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IntrodutionStudies on disordered systems in Statistial Mehanis, like spin glasses and random models,have developed and re�ned in the last thirty years a set of sophistiated and useful means fordealing with a wide range of omplex phenomena, the Replia and the Cavity Methods beingparadigmati examples of these elaborate tools. These, in turn, opened new ways for representingand understanding the omplexity oming out in a lot of subjets of researh, not only as far asphysial matters are onerned.Combinatorial Optimization is ertainly one of the natural �eld in whih suh developmentsould be applied. So it is not surprising that one of the �rst aounts of suh methods [1℄ devotedone setion to the appliations in optimization problems.Combinatorial Optimization deals with the searh and the analysis of e�etive algorithms forseleting objets in a huge spae of feasible solutions given some variational priniples. Here wehighlight the good saling properties with the �size� of the problem, mainly in the worst asesenario. Algorithms are then lassi�ed in a hierarhi manner in some omplexity lass.While the Statistial Mehanis of disordered systems tries, through a probabilisti approah,to ath a qualitative and strutural piture of the whole spae of on�gurations, here we fouson the features of di�erent models that show some �universality� properties.Although the somewhat di�erent aims of these two �elds, a lot of problems ould be statedin a very uni�ed presentation, and the results of one disipline ould be frequently transposed inthe proper language of the other one, leading to a fruitful interplay.This work piks up a lassial subjet of Combinatorial Optimization, the Assignment Prob-lem, and tries to design and analyze for it an algorithm inspired to the Cavity approah on therelated Statistial Mehanial model. The Assignment Problem onsists in �nding a minimumweight mathing in a weighted bipartite graph, i.e., loosely speaking, given a ost for every pairsbetween two set of objets of equal size N ; the problem onsists in seleting N pairs so that thesum of their ost is minimal and eah objet is in one and only one pair.This problem is worth of study for di�erent reasons, among whih we an mention the prati-al appliations related to the swithing tehnology and the image pattern reognition. Anotherinteresting feature is ertainly the polynomial time boundedness of available algorithms for thisv



CONTENTSproblem, that allows a ontrollable testing of the physial expetations for this model.Using the Cavity Theory for Random Models we investigated �nite-size behaviour in orderto design a ompetitive algorithm for optimal assignment given a random matrix. From CavityEquations for this model we derived a reursive map for �bias� �elds. Some interesting featuresame out:� a �xed point exists almost everywhere in the measure for the ost matrix using a parallelupdate for the �elds;� suh �xed point is a delta funtion over the optimal on�guration� the attration basin of this solution overs all the spae of initial values for bias �elds.Thus an exat algorithm is extrated from the Cavity Method for solving the random As-signment Problem. Similar analyzes are also found in [2℄, but some pratial aspets for thealgorithm design are not addressed there. For example they do not provide an a priori (i.e.,instane independent) limit for the solution time. Also it laks a riterion for asserting that the�elds are su�iently �lose� to the asymptoti behaviour. Finally naïve solution time averagesare in�nite beause of non-integrable power tail distribution over the instanes.A well-known algorithm for Assignment Problem (Hungarian Algorithm, [3℄) was studied inorder to underline similarities and di�erenes with the Cavity algorithm, and through its studyit was possible to derive a solution erti�ation for the Cavity algorithm.A heuristi for determining instanes with anomalous long time onvergene and an ad hopresription for dealing with them were developed in order to get a total omputing time lawlose to the ubi power law of the Hungarian Algorithm.Some remarks are also disussed for the pratial use of the Cavity algorithm. Even thoughthe Hungarian Algorithm behaves omparatively better as regards solution time, the avityapproah ould give fast sub-optimal heuristi, and it is easier to implement in a parallel arhi-teture.The hapter struture is as follows:� Chapter 1 deals with the typial phenomena of the random systems in Statistial Mehanis.It is a brief aount of onepts and tehniques often used in the other hapters.� Then in hapter 2, some ideas from the Combinatorial Optimization are presented suhas the hierarhi struture of the omplexity lasses and it is desribed in some details apolynomial algorithm for this problem: the Hungarian Algorithm.� In hapter 3 we give a better look at the Cavity Method for the Random AssignmentProblem, leading to the reursive map used in the algorithm.vi



CONTENTS� In hapter 4 is ontained the �nite-size analysis of the model, and some implementationdetails are disussed together with the Belief Propagation interpretation for the CavityAlgorithm. Finally it is disussed in some length the Replia Symmetry for our model.� Chapter 5 ontains the main demonstration of the onvergene and of the features emergingin the stationary phase for the iterative map. A entral disussion overs also the theoretialbasis for the halting ondition and the optimality erti�ate.� In hapter 6 are faed some important aspets for raising the heuristis desribed in theprevious hapters to an algorithm, and it is also analyzed the saling properties of thee�ieny of the algorithm.� Finally is inluded a �onlusion and perspetive� hapter for disussing and resuming theresults.
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Chapter 1Introdution to onepts of StatistialMehanisThis hapter is a brief introdution to the onepts of disordered systems in Statistial Mehanis.It is mainly intended for people who lak familiarity with these �elds, for example beause theyome from a bakground in Computer Siene. So, it is absolutely non-exhaustive, but we hopethat we sueeded in giving a �avour of the main onepts, with a speial eye to those pointswhih will be reanalyzed, in a re�ned way, in the following hapters. Clearly, the reader familiarwith the theory of Spin Glasses an skip reading this part.First, the general framework of equilibrium Statistial Mehanis will be presented; thenwe will onentrate on the arhetypal Ising Model, in order to introdue the subtle oneptsof spontaneous symmetry breaking and phase transition through a pitorial example. Finally,some models of disordered systems are presented, and some attempt to desribe the arising newfeatures is done.1.1 Equilibrium Statistial MehanisThe ore subjet of Statistial Mehanis is the bridge, built with probabilisti tools, betweenthe marosopi world of Thermodynamis and the mirosopi one, whih it is believed to obeyto some elementary physial law, suh as those of Mehanis.Its redutionist researh program started in the eighteenth entury with the works of Boltz-mann, Maxwell, Gibbs and others, in order to �explain� the thermodynami laws empiriallyobserved sine the seventeenth entury (suh as the lassial ideal gas law) as marosopi ef-fets of an underlying miro-physis of �atoms� subjet to the laws of Newtonian Mehanis.The mirosopi state of a thermodynami system ould not be aessed diretly through1



CHAPTER 1. INTRODUCTION TO CONCEPTS OF STATISTICAL MECHANICSmeasurements. Experiments an only gather statistial data onerning the system as a maro-state, and repeat measure proedures on a physial state prepared in a well de�ned manner(i.e., imposing a �nite set of thermodynami and boundary ondition suh as pressure, volume,temperature, external magneti �eld. . . ).As they were faing both the impossibility of �xing the mirophysial state through measure-ments, and the overwhelming di�ulties in solving the equation of motion for a huge numberof oupled degrees of freedom, statistial mehaniists were fored in the use of a probabilistiapproah.Assuming that the relevant properties of a partile (suh as position, momentum, spin, . . . )are desribed in a single-state spae X0, the mirosopi state is fully desribed by an unknownpoint in a high-dimensional phase spae X = XN
0 (N ∼ 1023 on human-size experiments) pro-vided with a referene measure dx inherited from the one over X0. After the system preparation,inluding a transient time of thermalization, it is assumed that the system reahes the thermalequilibrium, then a measure dµ(P,V,T,... ) (depending on a �nite set of thermodynami onditions)desribes the physial system subjeted to measurements.Observable quantities orrespond to real-valued funtions over the phase spae and their aver-age values over the equilibrium measure lead to quantities amenable of experimental omparison.

A : X → R, 〈A〉µ =

∫

X
dµ(x) A(x)For homogeneous systems, with short-range interations (i.e. suh that partiles well in the bulkdo not �feel� the boundary), it is expeted that the loal properties of the system in the bulkdo not depend sensibly from the volume. For example, some water, at a given temperatureand pressure, will have a ertain density ρ regardless from the size and shape of the ontainer.Similarly, the mass M of water in the ontainer will be proportional to the volume itself, M = ρV .This trivial saling reasonings allow to distinguish physial observables into intensive, not salingwith the volume, like the density, and extensive, saling linearly with the volume, like the mass.The mirosopi equation of motion is involved through the Hamiltonian funtion H thatrepresents the energy of the system and generates trajetories of the mirostate in the phasespae. However, for reasons illustrated in the following, it makes sense to avoid a detaileddesription of the mirosopi dynamis, and introdue instead models of Statistial Mehaniswith simpli�ed Hamiltonians. Nonetheless, in this step one should preserve some requirementson the Hamiltonian funtion based on physial grounds, suh as loality and mirosopi time-reversal symmetry, where the latter is automatially implemented by respeting the detailedbalane: if Wx→x′ is the transition rate i.e., the probability that a mirosopi on�guration x2



1.1. EQUILIBRIUM STATISTICAL MECHANICSevolves to the state x′ after some time ∆t, the dynamis has the following properties:
lim

|x−x′|→∞
Wx→x′ = 0 (loality) (1.1)
Wx→x′

Wx′→x
= e−β(H(x′)−H(x)) (detailed balane) (1.2)In this piture, the task of Statistial Mehanis an be divided in two parts: on the one hand,to derive the probability measure of the system at thermal equilibrium (i.e., after a su�ient longtime); on the other hand, to ompute, even if in an approximate way, the marosopi propertiesas averages over that measure.The determination of the equilibrium measure dµ(V,P,T,... ) , given the Hamiltonian, is in gen-eral a deliate point. Nevertheless, under the ergodi hypothesis, whih roughly states that thetrajetories in the phase spae under the dynamis over uniformly the equilibrium measure, or,equivalently, that time averages oinides asymptotially with averages over the measure

〈A〉µ =

∫

X
dµ(x)A(x) = lim

T→∞

∫ T

0
dt A(x(t)) ∀ observable A (1.3)it an be proved the existene of a unique equilibrium measure, i.e., the Gibbs measure for asystem in a heat bath at temperature T ∝ 1

β :
dµGibbs(x) =

e−βH(x)

Z(β)
dx (1.4)The failure of this hypothesis is the ore of ruial onepts like spontaneous symmetry break-ing, as we will disuss in the following. One should however distinguish among the �simple�mehanisms, deduible a priori, suh as the existene of some other onserved quantity (besidesenergy), whih determine a family of equilibrium measures, not parametrized by marosopiexternal onditions, and some more �strutural� mehanism, suh that the ergodiity is brokenby some large-volume limit of the dynamis, where the times required in (1.3) diverges with someexponential of the volume.In the Gibbs measure above, Z(β) is the partition funtion. Algebraially it expresses thenormalization of the measure:

ZGibbs(β) =

∫

X
dx e−βH(x) (1.5)while its physial meaning omes from the following simple relations for the mean energy and itsthermal �utuations:

E(β) = 〈H〉µ = − ∂

∂β
ln(Z(β))

〈H2〉µ − 〈H〉2µ =
∂2

∂β2
ln(Z(β))Let us remark some important properties of generi Statistial Mehanis systems: 3



CHAPTER 1. INTRODUCTION TO CONCEPTS OF STATISTICAL MECHANICS� given a set of non-interating systems X1,X2, . . . ,Xk (i.e., unorrelated), the ompositepartition funtion is given by a produt over the omponents: Z =
∏k

i=1Zi;� the logarithm of the partition funtion is an extensive quantity (i.e., proportional to thesize of the system), and is alled free energy :
F(β) = − 1

β
ln(Z(β)) (1.6)Alongside with the free energy, another fundamental onept is the entropy of the system,de�ned as:

S[µ] = −
∫

X
dµ(x) ln(µ(x)) = −〈ln〉µ (1.7)where we use square brakets to underline its aspet of funtional over the spae of measuresin the phase spae. Its exponential �measures� the number of relevant states in the phase spaefor the onsidered probability measure. The Gibbs measure satis�es the variational priniple ofmaximal entropy at given mean energy, or the priniple of maximal free energy, as it should beevident from the following relations for the entropy, the internal energy and the free energy:(entropy) S[µ] = −〈ln〉µ (1.8)(internal energy) E [µ] = 〈H〉µ (1.9)(free energy) F [µ] = E [µ]− S[µ]

β
(1.10)Moreover using the equilibrium measure it is possible to derive the following formulae

F(β) = − 1

β
ln(Z(β)) (1.11)

S(β) = −β2 ∂F
∂β

(β) (1.12)
E(β) = F(β) + β

∂F
∂β

(β) (1.13)Looking at them it should be lear how a thermodynami potential, suh as the free energy,enodes muh of the physis of the system. Furthermore, observables essentially of any naturean be expressed through the alulation of a partition funtion for a su�iently �generalized�model, extended to inlude some soure terms,
〈A〉 = − 1

β

∂

∂j
ln(Z(β, j))

∣

∣

∣

∣

j=0

, Z(β, j) =

∫

X
dx e−β

(

H(x)+jA(x)
)

. (1.14)4



1.2. ORDERED SYSTEMS AND PHASE TRANSITION1.2 Ordered Systems and Phase TransitionIn this setion we set out to give a brief overview on an arhetypal toy model of ordered systems:the Ising Model, beause it provides an insightful example of some reurrent features of StatistialMehanis suh as ergodiity breaking, phase transition and oexistene of pure phases.Ernst Ising developed the model in 1926 as part of his PhD dissertation. The 1-dimensionalIsing Model onsists of a linear hain, made up of partiles having magneti moments alled�spins� that are able to take an up or down position. The spin of eah partile in�uenes thespin moment of the ones bordering it.More generally, let us onsider a spin system on a d-dimensional regular lattie of size L, inwhih eah site ontains a spin variable σ whose values lie in the single-state spae X0 = {±1}.The Hamiltonian funtion is:
H(σ) = J

∑

〈i,j〉

σiσj + h
∑

i

σi (1.15)where J represents the strength of the interation between the sites of the lattie, 〈i, j〉 meanssum over nearest neighbours, h is a site-independent external magneti �eld and σ = {σ1, σ2, . . . }indiates the on�guration of the mirostate in the phase spae X = {±1}N (with N = Ld).The alulation of the Gibbs partition funtion ZN :
ZN =

∑

σ

e−βH(σ) (1.16)results easy in 1-dimensional systems, but despite of a deeiving simpliity, its analytial treat-ment leads to serious di�ulties even in the 2-dimensional ase. This alulation was solvedwith no external magneti �eld through a mathematial tour de fore by Onsager in 1944 [4℄. Inhigher dimensions other tehniques should be tried, suh as omputer simulations (like MonteCarlo methods or Transfer Matrix tehniques), or analytial approximations (like Low and HighTemperature expansions, or a systemati Mean Field expansion of k-point orrelation funtions).In order to get a qualitative piture of its behaviour, let us onsider the natural observableof mean magnetization, de�ned as
M = 〈m(σ)〉, with m(σ) =

1

N

∑

i

σi (1.17)Obviously, if h = 0, the Gibbs measure leads to zero mean magnetization for eah temperature,(disregarding thermal �utuation) due to symmetry reasons. Nonetheless, if the dynamis seletsa region of the phase spae with (absolute value of) average magnetization |m(σ)| ∼ m∗, we wouldhave two �bubbles� in the phase spae, eah of them being ergodially explored in short times,but the �tunnelling� from one to the other, requiring that the system explores highly improbable5



CHAPTER 1. INTRODUCTION TO CONCEPTS OF STATISTICAL MECHANICSregions of the phase spae for a large time, is possible in priniple, but suppressed by fators
∼ exp(−βE) (with E some typial energy of this tunnelling proess, whih is extensive).Performing an exat analytial omputation of M(T, h) using the true Gibbs Measure forthe Ising system is a hard task (exept for the 1-dimensional ase, for whih the result is triv-ial). Nonetheless, the approximated Mean Field Theory give us the possibility of grasping itsqualitative behaviour.The Mean Field Approximation ould be derived from the variational priniple of minimalfree energy, when restrited to some simple measures (i.e., fatorized ones, Z[z] =

∏

i zi(σi)),whih neglet orrelations among spins.For example, for the Ising Model, one an hoose the single-spin measure to be suh that theaverage magnetization is m

m = 〈σ〉 =
prob(σ = +)− prob(σ = −)

prob(σ = +) + prob(σ = −)
(1.18)then, self-onsistently, one has that a spin experienes an e�etive magneti �eld, being thesum of the external �eld h, and the average interation from the 2d neighbours, 2dJm, whihdetermines

mmf = tanh(2βJdmmf + βh) . (1.19)It is also interesting to determine the partition funtion, highlighting the di�erent roles of energyand entropy. The number of aessible on�gurations with average magnetization equal to m isgiven by a binomial oe�ient, whih, by Stirling expansion, gives
S(m) =

N

2
((1−m) ln(1−m) + (1 + m) ln(1 + m)) , (1.20)while the average energy is

E(m) = N
(

hm + dJm2
)

. (1.21)Figure 1.1 gives hints about the free energy landsape of the Ising Model with zero external�eld, parametrized by the mean magnetization. In partiular the �gure shows that for systemswith temperatures under a ritial point (The Curie Temperature, Tc), the minimal free energypoint is realized in two di�erent �phases�, symmetrial w.r.t. inversion of all the spins. In otherwords, at h = 0 in dimension d > 1∗ Ising Model experienes a Spontaneous Symmetry Breaking(SSB), sine the Hamiltonian funtion symmetry under the spin-�ip transformation (with h = 0)
∗note that MFT is too rude in the 1-dimensional ase to derive suh result that ame by other tehniques.Atually MFT ould be seen as the zeroth order of approximation in a 1/d expansion leading exat results in the

d = ∞ limit.6



1.2. ORDERED SYSTEMS AND PHASE TRANSITION

 0

F
M

F

MMF

Ising Mean Field: Free Energy vs Magnetization (h = 0)

T < Tc
T = Tc
T > Tc

Figure 1.1: Qualitative piture of the Free Energy landsape in the MF Approximation with noexternal magneti �eld for temperature at, above and below Curie Temperature Tc.ausing zero magnetization expetation at equilibrium, spontaneously∗ fails to happen in sub-ritial temperatures, due to the existene of two ergodiity basins for the dynamis, suh thatthe system gets trapped in one of them (for an in�nite time, in the thermodynami limit).At least in its dynami aspets, the onept of pure phase is based on this ergodiity breaking†.For Ising Model, let us onsider these two limit measures:
µT

+(σ) = lim
h→0+

µ
(T,h)Gibbs(σ) µT

−(σ) = lim
h→0−

µ
(T,h)Gibbs(σ) (1.22)They learly do not oinide beause of 〈m(σ)〉+ = −〈m(σ)〉− > 0 (it even tends to 1 as T → 0),and, on the ritial line (h = 0, T ∈ [0, Tc]) in the parameter spae (h, T ), the Gibbs measure,as well as any equilibrium measure allowed in the system, are a onvex ombination of them,and we say that there is phase oexistene, like, for example, in a losed ontainer at 100◦ anddensity intermediate between 0.001g/cm3 and 1.g/cm3, there is oexistene of water and vapour(see for example (1.3))

µT
(λ)(σ) = λµT

+(σ) + (1− λ)µT
−(σ) λ ∈ [0, 1] ; µT

(Gibbs)(σ) = µT
(λ=1/2)(σ) (1.23)

∗as opposed to an expliit breaking via h 6= 0.
†with whih also the uniqueness of the equilibrium measure fails. 7



CHAPTER 1. INTRODUCTION TO CONCEPTS OF STATISTICAL MECHANICS
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Ising Mean Field: Free Energy vs Magnetization (h > 0)

T < Tc
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T > Tc
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Ising Mean Field: Free Energy vs Magnetization (h >> 0)

T < Tc
T = Tc
T > TcFigure 1.2: Qualitative piture of the Free Energy landsape in the MF Approximation withpositive external magneti �eld for temperatures at, above and below Curie Temperature Tc.It turns out that, when the SSB ours, one has an analyti signature of this phenomenon inthe expression for the free energy. Indeed, at �nite size the partition funtion is an integral ofa positive regular funtion (or a positive-oe�ient polynomial in algebrai variables, as in thease of disrete variables, e.g., in a spin system), and thus it must be in�nitely di�erentiable, aswell as its logarithm. Nonetheless, our statement on the fat that the free energy is extensiveis realized through a non-trivial mehanism: it just states that the limit limN→∞F(β,N)/Nexists, but the limit of a sequene of di�erentiable funtions ould well be a non-di�erentiableone!What happens is that the points in the phase spae (e.g., in the plane (T, h)) at whih thefree energy fails to be analyti are the natural andidates for the ones at whih SSB ours.This phenomenon is pitorially lear on our graphis for the mean-�eld Ising Model: what isontinuous is the free energy funtional alulated at the value m = 0, whih is the one seletedby the variational priniple for T > Tc, as well as at any di�erentiable urve m = m(T ) that oneould hoose to follow. But the SSB auses a �fork� of the symmetri minimum m = 0 into thetwo minima m = ±m∗, exhanged by the symmetry, thus the position of the minimum along Tis not a di�erentiable funtion.Finally we spend some more words on the onept of pure phases, an how to haraterizethem in those regions where there is oexistene of phases. As the �label� of the pure phase issome global quantity, it auses some ommon bakground for all the variables, being the e�et ofa loal ooperative behaviour of the degrees of freedom in the system, whih appears like breakingthe loality ondition (two variables, well separated in spae and at the same time, know thatthey are in the same phase, even without sharing information through the propagators of thephysial dynamis!). Clearly, there is no paradox in this, as our onlusions, whih assumedthermalization and large-volume limit, imply that there is atually no information to �exhange�,8



1.3. DISORDERED SYSTEMS

Figure 1.3: Qualitative piture of the Magnetization dependene on the parameters spae.beause the phase label is �xed. Nonetheless, this apparent breaking of loality has a well-de�ned set of onsequenes on the set of physial observables in the system, and, turning thingsupside-down, it allows to determine a non-ambiguous analytial reipe for haraterizing the�pure phases�, i.e., the phases whih are not a non-trivial onvex ombination of other phases.This riterion omes under the name of luster property :Cluster Property Given an equilibrium measure µ, it desribes a pure phase if and only if, inthe thermodynami limit, given the loal observables Ai(x) � where �loality� means that
lim

|x−x′|→∞
[Ai(x), Ai(x

′)] = 0 (1.24)
lim

|x−x′|→∞
(〈Ai(x)Aj(x

′)〉 − 〈Ai(x)〉〈Aj(x
′)〉) = 0 (1.25)1.3 Disordered SystemsGlassy systems are haraterized by the presene of some sort of strutural disorder in additionto the thermal one. They arise as result of a range of phenomena like impurities or the fastooling of visous materials whih prevent from the formation of the rystal lattie. 9



CHAPTER 1. INTRODUCTION TO CONCEPTS OF STATISTICAL MECHANICSSpin glass models try to reprodue this feature through a mirosopi loal �utuation of theparameters in the Hamiltonian funtion, that thus now ontains an extensive number of param-eters, whose knowledge is only probabilisti (for example oming from the various distanes ofatomi positions in a glass). Standard treatments assume HJ(x) depending on these parame-ters, alled quenhed variables J = {J1, J2, · · · , Jk} where k runs for example on the number oftwo-site interations. They are alled quenhed variables beause they arise typially throughouta onurrent proess of di�erent time sales, like in a freezing proess where the system remainstrapped in a metastable struture, while thermalization to equilibrium of other sets of variablesis omparatively very rapid.Magneti systems are ommonly onsidered with typial Hamiltonian funtions like:
HJ(σ) =

∑

i,j

Jijσiσj (1.26)where spin variables take value in {±1}, while interation parameters are random variables withsome assumptions about the �rst moments of their distribution. The analytial treatment israther di�ult, so that simpli�ations are essential for deriving any results from these models,Nonetheless, our analysis of the Ising example shows that even a rude simpli�ation ouldmaintain some aspet of the desired original system. Di�erent models arise when hanging thedistribution of the quenhed variables or the underlying graph of interations. Here is a listof models widely studied in the spin glasses literature for their interesting properties under theMean Field Approximation:SK The Sherrington-Kirkpatrik Model adopts a �normal� (i.e., Gaussian) distribution of thequenhed random variables on every pair of spins. Variane is assumed to sale as 1/
√

N ,in order to have a good saling of the extensive quantities, suh as the internal energy. Itis the random-interation Ising system more �near� to the fully-onneted system where,in the analogous �xed-J Ising model, the mean-�eld approximation is exat, thus it wasonsidered oneivably as the easiest disordered system to study. However, as it is wellknown, this model shows new and omplex features, whih an be understood at the lightof the Parisi solution for the quenhed free energy. In this ontext, the ruial onept ofspontaneous Replia Symmetry Breaking is introdued [1℄.VB The Viana-Bray Model or Bethe Lattie model has spin variables on a random lattie,where z is the mean oordination of the graph, �nite in the N → ∞ limit. In this ase,just Nz/2 parameters are di�erent from zero, and this is expeted to reprodue some more�physial� situations, from ondensed matter physis, where z is related to the volume ofsome short range interation. Nonetheless, the fat that the graph is random still keepssome analogy with a mean �eld approximation, in the fat that, on a �nite-dimensional10



1.3. DISORDERED SYSTEMSgeometry, the �neighbour of a neighbour of a neighbour. . . � of a site has a higher hane ofbeing a neighbour of that site, w.r.t. the average. The higher is the dimension, the smallerthis e�et is, up to disappear at d =∞. But, as we said, this limit is another one in whihthe ferromagneti Ising model was exatly desribed by the mean-�eld solution.EA The Edwards-Anderson Model has pairwise interations between nearest neighbours on aregular d-dimensional lattie, just like the Ising Model, but where oupling parametersare random variables. This is the most �physial� example, but of ourse an impossiblehallenge at high dimension (d ≥ 3), where not even the regular ase is solved, while the
d = 2 ase admits a spin-glass transition, if any, only at T = 0 (analogously to regularIsing in d = 1).A reurrent phenomenon in these models is the frustration, i.e., the existene, in opposition to theordered models like Ising, of interations whose tendeny on the system is towards antagonistion�gurations. Frustration may emerge for example in the anti-ferromagneti (J < 0) IsingModel when it is applied to non bipartite latties (where a hessboard-like disposition is notpossible), suh as a triangular lattie. However frustration an also arise easily on arbitrary�loopy� graphs, when the interations Jij are allowed to take values with di�erent signs.An extensive number of frustrated interations is the mirosopi root of the existene of avery rough free energy landsape for these models, where not only the number of pure phasesould grow exponentially (with free energy shifts of order 1), but also it results very di�ult toidentify some order parameter, like the mean magnetization for Ising, apable of distinguish andlabel the pure phases in a simple way.As standard thermodynamis is involved in the alulation of the free energy for deriving aset of marosopi quantities from that, in the study of glassy systems it is very important thealulation of the so alled quenhed averages, as opposed to the usual and somewhat better-behaving annealed averages, de�ned as follows:
〈A〉quenhed = A =

∫

dµ(J) 〈A〉J with 〈A〉J =
1

ZJ

∫

X
dσ e−βHJ (σ)A(σ) (1.27)

〈A〉annealed =
1

Z

∫

X
dσ

∫

dµ(J) e−βHJ (σ)A(σ) (1.28)It is relatively easier to deal with annealed averages, whih provide a bound to the analogousquenhed ones, although often a quite poor one, and, in the ase of a ritial phenomenon,they lak to show the same non-analytiities of the quenhed homologous. Understanding this�two-level� averaging seems thus to be a ruial point.A further intuition on this fat omes from the observation that thermodynami averagesould be almost independent from the realization of the disorder, on average and in the thermo-11



CHAPTER 1. INTRODUCTION TO CONCEPTS OF STATISTICAL MECHANICSdynami limit � we say in this ase that these quantities are self-averaging, i.e. for a quantity A

lim
N→∞

(A− 〈A〉J)2

A2
= 0 (1.29)while other quantities ould �utuate extensively with the size of the system � we say in thisase that these quantities are non�self-averaging. For example, the free energy is a self-averagingquantity in all �well-behaving� models, but the Parisi parameter q(x) is not self-averaging in theSK model.Random systems usually require a re�nement of the Mean Field Approximation or, some-times, new tehniques suh as the replia trik used to derive a solution for the SK Model. Inpartiular, from the solution of this model very nontrivial onlusions were derived about thestruture of the phase spae. The Replia hierarhy was developed in order to get an overview ofthe many phases breaking and its ultrametri struture. �Easy� systems are the ones respetingthe Replia Symmetry (RS) and they are haraterized by the existene of an unique pure phase,while more omplex ases exist ranging from the 1-step replia symmetry breaking (or 1-RSB) to

∞-RSB, meaning for that the existene of graded levels of pure phases (alled lusters of phases,and then lusters of lusters of phases, when pitorially speaking, et.).

12



Chapter 2Combinatorial OptimizationThe purpose of this hapter is to introdue onepts and problems of Combinatorial Optimization,as this is the proper framework for disussing the Assignment Problem.After that we will present the Hungarian Algorithm, a strongly polynomial algorithm for theAssignment Problem. Its interest is twofold: on the one hand it provides a meter of omparisonfor e�etive algorithms in this �eld, on the other hand its analysis introdues the dual problemrelated to the assignment, whih lari�es some strutural aspets of the problem, and will leadto the determination of an optimality erti�ate, also in our Cavity approah.2.1 Combinatorial OptimizationBasi ingredients of a ombinatorial optimization problem are (a) a set of input objets de�ninga partiular instane to be solved, (b) a �nite spae of feasible solutions, typially exponentiallylarge, and () a ost funtion over this spae to be minimized or maximized.For a preise mathematial representation of these problems it is often used the graph theorylanguage. A graph G is de�ned by a set of points V , alled nodes or verties, and a set of edges
E linking ouples of them.Here is a list of prototype problems:Shortest Path Problem Find a minimal length path between two given nodes in a graph G.Travelling Salesman Problem Find a minimal Hamiltonian path in a graph G, i.e., a tourpassing through eah node exatly one and returning to the starting point.Chinese Postman Problem Find a minimal tour in a graph G passing through eah edge atleast one. 13



CHAPTER 2. COMBINATORIAL OPTIMIZATIONMax Flow Problem Given a �ow F , i.e., a graph and a numerial funtion from its edgesde�ning the �apaities�, �nd a maximal numerial funtion from the edges with values lessthan those of apaities, i.e., a maximal �ow between a starting point (soure) and a �nalone (sink).Chromati Number Problem Find the hromati number of the graph G, i.e., the minimumnumber of olours su�ient to olour eah node in suh a way that no two adjaent vertiesshare the same olour.All these problems share a �nite spae of feasible solutions so the emphasis is not too muhabout the standard questions in mathematis, like existene and uniqueness, but rather on thesearh and analysis of e�ient reipes (algorithm) solving instanes of these problems.An algorithm is, loosely speaking, a proedure for solving a problem. More preisely it is aset of instrutions understandable by an appropriate automati mahine, suh that, given someinput data in a �nite number of steps leads to some output. Inputs are a representation of aninstane of the problem laimed to be solved by the algorithm, as outputs are supposed relatedto the solution.A formal de�nition of algorithm is rather subtle and it is investigated by ComputabilityTheory via onepts of the Universal Turing Mahine, λ-alulus, and the theory of formallanguages (see for example [5℄). Here it su�es to say that the Churh-Turing Thesis is thefundamental hypothesis in Computation Theory stating roughly that all possible omputation∗an be performed by an algorithm running on omputers provided with an in�nite amount oftime and spae.However simple algorithms are known sine the dawn of mathematis, like the Eulid algo-rithm for the omputation of the GCD between two integers (∼ 300 BC):Algorithm 1 Eulid's algorithm1: proedure Eulid(a, b) ⊲ The g..d. of a and b, with a ≥ b2: r← a mod b3: while r 6= 0 do ⊲ We have the answer if r is 04: a← b5: b← r6: r ← a mod b7: end while8: return b ⊲ The g..d. is b9: end proedure
∗There are, of ourse, examples of impossible omputation like the Halting Problem, and others related to theGödel theorems about inompleteness.14



2.1. COMBINATORIAL OPTIMIZATIONThis simple example shows the basi features of the informal haraterization of the algorithmonept:1. a �nite set of input data (a, b) to be properly enoded in order to make them �understand-able� from the alulating mathing,2. a �nite set of output data as b at line (8),3. a number of steps during whih the internal state of the alulating devie is hanged. Thissteps should be simple enough to be properly omputed in an automati way in a �nitetime by the underling alulator.A feature to be remarked is that the number of steps neessary to omplete the alulation isdependent on the input data, and, although in this ase, the �niteness of the number of stepsis beside any doubts, in general, it is not a simple question to determine if an algorithm willde�nitively stops on every possible input. Already in our easy example, the any ase �nitenessof the proedure is based on an elementary appliation of a subtle onept: the existene of a(strit) Lyapunov funtion, i.e., a funtion valued in N, suh that the initial value is �nite, andin the given bounded-time proedure either the algorithm sueeds, or the value dereases by a�nite amount. In this ase, the value of variable a is a good Lyapunov funtion, w.r.t. the �while�loop.Many features of the algorithm determine its e�ieny, like storage required for the internalstate of the omputing mahine. But usually people tends to fous on the number of stepsrequired to omplete the alulation. Given an algorithm A adapt to run on a mahine M, wede�ne the integer funtion fAM(I) as the number of steps required to get the �nal answer fromthe input I, using the algorithm A implemented on a mahine M. Even if its atual form isrelatively of little interest, beause of its widely variability with the implementation details, andalso in the spae of the input data, nonetheless theoretial enquire onentrates on its leadingterm in the saling behaviour with a proper size funtion of the input data. For the Eulid'salgorithm a natural hoie is the magnitude of the input numbers (a, b), for other problems, likethose reported at the beginning of the setion, ould be better using the size of the underlinggraph as the number of verties and/or the number of edges.In our Eulid ase, for example, the time spent inside any of the �while� loop depends onhow well is performed the integer division, but this is learly a tehnial point of small relevane.What is important is that we an prove that the �while� loop is invoked a number of timesbounded by some funtion of the input sizes a and b, namely, smaller than 2 log2 a (indeed, aftertwo steps one gets (at, bt)→ (bt, rt)→ (rt, ·) . . ., so that at+2 = rt: in the ase bt ≥ at/2 one gets
at+2 = rt ≤ at/2, while in the ase bt ≤ at/2 one gets at+2 ≤ at+1 = bt ≤ at/2 � this proves that
a, and even ⌊log2 a⌋ if we group loops in pairs, are Lyapunov funtions). 15



CHAPTER 2. COMBINATORIAL OPTIMIZATIONTheoretial treatment in Computer Siene tends to onentrate on the worst-ase analysis,as de�ned from:
lim

N→∞
max
|I|=N

fAM(I) (2.1)where the limit proess just suggests our interest in the asymptoti behaviour.Pratial onsideration may also be direted to some form of average-ase analysis, whihindeed is the prinipal ase for many real-life appliation, and meets the tools inspired by physis,an more spei�ally by statistial mehanis:
lim

N→∞

∑

|I|=N

p(I)fAM(I) (2.2)where p(I) indiates a proper probability distribution in the input spae.As an example of the importane of implementations details of the underling mahine, on-sider the problem of numbers enoding. Numbers enter in the alulation in a spei� repre-sentation, even if the mathematial formalization an hide this point. Usually three kinds ofenoding are disussed:unary enoding when a natural number n ontributes with n at the determination of the inputsize, i.e., when one represents numbers like 5 as IIIII.binary enoding a binary representation of an integer n ontributes with 1 + log2⌊n⌋ to theinput size (5 is enoded as 101). This is the enoding of �real-life� mahines.arithmeti enoding in this ase any integer number gives a single ontribution to the inputsize.It should be lear that really di�erent behaviours emerge in the funtions (2.1) and (2.2) withrespet to di�erent enoding paradigms. For example, our Eulid Algorithm is linear in binaryenoding, but unbounded in arithmeti enoding, while also vie-versa ould happen (algorithmsould be e.g., polynomial in arithmeti enoding, and unbounded in binary enoding, fr. formore details [3℄, box 2B).The relevant onept of omplexity of an algorithm is a bit subtle, as it involves in someonvoluted way worst-ase reasonings and large-size limits. In order to better desribe theonept, it is useful to introdue in the asymptoti analysis the so-alled �big oh� notation,de�ned as follows:Given two funtions f and g, from N to N, we say that f = O(g) i� thereexists onstants c and n0 suh that, for all n ≥ n0, f(n) ≤ c g(n).Big oh notation naturally reate an order struture in the saling aspets of the algorithms: anequivalene relation is de�ned as f = O(g) ∧ g = O(f) saying that f and g has the same rate16



2.2. COMPLEXITY CLASSESof growth (f ≍ g), and between equivalene lasses of rate of growth is de�ned a partial orderrelation as f 4 g if f = O(g).2.2 Complexity ClassesThanks to the big oh notation and the related partial order relation it is possible to lassifyalgorithm in omplexity lasses. We say that an algorithm A belongs to TIME(f) if
max
|I|=N

fA(I) = O(f(N)) (2.3)This in turn leads to a lassi�ation for the problem itself, supposed to be solved by the algorithm
A, through:

min
A solving P

max
|I|=N

fA(I) = O(f(N)) (2.4)Complexity lasses an then lassify the subset of problems alled deision problems, i.e., prob-lems whose solution is just a binary information like true or false. In this sublass, the analysisis simpli�ed, beause there is a simple formulation in terms of formal languages. This is notthe ase in general for the more familiar funtion problems, i.e., those whose solution is a moreomplex output like a number, or a graphial struture.For the moment let us observe that it's easy to derive natural deision problems from afuntion problem, and also, that this distintion is weaker than it ould look. For example,in many ases a funtion problem ould be easily deomposed into a set of deision problems.Consider the problem of �nding the set of boolean variables x = (x1, . . . , xn) suh that the ostfuntion C(x) : {0, 1}n → {0, . . . , 2m − 1} is minimized. Then, one ould onsider the deisionproblem suh that, for a value a and a subset of �xed onditions (S, y), with S ⊂ {1, . . . , n}and y = {yj}j∈S , asks whether there exists an assignment x suh that xj = yj if j ∈ S, and
C(x) ≤ a. Then, by Newton method on a, one an determine the value of the minimum ost inat most m steps, while �xing reursively the variables one an also �nd a realization of x in atmost other n steps.Furthermore, even inside the lasses of deision or funtion problems (and for other lasses),there exists a relevant onept of �equivalene for what onerns the omplexity� (up to somefator), whih goes under the name of redution. Say that, for two problems P and P ′, thereexists a way of formulating a whatever instane of the �rst one, of size n, as an instane of thelatter, of size ∼ na, in the sense that, if we ould solve the new instane, we would impliitly solvethe original problem. Then, learly, if we ould prove that seond problem is, say, of polynomialomplexity with degree c (i.e., times sale as nc in worst ase), then the omplexity of the originalproblem ould not be larger than polynomial of degree ac. In partiular, if a = 1 we would havea linear redution, so that, if P an be redued to P ′ and vie-versa, the two problems have the17



CHAPTER 2. COMBINATORIAL OPTIMIZATIONsame omplexity, while in the most ommon ase in whih a is �nite, although not neessarily1 (polynomial-time redution), we would have that the �rst problem an not be �worse thanpolynomial� if the �rst one is polynomial.An example of linear redution is the redution of Assignment Problem to a ase of Min-ost�Max-�ow Problem on a speially strutured graph (namely, a omplete bipartite graph,plus one soure and one sink, attahed respetively to the left- and right-verties, and all unitaryapaities, fr. setion 2.3). Indeed, in this ase, the fat that the Edmonds-Karp algorithmould solve an instane of Min-ost�Max-�ow in polynomial time is already a proof of the fatthat Assignment is polynomial, although the speially-devised Hungarian Algorithm (atually inpart a speialization of the Edmonds-Karp ideas) has slightly better performanes.A look at the problems listed at the beginning of the hapter shows that a poor implemen-tation of a searhing proedure leads immediately to impratial solving times. The reason forthis lies in the size of the spae of feasible solutions, generally exponential in n, if not of order
n! (whih is even worse). This fat suggests that an exponential growth of solving time in de-pendene of the input size is the hallmark of intratable problems. On the other hand the set ofproblems with the hope of a �pratial solution� should behaves with a polynomial rate growthin the size of the input.The fat that implementation details an give to an algorithm a slightly better or worseperformane, and the fat that the ommon proedure of polynomial redution �bridges� problemsin di�erent-degree polynomial lasses, suggests that one ould separate in a qualitative sense thelass of tratable and intratable problems, where the �rst ones are polynomial ones, regardlessfrom their degree. So we have the lassesP: Polynomial time deision problems are de�ned as

P =
⋃

k∈N

TIME(nk) (2.5)and they form the lass of problems that, in our assumptions, have some pratial solvingalgorithm.EXP: Exponential time deision problems are de�ned as
EXP =

⋃

k∈N

TIME(2nk

) (2.6)and they form the lass of problems that, in our assumptions, are laking of a pratialsolving algorithm.In partiular, a �loop� of polynomial redution among k problems, and a proof that one of themis in P, automatially proves that all of them are in P, and similarly for EXP.18



2.2. COMPLEXITY CLASSESTheir relation is easily seen as a proper inlusion: P ( EXP beause there are many examplesof problems that genuinely live in EXP.There are, however, many problems whose omplexity does not seem inherently non-polyno-mial, even if no polynomial algorithm is found for solving that problems. Besides a few exeptions(suh as graph isomorphism), most of them are in a lass that we de�ne below, alled NP. Thismotivates us to reall the onept of Non-deterministi Turing Mahine. The modelization ofan automati alulating devie is done by an Universal Turing Mahine apable of hangingits internal status step by step with a funtional relation with the input data and the urrentstate. The non-deterministi Turing mahine is a oneptual mahine apable of a non-funtionalevolution, maintaining at a generi step multiple opies of its internal state, and evolving themin parallel. In other words, a Non-deterministi Turing Mahine is one with the apaity ofbranhing its proess at no ost.This feature reates a parallel hierarhy to that built upon TIME(f), where the basi lassis replaed by NTIME(f), that is the lass of algorithm (or indiretly problems) suh that, ina framework of non-deterministi mahine, the rate of growth of time with the input size n isnot greater than f(n)∗. In partiular, all the reasonings about redution translate immediatelyto these lasses (as, in translation, are just applied �in parallel� to the branhed proesses). Wehave thus NP and NEXP analogously to P and EXP disussed above, and still one an prove, notonly that NP ( NEXP, but even that NP ⊆ EXP. Remark however the sequene of inlusions
P ⊆ NP ⊆ EXP ⊆ NEXP (2.7)of whih we do not know if any of the inlusion is strit (() or instead an equality. The �rstquestion, in partiular, whether P ( NP, is of quite large interest, as, through the strong oneptof polynomial redution, the lass NP results to be populated by a huge number of relevantommon-life problems (if you are urious, for the problems desribed at the beginning of thehapter, the shortest path, Chinese postman and max �ow problems are known to be polynomial(and an algorithm is known for eah), while the travelling salesman and the hromati numberproblem are in NP).An insight of the NP ⊆ EXP inlusion omes from the pitorial intuition of the nondetermin-isti mahine through the branhed proesses: we know that the depth of the resulting �tree ofthe proesses� is polynomial, with some degree k, still we assume that every branhing is �nite,so that, w.r.t. the depth of the tree, the full size is at most exponential, with a �nite rate (e.g.,

2depth). Then, as a result, the whole omplexity on the deterministi mahine, whih is foredto explore eah branh in sequene, is bounded by the size of the tree, whih is bounded by 2nk ,and thus is in EXP.
∗For this sometime TIME(f) is replaed by DTIME(f), for stress the deterministi feature of this lass. 19



CHAPTER 2. COMBINATORIAL OPTIMIZATIONThe omplexity lass NP aims to apture the set of problems whose solutions an be e�ientlyveri�ed. The famous P vs NP question asks whether or not the two are the same. The resolutionof this onjeture will be of great pratial, sienti� and philosophial interest. So, apart fromthe non deterministi Turing Mahine, it is possible to fully haraterize NP as the lass ofproblems for whih suint erti�ates exist: appreiate a Beethoven sonata is far easier thanomposing the sonata, verifying the proof of a theorem is easier than oming up with a proofitself, and so forth. The P vs NP question thus asks whether exhaustive searh an be avoidedin general.Informally speaking P is the lass of all sets L suh that the membership of an element xin L an be tested e�iently. On the other hand, NP is the lass of all sets M suh that everyelement y in M has a suint erti�ate z that establishes the membership of y in M . Considerfor example the set C ⊂ N of omposite numbers. There is no lear way to test e�iently whethera number, say 4,294,967,297 is omposite. However, every number in C does have a suinterti�ate, suh as 6,700,417 and 641 whose produt gives exatly 4,294,967,297. But �nding itmay be extremely hard∗.2.3 The Hungarian AlgorithmThe linear Assignment Problem is an optimization problem onsisting in �nding, given a n × nmatrix W = {wij}, with values in some numerial set†, a subset of elements in W , with exatlyone element in eah row and in eah olumn‡, for whih their sum is minimal.
W ∈Mn,n[X] �nd π∗ ∈ Sn suh that

π∗ = min
π∈Sn

n
∑

i=1

wiπi
(2.8)A graphial representation onsists in a omplete bipartite graph G = (S, T ) with |S| = |T | =

n, over whose edges is de�ned a ost funtion w : S × T → X. The solution is the mathing Mwith minimal ost de�ned as: ost(M) =
∑

e∈M

w(e) (2.9)As the spae of perfet mathings in a omplete bigraph is n!, de�ning the spae of feasiblesolution a naïve searh leads to a non polynomial time (O(n!)), nevertheless strongly polynomialalgorithms are found apable to identify a solution in O(n3).
∗The above fatorization was �rst disovered by the mathematiian Leonard Euler in 1732, a full 92 yearsafter Fermat had onjetured that no suh fatorization existed.
†First studies foused on integers, or rational values, but also the real ase hides some remarkable features.
‡i.e., a permutation of n elements π ∈ Sn.20



2.3. THE HUNGARIAN ALGORITHMHere we want to present a very e�etive (atually O(n3)∗) and lassial† algorithm for theAssignment Problem. The algorithm dates bak in an artile of Harold Kuhn in 1955 ([6℄), andwas alled Hungarian as a tribute for the two main results on whih is based, disovered sinethe 1930s by two Hungarian mathematiians, K®nig and Egerváry.K®nig theorem fouses on a haraterization of bigraph with a perfet mathing. Better, asexplained by Lovász, he disover a well-haraterization, meaning for this, a NP-property whosenegation is also an NP-property‡ (for an insightful exposition of this onept see box 1A in [3℄),this per se does not give rise to a polynomial algorithm for �nding a maximum mathing in abipartite graph. But its relevane is in the onstrutive way with whih he demonstrates thetheorem. In partiular he introdues the fundamental onept of alternating path, whih playsa entral role in a plethora of ombinatorial results.Before of stating it let's remark a few of graph terminology: given a graph G = (V,E), thepoints i and j are said adjaent if exists an edge e ∈ E joining them (in this ase we an use
e = (ij)); two lines whih share a point are also said to be adjaent. A graph in whih every pairof nodes are adjaent is said to be omplete. A set of lines in G is a mathing if no two lines havea point in ommon. The size of any largest mathing in G is alled the mathing number of G.If M is a mathing of G, any point i in the graph is either mathed, if some line exists in M thatis inident with i, or exposed if no line inident with i exists in M . A set of points S ⊂ V (G)is a point over of G if eah line in E(G) has at least one endpoint in S. The ardinality of anysmallest point over is the point overing of G. Finally, we indiates with Γ(S) the set of pointsadjaent with any node in S.Theorem 1 (K®nig 1916) If the graph G is bipartite, then the mathing number ν(G) equalsthe point overing number τ(G):

τ(G) = ν(G) (2.10)Before to sketh the proof let's formulate it in a other way that remarks its minimax aspet§:Theorem 2 Given a bipartite graph G = (S, T ;E), the minimum number µ(M) of exposedelements of S by a mathing M is equal to the maximum of the de�it number h(X) = |X|−|Γ(X)|of a set X ⊂ S:
min
M

µ(M) = max
X

h(X) (2.11)In partiular, a perfet mathing is possible if and only if |Γ(X)| ≥ |X| for all X ⊂ S.
∗This saling is really lose to the fastest known algorithms for solving AP.
†As folklorist note, it elebrated its 50th birthday in 2005
‡i.e., it is in NP ∩ oNP, being oNP the lass of deision problems that ask for the non-membership of anelements in a NP-lass problem. It ould be surprising, but atually an ative area of researh is involved indetermining whether these lasses indeed oinided.
§see [3℄ for an explanation of the relevane of minimax theorems. 21



CHAPTER 2. COMBINATORIAL OPTIMIZATIONThe onstrutive proof runs as follows: given a mathing M onsider S′ and T ′, the sets ofexposed nodes in S and T by M . Build a Hungarian Forest Z with the following requirements:(1) every node in T has degree 2 and is inident with a mathing edge, (2) eah omponent in Zontains a point of S′. Pitorially it ould be done superposing arrows on the edges in M toward
S, and on the edges out of the mathing toward T , then the Hungarian Forest is omposed byany edge reahable through a direted path from a point in S′. By onstrution any path in
Z is M -alternating, i.e., it alternates edges in M and those in E r M . Now if V (Z) ∩ T ′ 6= ∅we an improve the mathing taking any of the alternating paths onneting S′ and T ′ andreversing the mathing membership in the alternating path (suh a path is alled for obviousreasons augmenting path). Otherwise if Z ∩ T ′ = ∅, then L := (T ∩ V (Z)) ∪ (S − V (Z)) is aset of nodes overing all edges and |M | = |L|. In partiular the set of maximum de�ieny is
V (Z) ∩ S. �The idea of augmenting path presented in the proof an be easily applied for a maximummathing algorithm for bigraph:Algorithm 2 Algorithm for Maximum Mathing in a Bigraph1: proedure K®nig(S, T,E,M) ⊲ M ould be ∅2: S′ ← S − V (M), Z ← ∅3: for all i ∈ S′ do4: build a Hungarian Forest Z ⊲ BFS or DFS an be used5: if alt-path Ai ⊂ Z terminates in T ′ then6: Reverse M -membership of edges in Ai ⊲ M grows by 17: goto (2)8: else9: add Ai to Z10: end if11: end for12: return M and Z as Hungarian Forest13: end proedureEgerváry theorems, instead, uses the K®nig's results in weighted bigraph (over whih is de�nedthe Assignment Problem, and its onverse the Maximum Weighted Mathing Problem). The oreof his disovery lies in the onept of overing, that is a suint erti�ate of maximality for amathing. Let's state it:Theorem 3 (Egerváry 1931) Given a omplete bipartite graph G = (S, T ;E) with |S| = |T |,and an integer non-negative weight funtion w : E → Z+, let's all a weighted overing of G, a22



2.3. THE HUNGARIAN ALGORITHMfuntion c from the set of nodes of G with non-negative integer values suh that:
c : S × T → Z+ with c(i) + c(j) ≥ w(ij) ∀ (ij) ∈ E, (2.12)Then the maximum weight of a perfet mathing M is equal to the minimum weight of a overing

c. In formulae:
cost(M) =

∑

e∈M

w(e) ; cost(c) =
∑

v∈S∪T

c(i) ; min
c

cost(c) = max
M

cost(M) . (2.13)Assuming for the proof that c is a minimal weight overing of G. Consider then the set oftight edges, de�ned as those for whih holds c(j) + c(i) = w(ij), and the subgraph Gc of tightedges. If a perfet mathing in Gc exists, it is also a mathing for G, and its weight is learlyminimal. Suppose else, that no suh a perfet mathing exists. Then K®nig's theorem guaranteesthe existene of a de�ieny set X ⊂ S suh that |ΓGc(X)| > |X|, this in turn, allows us animprovement of the overing c: let's c′ equals to c for all nodes, but those in X ∪ΓGc(X), whereit takes the values of c inremented by 1 over X, and deremented by 1 over ΓGc . If suh funtion
c′ is not a overing, beause of the possibility of −1 values in T , then inrement by one all valuesof c′|ΓGc (X) and derement all those in c′|X . At this time we have a new overing c′ with weightsmaller than c resulting in a ontradition with the minimality assumption for c. �The MWM algorithm resulting from the Egerváry theorem, easily extended to rational num-bers, is nonetheless only quasi-polynomial, even if it used maximum de�ieny set throughoutthe improvement proedure of reovering. The lass of quasi-polynomial, as opposed to strongly-polynomial, time is related to the subtleties of information enodingA strongly polynomial-time algorithm is one whose running time is bounded polynomiallyby a funtion only of the inherent dimensions of the problem and independent of the sizes ofthe numerial data. A pseudo-polynomial-time algorithm is one that runs in time polynomialin the dimension of the problem and the magnitudes of the data involved (provided these aregiven as integers), rather than the base-two logarithms of their magnitudes. Suh algorithms aretehnially exponential funtions of their input size and are therefore not onsidered polynomial.However, as Garey and Johnson (1979) observe, A pseudo-polynomial-time algorithm will display'exponential behaviour' only when onfronted with instanes ontaining 'exponentially large'numbers.The situation is analogous to the well-known ase of maximum �ow: for integer or rationalapaities, the max-�ow algorithm of Ford-Fulkerson∗ (1956, [9℄) is �nite, but not strongly-polynomial, while with real apaities examples exists for whih the algorithm is not even �nite.The solving time atually depends on the size (magnitude) in value of the apaities. Nevertheless

∗whih uses a stritly related onept to that of augmenting paths, i.e., augmenting �ows. 23



CHAPTER 2. COMBINATORIAL OPTIMIZATION
Algorithm 3 Algorithm for Maximum Weight Mathing in a Bigraph1: proedure Egerváry(S, T,w, c) ⊲ overing c ould be trivial2: E ← ∅3: for all (ij) ∈ S × T do4: if w(ij) = c(i) + c(j) then5: add (ij) in E6: end if7: end for ⊲ Here I have Gc of tight edges8: Compute M with K®nig(S, T , E, ∅)9: if |M | = |S| then10: return M as MWM with overing c11: else12: �nd X ⊂ Gc : |X| < |ΓGc(X)|13: �nd d = min{c(j) + c(i)− w(ij) : u ∈ X, v ∈ ΓG(X)}14: for all v ∈ S × T do15: ase v ∈ X : c′(i)← c(i) + d16: ase v ∈ ΓG(X) : c′(i)← c(i)− d17: ase otherwise : c′(i)← c(i)18: end for19: c← c′20: goto (2)21: end if22: end proedure
24



2.3. THE HUNGARIAN ALGORITHMDini (1970, [10℄), and independently Edmonds-Karp (1972, [44℄) proved that with a spei�reipe (Breadth First Searh for Edmonds-Karp) for seleting the augmenting �ows, the Ford-Fulkerson algorithm an be transformed in a strongly-polynomial one.In the ase of Assignment (or MWM) the works of Harold Kuhn ([6℄) �lls the gap:Algorithm 4 Algorithm for Maximum Weight Mathing in a Bigraph (Hungarian Algorithm)1: proedure Kuhn(S, T,w, c) ⊲ overing c ould be trivial2: E ← ∅3: for all (ij) ∈ S × T do4: if w(ij) = c(i) + c(j) then5: add (ij) in E6: end if7: end for ⊲ Here I have Gc of tight edges8: Compute M,Z with K®nig(S, T , E, ∅)9: if |M | = |S| then10: return M as MWM with overing c11: else12: �nd d = min{c(j) + c(i) − w(ij) : u ∈ Z ∩ S, v ∈ T − Z}13: for all v ∈ S × T do14: ase v ∈ T ∩ Z : c′(i)← c(i) + d15: ase v ∈ S ∩ Z : c′(i)← c(i) − d16: ase otherwise : c′(i)← c(i)17: end for18: c← c′19: goto (2)20: end if21: end proedureA lose look ould observe that the main feature here is the integration of two separatedparts of the Egerváry Theorem: omputing the de�ieny set and revising the overing. TheHungarian Algorithm ould easily heked to be strongly polynomial:1. there are at most |S| augmentation,2. being the sets of nodes reahable from S′ in Gc properly inluded in those reahable in Gc′ ,after at most |S| reovering an augmentation must happen,3. the BFS (Breadth-First-Searh) of nodes needs O(|E|) steps, then the overall bound is
O(|E||S|2) = O(n4). 25



CHAPTER 2. COMBINATORIAL OPTIMIZATIONAs it should be lear from the above exposition, the works of K®nig, Egerváry and Kuhn faethree aspets of the algorithm, namely:1. K®nig idea of alternating path provides a �loal� transformation in the mathing spae,suh that starting from any mathing M , it gives rise to larger and larger mathing in apolynomial number of steps.2. Egerváry's overing de�nition translate the weighted problem into a dual problem, allow-ing a redution from the problem in the omplete bipartite graph, to many unweightedproblems in a not omplete subgraph. This is possible thanks to the fat that the over isa erti�ate of maximal weight of mathing in the subgraph of tight edges.3. Kuhn �nally addresses the subtle question of the possibility of a big numbers of improve-ments in the Egerváry's �gradient� driven algorithm. Physially may be thought as animprovement in seleting the steepest desent step, granting a strong polynomial bound inthe number of steps.Our implementation follows also the Munkres tehniques [7℄ for speeding up the reoveringproedure, as reported in Knuth [8℄, thus reduing the bound in O(n3). Over random instaneswe derived the data presented in �gure 2.1.
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2.3. THE HUNGARIAN ALGORITHM
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Figure 2.1: Plot of average solution times in an algorithmi implementation of the HungarianAlgorithm, applied to random instanes in the ensemble desribed in the body of the hapter. Onean evine that the average-ase omplexity is analogous to the worst-ase disussed estimate,i.e., ubi in the size of the matrix. The algorithm follows the Knuth implementation (thesoure odes an be found in the literature), so this should assure you that, in omparing theperformanes of Cavity-inspired algorithms to the pre-existent Hungarian, we did not �heat� byimplementing the latter in a sub-optimal way!
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Chapter 3Cavity Theory for the AssignmentProblemIn this hapter we introdue the Cavity Method, �rst through the Bethe Approximation for theIsing Model, then in a more general framework to �t the problems with randomness, and moregeneri forms of interation. The method is developed only in the so-alled Replia Symmetri(RS) assumptions, relevant to our ase , while the 1-step Replia Symmetry Breaking equationsare not disussed, as pertinent to other lasses of problems.In the seond part, we onentrate on the Assignment Problem. We desribe the orrespond-ing statistial mehanis model, and we speialize the avity equations following the generaltreatment.Finally, we add a few remarks on the goodness of the avity approximation for our problem,both w.r.t. orretions of �nite size, and to the stability of the assumption of the replia symmetry.3.1 Bethe Approximation for IsingThe Bethe approximation is a re�nement of mean-�eld theory, that neglets orrelations omingfrom loops in the interations graph.Now we reall mean �eld equation for Ising in order to stress the similarity with the Bethe re-�nement. For a subset of sites A = (i1, . . . , ik), we de�ne the marginal probabilities pA(σi1 , . . . , σik)of the variables σ at sites in A (but, for short, we will often denote pi(σ) ≡ p{i}(σ)).
pi(σ) =

1

Z
∑

σj :j 6=i

exp(−βH(σ|σi = σ)) ∝
∑

j∈∂i

p
(i)
∂i (σ∂i) exp(−βJ

∑

j∈∂i

σjσ − hβσ) (3.1)where we used ∂i as the set of indies nearest neighbour of i, while the supersript (i) indiatesa system in whih interation involving the variable at site i are removed. So p
(i)
∂i (σ∂i) indiates29



CHAPTER 3. CAVITY THEORY FOR THE ASSIGNMENT PROBLEMthe joint marginal probability of the variables {σj} for j in ∂i, in a system in whih the fa-tors ontaining σi in the Hamiltonian are deleted (indeed in the expression (3.1) are expliitlyexpressed apart) or, in other words, in a system in whih a avity is formed removing site i.In order to get an equation for the mean magnetization, is thus neessary ompute p
(i)
∂i (σ∂i),and mean-�eld approximation assumes a simple fatorized form for that (whih atually negletsorrelations):

p(σ)
MF
=

∏

j

pj(σj)⇒ p∂i(σ∂i)
MF
=

∏

j∈∂i

pj(σj) (3.2)This, in turn, together with the translational invariane of Ising, yields an expression for themean magnetization in a transendental equation:
m = tanh(βJzm + βh) (3.3)where we used z = |∂i| as the onnetivity of node i (that in general d-dimension squared lattieis equal to 2d).Not surprisingly this approximation is rather rude in low dimensional model. For examplethe ritial temperature in the ase h = 0 and in dimension 1, leads to βc = 1/J , that is aquite disturbing result, provided that in the exat treatment βc should be ∞. Of ourse fordimension higher and higher the approximation improves, until reahing the orret result in the

∞-dimensional ase.Bethe approximation starts with a somewhat smaller �avity�, that where a single link isremoved: a system in whih a single interation is swithed o� having the Hamiltonian as
H(i,j)(σ) = H(σ) + Jσiσj = −J

∑

〈k,l〉
(k,l)6=(i,j)

σkσl − h
∑

k

σk (3.4)We an write the marginal probability of the two variables for whih their �inferene hannel� isinterrupted:
p(ij)(σi, σj) ∝

∑

σ∂jri

p
(j)
∂j (σ∂j) exp

{

βhσj + βJ
∑

l∈∂jri

σjσl

} (3.5)
∝

∑

σ∂irj

p
(i)
∂i (σ∂i) exp

{

βhσi + βJ
∑

l∈∂irj

σiσl

} (3.6)where the two hoies (3.5) and (3.6) di�er in whih variable among σi and σj has been marginal-ized �rst (let's name them for a moment �p(ij)
j;i (σi, σj)� and �p(ij)

i;j (σi, σj)� respetively). Calu-lating, for example, the magnetization on site i in the two frameworks leads to a onsistenyrequirement
〈σi〉 =

∑

σi,σj=±1

σi p
(ij)
j;i (σi, σj) =

∑

σi,σj=±1

σi p
(ij)
i,j (σi, σj) (3.7)30



3.2. CAVITY METHOD IN GENERAL REPLICA SYMMETRIC MODELSwhih leads to a relation among marginal probabilities p
(j)
∂j (σ∂j) and p

(i)
∂i (σ∂i).However, these relations are not su�ient to onstrain in a self-onsistent way the variousrelevant marginals (or, in other words, the magnetizations of the various spins). This beause the�avity system�, with respet to whih marginalizations are performed, are slightly di�erent, andbeause we need to disentangle the orrelation funtions. An approximation sheme is needed,and the Bethe approah is to onsider deorrelation between marginal probability of spins arounda avity at site i:

p
(i)
∂i (σ∂i)

Bethe
=

∏

j∈∂i

p
(i)
j (σj) =

∏

j∈∂i

eβh
(i)
j σj

2 cosh βh
(i)
j

(3.8)In suh a way equation (3.7) ould be solved as:
M

(j)
i

Bethe
= tanh

{

βh +
∑

k∈∂i\j

atanh
[

tanh(βJ)M
(i)
k

]

}

. (3.9)In partiular for the homogeneous Ising Model, with degree 2d = z, the mean-magnetizationequations similar to (3.3) reads:
m = tanh

(

βh + (z − 1)atanh
(

tanh(βJ)m
)

) (3.10)In partiular for 1-dimensional lattie the alulation of ritial temperature gives the expetedresult βc = +∞. Indeed, it ould be proved that the Bethe Approximation is exat in dimension1, as its interations graph is a tree (atually a linear hain), and the deorrelation assumptionis exat.3.2 Cavity Method in general Replia Symmetri ModelsNow we want to give a somewhat more systemati and general treatment of the previous deriva-tion based on the framework of Cavity Theory.As usual onsider a model fully desribed by its Hamiltonian:
H(σ) =

M
∑

a=1

Ea(σi1 , . . . , σika
) +

N
∑

i=1

Wi(σi) (3.11)where there are N variable site σi eah in a proper one-partile spae X0, provided with a refer-ene probability measure dσ . Funtions Wi : X0 → R represents N one-body interation, whilefuntions Ea : Xka
0 → R represent a set of multi-partile interations labelled by a ∈ {1, · · · ,M}.As apparent the one-body interation are extrated as requiring a partiular treatment just foronveniene reasons. 31



CHAPTER 3. CAVITY THEORY FOR THE ASSIGNMENT PROBLEMQuite naturally in suh a piture a graphial struture emerges, that of a fator graph. Thisonept was introdued in Computer Siene to study inferene networks and ould be desribedas follows. Given a fatorization of a real funtion of real variables g : RN → R:
g(x) =

M
∏

j=1

fj(xj1 , · · · , xjk
) with ∀ j, fj : Rk(j) → Rwe onsider a bipartite graph G = (X,F,E) with N variable nodes, and M fator nodes, and aset of edges E ⊂ X × F , suh that node fj is onneted to node xi if and only if the fator fjhas dependene from variable xi with respet to (3.2).Thus the fator graph assoiated to the Hamiltonian (3.11) is the orresponding fator graphof the joint probability measure. For our purposes this graph does not have fator of one-variable.Consider now a minimal modi�ation on the Hamiltonian (3.11) where it is swithed o�one link, say, the dependene of the variable σi on the interation Ea. It should be noted thatour statement is a bit more preise with respet to the �swithing o�� proedure in the Betheapproximation, there, in fat, the removed link did not belong to the fator graph, but just tothe lattie (i.e., there the removing of an interation involved modi�ation to two links in theorresponding fator graph). Swithing o� proedure is done through the introdution of anauxiliary variable σia that substitutes the variable σi in the funtional expression for Ea. Ourinterest in a minimal modi�ation, leads to the hoie of not assoiating any one-body term tothe new auxiliary variable introdued, so the Hamiltonian reads:

Ha=i(σ ∪ {σia}) =
∑

i

Wi(σi) +
∑

b6=a

Eb(σ∂b) + Ea(σ∂ari, σia) (3.12)where we used ∂a as the set of variable nodes adjaent to fator Ea in the original graph, and
∂a r i, for the same set but element i.Composition of this minimal modi�ation proedure leads to systems in whih all links fromvariable node i are removed, and those for whih all links to the fator node a are suppressed.These systems are indiated as Hri and Hra respetively. In these systems, the ontribution ofsite i or that from interation a is fully deorrelated from the rest of the system, allowing thusa trivial fatorization in the partition funtion.Now, following the proedure for the Bethe approximation, our goal is to derive some relationbetween marginal probability distributions in the modi�ed systems, and reovering a set ofequations through some assumptions of deorrelation.The marginal probability distribution ould be reonstruted from a set of loal observablesover loal observables θα

i (σ) where i runs with the variable sites, and α parametrizes the set ofobservables needed for reonstruting the measure dp (σ), i.e., a basis in the spae of normalizedprobability distribution over X0. Clearly, if X0 has ardinality q (e.g. we an identify X0 =32



3.2. CAVITY METHOD IN GENERAL REPLICA SYMMETRIC MODELS
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Figure 3.1: A portion of the fator graphs assoiated to the avity Hamiltonians Ha=i, Har, and
Hir respetively for the left, middle and right drawings.
{0, 1, . . . , q − 1}), then q − 1 parameters will su�e, for example the vetor (h1, . . . , hq−1) willdetermine a normalized probability distribution over X0 through

p(x;h) =

{

N−1 x = 0

N−1e−hi x = i > 0
N = 1 + e−h1 + . . . + e−hq−1 (3.13)In simple magneti systems, where the single-state spae has just two values (X0 = {±1}), amarginal distribution is parametrized by a single real number. Furthermore, if there is someunderlying symmetry under inversion of all spins, it would be nie to preserve it �at sight� inthe parametrization. Thus, in analogy with the ase of an isolated magneti spin subjet to anexternal magneti �eld h, we will parametrize in this ase the probability distribution as

p(σ) =
eβhσ

2 cosh(βh)
(3.14)The terminology will thus be inspired by the one of magneti systems, although we should keepin mind that more general parametrizations are possible, and the theory extends to these asesimmediately.So, Cavity Equations are usually expressed in term of suh generalized magneti �elds:magneti �eld hi : the element hi in the parameters spae of probability distributions over X0orresponding to the marginal probability distribution over site i in the original system

p{i}(σ) (in magneti systems: p{i}(σ) = phi
(σ), with tanh(βhi) = 〈θi(σ)〉).avity �eld hi→a : the element hi→a in the parameters spae of probability distribution over X0orresponding to the marginal probability distribution over site i in the modi�ed system33



CHAPTER 3. CAVITY THEORY FOR THE ASSIGNMENT PROBLEMwhere the link a ↔ i is swithed o�, pa=i
{i} (σ) (that is, in magneti systems, pa=i

{i} (σ) =

phi→a
(σ), with tanh(βhi→a) = 〈θi(σ)〉a=i, i.e., the expetation value of magnetization forsite i for a system de�ned by Hamiltonian Ha=i).avity bias ua→i : is the element in the parameters spae for distribution over X0 that or-responds to the marginal probability distribution for the auxiliary site ia in the systemin whih the inferene hannel a ↔ i is swithed o�, pa=i

{ia}
(σ) (that is, in magneti sys-tems, pa=i

{ia}
(σ) = pua→i

(σ), with tanh(βua→i) = 〈θia(σ)〉a=i i.e., the expetation value ofmagnetization for the auxiliary site ia for a system de�ned by Hamiltonian Ha=i).So, from an inspetion of the marginal probability distribution in the various avity systems, thefollowing relations an be derived:
pa=i
{i} (σ) ∝ pri

∂ira(σ∂ira) e−βWi(σ) (3.15)
pa=i
{ia}

(σ) ∝
∫

dσ pra
∂ari(σ∂ari) e−βEa(σ∂ari,σ) (3.16)The proportionality fators in the relations above are not relevant in the RS treatment that weperform. They have a role in the �reweighting� fator, in 1RSB treatment, as they are in relationwith the shift in free energy aused by the introdution/removal of a avity in the system, and,in the ase in whih there are more pure phases in the system with di�erent free energies, itwould be important to weight them with the appropriate Gibbs fator.For deriving the (RS) avity equation is now neessary to introdue the deorrelation as-sumption:

pri
∂ira(σ∂ira)

Cavity
=

∏

b∈∂ira

pri
ib
(σib) (3.17a)

pra
∂ari(σ∂ari)

Cavity
=

∏

j∈∂ari

pra
j (σj) (3.17b)alongside with the assumption that a larger avity does not a�et sensibly the marginal proba-bility of variable sites far away from the avity

pri
ia

(σ)
Cavity

= pa=i
ia (σ) (3.18a)

pra
i (σ)

Cavity
= pa=i

i (σ) (3.18b)These assumptions applied to equations (3.16) lead to the avity equations:


















p(σ, hi→a) ∝ e−βWi(σ)
∏

b∈∂ira

p(σ, ub→i)

p(σ, ua→i) ∝
∫

e−βEa(σ∂ari,σ)
∏

j∈∂ari

(

p(σj , hj→a) dσj

) (3.19)34



3.2. CAVITY METHOD IN GENERAL REPLICA SYMMETRIC MODELSThese equations allow in priniple to determine the �elds {hi→a, ua→i}(ia)∈E , although one shouldfae both the tehnial problem of solving a large system of non-linear equations (and provingthat the solution is unique), and the �physial� problem of justifying the assumptions donealongside the derivation.So, given the solution of (3.19), and within our assumptions, we an then reonstrut themarginal distribution for any site, in the original system. For example, for site i, taking anyneighbouring fator node a, we would have that
p{i}(σ) ∝ pa=i

{i} (σ, hi→a) pa=i
{ia}

(σ, ua→i) (3.20)This would allow to determine reursively an exat sampling of the on�gurations, with theGibbs measure at temperature β, and, as a orollary, to identify a ground state of the system,by performing the proedure in a limit β →∞.It is worthwhile to spend here some more words on the physial nature of the assumptionsabove. The ones in equations (3.18) are relatively innoent, as well as all the paths whihrelevantly propagate inferene from the avity to the marginalized spin are long in omparisonwith the orrelation length in the system. As the avity is �nearby� to the spin in the originalsystem, before reating the avity, we identify the distribution of lengths for these paths withthe one for the loops on the original fator graph. This assumption, on the fat that averageloop lengths are su�iently large, is ruial to all the method, and relatively well ontrolledon many natural families of random graphs (in partiular, for Erdös-Renyi graphs with �niteaverage degree, where typial loop lengths sale as O(ln N)).The assumption (3.17), on the fat that joint probabilities on more than one variable arealmost fatorized, relies on two points. One, again, is the assumption of �long loops�, whih allowsto state that the sites are on average far apart on the avity system. The seond one however ismore subtle: in small words, it states that variables far apart do not interat relevantly, and thustheir onneted orrelation funtions are negligible. However, for statistial-mehanis systemswhih an undergo a phase transition, it is well known that this property holds only within a purephase, and in partiular it holds if we are in a region of thermodynami parameters suh thatthere is a single phase in the system (this fat is alled Cluster Property). In order to see how thismehanism ould fail, assume we have some loal variable σi, in a homogeneous system, suh thatits average is a good order parameter for the system (i.e. that m = 〈σ〉 assumes di�erent values
mα under di�erent phases α, in the region where the ergodiity is broken). Then we have thatwe an not hope p{i,j}(σi, σj) ≃ p{i}(σi)p{j}(σj) if it is not true that at least 〈σiσj〉 ≃ 〈σi〉〈σj〉,but we have that eah phase α ontributes to the onvex ombination with its fator λα (so that,we reall, λα ≥ 0 and ∑

alpha λα = 1), in partiular, in terms of the free energies Fα inside aphase and F for the whole system, for the Gibbs measure we have λα = e−β(Fα−F ). Then we35



CHAPTER 3. CAVITY THEORY FOR THE ASSIGNMENT PROBLEMan see that
〈σiσj〉 =

∑

α

λα〈σiσj〉α =
∑

α

λα

(

m2
α + 〈σiσj〉conn.

α

)

≃
∑

α

λαm2
α (3.21)if |i− j| ≫ ξ, where ξ is the orrelation length in the system. Instead

〈σi〉 =
∑

α

λα〈σi〉α =
∑

α

λαmα (3.22)so that
〈σi〉〈σj〉 =

∑

α,β

λαλβ mαmβ (3.23)and in general the two quantities (3.21) and (3.23) will be in general di�erent, unless we are ina pure phase, (λα∗ = 1, and λα′ = 0 for α′ 6= α∗, if any), so that both of them are just m2
α∗ .An example where �things go wrong� is the Gibbs measure in a ferromagneti Ising Model attemperatures showing spontaneous magnetization, where we have two phases with the same freeenergy and opposite mα, and the quantities (3.21) and (3.23) speialize to m2 and 0.3.3 Cavity Method for the Assignment ProblemA �matrix� formulation of the Assignment Problem ould be as follows: given ε a positive, realvalued N ×N matrix de�ning the instane of the problem, we searh for the N ×N matrix nij,valued in {0, 1}, whih minimizes the ost funtion de�ned by

Hε({nij}) =
∑

ij

εijnij . (3.24)Moreover, there are onstraints on the set of feasible nij, in order to enfore the orrespondenewith a permutation, i.e.:
{nij} ∈ NN suh that ∀ j :

∑

i

nij = 1 and ∀ i :
∑

j

nij = 1 (3.25)Thus a bijetion exists from the spae of permutations of N elements and the subset of GLN ({0, 1})de�ned by (3.25):
F : SN → NN , F (π) = {nij} with nij =

{

1 if π(i) = j

0 if π(i) 6= j
(3.26)We an thus study the statistial properties of some random ensemble. We will hoose a measurefatorized over the entries, d~µ({εij}) =

∏

i,j dµ(εij), furthermore we will assume that dµ(ε) hassupport over some subset of R+, so that it is �nite and ontinuous in ε = 0. Our onrete hoie36



3.3. CAVITY METHOD FOR THE ASSIGNMENT PROBLEMin numerial analysis was just the �at measure over the interval [0, 1], i.e. dµ(ε) = θ(ε)θ(1−ε)dε .A seond interesting hoie is dµ(ε) = e−εdε , whih allows for a rigorous probabilisti analysis[12, 11℄.Strong statements an be done for our problem, in order to justify this hoie. A �rsttrivial remark is the ovariane of the problem under translation of the measure: if one uses
dµ′(ε) = dµ(ε − a), all the energies are shifted by a onstant, Na, and all orrelation funtionsbetween variables (e.g. nij) remain unhanged. So, assuming that the minimum of the supportis in 0, provided that the support is bounded from below, is not relevant.A seond qualitative remark is that a support bounded from below, and step-like in itsneighbourhood, is indeed the most relevant ase. A support with a �tail� on the left would reatestrong preferenes towards ertain hoies: in turns, a fration of the proper assignments nij = 1would be done with relatively small e�ort, w.r.t. our random ase, while the remaining part ofthe problem will be just �typial�, but deimated. The ase in whih, in a neighbourhood of theleft endpoint of the support (say, 0), the measure has a power law dµ(ε) ∼ εa has been studiedin [13℄.A last remark is the fat that, provided that the limit in 0 exists and is �nite (together withits derivative), the k smallest values e.g. of a row (with ln N ≪ k ≪ N) will be distributedlike the �rst k values of a Poisson Point Proess, i.e., alling them (ξ1, . . . , ξk), we would havethat ξ1, ξ2 − ξ1, . . . , ξk − ξk−1 would be i.i.d., and exponentially distributed, p(ξ) = a exp(−aξ).As the onstant a is the same for all rows and olumns, and as the problem is on the reals, weunderstand that, if we prove onsistently that the �rst k values are the only relevant ones forthe statistial properties in a low-temperature regime, we also dedue that statistial propertiesof random ensembles whih di�er only in their limit limε→0 dµ(ε) are the same up to a trivialresaling. This self-onsisteny proof an be done. For example, one �nds that the probabilitythat the k-th smallest value in a row partiipates to the optimal assignment is 2−k, in the limitof large N .In physial terms, the problem of �nding the minimal ost on�guration, is related to theollapse of the allowed on�guration in the limit for zero temperature onto the ground state, i.e.,the state at minimal energy∗.It is lear that, rigorously speaking, with a fatorized measure over real numbers like theones disussed above, there is zero probability (in �measure theory� sense) for having instaneswith a degeneray, as the di�erene of ost between two on�gurations is a non-empty linearombination of the εij 's with oe�ients in {0,±1}. As we will see, and as is disussed in [2℄,

∗In general many states of minimal energy ould exists. In suh a ase we say that the ground state isdegenerate. For example an Ising Model with inhomogeneous ouplings Jij , but no external �eld h, has at leasttwo states of minimal energy, as on�gurations exhanged by the �global spin �ip� transformation learly havethe same energy. 37



CHAPTER 3. CAVITY THEORY FOR THE ASSIGNMENT PROBLEMthe absene of degeneray plays some tehnial role in this problem, and even the Munkres'(or Knuth's) ode, based on the Hungarian Algorithm, needs some extra proedure in order todeal with possible degeneraies. To be honest, the �analyti� justi�ation above is a too heapshortut to the problem, and even the heap justi�ation of saying that there is no degenerayup to adding some �in�nitesimal� unorrelated real-valued noise to the input instane, and thenhek bak at the end that the solution is valid also on the original instane, in a weak argument,beause, as intrinsi in the proedure of [2℄, the solution times diverge also if we have quasi-degeneray, with an inverse power of the splitting between the two osts. Remarkably, this isnot true for the Hungarian Algorithm, whih is polynomial even in arithmeti enoding.Howeverwe expet that a re�ned avity algorithm, beyond the one depited in [2℄ and inthe diretion of the �fork presriptions� we use for slow instanes, it should be possible in thedegenerate ase to obtain one solution in average-ase times similar to the non-degenerate ase,and all solutions in an instane with �moderate� degeneration g, in average times bigger just ofa fator g, just following exhaustively the full forking proedure, and proving that the fork-to-solution ratio is bounded.Here we just give a hint on how this potential problem of degeneray is more �tehnial� than�strutural�. Say that a non-trivial linear relation among the εij 's, like the one disussed abovefor having degeneray, is improbable with some small fator of order δ, then one an argue thathaving degeneray g is improbable with a fator of order δ⌈log2 g⌉ or smaller. The reason for thisis that the union of the symmetri di�erenes for all the pairs of solutions is a subgraph (of theoriginal omplete bipartite graph) in whih all verties have degree di�erent from 1 (as it is theunion of yles). If the ylomati number of this graph is L, then the probability of havingsuh a graph is of order δL (as the ylomati number is exatly the dimension of the spae ofpertinent linear relation among the parameters). But L is also the dimension of the spae offuntions, from the set of edges to GF (2), satisfying some parity onstraints at the verties (i.e.,the ardinality of the set of suh funtions is 2L), while the set of e�etive solution is a subset ofthis, as the parity onstraints are replaed by some onsistent � · = 1� or � · = 0� onstraints (1 forodd, and 0 for even). So that g ≤ 2L, equality being realized in the ase in whih the subgraphdesribed above is a set of disjoint yles (then the set of solutions is a hyperube w.r.t. thestruture indued by symmetri di�erene).Having disussed this tehnial point, we an now go bak to the problem of speializing thegeneral avity framework of the previous setions to our problem of assignment.Casting the ost funtion in the general form (3.11) for the statistial mehanis models,requires the introdution of interation that fore the spae X = XN2

0 = {0, 1}N2 to satisfy the38



3.3. CAVITY METHOD FOR THE ASSIGNMENT PROBLEMonstraints (3.25), so we introdue the following formal terms in the joint probability funtion:
∀i ∈ {1, · · · , N} e−βE

(row)
i (ni1,ni2,··· ,niN ) = δ

(

∑

j

nij, 1
) (3.27)

∀j ∈ {1, · · · , N} e−βE
(ol)
j (n1j ,n2j ,··· ,nNj) = δ

(

∑

i

nij, 1
) (3.28)While the one-body terms just representing the ost of the assignment:

∀(ij) ∈ {1, · · · ,N}2 W(ij)(nij) = εijnij (3.29)The fator graph is thus omposed of two kinds of interation nodes, those for the onstraints onthe rows, and those for the olumns, eah joining N variable nodes. They are of the same nature,but globally identify a further bipartition of the set F of fator nodes in the graph. Consequentlyeah of the N2 variable nodes is linked with two fator nodes, one �row� and one �olumn�.As variables live in a single-state spae X0 = {0, 1}, the marginal probability distributionsare parametrized by a single real number:
p : X0 → R p(n) =

{

p1 if n = 1

p0 if n = 0
with p0 + p1 = 1 (3.30)For onveniene our parametrization h is as follows:

p1 =
e−βh

1 + e−βh
, p0 =

1

1 + e−βh
, i.e., p(n, h) =

e−βhn

1 + e−βh
, (3.31)where the probability whih �xed a variable to 1 or 0 is the limit for the parameter h→ −∞ or

h→ +∞ respetively. Considering the speialization of general notation for the AP:
{

i→ (ij)

a→ irow or jcol

{

∂a r i→ (ij′) : j′ 6= j or (i′j) : i′ 6= i

∂i r a→ jcol or irowSo the avity equations (3.19) are 4N2 equations binding an equal number of parameters ofmarginal probability distributions in X0, i.e., {h(ij)→irow , h(ij)→icol , uirow→(ij), uirow→(ij)}


























p(n, h(ij)→irow) = f(n, ujcol→(ij))

p(n, h(ij)→jcol) = f(n, uirow→(ij))

p(n, ujcol→(ij)) = g
(

n, {h(i′j)→∂jcol}(i′j)∈∂jcolr(ij)

)

p(n, uirow→(ij)) = g
(

n, {h(ij′)→∂irow}(ij′)∈∂irowr(ij)

)

(3.32)and using some algebra and the relation between the parameter and the probability values:
h = − 1

β
log

(p1

p0

) (3.33)39



CHAPTER 3. CAVITY THEORY FOR THE ASSIGNMENT PROBLEMthey ould be written as:


















h(ij)→irow = εij + ujcol→(ij)

ujcol→(ij) = − 1

β
log

∑

nij′
δ
(

1 +
∑

nij′ , 1
)

exp
(

− β
∑

h(ij′)→irownij′
)

∑

nij′
δ
(

∑

nij′, 1
)

exp
(

− β
∑

h(ij′)→irownij′
)

(3.34)and the orresponding ones with �row� and �ol� interhanged, and matrix indies transposed.In order to lean the notation for our problem, and solve the �rst trivial equation in (3.34),let's rede�ne the bias �elds in a ompat way:
{

gi→j := uirow→(ij)

hj→i := ujcol→(ij)

(3.35)Then the avity equation for the AP ould be expressed in terms of 2N2 equations for the bias�elds only






















gi→j =
1

β
log

∑

j′ 6=j

e−β(εij′+hj′→i)

hj→i =
1

β
log

∑

i′ 6=i

e−β(εi′j+gi′→j)
(3.36)Taking the limit β →∞, they redue to:











gi→j = max
j′ 6=j

(−εij′ − hj′→i)

hj→i = max
i′ 6=i

(−εi′j − gi′→j)
(3.37)
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Chapter 4Analysis of the disrete mapIn this hapter we onentrate on the disrete-time map for the bias �elds derived from the CavityEquation (3.37). In a �rst moment some details of the possible implementations are onsidered,and the interpretation as algorithm of Belief Propagation (BP) is desribed. Then an analytialand numerial investigation on the distribution of bias �elds at zero temperature and at �nitesize is presented.4.1 Parallel or Sequential updateSolving the Cavity Equations (3.37), even in RS framework and at zero temperature, is inpriniple a hard task. Indeed, the equations are not linear, exept that in those neighbourhoodsin whih the argmax of the equations do not hange (but there is in priniple a huge numberof those regions, ∼ N4N ), and some numerial idea should be adopted. A ommon tool in thisase is to reinterpret the onsisteny equations as a dynamis, by introduing a �titious time t,integer-valued, and write that the �elds at time t + 1 (the ones on the left side of the (3.37)) aresome funtional, ompliated and non-linear but well known, of the ones at time t.
{

gi→j, hj→i

}(t+1)
= Φ

(

{

gi→j , hj→i

}(t)
) (4.1)Then, iterating the map is omputationally easy, and all the di�ulty is onentrated on un-derstanding how and why suh a map ould eventually reah a �xed point, and this shouldorrespond, among the possibly-many �xed points, to the physially-relevant one.Di�erent implementations of the dynamis ould lead to di�erent average-ase behaviour ofonvergene, and, as this issue is theoretially not well ontrolled, some heuristis and the sakeof experiene should be used. Common wisdom is that the so-alled sequential update, in whihat every time step a single �eld, piked at random, is updated aording to its Cavity Equation,should give less stress to the pathologial feedbak e�et due to short loops in the graph (whih41



CHAPTER 4. ANALYSIS OF THE DISCRETE MAPmake the true-life problem more distant from the realization on a tree, where the method wouldhave been exat), and furthermore should avoid some olletive modes whih ould arise in theopposite hoie, of simultaneous update of all the �elds (parallel update). For this reason, thesequential update is often the favourite one.It pays, of ourse, the fat that now the method is intrinsially randomized, as in the de�nitionof the dynamis we need to pik up indies in a set. Conversely, the sequential update an bemade randomized, for example by hoosing randomly the initial onditions, but it is also well-de�ned as a deterministi proedure (for example, starting from all zero �elds).As we will see, our problem is a remarkable exeption: while the sequential update works justdeently well, the parallel update works so well that it an be turned into an exat algorithm,an exeptional harateristi for an optimization problem (in omparison, a deision problemis struturally easier, it su�es to �nd one solution in a possibly large set, while optimizationrequires to identify that single optimal on�guration!). Indeed, the reason for this strikingproperty is related to the one whih often leads to disregard the option of parallel updating: thesensibility to feedbak yles. In our ase, we an erti�ate that, although the dynamis su�ersfrom strong osillations due to the spurious information propagated along the yles, there existsone privileged yle, whih �talks louder� than the others, and in whih the travelling informationauses a virtuous e�et of reinforement on the solution.Another hoie for a dynamis, possible in priniple but not muh widespread, is the one ofontinuous-time dynamis. Instead of modifying an equation into a disretized dynamis like
~x = Φ(~x) (4.2)into

~x(t + 1) = Φ(~x(t)) (4.3)one an take the variant
~x(t + dt ) = ~x(t) + dt (Φ(~x(t))− ~x(t)) −→ d

dt
~x(t) = Φ(~x(t)) − ~x(t) (4.4)There is an obvious reason for this: if the funtional Φ is ompliated, integrating a di�erentialequation is omputationally heavy, and, although onvergene and stability issues of ontinuousmaps are often easier to address than the analogous for disrete times (as one an rely on onti-nuity of the evolution, and on the fat that �ow lines do not ross), these theoretial advantagestend to be negligible w.r.t. the numerial disadvantages.Our ase is an exeption also under this aspet: the fat that the equations are loallylinear, exept that at those interfaes where some argmax hanges, makes the integration of theontinuous-time dynamis an easy task interval by interval. Again, this dynamis an be de�ned42



4.2. BELIEF PROPAGATION INTERPRETATIONin a deterministi way, so it is in a sense more similar to �parallel�, than to �sequential�, so it hassome hope of leading, at least in priniple, to an exat algorithm.We believe that it is the ase, although the work on this point is still in progress. As a hintof this fat, onsider the following onstrution. At eah time t, there is a ertain set of argmaxin the equations, whih identi�es a web of �who propagates messages to whom�. This web isa subgraph of the original graph, and, more preisely, it is an oriented subgraph, in whih thein-degree of eah vertex (who am I listening to) is 1 exept that at an interfae, and thus theout-degree is 1 on average. Thus, negleting some exeptional points, this graph has no morethan one yle per omponent (we all these omponents �uniyles�. The time dynamis issolved by some easy spetral tehniques, by introduing a proper Fourier basis, and it resultsthat the lowest frequeny is assoiated to the alternated-sign sum of the weights along the yle.There is however a fator 1/ℓ, if ℓ is the length of the yle, due as always to the normalisationin the Fourier anti-transform. So, surprisingly, we reover the expression for the drift ∆ whihis disussed in setion 5.2.Still, di�erently from the disrete-time algorithm disussed there, there is now a hanefor making the algorithm polynomial even in algebrai enoding. Suppose that we have anexeptionally slow instane, beause ∆ is very small: we need to perform many time iterationsbefore the message from the yle is su�iently enfored. Nonetheless, for long sequenes ofthese steps, the argmax in the equations are maybe onstant, so the analytial integration of theontinuous-time dynamis, extrapolated up to a point where some argmax hanges, ould speedup the proedure.From the Cavity Equations (3.37) for bias �elds an be easily derived a disrete time iterativemap, hoping that for some domain it will eventually onverge to a �xed point whih determinea set of bias �elds solving the Cavity Equations.4.2 Belief Propagation interpretationBelief Propagation (BP) Algorithm refers, in a narrow sense, to an iterative proedure of messagepassing between nodes in a Bayesian network, whih allows to e�iently solve a ertain lass ofinferene problems [14, 15, 16℄. In a wider sense, it refers to a lass of algorithms (also alledSum-Produt), developed in a number of di�erent ontexts, whih have been reognized to havea ommon root, and the potentiality of being applied in a broader ontext of situations, only inreent times.We will onentrate on the Sum-Produt terminology∗, beause it is the most useful for our
∗As opposed to that of Bayesian inferene networks, Markov Pairwise Fields, et. see, for example [14℄, [15℄,[16℄. 43



CHAPTER 4. ANALYSIS OF THE DISCRETE MAPpurposes. The main problem is that of alulation of marginals of funtions provided with afatorization. Given g(x), a real valued funtion of N variables, suppose one an produe afatorization of it, in loal fators {fj}, depending on subsets Xj of the set X = (x1, . . . , xN ) ofvariables, where j runs on some set J :
g(X) =

∏

j∈J

fj(Xj) (4.5)In a fatorization naturally emerges, as said in setion 3.2, a orresponding fator graph, in ourase with N variable nodes and |J | fator nodes. Marginals gi : X ⊃ {xi} → R are de�ned inthe same way as marginal probability distribution, exept for the normalization requirement:
gi(xi) =

∑

Xr{xi}

g(X) (4.6)The key observation for the Sum-Produt Algorithm is that in a yle-free fator graph its stru-ture provides an operational indiation of how to perform marginal alulations, thanks, basially,to the distributive law of sum and produt. This operative guide onsists in transforming thefator graph in a tree rooted in xi, so that a �parenthood� relationship is well de�ned for eahnode (i.e., pitorially like if the rooted tree is a genealogial tree). Let µx→f(x) a message fromthe variable node x to the fator node f , and µf→x(x) a message on the same edge in the fatorgraph but in reversed diretion Then the updating rules are:


















µx→f (x) =
∏

h∈∂xrf

µh→x(x)

µf→x(x) =
∑

Xr{x}

(

f(X)
∏

y∈∂frx

µy→f (y)
) (4.7)In order to ompute marginal at variable site xi is now required a message passing proedurealong following this proedure:1. Start from the leaves: eah variable node sends an identity funtion to its parent, whileeah fator node sends itself.2. Variable node sends produts of messages arriving to it from its hildren.3. Fator node f with a parent x forms the produt of f with all messages oming from itshildren, and operate a summation over every variable but x, then pass it to its parent.4. Marginal at xi is alulated as produt of all messages hitting xi at any time.The Sum-Produt algorithm is based on the above proedure for omputing all marginals inthe fator graph, but laking in this ase a unique parenthood relationship, the parenthood isde�ned dynamially, so that any node �rst reeives messages from all of its �hildren�, then passa message to the remaining neighbour, its �parent�:44



4.2. BELIEF PROPAGATION INTERPRETATION1. All leaf nodes send messages to their parent.2. Every node waits for messages oming from all its neighbours but one, let's all this oneits �parent�, then it pass the omputed message to the parent.3. When the parent talks bak it reompute the messages for eah of its �hildren�.4. The proedure terminates when all the edges in the fator graph have broadasted a messagein eah of the opposite diretions.Moreover the number of time steps in whih all nodes beome in ondition of talking∗ is twiethe diameter of the tree, i.e., the length of the longest path between two nodes.At the �nal stage, the marginals, or the beliefs in BP terminology, are then omputed as sumof all messages reeived by a variable node:BEL(xi) =
∑

f∈∂xi

µf→xi
(xi) (4.8)A Max-Produt algorithm refers to a very lose tehnique in whih sums at fator nodes arereplaed by max operations. In this manner the purpose is not the alulation of marginals, butthat of the maximally probable on�guration. As it should be lear, maximization of marginalsvalues does not imply any maximum probable global on�guration. Max-Sum algorithm, in turn,is a variant that uses logarithms. Then, exploiting the monotoniity of logarithm and its formalproperties, leads to replae produts with sums whih are omputationally more e�ient.It should not be a surprise, then, reognizing that the Cavity Algorithm in its Replia-Symmetri formulation is essentially a Sum-Produt algorithm, where avity bias �elds shouldbe interpreted as messages running from fator nodes to variable nodes. Furthermore, the zero-temperature limit would orrespond to the simpli�ation of Max-Sum.In partiular, for our Assignment Problem, the updating rules in the Max-Sum algorithmare indeed the same as in the Cavity Equations we studied. Moreover, as in the fator graphthe onnetivity of variable nodes is equal to 2, their update rule is trivial, and it allows us toonsider only bias �elds in the proedure.Of ourse, our problem seems ill-posed as BP, as the fator graph is not a tree-like struture,a situation that someone alls Loopy Belief Propagation (LBP). The theoretial status of LBPis far less lear than that of standard BP: as a matter of fat, messages ould arry endlesslyinformation through the yles, giving rise to awkward beliefs onvergene issues. For somemodels, in some ensembles, it may onverge, while in other ases it may not, and it is not learat this time if there exist and, in the ase, whih are, the onditions granting a good behaviour

∗That is, a node should ompute and pass messages to another if it just reeived all but one message from itsneighbours, or it just reeived an �answer� from that neighbour to whih it passed a message in a previous step.45



CHAPTER 4. ANALYSIS OF THE DISCRETE MAPunder BP algorithm. The physial intuition on this point is that BP ould hope of �nding a goodapproximation of the marginals in a system, in the ase in whih the loops are su�iently long onaverage, and in whih there is a single pure phase in the system (i.e., there is no replia symmetrybreaking), although these reasoning are still quite speulative, and ould have exeptions.4.3 The distribution of bias �eldsIn order to derive the expeted distribution of bias �elds during the iterations of the reursivemap, onsider the exat Cavity Equations for bias �elds at zero temperature:










gi→j = max
j′ 6=j

(−εij′ − hj′→i)

hj→i = max
i′ 6=i

(−εi′j − gi′→j)
(4.9)In the thermodynami limit, the expeted distribution of �elds is derived by solving the followingdistributional equation:

x
d
= max

i
(−ξi − xi) (4.10)where {ξi} is a Poisson Point Proess (PPP) of rate θ(ξ) and both x and the {xi}'s are distributedi.i.d. with f(x), a probability measure to be determined self-onsistently.The funtion f is found as follows. The random variables {ξi + xi} are distributed as a PPPwith rate given by the onvolution produt (θ ∗ f)(x). Then, alled F the primitive funtionof f , the probability that the value x is the maximum in a PPP with rate F (−x) is learlyproportional to the probability of the joint event that the value −x ours and the probabilityof zero ourrenes of values greater than −x:

Prob(x is maximum) ∝ F (−x)PR(0) with 













PR(k) = e−R Rk

k!

R =

∫ ∞

x
dt F (−t)

(4.11)Some algebrai manipulation leads to:
f(x) = F (−x)e−φ(−x) with {

F ′(x) = f(x)

φ′(x) = F (x)
(4.12)This equation is �biloal�, i.e., besides depending on f , F and φ, thus being a di�erential equation,it depends both on x and −x. Some triks failitate the analysis: integrating both sides onegets F (x) = e−φ(−x), then, taking the ratio of the two equations, one determines that f(x) =

F (x)F (−x), so one an state that f is symmetri, and F (−x) an be replaed by 1−F (x). Thismakes the equation genuinely loal, and the di�erential equation an be solved. One reognizes46



4.3. THE DISTRIBUTION OF BIAS FIELDSin the solution a speial funtion named logisti distribution, and its �rst and seond primitivefuntions:
f(x) =

1

4 cosh2(x/2)
=

ex

(1 + ex)2
(4.13)

F (x) =
ex

1 + ex
(4.14)

φ(x) = log(1 + ex) (4.15)From the distributional equation (4.10) one an dedue more than the distribution of the�elds. For example one an obtain the distribution p(ξ) for the entry ξ on whih the maximumof −ξi − xi is realized. This is of interest, beause it orresponds to the distribution of instaneentries ǫij hosen in the solution, resaled by a fator N , and thus from this distribution we anextrat the average value of the minimum energy, 〈Emin〉.The probability p(ξ) an be found by independene of Poisson Proesses. Say we ask for theprobability p(ξ, x) that the maximum value is realized for a given pair (ξ, x). The remainingentries (ξi, xi), onditioned to the presene of the entry (ξ, x), are still an independent pointproess with rate ρ(ξ, x) = θ(ξ)f(x), thus the maximum of −ξi−xi over these remaining entriesis still distributed with f(x). So p(ξ, x) = prob(−ξ − x > x), with x and x i.i.d. with measure
f(x). After integration we �nd

p(ξ) = θ(ξ)

∫

dx

∫

dxf(x)f(x)θ(−ξ − x− x) = θ(ξ)
e−ξ − 1 + ξ

4 sinh2(ξ/2)
. (4.16)The average value of the minimum energy orresponds to the �rst moment of this distribution(the fator 1/N for the resaling of the entries anels out with the fator N of the sum):

〈Emin〉 =

∫

dξ ξ p(ξ) =
π2

6
, (4.17)whih is the elebrated Parisi onjeture, now proved by Nair et al. [12℄.One ould question how the abstrat in�nite-size limit of the Cavity Equation implied bythe distributional equations is related to the �elds one experienes when really performing theanalysis. What happens is that the shape of the distribution f(x) is well veri�ed numerially,up to a time-dependent translation fator, whih is indeed responsible for the Cavity Equationsto �nd the exat ground state. This translation fator is nonetheless on average �small� in N , sothat non-surprisingly the distributional equation does not predit it.We an onsider more arefully the iterative map derived from the Cavity Equations:











gi→j(t) = max
j′ 6=j

(−εij′ − hj′→i(t− 1))

hj→i(t) = max
i′ 6=i

(−εi′j − gi′→j(t)) 47



CHAPTER 4. ANALYSIS OF THE DISCRETE MAPIt is lear that, at every step, the matrix ht
j→i for eah olumn j will have only two values, say

{h(max)
j (t), h

(sec)
j (t)} (and the �rst one is repeated N − 1 times) de�ned as below:











h
(max)
j (t) = max

i
(−εij − gt

i→j)

h
(sec)
j (t) = 2ndmax

i
(−εij − gt

i→j)A similar argument goes for the matrix gt
i→j . The �rst of these two equations may be reasonablyassumed similar to the distributional equation of the analytial model in the thermodynamilimit, provided that:1. The matries gi→j share the same distribution of hj→i (here the point is an assumptionof independene from the initial hoies for hj→i, for the equations are learly symmetriwith respet to the two matries).2. At least during the �rst iterations the distribution of h

(max)
j is predominant over h

(sec)
j inthe ompound distribution, beause of its weight of (N − 1)/N against 1/N .We will see in setion 5.1 that, instead, for long times the seond point fails, beause the�se� �elds will �speak� half of the times. This is not surprising, as, when we almost deteted asolution, it is reasonable that the entries whih speak are the most reasonable ones, among the

N of a row, most of whih learly of too high weight.Assumed that these two points are valid for some transient times, and not required anymoreafter, when the distribution will remain quenhed up to translation, it is reasonable to expet alogisti distribution for the {h(max)
j }'s. But in this ase also the seond equation takes a simpleform, beause it is just the distribution of:

y = 2nd max
i

(−ξi − xi)where {ξi} are random variables from a Poisson Point Proess of rate θ(ξ) and {xi} randomvariables i.i.d. with the logisti distribution.We an derive the atual form for a generi distribution pk(y) solving
y = kth max

i
(−ξi − xi)of whih the logisti is a speial ase, f(x) = p1(x). We have only to adapt equation (4.11) fornon-zero integer values in the Poissonian distribution, yielding:

pk(y) = f(y)
log(1 + e−x)k−1

(k − 1)!
(4.18)48



4.3. THE DISTRIBUTION OF BIAS FIELDSIn partiular the expeted distribution for h
(sec)
j is given by:

p2(y) =
log(1 + e−x)

(1 + e−x)(1 + ex)
(4.19)A remark about this funtion should be made for its average value:

〈y〉 =

∫

R

dxx p2(x) = −π2

6
(4.20)Together with the fat that the average value in p1, i.e., in f , is zero beause the funtion issymmetri, this result is allusive of the known result for the average minimum energy. This ismore than a oinidene: we will see that a ertain ombination of �max� and �se� �elds leads toa weighted overing of the graph, in the Egerváry sense of setion 2.3, so exatly at �xed instanethe minimum energy is equal to (minus) the sum ∑

i(h
(max)
i + g

(sec)
i ), averaged over a ertaininterval of times. So, the result above on the �rst value of p2 is now read as an independenthek.
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Figure 4.1: Expeted distributions for hmax and hsec.We investigated numerially whether our expetations on the distribution of �max� and �se��elds were right. A plot of these distributions and their umulant is in �gure 4.1, where the sizeof the instane is already suh that the statistial noise on the data is not even reognizable withthe eye. 49



CHAPTER 4. ANALYSIS OF THE DISCRETE MAPThese hypotheses agree well with the data from atual omputations as shown in the �gure(4.2) whih reports the K-S test∗ distane and signi�ane level of the observed distributionswith respet to the expeted ones. In partiular, one sees a rapid growth (on times of order 1)in the signi�ane from the initial values (identially zeroes), followed by randomly �utuatinghigh values on some transient times, eventually taking a periodi behaviour, as a onsequene ofthe fat that the set of �elds itself beomes periodi, and we took out the overall translation.
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Figure 4.2: K-S distane and signi�ane level between data and expeted distributions for h(max)and h(sec) for an instane of size N = 4096.A point is still a bit mysterious, on these parameters of translation: one ombination of thetwo, 〈h(max) + h(sec)〉, has been already justi�ed in terms of expeted energy of the minimum,but the other ombination, i.e., the extrapolation of 〈h(max) − h(sec)〉, whih has asymptotiallya linear behaviour, bak to time t = 0, seems to be not onstrained by any reasoning, and thepredition oming from the assumptions above seems to be wrong. Furthermore, this value seemsto be not symmetri for h↔ g, and not even self-averaging over the instanes, for these reasonswe interpreted it as a feature of the initial transient part in the avity iterations, with smalltheoretial and pratial signi�ane.Looking at the evolution of these average values and at their sum in �gure (4.4), it is possible
∗Kolmogorov-Smirnov test is a ommon tool to analyze the agreement between some data with an expeteddistribution. For a further treatment of K-S test see [18℄.50



4.4. SOME REMARKS ON THE REPLICA SYMMETRY FOR THE ASSIGNMENT PROBLEM
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Figure 4.3: Cumulant distributions for hmax and hsec for an instane of size N = 4096 duringthe evolving of the reurrene map.to see, after a transient stage a onstant and periodi behaviour, suggesting a sort of freezingof the distributions of �elds during some time in the transient phase. An inspetion of thisbehaviour requires a better analysis of the mehanism through whih the values of the CavityFields hange during the reurrene map.4.4 Some remarks on the Replia Symmetry for the AssignmentProblemIn all of this work, and mainly in using the Cavity Equations in our form, we assumed that theassumption of Replia Symmetry is orret for the Random Assignment Problem. There aremany justi�ations of this fat, more or less heuristi, whih an also be found in the literature,and we will disuss a few of them here. But, in partiular, we will also show some �analytialproof�, in the framework of the full (modern) Cavity Theory, at the end of the setion.First of all, in the original replia alulation of Parisi and Mézard, the variational spae of1RSB solutions for the problem has a minimum at the RS point. These alulations are howeverboth hard to follow, and partially hard to justify in all mathematial rigour.Some numerial investigations have been performed some time later [19℄, and, although they51



CHAPTER 4. ANALYSIS OF THE DISCRETE MAP
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Figure 4.4: Average values for hmax and hsec for two instanes of size N = 4096 during theevolving of the reurrene map. Where useful, a vertial o�set between the urves has beenadopted.are not very extensive, they suggest however in a reasonable way that there is a single purephase. We ould easily reprodue for given instanes, as a by-produts of some of our odes, thedistribution of the overlap on exatly the �rst N on�gurations in the spetrum, and a few ofthese urves, at various sizes, are shown in �gure 4.5Indeed, also the algorithmi part of our work on the use of Cavity Equations as a solutionalgorithm, has, as a orollary, some impliations on the fat that there should be a single purephase � at least, with some �epsilon and delta's�, in a ertain �nite-size analysis. Indeed, weproved that the (parallel update) Cavity Equations an identify the optimal mathing startingfrom any initial onditions, thus proving that almost every measure on the phase spae is dynam-ially attrated to the same �xed-point measure, whih should thus desribe the only basin ofattration with extensive size. The fat that this happens at �zero temperature� (i.e., in identi-fying the ground state) should imply that it happens a fortiori at �nite temperature, beause ofbasi thermodynamis disequalities (the disordered paramagneti phase is always in a onnetedneighbourhood of the in�nite-temperature point).Furthermore, even the Hungarian Algorithm provides evidene for a single pure phase, al-though not so striking as with other argumentations. Indeed, onsider the output of the al-gorithm, and the �transformed� instane, where entries are shifted by the Egerváry overingweights:
ε′ij = εij − λi − µj (4.21)suh that ε′iπ(i) = 0 and ε′ij ≥ 0 for all pairs (furthermore, in the ones we an onstrut throughour overing funtion, of avity �elds averaged over a period, ε′ij ≥ ∆ for pairs (ij) not in themathing). Not only this erti�ates that π is optimal, but it also provides a strong intuition on52
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Figure 4.5: Distribution of the distane for all pairs of on�gurations, among the �rst 500 in thespetrum, for 6 random instanes, 2 per size, at sizes N = 32, 64, 128 (olours respetively red,orange and green). For sizes di�erent from 32, a resaling proportional to √

N/32 is understood.So, as the saling exponent is 1/2, i.e., smaller than 1, we reover the result of [19℄ on thefat that the distribution of the overlap tends to a delta in 1 for large sizes. The urves arewell �tted by Gaussian urves, but the parameters seem to be a bit non�self-averaging, and themean-to-variane ratio is not ompatible with a binomial distribution.the struture of the spetrum. The symmetri di�erene of any two mathings π′ and π′′ is aset of disjoint self-avoiding yles. Eah of them ontribute to the di�erene in ost of the twoon�gurations, by the alternated-sign sum of the weights. If one of the mathings is the optimalone π, all these summands are positive. Indeed, all the intermediate on�gurations, in whihsome omponents are like in π and some like in π′, do exist, and if it were not the ase that allthe summands are positive, we would �nd a better mathing among the intermediate ones. As aonsequene, if a large fration of relevant exited states at high distane from π ontains morethan one omponent in the di�erene with π, (or, more strongly, with one of the few low-energystates nearest to the ground state), it would hardly be possible that there are �valleys� far fromthe one ontaining π, beause, given another loal minimum, we would have a large number ofon�gurations at intermediate distanes, and with intermediate osts.The idea of the existene of many omponents, if the distane is of order N , relies on anobservation of the fat that losing alternating yles on a good mathing typially leads toyles with length of order √N (fr. for example the disussion and the data in setion 6.2. 53
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x

d
= max

i
(−ξi − xi) (4.22)whih ome as a zero-temperature limit of the �nite-temperature

x
d
=

1

β
ln

∑

i

exp(−β(ξi + xi)) (4.23)A loal-RS-stability riterion in the analysis of the equation for the avity �elds onsists instudying how a loal in�nitesimal perturbation in the inoming �elds (on the right side of theequation) propagates onto the outgoing �eld (on the left). The fat that the treatment is loalallows us in turn to linearize the e�et of the perturbation, so that we are redued to studythe spetral properties of some random linear operator: if all the eigenvalues are inside a disk of55



CHAPTER 4. ANALYSIS OF THE DISCRETE MAPradius 1, the e�et is dumped, and a perturbation would not propagate, while if some eigenvalue isoutside the disk, a perturbation with a non-zero omponent along the orresponding eigenvetorwould explode exponentially, and lead to an instability of the RS solution, typially interpretedas the possibility of many �xed points, in orrespondene with the many pure phases of a 1RSBstruture [20℄.So, we all ǫi the in�nitesimal perturbations of the inoming �elds xi, and ǫ the outgoingperturbation. We get
ǫ =

∑

i

ǫi
∂x

∂ǫi
=

∑

i

ǫi
exp(−β(ξi + xi))

∑

j exp(−β(ξj + xj))
=:

∑

i

ǫi yi (4.24)where we introdued a shortut y for the derivatives. These quantities have the strong propertiesof being all positive at sight, and of summing up to 1. So, if we want to analyze whether the
L2 norm of the �utuations inreases or dereases (we need to square them, beause the averagemust be zero from the assumption of being at the �xed point of the distributional equation), wewould get in the worst ase

max
{ǫi}

ǫ2

∑

i ǫ
2
i

= max
{ǫi}

∑

i,j ǫi(yiyj)ǫj
∑

i,j ǫiδijǫj
(4.25)i.e., the maximum eigenvalue of the rank-1 matrix Mij = yiyj (whih is obviously also the onlyone di�erent from zero). Indeed we easily get for the harateristi polynomial

P (λ) = λN−1
(

λ−
∑

i

y2
i

) (4.26)but, as the yi are all positive and sum up to 1, the sum of their squares is always smallerthan 1, and equal in the ase of a single value equal to one, and all the others vanishing. Sothe RS phase is always stable or at most marginally stable/unstable (still to be determined).Furthermore, it is easy to reover that the ase of equality happens if one of the summands in(4.24) is dominant, whih is always the ase if the various (ξi + xi) are di�erent, and β → ∞,i.e., in our zero-temperature random-real-ensemble ase: we thus learn that RS is stable at �nitetemperature, and marginal at zero temperature. We an interpret this result of marginality asthe distributional-equation signature of the �quasi-valley� struture qualitatively depited above,where we lose the fat that the valley are separated by distanes of order √N , instead of theappropriate extensive saling, from the fat that the distributional equation has lost the subtlerontrol on �nite size.The issue of marginality in the limit β → ∞ is a bit tehnial. Indeed, we have that thevariation of ǫ2 at the third order in the ǫi's is
2β

∑

i,j,k

ǫiǫjǫk(yiyjyk − δijyiyk)56



4.4. SOME REMARKS ON THE REPLICA SYMMETRY FOR THE ASSIGNMENT PROBLEMand, as evident from the study of the linear operator Mij above, the most relevant diretion,orresponding to the main eigenvetor, is ǫi = kyi. In the limit of β →∞ we an keep a vetor yof the form (1− a, a, 0, . . . , 0), with a in�nitesimal (and, say, b ≡ 1− a) and get for the variation(up to the positive fator 2β overall) the expression
∑

i,j,k

ǫiǫjǫk(yiyjyk − δijyiyk) = k3
(

(a2 + b2)3 − (a4 + b4)(a2 + b2)
)

= k3
(

2a2b2(a2 + b2)
)

= k3 · 2a2(1− a)2(1− 2a) (4.27)so, no surprises that the value of ǫ inreases/dereases if the sign of the main ǫi is posi-tive/negative, and, as the signs hange at eah passage, the overall e�et is zero at this order (ithad to, beause odd terms an not survive), Nonetheless, this alulation was propedeutial tothe one for the next even order, the fourth, for whih we get, up to positive fators,
∑

i,j,k,h

ǫiǫjǫkǫh(5yiyjykyh − 8δijyiykyh + δijδkhyiyk + 2δijδikyiyh)Now fators of k ome with an even power, and are not relevant. With alulations similar tothe ones above, although more involved, one gets a polynomial in a of the form
−a(1− a)(1− 2a)4(2− 5a + 5a2)whih is thus negative for in�nitesimal values of a. From this we an onlude that also at T = 0the RS solution is marginally stable.
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Chapter 5Cavity equations as a �good� algorithmIn this hapter, the onvergene proof for the disrete map is �rst outlined, and then rigorouslyproved. The proof uses some ideas of the Bayati, Shah and Sharma's work [2℄, but enhanestheir onlusion with a better bound, and a really more preise set of statements about thestationary phase. This in turn, should be regarded as an useful addition, beause onvergeneper se does not help in designing an algorithm whih yearns for be an exat method. Instead afull desription of the stationary dynamis ould provide, and indeed does provide, expetationsamenable of runtime hek, in order to aomplish a halting ondition.5.1 Some remarks on the onvergene mehanismThe numerial analysis of the bias �elds emphasizes the following features:1. the two sets of values {hmax
j } and {hsec

j } are moving in opposite diretion,2. there is an instane-dependent speed, whih, after a haoti transient phase, onverges toa lear value, eventually driving bias �eld values in a linear movement,3. in the stationary phase, at large times, there is a periodi osillation superimposed to thelinear drift, with period instane-dependent, but shorter than the instane size.Now we ould write the 2-step map:










g
(t)
i→j = max

j′ 6=j
min
i′ 6=i

(−εij′ + εi′j′ + g
(t−1)
i′→j′)

h
(t)
j→i = max

i′ 6=i
min
j′ 6=j

(−εi′j + εi′j′ + h
(t−1)
j′→i′)

(5.1)59



CHAPTER 5. CAVITY EQUATIONS AS A �GOOD� ALGORITHMand speializing it, in the long run assumption, i.e., when a separation of values is present, forproper indexes k̄, k, l̄ and l:
{

hmax
j (t) = −εk̄j + εk̄l + hmax

l

hsec
j (t) = −εkj + εkl̄ + hsec

l̄

(5.2)and similar equations for gmax and gsec.Let's introdue the indexes funtion related to the bias �elds set {hmax, hsec, gmax, gsec}:










lmax
i (t) := arg max

j
(−εij − h

(t−1)
j→i )

lseci (t) := 2ndmax
j

(−εij − h
(t−1)
j→i )











kmax
j (t) := arg max

i
(−εij − g

(t)
i→j)

ksec
j (t) := 2ndmax

i
(−εij − g

(t)
i→j)

(5.3)So it is reasonable to suppose that in the asymptoti behaviour are valid the following state-ments∗:1. {kmax, lmax} beomes onstant for large times, and they de�nes the optimal mathing π,being one the inverse permutation of the other.2. A subset of {ksec, lsec} also beomes onstant, and their elements de�ne, together withthe previous permutation, a �ompetitive� mathing π′ on the omplete bipartite graph,indiating the best alternatives to some of the elements hosen by π.3. The di�erene between π and π′ de�nes a yle (i1j1)(i2j1)(i2j2)(i3j2) · · · (i1jp) of p (2 ≤
p ≤ N) length, either π-alternating, and π′-alternating, with minimal slope whih drivesall {hmax, gmax} values to a positive and onstant drift, and all {hsec, gsec} values to anidential drift, but with reversed slope.4. the �stationary� behaviour is desribed by a small set of parameters oming from the bestmathing and an exited energy mathing, with minimal drift de�ned as:

∆ε
π′ =

∑

e∈π′rπ

εe −
∑

e∈πrπ′

εe (5.4)So the stationary evolution of the map is reasonably assumed follow:
∀t > t0,















hmax
j (t) = +

∆ε
π′

p
t + Cmax

j (t mod p)

hsec
j (t) = −∆ε

π′

p
t + Csec

j (t mod p)

(5.5)
∗Indeed, they are also well-supported by numerial analysis60



5.2. PROOF OF THE MAIN THEOREM5.2 Proof of the main theoremWe reall the �parallel disrete-time iterated map� form of our avity equations










g
(t)
i→j = max

j′ 6=j
(−εij′ − h

(t−1)
j′→i )

h
(t)
j→i = max

i′ 6=i
(−εi′j − g

(t)
i′→j)with the initial ondition hj→i = 0 at t = 0 (or, more generally, some h

(0)
j→i initial onditions).Say that the optimal mathing (assumed here to be unique) is the one orresponding to thepermutation π, so that, for β → ∞, realling that our g's and h's are �avity biases� in thegeneral language of setion 3.2, the avity �elds identify the ground state if, for eah (i, j),

εij + gi→j + hj→i :

{

< 0 j = π(i)

> 0 j 6= π(i)
(5.6)What we will see is the stronger statement that, indeed, for any instane, the quantities abovefor the �elds at time t will drift, linearly in time with some instane-dependent drift parameter

∆, to ±∞, and with the proper signs in order to have that the quantities above diverge as ±2t∆.Unfortunately, the parameter ∆ an be arbitrarily lose to zero, and some re�nements in theproedure are required in order to have e�etive onvergene times.We will be now more preise on what ∆ is. Given π, onsider the set of all other permutations
π′. Say that their �distane� ℓ(π, π′) is the number of indies i on whih they di�er (whih isthus an integer in {2, . . . , N}. It is indeed a good distane in the mathematial sense. Then,de�ne the quantity E(π′) = cost(π′) − cost(π), whih is thus stritly positive beause of ourassumption of non-degeneray of the ground state. De�ne (∆1,∆2, . . . ,∆N !−1) the ordered setof the {E(π′)/ℓ(π, π′)}π′∈S(N)rπ. Then, our drift parameter is ∆ = ∆1 > 0, and only anotherombination, ∆12 := ∆2−∆1, will play a role in the disussion. We will assume in the followingthat also ∆12 > 0.Remark that if the symmetri di�erene between π and π′ has more than one omponent,
E(π′) takes a positive ontribution from all the omponents. Put then in (E1, ℓ1) the ontributionto E and ℓ oming from the �rst omponent, and in (E2, ℓ2) the ontribution from all otheromponents. All of the four involved numbers are positive. This gives

E1 + E2

ℓ1 + ℓ2
≥ min

(

E1

ℓ1
,
E2

ℓ2

) (5.7)whih results from the fat that the two di�erenes are both proportional to the same rossedfator (E1ℓ2 − E2ℓ1), multiplied in the two ases by fators at sight of opposite sign. As aonsequene, for the π′ realizing the minimum ∆, the symmetri di�erene with π must onsist61



CHAPTER 5. CAVITY EQUATIONS AS A �GOOD� ALGORITHMof a single yle. Similarly, for the π′′ realizing the seond ∆, it is either omposed of a singleyle, or of two yles, of whih one is the one of π′.Indeed, our aim is to prove that, by iterating the avity equations above for a number of steps
t larger than some onstant, times some inverse powers of ∆ and ∆12, one reahes a situationin whih the avity �elds h and g have some striking �quasi-periodiity� property, with period Tequal to the distane ℓ(π, π′) for π′ realizing ∆1. Averaging the �nal avity �elds over one period,one obtains some {g(aver)

i→j , h
(aver)
j→i } whih identify the optimal assignment π through the �sign�reipe desribed above, and provide a valid set of dual variables, in the sense desribed in setion2.3, whih erti�ates the optimality of π. As a orollary, as the quasi-periodiity ondition iseasily tested on the run at every time step of the algorithmi proedure, this also provides ahalting ondition for the avity algorithm, whih was laking in the original suggestion of [2℄.The erti�ate is lear in its meaning: the ombinations {εij + g

(aver)
i→π(i) + h

(aver)
j′(i)→i} (where

j′(i) is some arbitrary index di�erent from π(i)) are exatly zero on the pairs (i, π(i)), and
≥ 0 on the other entries, and this proves at sight that π is optimal, as a restatement of theEgerváry's theorem. It is interesting, also from the theoretial and speulative point of view, toremark the relation among the �physially inspired� avity biases and the �omputer siene� dualvariables, in partiular at the light of the fat that rigorous understandings on the �heuristi�(and approximated on non-tree struture) avity equations ould allow to shed more light ontheir mehanisms, and maybe devise better strategies for appliations even beyond the spei�ase of Assignment Problem.All our statements above will be proved through a sequene of lemmas. The �rst one isontained in [2℄, and a few of the other ones either were in part impliit there but not stated, orare derived applying some variation of the two key ingredients:� the orrespondene with the tree-like unwrapped graph, and the fat that Belief Propaga-tion is exat on that;� the fat (obvious a posteriori, but still one should have had thought to that!), that pathson a �nite graph, at the aim of the oupany numbers on the edges, an be deomposed,e.g., through yle-popping, into a set of self-avoiding yles, and an open path of lengthsmaller than the number of verties in the graph.So, given an integer t, an ordered pair (i, j), and a �binary hoie� among �row� and �ol�,de�ne the unwrapped graph T (t; i, j, �ol�) (or the analogue for �row�) as the rooted tree, in whihthe root, at the top, is a opy of vertex �ol j�, it is onneted only to a opy of vertex �row
i�, the latter is onneted to other N − 1 verties, opies of �ol j′� for j′ 6= j, eah of them isonneted to other N −1 verties �row i′�, for i′ 6= i, and so on for 2t levels (t with �row� verties,and t with �ol� ones). At the last level, we just have leaves. So we have a set of leaves (the last62



5.2. PROOF OF THE MAIN THEOREMlevel, plus the root), and a set of internal verties, all of oordination N , and, w.r.t. the orderingindued by the rooting, N − 1 of the neighbours are in a lower level, and one is in a higher level.On this graph, it is understood a weight funtion on the edges, indued by the one on theoriginal graph (if an edge in the unwrapped graph onnets a opy of row i to a opy of ol j,the weight is of ourse εij). For future use, we also de�ne the funtion on the edges me ∈ {0, 1},whih is valued to 1 if the image of edge e on the original graph is oupied by the optimalmathing. Then, we de�ne a new mathing problem on the unwrapped graph, stating that wesearh for the subset of edges suh that:� eah internal vertex is overed exatly one;� eah leaf is overed either by one edge, or by no edges;� the sum of the weights on overed edges is minimal in this set of feasible on�gurations.A few observations an be done at this point. First, the avity �eld ĝ
(t)
i→j on the top edge-oupany variable n

(t)
ij (oming from below, while from above the leaf do not send any message)oinides with the time-t avity �eld g

(t)
i→j in the iteration of the equations for the originalproblem. Then, the avity �eld for the unwrapped problem is exat, as we know that BeliefPropagation is exat in this ase.The lemma states thatLemma 1 If t ≥ N Const/∆, where the onstant is of small relevane and is disussed below,the sign of ĝ

(t)
i→j is negative or positive respetively if π(i) = j or not.The proof works through a onstrutive absurd: if the thesis were false, one ould build analternating path on the unwrapped graph, onneting the root to one of the bottom leaves, suhthat, by studying the image of the path on the original graph, one would determine that invertingthe oupanies on the path would improve the ost of the mathing for the unwrapped problem,in disagreement with the fat that Belief Propagation is exat on the tree.First we observe that, given any pair of allowed on�gurations n1, n2 for the unwrappedproblem, their symmetri di�erene is the union of some self-avoiding even-length yles, andpaths onneting two leaves, with edges oupied alternately in n1 and n2. Call n(1) and n(0) thetwo optimal on�gurations, onstrained to have respetively n

(t)
ij = 1 or 0. Clearly, one of them isalso the global optimum. Furthermore, for what we said above, n(1) is the global optimum if andonly if the sign of ĝ

(t)
i→j is positive. The symmetri di�erene of n(1) and n(0), that we denote with

n(1) △ n(0), must thus have a path onneting the root to some other leaf, and this path mustbe of length exatly 2t. More preisely, as both on�gurations are optimal in their subensemble,the symmetri di�erene must be omposed only of this path: no other paths between bottom63



CHAPTER 5. CAVITY EQUATIONS AS A �GOOD� ALGORITHMleaves, or yles, are possible, beause in one of the two ases there would be a net gain. Asimilar statement holds if we onsider a third on�guration, the one with nij = mij, built byunwrapping the optimal mathing on the original problem∗. In this ase, for both the symmetridi�erenes of m with n(1) and n(0), there ould be an arbitrary number of disjoint paths, but nointernal yles. In n(1) △ n(0), and one among the two n(1) △ m and n(0) △ m, there must bea path onneting the root to a leaf in the bottom, while the portions of the two paths whihis not in ommon makes a path �bottom-to-bottom� in the other di�erene. (We neglet herethe possibility that the optimum on�guration is degenerate on the unwrapped problem. In thisase one should modi�ed the statement into �one an hoose an optimal n(1) and an optimal n(0)suh that. . . �.)Another relevant point is the fat that this bottom-to-bottom path is bounded in length, by
2N , beause, if projeted onto the original problem in suh a way that it is not self-avoiding,it would lead to a gain move in the pertinent n(·), without touhing the oupany at the root,thus ontraditing the optimality hypothesis. So the part of the path in this �⋋-shaped� diagramwhih goes from the rossing to the top is long at least 2t−N .The di�erene in ost between the two on�gurations is given by the alternated-sign sum ofthe weights εij along the path. Here there is the ruial point: in the absurd hypothesis that thesign of ĝ is not in aord with the original-problem oupany mij , the signs on the portion ofthe path of length larger than 2t−N are alternating in suh a way that on any losed yle theloss is in the diretion of ontraditing the assumption of global optimality. On eah losed yle,the loss per level is at least ∆ (beause of the de�nition of the quantities ∆i: remark how thedivision by ℓ(π, π′) was pertinent). On the other side, there is no ontradition still as long asthe other summands ould reover this loss. But, by a yle-popping argument on the path, wesee that both the ontribution oming from the bottom part of the ⋋, and the one oming fromwhat remains of the top part after the yle-popping, are bounded by the di�erene in energy inthe alternated-sign�sum along an open self-avoiding path on the original graph, and this quantityan be evaluated easily at given instane, then maximized over pairs (ij), or otherwise boundedeasily a priori by a fator proportional to N in the ase of a bounded measure on the εij . So,the loss an not be ompensated for t su�iently large w.r.t. this fator, proportional to N/∆.This onludes the proof of the lemma. �However one should remark that the value of ∆ is both arbitrarily lose to zero, and impos-sible to dedue from the instane, unless with some proedure whih is essentially equivalent tosolve the problem otherwise (e.g., by applying multiple times† in a smart way the Hungarian

∗Remark that, as for internal verties we have the same onstraints as in the original problem, and on theleaves we have relaxed the onstraint, this on�guration m is in the set of feasible ones.
†Not being ∆ determined by the �rst exited state of the spetrum, it is not su�ient alulate it, but asmuh exited states as it needs for the last alulated exited energy divided by N is greater than the andidate64



5.2. PROOF OF THE MAIN THEOREMAlgorithm), so we both do not have a bound on the running time, and not even a erti�ed�xed-instane threshold time suh that, stopping the algorithm after that time, we an safelyonlude that the reonstruted mathing is optimal.For this reason we go further with our analysis of the mehanisms of the problem. We anall t∗ a time su�ient at the purposes of lemma 1. As the avity equations at zero temperatureare of our speial form maxi(· · · ), it makes sense to onsider the argmax at eah node. Againfor simpliity neglet the possibility that at some nodes there ould be degeneray (it ould benie to know that this never happens in measure for the ase of random real-valued instanes).Still, onsider the messages propagating upwards, to the root of the tree. So we an say that, ofthe N − 1 downward neighbouring edges, one of them is the �speaking edge�, if it is the one withlabel orresponding to the argmax of the Belief Propagation equations at that node and at the�xed point.A simple fat is the followingLemma 2 For eah t ≥ t∗, for all the �rst t− t∗ levels of the tree (the nearest ones to the root),all the edges e with me = 1 are speaking edges.This is impliit from the struture we onstruted through the �rst lemma, plus the observationthat, through the thesis of the lemma 1, the edges in the mathing of the original problem senda message with positive sign, while all the other N − 2 inident edges send a negative message.
� Still, this determines only �half� of the speaking edges: alternately along the path, the edgespeaking to one suh that me = 1 is not still �xed.Another useful remark, impliit in the onsequenes of the lemma, is the fat that, within thenotations of setion 4.3 where the �elds g

(max)
i (t) and g

(sec)
i (t) are introdued (and analogouslyfor h's), we see that in the upper t−t∗ levels of the tree, i.e., after t∗ iteration steps on the originalsystem, we are in a regime suh that the �max� messages speak to �se� ones and vie-versa.We have now all the bakground neessary to prove the followingLemma 3 For t > t∗∗ = (Const1 t∗ + Const2 N)/∆12, where the irrelevant onstants are de-sribed below, and for T being the length of the yle realizing the drift ∆, the set of avity �elds

{ĝ(t)
i→j , ĥ

(t)
j→i} have the quasi-periodiity property

ĝ
(t+T )
i→π(i) = ĝ

(t)
i→π(i) − T ∆; ĝ

(t+T )
i→j = ĝ

(t)
i→j + T ∆ for j 6= π(i); (5.8)

ĥ
(t+T )
j→π−1(j)

= ĥ
(t)
j→π−1(j)

− T ∆; ĥ
(t+T )
j→i = ĥ

(t)
j→i + T ∆ for i 6= π−1(j). (5.9)The proof ould be oneptually divided into two steps. One is just tehnial, and analogous tothe tehnique devised in lemma 1: it requires to prove that an alternating path from the new rootdrift to that moment. 65



CHAPTER 5. CAVITY EQUATIONS AS A �GOOD� ALGORITHMto a level down to t∗ from the bottom must go through the optimal yle with drift ∆ for almostthe whole fration of its length, otherwise the loss for not doing so (but following, for example,the seond-optimal yle with drift ∆ + ∆12) ould not be ompensated by the boundary e�etsof the self-avoiding open path resulting from the yle popping.The �rst step, however, should ome before. Why should we are for some �global optimality�ondition, like the fat that the result of �ipping a whole path has de�nite sign, while thestatement we want to prove onerns a avity �eld, determined through a �loal� proedure ofwho's speaking to whom? This is the ombined result of the small lemma 2 above, and of thefat that, beause of the �max� nature of the 2-step avity equations. Consider indeed a diagramlike
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��where the segments stand for portions of alternating paths on the unwrapped graph, and theheights of the nodes where paths meet have the same parity (even). One an devise a globalquantity on the paths from the root to some �xed level, obtained as a ertain loal ombinationof the osts on the rossed edges, in suh a way that minimizing this quantity selets the pathof speaking edges from the given layer to the root. Indeed, assume indutively that this is trueup to a height 2h, then we want to prove it up to level 2h + 2. We an have a look bak at theavity equation, and nest them in two steps:
gi→j(t + 1) = max

j′ 6=j
(−εij′ − hj′→i(t)) = max

j′ 6=j

(

− εij′ −max
i′ 6=i

(−εi′j′ − gi′→j′(t))
) (5.10)As we have a minus sign in between the two max operators, we an not redue it to a simplemaximization (whih would have been an unrealisti trivialization of the proedure), and ouridea of devising a global quantity to maximize, at least in this approah of looking at quantitieswhih are natural in avity framework, seems unfeasible. Nonetheless, as we said above, we areerti�ated in a regime suh that �max� speak to �se�, whih speak to �max� and so on, andalso, one every two indies is known rigorously to be the one suggested by the optimal mathing

π, so that we an speialize the equation above to this regime
g
(max)
i (t + 1) = max

j′ 6=j
(−εij′ − h

(sec)
j′ (t)) = max

j′ 6=j

(

− εij′ − 2nd max
i′

(−εi′j′ − g
(max)
i′ (t))

) (5.11)(beause the argmax over i′ is realized on i), so
g
(max)
i (t + 1) = max

j′ 6=j

(

− εij′ + επ−1(j′)j′ + g
(max)
π−1(j′)

(t))
)

. (5.12)66



5.2. PROOF OF THE MAIN THEOREMThis expression proves our statement, on the fat that, at the aim of determining the value ofthe avity �eld on the root at a ertain time t, given the input avity �elds at level t∗ from thebottom, it su�es to determine the (maximum value of the) alternated-sign sum of the weightson the path, starting from a leaf at this level and reahing the root. This is true simultaneouslyfor all pairs (ij). Furthermore, as the value of the �eld omes from the sum of loal quantitieson the graph, optimized in some way, it must be that for large times it reahes a linear regime(i.e., the one for whih, for most of the time, it applies the optimal strategy). Finally, for everyonneted omponent (and, in our ase in whih all weights εij are �nite, de�nitely for all pairs),the slope of the linear regime must be the same for all the pairs.A andidate for this slope is of ourse our drift parameter ∆. We an easily onstrut, forexample, a whatever path whih reahes the drift yle in some �nite number of steps, then walkson it for all the time steps down to t∗. Then, as ∆ is the minimum drift, no other values arepossible without violating the optimality ondition. A �seond better� ondition is that almostall the paths follow, as muh as possible, the optimal yle, while one or more of them, for sometime interval, follow the seond-optimal yle.Consider now two ases:� For some time interval {t, t + 1, . . . , t + T} all the paths have followed the optimal yle.In this ase, we would enter the quasi-periodi regime desribed above, as results evidentfrom the avity equations, speialized to the fat that �max� speak to �se� and vie-versa.� For all time intervals of the for above, at least one path has done at least one step outof the optimal yle (say, in the sub-optimal one). Then, on average, the drift would be
∆ + ∆12/(T · 2N) > ∆ + ∆12/(2N

2) > ∆ (remark, stritly larger), this violating ourondition on the fat that the drift must be optimal.This proves also the present lemma. A tehnial �nal point onsists in estimating a time t∗∗,depending from ∆12, N and the values of the avity �elds at level t∗ (whih are easily andgenerously bounded by a fator proportional to t∗), and this leads to our estimate in the statementof the lemma. �Now everything is essentially done: as we are fored to enter a quasi-periodi regime, andas suh a fat is easily deteted in an algorithmi implementation (for example, through a hashfuntion of the kind
fλ(g, h; t) =

∑

i

(λig
(max)
i (t + 1) + λ′

ih
(sec)
i (t)) (5.13)where the λ'a are real numbers suh that ∑

i λi =
∑

i λ′
i but have no other linear relationwith rational oe�ients), and as we know in this ase that the asymptoti behaviour easilyextrapolated from the argmax in the avity equations will de�nitely lead, when t = t∗, to67



CHAPTER 5. CAVITY EQUATIONS AS A �GOOD� ALGORITHMidentify the same optimal mathing suggested by the present set of argmax indies, we have nowa riterion for safely halt the proedure, and output the result.Nonetheless, this idea of extrapolating up to t∗ (whih, in priniple, ould be larger than thetime at whih quasi-periodiity is deteted) is a bit disturbing in its lak of elegane. We wantto prove in a �nal lemma that, already through the �elds in our interval of quasi-periodiity
{t, t + 1, . . . , t + T}, the optimal mathing has been identi�ed by the avity equations beauseof some strutural reason. Indeed we haveLemma 4 In quasi-periodi regime, the quantities {g(aver)

i→j (t), h
(aver)
j→i (t)} de�ned as

g
(aver)
i→j (t) =

t+T−1
∑

t′=t

gi→j(t
′) ; h

(aver)
j→i (t) =

t+T−1
∑

t′=t

hj→i(t
′) ; (5.14)are a good set of dual variables, in the sense of setion 2.3, and thus provide a erti�ate ofoptimality of the permutation π that they identify.Call ε′ij the weights shifted by the dual variables, i.e., εij + g

(aver)
i→j (t) + h

(aver)
j→i (t). We have toprove two statements, �rst that ε′iπ(i) is exatly zero for eah i, then that ε′ij ≥ 0 for eah pair ofindies. For the �rst ase we have

ε′iπ(i) = εiπ(i) +
1

T

t+T−1
∑

t′=t

(

g
(sec)
i (t) + h

(max)
π(i) (t)

)

= εiπ(i) +
1

T

t+T−1
∑

t′=t

(

g
(sec)
i (t) + (−g

(sec)
i (t)− εiπ(i))

)

= 0

(5.15)while for the seond ase, with j 6= π(i), we have
ε′ij = εij +

1

T

(

h
(max)
j (t + T − 1) + g

(sec)
i (t) +

t+T−1
∑

t′=t+1

(

h
(max)
j (t− 1)g

(sec)
i (t)

)

)

= ∆ +
1

T

t+T−1
∑

t′=t

(

g
(sec)
i (t) + (εij + h

(max)
j (t− 1))

)

(5.16)but, beause of the avity equations, eah of the summand is at sight positive (and zero if j isthe �arg-seond� index at all times of the period).
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Chapter 6Statistial analysis of the CavityAlgorithmThanks to the onvergene of the bias �elds to an optimal assignment, it is possible to address aset of questions of primary importane in the disussion of a pratial algorithm. First we presenta numerial analysis of the onvergene time distribution and its saling behaviour with the sizeof the instanes. The problem of algebrai tail in the solution times, is then faed suggesting apossible workaround.6.1 Convergene time analysisHelped by the existene of a very e�etive algorithm for solving the Assignment Problem, theHungarian Algorithm, even in the �basi� implementation of the avity algorithm, like e.g., ina framework of [2℄, where we do not have neither a erti�ate, nor even a halting ondition, itmakes sense to study the �optimisti lower-bound� to the solution time, i.e., the iteration time atwhih for the �rst instant the optimal solution is identi�ed. More or less optimisti riteria an bede�ned, and have been studied, as desribed in greater detail below, while the numerial analysisof the onvergene time is shown in �gure 6.1. The omparison with the optimal mathing π isdone via the argmax funtions over the bias �elds k̄j(t) and l̄i(t):










l̄i(t) = arg max
j

(−εij − h
(t−1)
j→i )

k̄j(t) = arg max
i

(−εij − g
(t)
i→j)

(6.1)Three riteria have been used in order to de�ne a �solution time�:1. A �rst threshold t0 is plaed in the �rst time after whih the argmax funtions over thebias �elds oinide with the optimal solution for a number of iterations of order O(N),69



CHAPTER 6. STATISTICAL ANALYSIS OF THE CAVITY ALGORITHM
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Figure 6.1: Solving time distribution for an ensemble of instanes at size 32. On the x-axis thereis the natural logarithm of solving times, while on the y-axis is represented the natural logarithmof the number of instanes fallen in the interval of the histogram.with N the size of the ost matrix (i.e., it �nds the solution in a persistent way)
t0 = min

t

{

t ∈ N : ∀τ ≤ N,∀i, j, l̄i(t + τ) = πi ∧ k̄j(t + τ) = π−1
j

} (6.2)2. A weaker form selets the �rst time in whih the ondition is satis�ed, even if not inpersistent way
t1 = min

t

{

t ∈ N : ∀i, j, l̄i(t) = πi ∧ k̄j(t) = π−1
j

} (6.3)3. Another still weaker form allows some a number of order 1 of nodes onstraints to beunsatis�ed (2, in our numeris)
t2 = min

t

{

t ∈ N : ∀τ ≤ N, for at least N − 2 indies i l̄i(t + τ) = πi

∧ for at least N − 2 indies j k̄j(t + τ) = π−1
j

} (6.4)Remark that these weak riteria are very �generous�: for example, allowing for a few errorsorresponds to the assumption that one ould reover the true solution from an almost-good70



6.1. CONVERGENCE TIME ANALYSIS
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Figure 6.2: Distribution of solving times in a log-log representation. Only peaks are shown.one with some polynomial proedure, still to identify. Still, no one of the generous riteria weused is signi�antly better than the original one, and in partiular all of them show intratablenon-integrable algebrai tails in the distribution of the solution times � our estimate for theexponent is −1.018 ± 0.022, alulated with the proper presription of statistial data analysis:
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(6.5)where x0 represents the uto� from whih the tail is onsidered, n the size of the sample, and σthe variane or error. The �intuition� on this exponent is on the fat that, as in the estimates ofthe proof, the slow instanes are the ones in whih a parameter ∆, ombination of our weights,and thus in R, and positive by de�nition, is very near to zero. In this ase, the solution timesould slow up to times of order ∆−1. If the distribution of the ∆ has �nite support at ∆ = 0 (asit learly does, fr. the numeris below), one would thus experiene an exponent exatly −1.A omparison at di�erent sizes is shown in �gure 6.2 alongside with a tempted �nite sizesaling analysis in �gure 6.3. 71



CHAPTER 6. STATISTICAL ANALYSIS OF THE CAVITY ALGORITHM
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6.2. STATISTICAL PROPERTIES OF CONVERGENCE PARAMETERSwidth 2/N2. We do not have however analytial arguments for justifying the exat value of 2,although maybe arguments in the fashion of [21℄ ould sueed in this.The distribution of the seond spaing, alled ∆12 in the disussions of setion 5.2, is howevernot well �tted by a single exponential, and seems to be spetrally riher. Nonetheless, it seemsquite well veri�ed that the pairs (∆,∆12) are almost deorrelated. At support of this laim, weshow, for a list of about 105 instanes of size 256, the plot of the pairs (i, j) suh that for thegiven seed ∆ is the i-th of the sorted list, and ∆12 is the j-th (atually, with normalized entries),and we interpret the results from the fat that no speial struture seems to arise (orrelation orantiorrelation would onentrate the points on one or the other of the two diagonals).
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The distribution of periods in the drift yle, i.e., the parameter ℓ(π, π′) realizing the minimumdrift ∆, in the notations of setion 5.2, or equivalently the number of iterations T in the reipefor the erti�ate of equation (5.8), have been studied at various sizes (N = {32, 64, 128, 256}),and a saling analysis has been performed, assuming a Gaussian form like
prob(T ;N) ∝

√

1

N
exp

(

− T 2

αN

) for T integer ≥ 2. (6.6)with α some onstant not determined. The ollapse of the urves is quite good (with numerialestimate of α = 1.40 ± 0.05), and is shown in �gure 6.5.The guess of a Gaussian �t was also suggested by a naïve argument: at the end of the avityalgorithm, the set of �speaking� edges onsists of a Hungarian tree (it is in general a Hungar-ian Forest at the end of the traditional Hungarian Algorithm, but our presription produes a�ondensation� of the omponents). The drift yle is all ontained in the tree, exept for asingle edge not in the mathing. If we also inlude this edge, we have a �Hungarian uniyli�.Assuming (in a totally unjusti�ed way) an uniform distribution over the possible uniylis on73
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Figure 6.4: Cumulant distribution of the quantities N2∆ for random instanes at size N (i.e., f(x)is the probability that N2∆ > x). Sizes are N = {32, 64, 128, 256} (with olours respetively:red, orange, green, blue). The �t with an exponential of width 2 has not been reported, beauseindistinguishable from the numerial data.the omplete bipartite graph, we obtain that relative probabilities for yles of length 2T go like
prob(T ;N) ∝ N(N − 1) · · · (N − T + 1)

NT
≃ e−

1
N
− 2

N
−···−T−1

N ≃ exp

(

−T (T − 1)

2N

) (6.7)whih appears to be qualitatively orret, although it does not estimate the proper value of α.6.3 Fast solution of slow instanes: the fork-after-warning proe-dureAs explained, the dynamis of bias �elds is led by the passing of messages through some alter-nating yles between mathings in the bipartite graph. Every yle has a proper weight thatdetermines its likely to be an ative hannel for the messages, this weight being the alternatingsum of edge weights in one or in another mathing. The avity equations, through the loaliterative map, selet those yles whose total drift, i.e., weight divided by the yle length, isminimal. Very small drifts thus, ause a slowing down of the onvergene proess, but thereis also another ause, not so muh with respet to the seletion of the minimal mathing, butrather for the seletion of the �rst exited yle, being their di�erene ∆12 in the driving foretoward equilibrium. That should not mislead: the seletion of the minimal mathing, auses the74



6.3. FAST SOLUTION OF SLOW INSTANCES: THE FORK-AFTER-WARNING PROCEDUREsystem to evolve towards on�gurations with the optimal mathing, but, for the erti�ation,i.e., for reahing the proper stationary phase, also the seond mathing should be �xed by thedynamis. It is thus not surprising that instanes ould exists with very long erti�ate time,even if, maybe, the spread between the ground state and the �rst exited mathing is not sosmall. Suh onsiderations ould be explained through �g. 6.6.We reognize a dense ellipse of �typial� ases, with some orrelation, and three �tails�: oneshows strong orrelation: we had a long time �beause� ∆ or ∆12 (resp. if red or green) wereanomalously small; one is almost horizontal (but only green) and orresponds to parameters
∆12 anomalously small, whih did not ause the instane to be slow; one is almost vertial,orresponds to slow instanes, whih were not anomalous in respet to ∆ or to ∆12, and ispotentially dangerous, as, if it turns out that some of these instanes were slow although both ∆and ∆12 were typial, we would have failed in deteting all the possible auses of slow instanes.For this reason, on the bottom of the �gure, we plot a subset of the red (resp. green) points,seleting only the ones in whih the parameter ∆ is smaller than ∆12 (or vie-versa). Thevertial tail has disappeared, so that we an guess that all slow instanes were indeed aused byan anomalously small value of min(∆,∆12).We an now suggest a quite simple idea with relevant onsequenes: what if a better inspe-tion of the transient phase, say, of the �rst O(N) iterations or even less, almost always sueed inidentifying the presene of a yle with drift anomalously small, and did not �nd a large frationof spurious irrelevant small-drift yles?In this ase, we would have �morally� identi�ed the reason for the future slowing of thealgorithm, within a typial solution time, and we ould adopt a whatever reasoning for irumventthis to happen. The oneptually more eonomi way is to �fork� the proess: take a whateveredge of the dangerous yle, say the one onneting row i to olumn j, and hange its weightto, e.g., a quite large value (so that one restrits to on�gurations π in whih π(i) 6= j). Thensolve the resulting instane, say �nding a minimum energy E1, most probably in a �typial� time.Then, for the same edge, shift up of a large amount the weight of all the other entries (i, j′) with
j′ 6= j (so that one restrits to the omplementary set of on�gurations π in whih π(i) = j).Then solve also this resulting instane, say �nding a minimum energy E2, again most probablyin a �typial� time. The on�guration orresponding to the minimum energy among E1 and E2is thus the global minimum of the original instane, and has been found within three typialtimes. This would kill any algebrai tail, and ause an almost-gaussian distribution of solutiontimes, analogously to the Hungarian Algorithm.
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6.3. FAST SOLUTION OF SLOW INSTANCES: THE FORK-AFTER-WARNING PROCEDURE
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Conlusion and perspetiveAs was pointed out in some reent papers [22℄ the Cavity Equations (i.e., the autoonsisteniesequations for the avity �elds introdued in hapter 3) are powerful tools to solve some problemsof Combinatorial Optimization. But, in spite of the fat they help us to solve some problemsalso in the hard regions, not muh is known about the existene of a solution and an eventualonvergene towards this solution. Only for a few set of problems we know that a solution of theCavity Equations exists and an be reahed. Among this problems there are all the ones thatan be expressed as an Hamiltonian with a tree-like Fator Graph.In this thesis we studied how the Cavity Equations works on the assignment problem that isa polynomial problem, i.e., it has been showed [6℄ an algorithm able to solve all the instanes in atime that grows polynomially with the problem size. This problem an not be desribed in termsof a Hamiltonian with a tree-like Fator Graph, so we had no guarantee of existene of a �xedpoint or onvergene to the solution. The Assignment problem is interesting for its pratialappliations, but also for its theoretial properties. In fat applying the Cavity Equations asreursive equations on the �elds whih live on the direted edges of the fator graph it wasobserved that after a transient time a set of �elds begins to drift towards +∞ and another setdrift towards −∞. The set of �elds that goes negatively to in�nity results to be the �elds onthe site of the fator graph that should be set to the on�guration. This fat, up to what weknow, is the only one ase were a similar behaviour happens. As we showed the presene ofloops (normally dangerous for the searh of solution via Cavity Methods) here happens to playan important role in determining the spei� behaviour of the evolution of the Cavity Fields.An extensive analysis of the average and typial times involved in the dynamis of the al-gorithm on a random set of instanes was done so to give us a deeper omprehension of thephenomenon and of its �nite size-saling behaviour. The problem in the in�nite size limit resultto have an in�nite transient time.We observed that a mehanial implementation of the equations is not an algorithm. As amatter of fat, it an not output the solution in any way, also if it �found� the right answerand the mean time needed to �nd this solution is in�nite (due to rare instanes of very slowonvergene time), in other words there was not a reipe to stop the algorithm whenever it �nds79
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∝ N3. Sub-�gures in quadrant II and IV orresponds to Hungarian and Cavity omputing timeumulant distributions. The algebrai tail in bare Cavity Algorithm is evident, while Hungariantimes are Gaussianly onentrated.the solution, beause there was not a way to reognize that the one found was the solution. Thetime needed to solve an instane was �nite but arbitrarily long, so that the average time resultedto be in�nite on the spae of random instanes in whih eah entry of the ost matrix is a randomnumber with a given distribution, independent on eah entry, not onentrated and not null onzero).One of our main ontribution is to have written a working algorithm for the Assignment,with Cavity Methods, meaning an algorithm that gives always a solution and do it in a �nite.In fat we found an halting ondition, i.e., the algorithm is now able to say if a feasible solutionis a solution and we showed that this happens always (the algorithm is always able to �nd thiserti�ate). We found how to speed up the rare very-slow instanes (the ones responsible forthe in�nite mean time), so to make the solution time �nite on average and not only for eahinstane.80



6.3. FAST SOLUTION OF SLOW INSTANCES: THE FORK-AFTER-WARNING PROCEDURESo, after to have given a physial formulation of the problem (in terms of the Hamiltonianon the fator graph and of the gauge �elds) we found the mehanism governing the evolution forthe Assignment Problem, we found a Cavity Algorithm working on this problem, able to �ndthe solution in a �nite time and we extensively studied the behaviours of all the quantity relatedto the �elds dynamis.We were interested on the theoretial properties of the problem in its formulation as a dis-ordered system. But the advantage (in tehnologial terms) that the Cavity Algorithm presentson the lassial ones is to be more easy to implement (it's a sequene of few and very easyoperations) so that it's possible to think to an hardware implementation of a Cavity Algorithm.What would be interesting to determine is if there is the possibility, by using some triksto write an algorithm ompetitive with the famous one written by Kuhn (this is a di�ult taskbeause the existing algorithms use some strong properties of the mathing among bipartite set).The use of these properties makes the algorithm very e�ient but more involute that the avityone.One important open point remains: if and how it is possible to export the tools we foundedfor the Assignment problem to other problems. We do not know any problem whose dynamisexhibits the same spei� properties of the Assignment (like the drifting �elds), but it would bean interesting task to fore another problem to have the same objets that generate this peuliardynamis so to obtain the same behaviour and to make it possible an e�ient solution via theCavity Equations.Looking at �gure 6.7, one ould grasp an overall omparison with the exat Hungarian Al-gorithm. Even if it seems lear that the Hungarian Algorithm has globally better performane,it should be also noted that the Cavity Algorithm has two features of great interest:� It seems better suited for a hardware implementation, either parallel, or not, for the Hun-garian Algorithm, being rooted in graph theory, is relatively a omplex algorithm, requiringa set of nontrivial omputing strutures. In this omparison, the arhiteture of the CavityAlgorithm, instead, is muh simpler, involving, in its ore, just additions and maximumoperation over matrix elements.� Seond, it should be noted that the Hungarian Algorithm omputes a dynamis in themathing spae with no guarantee of loseness to the best solution, thus, in realtime ap-pliation an perform quite badly. On the onverse, the global updating proedure ofthe Cavity Algorithm, let hope to derive simple reipes to extrat from transient timeon�gurations a good, but maybe suboptimal, andidate assignment.
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