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Chapter 1

Neural networks and statistical
mechanics: introduction and
formalism

1.1 Introduction

1.1.1 Neural networks and statistical mechanics

A neural network, also referred to as machine, is a generic term to define a computing
system inspired to biology. In this thesis, we will focus on a simple classifying neural
network, called perceptron. In the neural network framework, the problem of classifi-
cation can be stated as follows: is it possible to teach a machine to correctly classify
a set of inputs, according to a given rule? The answer clearly depends on the input,
the machine and the rule.

=input

W

(W, )=output

Figure 1.1: A schematic representation of a classifying neural network. Given an input
ξ, the network yields an output σ which depends on the internal parameters (synaptic
weights W ) of the network.

The machine is, in general, an algorithm, which receives the input data (that will
be called ξ) and yields an output (called σ(ξ)), which is a function of the input. The
network is required to have a general structure and to be adaptable to the desired
recognition task. To be more precise, the algorithm should depend on some variables
or configuration W which can be fixed so that some specified input patterns are
correctly classified. More precisely, if we want the input ξ to have output σ, we can
choose some configuration W so that σW (ξ) = σ. In this sense, the network can be
“taught” or “trained”. This process is called supervised learning. The algorithm
clearly works with any (compatible) input and not just those with which the machine
has been taught. So, how are other patterns classified? Ideally, we would like the
machine to be capable of assigning each input to the most similar pattern among
those that it has learned. When this happens, the machine is said to generalize.
Another condition - the machine only capable of classifying what it has learned - is said
overfitting. Another relevant feature of the network is the amount of information,
i.e. the size of W , which it has to store in order to perform correctly. The less the
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information, the better. Ideally, the size of W should be much less than the whole
information contained in the learned patterns themselves. In the case that will be
treated, W will be a single vector and will be enough to classify a whole set of input
vectors of the same size. Given this premise, the information should be “compressed”,
and the learning can be studied on a statistical basis. Not all sets of patterns will be
teachable and, among those that can be taught, not all patterns will be equally easy
to teach. More technically, it will not always be possible, or easy, to set the correct
internal variables to perform a given classification task.

The input is, in general, an array of numerical data. In order to study the statistical
behaviour of the machine, one needs to know the likelihood that a certain set of
patterns will be chosen to be taught. As anticipated, from now on, the set of patterns
will be named ξ = {ξα} and its distribution P (ξ). Likewise σ = {σα} will denote the
set of desired outputs. The two sets form answer-question pairs (ξ, σ). If P (ξ) and
P (σ) are known, one can focus on the most likely scenarios. More precisely, it may
happen: that it is possible to teach the machine with probability 1; that non-learnable
sets of patterns exist, but the probability of any of them being picked is zero (or
vanishing). An interesting quantity is therefore the typical behaviour of the network.

In order to study the statistical behaviour of a machine, the classification rule
must be known. While the rules can be easy or very complicated, it is possible to
define a cost function or energy H to study the problem. The cost function should
be chosen according to the problem that is being study and to the machine under
exam. It is important to point out that such energy is not an intrinsic property of
the neural network, but rather an external tool employed to investigate the efficiency
of the algorithm. If W is the set of parameters of the machine, the cost function is a
quantity

H(σ, ξ;W )

which should quantify how well the setting W solves the classification problem of
linking each ξα to its σα. A simple choice of energy is the number of errors, i.e. the
number of misclassified patterns. For example

χ(σ, ξ;W ) =
∑
α

δ(σW (ξα), σα)

where σW is the function which assign each input to an output, given the set of
parameters W . In general, the lower the cost function, the better the performance.
Let now the energy be some kind of error count. In this case, all zero energy states
are solutions.

A relevant function which can be computed by the use of a cost function, is the
number of solutions for a given (ξ, σ) problem:

Z(ξ, σ) =

∫
P (W ) X(ξ,σ)(W ) (1.1.1)

where X(ξ,σ)(W ) is 1 if W is a solution and zero otherwise. A further step is to
introduce some noise and allow all W s in the count, weighting them according to their
energy. For example:

Z(ξ, σ) =

∫
P (W ) e−βχ(ξ,σ;W ) (1.1.2)

The parameter β, which quantifies the noise, is an inverse-temperature like param-
eter. Clearly, if β → ∞, (1.1.2) reduces to (1.1.1). Therefore, no noise equals zero
temperature.

A more general expression is

Z(ξ, σ) =

∫
P (W ) e−βH(ξ,σ;W ) (1.1.3)
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This function can be called partition function as in statistical mechanics.

1.1.2 Average over input-disorder and the thermodynamic limit

As anticipated, to get statistically meaningful observable, it is necessary to average
Z(ξ, σ;W ) over (σ, ξ), i.e. over all possible input output pairs we want to teach the
network. However, the most obvious average turns out to be incorrect:

Z̄ =

∫
P (ξ, σ)Z(ξ, σ) (1.1.4)

This average is called annealed. The correct average is called quenched: instead of
integrating the partition function, one integrates the free energy:

f̄ =

∫
P (ξ, σ) lnZ(ξ, σ) (1.1.5)

In statistical mechanics, the annealed average is used when disorder fluctuates in time
along with the degrees of freedom. In this case, the roles of the disorder and the degrees
of freedom of the system are equivalent and the system effectively interacts with the
average disorder. On the other hands, in the quenched average, disorder is assumed
to be static, at least with respect to timescale of the system. Therefore, the system
interacts with a single configuration of disorder, which is however random. In the
case of neural network, the internal parameters of the machine constitute the system,
while the different choices of learning sets represent the disorder. Since different sets
of training input represent different scenarios, the quenched averaging is intuitively
more appropriate.

There is a more compelling and formal reason: we are interested in a network
with the potential to classify great amounts of information. This means that each
set of patterns should be “big”, i.e. it should contain p patterns, with p → ∞. This
scenario can be called thermodynamic limit, in accordance with statistical mechanic
terminology. Hence, it is natural to choose models in which the energy is extensive,
meaning that

H(ξ, σ;W ) ∼ p h(ξ, σ;W )

For instance, the aforementioned error-counting cost function clearly exhibits this
property. It is known that, under this assumption, the partition function is not exten-
sive

Z ∼ exp(pF )

for some F ∈ R. On the other hand, the free energy

f = − 1

β
logZ ∼ − p

β
log z

is extensive. Therefore, only the free energy (divided by p) is a proper self-averaging
observable, for any configuration of the disorder. Hence, the correct choice is

f̄ =
1

p

∫
P (ξ, σ) lnZ(ξ, σ) (1.1.6)

1.1.3 The replica formalism

In order to overcome the difficulties introduced by the averaging logarithm in formula
(1.1.6), some more sophisticated computation techniques are necessary. One of the
best known techniques is the replica method. It was originally developed for fully
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connected spin glass models. Spin glasses are Ising-like models in which the spin
couplings are quenched random variables and are allowed to assume both positive and
negative values (ferromagnetic and antiferromagnetic). A well known solvable example
is the Sherrington-Kirkpatrick model: a binary spin is placed on each vertex of a fully
connected graph and each coupling is a Gaussian random variables.

HSK = −
N∑
i<j

Jijsisj

with
〈Jij〉 = 0 and 〈J2

ij〉 = 1/N

Though the study of spin glasses is, in some sense, propaedeutic to neural networks,
from now on, for consistency’s sake, the focus will be kept on neural networks, as much
as possible.

The replica method is based on the following mathematical identity∫
P (ξ) lnZ = lim

m→0

1

m
ln

∫
P (ξ)Zm

The trick consists in computing

Zm =

∫
P (ξ) Zm

for integer m first. Then, one can take the analytic continuation of Zm and finally
take the limit m → 0. Neither of these two passages is, in general, easy. Among
the many reasons, one has to deal with matrices with a non-integer (and vanishing)
number of dimensionsm. This can have very counterintuitive consequences such as the
presence of a negative number of off diagonal matrix elements. Nonetheless, everything
remains consistent, as long as one remembers that everything should be considered as
an analytical continuation.

Let us focus on the integer m case. Zm can be seen as the partition function of m
identical copies, the so-called replicas, of the same system. These replicas acquire an
interaction due to the averaging over disorder:

Zm =

∫
P (ξ)

m∏
a=1

∫
dWa e−βHξ(Wa) =

∫ m∏
a=1

dWae
−βH̃({Wb}b=1,...,m) (1.1.7)

This trick can be used for evaluating the expected value of any observable, say
A(W ). Then

A =

∫
P (ξ)

1

Zξ

∫
dW e−βHξ(W ) A(W )

= lim
m→0

∫
P (ξ)Zm−1

ξ

∫
dW e−βHξ(W ) A(W )

= lim
m→0

∫
P (ξ)

∫ m∏
a=1

dWa e−βHξ(Wa)A(W1)

= lim
m→0

∫
P (ξ)

∫ m∏
a=1

dWa e−βH̃ξ({Wb}b=1,...,m)A(W1)

Before proceeding any further, it is worth specifying that, in the models that will
be examined, the internal parameter called W is a vector of N components. It turns
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out that the ratio p/N should be finite for the result to be of any interest. Each
component Wi of W can be either discrete of continuous. This is not relevant here:
one should just keep in mind that, in the discrete case, integrals should be replaced
with sums, without any repercussions.

Let us now go back to equation (1.1.7). As already explained, the quenched average
generates an interaction between replicas:∑

a

H(Wa)
disorder−→ H̃({Wb}b=1,...,m)

Let us now suppose that H̃ is only a function of the overlaps

Wa ·Wb/N

between different replicas:

H̃({Wa ·Wb/N}a,b=1,...,m a �=b) (1.1.8)

This is obviously a strong hypothesis and should be verified in the specific model. It
will turn out to be correct for the purposes of this thesis.

In order to handle the scalar products appearing in (1.1.7) via H̃, it is convenient
to introduce the auxiliary variable Qab with a resolution of identity.

1 =

∫ ∏
a<b

dQab δ (Qab −Wa ·Wb/N)

Hence

Zm =

∫ ∏
a<b

dQab

∫ m∏
a=1

dWae
−βH̃({Qab})δ (Qab −Wa ·Wb/N)

Let us summarize in one equation what has been achieved so far:

f̄ = lim
m→0

1

mN
ln

∫ ∏
a<b

dQab e
−NA(Q) (1.1.9)

with

A(Q) =
1

N
ln

[∫
P (ξ)

m∏
a=1

(
dWa e−βH(Wa)

)
δ (Qab −Wa ·Wb/N)

]
(1.1.10)

It was assumed in the previous section that H is extensive in p. Since p/N is finite,
this implies that H is extensive in N . Therefore, A(Q) is finite even if N → ∞.

Let us now focus on the quantitiesm andN . Though only the limit inm is explictly
written, in our minds N should go to ∞. However, from a rigorous standpoint, the
limit in m should be taken first. However, it turns out that the result is correct even
if one takes N → ∞ before m → 0. This is very useful since (1.1.9) can be solved with
the saddle point method. In other words, one just has to find the Qab that minimizes
A(Q). Let us call the variables {Qab} collectively as Q. Then

QSP := argmin
Q

A(Q)

and

f̄ = − 1

m
A(QSP )
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Clearly, as a necessary condition for QSP to be the correct solution, it must hold that

d

dQab
A(Q)

∣∣∣∣∣
QSP

= 0 (1.1.11)

There is one of these equations for every couple ab, a �= b. This is not sufficient though.
There are indeed two necessary conditions which any solution Q̂ must satisfy in

order to be acceptable.

• The first necessary condition is that the solution found as a stationary point is a
minimum (or a maximum depending on an arbitrary sign). In order to do that,
one can look at the sign of the eigenvalues of the Hessian matrix. This is the
condition of local stability.

• The second condition only holds for discrete systems. In this case, the solution
should yield a positive entropy.

In general, a solution can be locally stable but have a negative entropy or the other
way round.

1.1.4 Replica symmetry ansatz (RS) and its breaking (RSB)

The solution of equation (1.1.11) is a matrix and may not be easy to find unless some
reasonable assumptions are made.

First of all, the matrix Qab must be symmetric. The diagonal elements can also be
added for the sake of completeness, depending on the model. For the purposes of this
thesis, they can be assumed to be 1. In spin glasses models, they are set to zero.

Aside for these simple remarks, the relevant observation is that every equation that
has been written so far is symmetric with respect to the exchange of any couple of
replica indices.

Therefore, the most natural ansatz, called replica symmetric ansatz (RS) is

Qab = Q ∀a �= b (1.1.12)

One can check whether this solution is stable or not. In case it is not, the RS
assumption must be dropped. The replica symmetry can be broken to different degrees
until the solution is stable or just in order to approximate a stable solution. The RSB
ansatz were proposed by Parisi and would. In this section, the procedure, which is
nontrivial, will be briefly sketched.

The 1RSB goes as follows. Let us consider the symmetric matrix Q which is m×m.
Let m1 be an integer such that m/m1 = n1 ∈ N. Then Q(1) is chosen to be a m×m
matrix with n1 diagonal blocks of size m1 × m1. Inside every diagonal block, all
elements are set to a certain value Q1 (except for the diagonal). All other elements
are set to another value Q0.

One can go further to 2RSB. In this case, let Q(1) be the 1RSB matrix. Let m2 be
an integer such that n2 = m1/m2 ∈ N. Inside each m1 ×m1 blocks one can identify
n2 diagonal sub-blocks and set all the elements they contain (except for the diagonal)
to a certain value Q2.

The procedure can be repeated indefinitely.
In the case of infinite iteration, the result should not depend on the values of

ni = mi/mi+1. However, if one stops after a finite number of step, the values ni

can be considered as simple variables in which the function A must be minimized.
Therefore:

d

dni
A({Qi}, {ni}) = 0
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This equation clearly does not make sense for integer mis. Nonetheless, it should be
reminded that the ultimate goal is to take the limit m → 0. Therefore, all quantities
should be thought of in the frame of an analytical continuation in all indices mis.
Hence nis can be taken as real numbers.

1.1.5 Functions of overlaps between replicas

The replica trick is not just a mathematical shortcut, but yields some useful infor-
mation about physics. In particular, the auxiliary parameters QSP

ab , i.e. the overlap
between replicated Was, are a relevant quantity.

Let us first consider a general function F of the overlap between two “real” replicas
of the system, say

F (W1 ·W2/N)

The average over W1 and W2 is therefore an average over the overlaps between two
configurations of the system. This is especially meaningful if the two systems are
averaged over the same disorder ξ.

F̄ =

∫
P (dξ)

∫
1

Z2
ξ

e−βH(W1)e−βH(W2) F (W1 ·W2/N)

= lim
m→0

∫
P (dξ)

∫
e−βH(W1)e−βH(W2)Zm−2

ξ F (W1 ·W2/N)

= lim
m→0

∫
P (dξ)

∫ m∏
a=1

e−βH(Wa) F (W1 ·W2/N)

Let us now observe that this average depends only on the first two replicas, while the
formula is symmetric with respect to replica permutation. This is no issue if the RS
is intact. However, since it can be broken, it is best to symmetrize explicitly over
the replica symmetry. This will yield, in the end, the correct result. Should this
symmetrization not been done, the result would be correct only in the RS ansatz.
To get the result, it is enough to perform some passages similar to those that led to
(1.1.10).
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F̄ = lim
m→0

∫
P (dξ)

∫ m∏
a=1

e−βH(Wa)
∑
σ∈Sm

F (Wσ(1) ·Wσ(2)/N)

m(m− 1)/2

= lim
m→0

∫
P (dξ)

∫ m∏
a=1

e−βH(Wa)

∫ ∏
a<b

dQab δ(Wa ·Wb/N −Qab)

∑
σ∈Sm

F (Wσ(1) ·Wσ(2)/N)

m(m− 1)/2

= lim
m→0

∫ ∏
a<b

dQab

[∫ m∏
a=1

dWa δ(Wa ·Wb/N −Qab)

∫
P (dξ)

m∏
a=1

e−βH(Wa)

]
∑
σ∈Sm

F (Qσ(1)σ(2))

m(m− 1)/2

= lim
m→0

∫ ∏
a<b

dQab e
−NA[Q]

∑
σ∈Sm

F (Qσ(1)σ(2))

m(m− 1)/2

= lim
m→0

2

m(m− 1)

∑
σ∈Sm

F (QSP
σ(1)σ(2))

= lim
m→0

2

m(m− 1)

∑
a<b

F (QSP
ab )

Let us first choose

F (W1 ·W2/N) = δ(W1 ·W2/N − q)

Then, we can define the average overlap between two configurations of the system:

P̄ (q) := 〈δ(W1 ·W2/N − q)〉12 (1.1.13)

The previous computation implies that

P̄ (q) = lim
m→0

2

m(m− 1)

∑
a<b

δ(QSP
ab − q) (1.1.14)

Therefore, the fraction of configuration overlaps equal to q is the fraction of off diagonal
elements of the SP solution matrix Q which equal q.

Other average quantity, which will be relevant later, are the average powers of the
overlap:

〈(W1 ·W2/N)k〉12 = lim
m→0

2

m(m− 1)

∑
a<b

(QSP
ab )k (1.1.15)

Since one can write

(W1 ·W2/N)k =

∫
dq qk δ(W1 ·W2/N − q)

the average powers turn out to be the moments of P̄∫
P̄ (q) qk = lim

m→0

2

m(m− 1)

∑
a<b

(QSP
ab )k (1.1.16)
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1.1.6 Pure states and Gibbs states

A relevant consequence of the presence of disorder is that the energy landscape is far
from being a simple. This is due to a phenomenon called frustration [23]. This is a
feature of both spin glasses and neural networks.

In particular, we can focus on the minima of the energy. In the Ising model,
one can know a priory what configurations represent the global and local minima of
the energy: there will be just two global minima (with no external magnetic field),
all spins up and all spins down. Below the critical temperature, the free energy is
characterized by two minima as well, which are separated by an infinite barrier (in
the thermodynamic limit) and said to be different pure states, and are characterized
by a non-zero expected value of the magnetization. The convex combination of these
equally weighted pure states is said to be a Gibbs state.

In disordered systems, there can be many minima of free energy. In a mean field
framework, they can be thought of as separated by infinite potential barriers and
identified as pure states.

Pure states can be characterized in terms of broken symmetries or in terms of
correlations.

A measure of probability defines a pure state α if truncated correlations decay to
zero. In systems with a nontrivial distance, the correlation decays to zero at great
distance. On the other hands, in fully connected systems as spin glasses or neural
networks, the truncated correlation are just required to vanish in the thermodynamic
limit:

〈WiWj〉α − 〈Wi〉α〈Wj〉α ∼ 1

N δ
∀i, j = 1, ..., N

In general, pure states are defined by the clustering property〈
k∏

i=1

Wji

〉
α

=
k∏

i=1

〈Wji〉α with ji �= ji′ ∀i, i′ (1.1.17)

This property, in particular, implies that intensive quantities do not fluctuate (i.e. are
self-averaging. A simple example of self-averaging quantity is a generalized magneti-
zation

Mv =
v ·W
N

for some v ∈ R
N .

A Gibbs state is defined as a convex linear combination of pure states.

〈 〉G =
∑
α

wα〈 〉α with
∑
α

wα = 1 (1.1.18)

Coefficients wα are called Gibbs weights and can be determined by looking at the
expectev value of any observable:

〈F 〉 = 1

Z

∫
dW e−βH(W )F (W )

=
∑
α

∫
α dWe−βH(W )

Z

1∫
α dWe−βH(W )

∫
α
dWe−βH(W )F (W )

=
∑
α

wα
1

Zα

∫
α
dWe−βH(W )F (W )

=
∑
α

wα〈F 〉α

11



Hence

wα =
Zα

Z
= exp(−β(fα − f))

Gibbs state in general do not have the clustering property.
An overlap between pure states (α and β) can be defined

qαβ =
1

N

N∑
i=1

〈Wi〉α〈Wi〉β (1.1.19)

This is a consistent definition, since the qαβs are self-averaging thanks to the clustering
property, as can be easily seen by observing that〈

1

N2

(∑
i

Wα
i W

β
i

)2〉
αβ

=
1

N2

∑
i

∑
j

〈Wα
i W

β
j 〉αβ〈Wα

i W
β
j 〉αβ

clustering
=

(
1

N

∑
i

〈W 〉α〈W 〉β
)2

Incidentally, the self overlap qαα is called Edward Anderson parameter.
The disorder averaged distribution of the overlaps between pure states P̄s is a

relevant quantity and can be used as an order parameter for disordered systems,
since it reveals the structure of minima and, in particular, the breaking of the Gibbs
state. To determine P̄s, it is enough to observe that, since qαβ is self-averaging, then,
for any observable, it must hold

F (qαβ) = 〈F (Wα ·Wβ/N)〉αβ
which is manifestly a mean field condition. This implies that∑

αβ

wαwβF (qαβ) =
∑
αβ

wαwβ〈F (Wα ·Wβ/N)〉αβ = 〈F (W1 ·W2/N)〉12

This means that averaging such observables over pure states is equivalent to averaging
them over the Gibbs state. In particular, by choosing F (qαβ) = δ(q − qαβ), it can be
seen that (see (1.1.14))

P̄s(q) = P̄ (q) = lim
m→0

2

m(m− 1)

∑
a<b

δ(q −Qab) (1.1.20)

This means that the overlap between pure states can be computed as an overlap
between two real replicas in the replica formalism.

1.1.7 Replicas and physics

Now that the order parameter P̄ has been identified, it is possible to study the physical
implications of the RS and the k-RSB ansatz.

After a little reasoning, it can be concluded that the matrix Q has

1

2
m(mi −mi+1)

elements which equal qi.
Hence, by using the RSB notation, equation (1.1.20) can be rewritten as

P̄ (q) = lim
m→0

1

m− 1

k∑
i=0

(mi+1 −mi) δ(q − qi) (1.1.21)
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Before the m → 0 limit is taken, obviously mi > mi+1. However, once one takes the
analytic continuation and m is close to 0, for P̄ (q) to be positive, it must hold that

mi+1 ≥ mi

Since (1.1.21) becomes

P̄ (q) =

k∑
i=0

(mi −mi+1) δ(q − qi) (1.1.22)

Furthermore, P̄ should be normalized to 1:

1 =

∫
dq P̄ (q) =

k∑
i=0

(mi+1 −mi) = mk −m0

Since m0 = m = 0, then

0 = m0 ≤ ... ≤ mi ≤ mi+1 ≤ ... ≤ mk = 1

If k → ∞, let

q̂ : [0, 1] → R
+ q̂(x) = qi if x ∈ (mi,mi+1] (1.1.23)

In the k → ∞ limit, q̂(x) becomes a continuous function. This function is invertible,
since qi+1 > qi is a reasonable assumption. Its inverse is

x(q)

By integrating P̄ up to a certain value q, it is clear that∫ q

0
dq′ P̄ (q′) = x(q) (1.1.24)

Equivalently

P̄ (q̃) =
dx

dq

∣∣∣∣
q=q̃

(1.1.25)

Now it is possible to describe the structure implied by equation (1.1.21). In the
RS ansatz

P̄RS(q) = δ(q − q0) (1.1.26)

This means that all pure states, i.e. all minima, have the same overlap with each other.
In other words, all pure states are equidistant from each other. If the RS symmetry is
broken once, it means that

P̄1RSB(q) = m1δ(q − q0) + (m2 −m1)δ(q − q1)

This distribution describes a cluster structure: there are equidistant clusters of minima
in which all states are equidistant. The addition of further deltas indicates the presence
of new mutually equidistant clusters inside each cluster. It can be concluded that the
minima landscape is characterized by a hierarchy of concentric clusters. At each level
of the hierarchy, clusters are equidistant. This structure is called hypermetric (see
[22], [23] or [?] for details). If k → ∞ the structure should be thought of as continuous.
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Chapter 2

A brief review of some useful
known results

2.1 An overview of simple perceptron

2.1.1 Simple perceptron: notation and classic results

The term neural network identifies a broad category of computing systems with very
different features. Therefore, in this thesis, the focus will be kept on the feed-forward,
one-layer, classifying machine called simple perceptron.

A perceptron is, in general, a system composed of nodes, also called neurons and
links, called synapsis. A number, called synaptic weight, is associated to each link.
The nodes are organized in layers. Each node first layer of synapsis receives an input
signal, and elaborates it. Each node from the first layer produces an output. Each
node from the following layers receives as an input the weighted sum (with synaptic
weights) of the outputs of the previous nodes it is connected. This is iterated until the
last layer yields an output. This network is feed-forward, since it does not allow back-
propagation, i.e. the signal cannot be sent back to previous layers. Backpropagation
is known to improve the performance.

In case of the single perceptron, there is just layer and one final node that represent
the global output. The layer is described by an array of synaptic weights W of N
components with

Wi = ±1 (2.1.1)

The synaptic weights represent the links between each node from the layer and the
final output node. An input pattern is a N sized vector as well. Two main models can
be investigated with the replica formalism. In the spherical or continuous model, the
patterns are vectors in R

N with the spherical constraint∑
i

ξ2i = N or ξ · ξ/N = 1 (2.1.2)

In the Ising-spin or discrete model, each component is binary

ξi = ±1 (2.1.3)

The output as a function of the input is, in both cases

sgn(ξ ·W/N −K) (2.1.4)

A set of patterns is a set ξ = {ξα}α=1,...,p. From now on, a set of input patterns will de
identified by the letter ξ without indices. Individual patterns in a set will be labelled
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with a greek letter ξα. While the components of a single pattern will be referred to
with a latin index (ξiα).

Given a certain set of input-output pairs

{(σα, ξα)}α=1,...,p

the cost function is conventionally chosen as the error count

Hξ(W ) =
∑
α

Θ(−σα(ξα ·W/N −K)) (2.1.5)

A geometrical approach is possible. In this thesis, we will take the statistical
approach based on the replica method. The earliest analysis of both spherical and
continuous models in the replica formalism is due to Gardner and Derrida. It is worth
mentioning that there exists an equivalent formalism called belief-propagation, which
will not be used here.

The replica formalism allows producing phase diagrams for the perceptron. As
already explained, different degrees of replica symmetry breaking correspond to differ-
ent phases and a different hierarchic structure of pure states. These phase diagrams
usually use K, β (“inverse temperature”) and α = p/N as parameters. Throughout
this thesis we will focus on the case K = 0 and β = ∞. Hence, we just refer to the
literature for phase diagrams and shift the focus to a fundamental quantity, called
storage capacity. The storage capacity, usually to as αc. αc is the maximum ratio
p/N above which no more patterns can be typically learned. This is an intrinsically
statistical quantity which depens on the statistics of the input output pairs (ξ, σ). It
is indeed not true that learning is geometrically impossible above the capacity (see,
for example [6]), just that it is impossible with probability 1, given a certain input
statistics. Some main statistics have drawn attention in studies.

First, the maximally entropic statistics in which both ξ and σ are chosen randomly.
The capacity associated to this statistic wa computed by Garner and Derrida in the
spherical case. In particular, they found that the spherical capacity at T = 0 is

αsph
c (β = ∞) = 2 (2.1.6)

This quantity is the result of an RS computation which was shown to be correct. They
also computed the RS capacity for the discrete perceptron. The result was

αdis,RS
c (β = ∞) = 4/π (2.1.7)

They also proved this number is incorrect, since the RS ansatz leads to a negative
entropy in this region. Nontheless, the authors could almost guess the correct result
with a simple geometric argument (also reported in [21]). Further studies, for example
that by Krauth and Mezard [21], who showed that the correct capacity is

αdis,1RSB
c (β = ∞) = 0.833 (2.1.8)

They also showed that the point in which the entropy becomes negative is very similar
to the capacity. An important remark is that, in the discrete perceptron, the RS
solution is unstable at zero temperature, while it becomes stable above a certain
critical temperature (there is a phase transition).

All the previous results were obtained under the assumptions of random inputs
with no imposed correlation. Correlated inputs can be studied as well. Early studies
showed that, if inputs are correlated with each others, the capcity can go far beyond
αc [28][17][31]. More recently, Shinzato and Kabashima [28][17] showed that it is
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possible to study the statistics (and the capacity) associated to correlated inputs by
studying the greatest eigenvalues of the overlap matrix Ξαβ = ξα · ξβ/N . These results
are obtained through the replica and belief propagation formalisms, combined with
the Haar integration. While, in this thesis, correlated inputs will be a central topic,
another formalism will be used and, therefore, we refer to the aforementioned articles
for these results.

A different statistics for inputs-outputs pairs is called teacher-student scenario. It
is aimed at the study of generalization, and it will be the main subject of the next
section.

2.1.2 Generalization: teacher-student

The perceptron is expected to generalize. In other words, it should be capable of
correctly classifying, with a certain accuracy, a pattern that it has never seen before.
This feature is studied in the teacher-student framework.

Let us suppose that there is a teacher machine with a certain synaptic configura-
tion WT . This means that, for any ξ the teacher produces an output σT (ξ) which can
be regarded as the “correct” answer. Aside from the implementation, these outputs
can be essentially thought of as the results of a number of -noisy or not- measures
aimed at probing a classification rule which is not known a priori.

A second machine can be called student. Let its synaptic configuration be WS .
The student has no direct access to the teacher’s configuration, but it should learn to
classify patterns from examples provided by the teacher. The student can adjust its
configuration in order to simulate the behaviour of the teacher.

As already said, the teacher is just a model for an unknown source of information.
In this sense, it does not have to be a simple perceptron, but it can be another kind of
network as well, such as a multi-layer perceptron. In these cases, it is possible that the
student cannot - not even in principle - simulate the behaviour of the teacher without
committing mistakes (unlearnable rules).

The averaging over all possible examples constitutes the disorder, which is the
core difference between the TS scenario and the simple case. In the latter setup, both
inputs and outputs are chosen randomly and independently so that

P (ξ, σ) = P (ξ) P (σ)

In case there is a teacher, though, each output is deterministically given by WT as
σWT (ξ) for each ξ. Consequently, the inputs ξ are the only quantity to average over.
Subsequently, one has to integrate over all possible WT , in order to obtain a result for
the typical teacher

PTS(ξ, σ) =

∫
WT

dWT P (WT ) δ(σWT
(ξ)− σ) P (ξ)

The difference is crucial since, if T is a simple perceptron, then there will always be
some WS which replicate the exact behaviour of the teacher. Consequently, it may
happen that α > αc. Clearly, even though a solution WS = WT always exists, it is
not necessarily accessible, and, in case there is some noise, the student maybe unable
to emulate the teacher beyond a certain accuracy.

These are several learning algorithms, with different features. There is, as always,
a tradeoff between time efficiency and accuracy. Algorithms will not be discussed in
this thesis. Nonetheless, it is worth mentioning the way learning rules are classified.

• Unsupervised learning: only input patterns are provided, with no teacher
classifying them. The synaptic configuration is modelled after the input distri-
bution.
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• Supervised learning: the aforementioned teacher student scenario.

– Offline or batch learning: the student optimizes its configuration in
order to correctly associate a whole set of inputs with the outputs provided
by the teacher. If new examples are provided, the old set of input-output
pairs is updated and the optimization has to be repeated.

– Online learning: the students modifies its configuration to adapt dynam-
ically to the examples provided by the teacher, without optimizing with
respect to the previous examples, which could be no more reproducible.

From now on, the focus will be kept on the case in which both the teacher and the
student are simple perceptrons.

A key quantity is the generalization function E, which is the probability that,
given a random input pattern ξ, the student and the teacher give a different answer.
In other words, it is the likelihood that the student commits a mistake:

E :=

∫
P (ξ) Θ(−(σWT

· ξ)(ξ ·WS)) (2.1.9)

As can be deduced by (2.1.9), the only quantities whose statistics is relevant are
t = ξ ·WT /

√
N , s = ξ ·Ws/

√
N , and

R =
WT ·WS

N
(2.1.10)

so that

E =

∫
dt ds P (t, s)

p∑
α=1

Θ(−sα tα)

By the central limit theorem, s and t are distributed according to the law

PR(s, t) =
1

π
exp

(
− 1

2
√
1−R2

[
t2 + s2 − 2R st

])
(2.1.11)

which accounts for disorder. As a result

E(R) =
1

π
arccos(R) (2.1.12)

Given this tool, suppose that we have a teacher which provides a certain number
of examples p to the teacher with a certain algorithm. Let us define α = p/N . The
more examples the students sees, the more it learns and the more R approaches 1. We
can define therefore R = R(α) as a function of the number of examples provided. It
turns out that R is self-averaging and can be computed with the replica approach.
Then, the learning curve of a learning algorithm can be defined as

εg(α) = E(R(α)) (2.1.13)

The perceptron generalizes because there exist algorithms for which εg(α)
is monotonically decreasing in α and, for big values of α, vanishes (if there
is no noise). In presence of noise, it is possible that the student cannot reproduce the
teacher arbitrarily well.

It is worth mentioning that there exists an optimal, though not implementable
(for a single perceptron), algorithm: the Bayesian algorithm. It goes as follows.
Suppose p pairs {(ξα, σα)}p are provided by the teacher. The conditional probability
of the synapsis WS is given by Bayes theorem as

P (WS |{σα}p) = P ({σα}p|WS) P (WS)

Z
(2.1.14)
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If WS , after p examples from the teachers, is chosen according to the probability
(2.1.14) then, given a new output ξ, the likelihood of the outputs σ± can be inferred
from previous examples as

V± = P (σT (ξ) = σ±|{σα}p) =
∫

dWS P (WS |{σα}p) Θ(±ξ ·WS)

The expected output is
〈σ±〉 = V+ − V−

Therefore, the best possible guess is

σ = sgn(V+ − V−)

The optimal Bayesian learning curve is, for big α

εg(α) ∼ 0.44

α
(2.1.15)

2.2 The solutions’ landscape

2.2.1 Local algorithms and isolated solutions

Knowing that a certain learning problem has some solutions is not enough: one has to
find one. The most simple solution-seeking algorithms are local [16], such as Metropolis
or gradient descent. The issue is that they do not seem to reach a global minimum in
reasonable times, but they end up trapped in local minima.

Huang and Kabashima proposed a thermodynamic explanation for this compu-
tational hardness. Their investigation tool is the Franz-Parisi potential. A general
introduction to the FP potential is beyond the scope of this thesis and can be found
in [14]. Conversely, the formula will presented in a special case and its utility will be
illustrated.

F (β, x) =
1

N

∫
P (ξ)

⎡
⎣ 1

Z(β, ξ)

∑
W

e−βHξ(W ) ln
∑
W̄

e−βHξ(W̄ )+xW ·W̄

⎤
⎦ (2.2.1)

To understand the previous formula, let us first consider

f(x,W ) = ln
∑
W̄

e−βHξ(W̄ )+xW ·W̄ (2.2.2)

It can be shown that f(x,W ) is the free energy associated to the maximally entropic
distribution with fixed average energy (= E) and fixed average overlap (= p) with
a reference vector W . In other words, it is the free energy of the canonic ensemble
distribution with an additional overlap constraint. To see this, one should minimize
the entropy

S[P ] =
∑
W̄

P (W̄ ) lnP (W̄ )

with respect to p(W̄ ), assuming the following constraints⎧⎪⎨
⎪⎩
∑

W̄ P (W̄ ) = 1 with L. multiplier γ∑
W̄ P (W̄ ) H(W̄ ) = E with L. multiplier β∑
W̄ P (W̄ ) W̄ ·W ′ = Np with L. multiplier − x
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The Lagrange equation is

0 = 1 + lnP (W̄ ) + βH(W̄ ) + γ + x W · W̄

which is satisfied by the measure

P (W̄ ) =
1

Z(x, β,W )
e−βH(W̄ )+x W ·W̄

It is immediate that the average overlap with the reference can be obtained back as

p =
d

dx
f(W,x) (2.2.3)

Since f(W,x) is self-averaging with respect to both the reference (W ) statistics and
the disorder (ξ), the FP potential F (β, x) is just the average of the free energy f(W,x)
with respect to both those random variables.

To get a clearer and simpler picture, β can be set to ∞ (and so will be assumed
from now on). In this way

eβHξ(W ) = Xξ(W )

where Xξ(W ) is 1 if W is a solution and 0 otherwise. In this way, only exact solutions
count in the average:

F (β, x) =
1

N

∫
P (ξ)

⎡
⎣ 1

Zξ

∑
W

Xξ(W ) ln
∑
W̄

Xξ(W̄ )exW ·W̄

⎤
⎦ (2.2.4)

Therefore, the FP potential becomes the average logarithm of the number of solutions
at an average distance (p = d

dxf(W,x)) from a reference solution. In order to introduce
an explicit dependence on p, the Legendre transformation can be used

V(p) = F (x(p))− p x(p) (2.2.5)

The Legendre transformation is only defined for functions, which do not flip concavity.
Consequently, if V at some point p assumes the “wrong” concavity, it can be deduced
that there are on average no solution at overlap p. Huang and Kabashima proved that

d

dp
V(p) ∼ αC√

1− p
with p → 1− and C > 0

which turns out to have the wrong concavity. This implies that there always exist, for
any p/N = α, a neighborhood of p where there are typically no solutions. To state
this in an even clearer way, let us define the Hamming distance between two patterns

d(W,W ′) =
1

N
(W −W ′)2 =

1

2
(1−W ·W ′/N)

This means that p ∼ 1 implies d ∼ 0. Hence, given a reference solution, there are on
average no other solutions below a certain distance

dmin(α,N) = O(N) (2.2.6)

This distance increases with both α and N . The relevant information is that typical
solutions are isolated and their average distance scales linearly in N . The conclusion
is that local searching algorithm have no hope to find a solution if N → ∞.
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A few technical notes on the computational procedure are needed. The FP poten-
tial is, as anticipated, evaluated at β = ∞. Hence

F (x) =
1

Z

∑
W

p∏
α=1

Θ(W · ξα) ln
∑
W̄

p∏
α=1

Θ(W̄ · ξα) exW ·W̄

The upper line is a shorthand notation for the average over pattern disorder 1
2Np

∑
{ξ}.

The following replica tricks are used

lim
m→0

dZm

dm
= lnZ

lim
n→0

Zn−1 =
1

Z

This results in the potential becoming

F (x) = lim
m,n→0

d

dm

⎧⎨
⎩ ∑
{WaW̄b}

n∏
a=1

m∏
b=1

p∏
α=1

[
Θ(Wa · ξα)Θ

(
W̄b · ξα

)]
exW1·W̄b

⎫⎬
⎭

This quantity is computed in the RS ansatz: one should fix the value of the self-
averaging quantities

Qab = Wa ·Wb/
√
N Pab = W̄a · W̄b/

√
N Rab = Wa · W̄b/

√
N

with appropriate deltas, e.g.

1 =

∫ ∏
ab

dQab δ(Qab −Wa ·Wb/
√
N) =

∫ ∏
ab

dQab dQ̂ab e
iQ̂ab(Qab−Wa·Wb/

√
N)

Then one assumes the RS ansatz for all variables Q, Q̂,R, R̂, P, P̂ and follows the pro-
cedure. Finally, one has to find the saddle point with respect to the eight1 parameters.

2.2.2 Clusters of subdominant minima

The computation of the previous paragraph is meaningful, but it overshadows some
relevant features of the minima landscape. Zecchina et al pointed out [1][2] that, in
spite of the rarity2 of typical solutions, algorithms can be designed in order to find
some minima efficiently. These accessible minima though, are not accounted for by
the Franz-Parisi potential. This can be understood as follows. It is useful to recall
that3

F (x) =
1

N

∫
P (ξ)

⎡
⎢⎢⎢⎢⎢⎣

1

Zξ

∑
W

Xξ(W )

︸ ︷︷ ︸
(!)

ln
∑
W̄

Xξ(W̄ )exW ·W̄

⎤
⎥⎥⎥⎥⎥⎦ (2.2.7)

The quenched average over the reference is highlighted with the (!) mark: since the
reference is chosen according to the maximally entropic measure, any subset of minima,
whose measure vanishes in the thermodynamic limit, does not contribute to the sum.

1Both R and R̂ depend on two parameters in the RS ansatz: Rab = rδab + r′(1− δab)
2A solution is rare if it cannot be typically found by a local search algorithm.
3
X(W ) is 1 if W is a solution and 0 otherwise.
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In other words, only typical solutions count. Suppose for instance that the number of
typical solutions (which are isolated) grows as

Si ∼ eNΣi

Let us suppose that there is another set C of solutions which are not isolated, but
rather organized in clusters. Suppose their number grows as

Sc ∼ eNΣc

with Σc < Σi. Then, they would be invisible to Huang and Kabashima’s analysis. In
other words, the FP potential fails to detect the presence of clustered solutions unless
they are typical.

Zecchina et al introduced a new measure to probe the existence of clusters of sub-
dominant solutions. Since the proposed measure differs from the natural Boltzmann
weighting (notably, it is non-local), this analysis is referred to as outside equilibrium
by the authors. The measure is

P (W ; d, y) = Xξ(W )N (W,d)y (2.2.8)

with
N (W,d) =

∑
W̄

Xξ(W̄ ) δ(W · W̄ ,N(1− 2d)) (2.2.9)

and y being an inverse-temperature like parameter. P (W ; d, y) is the y-weighted num-
ber of solutions W̄ that lay apart from the reference W at a distance d. Form the
expression for the free energy

F(d, y) = − 1

yN

∫
P (ξ) ln

∑
W

P (W ; y, d) (2.2.10)

it can be seen that, while the average over disorder is quenched, the sum over the
references is more similar to an annealed average (it is an annealed average for y = 1).

Let us stop to compare the new quantity (2.2.10) with the FP potential from the
previous section. The relevant parts of the two formulas are written below as F2 and
F1 respectively.

F1 =
1

Z

∑
W

X(W ) ln
∑
W̄

X(W̄ )δ(W · W̄ −Nq)

F2 =
1

Z

∑
W

X(W )

⎡
⎣∑

W̄

X(W̄ )δ(W · W̄ −Nq)

⎤
⎦y

To visualize how these two quantities are different, suppose that every isolated
solution has on average e−Nσi(d) other minima at distance d. This could even be a
reasonable guess 4. Then, suppose d > d̄ (d̄ is the typical minimal distance from a
reference solution below which no other solutions can be found). Let us call Nσc(d)

4The number of W̄ with overlap q with the reference is

V (q) =

(
qN

N

)
≈ exp [N (q ln q + (1− q) ln(1− q))] =: eNS(q)

The number of W̄ with overlap ≥ q with the reference is

V (≥ q) =

∫ 1

q

dq′ V (q′) ≈ eNS(q)
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the average number of solution surrounding, at distance d, a given reference, picked
from a subdominant cluster

F1 ≈ eNΣi ln e−Nσi(d) + eNΣc ln eNσc(d)

eNΣi + eNΣc
∼ −Nσi(d)

if Σi > Σc. On the other hand

F2 ≈ eNΣie−yNσi(d) + eNΣceyNσc(d)

eNΣi + eNΣc
∼ eN(Σc−Σi)+yNσc(d) ≈ eyNσc(d)

if y is big enough. The conclusion is that, in a non-equilibrium analysis, typical
solutions can be redefined as those belonging to a cluster (if there is any), while
isolated solution are not thermodynamically relevant.

Measure (2.2.8) can be written as a Boltzmann weight associated to the (non-local)
energy

E(W ; d) = − 1

N
lnN (W ; d) (2.2.11)

What is formally equivalent to (minus) the mean energy can be considered a internal
local entropy:

SI(d) = −〈E(W ; d)〉W,ξ =
1

N
〈lnN (W ; d)〉W,ξ = ∂y(yF(d, y)) (2.2.12)

It is easy to see that, as long as N is an integer, then E ≤ 0. In particular, if every
reference has just solution at distance d, then E = 0. Therefore, the case 〈E〉 = 0 is a
threshold between the average presence (〈E〉 < 0) or absence of solution at a certain
distance (〈E〉 > 0). In terms of internal local entropy, a dense cluster is present if

SI(d, y) > 0 ∀d < d̄ (2.2.13)

for some d̄. Moreover, the formal entropy of the system5, which can be referred to as
external entropy, must be positive since the system is discrete:

SE(d, y) = −y[F + SI(d, y)] > 0 (2.2.14)

The main results are the following.

• For big d, SI(d) encounters a second order transition, after which the SI becomes
the usual equilibrium entropy given by typical isolated solutions.

All polynomial contributions are being neglected. Let us part the “ball” of “radius” 1− q into equal
smaller “balls” each of which contains a single isolated solution. The volume of each of these balls
will be something like

Vi ≈ eNc

with c > 0. Thus, the reference’s bubble contains

V (≥ q)

Vi
≈ eN(S(q)−c)

minima, which are mainly located, near its boundary

V (q)

Vi
=

d

dq

V (≥ q)

Vi
≈ V (≥ q)

Vi

Since typical minima are isolated, there will be a certain q̄ beyond wich S(q) < c. Let us call
σ(q) = c− S(q) > 0. Then, one can infer that each isolated solution is surrounded by an average of

e−Nσ(q)

typical solutions at distance q > q̄.
5F = 〈E〉 − TS. Set T = 1/y, S = SE , 〈E〉 = 〈E〉 = −SI and F = F .
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• For α < αc ≈ 0.83 there is always a neighborhood of d = 0 in which SI > 0
implying the presence of clusters. These clusters shrink with the increase of α.

• For α < αU ≈ 0.77, SI is monotonic in in d. The hypothesis is that below αU

the cluster is unique, allowing for an RS ansatz to be correct.

• SI does not depend on α for small d, implying the existence of a very dense
structure.

The practical consequence of the discovery of clusters is that, instead of searching
for random minima with a local algorithm, it is possible to design efficient algorithms,
which seek for the cluster. In order to do that, a new ensemble is defined: the robust
ensemble which is a generalization of the previous measure

P (W ;β, y, γ) =
1

Z(β, y, γ)
eyΦ(W ;β,γ) (2.2.15)

with the free local entropy

Φ(W ;β, γ) = ln
∑
W̄

e−βH(W )−γd(W,W̄ ) (2.2.16)

In this picture, most likely configurations are those which are close to many low energy
configurations, but not necessarily low energy themselves. If γ → ∞ the reference is
relevant only if it very close to a low energy configuration, which imply it should have
a low energy itself.

A nice feature of the robust ensemble is that the partition function has a natural
interpretation in terms of real replicas. If y is an integer, then

Z(β, y, γ) =
∑
W

eyΦ(W ;β,γ)

=
∑
W

∑
W̄a

exp

[
−β

y∑
a=1

H(Wa)− γ

y∑
a=1

d(W, W̄a)

]

On can go further and trace the reference away

Z(β, y, γ) =
∑
W̄a

exp

[
−β

y∑
a=1

H(Wa) +A({Wa};β, γ)
]

A({Wa};β, γ) = − 1

β
ln
∑
W̄

e−γ
∑y

a=1 d(W,W̄a)

The authors also propose some algorithms based on this formalism which can be found
in [2].
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Chapter 3

A different aspect of
generalization: difference
between outputs as a function of
the difference between inputs

3.1 Notation summary: perceptron

The discrete Perceptron is a neural network which associates an output

σ = ±1

to a given input pattern
ξ = (ξ1, ..., ξN )

with
ξi = ±1

The association rule is
σ = Θ(ξ ·W )

The vectors
W = (W1, ...,WN )

are called synaptic weights and
Wi = ±1

The perceptron is said to be trained to identify a certain set of patterns

ξ = {ξα}α=1,...,n

if, given a desired set of input-output pairs

{(ξα, σα)}
all patterns are correctly classified, so that

0 =
∑
α

Θ(−σα W · ξα)

In other words, a cost function or energy

Hξ(W ) =
∑
α

Θ(−σα W · ξα)
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can be associated to any set of paths ξ. A synaptic weight vector W is a solution of
the learning problem if Hξ(W ) = 0.

A conventional statistical quantity is

Z(ξ, β) =
∑
W

e−βHξ(W )

3.2 Difference between outputs as a function of the dif-
ference between inputs

3.2.1 Similarity between input patterns in terms of their memory
representation

As already explained, one of the most remarkable features of the neural networks is
the potential to handle more general information than the piece it is trained with. It is
called generalization. As discussed in section 2.1.2, in the case of perceptron, general-
ization is studied in the teacher student scenario. In other words, one is concerned with
the possibility to reproduce the results of a teacher machine with a student machine,
which is given a number of examples of input-output pairs provided by the teacher.

In the following sections, a different approach on the generalization will be out-
lined. Firstly, a general argument about neural networks will be presented so that the
forthcoming definitions could be applied to other situations and setups. Finally, these
definitions will be declined to the perceptron case in a way that allows an analytical
computation.

As explained in the introduction, a well performing machine, after being trained to
correctly classify a certain input set (ξ, σ(ξ)), once presented new input set ξ̄ “similar”
to the previous one, should yield a similar output. Informally, suppose that a certain
machine is trained to tell cats from “non-cats”. This can be implemented by presenting
the machine with a set of pictures of cats. When presented a new cat, maybe in a
different position, or of a different race, the network should correctly yield the output
“cat”. However, will it happen? Furthermore, let us suppose that we give the machine
the picture of a tiger. Will the machine consider the tiger to be enough cat-like to be
classified as such? Moreover, the machine should not classify a dog as a cat. A dog,
though, shares many non-superficial features with a cat. Therefore, we would like the
machine not to generalize too much the “idea of cat” to the point that a dog could fit
it. Finally, what will happen if we choose a new set of cats to train the machine? Will
the “idea of cat” of the machine be the same as the old one? In addition, even more
importantly, will the old set of cats fit it?

In order to proceed in a more formal way, we should define what it means for us
that two patterns are similar. In other words, we should define our idea of “catness”.
This can be done by defining an external distance between any two set of patterns ξ
and ξ̄

d(ξ, ξ̄) (3.2.1)

If both ξ and ξ̄ are sets of cats, their distance should be very small. Conversely, the
distance should be bigger, and ideally beyond some threshold, between cats and both
tigers and dogs.

A machine with a given synaptic configuration W defines a different kind of dis-
tance or “similarity” between all possible input patterns, namely:

DW (ξ, ξ̄) = d(σW (ξ), σW (ξ̄)) (3.2.2)

Suppose that the machine is trained with the set (ξ, σ) and let us call a certain so-
lution as W (ξ). Then, assuming some kind of distance is available for the outputs, a
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interesting quantity is

D(ξ, ξ̄ |W (ξ)) = d(σW (ξ)(ξ), σW (ξ)(ξ̄)) (3.2.3)

Informally, if ξ are cats, this formula quantifies how much the machine considers the
set ξ̄ to be cat-like. The solution W (ξ) is not unique. Therefore, it is reasonable to
average over solutions

D(ξ, ξ̄ | (ξ, σ)) =
∫

P (W (ξ)) D(ξ, ξ̄ |W ) (3.2.4)

The choice of P (W (ξ, σ)) is arbitrary. For example, one can use the robust ensemble
to only explore robust and accessible solutions. In this thesis, the standard maximally
entropic measure will be adopted:

P (W (ξ, σ)) =
δ(σW (ξ)− σ)∫

P (W ) δ(σW (ξ)− σ)
(3.2.5)

The previous formula con be loosened to allow for some noise:

P (W (ξ, σ)) =
e−βHξ,σ(W )∫

dW e−βHξ,σ(W )
(3.2.6)

In order to compare the machine-inborn distance with the a priori distance, a
comparison between the two distances can be done in probabilistic terms. Given two
patterns with a distance d, what is the likelihood that the machine will attribute them
a distance D, given a certain configuration W? The answer is

PW (D | d) =
∫

Pd(ξ, ξ̄) δ(DW (ξ, ξ̄)−D) (3.2.7)

with

Pd(ξ, ξ̄) =
δ(d(ξ, ξ̄)− d)∫

P (ξ′, ξ̄′) δ(d(ξ′, ξ̄′)− d)
(3.2.8)

Again, suppose that the machine was trained with one of the two sets, say (ξ, σ).
As said before, for any learning problem there is, in general, more than one solution
W , W is a random variable whose distribution depends on ξ and should be averaged
upon. This quantity is

P (D | d) =
∫

Pd((ξ, σ), ξ̄)
1

Zξ

∫
P (W (ξ, σ)) δ(DW (ξ, ξ̄)−D) (3.2.9)

and can be computed in the replica formalism. However, for consistency with literature
about the perceptron, the following similar free energy will be studied:

F (D | d) =
∫

Pd((ξ, σ), ξ̄) ln

∫
P (W (ξ, σ)) δ(DW (ξ, ξ̄)−D) (3.2.10)

The reason is that it gives direct information about the minima landscape of the
perceptron, as will be mentioned later.

The previous definitions are quite general and no mention has been made about
any specific neural network. In the following sections they will applied to the binary
simple perceptron, trained with random patterns. A warning is needed: the cat-
pictures’example cannot be carried any further, since it would not count as a random
training set.
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3.2.2 A distance for inputs in perceptron

In the previous section, the possibility to define a distance between sets of input
patterns d(ξ, ξ̄) was used. However, while to define a distance between a couple of
patterns is easy, the definition of a distance for sets of patterns, in a strict or even
loose sense, is less immediate.

The distance between patterns is called Hamming distance, and is closely related
to the overlap q:

q(ξα, ξβ) =
ξα · ξβ
N

d(ξα, ξβ) =
1

2

(
1− ξα · ξβ

N

)
=

1

2
(1− q(ξα, ξβ))

Clearly q ∈ [−1, 1] and d ∈ [0, 1].
Let us now consider two sets ξ = {ξα}α=1,...,p and ξ̄ = {ξ̄α}α=1,...,p containing the

same number p of patterns. A possible way is to induce a distance from patterns to
sets. The most natural approach would be to use the average distance among pairs

d1(ξ, ξ̄) =
1

p

∑
α

d(ξα, ξ̄α) (3.2.11)

This definition has a problem, though. The perceptron’s energy is manifestly invariant
under a permutation of the order of the input set. Basically, unless, we are interested
in breaking that symmetry, it would be better if

d(ξ, π(ξ)) = 0 with π ∈ Sp (3.2.12)

d(π(ξ), π(ξ̄)) = d(ξ, ξ̄) (3.2.13)

where π : ξα �→ ξπ(α). (3.2.11) is not consistent with this request.
In order to write a more appropriate distance, it is worth considering what we

would like two similar sets to look like. It is well known that two randomly-chosen
patterns (when N → ∞) are orthogonal with probability 1, as can clearly be deduced
by the law of great numbers applied to the RV

q(ξα, ξβ) =
N∑
i=1

ξiα ξ
i
β

N
→ 0

However, when a whole set of patterns of p = O(N) is considered, the overlap dis-
tribution becomes nontrivial. This can be proved by looking at the distribution of
the eigenvalues of the overlap matrix q(ξα, ξβ), which is called Marchenko-Pastur
law. If all patterns were orthogonal to each other, the spectral distribution would
be p(λ) = δ(λ − 1), but it is not. However, as can be can be shown (see 7.0.5 ), as
assured by the central limit theorem, most patterns still have overlaps close to zero.
On the other hand, if a set ξ is identical to ξ̄, then each pattern in ξ is identical to a
pattern in ξ̄. In terms of overlaps, we can require that almost all (up to subextensive
subsets) patterns in ξ have overlap 1 with a pattern in ξ̄. In other words, the patterns
are identical pairwise. Each pair, though, will be about orthogonal to each other pair.
To figure out what similar sets look like, just replace “identical” with “similar” in the
previous picture. Clearly, two patterns are similar if their overlap is close to 1. A
distance that describes this idea of similarity between sets is:

d(ξ, ξ̄) =
1

p
min
π∈Sp

p∑
α=1

d(ξα, ξ̄π(α)) (3.2.14)
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In other words, we can look for the permutation π ∈ Sp which optimizes sum
∑p

α=1 d(ξα, ξ̄π(α))
over the matchings and take that sum as a distance. This minimization is just a way
to ensure the correct pairings.

This distance 1 satisfies (3.2.12), (3.2.13) and respects the triangular inequality
too2. An overlap can be defined for set of patterns as well:

q(ξ, ξ̄) =
1

p
max
π∈Sp

p∑
α=1

q(ξα, ξ̄π(α)) (3.2.15)

The distance and the overlap between sets still satisfy the property q ∈ [−1, 1] and
d ∈ [0, 1] and the relationship

d(ξ, ξ̄) =
1

2
(1− q(ξ, ξ̄))

A convention can be introduced to simplify the notation. The main concern is to
keep track of the optimal couplings. For this purpose, given a pattern ξα ∈ ξ, let us
call ᾱ the index of its counterpart ξ̄ᾱ ∈ ξ̄. With this notation:

d(ξ, ξ̄) =
1

p

p∑
α=1

ξα · ξ̄ᾱ
N

So far, it was argued that two sets, which are intuitively similar, have a small dis-
tance (3.2.15). Is the converse also true? Some delicate aspects should be mentioned.
The matching could be unstable and rearrange significantly with to small input modifi-
cations. This could be an issue if the distance changes considerably. Furthermore, the
rearrangement would imply that the intuitive argument behind pattern-pairing would
fail. Unfortunately, this is statistically bound to happen. Nonetheless, it should only
be a matter of concern if it affects a significant number of pairs. A rigorous analysis
would certainly be required, however, in this thesis, just a heuristic argument will
be given. A more careful evaluation would require the solution of an optimization
probem, which is, in general, nontrivial.

Suppose that two sets has overlap q(ξ, ξ̄) ≈ 1. This can only be satisfied if a
fraction ≈ 1 of pairs have overlap ≈ 1 (say 1 − O(ε)). In this case, the only possible
ambiguity arises from the possibility that two pairs “meet”, i.e. the overlap between
the four of them is pairwise 1 − O(ε). As explained before, this seems to be very
unlikely, so that it should not change the average too much. The conclusion is that
the closer the distance is to zero, the more meaningful it is. Consequently,
the results obtained with this definition should not be relied on too much when the
two sets are too distant.

To investigate this further, suppose that two input sets have overlap q(ξ, ξ̄) = q � 1
and that the matchings are well defined and stable. How is the typical distribution of
the overlaps between pairs? Let us call

qα = q(ξα, ξ̄ᾱ)

1Technically it is a pseudodistance unless one identifies patterns with overlap 1.
2Proof of the triangle inequality. Suppose π, η ∈ Sp:

1

p

∑
α

d(ξπ(α), ξ̄η(α)) ≤ 1

p

∑
α

d(ξπ(α), ξ
′
α) +

1

p

∑
α

d(ξ′α, ξ̄η(α))

Let us minimize the r.h.s of the previous inequality with respect to η and π. Moreover, suppose the
optimal permutations are η̄ and π̄ respectively. Then

d(ξ, ξ̄) =
1

p
min
τ∈Sp

∑
α

d(ξτ(α), ξ̄α) ≤ 1

p

∑
α

d(ξπ̄(α), ξ̄η̄(α)) ≤ d(ξ, ξ′) + d(ξ′, ξ̄)

28



so that

q =
1

p

∑
α

qα

The goal is to compute the joint distribution of the overlaps. In absence of constraints,
each overlap would be distributed normally (central limit theorem) as

P (qα) =

√
N

2π
exp(−Nq2α/2)

Hence

P ({qα}|
p∑

α=1

qα = q) =
1

P (q)

p∏
α=1

P (qα) δ

(
1

p

p∑
α=1

qα − q

)
(3.2.16)

It can be shown that, in the thermodynamic limit, only the configuration

qα = q ∀α = 1, ..., p (3.2.17)

counts in the previous expression. To understand this, consider that
∏

α P (qα) ∝
exp(−N

∑
α q

2
α/2). Therefore, the only relevant configuration is the one (or the ones)

that minimizes
∑

α q
2
α with respect to {qα}, on the hypersurface

∑
α qα/p − q = 0,

which corresponds to the constraint imposed by the delta function. (3.2.17) is obtained
from the minimization via Lagrange multipliers. It follows from the previous analysis
that, up to matching ambiguities, typical configurations of {qα} are given by (3.2.17).
Therefore

P ({qα}|
p∑

α=1

qα = q) →
p∏

α=1

δ(qα − q) (3.2.18)

All these results can be put together in order to compute P (d|D) as given by
(3.2.9). For this purpose, an expression for the probability Pd(ξ, ξ̄) is needed. If pairing
ambiguities are disregarded, with the aforementioned caveats, we replace Pd(ξ, ξ̄) with
an averaging over pairs of patterns (ξα, ξ̄ᾱ) with given overlap qα. In this framework,
overlaps are distributing according to (3.2.16) which reduces to (3.2.18). Clearly, it is
implied that q = (1− d)/2. Finally:

Pd(ξ, ξ̄) =

p∏
α=1

P (ξα) P (ξ̄ᾱ) δ(d− d(ξα, ξ̄ᾱ)) (3.2.19)

This formula has two good features. The first is that it is suitable for analytic compu-
tations. The second is that, even if d is not small and matching ambiguities may arise,
it still has a clear meaning and can stand alone as a starting point for a reasonable
computation. Pd(ξ, ξ̄) as defined above is the probability distribution of two random
input sets, in which each pattern from the first set has a fixed correlation with an
output from the second set. For this reason, this definition makes sense even if q < 0
(d > 1/2).

3.2.3 Output difference for fixed inputs’ difference: perceptron

Distance (3.2.15) can be used to compute P (D | d) (3.2.9) or F (D|d) 3.2.10. The first
step is to define a distance for outputs. The most obvious choice is to count the number
of pairs (as defined by the optimization in (3.2.15)) whose output coincide. Since the
output is either ±1, a possible definition for output distance is

DW (ξ, ξ̄) =
1

p

p∑
α=1

Θ(−σW (ξα)σW (ξ̄ᾱ)) =
1

p

p∑
α=1

Θ(−W · ξα W · ξ̄ᾱ) (3.2.20)
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Before proceeding any further, it is convenient to recall that, since the energy is a
function of the product σα ξα, when averaging over both input {ξα} and output {σα},
all outputs can be set to +1:

1

2N

∑
{σα}

1

2pN

∑
{ξα}

f({σα ξα}) = 1

2pN

∑
{σα ξα}

f({ξα}) = 1

2pN

∑
{ξα}

f({ξα})

This can still be done when averaging over Pd((σ, ξ) ξ̄). Consider, for instance

f̄ =
1

2N

∑
{σα}

1

22pN

∑
{ξα}

∑
{ξ̄α}

f({σα ξα}, {σα ξ̄ᾱ}, {ξα · ξ̄ᾱ})

The function f from above only depends on the optimal couplings α ↔ ᾱ. Let us now
consider a partition of the space {(ξ̄, ξ)} as

{(ξ̄, ξ)} =
⋃

π∈Sp

Vπ

where Vπ is the set of pairs of sets (ξ, ξ̄) whose distance (3.2.15) is optimized by the
permutation π. It should be pointed out that, ∀εα = ±1

({ξα}, {ξ̄β}) ∈ Vπ =⇒ ({εαξα}, {εαξ̄ᾱ}) ∈ Vπ

since the distance (3.2.15) is a function of the products ξα · ξ̄ᾱ. Then

f̄ =
1

2N

∑
{σα}

1

22pN

∑
(ξ,ξ̄)∈Vπ

f({σα ξα}, {σα ξ̄ᾱ}, {ξα · ξ̄ᾱ})

=
1

2N

∑
{σα}

1

22pN

∑
({σαξα},{σαξ̄ᾱ})∈Vπ

f({ξα}, {ξ̄ᾱ}, {ξα · ξ̄ᾱ})

=
1

22pN

∑
(ξ,ξ̄)∈Vπ

f({ξα}, {ξ̄ᾱ}, {ξα · ξ̄ᾱ})

=
1

22pN

∑
{ξα}

∑
{ξ̄α}

f({ξα}, {ξ̄ᾱ}, {ξα · ξ̄ᾱ})

The conclusion is that all σα can be set to 1, as expected. Therefore, D is the fraction
of patterns in ξ̄ which yield output −1. Consequently

δ(D −DW (ξ)(ξ, ξ̄)) =
∑

{ημ=±1}
δ

(∑
μ

ημ, p(1− 2D)

)
p∏

μ=1

Θ(ξμ ·W )

p∏
μ̄=1

Θ
(
ημξ̄μ̄ ·W )

(3.2.21)
The previous computations and definitions can be put together in order to write the
expression for F (d|D) (at zero temperature)

F (d|D) =
1

N

∫
Pd(ξ, ξ̄) ln

∫
P (W )

p∏
α=1

Θ(ξα ·W )

∑
{ημ=±1}

δ

(∑
μ

ημ, p(1− 2D)

)
p∏

μ=1

Θ(ξμ ·W )

p∏
μ̄=1

Θ
(
ημξ̄μ̄ ·W ) (3.2.22)
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As anticipated, this quantity can be interpreted in terms of configurations’ landscape.
Given two random input sets ξ and ξ̄ with distance d, expNF (D|d) is the
typical fraction of configurations which are solutions to both up to pD
outputs.

To introduce noise, one can substitute

Θ(x) �→ exp(−βΘ(−x))

in the previous expression.
Let us focus on the special case D = 0. In this case:

F (0|d) =
∫

Pd(ξ, ξ̄) ln

∫
P (W )

p∏
α=1

Θ(ξα ·W )Θ(ξ̄ᾱ ·W ) (3.2.23)

The argument of logarithm can be generalized to define an overlap of sets of input
patterns in terms of memory representation:

Q(ξ, ξ̄) :=

∫
dW exp

(−β[Hξ(W ) +Hξ̄(W )]
)√∫

dW exp (−βHξ(W ))
∫
dW exp

(−βHξ̄(W )
) (3.2.24)

The quantity Q is the normalized number of common minima (plus eventual
noise) shared by two sets ξ and ξ̄. Q can be used to define a distance

D(ξ, ξ̄) := − 1

N
lnQ(ξ, ξ̄) (3.2.25)

D is positive and possesses the triangle inequality thanks to Cauchy-Swartz inequality,
which can be applied to “vectors” e−βHξ(W ) for which W plays the role of an index.
It follows from the definition that D is a self-averaging quantity and

D̄(d) =

∫
Pd(ξ, ξ̄) D(ξ, ξ̄) = P (0|0)− P (0|d) = lnZ

N
− P (0|d) (3.2.26)

D̄(d) yields the typical normalized number of common solutions associated to two
input sets with fixed distance d.

3.2.4 Generalization and correlation between inputs in simple per-
ceptron: the function F (D|d).

In the previous section, the quantity F (D|d) has been introduced. Since it is the
fundamental quantity in this thesis and it will be the key object of the computation in
the last chapters, it deserves a section alone. It is worth rewriting its expression here

Fα(d|D) =
1

N

∫
Pd(ξ, ξ̄) ln

∫
P (W )

p∏
α=1

Θ(ξα ·W )

∑
{ημ=±1}

δ

(∑
μ

ημ, p(1− 2D)

)
p∏

μ=1

Θ(ξμ ·W )

p∏
μ̄=1

Θ
(
ημξ̄μ̄ ·W ) (3.2.27)

As anticipated, this quantity can be interpreted in terms of configurations’ landscape.
Given two random input sets ξ and ξ̄ whose patterns have distance d pair-
wise, expNF (D|d) is the typical fraction of configurations which are solu-
tions to both inputs up to a fraction D outputs.

This quantity offers a double interpretation, which allows connecting the two ideas:
correlation between inputs and generalization.
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• The solutions’ landascape. If F (D|d) is finite, for any input pair (ξ, ξ̄) so that
d(ξμ, ξ̄μ̄) = d, there exists a thermodynamically relevant3 class of configurations
which classifies a fraction 1−D of patterns pairs in the same way. In particular,
if we set D = 0, we can find out how many solutions are typically shared by two
input sets which have distance d.

For a given d, if F (D|d) = −∞, it means that the network cannot be taught to
associate a fraction 1 − D of pairwise identical outputs to two input sets with
distance d.

Consider now d < 1/2. It is possible to define

Dmin(d) = min
D

{D : F (D|d) = −∞} (3.2.28)

If generalization is the ability to yield similar outputs for similar inputs, then
Dmin(d) is the threshold D below which the network cannot be taught to gen-
eralize for a given distance d.

There is an equivalent point of view too. If F (D|d) > −∞, then the network
can be taught to resolve, with precision 1 −D, two inputs that lies d apart. In
this case, Dmin(d) represents the maximal precision with which two input sets,
laying d apart, can be distinguished.

The fact that some configuration exist and can be found, does not mean that
they are possible to be found when picking a random solution in a certain class.

• Conditional probability. A further step is to consider the conditional proba-
bility of D with respect to d. While we do not have direct access to this quantity
(we should compute (3.2.9)), we can study it in the following way. We can com-
pute the fraction between the typical number of common minima with fixed D
and the typical number of common minima with any value of D. Then, up to
subexponential values in N :

P̄ (D|d) ≈ exp (NF (D|d))∫ 1
0 dD′ exp (NF (D′|d))

≈ exp

(
N [F (D|d)−min

D
F (D|d)]

)

Therefore, there are two possibilities:

P̄ (D|d)
{
= 0 F (D|d) > minD F (D|d)
�= 0 F (D|d) = minD F (D|d) (3.2.29)

One can get information about the generalization by studying

{D : P (D|d) �= 0} = {D : F (D|d) > min
D

F (D|d)} (3.2.30)

This would show what outcomes D are possible when a perceptron trained with
a set ξ is presented a similar (distance d) input ξ̄ set.

We must remark that there is a possible limitation about this approach. In the
previous sections, the generalization performance have been studied as an average over
configurations. However, a single perceptron possesses a single configuration. There-
fore, it is possible that these optimal performances, like for the bayesian algorithm,

3That grows as eNF .
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cannot be achived by a single perceptron. Instead, a number of perceptrons could
be trained to solve the same problem: then, for any single input, their outputs are
averaged into one. This is called commitee machine in literature. In could be worth
investigating this aspect in future works, i.e. whether single configurations possess, on
average, ceratin generalization capabilities, or whether these performances only arise
from averge over many solutions.

Finally, the capacity can be defined as a function of d and D as the minimal ratio
p/N for which Fα(D|d) = −∞:

αc(D|d) = min{α : Fα(D|d) = −∞} (3.2.31)

This quantity can be referred to as a generalization capacity. It indicates the
boundaries, for fixed α, of the graph of F (D|d). It will turn out that this quantity can
be computed analytically in the RS assumption. Its expression and the conclusions
that can be drawn from it are presented in section ??.

3.2.5 Overview and outlook

Summary of the previous sections of this chapter:

• A possible approach to generalization based on the probability of the outputs
difference, given the input difference, has been outlined and quantified by P (D|d)
(see (3.2.9)) and especially F (D|d) (see (3.2.10)).

• In the case of perceptron, two distances for input sets of patterns, one “intrinsic”
(d, see (3.2.15)) and one “machine-based” (D), have been proposed. F (D|d) has
been written in this framework.

• An approximated and practical way to compute F (D|d) with distance (3.2.15)
has been explained (see (3.2.17) and (3.2.18)). It has been shown that this
approximation has a meaning itself even in region where distance (3.2.15) is not
well defined.

• An additional distance D (3.2.25) for inputs, counting the number of common
solutions, has been shown to arise naturally from the expression of F (0|d).

• In section 3.2.4, it has been explained how F (D|d) can be employed as a tool to
explore generalization properties in terms of correlated inputs.

• The relationship between the approach of this thesis and upper-bound results
from the teacher-student scenario deserves a deeper exam. In particular, there
exists an extensive literature which approaches the learning problem from a
geometrical point of view.

In the following chapters, the quantities F (D|d) and D̄(d) will be studied with the
replica formalism. In the spherical case, the RS computations should be correct, while,
in the discrete case, the RS ansatz should only be regarded as a first step and it is not
expected to yield physical results.

Aside from the general expression of F (D|d), the focus will be kept on two limits.
The first limit will be taken to ensure that known quantities (like the capacity) are
recovered. The second limit will yield the generalization capacity as defined in section
3.2.4.

Finally, the quantity D could reveal some property of the clusters in the discrete
perceptron. In particular, the solutions belonging to clusters are thought to be better
at generalizing that isolate ones. In order to investigate this feature with the previous
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tools, consider the following hypothesis. As before, let us assume that, for a given
input set ξ, isolated solutions grow as eΣiN , while clustered solutions as eNΣc with
Σi > Σc. Now choose a similar input set, say ξ̄. If q(ξ, ξ̄) = 1, then they share
all solutions. If ξ̄ is slightly modified, then its solutions should change as well. In
particular, clusters and isolated solutions should rearrange and/or shift. In case they
shift, a small displacement should be enough to move isolated solutions away for their
original sites. Therefore, the number eNΣi(q) of typical common minima between ξ
and ξ̄ should drop quickly as q decreases. On the other hand, slightly shifted clusters
should still have a nonempty intersection with the non-shifted ones. Therefore, the
number eNΣ(q) of common clustered minima should decrease as well, but at a different
rate. It always holds that

1

N
ln(eNΣi(q) + eNΣi(q)) ∼ max(Σi(q),Σc(q))

Consequently, for fixed α, a possible point on non-analyticity could appear if at some
q it happens that Σc(q) = Σi(q). This could reveal a passage from a phase dominated
by isolated solutions to a phase dominated by clusters. Conversely, for fixed q, we
could investigate whether anything indicates the breaking of the cluster around αU

(or some αU (q)). A RSB approach is most likely needed to test these hypotheses.

Figure 3.1: A qualitative picture. The solutions corresponding to ξ and ξ̄ are painted
in red and blue respectively. The same small shift is shown to separate isolated minima
but not clusters.
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Chapter 4

Computation of F (0|d): the
simple case subextensive inputs

4.1 Inputs of subextensive size for the discrete percep-
tron: p/N → 0

4.1.1 Introduction and structure of the following sections

The goal of this chapter is to compute F (D|d). The first step is to attempt the
computation for input sets of subextensive clusters. For this purpose, the N → ∞
limit will be taken, while p will be kept finite. As it will be shown, it is possible to
obtain a result without using the replica trick with Gaussian variables. From a closer
evaluation of the Gaussian procedure, it will be shown that it might be possible to use
a similar analysis to compute the result for extensive inputs p = O(N). Nonetheless,
the most natural (approximated) generalization to the extensive case yields incorrect
results and, therefore, further studies would be necessary to confirm or rule out such
a possibility. In the following sections we will just deal with the D = 0 case for the
discrete perceptron, since the more general scenario D �= 0 will be accessible from
the p/N → 0 limit of the forthcoming replica computation. On the other hand, this
special case (D = 0 and p/N → 0) provides a useful check for the full results from the
replica calculation.

Finally, it is worth mentioning that another reason why the p/N → 0 case deserves
a separate approach is that it is numerically accessible. Numerical simulations aimed
at probing statistical properties of the perceptron may be very difficult, since they
often involve some kind of solutions’counting. It has already been explained why, in
the discrete model, finding typical solutions can be a very hard task: local algorithms
cannot reach them and cluster-seeking algorithms ignore them. Even when studying
clusters with dedicated algorithms, one has to be careful about comparing the sampling
statistics with Boltzmann statistics.

Before proceeding to the actual computation it is worth pointing out that the
p/N → 0 case should be treated with a little extra care as long as the thermodynamic
limit is involved. As it will be clear from the following computation, there is a finite
fraction, say C, of the synaptic weights’ space which is occupied by solutions. Q in
this case would be something like

1

N
ln(2NC) → ln 2

Therefore, in order to obtain a nontrivial result, it is very important to normalize to
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1 the sum over synaptic weights
1

2N

∑
W

while in the extensive case, this is not necessary.
The quantity that it is going to be computed is, therefore, the average of

Q(ξ, ξ̄) =
1

p
ln

1

2N

∑
W

p∏
μ

Θ

(
1√
N

W · ξμ
) p∏

μ̄

Θ

(
1√
N

W · ξ̄μ̄
)

(4.1.1)

which is F (0|q) =: F (q)

4.1.2 Analysis

The procedure to complete this computation consists in three steps:

• introducing an integration over Gaussian variables (with a quadratic form Ξ) in
place of a sum over configurations W for fixed ξ

• taking a limit of the quadratic form Ξ

• computing the remaining Gaussian integral

Consider a given realization of the disorder (ξ, ξ̄)q. A different notation for the
sets ξ and ξ̄ is not relevant now. Consequently, for now, we will consider a single set
ξ with size 2p.

The synaptic weights W only appear in the following scalar products:

Wα =
1√
N

ξα ·W

α = 1, ..., 2p. Therefore, it makes sense to try to replace the sum over W with the
integration of the joint probability of {Wα}. Each Wα is a sum of independently and
identically distributed random variables divided by the square root of their number.
The central limit theorem implies that its marginal distribution is

P (Wα) ∼ 1√
2π

e−W
2
α/2

One could guess that the joint distribution is given by a Gaussian distribution whose
quadratic form is given by fixing the correlations:

〈WαWβ〉 = ξα · ξβ
N

It is immediate that the quadratic form would be the inverse of

Ξ =

⎡
⎢⎢⎣

1 ξ1 · ξ2/N ξ1 · ξ3/N ... ξ1 · ξ2n/N
ξ2 · ξ1/N 1 ξ2 · ξ3/N ... ξ2 · ξ2n/N

... ... ... ... ...
ξ2n · ξ1/N ξ2n · ξ2/N ξ2n · ξ3/N ... 1

⎤
⎥⎥⎦

i.e.

Ξμν =
1

N
ξμ · ξν

This can be shown to be correct as proven in section 4.2.1. The result is

P ({Wξ}) ∼ 1√
(2π)p det Ξ

exp

(∑
μ<ν

ξμΞ−1μν ξ
ν

)
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As explained in section 4.2.1, the fact that the scalar products Wα only appear inside
the theta functions would allow to apply this result even to extensive inputs. The
reason is that the Heaviside theta provide a sort of scale invariance.

Let now consider the averaging over inputs (ξ, ξ̄). In the Gaussian formalism, (ξ, ξ̄)
only appear in the overlap matrix Ξμν . Instead of integrating over input patterns, one
can integrate over the overlap matrix. This passage resembles the procedure followed
in [28][17] in which, however, the integration over the Haar measure and the Machenko-
Pastur distribution is combined with the replica/belief propagation formalisms. In the
present case, on the other hand, this is not needed.

Let us consider the factorized measure

P (ξ, ξ̄)q =
∏
μ

1

2N

∑
ξμ,ξ̄μ̄

δ(q − ξμ · ξ̄μ̄/N)

as it was defined before. Then, from the law of great numbers it follows that

P (Ξμν) → δμν

P (Ξμν̄) → qδμν̄

P (Ξμ̄ν̄) → δμ̄ν̄

This means that it is legitimate to consider

Ξ �→ δμν + δμ̄ν̄ + 2q δμν̄

since p is subextensive while the vanishing matrix elements decay as a function of N .
In case p = O(N) while single matrix elements of Ξ still vanish with N , their number
grows as N2 so that their overall contribution is not neglectable. This will be remarked
in the next section as well.

4.1.3 Computing F (0|d)
By putting together the results from the previous paragraph, we get:

F (q) =
1

p

∫ ∏
μ′

dqμ′ δ(qμ′ − q) ln
1√

(2π)p det Ξ∫ ∏
μ

dWμdW̄μ e−
1
2
∑

μ

∑
αβ Wα

μ G(qμ)W
β
μ
∏
μ

Θ(Wμ)Θ(W̄μ) (4.1.2)

with
W 1

μ = Wμ W 2
μ = W̄μ

and

G(q) =
1

1− q2

[
1 −q
−q 1

]
The logarithm is therefore the sum of p terms

ln

∫
dWμdW̄μ e−

1
2
∑

αβ Wα
μ G(qμ)W

β
μ Θ(Wμ)Θ(W̄μ)

The eigenvectors of the matrix in the exponential are

W±
μ =

1√
2
(Wμ ± W̄μ)
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with eigenvalues

λ±(q) =
1

1± q

Hence

ln
1

2π
√

(1− q2)

∫
dW+ dW− e−

1
2 (λ−W 2

−+λ+W 2
+)Θ(W+ +W−)Θ(W+ −W−)

= ln
1

2π
√

(1− q2)

∫ 7π/4

5π/4
dθ

∫ ∞

0
dr r e−

1
2 r

2(λ+ sin2 θ+λ− cos2 θ)

= ln
1

2π
√

(1− q2)

∫ 7π/4

5π/4
dθ

1

λ+ sin2 θ + λ− cos2 θ

= ln
[
1− (2/π) tan−1(

√
λ+/λ−)

]

Hence
F̄ (q) = ln

[
1− (2/π) tan−1(

√
(1− q)/(1 + q))

]
for N → ∞, ∀p << N .

It is worth noticing that as q ∼ 1, then

F (q) ∼
√
(1− q)/2

As expected, there is no complicated structure of memories if p/N → 0. Similar
solutions share a finite fraction which drops abruptly from 1 (identical-pattern case)
but is otherwise a smooth function. The shared fraction is

C(q) = 2−p[1− (2/π) tan−1(
√

(1− q)/(1 + q))]p (4.1.3)

as shown in figure (4.1).
The interpretation in the following. If the patterns were identical pairwise, the

space of solution would be halved by the addition of any new pair. On the other hand,
pairs of patterns with overlap q reduce the space of solutions by a factor C(q)/2 < 1/2.

Finally, it can be explicitly shown that this result cannot be extended to finite p/N .
If q = 1 we are left with a single set of patterns since ξ and ξ̄ coincide. According to
(4.1.3), the solutions for an input of size p are 1/2p of the space of all configurations.
The number of total configuration is 2N . Therefore, there is less than one solution if
p > N . That would imply that the discrete capacity is αdis

c = 1. While this is a better
result that the RS capacity, it is not correct. The conclusion is that a naive approach,
in which all patterns in a single input are assumed orthogonal, is incorrect.

4.1.4 Numerical analysis

In this section, a small computational check of the previous result will be presented.
The goal of the computation is to count the number of common minima of the dis-
crete perceptron associated to two correlated patterns. We will be briefly discuss the
Montecarlo algorithm that has been used.

The most difficult part is to generate input sets whose patterns are pairwise corre-
lated. In order to achieve a meaningful result, the patterns must contain a big number
N of elements in order to simulate the thermodynamical limit. This makes it difficult
to generate random patterns, say ξα and ξ̄ᾱ with a fixed correlation. This problem
can be overcome by observing that, in the thermodynamical limit

〈ξiα ξ̄jᾱ〉q = q δij
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Figure 4.1: The plot shows [2 ∗ C(q)]1/p (see (4.1.3)). C(q) is the shared fraction of
solutions C as a function of q, in the p/N → 0 case.
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This is shown in section 7.0.8. Consequently, we can randomly generate ξ̄ᾱ from
another random ξα by flipping every spin in ξα with probability (1 + q)/2. This
procedure allows creating the two correlated input sets but its drawback is that it
introduces an error on the correlations.

Given this premise, the Montecarlo algorithm itself is simple. One should simply
create random configurations W and find out the fraction of those which have positive
overlaps with all patterns in both ξ and ξ̄. The result is shown in figure 4.2

The algorithm is very slow and the computation time increases roughly exponen-
tially in p, as it should. For this reason, several attempts at probing quantities for a
greater p/N ratio have failed. It could be interesting to use actual learning algorithms
to tests theoretical results; however, it was not possible within the scope of this thesis.

4.2 Derivation of the Gaussian distribution for synaptic
weights

In this section it will be shown how the “scale invariance” of the arguments of the
theta functions can be used to introduce a Gaussian integration in place of the sum
over configurations.

The goal is to rewrite

1

2N

∑
W

p∏
μ=1

Θ(Wμ)

in a more convenient way.
The first step is to find the joint distribution for

Wμ = W · ξμ
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Figure 4.2: The plot shows [2 ∗C(q)]1/p. The theoretical curve appearing in figure 4.1
is compared with the numerical result. The result was obtained with N = 500 and
p = 10. 20 correlated input pairs for each value of q have been generated. 1000000
configurations W have been tested in order to find solutions. The error bars show the
standard deviations.
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It is

P ({Wμ}) = 1

2N

∑
{W i=±1}

p∏
μ=1

δ (Wμ −W · ξμ)

=
1

(2π)p2N

∑
{W i=±1}

∫ p∏
μ=1

dxμ e−ixμ(Wμ−W ·ξμ)

=
1

(2π)p

∫ p∏
μ=1

dxμ e−ixμWμ

N∏
i=1

cos

(∑
ν

xνξ
i
ν

)

=
1

(2π)p

∫ p∏
μ=1

dxμ exp

{
−ixμWμ +

∑
i

ln cos

(
p∑

ν=1

xνξ
i
ν

)}

We can proceed further by observing that the variables Wμ only appear in theta
functions. Since

Θ(Wμ) = Θ(xWμ)

∀x > 0, then it is possible to choose a prefactor x = f(N). Let us now assume that
p = O(N) or smaller. Then∣∣∣∣∣ 1

f(N)

p∑
ν=1

xνξ
i
ν

∣∣∣∣∣ ≤ C({xν}) N

f(N)

f(N) can be chosen arbitrarily diverging. Even f(N) = N ! or f(N) = NN . Therefore,
the sum above can always be set to vanish in the thermodynamic limit.

Hence, by substituting ξμ �→ ξμ/f(N), we can proceed in the following way:

P ({Wμ/N}) = 1

(2π)p

∫ p∏
μ=1

dxμ exp

{
−ixμWμ +

∑
i

ln cos

(
p∑

ν=1

xνξ
i
ν/f(N)

)}

≈ 1

(2π)p

∫ p∏
μ=1

dxμ exp

⎧⎨
⎩−ixμWμ − 1

2

p∑
ν,μ=1

xμxν
ξν · ξμ
f(N)2

⎫⎬
⎭

After an integration

P ({Wμ/f(N)}) ≈
√

f(N)p

Np/2(2π)p
1√
det Ξ

exp

⎧⎨
⎩−f(N)2

2N

p∑
μ,ν=1

WμWνΞ
−1
μν

⎫⎬
⎭

with
Ξμν = ξμ · ξν/N

The variables can be rescaled as

Wμ �→
√
N

f(N)
Wμ

As a result, in the thermodynamical limit, the following substitution is possible

1

2N

∑
W

p∏
μ=1

Θ(Wμ) �→ 1

(2π)p
1√
det Ξ

∫ p∏
μ=1

[dWμ Θ(Wμ)] exp
(−1

2W
TΞ−1W

)
(4.2.1)

This holds if p/N → 0 as well, as a special case.
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Chapter 5

General computation of F (D|d):
inputs of extensive size

5.1 Replica approach for extensive inputs

5.1.1 Introduction and structure of the forthcoming calculations

In order to compute the quantity F (D|d) in the case of extensive (p = O(N)) inputs,
the replica approach is needed. Throughout the following sections, the overlap q will
be used instead of the distance d. For the sake of simplicity, before proceeding to the
most general and complicated case, the tools and techniques will be introduced for the
special case F (0|q), i.e. the zero temperature computation with no output errors.

The spherical and discrete cases will be treated simultaneously, as it is often done
in literature. For this purpose, the discrete notation will be used, unless otherwise
specified. To obtain the discrete case, just replace

∑
{Wi=±1}

�→
∫

dNW δ

(∑
i

W 2
i −N

)

Aside for RSB issues, this replacement has only one formal consequence. It will turn
out that, in both cases

F ∼ 1

m
ln

∫
dQemp[lnA+f+...]

The function called A is the same in both models, while f is not. The two different
computations for F (q) = F (0|q) will be presented in the general framework and com-
pleted in the RS ansatz, which should yield the correct result at least in the spherical
case. In the process, it will be illustrated how a set of Gaussian variables (section
5.1.3) is suitable for the computation of the function A. This choice allows for a
straightforward generalization in the RSB case, as it is preliminarily shown in chapter
7.

After the RS case D = 0 is completed, the computations will be extended in the
RS ansatz to the D �= 0 case. Finally, the results will be presented.

5.1.2 No error D = 0 for extensive inputs with correlation q: the
replica approach

As stated in the introduction, we will set D = 0 and compute the following quantity
with the replica approach:
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F (q) =

∫
Pq(ξ, ξ̄) ln

∑
W

∏
μ

Θ

(
ξμ ·W√

N

)
Θ

(
ξ̄μ̄ ·W√

N

)

It is worth recalling that the replica method is a procedure based on the following
identity

lim
m→0

1

m
ln

∫
P (ξ) Zm = lim

m→0

1

m
ln

∫
P (ξ) (1 +m lnZ) =

∫
P (ξ) lnZ

amd thta the trick consists in calculating the formula for integer m and then taking
the limit m → 0 of its analytical continuation.

Thus

F (q) = lim
m→0

1

m
ln

∫
Pq(ξ, ξ̄)

∑
{Wa}

m∏
a,b=1

∏
μ

Θ

(
W a · ξμ√

N

)
Θ

(
W b · ξ̄μ̄√

N

)

Now the following identity can be inserted in the integral

1 =

∫
dQab δ

(
Qab − W a ·W b

N

)

so that

F (q) = lim
m→0

1

m
ln

∫
Pq(ξ, ξ̄)

∑
{Wa}

∫ ∏
a<b

dQab δ

(
Qab − W a ·W b

N

)
m∏

a,b=1

∏
μ

Θ

(
W a · ξμ√

N

)
Θ

(
W b · ξ̄μ̄√

N

)

The delta can be written as an exponential, using the auxiliary variable NQ̂ab:

F (q) = lim
m→0

1

m
lnN−m(m−1)

∫
dQab dQ̂ab

∑
{Wa}

e
−iN ∑

a<b Q̂ab

(
Qab−Wa·Wb

N

)

∫
P (ξ, ξ̄)

m∏
a,b=1

∏
μ

Θ

(
W a · ξμ√

N

)
Θ

(
W b · ξ̄μ̄√

N

)
(5.1.1)

5.1.3 Introduction of Gaussian variables for the derivation of the
saddle point equations

Let us focus on the quantity

A(Q)q =

∫
P (ξ, ξ̄)

m∏
a,b=1

∏
μ

Θ

(
W a · ξμ√

N

)
Θ

(
W b · ξ̄μ√

N

)
(5.1.2)

which appears in (5.1.1).
As explained in the introductory chapter, the distribution of correlated sets of

patterns will be defined as the factorized distributions of p independent pairs with a
certain correlation q.

P (ξ, ξ̄) =
∏
μ

Pq(ξ
μ, ξ̄μ)

With this choice, two claims can be made
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• Function Aq as given by (5.1.2) can be expressed as an integral over Gaussian
variables in place of the sum over {Wa}. The expression is given by (5.1.3)

• Function Aq depends on {Wa} only through Wa ·Wb/N = Qab which appears in
the quadratic form

The actual proof is a bit technical and can be found in 7.0.9 and 7.0.8. Nonetheless,
this can be understood as follows. The marginal distribution of the variables wa =
ξ ·W a/

√
N and w̄a = ξ̄ ·W a/

√
N are distributed as Gaussian according to the central

limit theorem. It is easy to prove that their correlation is

〈wawb〉 = Wa ·Wb

N
= Qab

Therefore, it could be inferred that the joint distribution is a multivariate Gaussian
whose nondiagonal terms are obtained by fixing the correlations between pairs of was
as indicated above.

The result is

A(Q) =

{
1

(2π)m
√
detG

∫ m∏
c

dwc dw̄c

exp

⎛
⎝−1

2

∑
u,v=±1

m∑
a,b=1

wu
a [G

−1]uvabw
v
b

⎞
⎠∏

a,b

Θ(wa)Θ(w̄b)

}p

(5.1.3)

with
w̄a = w(−1)

a wa = w(1)
a

and (Q is a m×m matrix with Qaa = 1)

G =

[
Q qQ
qQ Q

]

G−1 =
1

(1− q2)

[
Q−1 −qQ−1

−qQ−1 Q−1

]
Equivalently

A(Q) = Ap(Q) =

⎧⎨
⎩ 1

(2π)m
√
detG

∫ 2m∏
c=1

dwc exp

⎛
⎝−1

2

2m∑
a,b=1

waG
−1
ab wb

⎞
⎠ 2m∏

a=1

Θ(wa)

⎫⎬
⎭

p

Thus, what is left is

F (q) = lim
m→0

1

m
lnN−m(m−1)

∫ ∏
a<b

dQab dQ̂ab e
−iN ∑

a<b QabQ̂ab
∑
{Wa}

ei
∑

a<b Q̂abW
a·W b

Ap(Q)

Now, let us define:∑
{Wa}

ei
∑

a<b Q̂abW
a·W b

=
∏
j

∑
{Wa

j =±1}
ei

∑
a<b Q̂abW

a
j W

b
j

=

⎧⎨
⎩ ∑
{Wa=±1}

ei
∑

a<b(Q̂ab)W
aW b

⎫⎬
⎭

N

=: eNf(Q̂)
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where f(Q̂) is a sort of free energy of a fully connected Ising model with imaginary
temperature, couplings Q̂ab and m nodes.

Then

F (q) = lim
m→0

1

m
ln

∫ ∏
a<b

dQab dQ̂ab e
−i∑a<b QabQ̂abeNf(Q̂)Ap(Q)

or

F (q) = lim
m→0

1

m
ln

∫ ∏
a<b

dQab dQ̂ab exp

{
N

[
−i
∑
a<b

QabQ̂ab + f(Q̂) + α lnA(Q)

]}
(5.1.4)

The saddle point equations are obtained by the extremization of the exponent and are
therefore

iQab =
d

dQ̂ab

f(Q̂)

iQ̂ab = α
d

dQab
lnA(Q)

with

f(Q̂) = ln
∑

{Wa=±1}
ei

∑
a<b(Q̂ab)W

aW b

A(Q) =
1

(2π)m
√
detG

∫ 2m∏
c=1

dwc exp

⎛
⎝−1

2

2m∑
a,b=1

waG
−1
ab wb

⎞
⎠ 2m∏

a=1

Θ(wa)

In order to solve them, the explicit expressions for A and f (the latter of which
depends on the discrete/spherical model are needed. For this purpose, the RS ansatz
should be introduced.

5.1.4 Replica symmetric equations

Let us suppose that Qab = Q(1− δab) + δab. Equivalently

Q = Q1m + (1−Q)Im

with [1m]ab = 1. The matrices Im and 1m form a closed algebra since [1m]2 = m1m.
The same assumptions hold for Q̂.

In this approximation, f(Q̂) is a exactly proportional to the free energy of a fully
connected Ising model with imaginary temperature, couplings Q̂ab andm nodes. Hence

d

dQ̂
f(Q̂)

is the Ising spin-spin correlation.
As for A, it becomes:

A(Q) =
1

(2π)m
√
detG

∫ 2m∏
c=1

dwc exp

⎛
⎝−1

2

2m∑
a,b=1

waG
−1
ab wb

⎞
⎠ 2m∏

a=1

Θ(wa)

The matrix G−1 is

G−1 =
1

1− q2

[
[Q1m + (1−Q)Im]−1 −q[Q1m + (1−Q)Im]−1

−q[Q1m + (1−Q)Im]−1 [Q1m + (1−Q)Im]−1

]
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It can be shown that

[Q1m + (1−Q)Im]−1 = − Q

(1−Q)(mq −Q− 1)
1m +

1

1−Q
Im

Symbolically

G−1 =
[

AIm −B 1m −q[AIm −B 1m]
−q[AIm −B 1m] AIm −B 1m

]
with

A =
1

1−Q
> 0 ∀0 < Q < 1

B =
Q

(1−Q)(1−Q+mQ)
> 0 ∀0 < Q < 1

Further details about G can be found in the appendix 7.0.7.
The saddle point equations, with the RS ansatz, become

i
1

2
m(m− 1)Q =

d

dQ̂
f(Q̂) (5.1.5)

i
1

2
m(m− 1)Q̂ = α

d

dQ
lnA(Q) (5.1.6)

Before proceeding any further, it must be pointed out that, if Q is real, then
lnAq(Q) and f(Q̂) must be real. Thus, according to (5.1.6), Q̂ must be imaginary.

Furthermore, we can anticipate that

d

dQ
lnAq < 0 ∀Q ∈ (0, 1)

Thus, when the limit m → 0 is taken, (5.1.6) implies that

iQ̂ > 0

In the following sections the detailed computations for lnA (see 5.1.7), for fspherical
(see 5.1.5) and fdiscrete (see 5.1.6) are shown. The results are reported in section 5.2.1.

5.1.5 Spherical perceptron: computing f(Q̂)

The spherical computations are almost identical to the discrete ones. One wust has
to make the replacement ∑

W

�→ 1

V0

∫
d �W δ (W ·W −N)

V0 is the area of a sphere SN . While lnAq is unchanged, f is not. In the RS ansatz,
it becomes

eNf =
1

V m
0

∫ m∏
a=1

d �Wa δ(Wa ·Wa −N) exp

(
iQ̂
∑
a<b

Wa ·Wb

)

=
1

V m
0

∫ m∏
a=1

dJa
2π

d �Wa exp

(
i
∑
a

Ja(Wa ·Wa −N) + iQ̂
∑
a<b

Wa ·Wb

)

=
1

V m
0

∫ m∏
a=1

dJa
2π

exp

(
−iN

∑
a

Ja

){∫ m∏
a=1

dWa exp

(
i
∑
a

JaW
2
a + iQ̂

∑
a<b

WaWb

)}N
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The variables Ja appear in the integral and can be minimized upon according to the
saddle point method. This means that the RS ansatz can be applied to them as well:

Ja = J (5.1.7)

Then

eNf ∼ 1

V m
0

e−iNmJ

(2π)m/2

{∫ m∏
a=1

dWa exp

(
iJ
∑
a

W 2
a + iQ̂

∑
a<b

WaWb

)}N

The quadratic form is of the usual kindMab = (iJ−iQ̂/2)Im+iQ̂/2 1m. Its eigenvalues
are (iJ − iQ̂/2) (×m− 1) and (iJ + (m− 1)iQ̂/2) (×1). Hence

eNf ∼ e−iNmJ

V m
0 (2π)m/2

(2π)mN/2
[
(iJ + (m− 1)iQ̂/2)(iJ − iQ̂/2)m−1

]−N/2

Since

V0 =
(2π)N/2

Γ(N/2)
N (N−1)/2 ∼ (2π)(N−1)/2

N/2− 1

[
e

N/2− 1

]N/2−1
N (N−1)/2

then
V −m0 = (2π)−m(N−1)/2 eo(N)

Hence

f = −imJ − (1/2) ln

(
iJ + (m− 1)iQ̂/2

(iJ − iQ̂/2)1−m

)

For small m,

f = −m

{
iJ +

1

4

iQ̂

iJ − iQ̂/2

}

The stability with respect to J (see (5.1.5)) implies

d

dJ
f = 0

and is satisfied by two points, one of which is a global minimum

iJ =
1

2
(

√
iQ̂+ iQ̂)

This solution can be inserted back into fsph:

fsph(Q̂) = −m

{√
iQ̂+ iQ̂/2

}
(5.1.8)

and
d

dQ̂
fsph(Q̂) = −im

1

2

(
1 + 1/

√
iQ̂

)
(5.1.9)
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5.1.6 Discrete perceptron: computing f(Q̂)

In the following passages it will be assumed that iQ̂ > 0.

ef =
∑
{Wa}

eiQ̂
∑

a<b WaWb = e−imQ̂/2
∑
{Wa}

exp

(
i
Q̂

2

∑
ab

WaWb

)

= e−imQ̂/2
∑
{Wa}

exp

⎛
⎝ iQ̂

2

(∑
a

Wa

)2
⎞
⎠

= e−imQ̂/2
∑
{Wa}

1√
2πiQ̂

∫
dx exp

(
− 1

2iQ̂
x2 + x

∑
a

Wa

)

= e−imQ̂/2 1√
2πiQ̂

∫
dx exp

(
− 1

2iQ̂
x2
)[ ∑

W=±1
exW

]m

= 2me−imQ̂/2 1√
2πiQ̂

∫
dx exp

(
− 1

2iQ̂
x2
)
coshm(x)

(5.1.10)

So that, for small m,

f = ln

⎧⎨
⎩2me−imQ̂/2 1√

2πiQ̂

∫
dx exp

(
− 1

2iQ̂
x2 +m ln cosh(x)

)⎫⎬
⎭

= m

{
ln 2− iQ̂/2 +

1√
2π

∫
dx exp

(
−1

2
x2
)
ln cosh

(
x

√
iQ̂

)}
+ o(m)

The derivative of f with respect to Q̂ is

d

dQ̂
f = im

⎧⎨
⎩−1/2 +

1√
8πiQ̂

∫
dx x exp

(
−1

2
x2
)
tanh

(
x

√
iQ̂

)⎫⎬
⎭+ o(m) (5.1.11)

5.1.7 Discrete and spherical perceptron: computing lnAq

Given Q+ = {xi > 0, x̄i > 0} and

A =
1√

1− q2
1

1−Q
> 0 ∀Q < 1

B =
1√

1− q2
Q

(1−Q)(1−Q+mQ)
> 0 ∀Q ∈ (0, 1)

so that

G−1 =
1√

1− q2

[
AIm −B 1m −q(AIm −B 1m)

−q(AIm −B 1m) AIm −B 1m

]
then

1

(2π)m
√
detG

∫
Q+

∏
i

dxi dx̄i exp

⎛
⎝−A

2

∑
i

(x2i + x̄2i − 2qxix̄i) +
B

2

∑
ij

(xixj + x̄ix̄j − 2qxix̄j)

⎞
⎠
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=
1

(2π)m
√
detG

∫
Q+

∏
i

dxi dx̄i exp

{
− A

2

∑
i

(x2i + x̄2i − 2qxix̄i)

+
1

2
B(1 + q)

⎡
⎣(∑

i

xi

)2

+

(∑
i

x̄i

)2
⎤
⎦− qB

2

(∑
i

(xi + x̄i)

)2}

The following identity can be used three times

eax
2/2 =

√
1/2aπ

∫
dy exp(−y2/2a+ xy)

to replace the squares of the sums. Then

1

(2π)m
√
detG

√
1

8π3B3q(1 + q)2

∫
Q+

dy dȳ du
∏
i

dxi dx̄i exp

{
−A

2

∑
i

(x2i+x̄2i−2qxix̄i)

− 1

2B(1 + q)

[
y2 + ȳ2

]− 1

2qB
u2 + iu

(∑
i

(xi + x̄i)

)
+ y
∑
i

xi + ȳ
∑
i

x̄i

}

In order to decouple the m integrals in xi, it is worth applying the following change
of variables 1

u �→ u+
iq

1 + q
(y + ȳ)

which, after some algebra, allows to rewrite the previous integral as

1

(2π)m
√
detG

√
1

8π3B3q(1 + q)2

∫
Q+

dy dȳ du
∏
i

dxi dx̄i

exp

{∑
i

[
−A

2

(
xi − 1

(1 + q)A
y − i

(1− q)A
u

)2

−A

2

(
x̄i − 1

(1 + q)A
ȳ − i

(1− q)A
u

)2

+Aq

(
xi − 1

(1 + q)A
y − i

(1− q)A
u

)(
x̄i − 1

(1 + q)A
ȳ − i

(1− q)A
u

)]

− 1

2

(
1

qB
+

2m

A(1− q)

)
u2 − 1

2

(
1

B(1 + q)
− m

A(1 + q)2
− q

(1 + q)2B

)
(y2 + ȳ2)

+

(
− i

(1 + q)B
+

im

A(1 + q)

)
u(y + ȳ) +

(
− mq

A(1 + q)2
+

q

B(1 + q)2

)
yȳ

}

Let us define a new function, which is a sort of two dimensional error function

Eq(y, ȳ) =
1

2π

∫ +∞

y
dx

∫ +∞

ȳ
dx̄ exp

[
− 1

2
√

1− q2

[
x x̄

] [ 1 −q
−q 1

] [
x
x̄

]]
(5.1.12)

1See 7.0.4 for the explaination of the imaginary translation
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Therefore, the integral becomes

1√
detG

√
1

8π3B3q(1 + q)2A2m

∫
dy dȳ du[

Eq

(
(1− q2)1/4

(1 + q)
√
A
y +

i(1− q2)1/4

(1− q)
√
A

u,
(1− q2)1/4

(1 + q)
√
A
ȳ +

i(1− q2)1/4

(1− q)
√
A

u

)]m

exp

{
− 1

2

(
1

qB
+

2m

A(1− q)

)
u2 − 1

2

(
1

B(1 + q)
− m

A(1 + q)2
− q

(1 + q)2B

)
(y2 + ȳ2)

+

(
− i

(1 + q)B
+

im

A(1 + q)

)
u(y + ȳ) +

(
− mq

A(1 + q)2
+

q

B(1 + q)2

)
yȳ

}

The y and ȳ can be rescaled

y → y − i(1 + q)

1− q
u

so that that the u can be integrated. The exponential can be written as

exp
{−1

2Muuu
2 + iMyuu(y + ȳ)− 1

2Myy(y
2 + ȳ2)−Myȳyȳ

}
with

Muu =

(
1

qB
+

2m

A(1− q)

)
− 4

(
− 1

(1 + q)B
+

m

A(1 + q)

)
(1 + q)

1− q

−
(

2

B(1 + q)
− 2m

A(1 + q)2
− 2q

(1 + q)2B
+

2mq

A(1 + q)2
− 2q

B(1 + q)2

)
(1 + q)2

(1− q)2

=
1 + q

q(1− q)B

(5.1.13)

Muy =

(
− 1

(1 + q)B
+

m

A(1 + q)

)
+

(1 + q)

1− q

[
−
(
− mq

A(1 + q)2
+

q

B(1 + q)2

)

+

(
1

B(1 + q)
− m

A(1 + q)2
− q

(1 + q)2B

)]
= 0

Myy =
1

(1 + q)2

(
1

B
− m

A

)

Myȳ = − 1

(1 + q)2

(
−mq

A
+

q

B

)
= −qMyy

It is worth noticing that Myy > 0 and Muu > 0 for 0 < Q < 1, ∀m ≥ 0. Hence, u can
be integrated away. For simplicity’s sake, a change of variable is convenient

y → (1 + q)

(1− q2)1/4

(
1

B
− m

A

)−1/2
y

By recalling that

detG = (mQ+ (1−Q))2(1−Q)2m−2(1− q2)m
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and observing that all prefactors cancel each other[
(1 + q)

(1− q2)1/4

(
1

B
− m

A

)−1/2]2 1√
detG

√
2π

Muu

√
1

8π3(B3)q(1 + q)2A2m
=

1

2π

we are left with

Aq(Q) =
1

2π

∫
dy dȳ

[
Eq

(√
Q

1−Q
y,

√
Q

1−Q
ȳ

)]m
exp(−Y tGq Y/2) (5.1.14)

The notation is

Y =

[
y
ȳ

]

Gq =
1√

1− q2

[
1 −q
−q 1

]
The matrix Gq is the same as the one appearing in Eq(x, x̄). Equation (5.1.14) is
indeed quite similar to (5.2.7).

Finally, the small-m expansion is needed

lnAq(Q) = m
1

2π

∫
dy dȳ exp(−Y tGq Y/2) lnEq

(√
Q

1−Q
y,

√
Q

1−Q
ȳ

)
+ o(m)

5.2 Solving of the saddle point equations

5.2.1 RS saddle point equations for D = 0

The final step is to solve the RS saddle point equations. The first SP equation is,
for both the discrete and the spherical model:

− i

2
Q̂ =

1

2π

d

dQ

∫
dy dȳ exp(−Y tGq Y/2) lnEq

(√
Q

1−Q
y,

√
Q

1−Q
ȳ

)
(5.2.1)

with

Eq(y, ȳ) =
1

2π

∫ +∞

y
dx

∫ +∞

ȳ
dx̄ exp

[
− 1

2
√
1− q2

[
x x̄

] [ 1 −q
−q 1

] [
x
x̄

]]
(5.2.2)

and

Gq =
1√

1− q2

[
1 −q
−q 1

]
The second SP equation is: for the discrete model

−1

2
Q = −1/2 +

1√
8πiQ̂

∫
dx x exp

(
−1

2
x2
)
tanh

(
x

√
iQ̂

)
(5.2.3)

For the spherical model

−1

2
Q = −1

2

(
1 + 1/

√
iQ̂

)
(5.2.4)

The most general equations should be solved numerically, and would yield

Qsol = Q(q, α) and Q̂sol = Q̂(Q(q, α))
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The result can be inserted back in (5.1.4) to give

F̄ (q, α) =
−imQsolQ̂sol/2 + f(Q̂sol) + α lnA(Qsol)

m
(5.2.5)

For computational purposes, it is convenient to rewrite lnAq as

lnAq(Q) = m
1

2π

∫
dS dD exp

(
−1

2

√
1− q

1 + q
S2 − 1

2

√
1 + q

1− q
D2

)

ln
1√
2π

[
1− q

1 + q

]1/4 ∫ ∞
√

Q/(1−Q)S
ds exp

(
−1

2

√
1− q

1 + q
s2
)

{
erfc

([
1 + q

1− q

]1/4 [√ Q

1−Q
(D + S)− s

])

− erfc

([
1 + q

1− q

]1/4 [√ Q

1−Q
(D − S) + s

])}

(5.2.6)

These equations should be solved numerically. Unfortunately, this task has turned
out to be harder than expected. Attempts with several simple techniques with both
C++ and Mathematica have encountered different but equally fatal problems associ-
ated to the working precision in performing integrations with the available computation
power. It is surely possible to find a solution with more sophisticated numerical tools.
However, due to the difficulties encountered, it seemed more sensible to postpone such
calculations for future works and focus on some analytically computable task.

For this reason, we have chosen to focus on the capacity αc(D|d). Two main results
will be presented in the following sections.

• A consistency check. It will be shown that the formalism under exam leads to
classic know quantities. In particular the RS standard capacity αc = 2 (or 4/π)
will be recovered both by repeating the previous passages in the simplified case
of a single input set and by taking the limit q → 1. It is worth recalling that, in
this limit, the two input sets become indistinguishable.

• The capacity αc(D|d) will be computed in the RS framework, by taking the limit
Q → 1, which corresponds to assuming that all solutions become one (see the
introduction of 5.2.2 for more details).

5.2.2 RS capacity

The perceptron capacity can be obtain from the Z of a simple learning problem of a
set ξ of p random patterns of length N . The relevant quantity is

f =
1

N

∫
P (ξ) ln

∑
{W}

p∏
α=1

Θ(W · ξα)

It follows that f is the logarithm of the number of solutions divided by N , on average.
The capacity is defined as the ratio αc = p/N above which there are typically no
solutions. The most intuitive way to obtain the capacity would to impose that f →
−∞. However, there exists another possibility. As p/N = α approaches αc, solutions
become less and less and typically more similar to each other. The “similarity” is
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represented by the overlap W · W ′/N . The overlap distribution P (Q̃) is an order
parameter adopted in spin glass theories. Furthermore, in the replica formalism, P (Q̃)
can be deduced from the distribution of the overlaps between replicated synaptic
weights Qab = Wa ·Wb/N (see 1.1.26). Hence, the capacity is reached when Qab → 1.
In the RS scheme, replicated weights Wa are assumed to have fixed mutual overlap Q.
Hence, it is enough to take the limit Q → 1. This is only correct if the RS ansatz is
correct. In the case of the discrete perceptron the RS solution is unstable (negative
entropy), and the actual RSB capacity αc = 0.83 is reached for a much lower value of
Q ≈ 1/2. In this section the unstable RS result αc = 4/3 for the discrete perceptron
will be obtained as a consistency check.

The saddle point equations (5.1.5) and (5.1.6) clearly hold for the present purpose.
It is enough to specify that the matrix G appearing in A (see (5.1.6)) is simply

Gab = Qab

With the RS ansatz
Qab = (1−Q)δab +Q(1− δab)

Hence
G = (1−Q)Im +Q 1m

and

G−1 =
1

1−Q
Im − Q

(1−Q)(1−Q+mQ)
1m =: AIm −B 1m

detG = (1−Q)m−1(1−Q+mQ)

A simpler expression for the quantity lnA is needed. Given Q+ = {xa > 0}a=1,...,m

and observing that

AmB detG =
1

1
B − m

A

then

lnA =
1√

(2π)m detG

∫
Q+

∏
dxa exp

(
−A

2

∑
a

x2a +
B

2

∑
ab

xaxb

)

=
1√

(2π)m detG

∫
Q+

∏
dxa exp

⎛
⎝−A

2

∑
a

x2a +
B

2

(∑
a

xa

)2
⎞
⎠

=
1√

(2π)m detGB

∫
Q+

du
∏

dxa exp

(
−A

2

∑
a

x2a −
1

2B
u2 + u

∑
a

)

=
1√

(2π)m+1 detGB

∫
Q+

du
∏

dxa exp

(
−A

2

∑
a

(xa − u/A)2 − 1

2

(
1

B
− m

A

)
u2

)

=
1√

2π Am detGB

∫
du [erfc(u/

√
A)]m exp

(
−1

2

(
1

B
− m

A

)
u2
)

Hence

lnA =
1√
2π

∫
du [erfc(

√
Q/(1−Q)u)]m exp

(−u2/2
)

(5.2.7)

with2

erfc(x) =
1√
2π

∫ ∞

x
dt e−t

2/2

2Warning: this is not the usual notation which would be

erfc(x) =
1√
π

∫
x

dt e−t2
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The small m expansion of lnA is

lnA = m
1√
2π

∫
du exp

(−u2/2
)
ln erfc

(√
Q/(1−Q)u

)
+ o(m)

It is now necessary to take the derivative of this quantity with respect to Q:

d

dQ
lnA = m

1

2π
√

Q(1−Q)3

∫
du u exp

(
− 1

2(1−Q)
u2
)

1

erfc
(√

Q/(1−Q)u
)+o(m)

(5.2.8)
Thus, the RS equations (5.1.5) and (5.1.6) read

⎧⎪⎪⎨
⎪⎪⎩
−Q/2 = −1/2 + 1√

8πiQ̂

∫
dx x exp

(−1
2x

2
)
tanh

(
x

√
iQ̂

)
−iQ̂/2 = α 1

2π
√

Q(1−Q)3
1√
2π

∫
du u exp

(
− 1

2(1−Q)u
2
)

1

erfc
(√

Q/(1−Q)u
)

(5.2.9)

We are now interested in solving (5.2.9) in the Q → 1 limit in which, however,
the quantities in (5.2.9) are divergent. It is nonetheless possible to perform a Q = 1−

expansion and then impose that the divergences (or the infinitesimals) match.
Let us first consider (5.2.8). It is convenient to split the integral over u into two

integrals over the positive and negative half lines:

1

m

d

dQ
lnA = I+ + I−

Both I+ and I− are divergent, but I+ is the dominant one. Since for x < 0 1/ erfc(x) <
2

I− ≤ 1

π
√

Q(1−Q)

As for I+, the asymptotic expansion3 of erfc can be used. Hence

erfc(
√
Q/(1−Q)u) ∼ 1

u

√
1−Q

2πQ
exp

(
− Q

2(1−Q)
u2
)

Therefore

I+ ∼ − 1

2
√
2π(1−Q)2

∫ ∞

0
du u2 exp(−u2/2) = − 1

4(1−Q)2
(5.2.10)

One can conclude that 1
m

d
dQ lnA ∼ I+. Furthermore, the previous result and (5.2.9)

imply that

iQ̂ = α
1

2(1−Q)2

3Let f = exp(−x2/2). Then f ′ = −xf . Hence, integrating by parts:∫
f = −

∫
f ′/x = −f/x−

∫
f/x2

Thus

f(x)/x =

∫ ∞

x

dt (1 + 1/t2)f

If x→∞
f(x)/x ∼

∫ ∞

x

dt f
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It should be highlight that iQ̂ > 0, as anticipated (see (5.1.10)). In addition, it is
now clear that in the Q → 1 limit, iQ̂ → ∞. This is relevant because the first
saddle point equation (5.2.9) can be simplified by using the asymptotic approximation
tanh(x) ∼ sgn(x) for x → ∞:

tanh

(
x

√
iQ̂

)
= tanh

( √
αx√

2(1−Q)

)
∼ sgn(x)

Hence, the first SP equation in (5.2.9) becomes

−Q/2 = −1/2 +
(1−Q)√

2πα
+ o(1−Q)

The equation is satisfied to the first order in 1 − Q only if α = 4/π. Hence, the RS
capacity is

αRS
c =

4

π

5.2.3 The simplest case: α → 0 in the discrete model

By setting α → 0, we should recover the results of section 4.1.3. This result matchs
with what has been found in 4 and, therefore, the RS computation could be valid in
this limit.

It is immediate from (5.1.6), that

iQ̂ = O(α)

Moreover, by looking at the expansion around zero of tanh(x) = x+x3/3+ o(x3), one
can conclude that

Q = O(α)

as well. Furthermore, by looking at the expression of the function f

f = m

{
ln 2− iQ̂/2 +

1√
2π

∫
dx exp

(
−1

2
x2
)
ln cosh

(
x

√
iQ̂

)}
and considering that ln cosh(x) ∼ x2/2− x4/12 + o(x4), we can deduce that

f = m ln 2 + o(iQ̂) = m ln 2 + o(α)

Analogously
iQ̂Q = O(α2) = o(α)

On the other hand

lnAq(Q) = m
1

2π

∫
dy dȳ exp(−Y tGq Y/2) lnEq (0, 0) + o(Q) = m lnEq (0, 0) + o(Q)

is finite in Q. Hence
α lnAq(0) = O(α)

As explained in section 4.1.1, in order to obtain a nontrivial result, the sum over W
must be divided by 1/2N . Hence, after the system is replicated, a prefactor

1

2mN

appears. Therefore

Fq =
1

Nm
lim

N→∞
lnN−m 1

2mN
emN ln 2+Nmα lnEq(0,0) = p lnEq(0, 0)

which is the expected result.
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5.2.4 The q → 1 limit: perceptron capacity

The limit q → 1 can be used to recover the RS capacity in both the discrete and the
spherical case. The reason is that q appears only in A and not in f . Therefore, f is
left unchanged and it is enough to check that limq→1 lnAq(Q) matches with Gardner’s
classic result as computed in 5.2.2.

In order to take the limit q → 1, is useful to find a suitable set of variables in which
the divergences are easy to treat:

(y, ȳ) �→ (S,D)

with

S =
y + ȳ√

2
S =

y − ȳ√
2

and
(x, x̄) �→ (s, d)

with

s =
x+ x̄√

2
d =

x− x̄√
2

The Jacobian is 1 in both cases. lnAq becomes

lnAq(Q) = m
1

2π

∫
dS dD exp

(
−1

2

√
1− q

1 + q
S2 − 1

2

√
1 + q

1− q
D2

)

ln
1√
2π

[
1− q

1 + q

]1/4 ∫ ∞
√

Q/(1−Q)S
ds exp

(
−1

2

√
1− q

1 + q
s2
)

{
erfc

([
1 + q

1− q

]1/4 [√ Q

1−Q
(D + S)− s

])

− erfc

([
1 + q

1− q

]1/4 [√ Q

1−Q
(D − S) + s

])}

The logarithm’s argument decreases exponentially in the worst case. Consequently,
ln diverges as a polynomial in S and D, in the worst case. Hence, it is the exponential
in S and D which determines the relevant region for the S and D variables. Since
the variance of S is o((1 − q)1/2) while the variance of D is o((1 − q)−1/2), it can be
deduced that the relevant contribution only comes from

S � D

S = O((1− q)−1/4)

D = O((1− q)1/4)

By looking at the region of integration of s and its exponential, one can conclude that

s = O((1− q)−1/4)

s−
√

Q/(1−Q)S = ((1− q)−1/4)

Hence, D can be neglect in the arguments of the erfc functions. Consequently, D
is decoupled and can be integrated away. Furthermore, the arguments of both erfc
functions are both of order O((1 − q)−1/2) in the relevant region s = O((1 − q)−1/4).
Therefore, if u = s−√Q/(1−Q)S → ∞, then

erfc(−u)− erfc(u) ∼ erfc(−u) ∼ Θ(u)
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But Θ(s−√Q/(1−Q)S) = 1 since s−√Q/(1−Q)S > 0. Hence

lnAq(Q) = m
1√
2π

[
1− q

1 + q

]1/4 ∫
dS dD exp

(
−1

2

√
1− q

1 + q
S2

)

ln
1√
2π

[
1− q

1 + q

]1/4 ∫ ∞
√

Q/(1−Q)S
ds exp

(
−1

2

√
1− q

1 + q
s2
)

By rescaling both s and S, the special case of a single set of random patterns (see
paragraph 5.2.2) is recovered:

lnAq=1(Q) = m
1√
2π

∫
dS e−S

2/2 ln erfc(
√

Q/(1−Q)S)

This proves that, as expected, on average, the number of solutions to the learning
problem of two maximally correlated sets of patterns is equivalent to that of a single
set of the same size.

5.2.5 Computation of the RS generalization capacity. Part 1: Q →
1−; D = 0

Before starting over with the computation, let us call lnA as lnA+: this will be
relevant later.

In this section the limit Q → 1 will be taken, while keeping q and 1− q finite. As
explained with more details in section 5.2.2, in the RS framework, the value Q = 1
signals the threshold of p/N above which no more patterns can be learned. This is
exact in the spherical case, but not in the discrete case.

The first step is to compute the generalization capacity for D = 0. This will
yield the function

αRS
c (q) = αRS

c (0|d(q)) (5.2.11)

that can be referred to as a correlation dependent capacity. This quantity, mul-
tiplied by N , is the typical maximum size of two correlated sets of patterns which can
be learned.

The core quantity is

lnA+
q (Q) = m

1

2π

∫
dS dD exp

(
−1

2

√
1− q

1 + q
S2 − 1

2

√
1 + q

1− q
D2

)

ln
1√
2π

[
1− q

1 + q

]1/4 ∫ ∞
√

Q/(1−Q)S
ds exp

(
−1

2

√
1− q

1 + q
s2
)

{
erfc

([
1 + q

1− q

]1/4 [√ Q

1−Q
(D + S)− s

])

− erfc

([
1 + q

1− q

]1/4 [√ Q

1−Q
(D − S) + s

])}

It can be rewritten with a shift and a rescaling so that results from section 7.0.6 can
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be used:

lnA+
q (Q) = m

1

2π

∫
dS dD exp

(
−1

2
S2 − 1

2
D2

)
(5.2.12)

ln
1√
2π

√
1−Q

Q

∫ ∞

0
ds exp

(
−1

2

Q

1−Q
(s+ S)2

)
(5.2.13)

{
erfc

(√
Q

1−Q

[
D −

√
1 + q

1− q
s

])
(5.2.14)

− erfc

(√
Q

1−Q

[
D +

√
1 + q

1− q
s

])}
(5.2.15)

The limit Q → 1− can be taken. Equation ( 7.0.10) with

M±
a,b(x) = Θ(±b− x) (x∓ b)2 + (x/R+ a)2 (5.2.16)

and

R =

√
1− q

1 + q

implies that the logarithm in the previous equation can be replaced with a quadratic
form

−1

2
IR(S,D) =M+

S,D((RD −R2S)/[R2 + 1]) Θ(RD + S) Θ(D) Θ(−S +DR)

+M+
S,D(0) Θ(RD + S) Θ(D) Θ(−D + SR)

+M−
S,D((−RD −R2S)/[R2 + 1]) Θ(−D) Θ(S −RD) Θ(−RS −D)

+M−
S,D(0) Θ(−D) Θ(S −DR) Θ(RS +D)

in S and D whose prefactor is Q/(1−Q). The integration of this quadratic form yields

1 +
4

π
atan(R)

If q = 1, this result implies that lnA+
q (Q → 1−) = −m 1

4(1−Q) which is consistent with

5.2.2. However, if we choose q = −1, the result is lnA+
−1(Q → 1−) = −m 3

4(1−Q) . This
is physically inconsistent since, by proceeding further with the computation, it can be
concluded that there exists a certain value of α below which the perceptron is capable
of performing a contradictory task. In other words, it could give the same output for
two opposite inputs ξ and −ξ. This is, however, not the case. If the limit q → −1+

is taken from equation (5.2.12), before the limit Q → 1− is taken, it would follow,
correctly, that

lim
q→−1+

lnA+
q (Q) = −∞

since

lim
ε→0+

∫ ∞

0
dx e−

1
2
(x−a)2 erfc(x/ε+ b) = 0

The reason for this discrepancy is that the limit q → −1+ and Q → 1− do not
commute. This means that there exists a singular point at q = −1 that ensures that
αc(−1) = 0. The implications of this discontinuity will be discussed later. In the
present section it is enough to correct the result of the integral with a delta function
that introduces the missing divergence. The “ugly” term∞ δ(q+1) should be intended
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as the result of a limit and is not problematic since it will not appear directly in physical
quantities.

Hence

lnA+
q (Q) ∼ −m

Q

1−Q

1

4π

∫
dS dD exp

(
−1

2
S2 − 1

2
D2

)
IR(S,D)

which is

lnA+
q (Q → 1−) = −m

1

1−Q

1

4
T+(R) (5.2.17)

with

T+(q) = 1 +
4

π
atan(R) +∞ δ(1 + q) (5.2.18)

Finally

d

dQ
lnA+

q (Q → 1−) = −m
1

(1−Q)2
1

4
T+(R) (5.2.19)

5.2.6 RS correlation dependent capacity αc(q)

The previous results can be used to compute αc(q) = αc(0|d(q)). Let us begin with
the spherical perceptron. To obtain this result, equations (5.2.19) and (5.1.9) can be
combined to solve the SP equations.

The first SP equation is

−iQ/2 =
d

dQ̂
fsph

which is satisfied by

iQ̂ =
1

(1−Q)2

From (5.1.6) it holds that

−m
Q

2(1−Q)2
= α

d

dQ
lnAq (5.2.20)

If Q → 1, then

−m
Q

2(1−Q)2
= −m

α

4(1−Q2)
T (q)

The following result is the correlation dependent capacity of the spherical per-
ceptron and is plotted in figure 5.1.

αsph
c (q) =

2

T (q)
(5.2.21)

αsph
c (q) =

2

1 + 4/πatan(
√
(1 + q)/(1− q))

− 2

3
δ(1 + q) (5.2.22)

This result is compatible with the literature: in the q → 1 limit, the capacity reduces
to 2. Furthermore, unlike in the discrete case, since the RS ansatz is correct in the
spherical case even at β = ∞, this result should be exact.

The discrete case is almost identical, with the single difference that 4/π appears
in the result instead of 2

αdis
c (q) =

4/π

1 + 4/πatan(
√
(1 + q)/(1− q))

− 4

3π
δ(1 + q) (5.2.23)

this result is not expected to be correct, though.
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Figure 5.1: Correlation dependent capacity αc(q) (5.2.21) for spherical perceptron.

5.2.7 Fixed error D �= 0 for a given input overlap q in the RS frame-
work: derivation of the SP equations

In this chapter, the results from the computation of F (0|d) will be generalized to the
D �= 0 case. The steps are analogous to the simpler case D = 0, however the notation
is a little heavier. The goal is to compute:

F (D|q) =
∫

Pq(ξ, ξ̄) ln
∑
W

∏
μ

Θ

(
ξμ ·W√

N

)
∑

{ημ=±1}
δ

(∑
μ

ημ, (1− 2D)p

)∏
μ̄

Θ

(
ημ

ξ̄μ̄ ·W√
N

)
(5.2.24)

The replica method will be applied to this case too:

F (D|q) = lim
m→0

1

m
ln

∫
P (ξ, ξ̄)

∑
{Wa}

m∏
a=1

∏
μ

Θ

(
ξμ ·W a

√
N

)

∑
{ηaμ=±1}

δ

(∑
μ

ηaμ, (1− 2D)p

)∏
μ̄

Θ

(
ηaμ

ξ̄μ̄ ·W a

√
N

)

The next step is to introduce the order parameter Qab and the auxiliary variable NQ̂ab:

F (D|q) = lim
m→0

1

m
lnN−m(m−1)

∫
dQab dQ̂ab

∑
{Wa}

e
−iN ∑

a<b Q̂ab

(
Qab−Wa·Wb

N

)

∫
P (ξ, ξ̄)

m∏
a=1

∏
μ

Θ

(
ξμ ·W a

√
N

) ∑
{ηaμ=±1}

δ

(∑
μ

ηaμ, (1− 2D)p

)∏
μ̄

Θ

(
ηaμ

ξ̄μ̄ ·W a

√
N

)
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The following quantity appears in the integral (the sums and products have been
rearranged):

A(Q) :=
∑

{ηaμ=±1}
δ

(∑
μ

ηaμ, (1− 2D)p

)∫
P (ξ, ξ̄)

∏
μ

m∏
a=1

Θ

(
ξμ ·W a

√
N

)∏
μ̄

Θ

(
ηaμ

ξ̄μ̄ ·W a

√
N

)
(5.2.25)

A can be rewritten, if we work under the assumption that P (ξ, ξ̄) =
∏

μ P (ξμ, ξ̄μ̄)

is factorized, as explained before. Therefore, calling wμ
a = ξμ · W a/

√
N and w̄μ

a =
ξ̄ ·W a/

√
N

A(Q) =
∑

{ηaμ=±1}

(∑
μ

ηaμ, (1− 2D)p

)∏
μ

1

(2π)m
√
detG

∫ m∏
c

dwc dw̄c

exp

⎛
⎝−1

2

∑
u,v=±1

m∑
a,b=1

wμu
a [G−1]uvabw

μv
b

⎞
⎠∏

a,b

Θ(wμ
a )Θ(ηbμ w̄

μ
b ) (5.2.26)

with
w̄a = w(−1)

a wa = w(1)
a

and (Q is a m×m matrix with Qaa = 1)

G =

[
Q qQ
qQ Q

]

G−1 =
1

(1− q2)

[
Q−1 −qQ−1

−qQ−1 Q−1

]
For any given μ, let us define

Xμ :=
1

2

(
m−

m∑
a=1

ηaμ

)
(5.2.27)

for which the following equation holds

p∑
μ=1

Xμ = mpD (5.2.28)

Let us rewrite equation (5.2.26) in the following way

A(Q) =

∫ ∏
μ

dXμ

∑
{ηaμ=±1}

(∑
μ

ηaμ, (1− 2D)p

)

δ

(
Xμ − 1

2

(
m−

m∑
a=1

ηaμ

)) ∏
μ

Aμ(Xμ|q) (5.2.29)

Let us now assume to be working in the RS ansatz. As can be deduced by looking
at the passages in section 5.1.7, the functions Aμ(Xμ|d) only depend on {ηaμ} through
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Xμ. It can be seen that

Aμ(Xμ|q) = 1

2π

∫
dy dȳ exp(−Y tGqY/2)[

E+
q

(√
Q

1−Q
y,

√
Q

1−Q
ȳ

)]m−Xμ [
E−q

(√
Q

1−Q
y,

√
Q

1−Q
ȳ

)]Xμ

(5.2.30)

with

E+
q (y, ȳ) =

1

2π

∫ ∞

y
dx

∫ ∞

ȳ
dx̄ exp(−Y tGqY/2) (5.2.31)

E−q (y, ȳ) =
1

2π

∫ ∞

y
dx

∫ ȳ

∞
dx̄ exp(−Y tGqY/2) (5.2.32)

If we expand Aμ for small m (and Xμ = 0(m)), we find

Aμ(D|q) = 1 + (m−Xμ) A
+(q) +Xμ A−(q) + o(m)

with

A±(Q)q =
1

2π

∫
dy dȳ exp(−Y tGqY/2) lnE±q

(√
Q

1−Q
y,

√
Q

1−Q
ȳ

)
(5.2.33)

Hence ∏
μ

Aμ(Xμ|q) =
∏
μ

e(m−Xμ) A
+
q (Q)+Xμ A−

q (Q)

It follows from (5.2.28) that∏
μ

Aμ(Xμ|q) = emp[(1−D) A−q+(Q)+D A−
q (Q)]

On the other hand∫ ∏
μ

dXμ

∑
{ηaμ=±1}

(∑
μ

ηaμ, (1− 2D)p

)
δ

(
Xμ − 1

2

(
m−

m∑
a=1

ηaμ

))
=

(
p

pD

)m

Therefore

lnA(D|q) ∼ mp[(1−D) A+(q) +D A−(q) + (1−D) ln(1−D) +D lnD] (5.2.34)

Then

F (D|q) = lim
m→0

1

m
ln

∫
dQ dQ̂ e−iN

m(m−1)
2

QQ̂+Nf(Q̂)A(D|q)
or

F (D|q) = lim
m→0

1

m
ln

∫
dQ dQ̂ e

N
[
−im(m−1)

2
QQ̂+f(Q̂)+mα[(1−D) A+

q (Q)+D A−
q (Q)]

]

(5.2.35)
This last equation implies that, in order to allow for D �= 0, it is enough to replace

lnAq(Q) �→ (1−D) A+
q (Q) +D A−q (Q) (5.2.36)

in the saddle point equations.
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5.2.8 Computation of the generalization capacity. Part 2: Q →
1−;D �= 0

In case D �= 0, we should compute lnA−q as well. The same change of variables as
before yields

lnA−q =
m

2π

∫
dS dD exp

(
−1

2

√
1− q

1 + q
S2 − 1

2

√
1 + q

1− q
D2

)

ln
1√
2π

[
1− q

1 + q

]1/4{∫ √
Q/(1−Q)S

−∞
ds exp

(
−1

2

√
1− q

1 + q
s2
)

erfc

([
1 + q

1− q

]1/4 [√ Q

1−Q
(D + S)− s

])

+

∫ ∞
√

Q/(1−Q)S
ds exp

(
−1

2

√
1− q

1 + q
s2
)

erfc

([
1 + q

1− q

]1/4 [√ Q

1−Q
(D − S) + s

])}

This can conveniently rewritten as

lnA−q =
m

2π

∫
dS dD exp

(
−1

2
S2 − 1

2
D2

)

ln
1√
2π

{∫ ∞

0
ds exp

(
−1

2

Q

1−Q
(s− S)2

)

erfc

([√
Q

1−Q

[
D +

√
1 + q

1− q
s

]])

+

∫ ∞

0
ds exp

(
−1

2

Q

1−Q
(s+ S)2

)

erfc

([√
Q

1−Q

[
D +

√
1 + q

1− q
s

]])}

so that results from section 7.0.6 (see 7.0.4) can be applied. We are interested in the
limit Q = 1−. Let

L+
a,b(x) =

[
(x/R− b)2 Θ(x/R− b) + (x− a)2

]
(5.2.37)

and
Y +
R (a, b) = min

x>0
L+
a,b(x) (5.2.38)

then

lnA−q ∼− m

2π

∫
dS dD exp

(
−1

2
S2 − 1

2
D2

)
1

2

1

1−Q
min[YR(−S,−D), YR(S,−D)]
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The integral can be done by splitting the region of integration in a proper way. It
turns out that

min[YR(−S,−D), YR(S,−D)]

= Θ(−D) Θ(S) Θ(S +RD) LS,−D((S −D/R)/(1 +R2))

= Θ(−D) Θ(S) Θ(−S +RD) L−S,−D((−S −D/R)/(1 +R2))

= Θ(D) Θ(−S) [Θ(S +D/R) L−S,−D(0) + Θ(−S −D/R) L−S,−D((−S −D/R)/(1 +R2))]

= Θ(D) Θ(S) [Θ(S −D/R) LS,−D((S −D/R)/(1 +R2)) + Θ(−S +D/R) LS,−D(0)]

As before, we should add an infinite delta contribution in the point q = 1 to the result.
Finally

lnA−q ∼ − m

4(1−Q)
T−(q) (5.2.39)

with

T−(q) =
[
1 +

4

π
acot(R)

]
+∞ δ(q − 1) (5.2.40)

and

R =

√
1− q

1 + q

The conclusion is that

d

dQ
lnA−q = − m

4(1−Q)2
T−(q) (5.2.41)

This result can be put together with the previous one. The complete RS saddle
point equation involving lnA (see (5.2.20) and (5.2.36)) reads

−iQ̂/2 = −α
1

4(1−Q)2
[(1−D) T+(q) +D T−(q)] (5.2.42)

5.3 Analytical results

5.3.1 Result: the generalization capacity and its phase diagram

As already pointed out, in the RS framework, the expressions for the generalization
capacity of the spherical and the discrete model are only different by a factor. While
the former is correct, the second is not. Likewise, we can expect the RS generalization
capacity to be correct only for the spherical model.

The generalization capacity for the spherical perceptron is

αsph
c (D|d) = αsph

c

{
1

(1−D) TRS
+ (d) +D TRS− (d)

−1

3
[δ(d) (1− δ(D)) + δ(d− 1) (1− δ(1−D))]

}
(5.3.1)

with
TRS
± (q) = 1 + (4/π)atan(R±1) (5.3.2)

64



R =
√

(1− q)/(1 + q) =

√
d

1− d
(5.3.3)

αsph
c = 2

The function is plotted in figure 5.2. While it behaves as one could intuitively
expect, some less trivial conclusions can be drawn from this formula.

• The vertical tangent in q = 1 for fixed D = 0 implies that, when α is close to the
capacity, there is typically no chance that any input is classified as the training
set.

• The generalization capacity never vanishes but when at (d = 1, D �= 0) and
(d = 1, D �= 1). This means that, for any choice of (d,D) there exists some α
below which F (D|d) > −∞

• There is a value of α

αlow =
αsph
c

3
=

2

3
(5.3.4)

below which Fα(D|d) > −∞ (there are always solutions) except in the case in
which a contradictory task is required i.e. expecting different outputs for the
same input or expecting the same output for opposite inputs.

Conversely, for α > 2/3, for every d > 1/2, there exists some Dd so that if
D > Dd for which Fα(D|d) = −∞. Conversely, for every d < 1/2, there exists
some Dd so that if D < Dd, then Fα(D|d) = −∞.

If we consider D = 0, the existence of αlow is equivalent to saying that, below
αlow, the perceptron can be successfully trained to fully discern two arbitrarily
similar sets unless they are identical.

Conversely, given D = 1, this means that, below αlow, the perceptron can be
successfully trained to give the same output to two arbitrarily different sets unless
they are opposite.

• The function αc(D|d) is invariant with respect to the transformation

(d,D) �→ (1− d, 1−D)

i.e. a reflection with respect to the point (1/2, 1/2).

In the case of the discrete perceptron the computation is alike and the results is

αdiscrete(RS)
c (D|d) = αRS

c

{
1

(1−D) TRS
+ (d) +D TRS− (d)

− 1

3
[δ(d) (1− δ(D)) + δ(d− 1) (1− δ(1−D))]

}
(5.3.5)

with αRS
c = 4/π. While it is a first step, this result is surely not correct and probably

not even a good qualitative approximation. This means that a RSB computation is
needed.
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Figure 5.2: The generalization capacity αsph
c (D|d) for spherical perceptron. The delta

contribution is omitted here
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Chapter 6

Outlook and possible future
development

6.1 A list of open questions

In the previous chapters, it has been shown that generalization can be studied in terms
of input correlations with the replica formalism. In this section we propose a list of
some open questions.

• In chapter 3 we have presented distance (3.2.15) and we have presented an eu-
ristic argument if favor of the factorization of the probability Pd(ξ, ξ̄) with this
measure. A more rigorous approach could be followed to quantify the goodness
of this assumption.

• In chapter 3 we have chosen to use distance (3.2.15). It could be interesting
to study whether other distances can be defined to probe different properties of
perceptron.

• The computations presented in this thesis are aimed at studying the quantity
F (D|d). The computations could be repeated for (3.2.9) and compared to the
results presented here.

• Due to working precision issues, some numerical computations have been left for
future works. It could be interesnting to complete them to get the full expression
of F (D|d).

• As it has been remarked multiple times, RSB results are incorrect for the discrete
model. A natural developement of this thesis could be a study of the stability
of the solutions (even the spherical result should be checked, for the sake com-
pleteness, in terms of stability) and the sign of the entropy. Moreover, an RSB
computation is probabily needed in this case.

As a last remark, we close this thesis with a preliminary approach to the RSB
computation. The purpose of the following sections is to show that the gaussian
formalism which has been adopted can be generalized to the RSB case. This is shown
in the simpler case of a single set of pattern as it would be required to compute 1RSB
capacity. The aim is not to solve the SP equations, which would require more than a
few sections, but to show that the fundamental quantities can be computed.
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6.2 A preliminary gaussian approach to RSB computa-
tions

6.2.1 An algebra for RSB

The aim of the following section is to provide a preliminary approach to the compu-
tations in the RSB ansatz, as mentioned in the previous section.

The first step is to define the matrices

D(k,m) = diag(1k, 1k, ..., 1k︸ ︷︷ ︸
m/k=n

) (6.2.1)

with m/k ∈ N and with 1k being a k × k suare matrix with all entries equal to one.
For a given m, these matrixes form a closed abelian algebra with the matrix product

D(k,m)D(k′,m) = min(k, k′)D(max(k, k′),m) (6.2.2)

Let us observe that
D(1,m) = Im

D(m,m) = 1m

For any given increasing sequence of integers

K = {ki}i=0,1,...,h,h+1

such that
ni := ki+1/ki ∈ N

kh+1 = m k0 = 1

the matrix Q ∈ Mm(R), according to the RSB ansatz, can be written as

QK =

h+1∑
i=0

C(i)D(ki,m) (6.2.3)

The coefficients C(i) are chosen in the following way

C(0) = 1−Q1

C(h+ 1) = Qh+1

C(i) = Qi −Qi+1

Given this premise, Q−1K can be expanded on the same algebra

Q−1K =

h+1∑
i=0

C̄(i)D(ki,m) (6.2.4)

The coefficients C̄(i) satisfy the following equations{
1 = C̄(0)C(0)

0 =
∑

j<i[kj C(i)C̄(j) + kj C̄(i)C(j)] + kiC̄(i)C(i) i > 1
(6.2.5)

which can be solved recursively.
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6.2.2 1RSB Capacity

The first nontrivial case is 1RSB. The matrix Q will be assumed to be a m×m matrix.
All elements on the diagonal are 1. There are n = m/k diagonal blocks of size k, whose
entries (except for the diagonal) are equal to Q1. All other entries are Q2. By using
the previous notation

Q−1 = C(0)Im + C(1)D(k,m) + C(2)1m

with
C(0) = 1−Q1 C(1) = Q1 −Q2 C(2) = Q2

The recursive equations yield

C̄(0) =
1

1−Q1

C̄(1) = − Q1 −Q2

(1−Q1)(1−Q1 + k2(Q1 −Q2))

C̄(2) = − Q2

(1−Q1 + k2(Q1 −Q2))(1−Q1 + k2(Q1 −Q2) +mQ2)

Since Q1 > Q2, then

C̄(0) > 0 C̄(1) < 0 C̄(2) < 0

For simplicity, we will use −C̄(1) (C̄(1) > 0) instead of C̄(1) and the same for C̄(2).
In order to compute the 1RSB capacity, the next step is to compute lnA and f .

lnA =
1√

(2π)m detG

∫
Q+

∏
dxa

exp

⎛
⎝− C̄(0)

2

∑
a

x2a +
C̄(1)

2

∑
ab

xaxb +
C̄(2)

2

n∑
l=1

lk∑
a,b=(l−1)k

xaxb

⎞
⎠

Now, a set of auxiliary variables can be introduced. Each variable will have as many
labels as the RBS level. Each index labels the position of the variables in a square
submatrix. In this case, we will have

u and {ul} with l = 1, ..., n

Hence

lnA =
1√

(2π)m detG

1√
(2π)n+1C̄(1)C̄(2)n

∫
Q+

du
∏

dul
∏

dxa

exp

(
− C̄(0)

2

∑
a

x2a + u
∑
a

xa +

n∑
l=1

ul

lk∑
a=(l−1)k

xa − 1

2C̄(1)
u2 − 1

2C̄(2)

n∑
l=1

u2l

)

The sum over a (general replica index) can be split into n subsums. After a little
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algebra, one gets

lnA =
1√

(2π)m detG

1√
(2π)n+1C̄(1)C̄(2)nC̄(0)m

∫
du

n∏
l=1

dul

[
erfc

(
x− u/

√
C̄(0)− ul/

√
C̄(0)

)]k

exp

(
− 1

2

(
1

C̄(2)
− m

C̄(0)

)
u2

− 1

2

(
1

C̄(1)
− k

C̄(0)

) n∑
l=1

u2l −
k

C̄(0)
u

n∑
l=1

ul

)

The final expression for lnA, which depends explicitly on m, k and n, is

lnA =
1√

detG

1√
(2π)n+1C̄(1)C̄(2)nC̄(0)m

∫
du

n∏
l=1

dul

exp

(
− C̄(0)

2

(
1

C̄(1)
− m

C̄(0)

)
u2

)
[∫

du1 exp

(
− C̄(0)

2

(
1

C̄(2)
− k

C̄(0)

)
u21 − kuu1

)
[
erfc

(
x− u

√
C̄(0)− u1

√
C̄(0)

)]k ]n

Let us now consider f . The 1RSB matrix Q̂ is

Q̂ = (Q̂1 − Q̂2)D(k,m) + Q̂2 1m
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ef =
∑
{Wa}

exp

⎛
⎝i(Q̂1 − Q̂2)

∑
a<b

WaWb + iQ̂2

n∑
l=1

∑
l(k−1)<a<b<lk

WaWb

⎞
⎠

=
∑
{Wa}

exp(−imQ̂1/2) exp

⎛
⎝i(Q̂1 − Q̂2)

∑
a,b

WaWb/2 + iQ̂2

n∑
l=1

∑
l(k−1)<a,b<lk

WaWb/2

⎞
⎠

=
1√

iQ̂2

√
i(Q̂1 − Q̂2)

∑
{Wa}

exp(−imQ̂1/2)

∫
dx

n∏
l=1

dxl

exp

(
− 1

2iQ2
x2 − 1

2i(Q̂1 − Q̂2)

n∑
l=1

x2l +
∑
a

Wax+

n∑
l=1

xl
∑

l(k−1)<a<lk

Wa

)

=
1√

iQ̂2

√
i(Q̂1 − Q̂2)

2m exp(−imQ̂1/2)

∫
dx

n∏
l=1

dxl

exp

(
− 1

2iQ2
x2 − 1

2i(Q̂1 − Q̂2)

n∑
l=1

x2l

)
n∏

l=1

[cosh (x+ xl)]
k

=
1√

iQ̂2

√
i(Q̂1 − Q̂2)

2m exp(−imQ̂1/2)

∫
dx exp

(
− 1

2iQ2
x2

)
[∫

dx1 exp

(
− 1

2i(Q̂1 − Q̂2)
x21

)
[cosh (x+ x1)]

k

]n

=2m exp(−imQ̂1/2)

∫
dx exp

(
− 1

2
x2

)[∫
dx1

exp

(
−1

2
x21

)[
cosh

(
x

√
iQ̂2 + x1

√
i(Q̂1 − Q̂2)

)]k ]n

Finally, the saddle point equations should be written.

m(k − 1)

2
iQ̂1 =

d

dQ1
lnA

m(m− k − 2)

2
iQ̂2 =

d

dQ2
lnA

m(k − 1)

2
iQ1 =

d

dQ̂1

f

m(m− k − 2)

2
iQ2 =

d

dQ̂2

f

6.2.3 h-RSB capacity

The passages of the previous sections will be generalized to derive the capacity with
arbitrary RS breaking.

The matrix Q will be taken as described in section 6.2.1: a kh+1 × kh+1 = m×m
matrix with nh = kh+1/kh diagonal blocks of size kh. Each of these has nh−1 diagonal
sub-blocks of size kh−1 and so on. Let us call I any set of integers which identify the
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position of all diagonal blocks in which a certain diagonal element is contained. I is a
string of h+ 1 ordered integers. The first integer identifies the positon of the element
in the smallest set of blocks

Ih = (ih, ih−1, ..., i1, i0) with 0 < i0 ≤ k1 = n0; 0 < i2 ≤ n2; ...; 0 < ih ≤ nh

Analogously, for any r < h + 1, a set of h − r integers Ir identifies the position a
diagonal block within all super blocks in which it is contained. Furthermore, the set
of such indices can be equipped with a partial-ordering relationship. Let us say that

It ≺ It′

if t > t′ and It identifies a sub-block contained in a block identified by I ′t. Equivalently
all the indices in It are the h− t indices inside It′ , on the left. Hence

(Ir,≺) (6.2.6)

describes the hierarchical structure of the diagonal block matrices. This notation will
be relevant later and will allow for a compact manipulation of hierarchic variables.

I_3={}

I_2={1} I_2={2} I_2={3}

I_1={11} I_1={12} I_1={21} I_1={22} I_1={31} I_1={32}

Figure 6.1: Example of tree, representing diagonal blocks hierarchy (6.2.6) at 2RSB.
In the picture m/k2 = k3/k2 = 3 and k2/k1 = 2. Each arrow → represents a �
relationship.

The first step is to solve the recursive equations for C̄(i). Clearly, it always holds
that

C̄(0) =
1

1−Q1
> 0

The recursive equations are

C̄(i) = −
∑

j<i kjC(i)C̄(j)∑
j≤i kjC(j)

(6.2.7)

and the solution is

C̄(i) = − C(i)[∑
j≤i kjC(j)

] [∑
j<i kjC(j)

] < 0 (6.2.8)

As in the 1RSB computation, instead of negative C̄(i), we will use positive constants
multiplied by a minus.
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The next step is to compute lnA. An auxiliary variable will be needed for any
sub-block in Q−1.

lnA =
1√

(2π)m detG

∫
Q+

∏
I

dxI exp

⎛
⎝− C̄(0)

2

∑
I

x2I +
1

2

h+1∑
j=1

C̄(j)
∑

Ih+1−j

∑
I,I′≺Ih+1−j

xIxI′

⎞
⎠

=
1√

(2π)m detG

1√∏
j [2πC̄(j)]kj

∫
Q+

h+1∏
j=1

∏
Ih+1−j

duIh+1−j

∏
I

dxI

exp

(
− C̄(0)

2

∑
I

x2I +
h+1∑
j=1

∑
Ih+1−j

uIh+1−j

∑
I≺Ih+1−j

xI − 1

2

h+1∑
j=1

∑
Ih+1−j

1

C̄(j)
u2Ih+1−j

)

=
1√

C̄(0)m detG

1√∏
j [2πC̄(j)]kj

∫ h+1∏
j=1

∏
Ih+1−j

duIh+1−j

∏
I

erfc

⎛
⎝x− 1√

C̄(0)

h+1∑
j=1

∑
Ih+1−j
I

uIh+1−j

⎞
⎠

exp

(
k1

h+1∑
i=1

∑
Ih+1−i

uIh+1−i

h+1∑
j>i

∑
Ih+1−j≺Ih+1−i

uIh+1−j

)

exp

(
− 1

2

h+1∑
j=1

∑
Ih+1−j

[
1

C̄(j)
− kj

C̄(0)

]
u2Ih+1−j

)

A small rearrangement leads to

lnA =
1√

C(0)m detG

1√∏
j [2πC̄(j)]kj

∫
du0 exp

(
−1

2

[
1

C̄(1)
− kh

C̄(0)

]
u20

)
∏
I1

∫
duI1 exp

(
−1

2

[
1

C̄(2)
− kh−1

C̄(0)

]
u2I1 + k1uI1u0

)

∏
I2≺I1

∫
duI2 exp

⎛
⎝−1

2

[
1

C̄(3)
− kh−2

C̄(0)

]
u2I2 + k1uI2

∑
J
I2

uJ

⎞
⎠

...

∏
Ih≺Ih−1

∫
duIh exp

⎛
⎝−1

2

[
1

C̄(h+ 1)
− k1

C̄(0)

]
u2Ih + k1uIh

∑
J
Ih

uJ

⎞
⎠

⎡
⎣erfc

⎛
⎝x− 1√

C̄(1)

n∑
j=1

uIh−j

⎞
⎠
⎤
⎦k1
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The index notation can be simplified

lnA =
1√

C̄(0)m detG

1√∏
j [2πC̄(j)]kj

∫
du0 exp

(
−1

2

[
1

C̄(1)
− kh

C̄(0)

]
u0

)
[∫

du1 exp

(
−1

2

[
1

C̄(2)
− kh−1

C̄(0)

]
u21 + k1u1u

)
[∫

du2 exp

(
−1

2

[
1

C̄(2)
− kh−2

C̄(1)

]
u22 + k1u2(u+ u1)

)
...[∫

dui exp

⎛
⎝−1

2

[
1

C̄(i)
− kh−1

C̄(0)

]
u2i + k1ui

∑
j<i

uj

⎞
⎠

...[∫
duh exp

⎛
⎝−1

2

[
1

C̄(h)
− k1

C̄(1)

]
u2h + k1uh

∑
j<h

uj

⎞
⎠

⎡
⎣erfc

⎛
⎝x− 1√

C̄(1)

n∑
j=1

uj

⎞
⎠
⎤
⎦k1 ]n1

...

]nh−1
]nh

This formula could be further manipulated. However, the goal was just to show that
this procedure is possible. Hence, in this thesis we will just add that we speculte that,
at the end of this procedure, with proper recursive translations, we could get:

lnA =
1√

C̄(0)m detG

√∏
j α

(j)(h+ 1− j)√∏
j [2πC̄(j)]kj

∫
du0e

− 1
2
u2
0

[∫
du1 e

− 1
2
u2
1

[∫
du2 e

− 1
2
u2
2 . . .

[∫
duh e−

1
2
u2
h

⎡
⎣erfc

⎛
⎝x− 1√

C̄(1)

n∑
j=1

γjuj

⎞
⎠
⎤
⎦k1 ]n1

...

]nh−1
]nh
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Chapter 7

Appendix

7.0.4 Imaginary translation of a Gaussian variable

I0 =

∫
R

dx e−x
2/2 =

∫
R+w

dx e−x
2/2 = Iw

with w ∈ C, since

Iw =

∫
R+w

dx e−x
2/2 =

∫
R

dx e−(x−w)2/2

R and R+w can be seen as the limit case of the horizontal sides of the rectangle in C

R = {(a, b) ∈ C : a ∈ [−K,K] b ∈ [0,�(w)]}
The integral on the path described by ∂R receives no contribution by the vertical
sides, since ∫

v.s.
|e−(x−w)2 | ≤ |�(w)|e−K2/2+constK |e−w2/2| −→

K→∞
0

Hence

0 =

∫
∂R

e−x
2/2 = I0 − Iw

for e−x2
is an integer function.

7.0.5 Distribution of overlaps of random patterns

Given p binary patterns of size N , the following calculation yields the fraction r(q) of
overlaps which equal to q.

r(q) =
1

2pN

∑
{ξα}

1

p(p− 1)/2

∑
α<β

δ

(
q − ξα · ξβ

N

)

=
1

2pN

∑
{ξα}

1

p(p− 1)/2

∑
α<β

∫
dxαβ
2π

exp

(
ixαβ

(
q − ξα · ξβ

N

))

The order of the sums
∑
{ξα} and

∑
α<β can be inverted

r(q) =
1

2pN
1

p(p− 1)/2

∑
α<β

∫
dxαβ
2π

exp (ixαβq)
∑
{ξα}

exp

(
−ixαβ

ξα · ξβ
N

)

=
1

22N
1

p(p− 1)/2

∑
α<β

∫
dxαβ
2π

exp (ixαβq)
∑

{ξα},{ξβ}
exp

(
−ixαβ

ξα · ξβ
N

)
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All greek indeces can be dropped

r(q) =
1

22N

∫
dx

2π
exp (ixq)

∑
{ξ},{ξ̄}

exp

(
−ix

ξ̄ · ξ
N

)

=
1

22N

∫
dx

2π
exp (ixq)

⎡
⎣∑
ξ=±1

∑
ξ̄=±1

exp
(−ixξξ̄/N

)⎤⎦N

=

∫
dx

2π
exp (ixq) [cos(x/N)]N

If N → ∞ then, by using the usual expansion ln cos(ε) ∼ −1
2ε

2, one gets

r(q) ∼
√

N

2π
exp

(
− N

2q2

)
Notably, the result does not depend on p.

The conclusion that can be drawn is that, in absence of constraints, the fraction of
pairs whose overlap is above any finite q > 0 is neglectable, in the thermodynamical
limit.

7.0.6 Important limits

In these sections, all limits which are needed for the computation of the correlation
dependent capacity will be studied. Consider ε =

√
1−Q and, for simplicity erfc(x) =

1√
π

∫
x dy exp(−y2)

•
I−(a, b) = lim

ε→0+
ε2 ln

∫
dx e−x

2
Θ(x− a/ε) erfc(b/ε− x) (7.0.1)

Rescale x

I−(a, b) = lim
ε→0+

ε2 ln
1

ε

∫
dx e−x

2/ε2 Θ(x− a) erfc((b− x)/ε)

The following can be evaluated with the saddle point method.

Since if x < b

erfc((b− x)/ε) = exp
(−(b− x)2/ε2

)
[ε/(b− x) + o(ε)]

then
ln erfc((b− x)/ε) + (b− x)2/ε2 = o(ε)

Conversely, if x > b
ln erfc((b− x)/ε) = 1 + o(ε)

Therefore

I−(a, b) = lim
ε→0+

ε2 ln
1

ε

∫ b

a
dx e−

1
ε2
[x2+(x−b)2] eln erfc((b−x)/ε)+(x−b)2/ε2

+
1

ε

∫ +∞

b
dx e−

1
ε2

x2

eln erfc((b−x)/ε)

= lim
ε→0+

ε2 ln
1

ε

∫ b

a
dx e−

1
ε2
[x2+(x−b)2] +

1

ε

∫ +∞

b
dx e−

1
ε2

x2

= lim
ε→0+

ε2 ln
1

ε

∫ ∞

a
dx exp

(
− 1

ε2
[(
x2 + (x− b)2

)
Θ(b− x) + x2 Θ(x− b)

])
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By studying the function

L−b (x) =
[
(x− b)2 Θ(b− x) + x2

]
(7.0.2)

at the exponent of the integrand, it can be deduced that

I−(a, b) = −Lb(max[a, b/2])Θ(b)− Lb(max[a, 0])Θ(−b) (7.0.3)

•
I+(a, b) = lim

ε→0+
ε2 ln

∫
dx e−x

2
Θ(x− a/ε) erfc(x− b/ε) (7.0.4)

This limit can be evaluated in the same way as I−. The result is

I+(a, b) = −L+
b (max[a, 0])Θ(b)− L+

b (max[a, b/2])Θ(−b) (7.0.5)

with
L+
b (x) =

[
x2 + (x− b)2 Θ(x− b)

]
= L−−b(−x) (7.0.6)

• Consider x > 0 and

Mb(x) = lim
ε→0

ε2 ln[erfc((−x+ b)/ε)− erfc(erfc((x+ b)/ε))] (7.0.7)

Since erfc is monotonically decreasing and x > 0, it follows that the argument
of the logarithm is well defined for every finite ε.

Assume x > 0 x < b, then

erfc((−x+ b)/ε)− erfc(erfc((x+ b)/ε))

=
ε

−x+ b
e−(x−b)

2/ε2(1 + o(ε))− ε

x+ b
e−(x+b)2/ε2(1 + o(ε))

=
ε

−x+ b
e−(x−b)

2/ε2
[
(1 + o(ε))

(
1− −x+ b

x+ b

)
e−4bx/ε

2

]
=

ε

−x+ b
e−(x−b)

2/ε2(1 + o(ε))

= erfc(−(x+ b)/ε)(1 + (ε))

Now assume x > b. It can easily shown that

erfc((−x+ b)/ε)− erfc(erfc((x+ b)/ε)) = 1 + o(ε)

Hence, if b > 0
Mb(x) = Θ(b− x) (x− b)2

Now assume b < 0. The property

erfc(x) = 1− erfc(−x)

implies that

erfc((−x+ b)/ε)− erfc(erfc((x+ b)/ε)) = erfc((−x− b)/ε)− erfc(erfc((x− b)/ε))

Therefore, if b < 0, then

Mb(x) = Θ(−b− x) (x+ b)2

If the two previous cases are put together, it follows that

Mb(x) = Θ(b) Θ(b− x) (x− b)2 +Θ(−b) Θ(−b− x) (x+ b)2 (7.0.8)
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• It follows from the previous points that

I(a, b) = lim
ε→0+

ε2 ln

∫ ∞

0
dx e−(x+a)2/ε2

[
erfc

(−x+ b

ε

)
− erfc

(
x+ b

ε

)]
= argmin

x>0

[
(x+ a)2 +Mb(x)

]
Let us call

M±
a,b(x) = (x+ a)2 +Mb(x) Θ(±b) = Θ(±b− x) (x∓ b)2 + (x+ a)2 (7.0.9)

Then, after studying the minima of M , one can conclude that

I(a, b) =M+
a,b(max[(b− a)/2, 0]) Θ(b+ a) Θ(b)

+M−
a,b(max[(−a− b)/2, 0]) Θ(a− b) Θ(−b)

=M+
a,b((b− a)/2) Θ(b+ a) Θ(b) Θ(−a+ b)

+M+
a,b(0) Θ(b+ a) Θ(b) Θ(b− a)

+M−
a,b((−b− a)/2) Θ(a− b) Θ(−b) Θ(−a− b)

+M−
a,b(0) Θ(a− b) Θ(−b) Θ(a+ b)

(7.0.10)

7.0.7 Further details about A in the RS ansatz

In this section, as an integration, the eigenvectors of the quadratic form appearing in
A will be briefly discussed. The knowledge of their structure could be functional to a
geometric approach to the probem, which is not used in this thesis.

Let us call the vector space on which

G−1 =
[

AIm −B 1m −q[AIm −B 1m]
−q[AIm −B 1m] AIm −B 1m

]

is defined as U = U+ ⊕ U− with dimU± = m. Let {u±j } be an orthonormal basis for

V± so that [u−j ]a = δja and [u+j ]a = δj(m+a). Then, eigenvalues and eigenvectors of

G−1 are

(1− q)(A−mB) ←→ v+ =
1√
2m

m∑
j=1

(u+j + u−j )

(1 + q)(A−mB) ←→ v− =
1√
2m

m∑
j=1

(u+j − u−j )

(1− q)A ←→ V+ =

⎧⎨
⎩v =

m∑
j=1

aj(u
+
j + u−j ) :

m∑
j=1

aj = 0

⎫⎬
⎭

(1 + q)A ←→ V− =

⎧⎨
⎩v =

m∑
j=1

aj(u
+
j − u−j ) :

m∑
j=1

aj = 0

⎫⎬
⎭

An orthonormal basis for V± is⎧⎨
⎩v±a =

1√
a2 + a

⎡
⎣a(u+a+1 ± u−a+1)−

a∑
j=1

(u+j ± u−j )

⎤
⎦
⎫⎬
⎭

a=1,...,m−1
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Then, with this basis

u±a =
1√
2m

(v+ ± v−) +
(a− 1)√

(a− 1)2 + (a− 1)
(v+a ± v−a )−

m−1∑
j=a

1√
j2 + j

(v+j ± v−j )

7.0.8 Correlation between elements of two patterns with fixed over-
lap

The purpose of this paragraph is to prove that, given two random patterns ξ and ξ̄
with a fixed overlap q, then, in the thermodynamical limit

〈ξiξ̄j〉 = qδij (7.0.11)

Proof

Z =
1

22N

∑
ξ,ξ̄

δ(ξ · ξ̄/N − q) =
1

22N

∑
ξ,ξ̄

∫
dx exp[−ix(ξ · ξ̄/N − q)]

=
1

22N

∫
dx eixq

∏
j=1

∑
ξi=±1

N∑
ξ̄i=±1

e−ixξiξ̄i

=

∫
dx eixq cosN (x/N)

=

∫
dx eixq+N ln cos(x/N)

≈
∫

dx eixq−
1

2N
x2

=

√
2π

N
e−

1
2
Nq2

Then, the correlation becomes

〈ξiξ̄j〉 = 1

Z22N

∑
ξ,ξ̄

δ(ξ · ξ̄/N − q)ξiξ̄j =
1

Z22N

∑
ξ,ξ̄

∫
dx exp[−ix(ξ · ξ̄/N − q)]ξiξ̄j

Let i = j

〈ξj ξ̄j〉 = 1

Z22N

∫
dx eixq

⎡
⎣∏
k �=j

∑
ξk=±1

N∑
ξ̄k=±1

e−ixξk ξ̄k

⎤
⎦
⎡
⎣ ∑
ξj=±1

N∑
ξ̄j=±1

ξ̄jξje
−ixξj ξ̄j

⎤
⎦

= i
1

Z

∫
dx eixq cosN (x/N) tan(x/N)

≈ − 1

NZ

∫
dx eixq−

1
2N

x2
x

= − 1

NZ

d

dq

∫
dx eixq−

1
2N

x2
= q

Let i �= j

〈ξiξ̄j〉 = 1

Z22N

∫
dx eixq

⎡
⎣ ∏
k �=i,j

∑
ξk=±1

N∑
ξ̄k=±1

e−ixξk ξ̄k

⎤
⎦
⎡
⎣ ∑
ξj=±1

N∑
ξ̄j=±1

ξ̄je
−ixξj ξ̄j

⎤
⎦

⎡
⎣ ∑
ξi=±1

N∑
ξ̄i=±1

ξie
−ixξiξ̄i

⎤
⎦
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But ∑
ξi=±1

N∑
ξ̄i=±1

ξie
−ixξiξ̄i = 0

Hence
〈ξiξ̄j〉 = 0

7.0.9 Introduction of Gaussian variables for the solution of the SP
equations.

The purpose of this section is to introduce a Gaussian representation for equation
(5.1.2).

A(Q) =

∫
Pq(ξ, ξ̄)

m∏
a,b=1

∏
μ

Θ

(
W a · ξμ√

N

)
Θ

(
W b · ξ̄μ√

N

)

with

Pq(ξ, ξ̄) =
1

Zq2N

∏
α

δ(q − ξα · ξ̄α/N)

Zq =
1

2N

∑
{ξ}

∑
{ξ̄}

∏
α

δ(q − ξα · ξ̄α/N)

Since the patterns are assumed to be correlated pairwise, it is enough to consider
(notation warning: here ξ and ξ̄ are patterns, not sets)

Pq(ξ, ξ̄) =
1

Zq22N
δ(q − ξ · ξ̄/N)

Then, let us consider the RVs

wa = Wa · ξ/
√
N

w̄a = Wa · ξ̄/
√
N

Then, by (7.0.11)

〈wawb〉 = 〈w̄aw̄b〉 = Wa ·Wb

N
= Qab

〈waw̄b〉 = q
Wa ·Wb

N
= qQab

The previous observation suggests that (5.1.2) can be rewritten as (5.1.3). In order
to proof that, the joint distribution of the RVs

wa = ξ ·Wa/
√
N (7.0.12)

is needed. The prefactor 1/
√
N is arbitrary since the Θ functions are invariant under

wa �→ xwa

This choice though is convenient.
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Then

Zq P ({wa}, {w̄a}) = 1

22N

∑
{ξ}{ξ̄}

δ(q − ξ · ξ̄/N)
m∏
a=1

δ(wa − ξ ·Wa/
√
N) δ(w̄a − ξ̄ ·Wa/

√
N)

=
1

22N

∑
{ξ}{ξ̄}

∫
dy

m∏
a=1

dxa dx̄a e−iy(q−ξ·ξ̄/N)
m∏
a=1

e−ixa[wa−ξ·Wa/
√
N ] e−ix̄a[w̄a−ξ̄·Wa/

√
N ]

=
1

22N

∫
dy

m∏
a=1

dxa dx̄a exp

[
−i(yq +

∑
a

[xawa + x̄aw̄a])

]
N∏
j=1

∑
ξ̄j=±1

∑
ξj=±1

exp

[
i
∑
a

xaξ
jW j

a + x̄aξ̄
jW j

a√
N

+ iy
ξj ξ̄j

N

]

=

∫
dy

m∏
a=1

dxa dx̄a exp

[
−i(yq +

∑
a

[xawa + x̄aw̄a])

]
N∏
j=1

[
cos

(∑
a

xaW
j
a + x̄aW

j
a√

N

)
eiy/N + cos

(∑
a

xaW
j
a − x̄aW

j
a√

N

)
e−iy/N

]

≈
∫

dy

m∏
a=1

dxa dx̄a exp

[
−i(yq +

∑
a

[xawa + x̄aw̄a])

]

m∏
j=1

exp

⎛
⎝− 1

2N

m∑
a,b=1

(xaW
j
aW

j
b xb + x̄aW

j
aW

j
b x̄b)

⎞
⎠

cosh

(
− 1

N

m∑
a=1

xaW
j
aW

j
b x̄b + iy/N

)

≈
∫

dy

m∏
a=1

dxa dx̄a exp

[
−i(yq +

∑
a

[xawa + x̄aw̄a])− 1

2
y2

]

exp

⎛
⎝− 1

2N

m∑
a,b=1

(xaWa ·Wbxb + x̄aWa ·Wbx̄b + 2iy x̄aWa ·Wbxb)

⎞
⎠

≈ e−
1
2
q2
∫ m∏

a=1

dxa dx̄a exp

[
−i
∑
a

[xawa + x̄aw̄a]

]

exp

⎛
⎝− 1

2N

m∑
a,b=1

(xaWa ·Wbxb + x̄aWa ·Wbx̄b + q x̄aWa ·Wbxb)

⎞
⎠

= e−
1
2 q

2 1

(2π)m
√
detG

exp

⎛
⎝−1

2

∑
a,b

∑
αβ

wα
a [G

−1]αβab w
β
b

⎞
⎠

Dividing by Zq, one gets (5.1.3).
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[22] M. Mézard, G. Parisi, N. Sourlas, G. Toulouse, M. Virasoro, Replica symmetry
breaking and the nature of the spin glass phase, ournal de Physique, 1984, 45
(5), pp.843-854.
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