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Abstract

We consider a novel approach to learning in neural networks with dis-
crete synapses [1, 2, 3] and discuss its possible extensions to simple contin-
uous neural networks. The problem of learning is explained, in a general
setting and from the statistical mechanics standpoint. The recent achive-
ments in the training of discrete neural networks are reviewed: the statis-
tical properties of solutions found by efficient algorithms are described by
a non-equilibrium measure; conversely, this measure suggest new ways to
design efficient algorithms. In the original part of the work we consider the
simplest non-trivial model of continuous neural network: the perceptron
with negative stability. We extend the Franz-Parisi equilibrium analysis
and investigate some off-equilibrium features, both analytically and with
simulations. The results show that the model is not a complex system
and its dynamical behaviour differ drastically from both the discrete case
and deeper architectures. Future perspectives are discussed.
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Introduction
In the second half of last century physicists started to apply methods developed
in fields like quantum field theory and condensed matter to the study of inter-
disciplinary topics, such as computer science, stochastic processes, biophysics,
inference, economics and social sciences. The link between so different areas of
science is provided by probabilistic graphical models: the interactions of spins
in a magnetic material, the constraints of a boolean problem, the percolation
of fluids through porous materials, the contacts of amminoacids in a DNA se-
quence and the network of friends on Facebook can be modelled in a simple way
assigning to each degree of freedom a vertex and to each interaction a hyperedge
in a graph. The Ising model in its thousands of variations is the purest example.
One of the most important ideas underlying this approach is universality : when
many degrees of freedom interact, many observable properties of the system are
independent of the details of the interaction law, but, near second order phase
transitions, only general features as symmetries and range of the interaction
matter. In the sixties and in the seventies quantum field theories began to be
set on lattices as a regularization scheme and the renormalization group (Wilson
1974) provided a unified formal description of the Higgs mechanism and critical
phenomena. After these big achivements of equilibrium thermodynamics, the
interest of the statistical physics community turned towards non-equilibrium,
that is a main feature of the great majority of real life systems.

In 1975 Edwards and Anderson [4] proposed to describe the interactions be-
tween spins in a quenched magnetic material with an Ising model with random
(disordered) couplings: this was the beginning of spin glass theory[5]. Optimiza-
tion algorithms based on local minimization of a cost function share with glasses
to get trapped in metastable states, so since 1985 methods from spin-glasses were
widely applied to predict the statistical properties of many optimization-like
problems: matching[6], learning in neural networks [7, 8]and K-satisfiability [9]
are the emblem of the success of this approach. Another versatile tool developed
by the physics community is the cavity method and its many implementations
[10, 11, 12, 13, 9]. Such an extended application of statistical physics to op-
timization and computer science is conveniently recast within the formulation
and notation of information theory [10].

At the same time, the devolopement of computers drove the progess in Ar-
tificial Intelligence and Machine Learning; in particular, neural networks are
now a standard statistical analysis tool in many branches of engineering and
science and in recent years big achivements have been obtained with the use
of many-layer architectures (deep learning) [14, 15]. However, while the spin
glass approach has provided theoretical results concerning the thermodynamics
of few-layer neural networks [7, 16, 8, 17, 18, 19, 20], the dynamics of learning is
a highly nonlinear and complex one and a big gap between theory and practice
has to be filled.
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In this work we consider a novel approach [1, 2, 3] that describes non-
equilibrium features of efficient learning algorithms for neural networks with
discrete synapses. The dynamics and performances of training algorithms are
shown to be strictly related to the existence of dense clusters of solutions, simi-
larly to the scenario in K-SAT [21]. Moreover, a simple and very flexible strategy
to design new algorithms and the many perspectives it opens are presented. The
original part of the work consists in discussing possible extensions to continuous
neural networks.
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1 Basic concepts and tools
In this Chapter we introduce some definitions and methods which will occur
many times in what follows.

The protagonist of this work is the perceptron: this is the building block
of every neural network and will be introduced in Section 1.1, in its discrete
and continuous versions. We will define what learning means in the context of
artificial neural networks and will mention some examples of training algorithms.

Then, we will address the question of the amount of information which can be
stored in a network. This question can be answered within the Gardner analysis,
which makes use of methods from spin-glass theory, namely the replica trick.
To this end, we provide the sketch of solution for the continuous perceptron
storage problem in the replica symmetric ansatz in Sec. 1.2.

Finally, in Sec. 1.3 we introduce probabilistic graphical models and discuss
a useful tool for estimating marginals and thermodynamical properties in par-
ticular classes of graphs: Belief Propagation, a class of approximated message-
passing algorithms.

In this Chapter we mainly refer to the textbooks [8, 5, 10].

1.1 Simple models of neural networks
Artificial neural networks were originally introduced as mathematical models of
intelligence. There is a main difference between the way brain processes infor-
mation and the way the CPU of a computer does: the CPU works in a serial
manner, receiving one input at a time, performing the task, and so on. A neural
network (NN) instead receives many inputs and treats them in a distributed way.
A NN is a very complex dynamical system, which is usually studied with meth-
ods from statistics. Artificial NNs are used in a variety of applications, ranging
from function approximation and data analysis to neuroscience modelling and
robotics.

1.1.1 The perceptron

In 1957 Frank Rosenblatt proposed a simple model of artificial intelligence, the
perceptron, consisting of several input “neurons” that can be active or inactive
and connected to an output unit by means of edges called “synapses”. We
represent the state of the neurons with the vector x, xi = ±1, while for the
synaptic weights we reserve the notation W . For a given input, the output is
chosen as

output(x) = sign(x ·W )

We have not specified the nature of the synapses yet. Two possibilities are
considered:

• continuous perceptron with spherical constraint Wi ∈ R, W 2 = N . Up to
now it has been studied more than the discrete one due to the importance
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Figure 1: The perceptron, or single layer neural network. Once the synapses
are trained, an output is given as the step function of the input weighted sum.

of continuous neural networks in computer science, as training continuous
neural networks is easier thanks to derivative based srategies, see below.

• discrete perceptron, if Wi = ±1. A possible generalization of such “Ising”
perceptron is the “Potts” perceptron Wi = 0, 1, .., q , as in [22]. The brain
synapses are thought [23] to switch between a finite number of states, so
discrete neural networks are of biological interest. Recently there is a re-
newed interest in binary computer implementation of multilayer networks
[24], as we will mention later.

1.1.2 Statistical learning

How to choose the synaptic weights? The basic idea behind learning is that the
network is stimulated with M inputs that we denote with ξµ µ = 1, ..,M and we
want the corresponding outputs to be σµ. The array {ξµ, σµ} is called training
set.

Several ways of choosing the training set can be conceived. For example in
applications the input data (e.g. L × L pixels images from some dataset) are
always correlated (and the very ultimate goal of machine learning, i.e. unsu-
pervised learning, consists exactly in discovering these correlations or features,
see Fig. 2). In the simplest scenario one chooses the patterns randomly or only
with a magnetization [7]. In what follows we will consider only the unbiased
case of ξi extracted ±1 with uniform probability, and consider two schemes for
choosing the requested outputs σµ:

• the classification problem consists in taking σµ = ±1 randomly. Actually,
it is convenient to require simply σµ = +1 and reabsorbe the minus sign
in the pattern ξµ. More in general, the idea behind classification is that
the network can be trained to label data, where the data and their labels
are somehow recorded in the synaptic weights (there will be a maximum
storage capacity and in principle the issue of generalization, see below, is
not needed)
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Figure 2: An autoencoder, that is a network whose goal is learning in an unsu-
pervised way the identity function (output = input). The non triviality comes
from the fact that the middle layer (hidden layer) has less bits than the input:
to overcome this bottleneck the autoencoder has to learn a compressed repre-
sentation of the input. This is possible if the input data are correlated and
the dimensionality reduction is equivalent to discovering and exploit efficiently
these correlations.

Figure 3: Right panel: a sample from the MNIST database, a training set of
60000 handwritten digits plus a test set of 10000. Left panel: an example of
features learnt by the hidden units of an autoencoder (here used for pre-training
purposes). The feature corresponding to a hidden unit is defined as the input
pattern which maximizes the “activation” of the hidden unit.

• the generalization or teacher-student problem, instead, addresses the ulti-
mate goal of inferring an unknown function from the values taken by the
function itself over a sample set. In the perceptron this amounts to fixing
a synaptic vectorWT to be inferred (this is called the teacher) and consid-
ering the training set {ξµ, σµ = sign(WT · ξµ)}. The term generalization
means that the student network should be able to give the same output
as the teacher even on those inputs that are not part of the training set.

Moreover, for a given training set, there exist several ways of choosing which
of the solutions of the training set retain. For example, one can pick randomly
a synaptic configuration that satisfies the training set, i.e. we are weighting the
solution space with the uniform measure: this is calledGibbs learning. But in the
teacher-student scenario Gibbs learning is not the best choice for generalization.
It is much more convenient minimizing the conditional likelihood of the training
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set with respect to the psuedo-teacher which one wants to infer. This approach
is referred to as Bayesian learning. In the continuous case this amounts to
picking the center of mass of the solutions of the training.

Finally, from a more practical standpoint, one can conceive different training
algorithms to find a solution. One important feature of such an algorithm is if
it is on-line or off-line: the human brain is expected to be on-line, meaning that
each time we are stimulated with a new idea or task we can learn this without
“forgetting” all other abilities. Given a new training pattern, one wants a rule
for updating the synaptic weights without the need to reconsider all the training
set.

Here we report some examples of training algorithms:

• the celebrated Hebb rule (1949) is based on the biologically derived idea:
"Cells [ndr, neurons] that fire together, wire together." With the above
arrangement that σµ = +1, ∀µ the original Hebb update rule is:

W t+1
i = W t

i + ξµi θ(ξ
µ
i )

where θ is the Heavside function.

• a quite general approach consists in defining a loss function or energy E
that estimates the amount of error made in classifing the patterns of the
training set, and trying to minimize this error with some derivative-based
method. The first order method referred to as gradient descent (GD)
consists in following at each step the direction of the (opposite) gradient
of the loss function:

W t+1 = W t − ηt∇E(W t) (1)

where t counts the number of iterations and η is called learning rate and
should be adjusted in a proper way. In the continuous perceptron case a
possible choice is:

E(W ) =
∑
µ

(−σµW · ξ
µ

√
N

)rθ(−σµW · ξ
µ

√
N

) (2)

where r is an exponent (usually 1 or 2) and a useful normalization has been
inserted. So this energy counts the mistaken patterns with a weight. For
multilayer feedforward networks the gradient at node l can be computed
as1 ∂E

∂
−→
W l

= ∂E
∂σl

∂σl
∂
−→
W l

, ∂E
∂σl

=
∑
k
∂E
∂σk

∂σk
∂σl

, where σl is the ouput2 of node

l, ∂σl
∂
−→
W l

is the variation of the ouput at node l relative to variations of its
feeding synapses, and the sum is performed only over the nodes of the
network that are in the immediately higher layer and that receive σl in

1we have dropped the µ index, but it is meant that this is the contribution of each pattern;
the overall gradient is obtained summing over all the training set.

2for this purpose one usually defines the output at each node by means of a continuous
and differentiable sigmoid function
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input. Due to this observation the right way to compute the gradient is
starting from higher (i.e. nearer to the output) layers and step back to
the input: in this context GD is often referred to as backpropagation.

• stochastic GD (SGD): at each iteration one computes the gradient with
respect to only a randomly exctracted subset of the training set. The size
of this subset is called batch-size. Online learning corresponds to batch-
size equal to 1. The main motivation behind SGD is that considering the
whole batch at each iteration is too computationally expensive, while SGD
in practice works well. There are other important and open issues about
the use of SGD instead of GD: it seems that the noise in SGD enables the
algorithm to avoid poor local minima and select minima that have both
minor training and generalization error [25].

• Setting r = 1 in eq (2) and considering one pattern per iteration, the
update (1) becomes:

W t+1 = W t, if σµ = sign(
W · ξµ√

N
)

W t+1 = W t + σµ
ξµ√
N
, otherwise

This is referred to as the perceptron rule.

For a training algorithm it often useful to consider the (average) training and
generalization error as a function of α and, for fixed α, of training time (1 epoch
= 1 span of the training set).

1.1.3 Negative stability and geometrical interpretation

When training it can be convenient to require a condition stronger than merely
producing the correct output. For example consider the pattern ξµ and, to fix
the ideas, suppose you want the corresponding output to be +1. It would be
nice if the overall scheme would be “stable”, i.e. when receiving the input ξµ+ ε,
with ε a “small” correction which may also be due to a noisy data capture, the
output would remain −1.

It is possible to address this problem by requiring that on the training set:

σµ
W · ξµ√

N
> κ

The constant κ is called stability or threshold. Here it is clear the choice of
normalization: if a finite fraction of input spins are randomly flipped by noise,
the law of large numbers states that their weighted sum is O(

√
N).

This approach is practically useful only if κ ≥ 0. Nonetheless nothing forbids
to set κ < 0, with some major differences in the continuous case:
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Figure 4: Training energy lanscape in the spherically constrained continuous
perceptron, with N = 2 and M = 2. On the horizontal axis the angle θ
parametrizes the circumference. The left panel shows the positive stability sce-
nario, the optimization problem is not convex but the set of solution is. On
the right a negative perceptron sample, notice that the space of solution is
disconnected.

• there is a nice geometrical interpretation of what satisfying a pattern does
mean (here we explicitly consider the spherical constraint a when speaking
of “sphere” we actually refer to the surface of the sphere) :
given a pattern ξµ and supposing, to fix the ideas, that σµ = +1, this
select in the κ = 0 case an emisphere, for κ > 0 a (convex3) spherical cap,
while in the negative stability case a spherical cap is forbidden. So the
space of solution is the intersection of convex sets and so it is connected
and convex in the κ ≥ 0 case; it is not so for negative stability, and at least
in principle we expect to be fragmented in several different disconnected
domains.

• if κ ≥ 0 and neglecting the spherical constraint the problem of training is
convex: one can choose a loss function (2) with r ≥ 1 and notice that this
is the sum of (non strictly) convex function so it is convex. The spherical
constraint is not strictly neccessary for κ > 0, because W = 0 is not a
solution and scaling a solutions of a factor >1 yields a new solution; on the
other end the same scaling on a configuration that is on a “bad” direction
increases the loss function, so that the norm ofW is controlled4. For κ < 0
the error function is still convex without the spherical constraint, but the
point is that in a neighbourhood of W = 0 there are trivial solutions of
little norm and this region is an attractor: from each direction the loss
function decreases with the norm. The result is that the (in)stability of the
input-output reflects itself also in the (in)stability of training. However we
remark that, independently of the stability, with the spherical constraint

3A subset of the surface of the sphere is convex if the sector of the sphere subtended by it
is convex according to the usual definition.

4this does not mean that the two problems are equivalent, in fact the spherical one is not
convex. We mean that in principle one could train the network with a positive stability and
not controll the norm, and obtain solutions acceptable at least for the κ = 0 training (where
only the direction matters). However it is clear that it is meaningful to speak of the magnitude
of κ only in relation to the norm of W .
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the problem is not convex for any choice of the training set, as Fig. 4
shows.

The “negative perceptron” then is not very interesting under a practical point
of view, but it is a less trivial and richer model. Actually in [26] the authors
show that there is an analogy between the negative perceptron and the problem
of packing hard spheres. One can think of adding a hard sphere on a spherical
surface already containing other spheres in this way: the existing spheres are
points on the surface while the new sphere has a finite radius depending on κ,
i.e. it requires a free spherical cap. Franz and Parisi have shown that this model
at the SAT-UNSAT transition (see below) belongs to the same universality class
of mean-field hard spheres models at the jamming transition.

1.2 Gardner analysis
In this Section we show the statistical mechanics approach to the problem of
learning. In 1.2.1 we specify the concept of typical volume of the space of
solutions, while in 1.2.2 we outline the computation of this volume by means of
the replica trick (Elizabeth Gardner [7, 16]), for the continuous perceptron in
the generalization scenario. We posticipate the details of the computation to
Section 3, but we present already here the phase diagram of the classification
problem and the storage capacity.

1.2.1 Self-averaging quantities

We consider the training problem within the generalization setup, for the con-
tinuous perceptron. How many patterns is the network able to learn? Given a
training set, the volume of solutions is

Ω({ξµ, σµ}) =

∫
dµ(W )

M∏
µ

θ(σµ
W · ξµ√

N
− κ) (3)

where recall that M = αN and the measure of integration is given in the
great N limit by

dµ(W ) = (2πe)−N/2δ(W 2 −N)dW

We want the “average” volume of solutions, in some sense, where the average
is over the training set extracted in a random unbiased way. The temptation is
to consider the average of the volume (3) : the problem reduces to computing
the product of the averages of the θ’s, so it is technically easy. This approach
is called annealed approximation.

Despite the charm of this easiness, this computation does not give the infor-
mation we really want. What we want is: we generate randomly a sample and
measure the volume of solutions and repeat many times. We expect that, if N
is very large, in the striking majority of cases we find nearly the same volume.
Mathematically, we expect that increasing N the distribution of volumes con-
centrates in probability around a typical value Ωtyp. This behaviour has been
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called self-averageness with relation to magnetic systems, in which one expects
that the extensive quantities of a (large) portion of the system generalize to the
whole system or to other large portions by simply scaling N.

The volume computed within the annealed approximation does not capture
this concept. Essentially, the problem is that Ω is not an extensive quantity,
but a superextensive one. With an abuse of notation and neglecting the nor-
malization constants, we can formally write:

Ω ∼ eNω, p(ω) ∼ eN s(ω)

where ω and s are intensive N-independent quantities. The typical volume
is given by ωtyp where ωtyp maximizes s. The annealed average volume is given
by saddle point:

〈Ω〉 ∼
∫
dω eNω+N s(ω) ∼ eN maxω{ω+s(ω)} 6= eN arg maxω s(ω) = Ωtyp

so in the annealed approximations the relevant volume is determined from
both the number and volume of the samples.

The right quantity to be averaged is the extensive and self-average:

Styp = 〈logΩ〉 (4)

Such an average is called quenched.

1.2.2 Replica computation

The entropy (4) can be computed with a well-known trick in the theory of
spin-glasses [4] :

logΩ = lim
n→0

Ωn − 1

n

hence:

〈logΩ〉 = lim
n→0

〈Ωn〉 − 1

n

One can think of n integer so that this reduces to computing the average of
n independent systems with the same disorder:

〈Ωn〉 = Ω({ξµ, σµ}) =

〈∫
dµ(W1)...dµ(Wn)

∏
µ,a

θ(σµ
Wa · ξµ√

N
− κ)

〉
{ξ,σ}

where the a’s label the different replicas of the system . Then we will extend
the result found by analytical continuation for every n ∈ R, and suppose this is
really equal to 〈Ωn〉.

Introducing the order parameters

Qab =
Wa ·Wb

N
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Figure 5: Sketch of the shrinking of the space of solutions when increasing the
training set size.

the above expression can be decoupled both in the i and µ indices and the
average performed explicitly, so to get something in the form:

〈logΩ〉 = lim
n→0

∫
dQab e

N s(Qab) − 1

n
(5)

At this point
∫
dQab e

N s(Qab) is computed by the saddle point method. A
subtetly here is that the limit N → ∞ has been performed before n → 0.
Practically, one assumes for symmetry reasons that the saddle point occures
for a matrix Qab = q̃ and maximizes5 with respect to q̃: this is referred to
as Replica Symmeric (RS) ansatz. The physical interpretation of q̃ is that of
typical overlap between solutions: in the great majority of samples the great
majority of solutions has got overlap q̃, according to this analysis.

Only at this point the limit n→ 0 is taken, yielding something like:

1

N
〈logΩ〉 =

1

N
lim
n→0

enN extrq̃s(q̃)+O(n2) − 1

n
= extrq̃s(q̃)

An accurate calculation yields:

s(α) = extrq̃{
1

2
log(1− q̃) +

1

2

q̃

1− q̃
+ α

∫
Dz logH(

κ−
√
q̃z√

1− q̃
)}

where here and in what follows:

H(x) =

∫ +∞

x

Dz, Dz =
e−

z2

2

√
2π

We expect the overlap to be 0 at α = 0 and then to grow until a critical
value of α in which the space of solutions shrinks to a point and therefore q → 1.
Expanding the saddle point equation in this limit (we will show later the details

5actually as n→ 0 some subtlety is involved [5]
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Figure 6: The phase diagram of the continuous perceptron generalization prob-
lem is plotted in the stability-training set size plane. The graphic is taken from
[26]. The blue dotted line marks the SAT-UNSAT phase transion, as computed
in the RS ansazt: increasing κ makes more diffucult to satisfy the training
constraint, notice the logarithmic scale of the y-axis. In red the de Almeida-
Thouless line (AT line) for negative stability. For positive stability the AT line
coincides with the SAT-UNSAT one [27] . For κ = 0, αc = 2. The RS SAT-
UNSAT line is correct for κ ≥ 0 while it provides a lower bound in the negative
stability region.

of the computation) the storage capacity αc happens to satisfy:

αc(κ) =
1∫ κ

−∞Dz (κ− z)2
(6)

Using the language from the field of random Constraint Satisfaction Prob-
lems (CSP), the portion of the α − κ plane in which solutions exist (does not
exist) is called SAT (UNSAT) region, and the boundary between these two
regions is called SAT-UNSAT transition.

A very similar analysis can be applied to the study of the teacher-student
scenario. In this case the training problem is always SAT because at least the
teacher is a solution, while the quantity of interest is the overlap between the
teacher and a typical solution, which is usually denoted as R and is directly
related to the generalization error through (see Fig. 7):

εg =
1

π
arccosR

1.2.3 Replica symmetry breaking

The result provided in eq. (6) has been derived in the RS ansazt, i.e. under
the assumption that the saddle point integral (5) get its maximum for RS Qab
matrices.
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Figure 7: Left panel: the geometric interpretation of the teacher-student sce-
nario. The teacher is denoted by T and the student by J . The figure shows the
projection of the W space (the N-dimensional spherical surface) on the plane
selected by the two vectors T, J . Patterns whose projection falls in the shaded
region will be classified wrongly by the student. The expression for the gener-
alization error follows noticing that R = cos θ.
Right panel: (solid line) generalization error as a function of the size of the train-
ing set in the teacher-student perceptron at κ = 0. Notice that it monotonically
decreases with α, starting from the random guess value 1/2. The dashed line
is the overlap R, that starts from 0 and has 1 as asymptotic limit. Inset: the
entropy, that is negative because the model is continuous and decreases mono-
tonically with α. We add that in the disrete perceptron there is a first order
transition through which the teacher becomes the only solution to the problem.
The generalization error and the entopy exhibit a vertical drop to 0 at this
critical point.
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Figure 8: RS, 1RSB and 2RSB examples of Parisi matrices with n = 12, gen-
erated with a recursive code in Mathematica.

A brief historical note: the replica trick (and also the overlap of typical
configurations in the same state of a spin-glass system) was first introduced
by Edwards and Anderson in a nearest-neighbour disordered Ising model of
structural spin glass [4]. Sherrington and Kirkpatrick [28] extended the method
to the fully connected version of disordered Ising model (SK model). They
noticed that some inconsistencies occured within the RS ansazt (for example
negative entropies at low temperatures), while their results agreed well with
the numerical experiments at high (i.e. near the spin-glass transition or higher)
temperatures.

De Almeida and Thouless showed [29] that the RS solution is unstable in
the space of Qab matrices and Giorgio Parisi [30] found the right scheme of
replica symmetry breaking (RSB): the first step of RSB consists in dividing Qab
in n/m blocks, within each block replicas are treated symmetrically and blocks
themselves are treated simmetrically. So instead of only one order parameter q1

that describes the typical overlap between configurations in the same state or
cluster, two other parameters are needed: the overlap q0 between configurations
of different clusters and the probability m or 1−m that two configurations be
in different or the same states.

The 1RSB procedure can be iterated within each diagonal block to yield
kRSB matrices. The continuous limit of this procedure takes the name of
fullRSB solution; here the order parameters become a function and the sad-
dle point equation a partial differential equation. The transition from RS to
fullRSB is (usually) continuous, while the transition RS-1RSB is discontinuous.
The SK spin-glass phase happens to be a fullRSB phase.

It can be shown [27] that in the SAT region at κ ≥ 0 the RS solution is stable
and the instability line (AT line) coincides with the SAT-UNSAT boundary. For
negative κ the RS anszt becomes instable already in the SAT region. For any
κ, the transition is a continuous fullRSB one [31].

1.3 Belief Propagation
A quite general problem in statistical mechanics and in probabilistic models with
many variables is estimating local observables like magnetizations or quantities
that involve only few variables, e.g. two point correlations functions and thus
susceptibilities, while being given the joint probability distribution of all vari-
ables. For example, in an Ising model the probability of a configuration is given
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by Boltzmann distribution and the energy is a sum over terms of one or two
spins, so it could be computed from the knowledge of magnetizations and 2-
spin correlations. If there isn’t any clever trick or approximation, one has to
sum the partition function or marginal partition functions, that is nearly always
unfeasible.

In this subsection we are interested in discussing probabilistic models whose
joint probability distribution factorizes in the product of many functions of
few variables each. In 1.3.1 we set up the problem and introduce an useful
representation for probabilistic models. In paragraph 1.3.2 we derive the cavity
equations for tree-like graphical models and in 1.3.3 write down the algorithm
known as Belief Propagation; in subsection 1.3.4 we state its exactness on tree
factor graphs and discuss possible extensions.

1.3.1 Probabilistic graphical models

Consider a systems consisting of N variables x1, ..., xN with xi ∈ χ, χ being a
finite alphabet. The most general case is that every degree of freedom of the
system interact with each other in a complicated way, i.e. not only through
2-body, 3-body,... interactions but with an N-body interaction, and with dis-
tribution probability p(x1, ..., xN ) that cannot be simplified in any way. The
other extreme is that the N variables do not interact, i.e. they are independent
variables and their joint probability distribution is simply the product of the
marginals:

p(x1, ..., xN ) =
∏
i

p(xi)

In the striking majority of cases, however, the system belongs to an in-
termediate class, the interactions being 2-body or p-body like, and with many
variables that do not interact directly but only through other degrees of freedom.
In this case:

p(x1, ..., xN ) =
1

Z

M∏
a=1

ψa(−→x ∂a)

where Z is a normalization and the ψa’s are M non-negative real compat-
ibility functions that represent the interactions between groups of degrees of
freedom, the variable of each group being denoted by −→x ∂a. The network of
mutual interactions of such a system admits a nice graphical representation:
to each variable there corresponds a variable node, directly interacting variable
nodes being linked to a same factor node a ∈ F . The resulting bipartite graph
is referred to as the factor graph of the probabilistic model, see examples in Fig.
9 and 10.

Two (sets of) variables which do not interact directly, but are in the same
connected component of the factor graph, are not independent, but are cor-
related by “intermediate” variables. This idea is made more precise by the
following global Markov property :
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Figure 9: Factor graph associated with a 2D Ising or Edwards-Anderson model.
The round white nodes are the variables nodes of the spins, the black square
boxes represent the 2-body couplings between near spins, and the gray square
boxes are the local external magnetic fields, which bias the spins in an indepen-
dent way.

Figure 10: Factor graph relative to a Markov chain of memory 2, the gray box
representing the initial conditions.

Let −→x A,−→x B ,−→x S be three disjoint sets of variables. If any path joining a
node of A with a node of B contains an element of S, then S separates A and
B. If this holds then −→x A and −→x B are conditionally independent with respect to
−→x S , i.e.:

p(−→x A,−→x B |−→x S) = p(−→x A|−→x S) p(−→x B |−→x S)

1.3.2 The cavity approach

Given a probabilistic model, we would like to solve efficiently at least three
tasks:

• compute the marginal distributions of single variables or of small groups
of variables

• sample points from p(x1, ..., xN )

• sum the partition function or, equivalently, compute the free-entopy of the
system.

In systems whose factor graph is a tree (i.e. the underlying graph is connected
and acyclic) the three taks above can be achieved, by exploiting the following
cavity approach:
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each variable node i can be seen as the root of the tree and spans the branches
a’s, so that the marginal can be computed as

p(xi) =
∑

xk, k 6=i

p(xi,xk) =
1

Z

∏
a

∑
−→x a

Ψa→i(xi,
−→x a) ≡ 1

Z

∏
a

Za→i(xi)

where with Ψa→i we have indicated the product of all compatibility functions
belonging to the branch a. Descending down the tree:

Za→i(xi) ≡
∑
−→x a

Ψa(xi,
−→x a) =

∑
j∈∂a\i

ψa(xi, ~xj)
∏
j

∏
b∈∂j\a

∑
−→x ∂j\b

Ψb→j(xj ,
−→x )

The mechanism is that at each step the branch contribution factorizes in the
contributions of its child branches. In the end:

Za→i(xi) =
∑

j∈∂a\i

ψa(xi, ~xj)
∏

j∈∂a\i

Zj→a(xj)

Zi→a(xi) =
∏

b∈∂i\a

Zb→i(xi)

1.3.3 Belief Propagation

The above equations are called RS cavity equations and in the end are simply
relations between marginals and conditional probabilities of the system. The
cavity equations can be turned into the algorithm known as Belief Propagation
(BP) by trying to solve them by recurrence and hoping they converge to a fixed
point. To this end it is useful to recast the cavity equations in term of messages,
so to obtain the update rules known as BP equations:

νti→a(xi) ∝
∏

b∈∂i\a

νt−1
b→i(xi)

νta→i(xi) ∝
∑

xj , j∈∂a\i

ψa(xi, ~xj)
∏

j∈∂a\i

νtj→a(xj) (7)

with the further conditions:

νti→a(xi) ∝ 1 if ∂i\a = {}

νta→i(xi) ∝ ψa(xi) if ∂a\i = {}

where the νt are called messages at time t 6 and the symbol ∝ means that
the messages are to be taken normalized, so that the fixed point messages and
the partial partition functions are simply related by a normalization factor:

6we will usually denote with only ν the fixed point messages.
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νi→a(xi) =
Zi→a(xi)∑
x Zi→a(x)

νa→i(xi) =
Za→i(xi)∑
x Za→i(x)

This normalization is crucial to the probabilistic interpretation of the fixed
point messages:

• p(xi) =
∏
a∈∂i νa→i(xi), i.e. the marginal probability of a variable is given

by the product of incoming messages

• νi→a(xi) is the marginal probability of variable i in a modified graphical
model in which the factor a has been erased

• νa→i(xi) is the marginal probability of variable i in a modified graphical
model in which the factors b ∈ ∂i/a have been erased

The local nature of the update and the fact that there are input and output
messages at each node at each time suggests the name of message-passing algo-
rithms.

Now we briefly show how from the knowledge of fixed point messages it is
possible to solve the three problems mentioned at the beginning of the previous
paragraph.

We start considering the problem of computing the marginal distribution
of a few variables. Let R be a connected7 subgraph of factor nodes FR ⊂ F
and variable nodes {~xR} = ∪a∈FR∂a, and define ∂R = ∪i∈R∂i\FR. Then
the marginal of {~xR} is given by the product of messages incoming in R from
∂R weighted with the compatibility functions of the factor in FR, everything
evaluated in ~xR:

p(~xR) ∝

( ∏
a∈FR

ψa(~x∂a)

)( ∏
a∈∂R

νa→i(a)(xi(a))

)
(8)

where i(a) is the only8 vertex in ∂a ∩ R, a ∈ ∂R. The condition that R
contain few variable nodes is due to the fact that the normalization constant
has to be computed. In particular if FR = {a}:

p(x∂a) ∝ ψa(x∂a)
∏
i∈∂a

νi→a(xi)

The second problem was sampling ~x ∈ χN according to p(~x). This problem
can be reduced to sampling from one variable marginals: for i = 1, ..., N we
sample a value x′i according to p(xi|~xU ). We fix xi to the extracted value by

7the problem of computing the marginal or the correlation function of two nodes far away
in the graph requires a method known as susceptibility propagation.

8this is true if the graph is a tree and if the subgraph R is connected, as we can always
take (otherwise we repeat for each connected component).
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introducing a new factor node and add i to U . We run BP on the modified
graph and compute p(xi+1|~xU ). We repeat until U = {1, ..., N}.

The third problem is computing the free-entropy of the system φ[p] =
logZ[p] = H[p]− βU [p], where H is the usual entropy associated with a proba-
bility distribution and

βU [p] = −
∑
~x

p(~x)
∑
a

logψa(−→x ∂a)

in analogy with the Boltzmann distribution. For tree graphs the free-entropy
can be expressed [11] in terms of the messages as the sum of local contributions
of three kind:

φ(~ν) =
∑
a

Fa +
∑
i

Fi −
∑
(i,a)

F(i,a) (9)

where:

Fa = log

[∑
x∂a

ψa(x∂a)
∏
i∈∂a

νi→a(xi)

]

Fi = log

[∑
xi

∏
a∈∂i

νa→i(xi)

]

F(i,a) = log

[∑
xi

νi→a(xi)νa→i(xi)

]

1.3.4 Theorems and extensions

In the previous paragraph we derived all results having in mind tree-like graph-
ical models. Here we precise the validity of this approach with a theorem for
tree graphs and discuss where we can extend BP to non tree-like models.

Theorem Given a tree graphical model of diameter T , the BP algorithm
converges in at most T iterations, independently of the initialization of the
messages. The fixed point messages yields the right marginals of the problem.
Moreover, the Bethe free entropy (9) computed with the fixed point messages
is equal to the free entropy of the system.

Now we want to apply the BP approach to general graph. We start noticing that
both the BP equations and the Bethe free entropy (as a function of the messages)
are meningful independently of the topology of the graph. In particular, if the
messages converge we can take them as an approximation of the marginals and
free-entropy.
We mention a variational result [11] that holds in general graphical models, and
will be useful later:
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Figure 11: The bipartite matching or assignement problem can be solved by
the so called Min-Sum meassage-passing algorithm. It can be rigourosly proven
[12] that this approach always return an optimal assignement and a bound on
the number of BP iterations can be provided. Nevertheless, the messages do
not converge, but the exit condition is that they oscillates with some period but
for a uniform shift. This behaviour is shown in the right panel, where we plot
the value of a message versus time in a random instance of bipartite matching,
with weights generated from an exponential distribution. Nice analytical results
exist for the random matching problem [6, 32]. We have mentioned the match-
ing problem in order to give an idea of the great flexibility of message-passing
algorithms, useful in many other contexts, e.g. low density parity check codes.

Theorem The stationary points of the Bethe free entropy F (~ν) are fixed
point of BP. BP has at least one fixed point and finite fixed points are stationary
points of F (~ν).

Finally, we address the question of when we can expect the results of BP to
be reasonable approximations. The key reason why BP works in tree graphs is
that when we consider the modified cavity model, the different branches of each
variable node are independent factor graphs. If there are loops, this is no longer
true. We can thus expect that BP provide good approximations if variables
adjacent to a same vertex are weakly correlated in the modified cavity model.
This is expected to happen at least in two circumstances:

• for graphs with only “large” (at least O(logN) ) loops

• for fully connected graphs which can be treated in a replica symmetry
assumption: indeed, in fully connected models two-point correlations are
linked to the clustering property and are hence zero in pure states.

However, as fig. 11 shows, message-passing is a really flexible strategy for dealing
with several problems.
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2 Accessible states in simple discrete neural net-
works

In this chapter we want to explain the background and the motivation behind
this work, following the chronological steps of the discovery of dense clusters of
solutions for the training of neural networks with discrete synapses.

In section 2.1 the original puzzle about training simple discrete neural net-
works is described; this puzzle led to a large deviation analysis that predicts
the existence of cluster of solutions, extremely attractive regions for proper al-
gorithms.

In sec. 2.2 the idea is to exploit the knowledge of the structure of solutions
in order to conceive new algorithms.

Finally, in the last paragraph we discuss the future developments and the
importance of this line of research.

2.1 Dense clusters of solutions in learning with discrete
synapses

The main concern of this section is on simple architectures of neural networks
with discrete synapses. The interest for discrete synapses is of twofold nature:

• the hardware of computers is based on binary units [24]

• experiments on single brain synapses suggest that the neural activity is
characterized by switch-like events between a finite number of synaptic
states [23]

Under a mathematical point of view, the training of a neural network can be
recast in the language of random constraint satisfaction problems (CSPs), with
an associated factor graph like in Fig. 12.

In 1971 Stephen Cook [33] proved that the K-SAT problem, whereN boolean
variables are given and have to satisfy M = αN logical clauses involving K
variables each, is NP complete. During the last two decades there has been a
renewed interest in random CSPs, as it has been understood that even if the
worst case complexity of many CSPs is NP, the average instances of a problem
may be solved efficiently in polynomial time [9].

2.1.1 Franz-Parisi entropy and equilibrium analysis

The problem of training a discrete neural network is NP hard even if considering
the simple perceptron, and also considering the average case up to 2005 the most
efficient training algorithms could only learn a logarithmic number of patterns
in a time polynomial in N [13]. The theoretical explaination of this numerical
hardness has been provided by Huang and Kabashima [34] in 2014, computing
the so-called Franz-Parisi potential [35] for the discrete perceptron. The original
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Figure 12: On the left a simple architecture of feedforward neural network,
namely the tree-like committee machine. The committe is a two-layer feedfor-
ward neural network consisting of N input and K hidden units; each hidden
unit is linked to a subset of the inputs (in the follow we will mention three-like
and fully-connected architectures) and behaves as a single perceptron. The final
ouput is given by the “majority vote” of the intermediate outputs provided by
the hidden units. The committee shown has K = 2 hidden units (middle black
dots). On the right the associated factor graph, where every “sheet” represents
the constraint provided by each pattern in the training set (notice that the
empty circles are the synaptic weights that here play the role of variables of the
system).

idea of Franz and Parisi was studying the metastable states of spin glass models.
They considered the p-spin spherical model

H({σi}) = −
∑
i1,..,ip

Ji1,..,ipσi1 ...σip

where {σi} are N continuous real variables constrained on the sphere
∑
σ2
i = N

and the J ’s are disordered couplings distributed independently of each other ac-
cording to a Gaussian distribution. The thermodynamical (equilibrium) analy-
sis predicts [36] that at high temperatures this system lives in a paramagnetic
replica symmetric phase (paramagnetic means that the typical overlap between
Boltzmann configuration is 0), while at a certain temperature TS the system
undergoes a spin-glass transition to a 1RSB phase, characterized by overlaps
q1 > q0, q0(TS) = 0. However, a dynamical analysis shows that below TD > TS
the dynamics of the system gets trapped in metastable states, which are the
precursors of the discontinuous static transition.

The Franz-Parisi method couples the main system to a reference one, by
requiring that its configurations be at fixed distance from a configuration of the
auxiliary system sampled according to the equilibrium distribution. In general
the reference and main systems can be at different (inverse) temperatures β̃
and β = 1/T . The Franz-Parisi potential is the free-energy of the main system
averaged over the Boltzmann distribution of the reference one:

NVFP (s) =

〈
1

Z(β̃)

∫
dσ̃e−β̃H(σ̃){−T logZ(σ̃, s, β)− F (β)}

〉
J

Z(σ̃, s, β) =

∫
dσ e−βH(σ)δ(s− σ · σ̃

N
)
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Figure 13: Franz-Parisi potential versus overlap s at T = T̃ for various temper-
atures (lower lines correspond to lower temperatures)

where σ̃ denote the configurations of the reference system, s is the fixed
overlap (equivalent to fixing the distance) and F serves as a normalization, so
that the potential is zero if s = qtyp, that is equivalent to uncoupled systems.
The Franz-Parisi potential is precisely the potential associated with the ther-
modynamical force needed to constrain the main system.

The Franz-Parisi potential can be computed with the standard replica method
(while the dynamical analysis requires different tools such as diagrammatic ex-
pansions or calculation of the complexity of TAP free energy [36]) to yield, for
temperatures greater than TS (we consider T = T̃ ), a plot like Fig. 13 . The
first (left) minimum corresponds to s = qtyp = 0, as we are in the paramagnetic
phase. At T > TD this is the only minimum. At T = TD a second minimum
develops, corresponding to the appearance of metastable states. This minimum
reaches 0 at TS in s = q1. For lower temperatures the analysis requires a RSB
computation, but it is expected that both minima have 0 potential and shift
following s = q1, q0.

We go back to the discrete perceptron now. It is known [20] that the zero
temperature storage problem is SAT and replica symmetric up to α ' 0.833,
where a RSB and UNSAT transition occurs. Huang and Kabashima [34] con-
sidered the storage scenario and computed the Franz-Parisi entropy at zero
temperature, i.e. the number of solutions at fixed overlap9 s from a reference
synaptic configuration W̃ drawn with uniform probability from the set of all

9actually the replica computation is performed introducing a Lagrange parameter conjugate
to the overlap, γ, which acts as an external field of direction W̃ :

HFP (γ) =

〈∑
W̃

χ(W̃ , ξ) logℵ(W̃ , γ)

〉
ξ
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Figure 14: In the left upper panel the Franz Parisi entropy is plotted versus the
Hamming distance, for various values of α (notice that for α→ αc the entropy
sinks below zero). The inset shows the Lagange parameter conjugate to the
distance (at the maximum the entropy changes concavity). Right upper panel:
critical distance as a function of the training set size. Lower panel: qualitative
sketch of the space of solutions at different α.

possible solutions

HFP (s) =

〈∑
W̃

χ(W̃ , ξ) logℵ(W̃ , s)

〉
ξ

ℵ(W̃ , s) =
∑
W

χ(W, ξ)δ(s− W · W̃
N

)

where χ(W, ξ) =
∏
µ θ(W ·ξµ) (we are taking all outputs positive: σµ = +1).

Since logℵ is only extensive while the number of solutions is exponential in N ,
the sum over W̃ is equivalent to a sum over typical solutions.

The Franz-Parisi entropy for the discrete perceptron is shown in Fig. 14.
As expected, the entropy at fixed distance decreases increasing α. The other

ℵ(W̃ , s) =
∑
W

χ(W, ξ)eγWW̃
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expected feature is that the maximum is taken for distance corresponding10 to
the typical overlap between typical solutions. What is remarkable is that there
exists a distance d(α) such that, below this distance, around typical solutions
there are at most few (in a not exponential number) solutions, corresponding
to zero Franz-Parisi entropy.

The conclusion is that typical solutions are isolated, hence a glassy energy
landscape and the computational hardness of the training problem. This last
interpretation is not immediate and certainly not rigorous (the typical solutions
may be distant but with large basins of attraction). There are mainly two ideas
behind such interpretation, coming from the experience gathered in the study
of other random CSP with binary variables:

• if two solution are several spin flips distant, then an algorithm may suc-
ceed in satysfing M − 1 patterns, but the partial solution found has not
roubustness with respect to the missingMth pattern; on the contrary, if a
solutions is surrounded by many other solutions it is easier to find a little
correction to fit the addition of a new pattern. With analogy to KSAT, it
is said that such isolated solutions are frozen.

• in the KSAT and in the Q-coloring problems it is known that algorithms
succeed to find solutions only if these solutions are in (well separated) clus-
ters of exponentially many close-by solutions, while there is a frozen phase
in which every known algorithm fails because the landscape is dominated
by metastable states [37, 9, 21]

In conclusion, even though a rigourous proof would require a finite temperature
analysis of metastable states, which is technically more difficult because of RSB
effects, also at the light of the findings discussed below in this Chapter we think
that the logic of Huang and Kabashima (isolated solutions ergo computational
hardness) is essentially correct for all free-energy minimization based algorithms.

2.1.2 Bumping into non-equilibrium solutions

It was a period of fervent interest in message-passing algorithms when Alfredo
Braunstein and Riccardo Zecchina [13] (2005) tried to use BP for finding solu-
tions of the storage problem of simple (perceptron and one hidden layer) discrete
neural networks. Being fully connected RS models BP is expected to yield , for
large enough N , the correct marginals and the correct entropy of the problem.
Actually, the entropy estimated with BP, averaged on different samples, matches
the replica theoretical computation, see Fig. 15. To turn BP into a solver for
the storage problem (i.e. we want single solutions, not their entropy) the naive
idea is to take the polarizations of the marginalsWi ← arg max p(Wi). However,

10the distance between two configurations is defined as the Hamming distance i.e. the
fraction of spin flips neccessary to take one configuration in the other:

d =
1− q
2

, q =
W ·W ′

N
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Figure 15: BP entropy vs α for N = 3465 and different numbers K of hidden
units (the considered architecture is a committee machine, K = 1 is the percep-
tron). The BP estimate matches the replica analytical results. The upper inset
shows Q as a function of the number of BP iterations, with and without rein-
forcement, where γt = (γ0)t . With reinforcement the variables are completely
polarized after some time. The dashed line is the prediction for BP as given by
the density evolution analysis (DE)[10]. The lower inset shows the normalized
number of violated constraints E/N versus time. The data of both insets have
been averaged over simulations with N = 105 + 1, α = 0.6.

this approach neglects completely the correlations between synapses, which are
important for finding single solutions. The inconsistency of this attempt is quan-
tified by the quantity Q = 1− 1

MN

∑
i,µm

2
i→µ, wheremi→µ =

∑
Wi
Wipi→µ(Wi)

is the cavity magnetization of synapsis i in the problem without pattern µ. Q
is zero if the marginals are Kronecker deltas and 1 if are uniform. As Q doesn’
t approach zero, see Fig. 15,we cannot use BP for finding single solutions.

A possible way out is to decimate the problem: we take the n most polarized
(according to the non cavity magnetization) variables at each iteration and fix
them to be ±1, run BP on the new problem and so on. Braunstein and Zecchina
proposed a very simple but more continuous and fully local version of this trick
and called it reinforcement : at time t+1 each site is subject to an external field
proportional to the site magnetization at time t. In this way at the fixed point
the variables are completely polarized. Namely, the BP equations are modified
in this way

ht+1
i = ht+1

BP,i + {0w.p. γt, hti w.p. 1− γt}

where the h’s are linked to magnetizations by m = tanhh and are the aux-
iliary non cavity quantities used to compute the messages from synapses to
factors.

Anyway the details of the algorithm are not very important and actually
many efficient variations exist [1]. What is important is that there exist heuris-
tics which succeed in finding solutions of the training problem up to αA ' 0.75
and in running time of order O(N2 logN). The results for the original rein-
forcement learning [13] are shown in Fig. 16
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Figure 16: The probability of success of reinforcement as a function of α and
different γ0’s, γt = (γ0)t . For each α 20 samples are considered with N =
105 + 1 and K = 1 (binary perceptron). With softer decimations (γ0 → 1) the
algorithmic storage capacity increases up to α ' 0.74, but with the drawback
that more time is required, according to the scaling: running-time ∝ 1

1−γ0
.

The insets show Q and E/N versus time for K in different ranges and suggest
that the behaviour of the algorithm is robust in K.

After Huang and Kabashima 2014 paper a question arised naturally: solu-
tions found by reinforcement based algorithms are typical or non-equilibrium
solutions?

Numerical experiments [1] suggests that the solutions found by efficient algo-
rithms are not isolated typical solutions but they belong to clusters of solutions
of extensive size:

• taken an algorithmic solution W̃ and performing a random walk (ran-
dom spin flips)11 solutions are found up to a number of spin flips O(N).
In particular, the number of solutions at fixed Hamming distance grows
exponentially in N , as can be estimated sampling with a random walk
configurations at fixed distance and different N .

• the entropy of solutions is computed with BP on the modified system with
external field proportional to an algorithmic solution W̃ , the proportional-
ity constant being the Lagrange parameter associated with the distance[2].
The results are shown in Fig. 15: the local entropy of solutions from an
algorithmic solution does not go to zero for small distances and is higher
than the Franz-Parisi entropy (local entropy from typical solutions) even
when this is not zero.

The straightforward conclusion is that the equilibrium analysis does not capture
the behaviour of reinforcement based heuristics. The numerical results suggest

11more precisely they consider only solutions in the same connected cluster, where two
solutions W,W ′ are connected if there exist a sequence of solutions W,W1, ...,W ′ such that
Wi,Wi+1 differ for a single spin-flip
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Figure 17: Entropy of solutions at fixed distance from a reference solution W̃
(local entropy), for the storage problem at α = 0.4. W̃ is a typical solution in the
magenta line (Franz-Parisi entropy), a solution found algorithmically in the blue
(RW estimate of entropy) and red (BP estimate) lines, a large-deviation solution
with y = +∞ (“optimal”) in the green line (analytic local entropy). The black
dotted line is the greedy upper bound provided by elementary combinatorics
(α = 0). Notice that the RW line is below the BP one because the former
counts only the solutions in the same connected cluster. Similarly, the BP
line is below the optimal one because in the latter the W̃ is optimized at each
distance, while in the former W̃ is independent of the distance. The fact that
the numerical results fit so well the theoretical prediction at small d suggests
that the densest regions are the most attractive to algorithms.

that the solutions found by reinforced algorithms may be better described by a
local entropy dependent measure.

2.1.3 Large deviation analysis

The numerical findings of the previous paragraph suggest that the effective
heuristics manage to find clusters consisting in an exponential number of solu-
tions but still subdominant with respect to the more numerous isolated typical
solutions. In order to study analytically these non-equilibrium solutions, their
non isolated nature suggests to reweight each solution with its local entropy,
namely to study the large deviation partition function [1]:

Z(y, s) =
∑
W̃

χ(W̃ , ξ)ey logℵ(W̃ ,s) (10)

ℵ(W̃ , s) =
∑
W

χ(W, ξ)δ(s− W · W̃
N

)

This is a system with formal HamiltonianHs(W̃ ) = − logℵ(W̃ , s) and formal
inverse temperature y. The local or internal entropy SI is precisely defined as
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the (opposite of the) thermodynamical internal energy of the reweighted system:

SI(y, s) = − 1

N

〈〈
Hs(W̃ )

〉
y,s

〉
ξ

=

〈〈
1

N
logℵ(W̃ , s)

〉
y,s

〉
ξ

where 〈·〉y,s =
∑
W̃ ·χ(W̃ , ξ)ey logℵ(W̃ ,s) denotes reweigthed Bolzmann av-

erages. The local entropy SI reduces to the Franz-Parisi entropy in the limit
y → 0. Another quantity of interest is the external entropy SE , defined as the
entropy of the reweighted system, i.e. as the number of configurations W̃ that
dominate the large deviation measure:

SE(y, s) = F(y, s)− ySI(y, s)

where F(y, s) = 1
N logZ(y, s) is the free entropy of the reweighted system.

In the case of the perceptron, the thermodynamics of the reweighted system
can be solved by the replica method, the steps are: take the analytical con-
tinuation of y integer, replicate the system so to have a pair of replica indices
and finally perform the quenched average over the training set. (We don’ t
focus on the details of the computation as we will be dealing with very similar
calculations in Chapter 3 and 4.)

Performing the computation with the RS assumpion yields an external en-
tropy SE(y, s) which above a certain temperature y > y∗ = y∗(α, s) is negative,
this for every α, s. This unphysical result resembles the low temperature in-
consistencies of spin glass computations at inadeguate level of RSB. A 1RSB
computation being technically unfeasible, the fix is picking y = y∗ and assessing
if the results are reasonable.

Fig. 18 shows SI(y ∗ (α, s), s) for various α’s. Up to α ' 0.77 the local
entropy curves are monotonic; for α ' 0.78 there is a region, at small distances,
with negative derivative, but at smaller distances the curve is acceptable; for
greater α the entropy becomes negative, then there is a gap 12 but a meaningful
curve reappears near zero distance.

Moreover, for every training set size, for small enough distances and for large
enough distances, i.e. comparable with the typical distances, y∗ → ∞ and the
local entropy reaches in the former case the upper bound α = 0 and in the latter
the Franz-Parisi entropy. This suggests that the RS computation is reliable at
least in the α < 0.77 region and enables to draw the following conclusions:

• for all α < αc there exist dense clusters of solutions. These clusters are
thought to be in sub-exponential number (SE(y∗, s) = 0 and the RSB
unconstrained computation mentioned below, Sec. 2.2.1, suggests that
with successive steps of RSB this is the case at any y > 0 and in par-
ticular at y = ∞), but they contain an exponential number of solutions.
Furthermore, the cores of these clusters are very dense.

12the saddle point equations don’ t have acceptable (continuous) solution in this region
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Figure 18: The local entropy SI(y ∗ (α, s), s) is shown as a function of distance
d = 1−s

2 for various values of α. The black line is the α = 0 geometrical bound,
while the blue dashed lines are the Franz-Parisi entropy. The red lines are dotted
if their derivative is negative and there is a gap in the α ' 0.79 curve. The inset
shows a small neighborouhood of d = 0: it seems that here the approach is
consistent also for great α and hints that the core of the clusters are very dense.

• the RS nature of the space of solutions at low α suggests that the clusters of
solutions are immersed in the same connected13 region [“il clusterone” for
friends], extremely accessible to algorithms; increasing α the size of cluster
cores shrinks until the clusters become disconnected (RSB transition) and
what remains of the dense cores appears as isolated solutions, hard to find
for algorithms.

2.1.4 Teacher-student case

The teacher-student scenario shows similar non-equilibrium features [1, 2]. In
this context a very interesting issue concerns the non-equilibrium generalization
properties.

The generalization problem for the discrete perceptron admits an exponential
number of solutions up to αTS = 1.245 where a first-order transition occurs such
that the teacher remains the only solution,with a corresponding vertical drop
of the generalization error [38]. Given a teacher WT and a configuration W the
probability of classify wrongly a random pattern (generalization error) is given
by the simple geometrical relation (see Fig. ) pe = 1

π arccos W ·W
T

N .
In [1] the Franz-Parisi equilibrium analysis is extended to this scenario and

it holds that:

• typical solutions are isolated for every α, even when adding a positive
stability;

13we misuse the word “connected”, meaning it holds an RS description for the W̃ . Actually,
numerical experiments suggest that algorithmic solutions are connected.
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Figure 19: Generalization error versus α in the teacher-student scenario. In
blue the usual replica result, in green the Bayesian case (center of mass of
the solution space) which is a probabilistic lower bound. In red and magenta
the generalizations of solutions typical with respect to the reweighted measure,
obtained maximizing the local entropy at small and large distances respectively.
The generalization error decreases increasing d up to a value dmiddle, such that
SI(dmiddle) = SI(dtyp) = HFP (dtyp); in practice d(W̃ (dmiddle),Wtyp) = dmiddle
for any Wtyp and there is a plateau of SI(d) for d ∈ [dmiddle, dtyp]. Notice that
the numerical results fit the small d line, showing that the densest regions are
the most attractive.

• the teacher resembles a typical solution: its overlap with typical solutions
has the same value as the overlap between typical solutions; suprisingly,
its Franz-Parisi entropy shows that the teacher is isolated from other so-
lutions.

Numerical experiments were thus performed, see Fig. 19:

• taking the teacher as reference configuration, the local entropy estimated
with BP agrees with the replica computation (it is not exactly the Franz-
Parisi entropy but even simpler, and with no reweighting)

• taking an algorithmic solution as reference configuration, the local entropy
estimated with BP does not agree with the Franz-Parisi computation

• the generalization error of algorithmic solutions is lower than the theoret-
ical prediction for typical solutions

The large deviation approach eq. (10) can be straightforwardly extended to
this case, the only adjustment being contained in the χ functions and in the
fact that the quenched average involves also the teacher. Once again, the ana-
lytical results describe well the numerical findings, see Fig. 19.

For both classification and generalization learning, a similar scenario is ex-
pected to remain valid for multilayer discrete networks (in [1] up to 3 hidden
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layers are considered) and for Potts synapses, i.e. with Wi = 0, 1, ..., q [22].

We have shown numerically that reinforced algorithms find solutions im-
mersed in dense clusters of solutions and have been able to predict analytically
some properties of these regions. The missing step is a dynamical explanation
of the behaviour of algorithms. This will be discussed in the next Section.

2.2 Dynamics and algorithm development
The large deviation measure describes but does not explain the behaviour of re-
inforced algorithms. In this Section we try to understand the dynamical reasons
that drive an algorithm towards dense regions of solutions. We start trying to
design algorithms that exploits the structure of the solutions space, the reason
of doing this is threefold:

• as a proof of concept that dense regions of solutions are able to attract
algorithms for their very dense nature

• in paragraph 2.2.2 a BP-based algorithm is introduced inspired by theo-
retical considerations. With some simplifications the reinforcement-based
heuristics are recovered; this should provide a (non-rigourous) proof of
why the dynamics drive algorithms towards dense clusters of solutions

• for the very goal of designing new efficient algorithms, for learning prob-
lems and hopefully for other random CSPs

The conclusion seems that learning is possible in presence of dense regions of so-
lutions that attract algorithms somehow sensible to the local entropy landscape,
i.e. the dynamics is a local-entropy driven one. This closes the loop.

2.2.1 Entropy Driven Monte Carlo

Free-energy based algorithms fail in training neural networks with discrete
synapses, for the reasons discussed in paragraph 2.1.1. The numerical results
and the large deviation analysis suggest that effective algorithms are attracted
towards dense regions of solutions.

The natural idea [2] is thus introducing a simple Monte Carlo replacing, as
objective function, the energy of the non reweighted system with the energy of
the reweighted system, i.e. the local entropy. In practice, the algorithm tries to
maximize the local entropy with a Metropolis-like [39] step, the local entropy
of each configuration being evaluated by the already mentioned BP with exter-
nal field proportional to the considered configuration, and with proportionality
constant that we call γ. This algorithm has been called Entropy driven Monte
Carlo (EdMC).

Actually, the EdMC doesn’t sample solutions from the constrained large
deviation measure of eq. (10), whose space of configurations consists only in
solutions, but from the unconstrained large deviation measure:
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Z(y, γ) =
∑
W̃

ey logℵ(W̃ ,γ) (11)

ℵ(W̃ , γ) =
∑
W

χ(W, ξ)eγWW̃

in which the W̃ are not required to be solutions and the constraint on the
distance has been implemented in a soft way introducing the Legendre parameter
γ. The local entropy SI(y, s) is thus related to the local free entropy F (W̃ , γ) =
1
N logℵ(W̃ , γ) by Legendre transform: the former is used for the analytical
computation, while the latter is more suitable for the algorithm implementation.

For the unconstrained large deviation measure a 1RSB computation is re-
quired14 and is possible: indeed, in the constrained case there were solutions
that formed the center of clusters and this were up to αRSB in the same con-
nected region described by the RS solution; here the center of a cluster consists
in a bunch of configurations that in general are not solutions (described by
an on-diagonal Parisi parameter) and the overlap between clusters is now off-
diagonal in the replica overlap matrix Qab. Even with the 1RSB assumption
there is some problem: at finite y the external entropy is negative, but in the
limit y →∞ one recovers meaningful results. In particular the W̃ ’s in the same
cluster collapse to an unique configuration that is also a solution15 (a core of the
constrained large deviation analysis) and the local entropy curves seem exactly16

those of the constrained reweighted analysis, see. Fig. 20 . In particular, the
results seem especially consistent at s → 1, as here the external entropy tends
to zero. For the generalization problem similar considerations hold.

The EdMC maximizes the local free entropy F (W̃ , γ) with a Metropolis-
like move (we don’t want to enter into the details here). A scoping procedure
is required in order to make the algorithm effective: γ is gradually increased
to enforce the local entropy maximization on always shorter scales, see Fig.
21. However, the really amazing fact is that the algorithm works well even
at zero temperature : this suggests that while the energy landscape is glassy,
the local entropy landscape has not metastable states and the optimization
problem becomes convex-like, see Fig. 21. Correspondingly, the EdMC succeeds
in a small number of iterations compared to energy based algorithms such as
simulated annealing (SA), and while the number of iterations required by SA
scales exponentially in N at fixed α, the EdMC scaling is polynomial in N , with
an α-dependent exponent, see Fig. 22 . The main bottleneck of EdMC actually
is the estimate of the local free entropy F (W̃ , γ).

Similar performances were achived also in the 4-SAT problem, where dense
clusters of solutions are known to exist up to a certain clause density. The

14a posteriori this is quite reasonable, see below; in practice it was understood from the fact
that the RS external entropy was positive even above αc.

15in [2] this follows from the large y scalings m → x/y, q2 → q1 + δq/y, see the paper for
the notation

16the cores of extremely dense regions of solutions are expected to be themselves solutions,
so one recover the constrained results
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Figure 20: (A) Local entropy (theoretical computation) versus overlap for var-
ious training set sizes: apart from regions of the curves where 2RSB effects
appear (gaps, negative entropies), the local entropy reaches the upper bound
α = 0 at sufficiently small distances. (B) Local entropy versus overlap at
α = 0.6, N = 201. The experimental points (averaged over 700 samples) rep-
resent BP estimates of the local entropy found using the EdMC procedure at
fixed γ to maximize F (W̃ , γ) (i.e. without stopping when a solution was found);
s and the local entropy SI(s) are estimated with BP at the final step. The re-
markable fact is that both finite and zero temperature EdMC follow the same
curve: this is consistent with the idea that there are not barriers in the local
entropy landscape.

Figure 21: Left panel: a typical trajectory of standard (energetic) simulated
annealing (red) and of EdMC (blue) in the plane (iterations, violated patterns)
for the training of a discrete perceptron with N = 801, α = 0.3. EdMC is run at
zero temperature, so it is remarkable that the energy decreases nearly monoton-
ically in time. Notice the logarithmic scale on the x-axis: EdMC requires few
iterations with respect to SA. See [2] for the details of the algorithms. Right
panel: sketch of the energy versus local entropy landscape and of the scoping
procedure. The red dashed line corresponds to small γ and entropic exploration
of large distances; increasing γ (dashed-dotted and solid lines) the algorithm
searches shorter scales of distances. The plot represents the true local entropy
of a toy 1D energetic landscape generated by a stochastic process.
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Figure 22: Number of iterations required to find a solution as function of the
system size N for SA and EdMC, notice the log-log scale. 100 samples have
been tested for each size. (A) Simulated annealing at α = 0.3; the curve is
fitted by ea+bN , b ' 0.0088. (B) EdMC at α = 0.3, fitted by aN b, b ' 1.2 and
α = 0.6, fitted by aN b, b ' 1.7.

main problem at α > αRSB is that the fragmentation of the connected region
of solutions would require a RSB cavity method to estimate the local entropy.

2.2.2 Replicated algorithms

The effectiveness of EdMC is based on the non glassy nature of the local entropy
landscape. In practice, the performances of EdMC are quite limited by the
need of computing the local entropy at each iteration. On the other hand,
the reinforcement algorithm is very simple and efficient. This imbalance has
prompted the search for more efficient theoretically grounded algorithms.

Setting y integer, the large deviation partition function (11) can be seen as
a system of y real replicas Wa [3] interacting with a “pivot” W̃ :

Z(y, γ) =
∑
W̃

ℵ(W̃ , γ)y =
∑
Wa,W̃

y∏
a=1

χ(Wa, ξ)e
γW̃

∑
aWa (12)

This approach is valid for general finite temperature systems, replacingχ
with e−βH(Wa). Actually, the “pivot” may be traced out:

R(y, β, γ) =
∑
Wa

e−β
∑
aH(Wa)+log

∑
W̃ eγW̃

∑
a Wa

The above partition function defines the Robust Ensemble. Configurations
Wa (for an a) sampled from the Robust Ensemble are expected (see below) to
follow the same distribution as the large deviation degree of freedom W̃ . The
term “robust” comes from the robustness of solutions belonging to dense clusters.

In practice, one can simply apply the traditional algorithms to the system
(12), i.e. considering y systems and coupling them together. A scoping proce-
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dure makes the replicas converge17 to the pivot W̃ , hence the equivalence with
sampling from the large deviation measure. This simple strategy of replicating
the system is not completely new [40], being beforehand motivated by a naive
“entropic exploration” argument.

In [3] the three more obvious replicated algorithms are considered and ap-
plied to simple discrete neural networks:

• replicated Simulated Annealing

• replicated Gradient Descent (how to map the discrete synapsis problem
to a differentiable one is non trivial)

• replicated Belief Propagation and its variations

All three show very good performances and scalings similar to EdMC and rein-
forcement, see [3] for details. In particular we spend a few words on replicated
BP. The naive way of replicate BP leads to a replica symmetry form of the
marginals at each site and doesn ’t work well. The right approach is, once the
problem has been replicated, to assume that messages do not depend on the
replica index. In this way one has to deal with only one copy of the system
and the BP equations for the pivot contain addends of the kind y ×message
where y can be taken real. The details will be explained in Chapter 4, where
the approach will be applied to the continuous perceptron. Anyway, in [3] it
is shown experimentally that this approach, called focusing BP, spontaneously
breaks the replica symmetry. Indeed, the messages can be used to estimate the
overlap between relevant18 configurations (formally this is the overlap between
real replicas before the focusing BP semplification and can be analytically ex-
tended in the passage to focusing BP). Such overlap is shown to be driven by
the scoping procedure from the inter-cluster Parisi order parameter to the intra-
cluster one, the Parisi overlaps being those predicted by the unconstrained large
deviation theory. The problem of naive replicated BP is the same of BP, but
for neglecting typical solutions and considering only configurations in dense re-
gions, i.e. it estimates correctly the total unconstrained large deviation entropy
but doesn’ t focus on the single clusters. It is not completely clear from a the-
oretical standpoint why focusing BP manage to break this symmetry instead.
Moreover, with a semplification focusing BP is identical to the reinforcement
algorithm (having y replicas has somehow the effect of reinforcing the polariza-
tion of sites with greater magnetization).

In the end, we have shown that successful algorithms are attracted towards
dense regions of solutions: indeed, not only the algorithmic solutions fit this
description, but we have also gathered evidence that the local entropy maxi-
mization problem is convex-like at least until the clusters of solutions are in the

17actually, in simulations a solution is found just before the collapse
18typical equilibrium solutions is if they didn’t exist, only configurations surrounded by

many solutions are relevant.
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same connected region. Finally, we have introduced a simple strategy to imple-
ment efficient algorithms and have proven that the previously known heuristics
are nothing but clever ways of breaking the symmetry of replicated BP.

2.3 Discussion and perspectives
In the end we have shown that it is possible to solve efficiently the training
of discrete neural networks problem. Efficient algorithms are driven towards
dense regions of solutions, described by the large deviation measure (10). These
regions shows also good generalization properties. The correspondence between
effectiveness and dense clusters of solutions seems to be complete: the EdMC
search proves that the local entropy lanscape is not glassy, replicating algo-
rithms, i.e. sampling from the non-equilibium measure, provides effective algo-
rithms, and finally all efficient existing algorithms are generated as variations
of theoretically-grounded tecniques. On the other hand, when the dense region
of solutions breaks down, all known algorithms cease to succeed.

This is not a totally new discovery, as this correspondence has been thought
to exist in other random CSPs with discrete variables, such as K-SAT. Here it
is known [9, 21] that the different levels of hardness of the problem occurs at
clause densities corresponding to transitions in the space of solutions. However
the above program has not been completed.

What remains to be done? Different lines of research stems naturally from
such a clear and simple correspondence between local entropy and algorithmic
accessibility :

• Extend the analysis to finite temperature, i.e. understand if even though
perfect training may be not possible, there exist accessible regions of low
energy.

• Try to apply this finite temperature approach to other optimization prob-
lems with discrete variables, such as energy minimization in SK and other
spinglass models.

• Inquire if the large deviation analysis remains true when dealing with
different learning problems, in particular when the input patterns are cor-
related and for unsupervised learning. This is a priority.

• Design very efficient algorithms for deep discrete neural networks

• Seen the robustness and accessibility of large deviation solutions, we can’
t help thinking that the discussed mechanisms may play a role in the
amazing and still mysterious way human brain processes information.

• In game theory it is known that in some model there exist “crystalline”
optimal strategies at high risk versus optimal robust bunch of “mixed”
strategies. In particular, our focus is on a problem from quantum control
[41], in which it has been shown that dense regions of optimal strategies
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exist. Interestingly, this family of strategies correspond to those found by
humans asked to play this game (gamefication of optimization problems).

• The other priority is to investigate extentions to continuous deep neural
networks: deep learning works amazingly, but a theoretical description is
lacking.

The outlined goals are very ambitious and will require a lot of time, but we
think they are worth it.

2.3.1 Goal of this work

The aim of this work is inquiring if the large deviation results extend to learning
in simple continuous neural networks. In particular, our main concern is on the
continuous perceptron with negative stabilities, the choice being driven by the
following observations:

• already the discrete perceptron shows the clustering of solutions, so it
seems natural to start the analysis with the simplest possible model

• nevertheless the space of solutions of the perceptron with positive or zero
stability is convex; the negative perceptron, instead, has disconnected
regions of solutions

• the negative perceptron has some interest in the packing of hard spheres
context.

The original programme of the work was:

• equilibrium analysis à la Franz-Parisi, at positive and negaive κ in the clas-
sification scenario, with the hope to observe a qualitative change between
the two cases

• reweighted analysis, at positive and negaive κ in the classification scenario,
both using replicas or, if technically too hard, trying the focusing BP
estimate of local entropy on single large samples

• show with gradient-descent based simulations that training a negative per-
ceptron is hard and replicated GD is required

• understand if SGD works as the standard or replicated GD

• extend both the theoretical analysis and the simulations to the general-
ization scenario

All the analytical results have to be derived below the AT line.

The last three points are motivated by the observation that in the training
of deep neural networks a simple GD either fails or yields solutions with bad
generalization properties, while SGD works better, so we guessed the reason
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was that it finds more robust solutions, and may be possibly explained by our
off-equilibrium theory.

We briefly anticipate the results of the analysis:

• Franz-Parisi entropy: no qualitative difference between the positive and
negative stability cases.

• reweighted analysis: we performed the replica computation and derived
the saddle point equations. Its numerical solution is highly non-trivial, so
we posticipated it (and finally gave it up, see below).

• focusing BP: it yields meaningful results for a certain range of distances,
elsewhere it lacks of convergence (we don’ t know if this is due to numerical
problems or to a problem in the approach). We are not able to state that
the local entropy it yields in the region of convergence is higher than the
Franz-Parisi entropy.

• the really discouraging result is, though, that simple Gradient Descent
succeds to finding solutions up to great α, well above the AT line. So
there is no computational hardness. On the contrary, the question is
whether there are local minima or all minima are solutions.

• nonetheless we tried replicated GD in order to understand if GD and
replicated GD select the same solutions or different ones. We could not
detect significant differences in the statistics of outcomes.

The conclusion is that the negative perceptron is not a good model to investigate
non-equilibrium effects and computational hardness. We think that this may
be due to the geometrical nature of the space of synapses, a sphere embedded
in an euclidean space.

Our interest now is in deeper architectures: here the space of synaptic
weights is a cartesian product of spheres, and even though different “domains”
(corresponding to discrete states) may be equally acceptable considering only
one sphere and tracing out the others, they may have long-range inter-sphere
correlations, possibly with some domain combinations more robust than others.

Hence, in the last Chapter we will discuss in more detail our perspectives
and hopes in the field of deep neural networks. In particular, the strategy of
replicating algorithms is very flexible and similar heuristics have already been
implemented in the literature with promising results [40].
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3 Continuous perceptron: equilibrium analysis
In this Chapter we extend the equilibrium analysis to the continuous perceptron.
Firstly, we delay a little more on the details of the Gardner analysis near the
SAT-UNSAT line, then we turn to the analytical computation of the Franz-
Parisi entropy by means of the replica method, solve the saddle point equations
and discuss the results. The scenario is qualitatively different from the discrete
case

3.1 Gardner analysis (reprise): critical region
In this Section we reconsider the Gardner analysis: in 1.2 we hinted at the
way Gardner [7, 8] faced the continuous perceptron storage problem using the
replica method, wrote down the RS saddle point equation and reported the
phase diagram. Here we focus on the analytical derivation of the SAT-UNSAT
line and other asymptotics behaviours from the saddle point equation; moreover
we consider the problem of solving numerically the saddle point equation. The
reason why repeat this work is to get some useful advice in the analytical and
numerical treatment of the asymptotic limit of Gaussian integrals, so to be well
trained when facing more difficult saddle point equations, as in Section 3.2.

3.1.1 Analysis of asymptotic behaviour of Gardner saddle point

The entropy of the problem is given by maximizing:

φ(α) = extrq̃{
1

2
log(1− q̃) +

1

2

q̃

1− q̃
+ α

∫
Dz logH(

κ−
√
q̃z√

1− q̃
)} (13)

As at the SAT-UNSAT transition we expect all the solutions to have shrunk
to a small region, for α near αcwe can expand for δq = 1− q̃ → 0:

φ(α) = extrδq{
1

2
log δq+

1

2

1

δq
+α

∫ κ

−∞
Dz [− (κ− z)2

2δq
+

1

2
log δq]}+O(1) (14)

Here we have exploited the series expansion:

H(x) ' 1√
2πx

e−
x2

2 (1− 1

x2
+

3

x4
+ ...) , x→∞ (15)

which can be obtained from some integration by part. From H(x) = 1 −
H(−x) one gets the asymptotic beheaviour at −∞.

Deriving (14) in δq one obtains the saddle point equation in this limit:

0 =
1

δq
− 1

δq2
+

α

δq2

∫ κ

−∞
Dz (κ− z)2 +

α

δq

∫ κ

−∞
Dz +O(1)
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For fixed α = αc − δα the solution of this equation is, at the first order in
δα, something like δq = C · δα+O(δα2)19:

0 =
1

C2δα2
{αc

∫ κ

−∞
Dz (κ− z)2 − 1}+

+
1

C · δα
{−
∫ κ
−∞Dz (κ− z)2

C
+ αc

∫ κ

−∞
Dz + 1}+O(1)

The elimination of the coefficient of δα−2 yields the critical storage

αc =
1∫ κ

−∞Dz (κ− z)2

while the term δα−1 provides a condition for C:

C =
α−1
c

1 + αc
∫ κ
−∞Dz

For κ = 0: αc = 2, C = 1/4, so 1 − q̃ = 2−α
4 . The terms of order O(1) in

the saddle point equation are eliminated by terms O(δα2) in δq.
Plugging the asymptotic behaviours in (13), the entropy shows a logarithmic

divergence as a function of the number of inputs at the SAT-UNSAT transition:

φ(α) =
1

2
log δα+

αc
∫ κ
−∞Dz

2
log δα+O(1)

In particular, φ(α) = log δα for κ = 0. The scaling of both the oder param-
eter and the entropy with δα are consistent with those found numerically.

3.1.2 Numerics of asymptotic Gardner saddle point

Performing integrals in a naive way, numerical problems at q̃ → 1 emerge fiercely.
We plotted the underlying entropy

φ(q̃) =
1

2
log(1− q̃) +

1

2

q̃

1− q̃
+ α

∫
Dz logH(

κ−
√
q̃z√

1− q̃
)

for κ = 0., α = 2. as a function of the order parameter and noticed that for
q̃ & 0.98 there are clear numerical issues, see Fig. 23.

The problem probably comes from the numeric evaluation of the logarithm
of a very small number (indeed the denominator of the argument of logH is√

1− q. We try to fix this by means of a splitting of the energetic term:
19The term of order 2 actually enters the following equation, but with coefficient
{αc

∫ κ
−∞Dz (κ− z)2 − 1}, that will be set to 0.
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Figure 23: Underlying entropy at κ = 0., α = 2. as a function of the order
parameter, with (red line) and without (blue) cutoff. The fact of taking exactly
α = 2 is not important: for α = 1.99 the blue line looks the same, while the red
one has a minimum very near to q̃ = 1.

G̃E '
∫
Dz {logH(

κ−
√
q̃z√

1− q̃
) · θ(δ − κ−

√
q̃z√

1− q̃
) +

+[−1

2

(
κ−
√
q̃z√

1− q̃

)2

− log

(√
2π
κ−
√
q̃z√

1− q̃

)
] · θ(κ−

√
q̃z√

1− q̃
− δ)}

where in theory δ � 1, in practice we take δ = 10 (indeed H(10) ≈ 8 · 10−24

). This approximations seems to be insensitive of the cutoff for δ ≥ 3 and, as
shown in Fig. 23 leads to a major improvement in the computation of Gaussian
integrals in the critical region.

Solving the saddle point equation

Extremizing (13) yields the integral of e−
x2

2 /H, which can be treated with the
expansion (15).

We tried to solve the saddle point equations with Newton method and prop-
erly tuning the algorithm parameters we managed to find reasonable solutions
up to α ' 1.998 with κ = 0.

Insead, using the bisection method (actually the function fzero from the Julia
package Roots) we arrived beyond α = 1.99999.

3.2 Franz-Parisi entropy
Now we will extend the equilibrium analysis to the continuous perceptron by
computing the Franz-Parisi entropy. In paragraphs 3.2.1 and 3.2.2 we perform
the replica computation in the RS ansatz. The small and large distances limit
of the saddle point equations are considered in 3.2.3, where it is shown that a
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large distance vertical asymptote exist for the Franz-Parisi entropy. Finally, the
entropy is plotted and discussed in Section 3.2.4.

3.2.1 Replica method

The Franz-Parisi entropy is given by the log number of solutions at a fixed
distance from typical solutions:

NHFP (d, α) ≡ 〈 1

Z

∫
dµ(W̃a) χξ(W̃ ) logℵ(W̃ , d)〉ξ (16)

where dµ(W ) = δ(W 2 − q̄N)dW , Z =
∫
dµ(W )χξ(W ) and ℵ(W̃ , d) =∫

dµ(W )χξ(W ) δ(W · W̃ − dN). The replica trick takes the form:

NHFP (d, α) = lim
n→0,R→1

∂R
1

n
〈{
∫
dµ(W̃a) χξ(W̃ ) ℵR−1(W̃a, d)}n〉ξ

where the integration runs over the n W̃a variables and over the n× (R− 1)
War’s.

As a first step we write the solution constraint χξas χξ(W ) =
∏
µ g(W ·ξ

µ

√
N

), µ =

1, ..., αN and we intoduce variables xµa , xµarthough Dirac deltas, which we expand
introducing x̂µa , x̂µar(we drop the tilde in the following):

NHFP = limn→0,R→1 ∂R
1
n

〈∫
dµ(Wa)dµ(War)dx

µ
adx

µ
ardx̂

µ
adx̂

µ
ar ×∏

µa g(xµa)
∏
µar g(xµar)

∏
ar δ(Wa ·War − dN)×

× · exp{i
∑
µa x̂

µ
a(Wa·ξµ√

N
− xµa) + i

∑
µar x̂

µ
ar(

War·ξµ√
N
− xµar)

〉
ξ

Here and in what follows we neglect multiplicative constants such as (2π)−1

because in the limit n→ 0 they become additive constants. In the limit N →∞
it is possible to perform the quenched average

〈
exp{iWiξi√

N
}
〉
ξ

= 1− 1
2NW

2
i :

NHFP = limn→0,R→1 ∂R
1
n

[∫
dµ(Wa)dµ(War)dx

µ
adx

µ
ardx̂

µ
adx̂

µ
ar×

×
∏
µa g(xµa)

∏
µar g(xµar)

∏
ar δ(Wa ·War − dN) · exp{−i

∑
µa x̂

µ
ax

µ
a−

−i
∑
µar x̂

µ
arx

µ
ar − 1

2N

∑
µi(
∑
a x̂

µ
aW

i
a +

∑
ar x̂

µ
arW

i
ar)

2}
]

=

= limn→0,R→1 ∂R
1
n

[∫
dµ(Wa)dµ(War)dx

µ
adx

µ
ardx̂

µ
adx̂

µ
ar

∏
µa g(xµa)×

×
∏
µar g(xµar)

∏
ar δ(Wa ·War − dN) exp{−i

∑
µa x̂

µ
ax

µ
a − i

∑
µar x̂

µ
arx

µ
ar}

×exp{− 1
2N

∑
µ(
∑
ab x̂

µ
a x̂

µ
bWa ·Wb +

∑
arbs x̂

µ
arx̂

µ
bsWar ·Wbs+

+2
∑
abr x̂

µ
arx̂

µ
bWar ·Wb)}]

Notice that up to this point the computation holds equally well for both the
discrete and the continuous perceptron.

We introduce the order parameters (some are trivially fixed by the deltas
but we deal with all (nR)2 of them):

Qab =
Wa ·Wb

N

Qar,b =
War ·Wb

N
and Qa,br =

Wa ·Wbr

N
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Qar,bs =
War ·Wbs

N

through Delta functions δ(Q −W ·W ) =
∫
d̂QeNQ̂(Q−W ·W )that we resolve

with specular order parameters Q̂. In this way we decouple the sums/products
over i = 1, ..., N and µ = 1, ...αN and we get:

NHFP = lim
n→0,R→1

∂R
1

n

∫
dQabdQ̂abdQar,bdQ̂ar,bdQa,bsdQ̂a,bsdQar,bsdQ̂ar,bs×

× eN[
∑
abQabQ̂ab+

∑
abr Qar,bQ̂ar,b+

∑
abr Qa,brQ̂a,br+

∑
abrsQar,bsQ̂ar,bs] ×GαNE GNS

(17)

GE =

∫
dxadx̂adxardx̂ar

∏
a

g(xa)
∏
ar

g(xar) exp−i

{∑
a

xax̂a +
∑
ar

xarx̂ar

}
×

exp− 1

2

[∑
ab

x̂ax̂bQab + 2
∑
abr

x̂arx̂bQar,b +
∑
abrs

x̂arx̂bsQar,bs

]
(18)

GS =

∫
dWadWarexp{−

∑
ab

Q̂abWaWb −
∑
abr

Q̂ar,bWarWb−

−
∑
abr

Q̂a,brWaWbr −
∑
abrs

Q̂ar,bsWarWbs}

In the first of the above expressions there are three implied Delta that fix
Qaa = Qar,ar = q̄ and Qar,b = d. In the last one the integration dW is one-
dimensional, and not N -dimensional as in all other previous equations.

Now we proceed to the limit N → 0 so that we can use the saddle point
method.

A first ansatz is that Qar,b = Qb,ar and the same for the Q̂
Calling:

Q =

(
Qab QTar,b
Qar,b Qar,bs

)
(19)

we notice that GS is the gaussian integral of matrix 2Q̂, i.e. (leaving out
constants):

GNS = exp{−N
2

log det 2Q̂}

The Q̂’s are determined with the usual trick for the derivation of log det [36],
∂

∂Mab
log detM = (M−1)ab, to yield:

Q̂ =
1

2
Q−1
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As a result, the exponential with the QQ̂-like sums yields a multiplicative con-
stant which can be neglected as becomes an additive constant when n→ 0, and
so:

NHFP = lim
n→0,R→1

∂R
1

n
eN{extrQ

1
2 logDetQ+α logGE}

Using the fact that 1
2 logDetQ = (n), GE = 1 + nG′E +O(n2):

HFP = lim
R→1

∂RextrQ{ lim
n→0

1

n

1

2
logDetQ}+ αG′E

(notice that here the term 1 that would yield 1/n is eaten not by subtracting
1 but by deriving R, see below)

3.2.2 RS ansatz

We start considering an RS ansatz for the Parisi matrix Qab. In general one
begins with the RS case to see where are the problems; moreover some infor-
mation can be obtained already at the RS level. The RS saddle point equations
gives also an idea of the complexity of solving the equations for higher level of
RSB. Here stands the difficulty of further RSB steps; typically at each step a
nested integral is added. So we take an RS ansatz for the reference (equilibrium)
configurations; this yields a formally 1RSB form for the non reference block of
the Parisi matrix:

Qaa = q̄, Qab = q0

Qar,a = d, Qar,b = d0

Qar,ar = q̄, Qar,as = p1, Qar,bs = p0

with p0 < p1 < q̄.
It will be useful in the following that:

Q−1
aa =

q̄ + (n− 2)q0

(q̄ − q0)(q̄ + (n− 1)q0)

Q−1
ab =

−q
(q̄ − q0)(q̄ + (n− 1)q0)

In the expressions above q̄ and d are given and q0 is the same one previ-
ously found as saddle point of the free energy. The variational parameters are
d0, p0, p1.

HFP = extrd0,p0,p1
lim
R→1

∂R{ lim
n→0

1

n

1

2
logDetQ+ αG′E}
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Entropic term

Exploiting detQ = detQab × det(Qar,bs − Qar,bQ
−1
ab Q

T
ar,b)

20, this reduces to
computing the determinant of then(R− 1)× n(R− 1) 1RSB-like Parisi matrix:

Q′ar,ar = q̄′ = q̄ − γ, Qar,as = q′1 = p1 − γ, Qar,bs = q′0 = p0 − γ0 →
1
2 logDetQ =

= 1
2{log[q̄′ + (R − 2)q′1 + (n − 1)(R − 1)q′0] + n(R − 2) log[q̄′ − q′1] + (n −

1) log[q̄′ + (R− 2)q′1 − (R− 1)q′0]}

lim
n→0

1

2n
logDetQ =

1

2

[
(R− 1)q′0

q̄′ − q′1 + (R− 1)(q′1 − q′0)
+ (R− 1) log[q̄′ − q′1]+

+ log[1 +
(R− 1)(q′1 − q′0)

q̄′ − q′1
]

]
=

=
1

2

[
(R− 1)

p0 − γ0

q̄ − p1 + (R− 1)(p1 − p0 − (γ − γ0))
+

(R− 1) log[q̄ − p1] + log[1 +
(R− 1)(p1 − p0 − (γ − γ0))

q̄ − p1
]

]
=

lim
n→0

1

2n
logDetQ =

1

2
{log(q̄ − q0) +

q0

q̄ − q0
+ (R− 2) log[q̄ − p1]+

+ log[q̄ − p1 + (R− 1)(p1 − p0 − (γ − γ0))]+

+(R− 1)
p0 − γ0

q̄ − p1 + (R− 1)(p1 − p0 − (γ − γ0))
}

where:
γ − γ0 = d−d0

(q̄−q0)2 (q̄d+ 3q̄d0 − q0d0 − 3q0d)

γ0 = − d−d0

(q̄−q0)2 (q0(d+ d0)− 2q0d0)

Deriving and doing the limit with respect to R:

lim
R→1

∂R lim
n→0

1

n

1

2
logDetQ =

1

2
log(q̄ − p1) +

1

2

p1 − γ
q̄ − p1

where γ = d−d0

(q̄−q0)2 (q̄(d+ d0)− 2q0d)

20proof: Consider the block matrix
(

A B
C D

)
. If A is invertible then

(
A B
C D

)
=(

A 0
C 1

)(
1 A−1B
0 D − CA−1B

)
. The result follows from Binet theorem and the observa-

tion det

(
A B
0 C

)
= detAdetC
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Energetic term

Plugging the RS ansatz in GE :

GE =

∫
dxadx̂adxardx̂ar

∏
a

g(xa)
∏
ar

g(xar) ×

exp− i

{∑
a

xax̂a +
∑
ar

xarx̂ar

}
exp− 1

2

[
(q̄ − q0)

∑
a

x̂2
a + q0(

∑
a

x̂a)2+

+2(d− d0)
∑
ar

x̂arx̂a + 2d0(
∑
b

x̂b)(
∑
ar

x̂ar) + (q̄ − p1)
∑
ar

x̂2
ar+

+ (p1 − p0)
∑
a

(
∑
r

x̂ar)
2 + p0(

∑
ar

x̂ar)
2

]
(20)

We want to decouple the n a-index replicas. The terms that couple different
replicas a, b are q0(

∑
a xa)2 + 2d0(

∑
a xa)(

∑
ab xab) + p0(

∑
ab xab)

2 = q0u
2 +

2d0uv + p0v
2 = λ1ũ

2 + λ2ṽ
2

where u =
∑
a xa, v =

∑
ab xabandũ, ṽ = α±u+β±v. We suppose λ1, λ2 > 0

cioè q0p0 − d2
0 > 0 .

Now we can H-S transform with respect to ũ2, ṽ2producing the integrals in
z1, z2:

GE =

∫
Dz1Dz2dxadx̂adxardx̂ar

∏
a

g(xa)
∏
ar

g(xar)×

exp− i

{∑
a

xax̂a +
∑
ar

xarx̂ar

}
exp− 1

2

[
2i
√
λ1(α+

∑
a

x̂a + β+

∑
ar

x̂ar)z1+

+2i
√
λ2(α−

∑
a

x̂a + β−
∑
ar

x̂ar)z2 + (q̄ − q0)
∑
a

x̂2
a + 2(d− d0)

∑
ar

x̂arx̂a+

+(q̄ − p1)
∑
ar

x̂2
ar + (p1 − p0)

∑
a

(
∑
r

x̂ar)
2

]
(21)

Now the
∑
a in

∫
Dz1Dz2 factorizes:

GE =

∫
Dz1Dz2

[∫
dxdx̂dxrdx̂rg(x)

∏
r

g(xr)exp− i{xx̂+
∑
r

xrx̂r}

exp− 1

2
{(q̄ − q0)x̂2 + 2(d− d0)

∑
r

x̂rx̂+ (q̄ − p1)
∑
r

x̂2
r + (p1 − p0)(

∑
r

x̂r)
2}

exp− {i(
√
λ1α+z1 +

√
λ2α−z2)x̂+ i(

√
λ1β+z1 +

√
λ2β−z2)

∑
r

x̂r}

]n
(22)
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We rewrite this with the notation:
A(z1, z2) =

√
λ1α+z1 +

√
λ2α−z2

B(z1, z2) =
√
λ1β+z1 +

√
λ2β−z2

GE =

∫
Dz1Dz2

[∫
dxdx̂dxrdx̂rg(x)

∏
r

g(xr)exp− i{xx̂+
∑
r

xrx̂r}

exp− 1

2
{(q̄−q0)x̂2 +2i(−i)(d−d0)

∑
r

x̂rx̂+(q̄−p1)
∑
r

x̂2
r+(p1−p0)(

∑
r

x̂r)
2}

exp− {iAx̂+ iB
∑
r

x̂r}

]n
(23)

We now integrate in dx̂, that is kind of Fourier-transforming a Gaussian:

GE =

∫
Dz1Dz2

[∫
dx√
q̄ − q0

dxrdx̂rg(x)
∏
r

g(xr)exp− i{
∑
r

xrx̂r}

exp− 1

2
{(

(x+A− i(d− d0)
∑
r x̂r)

2

q̄ − q0
+ (q̄ − p1)

∑
r

x̂2
r}×

×exp− 1

2
{(p1 − p0)(

∑
r

x̂r)
2 + iB

∑
r

x̂r}

]n
= (24)

=

∫
Dz1Dz2

[∫
dx√
q̄ − q0

dxrdx̂rg(x)
∏
r

g(xr)exp− i{
∑
r

xrx̂r}

exp−
(x+A)2 − 2i(d− d0)(x+A)

∑
r x̂r − (d− d0)2(

∑
r x̂r)

2

2(q̄ − q0)
}×

×exp− 1

2
{(p1 − p0)(

∑
r

x̂r)
2 + 2iB

∑
r

x̂r + (q̄ − p1)
∑
r

x̂2
r}

]n
(25)

We now Hubbard-Stratonovich transform the term with (
∑
r x̂r)

2:

GE =

∫
Dz1Dz2

[∫
Dw

dx√
q̄ − q0

dxrdx̂rg(x)
∏
r

g(xr)exp− i{
∑
r

xrx̂r}

exp−
(x+A)2 − 2i(d− d0)(x+A)

∑
r x̂r

2(q̄ − q0)
+ (q̄ − p1)

∑
r

x̂2
r}×

×exp{i

√
p1 − p0 −

(d− d0)2

(q̄ − q0)
(
∑
r

x̂r)w +−iB
∑
r

x̂r}

]n
(26)
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so to factorize the r index:

GE =

∫
Dz1Dz2

[∫
Dw

dx√
q̄ − q0

g(x)exp− (x+A)2

2(q̄ − q0){∫
dydŷ · g(y) · exp{− (q̄ − p1)

2
ŷ2 − iyŷ +

i(d− d0)(x+A)

(q̄ − q0)
ŷ}×

×exp{i

√
p1 − p0 −

(d− d0)2

(q̄ − q0)
wŷ +−iBŷ}

}R−1
n = (27)

(in this passage we integrate in dŷ and shift x of A and rescale it by
√
q̄ − q0)

=

∫
Dz1Dz2

[∫
DwDxg(

√
q̄ − q0x−A)


∫

dy√
q̄ − p1

· g(y) · exp{−
(y +B − d−d0√

q̄−q0
x−

√
p1 − p0 − (d−d0)2

(q̄−q0) w)2

2(q̄ − p1)


R−1

n

Shift and rescale the y:

=

∫
Dz1Dz2

[∫
DwDxg(

√
q̄ − q0x−A)

{∫
Dy · g(

√
q̄ − p1y −B +

d− d0√
q̄ − q0

x+

√
p1 − p0 −

(d− d0)2

(q̄ − q0)
w)

}R−1
n

This is something like GE = 1 + nG′E + ... with

G′E =

∫
Dz1Dz2 log

[∫
DwDxg(

√
q̄ − q0x−A)

{∫
Dy · g(

√
q̄ − p1y −B +

d− d0√
q̄ − q0

x+

√
p1 − p0 −

(d− d0)2

(q̄ − q0)
w)

}R−1


The final additive contribution to the potential is G̃E = limR→1 ∂RG
′
E (we

can exchange simultaneously the signs of A,B):

G̃E =

∫
Dz1Dz2∫

Dx g(
√
q̄ − q0x+A(z1, z2))

∫
DwDx g(

√
q̄ − q0x+A(z1, z2))×

× log

∫
Dy g

[
√
q̄ − p1y +B(z1, z2) +

√
p1 − p0 −

(d− d0)2

q̄ − q0
w +

d− d0√
q̄ − q0

x

]
(28)
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In the end:

VF−P = extrd0,p0,p1

1

2
log(q̄ − p1) +

1

2

p1 − γ
q̄ − p1

+ αG̃E

If g(·) = θ(· − κ) the expression for G̃ simplifies to:

G̃E =

∫
Dz1Dz2

H(κ−A(z1,z2)√
q̄−q0

)

∫
DwDx θ(x+

A(z1, z2)− κ√
q̄ − q0

)×

× log H

κ−B(z1, z2)−
√
p1 − p0 − (d−d0)2

q̄−q0 w − d−d0√
q̄−q0

x
√
q̄ − p1


This expression can be further simplificated with some change of variables

and exploiting the properties of Gaussian integrals. For more clarity we intro-
duce intermediate constants:

G̃E =

∫
Dz1Dz2

H(κ′ −A′(z1, z2))

∫
DwDx θ(x− κ′ +A′(z1, z2))×

× log H (κ′′ −B′(z1, z2)− Cw − C ′x)

Now we rotate w and x:
x′ = C′√

C2+C′2
x+ C√

C2+C′2
w, x = C′√

C2+C′2
x′ − C√

C2+C′2
w′

and send w in -w, so to get

G̃E =

∫
Dz1Dz2

H(κ′ −A′(z1, z2))

∫
Dx H(

√
C2 + C ′2

C
{κ′ −A′} − C ′

C
x)×

× log H
(
κ′′ −B′(z1, z2)−

√
C2 + C ′2x

)
With another rotation of variables: zA = A(z1,z2)√

λ1α2
++λ2α2

−
= cos θz1+sin θz2, zB =

cos θz2 − sin θz1:

G̃E =

∫
DzADzB

H(κ′ − azA)

∫
Dx H(

√
C2 + C ′2

C
{κ′ − azA} −

C ′

C
x)×

× log H
(
κ′′ − b1 cos θzA + b1 sin θzB − b2 cos θzB − b2 sin θzA −

√
C2 + C ′2x

)
with a =

√
λ1α2

++λ2α2
−√

q̄−q0
, b1 =

√
λ1β+√
q̄−p1

, b2 =
√
λ2β−√
q̄−p1

Collecting the z’s yields:

G̃E =

∫
DzADzB

H(κ′ − azA)

∫
Dx H(

√
C2 + C ′2

C
{κ′ − azA} −

C ′

C
x)×
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× log H
(
κ′′ − (b1 cos θ + b2 sin θ)zA + (b1 sin θ − b2 cos θ)zB −

√
C2 + C ′2x

)
We now change variables with the rotation: x′ = cosψx − sinψzB , x =

cosψx′ + sinψz′B)
with sinψ = (b1 sin θ−b2 cos θ)√

(b1 sin θ−b2 cos θ)2+C2+C′2
, cosψ =

√
C2+C′2√

(b1 sin θ−b2 cos θ)2+C2+C′2
:

G̃E =

∫
DzADx

H(κ′ − azA)
×

× log H
(
κ′′ − (b1 cos θ + b2 sin θ)zA −

√
C2 + C ′2 + (b1 sin θ − b2 cos θ)2x

)
×

×
∫
DzB H(

√
C2 + C ′2

C
{κ′ − azA} −

C ′

C
cosψx− C ′

C
sinψzB)×

Inverting x:

G̃E =

∫
DzADx

H(κ′ − azA)
×

× log H
(
κ′′ − (b1 cos θ + b2 sin θ)zA +

√
C2 + C ′2 + (b1 sin θ − b2 cos θ)2x

)
×

×
∫
DzB H(

√
C2 + C ′2

C
{κ′ − azA}+

C ′

C
cosψx− C ′

C
sinψzB)×

Finally using
∫
DzH(Az+BC ) = H( B√

A2+C2
) the above expression becomes :

G̃E =

∫
DzADx

H(κ′ − azA)
H(

√
C2+C′2

C {κ′ − azA}+ C′

C cosψx√
1 + (C

′

C sinψ)2
)×

× log H
(
κ′′ − (b1 cos θ + b2 sin θ)zA +

√
C2 + C ′2 + (b1 sin θ − b2 cos θ)2x

)
Exploiting the definitions of α, β, λ(
q0 d0

d0 p0

)
=

(
α+ α−
β+ β−

)(
λ1 0
0 λ2

)(
α+ β+

α− β−

)
=

=

(
λ1α

2
+ + λ2α

2
− λ1α+β+ + λ2α−β−

λ1α+β+ + λ2α−β− λ1β
2
+ + λ2β

2
−

)
one gets

b1 cos θ + b2 sin θ = d0√
q0
√
q̄−p1

b1 sin θ − b2 cos θ = −
√
q0p0−d2

0√
q0
√
q̄−p1

57



a =
√
q0√
q̄−q0

C =

√
p1−p0− (d−d0)2

q̄−q0√
q̄−p1

C ′ = d−d0√
q̄−q0

√
q̄−p1√

C2 + C ′2 =
√
p1−p0√
q̄−p1√

(b1 sin θ − b2 cos θ)2 + C2 + C ′2 =

√
q0p1−d2

0√
q0
√
q̄−p1

sinψ = −
√
q0p0−d2

0√
q0p1−d2

0

, cosψ =
√
C2+C′2√

(b1 sin θ−b2 cos θ)2+C2+C′2
=
√
q0
√
p1−p0√

q0p1−d2
0

κ′ = κ√
q̄−q0

, κ′′ = κ√
q̄−p1

C′√
(b1 sin θ−b2 cos θ)2+C2+C′2

=
(d−d0)

√
q0

√
q̄−q0
√
q0p1−d2

0√
C2+C′2
C {κ′−azA}+C′

C cosψx√
1+(C

′
C sinψ)2

= 1√
q̄−q0

κ−√q0zA+ C′√
C2+C′2

cosψx
√
q̄−q0√

C2+C′2 sin2 ψ

C2+C′2

=

= 1√
q̄−q0

κ−√q0zA+
C′
√
q̄−q0√

(b1 sin θ−b2 cos θ)2+C2+C′2
x√

1−C′2 cos2 ψ

C2+C′2

=
κ−√q0zA+

(d−d0)
√
q0√

q0p1−d2
0

x√
q̄−q0− (d−d0)2q0

q0p1−d2
0

Plugging this stuff inside G̃E :

G̃E =

∫
DzADx

H(
κ−√q0zA√

q̄−q0
)
H(

κ−√q0zA +
(d−d0)

√
q0√

q0p1−d2
0

x√
q̄ − q0 − (d−d0)2q0

q0p1−d2
0

)×

× log H

(√
q0κ− d0zA +

√
q0p1 − d2

0x√
q0
√
q̄ − p1

)
The potential to be optimized over d0, p1,is:

HFP =
1

2
log(q̄−p1)+

1

2

p1 − γ
q̄ − p1

+α

∫
DzADx

H(
κ−√q0zA√

q̄−q0
)
H(

κ−√q0zA +
(d−d0)

√
q0√

q0p1−d2
0

x√
q̄ − q0 − (d−d0)2q0

q0p1−d2
0

)×

× log H

(√
q0κ− d0zA +

√
q0p1 − d2

0x√
q0
√
q̄ − p1

)
withγ = d−d0

(q̄−q0)2 (q̄(d + d0) − 2q0d). Notice that the dependence on p0has
disappeared.

From now on we turn to the conventions:q̄ → Q̃, q0 → q̃, d→ s, d0 → s̃, p1 →
q, x→ z, zA → z̃: in the very end the Franz-Parisi entropy is the the extremum
of this quantity:

HFP =
1

2
log(Q̄− q) +

1

2

q − γ
Q̄− q

+ α

∫
DzDz̃

H(κ−
√
q̃z̃√

Q̃−q̃
)
H(

κ−
√
q̃z̃ + (s−s̃)

√
q̃√

q̃q−s̃2
z√

Q̃− q̃ − (s−s̃)2q̃
q̃q−s̃2

)×
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× log H

√q̃κ− s̃z̃ +
√
q̃q − s̃2z

√
q̃

√
Q̃− q


Deriving we get the saddle point equations for q, s̃:

1

2

q − γ
(Q̃− q)2

+ α∂qG̃E = 0

Q̃s̃− q̃s
(Q̃− q)(Q̃− q̃)2

+ α∂s̃G̃E = 0

withγ = s−s̃
(Q̃−q̃)2

(Q̃(s + s̃) − 2q̃s). We remark that q̃ is known and given by
the Gardner computation.

3.2.3 Asymptotic behaviour

For small distances s → 1 we expect q → 1, since non reference solutions are
near to the reference one and than near between themselves. So we expand the
potential:

HFP =
1

2(1− q)
{1− γ − α

∫
DzDz̃

H(κ−
√
q̃z̃√

1−q̃ )
H(

κ−
√
q̃z̃ + (s−s̃)

√
q̃√

q̃−s̃2
z√

1− q̃ − (s−s̃)2q̃
q̃−s̃2

)×

×

(√
q̃κ− s̃z̃ +

√
q̃ − s̃2z√

q̃

)2

· θ(
√
q̃κ− s̃z̃ +

√
q̃ − s̃2z)}+O(log(1− q))

Naming Ξ(s, s̃) the coefficient in the curly brackets, we get the limit value
of s, s̃ from the saddle point equations:

Ξ(s, s̃) = 0

∂s̃Ξ(s, s̃) = 0 (29)

For α → 0 ⇒ q̃ = 0, s → −1, the above equations reduce to s̃ = 0. This
is compatible with the numerical solution of the equations at decreasing α, see
Fig.

Asymptotic behaviours: small distances From s → 1, q → 1 it follows
s̃→ q̃: configurations very near to typical solutions have mutual distance equal
to the distance between typical solutions; this intuition is confirmed numerically,
see Fig. 25.

For values of s approaching 1 we show in the graphic Ξ(s̃) (κ = 0., α = 1.3)
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Figure 24: Different overlaps are plotted as a function of α, at κ = 0: in
green the overlap q̃ between typical solutions: it is 0 for α = 0 and approaches
α = 2 linearly. In red the overlap s for the Franz-Parisi entropy and in blue the
relative s̃, as computed from eqs. (29). These are solved by minimizing Ξ(s, ·)
with Brent method and solving the remaining equation Ξ(s, s̃(s)) = 0 with the
secant method. Beforehand we had tried 2D Newton method, with poor results.

Figure 25: Ξ(s̃) is plotted as function of s̃ for different values of s approaching
1 (s = 0.999, 0.9999, 0.99999), with κ = 0., α = 1.3. Solving the equations (29)
for Ξ(s, s̃) consists in finding when the bottom of the “parabola” crosses the
Ξ = 0 axis. Here the scenary is consistent with s̃ → q̃ ' 0.733. We were led
to draw this picture by numerical issues when solving the equations for Ξ(s, s̃):
actually, notice the shrinking of the definition domain.
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Asymptotic behaviours: large distances

Decreasing s below s = q̃, it has been observed that the order parameter q
increases in a linear fashion. Above q & 0.98 (typically for negative s) there is
a saturation of the value of q; such saturation we conjecture to be unreal and
due to numerical errors (having found an analogous phenomenon in the study
of the RS Gardner entropy, see above .

This problem probably comes from the numeric evaluation of the logarithm
of a very small number (indeed the denominator of the argument of logH is√

1− q. We try to fix this by means of a splitting of the energetic term:

G̃E '
∫

DzDz̃

H(κ−
√
q̃z̃√

1−q̃ )
H(

κ−
√
q̃z̃ + (s−s̃)

√
q̃√

q̃q−s̃2
z√

1− q̃ − (s−s̃)2q̃
q̃q−s̃2

)×

×{log H

(√
q̃κ− s̃z̃ +

√
q̃q − s̃2z√

q̃
√

1− q

)
· θ(δ −

√
q̃κ− s̃z̃ +

√
q̃q − s̃2z)+

+[−1

2

(√
q̃κ− s̃z̃ +

√
q̃q − s̃2z√

q̃
√

1− q

)2

− log

(
√

2π

√
q̃κ− s̃z̃ +

√
q̃q − s̃2z√

q̃
√

1− q

)
]×

×θ(
√
q̃κ− s̃z̃ +

√
q̃q − s̃2z − δ)}

where in theory δ√
1−q � 1, in practice we take δ√

1−q = 10 (indeed H(10) ≈
8 · 10−24 ).

3.2.4 Results

The saddle point equations have to be solved to yield s̃, q(α, κ, s) and hence
the Franz-Parisi entropy HFP(α, κ, s). The solution is not completely trivial
and exploits the fact that s̃, q(α, κ, q̃) = q̃: the Franz-Parisi computation at the
typical overlap yields the entropy of typical solutions, see Fig. 26 . Studying
the 2D extremization problem we found that the definition domain shrinks to a
point as s→ 1; moreover the saddle point is a minimum which lives in a narrow
deep hole very near to the boundary of the definition domain. Derivative based
methods (i.e. iterative solution and Newton) turned out to fail because they
were attracted in plateaus with small derivative in the middle of the definition
domain. Instead, a simple Monte Carlo search of the minimum behaved very
efficiently. In fact, we parallelized the algorithm with Julia function pmap as
the nested integrals of the Franz-Parisi entropy are time expensive.

In Fig. 27 the Franz-Parisi entropy is plotted: notice that decreasing α the
entropy increases and that the maximum is taken at s = q̃, as expected. The
other interesting feature is the existence of an asymptote at large distances,
as also in the discrete case [34]. At small distances, instead, the Franz-Parisi
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Figure 26: Saddle-point order parameters q and s̃ plotted versus s, for κ =
0., α = 1.5. Notice the consistency with theoretical predictions: at s = q̃ also
q = s̃ = q̃ and at s → 1we haveq → 1, s̃ → q̃. At large distances the results
matches the theoretical asymptotes.

Figure 27: Franz-Parisi entropy as a function of the overlap s for α = 1.3, 1.5 and
κ = 0. The value of the asymptotes predicted from eqs. (29) is also reported.
The light blue line is the upper limit α = 0. For κ ≷ 0 the behaviour is
qualitatively similar.
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entropy saturates the α = 0: this does not come as a total surprise as in the
continuum each solution has a neighboorhood of solutions around at finite N ,
but it is not completely trivial because in the thermodynamical limit typical
solutions are thought to be on the surface of the solution space.

The bad news is that even in the κ < 0 region no qualitative difference has
been noticed (we have kept below the AT line, as our computation is RS). We
do not even report any plot, as they are the same as Fig. 27, but for the fact
that, obviously, increasing κ at fixed α, the entropy decreases.

In conclusion, differently from the discrete case, the solutions don’ t happen
to be pointlike and isolated. Maybe this doesn’ t have nothing to do with com-
putational hardness, as there is not a continuous analogous of K-SAT to use as
a guide, as far as we know. Maybe this approach is not good for continuous sys-
tems and different questions are to be asked. Or maybe the negative perceptron
is not a suitable model.
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4 Continuous perceptron: out-of-equilibrium anal-
ysis

In this Chapter we try to apply the non-equilibrium tools developed in Chapter 2
to the case of the storage problem of the continuous perceptron, with particular
emphasis on the negative stability region.

In Section 4.1 we derive, using the replica trick, the saddle point equations
for the large deviation measure. In Sec. 4.2 we try to apply the replicate BP
approach. Finally, in Sec. 4.3 we investigate the computational hardness of
learning comparing GD with replicated GD.

4.1 Constrained Reweighting
In this Section we consider the constrained reweighted system in the 1RSB
ansatz and in the limit y → ∞. The reason of this choice is that the y infinite
limit allows some simplification in the computations and in [2] it was shown
also to yield more reliable results. In the y infinite limit the discrete analysis
suggests that a RSB step is required; finally, at y → ∞ the constrained and
unconstrained case are equivalent.

We reweight solutions with their local entropy of solutions: the large devia-
tion measure is defined by the partition function:

Z(s, α) ≡ 〈
∫
dµ(W̃ ) χξ(W̃ ) ℵy(W̃ , s)〉ξ (30)

We take the quenched average of the relative free-entropy, which is self-averaging:

φ = lim
n→0

1

n
(〈{
∫
dµ(W̃a) χξ(W̃ ) ℵy(W̃a, s)}n〉ξ − 1)

where dµ(W ) = δ(W 2 − Q̃N)dW , Z =
∫
dµ(W )χξ(W ) and ℵ(W̃ , s) =∫

dµ(W )χξ(W ) δ(W · W̃ − sN). The integration runs over the n W̃a variables
and over the n× y War’s (we are thinking y as an integer).

Following exactly the same computations as for the Franz-Parisi entropy we
get:

Nφ = lim
n→0

1

n
{
∫
dQabdQ̂abdQar,bdQ̂ar,bdQa,bsdQ̂a,bsdQar,bsdQ̂ar,bs×

×eN[
∑
abQabQ̂ab+

∑
abr Qar,bQ̂ar,b+

∑
abr Qa,brQ̂a,br+

∑
abrsQar,bsQ̂ar,bs]×GαNE GNS −1}

(31)

GE =

∫
dxadx̂adxardx̂ar

∏
a

g(xa)
∏
ar

g(xar) exp−i

{∑
a

xax̂a +
∑
ar

xarx̂ar

}
×

exp− 1

2

[∑
ab

x̂ax̂bQab + 2
∑
abr

x̂arx̂bQar,b +
∑
abrs

x̂arx̂bsQar,bs

]
(32)
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GS =

∫
dWadWarexp{−

∑
ab

Q̂abWaWb −
∑
abr

Q̂ar,bWarWb−

−
∑
abr

Q̂a,brWaWbr −
∑
abrs

Q̂ar,bsWarWbs}

After getting rid of the Q̂’s we can express the reweighted free entropy as
sum of the entropic and energetic terms:

φ = lim
n→0

1

n
extrQ{

1

2
logDetQ+ α logGE}

4.1.1 RS ansatz

We start with the RS ansatz, this is useful in order to check the 1RSB results:

Qaa = Q̃, Qab = q̃

Qar,a = s, Qar,b = s̃

Qar,ar = Q̃, Qar,as = q1, Qar,bs = q0

with q̃ < Q̃q0 < q1 < Q̃.

Entropic term

lim
n→0

1

2n
logDetQ =

1

2
{log(Q̃− q̃) +

q̃

Q̃− q̃
+ (y − 1) log[Q̃− q1]+

+ log[Q̃− q1 + y(q1 − q0 − (γ − γ0))] + y
q0 − γ0

Q̃− q1 + y(q1 − q0 − (γ − γ0))
} (33)

where:
γ = s−s̃

(Q̃−q̃)2
(Q̃(s+ s̃)− 2q̃s)

γ0 = − s−s̃
(Q̃−q̃)2

(q̃(s+ s̃)− 2Q̃s̃)

γ − γ0 = (s−s̃)2

Q̃−q̃
With the scaling relations s̃→ s− δs

y , q1 → q0 + δq
y , q̃ → Q̃− δq̃

y the infinite
y limit is:

lim
y→∞

1

2y
logDetQ =

1

2
{log[Q̃− q0] +

Q̃

δq̃
+
q0 + δs

δq̃2 (Q̃δs− 2δq̃s)

Q̃− q0 + δq − δs2

δq̃

} (34)
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Energetic term

Part of the computation is identical to the Franz-Parisi one, but for the fact
that we keep y finite, so there is some simplification less.

Plugging the RS ansatz in GE :

GE =

∫
Dz1Dz2

[∫
DwDxg(

√
Q̃− q̃x−A)


∫
Dt · g(

√
Q̃− q1t−B +

s− s̃√
Q̃− q̃

x+

√
q1 − q0 −

(s− s̃)2

(Q̃− q̃)
w)


yn

This is something like GE = 1 + nG′E + ... with

G′E =

∫
Dz1Dz2 log

[∫
DwDxg(

√
Q̃− q̃x−A)


∫
Dt · g(

√
Q̃− q1t−B +

s− s̃√
Q̃− q̃

x+

√
q1 − q0 −

(s− s̃)2

(Q̃− q̃)
w)


y

If g(·) = θ(· − κ), the expression can be simplified rotating x and w:

G̃E =

∫
Dz1Dz2 log{

∫
Dx H(

√
C2 + C ′2

C
{κ′ −A′} − C ′

C
x)×

×Hy
(
κ′′ −B′(z1, z2)−

√
C2 + C ′2x

)
}

Rotating z1, z2 we obtain the final formula:

G̃E =

∫
Dz1Dz2 log{

∫
Dx H(

κ−
√
q̃ − s̃2

q0
z1 − s̃√

q0
z2 − s−s̃√

q1−q0
x√

Q̃− q̃ − (s−s̃)2

q1−q0

)×

×Hy

κ−√q0z2 −
√
q1 − q0x√

Q̃− q1

} (35)

Notice also that for y = 0 we recover the Gardner RS entropy.
It also useful the formula:

∫
dxdx̂θ(x− κ)e−i(x−B)x̂−A2 x̂

2

=

∫
dxdx̂θ(x+B − κ)e−ixx̂−

A
2 x̂

2=

=

∫
dxdx̂θ(

√
Ax+B − κ)e−ixx̂−

1
2 x̂

2

=

∫
Dxθ(

√
Ax+B − κ) = H(

κ−B√
A

)
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4.1.2 1RSB ansatz

We break the symmetry at the level of reference configurations (indices a, b):

Qa,a = Q̃, Qαβ,αβ′ = q̃1, Qαβ,α′β′ = q̃0

Qa,ar = s, Qαβ,αβ′r = s̃1, Qαβ,α′β′r = s̃0

Qar,ar = Q̃, Qar,as = q2, Qαβr,αβ′s = q1, Qαβr,α′β′s = q0

Entropic term

We use detQ = detQab×det(Qar,bs−Qar,bQ−1
ab Q

T
ar,b) : the first factor gives rise

to the usual contribution (p.e. eq (81) of [36]):

lim
n→0

1

2n
logDetQab =

=
1

2
{m− 1

m
log(Q̃− q̃1) +

1

m
log[m(q̃1 − q̃0) + Q̃− q̃1] +

q̃0

m(q̃1 − q̃0) + Q̃− q̃1

}

This term will give, in the limit y → ∞, the contribution (see below the
scaling):

1

2
{ 1

x
log[1 +

x(Q̃− q̃0)

δq̃
] +

q̃0

x(Q̃− q̃0) + δq̃
}

In order to compute the determinant of a generic 2RSB matrix Q′αβr,α′β′s
we report the eigenvalues with their multiplicities:

λ1 = Q̃′ − q̃′2 , µ1 = n(y − 1)
λ2 = Q̃′ + (y − 1)q̃′2 − yq̃′1 , µ2 = n

m (m− 1)

λ3 = Q̃′ + (y − 1)q̃′2 + (m− 1)yq̃′1 −myq̃′0 , µ3 = n
m − 1

λ4 = Q̃′ + (y − 1)q̃′2 + (m− 1)yq̃′1 + (n−m)yq̃′0 , µ4 = 1
The eigenvalues are listed in this order: the eigenvectors of the first one link

only the innermost block and so on. The multiplicities sum to ny.(The notation
of [5] is m1 = y,m2 = my. )

Since the n→ 0 limit of the Q′ matrix is finite (elementwise), it is comfort-
able to compute first the limit of the log det and then plug in (the limit of) the
q′’s:

limn→0
1

2n = 1
2{(y − 1) log λ1 + m−1

m log λ2 + 1
m log λ3 +

yq̃′0
λ3
}

Here:
Q̃′ = Q̃− γ2

q̃′2 = q2 − γ2

q̃′1 = q1 − γ1

q̃′0 = q0 − γ0

where the limit is implied and we do not report the expression for gamma.
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Energetic term

The energetic term produces equation (B.59) of [2]:

G̃E =
logGE
n

=
1

m

∫
Dz0Dz

′
0 log

(∫
Dz1Dz

′
1

[∫
Dz2H

y(A(z0, z1, z2))× L(z0, z
′
0, z1, z

′
1, z2)

]m)

=
1

m

∫
Dz0Dz

′
0 log

(∫
Dz1Dz

′
1

[∫
Dz2H

y(A(z0, z1, z2))× L(z0, z
′
0, z1, z

′
1, z2)

]m)
with L given in (B.60) where f(·) = θ(· − κ) . We take here the limit

y → ∞that reduces to neglecting L and recover the GE of the unconstrained
case:

lim
y→∞

G̃E =
1

m

∫
Dz0 log

(∫
Dz1

[∫
Dz2H

y(A(z0, z1, z2))

]m)
(36)

A(z0, z1, z2) can be evinced from (B.24,B.25), adding −κ in the θ-function
and reabsorbing it by means of the translation of λβ,a → λβ,a + κ that in the
final expression propagates as (the sign is adjusted with z0 → −z0)

A(z0, z1, z2) =
κ+
√
q0z0 +

√
q1 − q0z1 +

√
q2 − q1z2√

Q̃− q2

Notice that only the order parameters of kind Qar,bsenter this expression.
The consistency with the RS result eq (35) is verified by dropping the H

function here (without proof), rotating the z’s so to get B =
√
q0z and setting

m = 1, q2 = q1.

Infinite y limit

We anticipate that in the limit y → ∞ the order parameters relative to the
reference configurations will disappear (obvious from the weights in the partition
function)

As in [2] we adopt the scaling relation

m→ x

y

q2 → q1 +
δq

y

s̃1 → s− δs

y

q̃1 → Q̃− δq̃

y
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It is useful to rearrange:
λ1 = Q̃− q2

λ2 = Q̃− q2 + y(q2 − q1 − (γ2 − γ1))
λ3 = Q̃− q2 + y(q2 − q1 − (γ2 − γ1)) +my(q1 − q0 − (γ1 − γ0))
and now consider the asymptotic behaviour of the various terms:

γ2 − γ1 =
(s− s̃1)2

Q̃− q̃1

∼ δs2

yδq̃

γ1 − γ0 = ... ∼ O(1)

γ0 = ... ∼ O(1)

and notice that the eigenvalues are order O(1) and λ3 = λ2 + x(q1 − q0 −
(γ1 − γ0)) ∼ O(1)):

limy→∞
1
2y{(y − 1) log λ1 + m−1

m log λ2 + 1
m log λ3 +

yq̃′0
λ3
} ' 1

2{log λ1 −
1
x log λ2 + 1

x log λ3 +
q̃′0
λ3
}

Summing also the contribution of the first determinant:

G∞S =
1

2
{ q̃0

x(Q̃− q̃0) + δq̃
+

1

x
log[1 +

x(Q̃− q̃0)

δq̃
] + log(Q̃− q1)+

+
1

x
log[1 +

x(q1 − q0 − (γ1 − γ0))

Q̃− q1 + (δq − δs2

δq̃ ) + x(q1 − q0 − (γ1 − γ0))
]+

+
q0 − γ0

Q̃− q1 + (δq − δs2

δq̃ ) + x(q1 − q0 − (γ1 − γ0))
}

This result can be checked: if we set q1 → q0, s̃0 → s− δs
y , q̃0 → Q̃− δq̃

y (in
fact it is sufficient q1 → q0, s̃0 → s, q̃0 → Q̃) and send y → ∞ we recover eq.
(34) .

The energetic term is, by means of the saddle point method:

G̃∞E =
1

x

∫
Dz0 log

(∫
Dz1e

xB(z0,z1)

)
(37)

where B(z0, z1) = maxz2{−
z2
2

2 + logH

(
κ+
√
q0z0+

√
q1−q0z1+

√
δqz2√

Q̃−q1

)
}

The RS semplification occurs if q1 = q0: G̃∞,RSE =
∫
Dz0 maxz2{−

z2
2

2 +

logH

(
κ+
√
q0z0+

√
δqz2√

Q̃−q2

)
}

The experience gathered in [2] suggests that the solving the saddle point
equations for this system may be quite troublesome. We posticipated this task,
and finally we gave it up, as we think it isn’ t worth the effort, see below.
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4.2 Replicated BP
In the previous Section we tried to compute the formal energy of the system
described by the free entropy:

φ(s, y) =

〈
log

(∫
dµ(W̃ )χ(W̃ · ξ)ℵy(W̃ , s)

)〉
with (the logarithm of) ℵ(W̃ , s) =

∫
dµ(W )χξ(W ) δ(W · W̃ − sN) (local

entropy) playing the role of an energy and y of an inverse temperature. Instead
of using the replica method, we can take y integer and approximate the free
entropy with the Bethe free-energy of a reference system coupled to y copies of
the system, to be evaluated using belief propagation or some variation. For N
large enough, the quenched disorder can be thought to be implemented in the
single sample, so we neglect the average over ξ. In this way we can estimate
the local entropy (at finite y), that we were not able to compute in the previous
section, by derivation of the free entropy:

SI = − 1

N
∂yφ

as the usual thermodynamics relation.
Another expedient is relaxing the hard δ(W · W̃ − sN) and spherical con-

straints introducing a soft constraint as a local energetic term. In the end, we
want to do message-passing on the probabilistic graphical model with variable
nodes W̃ ,Wa , see Fig. 28, and partition function:

Z(s, y) =

∫
dW̃dµWa e

H(W̃ )+
∑
aH(Wa)+γ

∑
a W̃Wa (38)

On this grafical model we write the BP equations (7). The starting point
is to treat the y “replicas” in a symmetric way, requiring they obey the same
probability distribution (that depends on i). Then we assume a gaussian form
for the marginal of the synaptic weights and the messages and consider their
scaling behaviour: in fact, due to the spherical constraint, we expect the W̃i,Wi

to be distributed with both mean and variance O(1):

p(W̃i) ∝ exp{m̃i

ρ̃i
W̃i −

W̃ 2
i

2ρ̃i
} (39)

p(Wi) ∝ exp{mi

ρi
Wi −

W 2
i

2ρi
} (40)

From the BP formula for the marginal we infer the scaling of the messages
ingoing the variable nodes from the factor nodes relative to the input patterns:

ν̃ξ→i(W̃i) ∝ exp{m̃ξ→i

ρ̃ξ→i
W̃i −

W̃ 2
i

2ρ̃ξ→i
}

νξ→i(Wi) ∝ exp{mξ→i

ρξ→i
Wi −

W 2
i

2ρξ→i
}
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Figure 28: A slice of the factor of the model considered in equation (38). Only
the local neighbourhood of site i is shown: in purple the node variables cor-
responding to W̃i and in black those of W a

i (here y = 3). The green boxes
represent the local field that sets the L2 normalization. The blue boxes are
the elastic interactions between the reference and the real replicas. Finally, the
interrupted lines connect each variable node to a factor corresponding to a pat-
tern (red boxes). The interaction between different sites (see small site j slice
on upper left) is mediated uniquely by the pattern constraints. Some sample
messages are also reported.
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where m is O(N1/2) and ρ O(N). Notice that the moments m, ρ are the
derivatives of the messages computed in W = 0 (and the same for the tilded).
We only add that is not true that the messages are Gaussian distributed (they
have a tail...) but in the N large limit only the first and second moments are
important.

We now compute the marginals:

p(W̃i) ∝ exp{W̃i

∑
ξ

m̃ξ→i

ρ̃ξ→i
− W̃ 2

i

2
(λ̃+

∑
ξ

ρ̃−1
ξ→i)} ×

[
ν̃γ→i(W̃i)

]y

p(Wi) ∝ exp{Wi

∑
ξ

mξ→i

ρξ→i
− W 2

i

2
(λ+

∑
ξ

ρ−1
ξ→i)} × νγ→i(Wi)

We have also imposed the spherical constraint here by means of the Lagrange
multipliers λ̃, λ, which are O(1) so that W̃i,Wi be O(1): the constraint can be
thought of as a single-variable factor node.

From comparison with 39 (must look at the W-dependence) we get the BP
equations for the moments:

m̃i

ρ̃i
=
∑
ξ

m̃ξ→i

ρ̃ξ→i
+ y

m̃γ→i

ρ̃γ→i

ρ̃−1
i = λ̃+

∑
ξ

ρ̃−1
ξ→i + yρ̃−1

γ→i

mi

ρi
=
∑
ξ

mξ→i

ρξ→i
+
mγ→i

ργ→i

ρ−1
i = λ+

∑
ξ

ρ−1
ξ→i + ρ−1

γ→i

The messages of type i→ ξ are recovered from the moments leaving out the
ξ addend from the first sum:

m̃i→ξ

ρ̃i→ξ
=
m̃i

ρ̃i
− m̃ξ→i

ρ̃ξ→i

mi→ξ

ρi→ξ
=
mi

ρi
− mξ→i

ρξ→i

ρ̃−1
i→ξ = ρ̃−1

i − ρ̃
−1
ξ→i

ρ−1
i→ξ = ρ−1

i − ρ
−1
ξ→i

Notice the different orders of the terms. Similarly the messages of type
i→ γ:
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m̃i→γ

ρ̃i→γ
=
m̃i

ρ̃i
− m̃γ→i

ρ̃γ→i

mi→γ

ρi→γ
=
mi

ρi
− mγ→i

ργ→i

ρ̃−1
i→γ = ρ̃−1

i − ρ̃
−1
γ→i

ρ−1
i→γ = ρ−1

i − ρ
−1
γ→i

Now we have to manipulate the second set of BP equations:
with ũγ→i(W̃i) ∝

∫
dWie

γWiW̃iui→γ(Wi)⇒

m̃γ→i

ρ̃γ→i
= γmi→γ

ρ̃−1
γ→i = −γ2ρi→γ

and similarly:

mγ→i

ργ→i
= γm̃i→γ

ρ−1
γ→i = −γ2ρ̃i→γ

The messages from the patterns are instead given by:

ν̃ξ→i(W̃i) ∝
∫ ∏

j 6=i

dW̃j θ(W̃ · ξ −
√
Nκ) exp{

∑
j 6=i

m̃j→ξ

ρ̃j→ξ
W̃j −

∑
j 6=i

ρ̃−1
j→ξ

W̃ 2
j

2
}

∝
∫ +∞

√
Nκ

dκ′
∫ ∏

j 6=i

dW̃j δ(W̃ · ξ − κ′) exp{
∑
j 6=i

m̃j→ξ

ρ̃j→ξ
W̃j −

∑
j 6=i

ρ̃−1
j→ξ

W̃ 2
j

2
}

exploiting that ξi = ±1:

ν̃ξ→i(W̃i) ∝

∝
∫ +∞

√
Nκ

dκ′
∫ ∏

j 6=i

dW̃j δ(W̃iξi+
∑
j

W̃j−κ′) exp{
∑
j 6=i

ξj
m̃j→ξ

ρ̃j→ξ
W̃j−

∑
j 6=i

ρ̃−1
j→ξ

W̃ 2
j

2
}

As the inner integral is the probability that the sum
∑
j Xj of independent

gaussian RVs be equal to κ′ − W̃iξi:
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ν̃ξ→i(W̃i) ∝
∫ +∞

√
Nκ

dκ′ exp−
(κ′ − W̃iξi −

∑
j 6=i ξjm̃j→ξ)

2

2
∑
j 6=i ρ̃j→ξ

∝ H(

√
Nκ− W̃iξi −

∑
j 6=i ξjm̃j→ξ√∑

j 6=i ρ̃j→ξ
),

hence by derivation ( m̃ξ→iρ̃ξ→i
= ∂W̃i

log ν̃ξ→i(W̃i)|W̃i=0 and
ρ̃−1
ξ→i = −∂2

W̃i
log ν̃ξ→i(W̃i)|W̃i=0 ):

m̃ξ→i

ρ̃ξ→i
= ξi g(

√
Nκ−

∑
j 6=i

ξjm̃j→ξ,
∑
j 6=i

ρ̃j→ξ)

ρ̃−1
ξ→i = g2(

√
Nκ−

∑
j 6=i

ξjm̃j→ξ,
∑
j 6=i

ρ̃j→ξ)−

−
√
Nκ−

∑
j 6=i ξjm̃j→ξ∑

j 6=i ρ̃j→ξ
g(
√
Nκ−

∑
j 6=i

ξjm̃j→ξ,
∑
j 6=i

ρ̃j→ξ)

where g(a, b) = −∂a logH(a/
√
b) =

e
− a

2

2b√
2πb

H(a/
√
b)
. Similarly:

mξ→i

ρξ→i
= ξi g(

√
Nκ−

∑
j 6=i

ξjmj→ξ,
∑
j 6=i

ρj→ξ)

ρ−1
ξ→i = g2(

√
Nκ−

∑
j 6=i

ξjmj→ξ,
∑
j 6=i

ρj→ξ)−

−
√
Nκ−

∑
j 6=i ξjmj→ξ∑

j 6=i ρj→ξ
g(
√
Nκ−

∑
j 6=i

ξjmj→ξ,
∑
j 6=i

ρj→ξ)

Notice that
√
Nκ −

∑
j 6=i ξjmj→ξ ∼ O(

√
N),

∑
j 6=i ρj→ξ ∼ O(N) ⇒ g ∼

O(N−1/2) ⇒ ρξ→i ∼ O(N), as it should be. Notice the this second set of BP
equations is nothing else than that of a single perceptron, as it should be.

4.2.1 Order parameters

We can recover the typical overlaps found also in the replica treatment (notice
that for the law of large numbers this quantities have variance O(N−1/2), ie.
they are self-average):

q̃ =

〈
W̃
〉2

N
=

∑
i m̃

2
i

N
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s =

〈
W̃ ·W1

〉
N

s̃ =

〈
W̃
〉
· 〈W1〉

N
=

∑
i m̃imi

N

q1 =
〈W1 ·W2〉

N

q0 =
〈W1〉 · 〈W2〉

N
=

∑
im

2
i

N

Moreover we should check the soft spherical constraints:

Q̃ =

〈
W̃ 2
〉

N
=

∑
i ρ̃i
N

Q =

〈
W 2
〉

N
=

∑
i ρi
N

These can be implemented directly in the replica expression of the entropy
(the scaling of the entropy under rescaling of the W ’s is a shift of a constant
plus a rescaling of K).

S and q1 must be computed exploiting the usual strategy for the marginal
of more variables in BP, eq. 8 , in particular:

p(W̃i,Wi) ∝ eγW̃iWi ν̃i→γ(W̃i)νi→γ(Wi)

hence:
〈
W̃iWi

〉
=

∫
dW̃idWi W̃iWip(W̃i,Wi)∫

dW̃idWi p(W̃i,Wi)
.

Shifting the W and exploiting that a gaussian of matrix Aij has moments
(A−1)ij : 〈

W̃iWi

〉
=

= ρi→γ ρ̃i→γ
(
mi→γ
ρi→γ

+
m̃i→γ
ρ̃i→γ

ρ̃i→γγ)(
m̃i→γ
ρ̃i→γ

+
mi→γ
ρi→γ

ρi→γγ)− γ(−1 + ρi→γ ρ̃i→γγ
2)

(−1 + ρi→γ ρ̃i→γγ2)2
=

=
(ρ̃−1
i→γ

mi→γ
ρi→γ

+
m̃i→γ
ρ̃i→γ

γ)(ρ−1
i→γ

m̃i→γ
ρ̃i→γ

+
mi→γ
ρi→γ

γ)− γ(− 1
ρi→γ ρ̃i→γ

+ γ2)

(− 1
ρi→γ ρ̃i→γ

+ γ2)2

Notice the symmetry between the tilded and not messages. The moment
between replicas is obtained from the distribution:
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p(W 1
i ,W

2
i ) ∝

∫
dW̃i e

γW̃iW
1
i eγW̃iW

2
i νi→γ(W 1

i )νi→γ(W 2
i )
ν̃i→γ(W̃i)

ν̃γ→i(W̃i)

with ν̃i→γ(W̃i)

ν̃γ→i(W̃i)
∝ exp{−(ρ̃−1

i −2ρ̃−1
γ→i)

W̃ 2
i

2 +( m̃iρ̃i −2
m̃γ→i
ρ̃γ→i

)W̃i}. After integra-

tion it is clear that the final result
〈
W 1
i W

2
i

〉
has the same form as

〈
W̃iWi

〉
above

with the replacings: γ → γ2

ρ̃−1
i −2ρ̃−1

γ→i
, mi→γ
ρi→γ

→ m̃i→γ
ρ̃i→γ

→ mi→γ + γ
m̃i
ρ̃i
−2

m̃γ→i
ρ̃γ→i

ρ̃−1
i −2ρ̃−1

γ→i
,

ρ−1
i→γ → ρ̃−1

i→γ → ρ−1
i→γ −

γ2

ρ̃−1
i −2ρ̃−1

γ→i

4.2.2 Bethe free entropy

In the follow we will consider all the messages normalized. The BP estimate for
the free entropy (Bethe free entropy) is given by eq. (9):

FBethe = F (~ν) =
∑
µ∈F

Fµ +
∑
v∈V

Fv −
∑
V×F

F(v,µ)

The local field contibution can be absorbed in the vertex terms [10]. The
factor contibution is:∑

µ

Fµ(−→ν ) =
∑
ξ

(F̃ξ + yFξ) + y
∑
i

Fγ(i)

where

Fξ = log

∫
dNW θ(W · ξ −

√
Nκ)

∏
i

νi→ξ(Wi) = logH(
κ
√
N −

∑
imi→ξξi√∑

i ρi→ξ
)

F̃ξ = logH(
κ
√
N −

∑
i m̃i→ξξi√∑

i ρ̃i→ξ
)

(this should be valid for the perceptron too)

Fγ(i) = log

∫
dW̃idWi e

γW̃iWi ν̃i→γ(W̃i)νi→γ(Wi) =

= log
exp γ

m̃2
i→γρi→γγ+m2

i→γ ρ̃i→γγ+2m̃i→γmi→γ
2(1−ρi→γ ρ̃i→γγ2)√

1− ρi→γ ρ̃i→γγ2
=

= γ
m̃2
i→γρi→γγ +m2

i→γ ρ̃i→γγ + 2m̃i→γmi→γ

2(1− ρi→γ ρ̃i→γγ2)
− 1

2
log(1− ρi→γ ρ̃i→γγ2)

The second contribution relates to the variable nodes:
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∑
v∈V

Fv = y
∑
i

Fi +
∑
i

F̃i

where:

Fi = log

∫
dWi

∏
ξ

νξ→i(Wi)νγ→i(Wi)e
−λW

2
i

2 =

(this is the integral of a product of normalized gaussians∫
dx
∏
i

exp− (x−mi)
2

2ρi√
2πρi

=
√

2π∑
i ρ
−1
i

exp{− 1
2

∑
i

m2
i
ρi

+ 1
2

(
∑
i
mi
ρi

)2∑
i ρ
−1
i

}∏
i

√
2πρi

)

Fi = −1

2

∑
ξ

m2
ξ→i

ρξ→i
− 1

2

m2
γ→i

ργ→i
+

1

2

(
∑
ξ
mξ→i
ρξ→i

+
mγ→i
ργ→i

)2

(
∑
ξ ρ
−1
ξ→i + ρ−1

γ→i + λ)
−

−1

2
(log(

∑
ξ

ρ−1
ξ→i + ρ−1

γ→i + λ) +
∑
ξ

log ρξ→i + log ργ→i)−
M

2
log(2π) =

= −1

2

∑
ξ

m2
ξ→i

ρξ→i
−1

2

m2
γ→i

ργ→i
+

1

2

m2
i

ρi
−1

2
(− log ρi+

∑
ξ

log ρξ→i+log ργ→i)−
M

2
log(2π)

Similarly:

F̃i = log

∫
dW̃i

∏
ξ

νξ→i(W̃i)
[
νγ→i(W̃i)

]y
e−λ̃

W̃2
i

2 =

= −1

2

∑
ξ

m̃2
ξ→i

ρ̃ξ→i
− 1

2
y
m̃2
γ→i

ρ̃γ→i
+

1

2

m̃2
i

ρ̃i
− 1

2
(− log ρ̃i +

∑
ξ

log ρ̃ξ→i + y log ρ̃γ→i)−

− (M + y − 1)

2
log(2π)

The last contribution comes from the edges:

∑
V×F

F(v,µ) = y
∑
i

F̃i,γ + y
∑
i

Fi,γ +
∑
i

∑
ξ

F̃i,ξ + y
∑
i

∑
ξ

Fi,ξ

Fi,γ = log

∫
dWi νγ→i(Wi)νi→γ(Wi) =

= −1

2

m2
γ→i

ργ→i
− 1

2

m2
i→γ

ρi→γ
+

1

2

m2
i

ρi
− 1

2
(− log ρi + log ργ→i + log ρi→γ)− 1

2
log(2π)
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F̃i,γ = −1

2

m̃2
γ→i

ρ̃γ→i
− 1

2

m̃2
i→γ

ρ̃i→γ
+

1

2

m̃2
i

ρ̃i
− 1

2
(− log ρ̃i+log ρ̃γ→i+log ρ̃i→γ)− 1

2
log(2π)

Fi,ξ = log

∫
dWi νξ→i(Wi)νξ→i(Wi) =

= −1

2

m2
ξ→i

ρξ→i
− 1

2

m2
i→ξ

ρi→ξ
+

1

2

m2
i

ρi
− 1

2
(− log ρi + log ρξ→i + log ρi→ξ)−

1

2
log(2π)

F̃i,ξ = −1

2

m̃2
ξ→i

ρ̃ξ→i
− 1

2

m̃2
i→ξ

ρ̃i→ξ
+

1

2

m̃2
i

ρ̃i
− 1

2
(− log ρ̃i+log ρ̃ξ→i+log ρ̃i→ξ)−

1

2
log(2π)

4.2.3 Local entropy

The above Bethe free entropy FBethe is an estimate for the free entropy F of
the system W̃ of inverse temperature y and energy −E(W̃ , λ̃, λ, γ) = − λ̃y W̃

2 +

logℵ(W̃ , γ) = − λ̃y W̃
2+log

∫
dW χξ(W ) e−λW

2+γWW̃ ' N(− 1
2
λ̃
y Q̃+Sloc(γ, λ, λ̃)−

1
2λQ+ γs) where we have used the saddle point method meaning that the last
equality is the saddle-point energy of the large-deviation W̃ ’s , while Sloc de-
notes the local entropy, i.e. eNSloc is the number of solutions around such super-
solutions. To each Lagrange parameter γ, λ, λ̃ it corresponds a typical overlap
s,Q, Q̃ so that it is possible to invert these relation and get Sloc(s,Q, Q̃) '
−Ebethe(λ̃(Q̃),λ(Q),γ(s))

N + 1
2
λ̃(Q̃)Q̃
y + 1

2λ(Q)Q− γ(s)s. In practice one adjusts λ, λ̃
in running-time so to keep Q, Q̃ = 1.

For y →∞−yEBethe = FBethe
21 because one admits that the ground states

are present in non-exponential number, while for finite y:

Sloc(y, s) ≡
1

N
〈logℵ(s)〉s,y = − 1

N
〈E〉s,y =

1

N
∂y logZ(s, y) =

1

N
∂yFBethe(s, y)

where, as discussed above:

1

N
FBethe(s, y,Q, Q̃) =

Fbethe(λ̃(Q̃), λ(Q), γ(s))

N
+

1

2
λ̃(Q̃)Q̃+

1

2
yλ(Q)Q−yγ(s)s

so that:

Sloc(y, s) =
1

N
∂yFBethe(λ̃(Q̃), λ(Q), γ(s), y) +

1

2
λ(Q)Q− γ(s)s

The local entropy at y = 0 is the Franz-Parisi potential.
21free entropy ≡ logZ = S − 1

T
E
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Now the derivative ∂yFBethe(λ̃(Q̃), λ(Q), γ(s), y) has to be computed keeping
in mind that δFBethe

δm = 0 for the very definition of BP equations22. So we can
perform the explicit derivative of the Bethe free entropy with respect to y:

∂yFBethe(λ̃, λ, γ, y) =
∑
ξ

Fξ +
∑
i

Fγ(i)+

+
∑
i

Fi +
∑
i

∂yF̃i+

−
∑
i

Fi,γ −
∑
i

F̃i,γ −
∑
i,ξ

Fi,ξ

with

∂yF̃i = ∂y log

∫
dW̃i

∏
ξ

ν̃ξ→i(W̃i)
[
ν̃γ→i(W̃i)

]y
e−λ̃

W̃2
i

2 =

=

∫
dW̃i

∏
ξ ν̃ξ→i(W̃i) log ν̃γ→i(W̃i)

[
ν̃γ→i(W̃i)

]y
e−λ̃

W̃2
i

2∫
dW̃i

∏
ξ ν̃ξ→i(W̃i)

[
ν̃γ→i(W̃i)

]y
e−λ̃

W̃2
i

2

=
〈

log ν̃γ→i(W̃i)
〉
m̃i,ρ̃i

=

= −
ρ̃i + m̃2

i − 2m̃im̃γ→i + m̃2
γ→i

2ρ̃γ→i
− 1

2
log ρ̃γ→i −

1

2
log 2π

Cancellations

There are many cancellations due to the last three terms:

∂yFBethe(λ̃, λ, γ, y) =
∑
ξ

Fξ +
∑
i

Fγ(i)+

+
∑
i

Fi +
∑
i

∂yF̃i+

−
∑
i

Fi,γ −
∑
i

F̃i,γ −
∑
i,ξ

Fi,ξ

with:

Fξ = logH(
κ
√
N −

∑
imi→ξξi√∑

i ρi→ξ
)

Fγ(i) = γ
m̃2
i→γρi→γγ +m2

i→γ ρ̃i→γγ + 2m̃i→γmi→γ

2(1− ρi→γ ρ̃i→γγ2)
− 1

2
log(1− ρi→γ ρ̃i→γγ2)

22and also ∂λF · ∂yλ = Q · ∂yλ so that the two cancel out, and the same for the other
Lagrange multipliers.
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Fi =

��
��

�
��

−1

2

∑
ξ

m2
ξ→i

ρξ→i

Z
Z
Z
ZZ

−1

2

m2
γ→i

ργ→i
+
XXXXXXXXX

1

2

m2
i

ρi
− 1

2
(− log ρi+

��
�
��
�∑

ξ

log ρξ→i+
XXXXlog ργ→i)−

��
��
�M

2
log(2π)

∂yF̃i = −
ρ̃i + m̃2

i − 2m̃im̃γ→i +��
�HHHm̃2

γ→i

2ρ̃γ→i ��
���

���
���XXXXXXXXXXX

−1

2
log ρ̃γ→i −

1

2
log 2π

Fi,γ =
Z
Z
Z
ZZ

−1

2

m2
γ→i

ργ→i
− 1

2

m2
i→γ

ρi→γ
+
XXXXXXXXX

1

2

m2
i

ρi
− 1

2
(− log ρi+

XXXXlog ργ→i+log ρi→γ)− 1

2
log(2π)

F̃i,γ =

�
�
�
��Z

Z
Z
ZZ

−1

2

m̃2
γ→i

ρ̃γ→i
− 1

2

m̃2
i→γ

ρ̃i→γ
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1

2

m̃2
i

ρ̃i
− 1

2
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2
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i→ξ

ρi→ξ
+

1

2

m2
i

ρi
− 1

2
(− log ρi+��
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��1
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Final expression of the local entropy

∂yFBethe(λ̃, λ, γ, y) =
∑
ξ

Fξ +
∑
i

Fγ(i)+

+
∑
i

F ′i +
∑
i

∂yF̃i+

−
∑
i

F ′i,γ −
∑
i

F̃ ′i,γ −
∑
i,ξ

F ′i,ξ

with

Fξ = logH(
κ
√
N −

∑
imi→ξξi√∑

i ρi→ξ
)

Fγ(i) = γ
m̃2
i→γρi→γγ +m2

i→γ ρ̃i→γγ + 2m̃i→γmi→γ

2(1− ρi→γ ρ̃i→γγ2)
− 1

2
log(1− ρi→γ ρ̃i→γγ2)

F ′i = 0

∂yF̃
′
i = − ρ̃i + m̃2

i − 2m̃im̃γ→i

2ρ̃γ→i

F ′i,γ = −1

2

m2
i→γ

ρi→γ
− 1

2
log ρi→γ −

1

2
log(2π)
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F̃ ′i,γ = −1

2

m̃2
i→γ

ρ̃i→γ
+

1

2

m̃2
i

ρ̃i
− 1

2
(− log ρ̃i + + log ρ̃i→γ)

F ′i,ξ = −1

2

m2
i→ξ

ρi→ξ
+

1

2

m2
i

ρi
+

1

2
log ρi −

1

2
log ρi→ξ

4.2.4 Results

We run the above version of replicated BP (namely it is analogue to a focusing
BP but for the fact that the center has not been traced out). Unluckily, only for
κ = 0 we managed to make the algorithm converge. Actually, for κ = 0, only
the direction of the synaptic weight vector matters, and the norm is completely
controlled by a balanced interplay of the γ and λ driven interactions. The
problems arise with κ ≶ 0: here the norm matters for the pattern constraint
satisfaction and while the spherical constraint is set in a soft way, the energy of
a pattern is a 0 or +∞ function, corresponding to the fact that we are at zero
temperature. In the discrete case these problems didn’ t arise. The fix would
be considering the finite temperature system, but this goes beyond the scope of
this work.

We report the results at zero stability. The procedure is starting with γ = 0
and run BP until convergence; start from the converged messages increasing or
decreasing γ and run BP again, to explore all the range of distances. Indeed, the
γ = 0 case is equivalent to standard BP (uncoupled real replicas) and yields the
Gardner entropy. Increasing γ means tuning on smaller distances. Still, there
are convergence problems out of a range of distances, in particular we observe
that the messages stop converging. We think this is once again due to the fact
that at such non-typical overlaps there are few solutions and the system prefers
to minimize the number of violated patterns irrespective of the soft Lagrange
interactions.

We report two series of results in the range of distances where the algorithm
converged, see Fig. 29:

• at y → 0 the local entropy should reduce to the Franz-Parisi potential; in
practice we expect the replicated BP estimate to be reliable only in the
large y limit (this is observed also in the discrete case)

• y = 3: the result is reasonable (the Franz-Parisi entropy is a lower bound),
but we cannot say if the local entropy stands above the Franz-Parisi en-
tropy due to large finite-size effect errors (fluctuations in different samples)

In the end, the general approach may be promising, the main troubles coming
from:

• the zero temperature issue, which can be fixed modifying the BP equations
(we have sketch the computation and it is feasible in theory)
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Figure 29: Local entropy estimated with replicated BP at y = 0.001 and y = 3;
α = 1.5, κ = 0, N = 600. For small y the approach is expected to fail, and
actually only the region s ' styp (γ = 0, decouple system hence y indepen-
dent) seems acceptable. In green we have reported the data taken in different
simulations in order to give an idea of how big the fluctuations are in different
samples. At y = 3., instead, the approach is theoretically consistent and in
the region in which the meassages converge the local entropy estimate follows
the Fran-Parisi entropy (which is a lower bound), see purple points, which are
obtained averaging over 10 simulations the experimental points (s(γ), Sloc(γ)
for different values of γ

• the geometry of the space; we don’ t know if this is a real problem but
one possible picture is that, if two replicas live in two different minima
separated by an energy barrier, their interaction seems quite different from
the discrete case

4.3 Numerical experiments
Seen the not promising results obtained so far, we turned to numerical ex-
periments to see where the numerical hardness arises and if with the strategies
proposed in Section 2.2, the more adaptable being replicating known algorithms,
we could solve this problem.

We started with Gradient Descent (GD), recall eq. (1). Actually, it is known
in the deep learning literature [25, 40] that simple GD fails in the training of
neural networks, mainly for the following reasons:

• it gets trapped in local minima with high training error or it slows down
in plateaus [42]

• even when it achieves low training error, it yields poor generalization prop-
erties with respect to simple strategies as SGD

• in practice one deals with large networks and enormous training sets of
correlated patterns, so computing the gradient at each step using the whole
training set is unfeasible and not convienient
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In particular, in [40] they introduced a replicated version of SGD and compare its
performances with existing algorithms on a 6 layer network. In their language23,
y workers are subject to the potential generated by the patterns and a are
coulpled to a master by an elastic interaction. Apart from reasons connected to
the parallelization of the code, the intuition behind this method is threefold:

• an entropic argument: more workers provide a better exploration of the
energetic landscape

• the single workers may be attracted towards local minima, but the best
(deeper) minimum should provide a stronger attraction

• in the final phase of convergence, having more workers should speed up
the collapse in the minimum, due to an average over fluctuations (indeed
the algorithm is called Elastic Averaging SGD (EASGD))

It is not clear if the success of this procedure has anything to do with the ex-
istence of dense clusters of solutions or something like that. Another question
concerns the role of stochasticity in SGD: one may think that the noise selects
the more robust solutions, so that already SGD may be connected to an out-of-
equilibrium landscape.

Said this, we tried GD for the storage problem in the continuous perceptron,
expecting the GD to get trapped in local minima, at least in the κ < 0 region
where the space of solutions is no more convex. However, we were surprised
to see that no computational hardness seems to be present even in the fullRSB
region.

In particular, we focused on the region κ = −1, α = 11. and at this point a
simple GD with a proper choice of the learning, see Appendix , rate succeeds
in 100% of cases. Notice that at κ = −1 the storage capacity is expected to be
at around αc ∼ 13 while the AT line is at about α ' 7. [43]. For greater α it
is not possible to make statements due to the stretching of convergence times.
The numerical results suggest that with probability 1 all local minima are also
solutions. We have not been able to prove this conjecture. Nevertheless, we
mention that recently some papers have been published [14, 44] which claim
that in certain regimes in deep learning all local minima are global ones or are
low energy ones [45].

In Fig. 30 we plot the mutual overlap between solutions found with GD:
in practice we fix a sample and repeat GD from 120 different initialization
points, until we find a solution. We kept in memory the corresponding vector
and computed the overlap between all pairs of solutions. Such overlaps are
plotted in the histogram. The scenario seems to be robust in N ; the number
of iterations needed to find a solution doesn’t seem to scale in N but depends
only on α (while the complexity of the single iteration is order O(αN2).

23actually one of their main concern is having an highly distributed implementation of the
algorithm
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Figure 30: Overlaps between pairs of the 120 solutions found with GD over
the same sample, with random initialization points, for κ = −1, α = 11. and
N = 200, 400. The small peak near 1 is maybe due to solutions in the same
connected component and the scaling with N suggests that the algotithmic
overlap is a self-averaging quantity.

4.3.1 Replicated GD

Even though the storage problem doesn’ t seem hard, we implemented replicated
GD in order to understand if the solutions found with GD and replicated GD
show the same features.

Replicating GD consists in dealing with y replicas of the system and at each
iteration to update each copy with the usual GD rule plus an elastic term with
coupling constant γ(t).

In order to keep things under control, we studied different scaling properties
of the dynamics of the algorithm, monitoring in time the (average) overlap
between different replicas (used γ constant or step-like for simplicity), see Figs.
31,32.

Once checked the scalings, we studied the statistical properties of solutions.
Making the histogram of the overlaps between pairs of solutions, no qualitative
difference is observed, see Fig. 33.

4.3.2 Discussion

The overall results seem to suggest that the continuous perceptron does not show
the same features as the discrete one. Even though both models can be treated
with a very simialr replica computation, their dynamical behaviour is totally
different. The discrete perceptron is in fact a spin glass model, numerically hard
to solve with energy minimization based methods. The continuous perceptron
doesn’ t show this hardness and can be solved with a simple gradient descent.
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Figure 31: Left panel: Typical trajectory of the overlap between replicas vs
time. As overlap we have taken the average of the overlaps of one replicas with
the others. In the red dataset we have kept γ constant in time, while in the green
one we have turned it on after 1500 iterations. Here γ = 0.001 , α = 10., κ =
−1., N = 300. The green plot suggests that after about 300 iterations each free
replica selects a basin of attraction. Right panel: Average energy (quadratric
loss function) of the replicas versus time for the same two simulations. Notice
that in the green simulation at the accension of the interaction the replicas come
out of their basin of attraction and converge to the same region.

Figure 32: Scaling of the dynamics with the parameters. In the left panel the
number of iterations required to have the replicas with mutual overlaps greater
than 0.999 (“collapse iteration”) are plotted versus the system size, averaged
over 10 samples and at y = 6, γ = 0.001. The parameters of the algorithm
are properly normalized in N : the typical time scales of the dynamics do not
depend on N . In the right panel the collapse iteration is plotted versus y both
at fixed γ = 0.0005 (red line, exponential-like scaling) and with γ = 0.006/y.
The more numerous the replicas, the faster they collapse in the same point and,
moreover, as suggested from the large deviation measure, only the product y ∗γ
matters.
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Figure 33: Overlaps between pairs of solutions found with GD versus replicated
GD, at α = 11., κ = −1., N = 200, y = 7. No qualitative difference.

The space of solutions is very different too: in the discrete case the typical
solution are isolated, in the continuous case for continuity this is not true. The
geometrical structure of the sphere seems also to play a role, with the spherical
constraint being a key element.

We had chosen the negative perceptron because it was quite analytically
treatable and hoped it was complex enough to show the precursor features of
deeper learning problems. The results obtained suggest that if the success of
deep neural networks is somehow connected to dense regions of “desirable” con-
figurations, this property should arise from the deep nature of the architecture .
The same idea of “desirable” may need to be rethought: maybe in the continuous
case we have to seek for dense regions of configurations with low training error
and not necessarily solutions, and it is not clear if it is the volume occupied by
these configurations to be relevant or the volume spanned by (in which they are
dense enough).

We have some arguments that the situation may be more interesting with
deeper architectures. As above mentioned, we have some reasons to hope that
the flexible “replicated algorithm” strategy may yield better performances [40].
Already in simple two-layer networks (with no artificial negative stability) the
space of solutions is highly non-trivial [19, 18]: for the tree-like committee ma-
chine, for example, the intermediate output ~τ = {τ1, ..., τ2}, τi = ±1 is called
internal representation and is used to label the (domains of) solutions (solution
means sign(

∑
i τi) > 0). In the generalization problem for fully connected com-

mittees, both the discrete and continuous case show an interesting transition
from a symmetric phase with unspecialized hidden units to a symmetry broken
phase with specialized hidden units [17]. At the present time we are working
at simulations on tree-like committee machines, to understand if the training
problem is computationally hard.
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We don’ t know if the large deviation approach has nothing to do with deep
learning, but we think that it is worth investing some time in investigating this
issue.
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Conclusions
These months in Torino have been an amazing research experience for me. I
have joined a well structured group with a longstanding tradition in the physics
of spin-glasses and optimization problems. Last year was for the group a really
fruitful period: with an elegant conjecture they were able to describe the out-
of-equilibrium behaviour of efficient learning routines on discrete synapses and
then sketch a simple and very flexible strategy to design new algorithms. The
generality of the approach opens several perspectives and a lot of work will be
required to investigate the innumerable possible research lines (see paragraph
2.3).

I had to study a lot of advanced tools in statistical mechanics (BP and
replica method in primis) and finally was directed to work on one of the main
projects of the group: extending the achivements obtained in the discrete case
to the continuous one, starting from the simplest possible scenario. In the end,
the negative perceptron turned out to be unsuitable for our purposes: it has no
computational hardness and the negative stability is only source of troubles. We
now turn our hopes to deeper architectures (see discussion 4.3.2). All the same,
the work done on the perceptron will be useful for a twofold reason: as a training
for future technical computations and as a precursor of the possible problems
to be encountered dealing with continuous synapses (the main question being:
what is the continuum analogous of the attractive dense clusters of solutions?).

I did a lot of complex computations and learned one major lesson: always
start from the simple stuff and redo what has already been done; this will give
you the right momentum and will allow you to check difficult equations in simple
regimes.
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Appendix

A. Gradient Descent Code
We report a readable version of the Julia code of the GD algorithm. The
important remarks are:

• the energy is defined as the sum over the patterns of the squared deviation
from the threshold (corresponding to r = 2 in eq. (2))

• a small extra stability ε (typicall ε = 10−3, 10−4) helps

• the synaptic weights are normalized at each step, and the trasversal com-
ponent of the gradient is taken

The complexity of each iteration is completely contained in the gradiente!
function and is O(αN2), corresponding to a loop over each site and each pattern:
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