ
4 |τ | cos(4θ

g
k)

]
,

G<
12
21
(τ, T ) = −iP±

k,Ω(τ, T ) e
∓iϵgk|τ |+

Γ
4 |τ | cos

2(2θgk)−
Γ
2 T [1+cos2(2θgk)],

(4.32)

where ϵgk, θ
g
k and ∆θk are given in Eqs. (2.28), (2.31) and (2.38), while

P±
k,Ω(τ, T ) = sin(2∆θk)

{
2
ϵgk
Ω

sin

(
Ω

2

(
T − |τ |

2

))

± i

2

[
Γ

Ω
sin2(2θgk) sin

(
Ω

2

(
T − |τ |

2

))
+ cos

(
Ω

2

(
T − |τ |

2

))]}
.

(4.33)

In this expression Ω =
√

|Γ2 sin4(2θgk)− 16(ϵgk)
2|. The greater Green’s function G>(t, t′)

can be obtained from the lesser one G<(t, t′) (4.32) through Eq. (C.6) reported in Ap-

pendix C:

G<(t, t′)−G>(t, t′) = i e−
Γ
4 |t−t

′|

(
e−iϵ

g
k(t−t

′) 0

0 eiϵ
g
k(t−t

′)

)
. (4.34)

As in Sec. 4.1 τ and T in the previous expressions are the Wigner variables (4.24).
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4.3 Correlator of the transverse magnetization

In the previous Section we obtained the Green’s function of the Bogolyubov fermions

{γgk , γ
g †
k }; starting from this quantity we can calculate the correlation function of the

transverse magnetization at different times for two transverse spins at a distance r

Czz(r, t, t′) = ⟨σzr (t)σz0(t′)⟩ − ⟨σzr (t)⟩⟨σz0(t′)⟩. (4.35)

In order to do this, we first apply the Jordan-Wigner transformation (2.13-2.23) to the

spin operators σzj and then, by using the Bogolyubov rotation (2.26), we express the

correlator in terms of the fermionic operators {γgk , γ
g †
k }

Czz(r, t, t′) = 4
[
⟨c†r(t)cr(t)c

†
0(t
′)c0(t

′)⟩ − ⟨c†r(t)cr(t)⟩⟨c
†
0(t
′)c0(t

′)⟩
]

=
4

L2

∑

k1,k2,k3,k4

ei(k2−k1)r
[
⟨c†k1(t)ck2(t)c

†
k3
(t′)ck4(t

′)⟩ − ⟨c†k1(t)ck2(t)⟩⟨c
†
k3
(t′)ck4(t

′)⟩
]

=
4

L2

∑

k1,k2,k3,k4

ei(k2−k1)r
{〈[

ugk1γ
g †
k1
(t) + ivgk1γ

g
−k1(t)

] [
ugk2γ

g
k2
(t)− ivgk2γ

g †
−k2(t)

]
×

×
[
ugk3γ

g †
k3
(t′) + ivgk3γ

g
−k3(t

′)
] [

ugk4γ
g
k4
(t′)− ivgk4γ

g †
−k4(t

′)
] 〉

−

−
〈 [

ugk1γ
g †
k1
(t) + ivgk1γ

g
−k1(t)

] [
ugk2γ

g
k2
(t)− ivgk2γ

g †
−k2(t)

] 〉
×

×
〈 [

ugk3γ
g †
k3
(t′) + ivgk3γ

g
−k3(t

′)
] [

ugk4γ
g
k4
(t′)− ivgk4γ

g †
−k4(t

′)
] 〉}

(4.36)

where L is the number of site in the chain (see Eq. (3.5)), r is the distance between

the transverse spins σzj , the wave vectors ki belong to the NS sector (see Sec. 2.2.1)

while ugk and vgk are given in Eq. (2.27). With an abuse of notation, we indicate with

the same symbol both the fermions cr in real space and their spatial Fourier transform

ck. According to Eq. (4.36), the transverse correlator Czz is the Fourier transform of

the difference between a 4-points Green’s function of the fermions at different times and

the product of 2-point Green functions at equal times. As we already know the 2-point

function at equal times, we focus here on the 4-point Green function, which can be

evaluated by using the following approximation:

〈
γ†k1(t)γk2(t)γ

†
k3
(t′)γk4(t

′)
〉
≈
〈
γ†k1(t)γk2(t)

〉〈
γ†k3(t

′)γk4(t
′)
〉

−
〈
γ†k1(t)γ

†
k3
(t′)
〉 〈
γk2(t)γk4(t

′)
〉

+
〈
γ†k1(t)γk4(t

′)
〉〈

γk2(t)γ
†
k3
(t′)
〉
. (4.37)

Equation (4.37) is exact in the case of non-interacting theory, as it follows clearly from

Wick theorem in Eq. (3.29). For interacting theory, as the one we are interested in, we

instead should add correction terms, known as correlations, to Eq. (4.37); however in
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the limit of sufficiently weak noise Γ ≪ ∆ which we are considering these terms can

be neglected. To improve this approximation one should consider also the correlations

terms, known as Cooperons contribution. By using Eq. (4.37) for all 4-points terms in

Eq. (4.36), defining

ρijk (t, t
′) = −iG<

ij(t, t
′) (4.38)

and using the definition of ugk and vgk in Eq. (2.27) we obtain

Czz(r, t, t′) = Czz
diag + Czz

non−diag + Czz
mixed, (4.39)

where we highlight the different contributions to the correlator given by

Czz
diag =

4

L2

∑

k1,k2

ei(k2−k1)r
{
cos(θgk1 + θgk2)

[
cos θgk1 cos θ

g
k2
ρ11k1(t

′, t)ρ22k2(t
′, t)

− sin θgk1 sin θ
g
k2
ρ22k1(t

′, t)ρ11k2(t
′, t)
]

+ sin(θgk1 + θgk2)
[
cos θgk1 sin θ

g
k2
ρ11k1(t

′, t)ρ11k2(t
′, t)

+ sin θgk1 cos θ
g
k2
ρ22k1(t

′, t)ρ22k2(t
′, t)
]}

,

(4.40a)

Czz
non−diag =

4

L2

∑

k1,k2

ei(k2−k1)r
{
cos(θgk1 + θgk2)

[
cos θgk1 cos θ

g
k2
ρ12k1(t

′, t)ρ21k2(t
′, t)

− sin θgk1 sin θ
g
k2
ρ21k1(t

′, t)ρ12k2(t
′, t)
]

+ sin(θgk1 + θgk2)
[
cos θgk1 sin θ

g
k2
ρ12k1(t

′, t)ρ12k2(t
′, t)

+ sin θgk1 cos θ
g
k2
ρ21k1(t

′, t)ρ21k2(t
′, t)
]}

,

(4.40b)

Czz
mixed =

4i

L2

∑

k1,k2

ei(k2−k1)r
{
cos(θgk1 + θgk2)×

[
cos θgk1 sin θ

g
k2

(
ρ12k1(t

′, t)ρ11k2(t
′, t) + ρ11k1(t

′, t)ρ12k2(t
′, t)
)

+ sin θgk1 cos θ
g
k2

(
ρ22k1(t

′, t)ρ21k2(t
′, t) + ρ21k1(t

′, t)ρ22k2(t
′, t)
)]

+ sin(θgk1 + θgk2)×[
sin θgk1 sin θ

g
k2

(
ρ22k1(t

′, t)ρ12k2(t
′, t) + ρ21k1(t

′, t)ρ11k2(t
′, t)
)

− cos θgk1 cos θ
g
k2

(
ρ12k1(t

′, t)ρ22k2(t
′, t) + ρ11k1(t

′, t)ρ21k2(t
′, t)
)]}

,

(4.40c)

where L is the chain length (see Eq. (3.5)), r is the distance between the transverse spins

σzj , the Bogolyubov angles θgk are given by Eq. (2.28), while Eqs. (4.32) and (4.38) define
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the elements ρijk (t, t
′). The subscripts ”diag”, ”non-diag” and ”mixed” of Czz indicate

that the expression of the corresponding contribution to Czz involves only the diagonal,

the non-diagonal, or the mixed components, respectively, of the Green’s function G<
k

investigated in Sec. 4.2.

4.4 Long-time behavior

4.4.1 Two-time correlation and linear response functions

In this Section we want to study the correlator of the transverse spins Czz within the

long-time limit defined by the condition

t, t′ ≫ Γ−1 with fixed τ = t− t′. (4.41)

We are interested in this time range because the noise has came into play and the equal-

time correlator of the transverse magnetization shows a diffusive behavior as highlighted

in Eq. (3.87) and discussed in Sec. 3.3; here we want to investigate how the correlator

Czz changes at different times. In the other time range, t, t′ ≪ Γ−1, we know from

Eq. (3.87) that the equal-time correlator of transverse magnetization agrees with the

GGE predictions for a quantum Ising chain following a quantum quench and we expect

that the different time behavior within this time range resembles the one found in Ref.

[38]. In this limit we can neglect the non-diagonal and mixed contributions (4.40b-

4.40c) in Eq. (4.39) because they are exponentially suppressed for ΓT ≫ 1; in fact; from

Eqs. (4.32), (4.40b) and (4.40c)

Czz
out−diag ∝ e−ΓT and Czz

mixed ∝ e−ΓT . (4.42)

Accordingly, in the following we will concentrate only on the diagonal term Czz
diag. By

exchanging the indices k1 ↔ k2, the correlator Czz in Eq. (4.40a) can be expressed as

Czz =
4

L2

∑

k1,k2

{
cos(θgk1 + θgk2)×

[
ei(k2−k1)r cos θgk1 cos θ

g
k2

− e−i(k2−k1)r sin θgk1 sin θ
g
k2

]
ρ11k1(t

′, t)ρ22k2(t
′, t)

+ sin(θgk1 + θgk2) cos θ
g
k1
sin θgk2×[

ei(k2−k1)r ρ11k1(t
′, t)ρ11k2(t

′, t) + e−i(k2−k1)r ρ22k1(t
′, t)ρ22k2(t

′, t)
]}

,

(4.43)

Now we write the diagonal term as (see Eq. (4.32))

ρ
11
22
k (t, t′) = e∓iϵ

g
kτ

[
1

2
e−

Γ
4 |τ |±δhk(τ, T )

]
, (4.44)
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where we defined

δhk(τ, T ) ≡
[
sin2(∆θk)−

1

2

]
exp

[
−ΓT sin2(2θgk)−

Γ

4
|τ | cos(4θgk)

]
(4.45)

and θgk are the Bogolyubov angles (2.28), ∆θk is given by Eq. (2.38) and τ and T are

the Wigner variables (4.24). In particular, the expression in Eq. (4.45) for k ≃ 0, which

is useful in order to calculate the leading behavior of the two-time correlator (analogous

to Eq. (3.66)), becomes:

δhk(τ, T ) ≃
k≃0

1

2

(
k2

2∆2
ρ2− − 1

)
exp

[
−Γ

4
|τ |− Γ

(
T − |τ |

2

)
k2

∆2

]
, (4.46)

where ∆ = |g − 1| is half of the gap (2.56) of the quantum Ising chain and ρ− is

given in Eq. (3.66). By replacing Eq. (4.44) in Eq. (4.43) and by using the elementary

trigonometric addition formulas and Eq. (2.29), we obtain, in the thermodynamic limit

1/L
∑

k −→
π∫

−π
dk/(2π), the real part of the correlator Czz

ReCzz(r, τ, T ) = e−
Γ
2 |τ |
{
|A1(r, τ) +A2(r, τ)|2 − 4 [ReB1(r, τ)]

2
}

− 4
{
|C1(r, τ, T )− C2(r, τ, T )|2 − 4 [ImD1(r, τ, T )]

2
}
, (4.47)

and its imaginary part

ImCzz(r, τ, T ) = 4 e−
Γ
4 |τ | Im

{
C1(r, τ, T )

[
A∗1(r, τ) +A∗2(r, τ)

]

+ C∗2 (r, τ, T )
[
A1(r, τ) +A2(r, τ)

]
−

−D1(r, τ, T )
[
B∗1(r, τ)−B1(−r, τ)

]

+D1(−r, τ, T )
[
B1(r, τ)−B∗1(−r, τ)

]}
. (4.48)

The functions A1, A2, B1, C1, C2, D1 introduced above can be written as

A1(r, τ) =

π∫

0

dk

π

(
1

2
+

g − cos k

ϵgk

)
cos(kr) e−iϵ

g
kτ , (4.49)

A2(r, τ) =

π∫

0

dk

π

(
1

2
− g − cos k

ϵgk

)
cos(kr) eiϵ

g
kτ , (4.50)

B1(r, τ) = −i

π∫

0

dk

π

sin k

ϵgk
sin(kr) e−iϵ

g
kτ , (4.51)

C1(r, τ, T ) =

π∫

0

dk

π

(
1

2
+

g − cos k

ϵgk

)
δhk(τ, T ) cos(kr) e

−iϵgkτ , (4.52)
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C2(r, τ, T ) =

π∫

0

dk

π

(
1

2
− g − cos k

ϵgk

)
δhk(τ, T ) cos(kr) e

iϵgkτ , (4.53)

D1(r, τ, T ) = −i

π∫

0

dk

π

sin k

ϵgk
δhk(τ, T ) sin(kr) e

−iϵgkτ , (4.54)

where δhk is given by Eq. (4.45), ϵgk is the dispersion relation Eq. (2.31) τ and T are

the Wigner variables (4.24). In order to make the integrals run only on half the original

Brillouin zone we used the fact that δhk = δh−k. The fluctuations Czz
+ and linear

response function Rzz for the system in the long-time limit (4.41) can be found from

Eqs. (1.57) and (1.58) based on Eqs. (4.47) and (4.48), i.e.,

Czz
+ (r, τ, T ) = ReCzz(r, τ, T ), (4.55)

Rzz(r, τ, T ) = −2θ(τ) ImCzz(r, τ, T ). (4.56)

In general, Czz contains a stationary and a non-stationary part where the former depends

only on τ , while the latter also on T .

4.4.2 Non-stationary two-time correlation function

We now focus on the non-stationary part of Eq. (4.55)

[
Czz
+ (r, τ, T )

]
non−stat = −4

{
|C1(r, τ, T )− C2(r, τ, T )|2 − 4 [ImD1(r, τ, T )]

2
}
, (4.57)

in order to see how the diffusive behavior displayed by one-time quantities and discussed

in Sec. 3.3 changes at different times. The integrals (4.52), (4.53) and (4.54) can be

computed by approximating the integrands around k ≃ 0 and k ≃ ±π. Indeed, in

the time range ΓT ≫ 1 we are interested (see Eq. (4.41)), they as well the function

δhk are dominated by the slowest modes k ≃ 0 and k ≃ ±π, as it can be seen from

Eq. (4.45). We focus only on the contribution from the mode k ≃ 0 because the modes

k ≃ ±π are due only to the presence of the lattice and are generically responsible for

oscillating corrections to the leading behavior, which we neglect for the time being. For

concreteness we assume that the time t′ is smaller than t

t′ < t so that T − |t|
2

= min(t, t′) = t′ and τ = t− t′ > 0, (4.58)

by plugging in Eq. (4.57) the integrals (D.5 - D.6 - D.7), evaluated in Appendix D,

we find that the non-stationary part of the correlation function, within the space-time

range

∆r ≪
√

Γ2t′2 +∆2τ2 with t, t′ ≫ Γ−1, (4.59)

is given by

[
Czz
+ (r, t′, τ)

]
non−stat = − 1

π

∆2

4

e−
Γ
2 τ

√
Γ2t′2 +∆2τ2

× exp

[
− Γt′(∆r)2

2 (Γ2t′2 +∆2τ2)

]
, (4.60)
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where we remind r is the distance between the transverse spins, Γ the amplitude noise

given by Eq. (3.6) and ∆ = g − 1 is half of the gap (2.56) of the quantum Ising chain.

At equal times, τ = 0, Eq. (4.60) reduces to the diffusive correlator given by Eq. (3.87).

At short time differences, i.e., for

∆τ ≪ Γt′, (4.61)

the space-time part of Eq. (4.60) shows a diffusive behavior analogous to the one of the

equal-time correlator (3.87) and, in fact, the square of the distance r scales as the time

t′

r2 ∼ t′. (4.62)

In other words, the behavior of this quantity at short time difference compared to the

time elapsed from the quench is not able to display a qualitative different scaling. On

the contrary, for much longer time differences, i.e, for

∆τ ≫ Γt′, (4.63)

the two-time correlator (4.60) changes completely its qualitative behavior and the space

r scale linearly, i.e., ballistically with the time τ

r ∼ τ. (4.64)

The non-stationary correlation function (4.57) is illustrated in Fig. 4.2 as a function of

Γt′ for various fixed values of ∆τ . It is evident the presence of two regions; as long

as ∆τ ≪ Γt′ the non-stationary correlation function [Czz
+ ]non−stat is qualitative similar

to the equal-time one. Instead, for longer time differences, ∆τ ≫ Γt′, it crosses to

a different qualitative behavior and the ”propagation” from diffusive becomes ballistic.

Clearly, this crossover is totally new and it cannot be observed at equal times. Note that

this behavior is independent of some features of the quench, as it does not depend on the

pre-quench Hamiltonian. However, the very fact that this quantity shows a dependence

on t′ indicates that the very presence of an initial condition plays an essential role in

determining this genuinely non-equilibrium feature. We emphasize that this crossover

is different from the one observed in Eq. (3.87). Indeed, by looking at Eq. (3.87) we

see that the equal-time correlator Czz(r, t) in the long-time limit, t ≫ Γ−1, crosses from

a diffusive form to the one predicted by the GGE, in which it retains memory of the

initial conditions. Instead, as mentioned above, in Eq. (4.60) there is no reference to the

initial state; in the time range considered the quench has no more effect on the system

and only the noise affects the dynamics, in this way the crossover observed at different

times is due entirely to the noise.

4.4.3 Effective temperature

Based on the expressions for Re Czz and Im Czz in Eqs. (4.47) and (4.48), respec-

tively, we can calculate the corresponding response and correlation function according

to Eqs. (4.55) and (4.56). In turn, they can be used in order to define an effective
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Figure 4.2: Non-stationary correlation function [Czz
+ ]non−stat given by Eq. (4.57) as

a function of Γt′ with fixed ∆τ for ∆r = 5 and Γ/∆ = 5 × 10−4. Γt′ assumes values
in [102, 3 × 106] (note x-axis is in log-scale). ∆τ ranges from 104 to 1.6 × 104 at step
of 103. It is evident the existence of two region where the correlation function shows
a qualitative different behavior. At short time differences ∆τ ≪ Γt′ (right region),
the system is not able to distinguish two-time quantities from the corresponding at
one-time. Instead, for much longer time differences ∆τ ≫ Γt′ (left region) a new and
different behavior, peculiar of two-time correlator, emerges.

temperature for the noisy quantum Ising chain. In order to simplify the analysis of

Eqs. (4.55) and (4.56)), we focus on the autocorrelation function Czz(r = 0, t, t′), i.e.,

on the correlation between the values of the same spin at two different times. From the

discussion in Sec. 3.3, we know that in the long-time limit (4.41) the coherences are sup-

pressed by the noise, i.e., the quantum effects are negligible and it is therefore legitimate

to expect the emergence of a sort of classical dynamics which can be eventually char-

acterized by an effective temperature derived from the classical fluctuation-dissipation

theorem (1.61). First of all, we note that the integrals (4.51) and (4.54) vanishes for

r = 0. Accordingly, Eqs. (4.55) and (4.56) can be written as

Czz
+ (r = 0, τ, T ) = e−

Γ
2 |τ | |A1(0, τ) +A2(0, τ)|2 − 4 |C1(0, τ, T )− C2(0, τ, T )|2 , (4.65)

Rzz(r = 0, τ, T ) = −8θ(τ) e−
Γ
4 |τ | Im {[A1(0, τ) +A2(0, τ)] [C

∗
2 (0, τ, T )− C∗1 (0, τ, T )]} ,

(4.66)

From Eqs. (D.5), (D.6), (D.10) and (D.11) reported in Appendix D , we find that for

τ ≫ 1, Eqs. (4.65) and (4.66) are equal to

Czz
+ (r = 0, t′, τ ≫ 1) =

∆

4π
e−

Γ
2 τ

[
1

τ
− ∆√

Γ2t′2 +∆2τ2

]
, (4.67)

Rzz(r = 0, t′, τ ≫ 1) = −∆3/2

π

e−
Γ
2 τ

√
τ

Im

[
1√

∆τ + iΓt′

]
. (4.68)
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At short time differences, i.e., for ∆τ ≪ Γt′, we can expand Eqs. (4.67) and (4.68) and

find at the lowest order

Czz
+ (r = 0, t′, 1 ≪ τ ≪ (Γt′)/∆) ≃ ∆

4π

e−
Γ
2 τ

τ
, (4.69)

Rzz(r = 0, t′, 1 ≪ τ ≪ (Γt′)/∆) ≃ ∆3/2

π

e−
Γ
2 τ

√
2τ

1√
Γt′

. (4.70)

From the classical fluctuation-dissipation theorem (1.61), we can define a time-dependent

inverse effective temperature βeff (t′, τ) as

βeff (t
′, τ) ≡ − Rzz(t′, τ)

d

dτ
Czz
+ (t′, τ)

. (4.71)

Accordingly, from Eqs. (4.69) to (4.71) we obtain that, in the long-time limit (4.41) and

for sufficiently short time differences ∆τ ≪ Γt′, the inverse effective temperature is

βeff (t
′, τ) ∼

√
∆τ

Γt′
. (4.72)

Equation (4.72) means that within the regime of short time differences investigated here

the temperature is large and it increases with no bound as a function of t′ with fixed τ :

eventually the system ”thermalizes” at an infinite effective temperature. This picture

agrees with that of Sec. 4.4.2: at short time differences compared to the time elapsed

from the quench two-time quantities behave as they do at equal time, according to the

analysis of equal-time quantities presented in Sec. 3.3, the system is continually heated

up by the noise which drives it towards the infinite temperature state.

In the opposite limit of large time separations, ∆τ ≫ Γt′, Eqs. (4.67) and (4.68) take,

instead, the form

Czz
+ (r = 0, t′, (Γt′)/∆ ≪ τ) ≃ ∆

4π

e−
Γ
2 τ

2τ

(
Γt′

∆τ

)2

, (4.73)

Rzz(r = 0, t′, (Γt′)/∆ ≪ τ) ≃ ∆

2π

e−
Γ
2 τ

τ

(
Γt′

∆τ

)
. (4.74)

Also in this case, we can extract an inverse effective temperature from Eqs. (4.73)

and (4.74) through Eq. (4.72), which turns out to be

βeff (t
′, τ) ∼ ∆τ

Γt′
. (4.75)

The inverse effective temperatures in Eqs. (4.72) and (4.75) depend on the same param-

eter ∆τ/Γt′ via two different functional forms in the two different limiting cases of small

and large values. Within the regime of large time separations ∆τ ≫ Γt′ investigated

here, the effective temperature (4.75) is small. It seems that the system somehow re-

members the initial zero temperature, but currently the physical interpretation of this
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fact is unclear and perspective of this work is to investigate in detail the very nature of

the novel behaviors which emerge at different times and the possible crossovers between

the various regime. Moreover, we have to explore the limits of validity of Born approx-

imation used until now and to confirm its validity within the regime in which the new

behavior emerges.



CHAPTER 5

CONCLUSIONS

Understanding the non-equilibrium dynamics of quantum many-body systems poses

fundamental challenges which are presently motivating a growing theoretical and exper-

imental activity in statistical physics and condensed matter, with recent and impressive

advances. Due to the lack of general principles to treat systems out of equilibrium,

insight coming from the study of specific models is still very valuable. In this thesis we

focus on the non-equilibrium dynamics of a noisy quantum Ising chain (NQIC), consist-

ing of a quantum Ising chain perturbed by a time-dependent delta correlated noise in

the transverse field and driven out of equilibrium also by a sudden quench of the static

component of the transverse field. We know from the investigation of various one-time

observables [34] that the system first attains an intermediate prethermal state and then

it is driven towards an infinite-temperature thermal state. Moreover, at longer times,

when the noise has came into play, the equal-time correlator of the transverse magnetiza-

tion shows a diffusive behavior. However, in the literature only one-time quantities were

considered; the aim of this thesis is to extend the calculation to two-time quantities

and, in particular, determine its correlation and linear response functions. Two-time

quantities are, in fact, very important because they carry additional information on

how the dynamics occurs and, moreover, they offer the possibility to study fluctuation-

dissipation relations out of equilibrium and introduce effective temperatures on their

basis [38].

After the general introduction to the topic of the non-equilibrium dynamics of quantum

many-body systems in Chapter 1, Chapter 2 presents the necessary background about

the quantum Ising chain (QIC) which the NQIC we are interested in is based on. The

latter model is then discussed in detail in Chapter 3. The core of the thesis is presented

in Chapter 4 where, first of all, we analyze a simplified model consisting of a two-level

system driven out of equilibrium by a time-dependent noise which heats the system.

From the fluctuation-dissipation relations we are able to extract a parameter, which we

call effective temperature and which signals that the two-level system is always out of

equilibrium during the evolution, while it reaches an infinite-temperature thermal state
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only in the infinite-time limit. Then we focus on the analysis of two-time quantities

of the NQIC. Using Keldysh diagrammatic technique, we are able to solve analytically

the Dyson equations for the Greens function in the self-consistent Born approximation,

valid for sufficiently weak noise. From the solution of the Greens function we can find

expressions of the correlation and linear response functions of transverse spins at differ-

ent times. These expressions results to be very rich as they show a variety of possible

regimes; therefore we focus on the long-time limit in which the noise has came in play

leaving the analysis of the other regimes to future studies. We find that at short time

differences compared to the time elapsed from the quench, the two-time correlator of

the transverse magnetization shows a diffusive behavior analogous to the one of the

equal-time correlator. On the contrary, for much longer time differences, the qualitative

behavior of the two-time correlator changes completely and the ”propagation” becomes

ballistic. Clearly, this crossover is totally new and cannot be detected in one-time quan-

tities. Finally, we extract from the classical fluctuation-dissipation relations an effective

temperature; in the case of short time differences compared to the time elapsed from

the quench we find a temperature which as time goes by grows towards infinity, as we

expect from the picture emerging from the analysis of the two-time correlator of the

transverse magnetization. Instead, in the opposite case of much longer time differences

we find an effective temperature that tends to zero: at the present we are not able to

rationalize this fact and therefore more studies are required. The investigation of the

non-equilibrium dynamics of a noisy quantum Ising chain is by no means concluded.

Indeed, future perspectives include a complete and detailed analysis of the dynamics

correlations calculated in this thesis within the various regions of the space-time dia-

gram, the computation of two-time quantities for other observables, the improvement of

the Born approximation used, for example including the Cooperons contributions in the

two-time correlations, and understanding how these corrections affect the results found

so far.



APPENDIX A

BOGOLIUBOV ROTATION

In this Appendix we provide some details about the Bogolyubov rotations which is

extensively used in this thesis. The operatorHk = (g−cos k)σz−(sin k)σy which appears

in Eq. (2.25) is self-adjoint and therefore its eigenvalues are real and the eigenvectors

form an orthonormal basis. The eigenvalue equation

Hk

(
ugk

−ivgk

)
= ϵgk

(
ugk

−ivgk

)
(A.1)

gives the Bogolyubov equations, where ugk and vgk are real functions of k

(g − cos k)ugk + (sin k)vgk = ϵgku
g
k, (A.2)

(sin k)ugk + (cos k − g)vgk = ϵgkv
g
k. (A.3)

Note that if (ugk,−ivgk) is an eigenvector of Hk with eigenvalue ϵgk then (−ivgk, u
g
k) is

eigenvector with eigenvalue −ϵgk. This can be written in the compact form:

Hk

(
ugk −ivgk

−ivgk ugk

)
=

(
ugk −ivgk

−ivgk ugk

)(
ϵgk 0

0 −ϵgk

)
= R(θgk)ϵ

g
kσ

z, (A.4)

where R†(θgk) is the Bogolyubov rotation operator. Moreover we assume the matrix

R(θgk) to be unitary; in order to satisfy this condition the coefficient ugk, v
g
k have to fulfill

(ugk)
2 + (vgk)

2 = 1 (A.5)

and therefore it is convenient to parametrize the coefficients as

ugk = cos θgk and vgk = sin θgk, (A.6)
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where θgk is the so-called Bogolyubov angle. In terms of the rotations Rk written above,

the Hamiltonian Hk can be expressed as

Hk =

(
ugk −ivgk

−ivgk ugk

)(
ϵgk 0

0 −ϵgk

)(
ugk ivgk
ivgk ugk

)
; (A.7)

in order to diagonalize it, it is natural to define the Bogolyubov fermions {γgk , γ
g †
k }

in terms of the original Nambu spinor {Ψk,Ψ
†
k} and fermions {ck, c†k} introduced in

Sec. 2.2: (
γgk
γg †−k

)
=

(
ugk ivgk
ivgk ugk

)(
ck
c†−k

)
= R†(θgk)Ψk (A.8)

The Bogolyubov fermions satisfy the canonical anticommutation relations because we

assumed R(θgk) to be unitary.

The eigenvalue ϵgk can be determined by looking for the roots of the characteristic poly-

nomial

det(Hk − λ1) = λ2 − (g − cos k)2 − sin2 k = 0, (A.9)

λ± = ±ϵgk = ±
√

(g − cos k)2 + sin2 k. (A.10)

Now let us focus on the Bogolyubov Eqs. (A.2) and (A.3) and multiply them by ugk =

cos θgk:

(g − cos k) cos2 θgk + sin k sin θgk cos θ
g
k = ϵgk cos

2 θgk, (A.11)

(cos k − g) sin2 θgk + sin k sin θgk cos θ
g
k = ϵgk sin

2 θgk. (A.12)

By subtracting the first from the second we obtain the relation

cos(2θgk) =
g − cos k

ϵgk
, (A.13)

which determines the Bogolyubov angle as a function of k and of the transverse field g.

By adding, instead, the two equations we have

sin(2θgk) =
sin k

ϵgk
(A.14)

and therefore the Bogolyubov angle θgk fulfills

tan(2θgk) =
sin(2θgk)

cos(2θgk)
=

sin k

g − cos k
. (A.15)

For k > 0 this relation has to be inverted with 2θgk ∈ [0,π], whereas the values of θgk for

k < 0 are obtained by using the property θg−k = −θgk.



APPENDIX B

GREEN’S FUNCTIONS OF TWO-LEVEL SYSTEM

In this Appendix we present the calculations to find the Green’s functions G≷(t, t′),
reported in Eqs. (4.10) and (4.11), of the two-level system. The starting point is the

Dyson equations (3.42) for the Green’s functions (4.8) and, as we do in Chapter 3 and

we will do in the next Sections, we compute the self-energy within the self-consistent

Born approximation (4.9). By substituting Eq. (4.9) into Eq. (3.42), we obtain two

matrix differential equations

i∂tG
≷(t, t′) =

[
h0 − i

(
Γz + Γr

4

)]
G≷(t, t′) + θ(t′ − t)

[
Γz

2
σzG≷(t, t)σz+

+
Γr

4

(
σxG≷(t, t)σx + σyG≷(t, t)σy

)
]
[
G<(t, t′)−G>(t, t′)

]
, (B.1a)

−i∂t′G
≷(t, t′) = G≷(t, t′)

[
h0 + i

(
Γz + Γr

4

)]
− θ(t− t′)

[
G<(t, t′)−G>(t, t′)

]

[
Γz

2
σzG≷(t, t)σz +

Γr

4

(
σxG≷(t, t)σx + σyG≷(t, t)σy

)
]
, (B.1b)

where h0 = (h/2)σz is given in Eq. (4.2) and we used the definition of retarded and

advanced function (3.37 - 3.38). First of all, we need to calculate the equal-time Green’s

function. We define the density matrix ρ(t)

ρ(t) = −iG<(t, t), (B.2)

then by subtracting the first equation in Eq. (B.1) from the second one and taking the

limit t → t′, we obtain the master equation for the density matrix

∂tρ(t) = −i[h0, ρ] +
Γz

2
(σzρσz − ρ) +

Γr

4
(σxρσx + σyρσy − 2ρ), (B.3)
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where we used Eqs. (3.50) and (3.51). Equation (B.3) is solved, as in Sec. 3.3, decom-

posing the density matrix on the Pauli basis

ρ(t) =
1

2
1+ δf(t)σz + zσ+ + z∗σ−, (B.4)

then by plugging this decomposition in Eq. (B.3) to finally find the easily solvable

equations

∂tδf(t) = −Γrδf(t),

∂tz(t) = −ihz −
(
Γz +

Γr

2

)
z(t).

(B.5)

The initial conditions depend on the assumed initial state of the system. From these

equations, we can observe that the two-level system considered has a dephasing rate Γφ

given by

Γφ = Γz +
Γr

2
. (B.6)

We now substitute Eq. (B.4) into Eq. (B.1) and using the σ-matrix multiplication rules

σ
y
xσzσ

y
x = −σz

σxσ±σx = σ±

σyσ±σy = −σ∓

σzσ±σz = −σ±

(B.7)

we obtain the differential equations

i∂tG
≷(t, t′) =

[
h

2
σz − i

(
Γz + Γr

4

)]
G≷(t, t′) + iθ(t′ − t)

{
∓
(
Γz + Γr

4

)

+

(
Γz − Γr

2

)
δf(t)σz − Γz

2
[z(t)σ+ + z∗(t)σ−]

}
[
G<(t, t′)−G>(t, t′)

]
,

(B.8a)

−i∂t′G
≷(t, t′) = G≷(t, t′)

[
h

2
σz + i

(
Γz + Γr

4

)]
− iθ(t− t′)

[
G<(t, t′)−G>(t, t′)

]

{
∓
(
Γz + Γr

4

)
+

(
Γz − Γr

2

)
δf(t′)σz − Γz

2
[z(t′)σ+ + z∗(t′)σ−]

}
.

(B.8b)

The next step is to subtract the equation for G< from the one for G>, such that to

find the differential equation ruling the evolution of G< − G> and then substitute its

expression on the r.h.s of Eq. (C.1), where this difference naturally appears. Adopting
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this strategy, one finds:

∂t
[
G<(t, t′)−G>(t, t′)

]
=

[
−i

h

2
σz −

(
Γz + Γr

4

)
sgn(t− t′)

]
×
[
G<(t, t′)−G>(t, t′)

]
,

(B.9a)

∂t′
[
G<(t, t′)−G>(t, t′)

]
=
[
G<(t, t′)−G>(t, t′)

]
×
[
i
h

2
σz −

(
Γz + Γr

4

)
sgn(t− t′)

]
,

(B.9b)

where sgn(t) indicates the sign function, i.e., sgn(t) = 1 if t > 0 and sgn(t) = −1 if

t < 0. The solution of Eq. (B.9) is

G<(t, t′)−G>(t, t′) = i e−(
Γz+Γr

4 )|t−t′|H(t− t′), (B.10)

where the matrix H is defined in Eq. (4.12). We are able to obtain from Eqs. (B.8)

and (B.10) a set of differential equation for G< involving only G<, and so for G>, i.e.,

∂tG
≷(t, t′) =

[
−i

h

2
σz −

(
Γz + Γr

4

)]
G≷(t, t′) + iθ(t′ − t) e−(

Γz+Γr
4 )|t−t′|

{
∓
(
Γz + Γr

4

)
+

(
Γz − Γr

2

)
δf(t)σz − Γz

2
[z(t)σ+ + z∗(t)σ−]

}
H(t− t′),

(B.11a)

∂t′G
≷(t, t′) = G≷(t, t′)

[
i
h

2
σz −

(
Γz + Γr

4

)]
+ iθ(t− t′) e−(

Γz+Γr
4 )|t−t′|

H(t− t′)

{
∓
(
Γz + Γr

4

)
+

(
Γz − Γr

2

)
δf(t′)σz − Γz

2
[z(t′)σ+ + z∗(t′)σ−]

}
,

(B.11b)

with the functions δf and z given in Eq. (B.5). To solve Eq. (B.11), we firstly consider

the case t > t′; in this way Eq. (B.11a) can be easily solved to yield

G<(t > t′, t′) = e−(
Γz+Γr

4 )tH(t)N(t′), (B.12)

where N(t′) is a matrix which depend on the time t′. By substituting this solution

in Eq. (B.11b), and by using the expressions for the functions δf(t′) and z(t′) (see

Eq. (B.5)), one finds an inhomogeneous differential equation for the matrix N(t′) which

can be solved via elementary method:

N(t′) = e−(
Γz+Γr

4 )t′ AH†(t′)+i
[
e(

Γz+Γr
4 )t′ 1

2
+e(

Γz−3Γr
4 )t′ δf0σ

z+e−(
3Γz+Γr

4 )t′(z0σ
++z0∗σ−)

]
,

(B.13)

where A is a matrix of constant coefficients and δf0, z0 are the initial conditions of

Eq. (B.5) depending on the assumed initial state. Combining Eqs. (B.12) and (B.13),
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the Green’s function turns out to be

G<(t > t′, t′) = e−(
Γz+Γr

4 )(t+t′)H(t)AH†(t′) + iH(t)
[
e−(

Γz+Γr
4 )(t−t′) 1

2

+ e−
Γz
4 (t−t′)−Γr

4 (t+3t′) δf0σ
z + e−

Γz
4 (t+3t′)−Γr

4 (t+t′)(z0σ
+ + z∗0σ

−)
]
H†(t′).

(B.14)

For the remaining case t < t′, one can proceed as before, concluding that

G<(t < t′, t′) = e−(
Γz+Γr

4 )(t+t′)H(t)BH†(t′) + iH(t)
[
e−(

Γz+Γr
4 )(t′−t) 1

2

+ e−
Γz
4 (t′−t)−Γr

4 (t′+3t) δf0σ
z + e−

Γz
4 (t′+3t)−Γr

4 (t+t′)(z0σ
+ + z∗0σ

−)
]
H†(t′)

(B.15)

and B is a matrix of constant coefficients. In order to equal-time condition (B.4) holds,

we have to impose A = B = 0 and finally find the solution of the two-time Green’s

functions reported in Eqs. (4.10) and (4.11).



APPENDIX C

GREEN’S FUNCTION OF THE NOISY QUANTUM ISING

CHAIN

In this Appendix we report the details of the determination of the Green’s function

Eqs. (4.32) and (4.34). We start from the Dyson equations (3.48) for the Green’s

function (3.47); one can show that the crossed diagrams are negligible [34] and there-

fore the self-energy can be computed within the self-consistent Born approximation

Eq. (3.49). By substituting Eq. (3.49) into Eq. (3.48) and by using the definition of

the retarded/advanced Green function Eqs. (3.37) and (3.38), we obtain two matrix

differential equations

i∂tG
≷(t, t′) =

[
H0

k − i
Γ

4

]
G≷(t, t′) +

Γ

2
θ(t′ − t)σzG≷(t, t)σz

[
G<(t, t′)−G>(t, t′)

]
,

(C.1a)

−i∂t′G
≷(t, t′) = G≷(t, t′)

[
H0

k + i
Γ

4

]
− Γ

2
θ(t− t′)

[
G<(t, t′)−G>(t, t′)

]
σzG≷(t′, t′)σz,

(C.1b)

where H0
k is given by Eq. (3.44). The next step is to subtract the equation for G<

from the one for G>, such that to find the differential equation ruling the evolution

of G< − G> and then substitute its expression on the r.h.s of Eq. (C.1), where this

difference naturally appears. Adopting this strategy, one finds:

∂t
[
G<(t, t′)−G>(t, t′)

]
= −

[
iH0

k +
Γ

4
sgn(t− t′)

]
×
[
G<(t, t′)−G>(t, t′)

]
, (C.2a)

∂t′
[
G<(t, t′)−G>(t, t′)

]
=
[
G<(t, t′)−G>(t, t′)

]
×
[
iH0

k +
Γ

4
sgn(t− t′)

]
, (C.2b)

where sgn(t) indicates the sign function, i.e., sgn(t) = 1 if t > 0 and sgn(t) = −1 if t < 0.

Now we apply a Bogolyubov rotation R(θgk) (see Eq. (2.26)), in order to diagonalize H0
k

94
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and express G≷ in terms of the Bogolyubov fermions {γgk , γ
g †
k }:

H0
k /−→ R†(θgk)H

0
kR(θgk) = ϵgkσ

z, (C.3)

with ϵgk defined in Eq. (2.31) and

G<(t, t′) /−→ R†(θgk)G
<(t, t′)R(θgk) ≡ G<

b (t, t
′) = i

[
⟨γg †k (t′)γgk(t)⟩ ⟨γg †k (t′)γg †−k(t)⟩
⟨γg−k(t′)γ

g
k(t)⟩ ⟨γg−k(t′)γ

g †
−k(t)⟩

]
.

(C.4)

We denoted by G<
b the Green function in the Bogolyubov basis; in order to simplify the

notation in the following we omit the subscript ”b” and we indicate it simply by G<.

After the rotation, Eq. (C.2) become

∂t
[
G<(t, t′)−G>(t, t′)

]
= −

[
iϵgkσ

z +
Γ

4
sgn(t− t′)

]
×
[
G<(t, t′)−G>(t, t′)

]
, (C.5a)

∂t′
[
G<(t, t′)−G>(t, t′)

]
=
[
G<(t, t′)−G>(t, t′)

]
×
[
iϵgkσ

z +
Γ

4
sgn(t− t′)

]
, (C.5b)

which can be solved by imposing the fundamental condition G<(t, t)−G>(t, t) = i1 (see

Eq. (3.51)), with the result:

G<(t, t′)−G>(t, t′) = i e−
Γ
4 |t−t

′|

[
exp[−iϵgk(t− t′)] 0

0 exp[iϵgk(t− t′)]

]
. (C.6)

By expressing Eq. (C.1) in the Bogolyubov basis and by substituting Eq. (C.6), we have

∂tG
<(t, t′) = −

(
iϵgkσ

z +
Γ

4

)
G<(t, t′) +

Γ

2
θ(t′ − t) e

Γ
4 (t−t

′) σG<(t, t)σ e−iϵ
g
kσ

z(t−t′),

(C.7a)

∂t′G
<(t, t′) = G<(t, t′)

(
iϵgkσ

z − Γ

4

)
+

Γ

2
θ(t− t′) e−

Γ
4 (t−t

′) e−iϵ
g
kσ

z(t−t′) σG<(t′, t′)σ,

(C.7b)

with the equal time condition given in Eqs. (3.61), (3.63) and (3.64) while σ is defined

in Eq. (3.56). In the following we focus only on the lesser function G<(t, t′) because the

greater one can be easily found by using Eq. (C.6). Moreover, we note that the Green

function appearing on the r.h.s of Eq. (C.7) is at equal times, for which we already have

a solution (Eqs. (3.61), (3.63) and (3.64)). From Eq. (3.53), one therefore finds

Γ

2
σG<(t, t)σ = i∂tρk(t)− 2iϵgk(xkσ

y − ykσ
x) + i

Γ

2
ρk(t) (C.8)

= i
Γ

2

[
1

2
+ σz cos(4θgk)δfk(t)− σxxk(t)− σy cos(4θgk)yk(t)

]
,

where the functions δfk(t), xk(t) and yk(t) are respectively given by Eqs. (3.63) and (3.64)

and θgk are the Bogolyubov angles (see Eq. (2.28)). By substituting into Eq. (C.7) we
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obtain two inhomogeneous differential equations

∂tG
<(t, t′) = −

[
iϵgkσ

z +
Γ

4

]
G<(t, t′) + i

Γ

2
θ(t′ − t) e

Γ
4 (t−t

′)×

×
[
1

2
+ cos(4θgk)δfk(t)σ

z − xk(t)σ
x − cos(4θgk)yk(t)σ

y

]
e−iϵ

g
kσ

z(t−t′),

(C.9a)

∂t′G
<(t, t′) =G<(t, t′)

[
iϵgkσ

z − Γ

4

]
+ i

Γ

2
θ(t− t′) e−

Γ
4 (t−t

′)×

× e−iϵ
g
kσ

z(t−t′)
[
1

2
+ cos(4θgk)δfk(t

′)σz − xk(t
′)σx − cos(4θgk)yk(t

′)σy
]
.

(C.9b)

In order to solve Eq. (C.9) let us assume first that t > t′: Eq. (C.9a) simplifies as

∂tG
<(t > t′, t′) = −

[
iϵgkσ

z +
Γ

4

]
G<(t, t′) =⇒ G<(t > t′, t′) = e−(iϵ

g
kσ

z+Γ
4 )tA(t′),

(C.10)

where A(t′) is a matrix which depend on the time t′ and the momentum k. Substituting

Eq. (C.10) into Eq. (C.9b) we find the following inhomogeneous differential equation for

A(t′):

∂t′A(t
′) = A(t′)

[
iϵgkσ

z − Γ

4

]
+ i

Γ

2
e(iϵ

g
kσ

z+Γ
4 )t
′ ×

×
[
1

2
+ cos(4θgk)δfk(t

′)σz − xk(t
′)σx − cos(4θgk)yk(t

′)σy
]
.

(C.11)

By making explicit the matrix structure, we obtain for the diagonal elements Aii of the

matrix A:

∂t′A11
22
(t′) = A11

22
(t′)

[
±iϵgk −

Γ

4

]
+ i

Γ

2
e(±iϵgk+

Γ
4 )t
′
[
1

2
± cos(4θgk)δf0 e

−Γt′ sin2 2θgk
]
, (C.12)

where we used Eq. (3.63), with the initial condition δf0 = sin2(∆θk) − 1
2 while ∆θk is

given by Eq. (2.38). Equation (C.12) can be solved via elementary methods which yield

A11
22
(t′) = C11

22
e(±iϵgk−

Γ
4 )t
′
+
i

2
e(±iϵgk+

Γ
4 )t
′ ±i

[
sin2(∆θk)−

1

2

]
e[±iϵgk+

Γ
2 cos(4θgk)−

Γ
4 ]t
′
,

(C.13)

where C11/22 are arbitrary k-dependent integration constants which can be fixed on the

basis of the initial conditions. Eventually, by using Eqs. (C.10) and (C.13), the diagonal

elements of G<(t > t′, t′) are given by
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G<
11
22

(t > t′, t′) = C11
22
e∓iϵ

g
k(t−t

′)−Γ
4 (t+t′)+

i

2
e(∓iϵ

g
k−

Γ
4 )(t−t

′) (C.14)

± i

[
sin2(∆θk)−

1

2

]
e∓iϵ

g
k(t−t

′)−Γ
4 (t+t′)+Γ

2 t
′ cos(4θgk) .

For the non-diagonals elements (still under the assumption t > t′), from Eq. (C.11) we

have

∂t′A12
21
(t′) = A12

21
(t′)

[
∓iϵgk −

Γ

4

]
+ i

Γ

2
e(±iϵgk+

Γ
4 )t
′ [−xk(t

′)± i cos(4θgk)yk(t
′)
]
. (C.15)

The solution of Eq. (3.64) with initial condition xk(0) = 0, yk(0) = sin 2(∆θk)
2 , coming

from Eq. (2.59), are

xk(t) = −2
ϵgk
Ω

sin(2∆θk) sin

(
Ω

2
t

)
e−

Γ
2 [1+cos2(2θgk)]t, (C.16a)

yk(t) =
sin(2∆θk)

2

[
cos

(
Ω

2
t

)
+

Γ

Ω
sin2(2θgk) sin

(
Ω

2
t

)]
e−

Γ
2 [1+cos2(2θgk)]t, (C.16b)

where we define

Ω ≡
√

|Γ2 sin4(2θgk)− 16ϵ2k|. (C.17)

From Eqs. (C.15) and (C.16) we obtain

A12
21
(t′) =C12

21
e(∓iϵ

g
k−

Γ
4 )t
′ −i sin(2∆θk) (C.18)

×
{
2
ϵgk
Ω

sin

(
Ω

2
t′
)
± i

2

[
Γ

Ω
sin2(2θgk) sin

(
Ω

2
t′
)
+ cos

(
Ω

2
t′
)]}

and therefore, by combining Eqs. (C.10) and (C.18), the non-diagonal elements of the

lesser Green function G< are

G<
12
21

(t > t′, t′) =C12
21
e(∓iϵ

g
k−

Γ
4 )(t+t′)−i sin(2∆θk) e

∓iϵgk(t−t
′)−Γ

4 (t+t′)−Γ
2 cos2(2θgk)t

′ ×

×
{
2
ϵgk
Ω

sin

(
Ω

2
t′
)
± i

2

[
Γ

Ω
sin2(2θgk) sin

(
Ω

2
t′
)
+ cos

(
Ω

2
t′
)]}

,

(C.19)

with arbitrary k-dependent integration constants C12/21. For the remaining case t < t′,

one can proceed as before, concluding that

G<
11
22

(t < t′, t′) = D11
22
e∓iϵ

g
k(t−t

′)−Γ
4 (t+t′)+

i

2
e(∓iϵ

g
k+

Γ
4 )(t−t

′)

± i

[
sin2(∆θk)−

1

2

]
e∓iϵ

g
k(t−t

′)−Γ
4 (t+t′)+Γ

2 t cos(4θ
g
k), (C.20a)

G<
12
21

(t < t′, t′) = D12
21
e(∓iϵ

g
k−

Γ
4 )(t+t′)−i sin(2∆θk) e

±iϵgk(t−t
′)−Γ

4 (t+t′)−Γ
2 cos2(2θgk)t×
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{
2
ϵgk
Ω

sin

(
Ω

2
t

)
± i

2

[
Γ

Ω
sin2(2θgk) sin

(
Ω

2
t

)
+ cos

(
Ω

2
t

)]}
, (C.20b)

where Dij are the elements of the k-dependent constant matrix D determined on the

basis of the initial conditions. Combining Eqs. (C.14), (C.19) and (C.20) and requiring

that G<(t, t′) satisfies the equal-time condition given by Eqs. (3.61), (3.63) and (3.64),

we have to impose C = D = 0 and finally find the solution anticipated in Eq. (4.32).



APPENDIXD

EVALUATION OF INTEGRALS

In this Appendix we present the details of the calculation via a saddle-point approxi-

mation of the integrals C1, C2 and D1 defined in eqs. (4.52), (4.53) and (4.54). The

strategy consists in approximating the integrand of these integrals around k ≃ 0 and

k ≃ ±π. Indeed, in the time range ΓT ≫ 1 we are interested in, they and the function

δhk in Eq. (4.45) are dominated by the slowest modes k ≃ 0 and k ≃ ±π, as it can

be seen from Eq. (4.45). We focus only on the contribution from the mode k ≃ 0; the

modes k ≃ ±π are due to the presence of the lattice and typically give rise to oscillating

corrections which we neglect for the being. From Eq. (4.46) and the dispersion relation

(2.31) for slow mode k ≃ 0, one has

ϵgk≃0 = 2
√

k2 + (g − 1)2 = 2
√
k2 +∆2, (D.1)

where ∆ = g − 1 is half of the gap (2.56) of the quantum Ising chain. Accordingly, we

can write the integrals (4.52) as

C1(r, τ, T ) ≃ − e−
Γ
4 |τ |

∞∫

−∞

dk

8π

(
1 +

∆√
k2 +∆2

)

× exp

[
−Γ

(
T − |τ |

2

)
k2

∆2
− ikr − 2i∆

√
k2 +∆2τ

]
,

(D.2)

which, by performing the substitution k = ∆q, takes the form

C1(r, τ, T ) ≃ − e−
Γ
4 |τ |

∞∫

−∞

dq

8π
∆

(
1 +

1√
q2 + 1

)

× exp

[
−Γ

(
T − |τ |

2

)
q2 − i∆rq − 2i∆τ

√
q2 + 1

]
.

(D.3)
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From Eq. (D.3) it is clear that the exponential decay induced by a non-vanishing noise

strength Γ ̸= 0 gives a natural cutoff which enforces the convergence of the integral; in

particular the largest contribution to the integral comes from the modes with

q ≪ 1√
Γ
(
T − |τ |

2

) =
1√

Γmin(t, t′)
; (D.4)

recalling we have assumed in Eq. (4.41) that Γmin(t, t′) ≫ 1, we can expand the inte-

grand for small q and obtain, in the limit ∆r ≪ Γmin(t, t′),

C1(r, τ, T ) ≃ − e−
Γ
4 |τ |

∞∫

−∞

dq

8π
∆

(
2− q2

2

)

× exp

[
−Γ

(
T − |τ |

2

)
q2 − i∆rq − 2i∆τ

(
1 +

q2

2

)]

= −∆

4π

√
π

Γ (T − |τ |/2) + i∆τ

× exp

{
−Γ

4
|τ |− 2i∆τ − (∆r)2

4[Γ (T − |τ |/2) + i∆τ ]

}
+O

(
∆r

Γmin(t, t′)

)3/2

,

(D.5)

where we have performed the Gaussian integration and neglected higher-order terms

coming from the quadratic terms ∝ q2. In the limit ∆r ≪ Γmin(t, t′) the integrals C2

andD1 given by Eqs. (4.53) and (4.54), respectively, can be neglected; indeed proceeding

as before one finds

C2(r, τ, T ) ≃ − ∆

16π
e−

Γ
4 |τ |+2i∆τ

∞∫

−∞

dq q2 × exp

[
−Γ

(
T − |τ |

2
− i∆τ

Γ

)
q2 − i∆rq

]

= O

((
∆r

Γmin(t, t′)

)3/2
)
, (D.6)

D1(r, τ, T ) ≃ −∆

8π
e−

Γ
4 |τ |−2i∆τ

∞∫

−∞

dq

(
q − q3

2

)
× exp

[
−Γ

(
T − |τ |

2
+

i∆τ

Γ

)
q2 − i∆rq

]

= O

(
∆r

Γmin(t, t′)

)
. (D.7)

Now we want to evaluate the integrals A1 and A2 reported in Eqs. (4.49) and (4.50)

for r = 0 in the limit τ ≫ 1. Since we are considering τ ≫ 1, these integrals are

dominated by the slowest modes k ≃ 0 and k ≃ ±π. Therefore they can be computed

by approximating the corresponding integrands around k ≃ 0 (analogously to what we

have done above, we neglect here the lattice corrections coming from the modes k ≃ ±π).
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Consider the integral A1(r = 0, τ) in Eq. (4.49):

A1(r = 0, τ) =

π∫

−π

dk

2π

(
1

2
+

g − cos k

ϵgk

)
e−iϵ

g
kτ ≃

∞∫

−∞

dk

2π

(
1

2
+

∆

2
√
k2 +∆2

)
e−2i

√
k2+∆2τ ,

(D.8)

where ϵgk is the dispersion relation (2.31), ∆ is half the gap (2.56) and we extend the do-

main of integration from the Brillouin zone to the entire real-axis. With the substitution

q = k/∆, the integral (D.8) can be written as

A1(r = 0, τ) =

∞∫

−∞

dq

2π

∆

2

(
1 +

1√
q2 + 1

)
e−2i∆τ

√
q2+1

≃ ∆

2

∞∫

−∞

dq

2π

(
2− q2

2

)
e−2i∆τ(1+q2/2),

(D.9)

where in the last line we have expanded the integrand in power series around q = 0.

The integral (D.9) is elementary and, after neglecting higher-order corrections coming

from the quadratic term ∝ q2, we obtain

A1(r = 0, τ ≫ 1) ≃
√

∆

4πiτ
e−2i∆τ . (D.10)

The integral A2(r = 0, τ ≫ 1) given by Eq. (4.50) can be evaluated along the same lines

with the result

A2(r = 0, τ ≫ 1) ≃ ∆

4

∞∫

−∞

dq

2π

q2

2
e−2i∆τ(1+q2/2) ≃ ∆

16
√
π

(
i

∆τ

)3/2

e2i∆τ ; (D.11)

note that it is negligible compared to Eq. (D.10) in the limit τ ≫ 1.
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